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Abstract

Recent advances in machine learning methods have enabled tremendous progress in autonomous driving,

namely through the perception step thanks to deep learning and deep neural networks, combined with all-

around progress in sensors, mapping and proprioception techniques. The focus is now therefore shifting

towards the next steps in the autonomous pipeline, where prediction plays an important role. Once the

surrounding road agents have been detected and tracked, the driving system needs to predict their future

trajectory and plan accordingly to have a collision-less course.

This trajectory prediction must follow multiple requirements. First, it should obviously be accurate

and trustworthy, so that its output can be reliably used in the following processes. The future can present

multiple possibilities, from which it may not always be possible to disambiguate solely based on past

historical data. The forecast must therefore be multimodal, by predicting multiple simultaneous probable

futures. Since the prediction is to be made on all surrounding agents, and these agents behaviors are

very much influenced by their interactions with each other, the model should take these interactions

into account, and its multimodal predictions should be coherent with each other. Finally, for safety and

reliability, the trajectory prediction should be easy to interpret, extensively evaluated, able to provide

confidence evaluates and designed with its final use in the pipeline in mind.

In the first part of this dissertation, after recapitulating existing non-learning methods for trajec-

tory forecasting, we study different existing representations and approaches for learning-based motion

forecasting. We then propose to tackle the trajectory prediction problem using probability heatmaps to

facilitate multimodality. We design three different ways of generating these heatmaps and evaluate them

against each other and the existing state-of-the-art. We also provide a complete sampling method to

extract actual trajectories from these heatmaps, and study the pro and cons of these heatmap methods

compared to other commonly used frameworks. In the next chapter, we focus on multi-agent prediction,

and more specifically consistent scene-level outputs, for these type of heatmap models through sam-

pling and learned post-processing. Finally, we explore different ways of expanding prediction model

evaluation by uncertainty assessment, calibration and cross-dataset generalizability analysis.



Résumé en Français

Les récentes avancées dans les méthodes d’apprentissage automatique ont permis des progrès con-

sidérables dans le domaine de la conduite autonome, notamment dans l’étape de perception, grâce à

l’apprentissage profond et aux réseaux de neurones, combinés aux progrès généralisés des capteurs, de

la localisation et des techniques de proprioception. L’attention se porte donc désormais sur les étapes

suivantes du pipeline de la conduite autonome, où la prédiction joue un rôle important. Une fois que

les agents routiers environnants ont été détectés, suivis et filtrés, le système de conduite doit prédire leur

trajectoire future et planifier en conséquence pour éviter les collisions.

Cette prédiction de trajectoire doit répondre à de multiples exigences. Tout d’abord, elle doit être

évidemment précise et sûre, afin que son résultat puisse être utilisé de manière fiable dans les processus

suivants. Le futur peut présenter de multiples possibilités, qu’il n’est pas toujours possible de differencier

sur la seule base des données historiques passées. La prévision doit donc être multimodale, en prédisant

plusieurs futurs probables simultanés. Puisque la prévision doit être faite sur tous les agents environnants,

et que les comportements de ces agents sont très influencés par leurs interactions, le modèle doit prendre

en compte ces interactions, et ses prévisions multimodales doivent être cohérentes entre elles. Enfin,

pour la sécurité et la fiabilité, la prédiction de trajectoire doit être facile à interpréter, largement évaluée,

capable de fournir des évaluations de confiance et conçue avec son utilisation finale dans le processus

global à l’esprit.

Dans la première partie de cette thèse, après avoir récapitulé les méthodes existantes de prévision

de trajectoire n’utilisant pas l’apprentissage machine, nous étudions les différentes représentations et ap-

proches existantes pour l’estimation de mouvement par apprentissage. Nous proposons ensuite d’aborder

le problème de la prédiction de trajectoire en utilisant des grilles probabilistes pour faciliter la multi-

modalité. Nous concevons trois manières différentes de générer ces cartes thermiques et nous les évalu-

ons les unes par rapport aux autres et par rapport à l’état de l’art existant. Nous fournissons également

une méthode d’extraction complète pour obtenir les trajectoires réelles à partir de ces cartes de probabil-

ités, et nous étudions les avantages et les inconvénients de ces méthodes de grilles par rapport à d’autres

approches couramment utilisés. Dans le chapitre suivant, nous nous concentrons sur la prédiction multi-

agents, et plus particulièrement sur les prédictions cohérentes au niveau de la scène, pour ce type de

modèles de grilles par le biais de l’extraction et d’une seconde étape apprise. Enfin, nous explorons

différentes manières d’étendre l’évaluation des modèles de prédiction par l’évaluation de l’incertitude,

la calibration et l’analyse de la généralisabilité entre jeux de données.
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CHAPTER 1. INTRODUCTION

This chapter covers the background and motivation of this thesis, which tackles trajectory prediction,

a problem relevant to both theoretical and practical applications.

1.1 Context: the autonomous driving pipeline

An autonomous driving vehicle shares a common architecture to most autonomous robotic systems, that

can be summarized in 3 main steps illustrated in Fig. 1.1. This pipeline runs in closed loop and each of

its steps are repeated one after another at a certain frequency, so that the system can assert and adapt to

its evolving environment.

Object/Lane detection
Localization

Semantic segmentation

Perception

Multimodality
Multi-agent consistency
Uncertainty estimation

Prediction

Driving policy
Path planning

Controls

Planning

Figure 1.1: Autonomous driving pipeline. Illustrations from [Rigoulet, 2022, Deo and Trivedi, 2018b,
Talpaert et al., 2019]

Perception The system needs to be aware of its environment. For that purpose, it is equipped with a

set of sensors (cameras, radars, lidars, etc ...). The data from these sensors is processed by perception al-

gorithms in order to extracts meaningful semantic information from it, such as depth estimation, drivable

area, lane markings, objects, obstacles, other moving agents as well as localization. Historically, these

perception methods have first been performed with handcrafted features [Lowe, 2004, Dalal and Triggs,

2005, Moutarde et al., 2007, Labatut et al., 2007, Stanciulescu et al., 2009, Deschaud and Goulette,

2010, Zaklouta and Stanciulescu, 2014], but recently deep learning methods have shown significant im-

provements in image processing [Krizhevsky et al., 2012, Simonyan and Zisserman, 2014, He et al.,

2016] and have progressively replaced every step in the Perception stack, be it object detection [Gir-

shick, 2015, Redmon et al., 2016, Liu et al., 2016, Lin et al., 2017, Carion et al., 2020, Horváth et al.,

2022], depth estimation [Dosovitskiy et al., 2015, Luo et al., 2016, Godard et al., 2017, Kendall et al.,

2017, Liang et al., 2018, Ranftl et al., 2021], semantic segmentation [Long et al., 2015, Badrinarayanan

et al., 2017, Isola et al., 2017, Zhu et al., 2017] or point cloud operations [Qi et al., 2017, Yang et al.,

2018, Lang et al., 2019, Thomas et al., 2019].

This first round of semantic information is then post-processed using temporal information in order

to perform higher-level reasoning tasks such as localization [Brubaker et al., 2013, Kendall et al., 2015,

Moreau et al., 2022, Moreau et al., 2023] or object tracking [Welch et al., 1995, Wojke et al., 2017].

Prediction Once the Autonomous Vehicle (AV) has established a representation of the scene sur-

rounding it, it needs to reason about the future evolution of this scene. If placed in the framework of a

4



CHAPTER 1. INTRODUCTION

Markov decision process [Bellman, 1957], the driving agent should be able to estimate its future state

given its current state and its chosen action. However, while most of the state transition can be easily

derived from kinematics, some parts may evolve independently of the agent’s action, following a logic

and goal of their own. More specifically, the other detected road agents will move in the future, and

the AV must estimate their future location so it doesn’t collide with them and is able to plan its own

trajectory in the long term.

Planning Given the current scene representation and its predicted future evolution, the AV must de-

sign a plan so that it can achieve its main task: get to its destination. However this goal must be achieved

while respecting some sub-tasks such as respect the traffic rules or avoid collisions. The planning stack

therefore takes the observed state and its predicted future into consideration to construct a safe and effi-

cient sequence of actions which it has evaluated to be the best according to the defined criteria. The first

action of this sequence will then be applied through a control stack into steering and throttle inputs.

Impact of Prediction Trajectory prediction is the hinge step of the autonomous pipeline, and is

therefore critical for the autonomous behavior. It is responsible for possibly its most important criterion:

safety, as it is the corner stone to collision avoidance and future anticipation, which is essential for a

smooth, energy-efficient, comfortable and reliable behavior.

About the advantages of splitting the pipeline vs end-to-end While some approaches tackle au-

tonomous driving in a single end-to-end differentiable model to train direct driving behavior from sen-

sory inputs [Chekroun et al., 2021], these methods sacrifice interpretability and theoretical guarantees

for a gain that is mostly the appeal of a simplified architecture and a unified training on labels that are

difficult and costly to collect. Furthermore the learning of these end-to-end models is cumbersome, as

they require the model to understand a great deal of causality between very high level controls and very

low-levels sensor inputs, and necessitate sophisticated methods not to suffer from distributional shift

[Codevilla et al., 2019].

A branch of prediction research still approaches the prediction problem in a end-to-end manner, but

separates the tasks inside the model architecture [Luo et al., 2018, Casas et al., 2018], starting directly

from sensor data and processing perception and tracking before inferring future prediction. We chose

to follow most of the literature and isolate the problem of trajectory prediction from supposedly perfect

perception tracking, as provided in most trajectory datasets and benchmarks [Chang et al., 2019, Zhan

et al., 2019]. Interestingly, even in this constrained framework some works [Ivanovic et al., 2022a, Weng

et al., 2022, Ivanovic et al., 2022b] focus on the possible prior errors in the perception and argue these

should be taken into account for better performance.

1.2 Problem statement: predicting the future of road agents

We set our problem in an intermediary representation, where nearby objects have been detected and

tracked in order to extract their temporal sequences of coordinates, and the surrounding map has been

localized and/or infered from sensor data. As described in Fig. 1.2, the prediction model takes the local

map and the surrounding/target agents trajectories as inputs, in order to predict the future sequence of

coordinates, at a regular frequency and up to a pre-defined time horizon (e.g. 5 seconds at 10Hz), for one

or all of the nearby agents. As we will show later in this work, these inputs can be used either in their

raw vectorized shape, or through a rasterization to obtain bird-eye view images.
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Agents past trajectories

HD Map

Trajectory Prediction Multi-agent future 
Multimodal trajectories

Figure 1.2: Inputs and Outputs for Trajectory Prediction

A trajectory prediction model needs to take into account a wide variety of factors. Its design may

change according to the type of agent is has to predict. After encoding the temporal information se-

quences of each agent, it must be able to understand possible interactions between each of them, as well

as traffic rules that may condition these interactions or add supplementary constraints. The surround map,

with its road lanes, drivable area and intersections also has a very important impact on the trajectory of

the vehicles.

Apart from raw performance, the motion forecasting pipeline must meet various challenges. In order

to properly cover the different probable future scenarii, the prediction must be multimodal, such that

every possible future is represented in a modality. Moreover multiple agents need to be predicted at the

same time, fast enough to be implemented in a real-time system, and in a way that the scene-level forecast

is consistent between each agents. These multiple simultaneous constraints also raise questions on how

we should evaluate these prediction models, and if they should also be required to provide uncertainty

estimates for their estimations.

1.3 Publications and communications

This PhD has been conducted in the center for robotics of Mines Paris, PSL University in the context of

an industrial collaboration with Huawei Technologies France, in the Internet of Vehicles (IoV) team of

Paris Research Center. The main publications and communications of this thesis can be synthesized as

follows:

• T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, F. Moutarde. HOME: Heatmap Output for fu-

ture Motion Estimationt. Proceedings of the IEEE International Intelligent Transportation Systems

Conference (ITSC 2021).

• T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, F. Moutarde. GOHOME: Graph-Oriented

Heatmap Output for future Motion Estimation. Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA 2022).
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• T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, F. Moutarde. THOMAS: Trajectory Heatmap

Output with learned Multi-Agent Sampling. Proceedings of the International Conference on

Learning Representations (ICLR 2022).

• T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, F. Moutarde. Uncertainty estimation for Cross-

dataset performance in Trajectory prediction. Workshop on Fresh Perspectives on the Future of

Autonomous Driving, IEEE International Conference on Robotics and Automation (ICRA 2022).

1.4 Outline

This thesis is laid out in seven chapters:

Chapter 1: Introduction. We give an overview of the autonomous driving pipeline to contextualize

the task of trajectory prediction. We define the parameters of the motion forecasting problem and mention

its main challenges.

Chapter 2: Non learning-based trajectory prediction. We review traditional existing motion esti-

mation methods that are not based on machine learning. We present model families based on kinematics

and physics, stochastic probability approaches, forecasts based on interactions and finally methods using

intermediary representations in a hierarchical way, such as graph structures or maneuvers. We analyze

the base principles of these foundational approaches and their shortcomings.

Chapter 3: Machine learning for trajectory forecasting. We provide an overview of existing ma-

chine learning techniques for motion estimation. We focus on each different axes that a complete driving

model must incorporate. We organize along the natural process of the model, starting with the temporal

encoding of trajectory sequences. We review agent interaction methods, which are primordial for both

pedestrian and vehicle forecasting. We then observe the different ways of including map information,

whether in the shape of an image or a graph. Finally, we list the possible output representations of these

trajectory approaches, and weights both their respective advantages and limitations.

Chapter 4: Trajectory prediction with heatmaps: In this chapter we propose a heatmap-based

representation for trajectory prediction outputs. We summarize the existing methods already leveraging

similar representations, then present three different ways of generating these heatmaps. We benchmark

the performance and speed of these proposals against each other and against the existing state-of-the-

art. Finally we justify the advantages of such heatmap parametrizations in various ablation studies and

experiments.

Chapter 5: Multi-agent consistent prediction: We tackle the lesser-explored problem of consistent

multi-agent prediction. We recall the consistent scene-level problematic and the related works already

dealing with this issue. We describe a novel post-processing multi-agent recombination module that re-

orders a marginal independent prediction into a joint coherent one. We evaluate our method on recent

multi-agent challenges and demonstrate its added value on various experiments.

Chapter 6: Expanding the evaluation of trajectory prediction: Despite multiple existing chal-

lenges on trajectory prediction, these benchmarks usually use the same performance metrics that measure

absolute similarity to the collected ground-truth data. However the qualities of a motion forecasting mod-

ule may be more related to its robustness and interpretability than predicting an non-relevant pedestrian

on the sidewalk or an opposite direction car to the nearest-centimeter. We explore more diverse ways
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of evaluating a trajectory prediction model, by establishing cross-dataset performances for generalizabil-

ity. We then show how uncertainty estimation can be leveraged in trajectory prediction, by presenting

a heatmap-related uncertainty method along with a way of using this uncertainty to improve prediction

quality. Finally, we study the calibration of the predicted heatmap itself.

Chapter 8: Conclusion Finally, we summarize our findings and open potential further exploration

in the domain of trajectory prediction and its evaluation in the context of the full autonomous driving

pipeline.
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CHAPTER 2. NON LEARNING-BASED TRAJECTORY PREDICTION

This chapter reviews traditional methods for trajectory prediction, relying on simple principles such

as physics, differentiability or causality. We refer to [Lefèvre et al., 2014] for a more extensive review of

these classical approaches.

2.1 Kinematic models for motion estimation

2.1.1 Physical models

At its simplest, predicting the future position of a vehicle can simply be done using their speed 𝑣 and

heading 𝜃, and approximating these as constants in the near future in the Constant Velocity (CV) model:

pt+𝚫t = pt + 𝑣Δ𝑡
(
cos𝜃
sin𝜃

)
(2.1)

As a first order approximation, this formula may be accurate in very short time horizons, but in

longer term it does not represent the true physical behavior of an object that can accelerate or turn. It can

therefore be refined with a Constant Turn Rate 𝜔 and Acceleration 𝑎 (CTRA) model:

pt+𝚫t = pt + 𝑣𝑡Δ𝑡
(
cos𝜃𝑡
sin𝜃𝑡

)
𝑣𝑡+Δ𝑡

= 𝑣𝑡 + 𝑎Δ𝑡

𝜃𝑡+Δ𝑡
= 𝜃𝑡 +𝜔Δ𝑡

(2.2)

As not all these quantities may be provided from the Perception module, a Kalman filter [Welch

et al., 1995] can be used to derive these values from the past position sequence. These filter usually need

hand-tuned hyperparameters for initial uncertainty values, however recent approaches have tried learning

these values through back-propagation of the filter prediction errors [Jouaber et al., 2021].These models

then intrinsically provide a prediction phase from their estimated state.

The physical model most commonly used in Kalman filters for autonomous driving is the bicycle

model [Polack et al., 2017], which variates slightly from CTRA by assuming a constant steering value 𝛿

as illustrated in Fig. 2.1, and computing the turn rate from the steering, wheelbase 𝐿 and speed:

𝜔 = 𝑣 ∗ tan(𝛿)/𝐿 (2.3)

Figure 2.1: Bicycle model with constant steering angle 𝛿 and wheelbase 𝐿. Figure from [Ding, 2020]
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[Schubert et al., 2008] provides a detailed survey and comparison of the different existing motion

models in this category.

2.1.2 Time-series smoothness and extrapolation

One can consider the trajectory prediction task as an extrapolation problem, where the future points must

be predicted from the historical data of a time series. [Wiest et al., 2012] fits Tchebychev polynomials

to the trajectory of 𝑥𝑦-positions, while [Houenou et al., 2013] fits a 5-degree polynomial for the lateral

component and a 3-degree polynomial for the longitudinal component in Frenet coordinates as illustrated

in Fig. 2.2. [Yi et al., 2015] also fits clothoids on trajectories, based on continually variable curvature.

Figure 2.2: Polynomial regression candidates from constraints on starting point (coordinates and deriva-
tive) and final point (derivatives). Figure from [Houenou et al., 2013].

2.2 Stochastic models

2.2.1 Hidden Markov Models

Hidden Markov Models (HMM) [Berndt and Dietmayer, 2009, Christopher, 2009, Firl et al., 2012]

represent the car trajectory as a sequence of partial observations 𝑥 derived from a hidden variable 𝑧. In

the Markov chain formulation as illustrated in Fig. 2.4, 𝑧𝑡 ’s probability distribution at each timestep 𝑡

depends only on the previous variable 𝑧𝑡−1, and then the observed position 𝑥𝑡 is conditioned on 𝑧𝑡 only.

This modelisation make HMMs very adapted for sequential data.

Figure 2.3: Markov chain with hidden variable 𝑧 and observation 𝑥. Figure from [Gundersen, 2020]

The HMM models the joint probability of 𝑧 and 𝑥:
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𝑝(𝑥, 𝑧) =
𝑇∏
𝑡

𝑝(𝑥𝑡 |𝑧𝑡 )𝑝(𝑧𝑡 |𝑧𝑡−1) (2.4)

Where 𝑝(𝑥𝑡 |𝑧𝑡 ) is the emission probability and 𝑝(𝑦𝑡 |𝑧𝑡−1) is the transition probability. It is therefore

a generative model that represents the underlying probability disttribution.

2.2.2 Monte Carlo simulation

[Broadhurst et al., 2005, Eidehall and Petersson, 2006] use Monte Carlo sampling to simulate possi-

ble future paths from a sequence of uniform controls. Actions such as steering and acceleration are

effectively sampled with respect to torque and friction limitations without any requirement for a linear

physical model, while checking collisions to infer the most likely path avoiding collision.

Figure 2.4: Monte Carlo sampling for collision avoidance from [Danielsson et al., 2007]

2.2.3 Conditional Random Fields

Conditional Random Fields differ from HMMs in that they are discriminative models for the conditional

probability 𝑝(𝑧 |𝑥) only. They can also be applied for the prediction of latent events such as braking or

overtaking [Ohn-Bar et al., 2015].

2.2.4 Bayesian networks

[Lefèvre et al., 2011] uses a Bayesian network to assess the probability of each possible lane while

leveraging the topology of the intersection through a direct graph representing the dependencies between

different variables. Compared to HMMs, Bayesian Networks are less focused on the temporal depen-

dencies and more on relationships between different vaiables such as chosen maneuver, turn signal and

so on.

2.3 Interaction models

2.3.1 Social forces

Relationship with pedestrian trajectory prediction Despite being fairly similar tasks in their final

aim, pedestrian and car motion forecasting differ a lot in methodology and nature. Pedestrians mostly

evolve in an unconstrained environment, with their motion being mainly influenced by other pedestrians

in crowds. Cars on the other hand follow a very strict framework with lanes and traffic rules, where other

12
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agents remain important for collision avoidance and space occupancy, but are not the main factors of the

target car’s movement.

Works such as [Helbing and Molnar, 1995] predict pedestrian movements through the application

of social forces from other pedestrians and obstacles as illustrated in Fig. 2.5. Similar methods have

been applied through many-particle systems and fluid dynamics on vehicle traffic, but these remain on a

macroscopic level, and are not sufficient to efficiently predict individual car movements accurately.

Figure 2.5: Social forces for pedestrian motion forecasting. Figure from [Rudenko et al., 2020]

2.3.2 Driver models

Relationship with simulation Since simulating a realistic driving behavior comes down to generating a

set of possible trajectories that the driving agent could follow in real life, simulations could be considered

as picking one of the possible trajectory for the agent and using it as internal planning. Once again, at

simulation time the destination of the agent should be known, but most simple simulation models don’t

consider destinations anyway, focusing on car interactions.

The most commonly used behavior model is the Intelligent Driver Model (IDM) [Treiber et al.,

2000], that directly controls the acceleration of the car according to the following equation:

¤𝑣 = 𝑎[1− (𝑣/𝑣0) 𝛿 − (𝑠∗(𝑣,Δ𝑣)/𝑠)2] (2.5)

With Δ𝑣 = 𝑣− 𝑣𝑙 the speed of approach to the lead vehicle, Δ an exponent usually set to 4 and where 𝑣 is

compared to the desired speed 𝑣0 and 𝑠 to the desired distance 𝑠∗:

𝑠∗(𝑣, 𝛿𝑣) = 𝑠0 +𝑚𝑎𝑥(0, 𝑣𝑇 +
𝑣Δ𝑣

2
√
𝑎𝑏
)

with 𝑇 the time-gap to the leading vehicle, 𝑠0 the minimum spacing, 𝑎 the maximum acceleration and 𝑏

the comfortable breaking deceleration. 𝑠0 + 𝑣𝑇 is here an equilibrium term, and 𝑣Δ𝑣

2
√
𝑎𝑏

a dynamical term

that implements an "intelligent" braking strategy, where the kinematic acceleration necessary for safety

is self-regulating towards the comfort deceleration.

[Liebner et al., 2013] adapts this driver model from simulation into behavior prediction by defin-

ing prior clusters of driver behaviors from data and estimation their a posteriori probabilities of theses

hypotheses given the past trajectory.

This model, like most others, mostly transcribe a simple car following model for traffic simulation

and collision avoidance, and covers only specific scenarios such as highways. It is more adaptive to its

surrounding that physical models, but trades-off this adaptability against realism.

13



CHAPTER 2. NON LEARNING-BASED TRAJECTORY PREDICTION

2.3.3 Game-theoretic approaches

The prediction/planning of a future sequence of actions for multiple driving agents can also be considered

as solving a game where each agent wants to maximize its own reward while sometimes also considering

the others reward [Schwarting et al., 2019] as illustrated in Fig. 2.6. The solution is then obtained by

solving an interactive game through a game tree [Bahram et al., 2015] or a Stackelberg game [Li et al.,

2017] where the leader vehicle first chooses an action, and then the following vehicle, and so on, in order

to reach a Nash equilibrium where no player can gain by changing his action alone.

Figure 2.6: Different driving behaviors from game-theory solutions, depending on whether the agent
only considers his own reward (egoistic) or also the other’s (prosocial). Figure from [Schwarting et al.,
2019]

2.4 Hierarchical prediction

In order to represent the various granularities of a realistic trajectory, the movement can be decomposed

into intermediary steps, which can be either planning steps towards a destination or predefined operations

derived from real human behavior.

2.4.1 Graph search

Relationship with planning The task of trajectory prediction shares many similarities with planning.

Indeed, predicting the future of one surrounding car is almost the same as planning for this car as a

driving agent. Main differences would be that, while a driving agent knows its destination for planning,

this goal of arrival must me estimated during prediction, or not follow any assumption on a specific goal

and cover all possible destinations.

The graph can represent continuous space as in Hybrid A* [Dolgov et al., 2008] that extends the

heuristic-based graph search method A* to a continuous state search by storing continuous states in

reached discrete cells, or rapidly exploring random trees (RRT) [LaValle et al., 1998] that constructs

their own nodes iteratively in the actions space, guaranteeing kinematic feasibility. With the surrounding

road map usually available as a graph, the future path of a car can also be estimated by exploring the
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reachable nodes in the map. Speed profile can then be considered afterwards, or during the graph search

by using a spatio-temporal graph [Rowold et al., 2022] as illustrated in Fig 2.7.

Figure 2.7: Spatio-temporal graph search fro trajectory planning. Figure from [Rowold et al., 2022]

2.4.2 Maneuver-based prediction

In order to reduce the prediction space complexity, some works propose to restrict the possibilities to a

discrete set of maneuvers .

Anchors
The past of a trajectory can be used to find its nearest neighbor in a cluster of anchor trajectories

[Atev et al., 2010] and then use the representative trajectory of the cluster to estimate the future [Vasquez

and Fraichard, 2004, Hu et al., 2006, Hermes et al., 2009, Joseph et al., 2011]. If each cluster provides

a weight or likelihood relative to the trajectory history, then the infered path can also be a weighted

average of all the closest clusters. [Chang et al., 2019] also uses Nearest Neighbors as a baseline for

its trajectory prediction benchmark, and explores the use of either cartesian or curvilinear coordinates as

query. However these remain pretty limited to handle all variations present in traffic or new intersections

layouts.

Maneuver intention
In order to model more abstract and general concepts, some works chose to model discrete intentions

such as change lane, give the way, turn right ... etc. [Greene et al., 2011] tracks multiple maneuver

hypotheses through a Kalman filter and selects the most likely hypothesis a posteriori. [Streubel and

Hoffmann, 2014] uses Hidden Markov Models to estimate the likelihood of the vehicle going straight or

turning. However most of these maneuver estimation methods rely solely on the target agent trajectory

and therefore do not take interactions into account. [Käfer et al., 2010, Lawitzky et al., 2013] add a

penalty on colliding trajectories during matching for interacting vehicles, but require to constrain the

collision checking to simple pairs of vehicles, or to consider an exponential number of combinations

among all agents as illustrated in Fig. 3.2.
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Figure 2.8: Possible maneuver combination between multiple agents on a highway. Figure from [Law-
itzky et al., 2013]

Regardless of their methodology, most of these non-learning based methods fail to capture the re-

quire adaptability and flexibility to adapt to various road layouts and interactions outside of a predefined

applicative scope.
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CHAPTER 3. MACHINE LEARNING FOR TRAJECTORY FORECASTING

We now present and analyze the main machine-learning based methods for trajectory forecasting.

Machine learning, and most notably deep learning, has recently brought an unequalled ability for

models to adapt to any observed new scenarios without resorting to an ever-expending array of predefined

fixed behaviors. We review here existing deep learning methods applied to trajectory prediction by

categorizing the four main necessary steps for reliable trajectory prediction:

• Temporal encoding, as the main clues reside in the history of observations of the target vehicle in

the past few seconds

• Agent interaction since our main motive is avoiding collisions with other agents, and many speed

and position restrictions come directly from the distribution of surrounding agents

• Map context: even prior to interactions, our driving is greatly constrained by the drivable area and

the local traffic rules we must obey

• Output representation: once all the necessary information has been processed through the previous

step, even with theoretical perfect information we must choose the shape we want our model to

output this prediction, as each choice will have its own impact on the coverage and possible uses

of the prediction

Machine learning methods other than neural networks, such as Support Vector Machines [Aoude

et al., 2011] or Random Forests [Völz et al., 2016, Schlechtriemen et al., 2015] have also been applied to

predict future behaviors, but since most of these applications could also be treated by neural networks,

and given their recently demonstrated superior performance when provided sufficient amounts of data,

we will focus now on deep learning methods, onto which the research community has been expanding a

great lot lately. Amongst the methods presented in the previous chapter, some could also be considered

as learning methods, like HMMs where the transition probabilities from one state to another are learned

from data.

3.1 Temporal encoding

3.1.1 Multi-Layer Perceptron

[Yoon and Kum, 2016] applies a Multi-Layer Perceptron (MLP) on a sequence of past states to predict

target lane and lane change parameters. While seemingly simple and disregarding possible adaptations

to take the time dimension into account, this method actually works relatively well for short sequences,

as it allows the model to have a complete overview of the whole sequence with positional information

for every step. However, as the size of the sequence increases, so does the size of the model parameters,

and the network becomes too slow and unable to generalize to the data. [Hu et al., 2018] also uses a

MLP to predict the parameters of a Gaussian Mixture Model, but only applies it to the current timestep

to respect the Markov assumption. [Bahari and Alahi, 2019] also explore feed-forward neural networks

compared to other architectures, and find that they can achieve similar performance while leveraging

a faster response time, while [Lenz et al., 2017] demonstrates that they perform better in closed-loop

evaluation.

18



CHAPTER 3. MACHINE LEARNING FOR TRAJECTORY FORECASTING

3.1.2 Convolution neural network (CNN)

In deep learning, a convolutional layer [LeCun et al., 1995] is a sliding filter that extracts features

based on a learned kernel. Their design makes then translation-invariant and parameter-efficient, no-

tably adapted for images [Krizhevsky et al., 2017] and time-series.

(a) Concatenated layers [Bansal et al., 2018] (b) Faded effect [Djuric et al., 2018]

Figure 3.1: Image inputs for CNN-based models, with different time evolution representation.

2D Convolutions In a wide family of models that take as inputs an image representing the semantic

information in bird-eye view, time evolution must also be incorporated to represent moving neighbor

agents and the history of the target vehicle. This time change can usually be depicted in two ways. First,

keeping in mind the input image is not restricted to 3 RGB channels, a separate channel can be used for

each timestep showing the position of each agent at this time [Bansal et al., 2018, Hong et al., 2019], as

represented in Fig. 3.1a. However this can become quite cumbersome with a high number of timesteps,

and faster inference time with less model parameters can be achieved by representing this evolution in a

simple RGB image [Djuric et al., 2018, Cui et al., 2019, Chai et al., 2019, Phan-Minh et al., 2020] where

moving vehicles are shown as a fading line as in Fig. 3.1b, with the furthest timesteps being the most

transparent.

1D Convolutions Convolutions can also be leveraged in a vectorized setting, where the input is the

sequence of coordinates for successive timesteps. In that case, the input can be shaped as a (𝑇,𝐷) tensor,

with 𝑇 the number of historical timesteps and 𝐷 the feature size (𝐷 = 2 for 𝑥𝑦 at minimum). The 𝑇

dimension can then be used to apply a 1D convolution as a sliding window along the time dimension

in order to extract higher level features such as speed or acceleration [Mercat et al., 2020, Liang et al.,

2020].

3.1.3 Recurrent neural network (RNN)

A RNN applies the same cell recurrently to each time features one timestep after another. The cell

has a memory storage that is updated at each application, while choosing which information from the

previous memory to retain. Common reccurent cell architectures are GRU [Cho et al., 2014, Chung
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Figure 3.2: Bidirectional RNNs applied on sequential input using either the symmetrical (Bi-RNN) or
Assymmetrical (U-RNN) layout. Figure from [Rozenberg et al., 2021]

et al., 2014] and LTSM [Hochreiter and Schmidhuber, 1997], which leverage gated activations to adapt

the part of memory retained from the previous timesteps, and the part that will be updated with the new

one, overall helping with longer term memory. [Altché and de La Fortelle, 2017] applies an LSTM to

highway trajectory prediction, while [Khosroshahi et al., 2016, Deo and Trivedi, 2018b] use them to

classify maneuvers on highways, and [Phillips et al., 2017] on intersections. [Messaoud et al., 2019] also

use them for each separate vehicle encoding, sharing their weights across agents, while [Mercat et al.,

2020] combines 1D CNNs for feature extraction and LSTMs for sequence encoding. [Alahi et al., 2016]

also applies LSTMs to pedestrian prediction. LSTMs can be stacked on top of each other as in [Xin

et al., 2018], sometimes in a bi-directional way [Xue et al., 2017, Yao et al., 2021] where one of the pass

is backward to capture different sequential information that can be also used to enrich the subsequent

forward pass [Rozenberg et al., 2021].

3.1.4 PointNet

(a) PoinNet operation [Gao et al., 2020] (b) Point groups [Ye et al., 2021]

Figure 3.3: Illustrated point cloud operation and instantiation

Other works choose to consider the sequence of positions as a group of points, that can then be

encoded using common point cloud methods such as PointNet [Qi et al., 2017]. In short, these models
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alternate aggregating pointcloud information across points, usually by averaging their features, spreading

this aggregated information by concatenating it to each point, and encoding the new information through

a multi-layer perceptron as illustrated in Fig. 3.3a. Fig. 3.3b highlights how points can be grouped by

either entities, time intervals or spatial regions. VectorNet [Gao et al., 2020] and subsequent works [Zhao

et al., 2021, Gu et al., 2021] encode the coordinate sequence of each agent and lane through a PointNet,

while TPCN [Ye et al., 2021] also variate time interval lengths.

3.1.5 Attention and Transformers

Attention works like a dictionary query between tokens: we want each token to select the other tokens

of importance and use their only information. To do so three tensors are generated from the tokens,

through a linear projection: the queries 𝑄, the keys 𝐾 and the values 𝑉 . In the case of time encoding, all

these tensors would be derived from the timesteps 𝑇 and therefore have shape (𝑇, 𝑑), with 𝑑 the feature

size. This case where all queries, keys and values come from the same tensor is called self attention.

When queries come from a different source than the context keys and values, the operation is called

cross-attention, which we will see later in this chapter. An attention score 𝛼 is then computed through

the scaled dot-product between queries and keys, onto which a softmax is applied for normalization:

𝛼 = softmax(𝑄.𝐾
𝑇

𝑑
) (3.1)

The attention update to the tokens is then the weighted sum of the values weighted by the attention score:

𝑋 = 𝛼𝑉 (3.2)

Since the whole operation is permutation-invariant, a positional embedding is usually added to each

token to discriminate between them (in our case this would be an embedding of the timestamp).

An advantage from this technique shared with CNNs is that while accounting for all possible timesteps

it remains invariant to their total number since the final context is a weighted average summed up to a

single feature vector, and the only requirement is for the keys and values to have the same first dimension

𝑇 , which they have by design. An attention-based temporal encoder could therefore in theory handle

history of any sizes.

Following great demonstrated efficienty in the Natural Language Processing field [Vaswani et al.,

2017], attention has been increasingly applied in the trajectory prediction framework as well, replacing

RNNs. With attention, one timestep can access context information from any other timestep indis-

criminately, not suffering from short term memory problems like RNNs or restricted receptive fields

like CNNs. Stacked together in alternation with feed-forward layers, these attention models are called

transformers. Such transformers have been applied to both pedestrian [Yu et al., 2020, Giuliari et al.,

2021, Yuan et al., 2021] and vehicle [Girgis et al., 2021, Amirloo et al., 2022] trajectory prediction.

[Ngiam et al., 2021, Zhou et al., 2022] add an additional artificial token as an extra timestep to

summarize all the temporal information into one single token, while [Nayakanti et al., 2022] introduces

a whole new set of latent tokens to reduce the quadratic complexity of each timestep attending every

other timestep.
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3.2 Agent interactions

While driving, we keep paying attention to other road participants in order to avoid collision with them,

respect traffic priority or follow their speed. This interactive behavior needs to be represented in our

prediction model.

3.2.1 Fixed closest and neighboring vehicles

The difficulty in leveraging neighbor vehicles information comes from their varying number and relative

position. The road can be either empty or filled with traffic, and most traditional fully-connected deep

learning layers require a fixed size input, hence the need for specific rules as to which neighbor car

to select. [Phillips et al., 2017, Hu et al., 2018, Sadeghian et al., 2019] uses the top-k closest vehicles

according to the Euclidean distance, while [Altché and de La Fortelle, 2017, Lenz et al., 2017] predefined

areas of interests based on lanes where vehicles will be considered if inside the area as illustrated in Fig.

3.4.

Figure 3.4: Fixed considerd neighbors based on lanes. Figure from [Lenz et al., 2017]

3.2.2 Shared aggregated representation

In order to deal with the restricted number of agents, [Alahi et al., 2016] pools the hidden state from

neighbors inside a spatial grid by summing them and feeds the resulting pooled grid to the target agent

through concatenation and a fully-connected layer to all grid positions.

Figure 3.5: Social pooling for learned sparse interactions from [Gupta et al., 2018]
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[Deo and Trivedi, 2018a] use a similar grid but apply convolutional layers to preserve the spatial

structure. [Gupta et al., 2018] simplify this operation by replacing it with a MLP followed by MaxPooling

depicted in Fig. 3.5 for better speed and capability for far-away interactions.

3.2.3 Graph Neural Networks (GNN)

The different agents in a scene can be seen as the nodes 𝑁 of a graph (𝑁,𝐸) illustrated in Fig. 3.6,

where the edges 𝐸 represent the interactions between road users. The edges can be connected according

to distance between agents as in [Ivanovic and Pavone, 2019, Salzmann et al., 2020] or fully-connected

as in [Casas et al., 2020], given the relatively low number of agents.

A Graph Neural Network (GNN) can then be used to aggregate information between nodes across

edges and update node features given their connected edges. For example, [Ivanovic and Pavone, 2019,

Salzmann et al., 2020] aggregate connected node information with a sum operation, while [Casas et al.,

2020] uses message passing and computes a feature vector for each edge from concatenated neighbor

states through a MLP and then applies MaxPooling for every edge of a node. [Liang et al., 2020] also

uses a MLP on concatenated edge features, but with sum aggregation.

Figure 3.6: Interaction graph between road agents [Salzmann et al., 2020]

GNNs allow the model parameters not to be dependent on the number of agents while retaining

agent-specific information without global aggregation as in 3.2.2 that sacrifices representative power.

3.2.4 Attention

In the interaction framework, attention can be seen as a specific instance of a fully-connected GNN

[Gao et al., 2020]. The aggregation operator summarizing all neighbor agent features is then a learned

attention operation as described in 3.1.5, where the query is the target agent and the keys and values are

its neighbors. Distributed to every agent in the scene, this comes down to self-attention again, where

every agent is looking at every other agent. As illustrated in Fig. 3.7, attention allows the target agent to

select which neighbor is more important to predict its future trajectory, for example the car right in front.

[Messaoud et al., 2019, Mercat et al., 2020, Messaoud et al., 2020] apply a multi-head attention layer

on top of LSTM-encoded agent features to model their interactions, enabling non local-constrained inter-

actions for variable number of agents. Subsequent works generalize this by stacking multiple attention
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Figure 3.7: Attention between the target center agent and its neighbors. Attention is represented by
straight limes, with different color according to the attention head and width scaled with attention score.
Figure from [Mercat, 2021]

layers in a Transformer architecture [Liu et al., 2021b, Ngiam et al., 2021, Girgis et al., 2021, Huang

et al., 2022].

Blurring the line between time and agent dimensions Recent works have tried to generalize time

encoding and interaction encoding by considering that each agent at a given timestep could be a sepa-

rate token interacting with other agents at other timesteps. [Yuan et al., 2021] argues that making this

connection directly increases the model capability, but [Ngiam et al., 2021] factorizes the time and so-

cial attentions while using the same representation and alternates both operations, in order to improve

the model complexity, while [Nayakanti et al., 2022] also evaluates the use of latent queries to further

trade-off efficiency and quality.

3.3 Map context

As already mentioned in Sec. 2.3.1, while interaction encoding is a shared common part of both pedes-

trian and vehicle prediction, static context encoding is what differentiates them, along with physical

constraints. Vehicles are more restricted by their surrounding layout, while humans evolve in a much

less constrained environment.

While initial trajectory datasets were usually focused on straight highway sections with a fixed num-

ber of lanes [Colyar and Halkias, 2006, Colyar and Halkias, 2007], where there was no need for ad-

ditional map information, recent urban datasets [Chang et al., 2019, Zhan et al., 2019, Caesar et al.,

2020, Houston et al., 2021, Ettinger et al., 2021] contain data from intersections, roundabouts and inser-

tions where drivable area context is needed.
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Note: map context and agent interactions share similar techniques, and recently some unifying frame-

works have been attempted, but remain treated/considered differently in most works, and represent dif-

ferent concepts: static/dynamic, environment/others.

3.3.1 Image CNN

A straightforward way is to represent the local map surrounding the agent as an image, the same way a

GPS device would display it for a human as already mentioned in 3.1.2. The resulting image is a bird-eye

view (BEV) of the road layout within a certain range around the vehicle, usually oriented according to the

agent’s yaw. This representation can contain various shapes and layers such as drivable area, centerlines

optionally colored according to their heading, stop lines / traffic lights, crosswalks or satellite pictures.

Figure 3.8: Available BEV representations in Lyft dataset [Houston et al., 2021]

ChauffeurNet [Bansal et al., 2018], Rules of the Road [Hong et al., 2019] and [Cui et al., 2019] use a

CNN encoder on top of this rasterized input as their main model architecture, while DESIRE [Lee et al.,

2017], Sophie [Sadeghian et al., 2019] and Trajectron++ [Salzmann et al., 2020] consider it more as an

additional feature channel to complete the sequential trajectory encoding. Multipath [Chai et al., 2019]

and TrafficSim [Suo et al., 2021] both encode a global non-agent centric wide map into a feature grid,

and then crop agent-specific sub-grids for each agent.

CNNs allow to preserve the 2D spatial structure of the map, however to be merged with sequential

coordinate inputs they are often flattened and lose most of their spatial information.

3.3.2 GNN

Most recent datasets encode their provided maps in a format similar to Lanelet2 [Poggenhans et al.,

2018], where the road is segmented into lanelets. Each lanelet represents a lane continuous piece of a

certain length, and is defined as a sequence of points. Lanelets are then encoded together into a graph

where each lanelet possibly has a predecessor, successor, left and right neighbor. This connectivity

graph contains a lot of information for the vehicle reachable paths, but is lost if transformed into an

image. LaneGCN [Liang et al., 2020] therefore directly leverages the map graph as an input by encoding

each individual lane segment and applying graph convolutions to incorporate connectivity information

as shown in Fig. 3.9. Each agent is then connected to its local lane segments according to a distance

threshhold.

LaneRCNN [Zeng et al., 2021] goes further by encoding each agent trajectory features into a separate

road graph and then computing agent interactions by merging the lane graphs themselves, in order to
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Figure 3.9: Map graph building and connectivity encoding [Liang et al., 2020]

localize the interactions. PGP [Deo et al., 2022] learns a policy for graph traversal that is then used to

extract possible routes roll-outs from which trajectories are infered and scored.

3.3.3 Attention

Driving agents can query the useful information amongst the surrounding road segments by using cross-

attention previoulsy described in Sec. 3.1.5. Usually a distinction is done with the attention made to

other interactive agents by using separate alternative layers as in mmTransformer [Liu et al., 2021b] or

SceneTransformer [Ngiam et al., 2021], but some work attempt unifying frameworks as in VectorNet

[Gao et al., 2020] where global attention is applied to both static and dynamic elements indiscriminately,

further re-used in TnT [Zhao et al., 2021] and DenseTNT [Gu et al., 2021].

3.4 Output representation

Once the context information has been correctly encoded comes the question of how to represent the

output prediction, and how to generate it. Obviously one of the main factors for this decision is the

intended use after the prediction, however many architectural choices and trade-offs remain to be done

depending on the qualities we hope to find in the forecast, whether it is precision, diversity, coverage or

feasibility.

Multimodal prediction While the trajectory history may contain clues about the agent future move-

ment, some future decisions depend on hidden variables that only the driver knows, such as real destina-

tion and itinerary preferences, as illustrated in Fig. 3.10. Lane changes and giving or taking the right of

way also depend on driver styles which depend on each individual, and can vary with time. Finally, the

exact controls over time can never be predicted with perfect precision, leading to a growing uncertainty

over time and a spread of possible coordinates at each timestep. The possible future of a road agent is

therefore multimodal, meaning that a prediction should contain multiple possibilities, optionally with a

matching probability score.

3.4.1 Coordinates

Here we will mostly tackle methods that try to directly output their prediction as a sequence of coordi-

nates, opposite to predicting a distribution from which the user can then sample to obtain a point. VAEs
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Figure 3.10: Ambiguous multiple possible futures from a single historical context

are a bit of an hybrid case in that regard, the training and inferences systematically require the model to

output coordinates, but an intermediate step first predicts a distribution which is effectively sampled.

3.4.1.1 Scalar coordinates

[Altché and de La Fortelle, 2017] directly predicts the future absolute coordinates along the highway,

however the large range of possible coordinates require them to output an intermediary speed value

and then integrate it for longitudinal coordinates (lateral coordinates remain in a restricted range in the

highway referential). In order to avoid the high range problem, [Casas et al., 2018, Bansal et al., 2018]

predict relative coordinates to the initial vehicle position as a single Maximum A Posteriori (MAP)

prediction.

For multimodality, most works [Cui et al., 2019, Liang et al., 2020] directly predict a set of coordi-

nates, one for each modality. In order to train these, a Winner-Take-All (WTA) loss is commonly used,

where only the prediction closest to the ground truth is trained. In order to represent aleatoric uncertainty,

some methods use Gaussian [Mercat et al., 2020] or Laplace [Ngiam et al., 2021] bivariates illustrated

in Fig. 3.11c where the mean is simply the predicted point coordinates, and the variance represents the

estimated error of the model, which usually grows with time and speed.

Controls Trajectron++ [Salzmann et al., 2020] and Multipath++ [Varadarajan et al., 2022] predict

acceleration and steering controls then integrates them to obtain physically feasible trajectories. Multi-

path++ observes a slight reduction in performance doing so, but choose this trade-off for better closeness

to reality. Using such derivatives also enable better interpolation, as does predicting polynomial coeffi-

cients in PLOP [Buhet et al., 2021].

Auto-regressive models Instead of directly predicting a set of coordinates for each timestep, some

approaches take advantages of the sequential nature of trajectories and make each subsequent timestep
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depend on the previous one through a recurrent architecture [Alahi et al., 2016, Salzmann et al., 2020,

Tang and Salakhutdinov, 2019, Rhinehart et al., 2019] as shown in Fig. 3.11b. At training time, these use

ground truth coordinates instead of predicted ones for the conditioning over previous timesteps. However

[Casas et al., 2020] compares these methods and notices compounding error problems and distributional

shifts between training and test data, requiring added noise during training for better generalization.

Context 

encoding

Context 

encoding

a) Scalar coordinates b) Auto-regressive c) Bivariate Gaussian

Figure 3.11: Various parametrization for trajectory output

3.4.1.2 Anchors

Models predicting set of multimodal coordinates may suffer from mode collapse if all modalities are

trained at the same time, or from poor sample efficiency if only one modality is trained at a time. Fur-

thermore, the learned modalities may lack diversity as they will focus around the means of the most

likely positions over the training set. In order to help with diversity, Multipath [Chai et al., 2019] clusters

training trajectories into a fixed set of predefined anchors. The model is then tasked with classifying the

sample into the corresponding closest anchors and estimating regression coefficients to fit the anchor bet-

ter to the real trajectory. Covernet [Phan-Minh et al., 2020] proposes a similar anchor-based prediction

but adds dynamic trajectory anchors adapted to the current agent dynamics. PRANK [Biktairov et al.,

2020] takes an approach more related to ranking techniques and metric learning by scoring the prediction

into a large dictionary of up to 2M stored trajectories.

Later approaches leverage the prior provided by the surrounding map to select probable anchors.

TnT [Zhao et al., 2021] generates end-goal proposals from the road layout and feeds then to the model

to estimate probabilities and regression coeficients. LaneRCNN [Zeng et al., 2021] also leverages the

map graph into which the agent features are incorporated to generate probability scores at each segment

as illustrated in Fig. 3.12. PRIME [Song et al., 2022] browses reachable paths from the connected

map graph and yields feasible trajectories for each of them before using a learning-based evaluator to

score them. These approaches are also mentioned as goal-based methods, as they discretize possible

trajectories starting from their inferred goal and then estimating the full intermediary motion.
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Figure 3.12: Goal-based trajectory prediction leveraging map prior [Zeng et al., 2021]

More recent approaches opt to leverage learned anchors to benefit from their diversity without having

to make empirical biased decisions about where the anchors should come from. Multipath++ [Varadara-

jan et al., 2022] and Autobots [Girgis et al., 2021] therefore stored learned latent embeddings which

correspond each to a different modality, making these a bit of a hybrid approach between anchor-based

and regular direct coordinate prediction, since the model output remain a set of predicted coordinates,

and the latent embeddings cannot be visualized for interpretability.

3.4.1.3 Sampling-based trajectory prediction

Sampling-based methods have an approach to multimodality different from the above described works.

Instead of predicting a fixed number of coordinates or probabilities, they leverage an intrinsic random

sampling that enables them to yield as many predictions as the amount of times they are sampled. There-

fore, each inference only produces one trajectory, but these inferences are not deterministic, and will

therefore generate a different likely trajectory when forwarded a second time.

Variational Auto-Encoders (VAE)
Variational auto-encoders [Kingma and Welling, 2013, Sohn et al., 2015] hypothesize that the future

𝑦 is conditioned on a latent variable 𝑧. The parameters of the prior distribution 𝑝(𝑧 |𝑥) are sampled to

obtain 𝑧 values, which are then decoded by a generator 𝑞(𝑦 |𝑧, 𝑥). 𝑝 and 𝑞 are approximated by neural

networks trained to match the resulting predicted 𝑦 with the ground truth. This process is illustrated in

Fig. 3.13b in contrast to the usual determinic process. During training a posterior distribution 𝑝(𝑧, 𝑦, 𝑥)
is also learned and used to sample 𝑧 with the knowledge of the future 𝑦 in order to disambiguate the

multiple possible modalities, and the posterior 𝑝(𝑧, 𝑦, 𝑥) and prior 𝑝(𝑧 |𝑥) are then constrained to have

similar distributions. PRECOG [Rhinehart et al., 2019] samples a specific latent for each timestep, but

[Tang and Salakhutdinov, 2019] argue that the sampled variable should be consistent at every timestep

to represent a tractable intention that should be the same across all next timesteps. Trajectron [Ivanovic

and Pavone, 2019] and MFP [Tang and Salakhutdinov, 2019] use a discrete latent variable to represent

distinct possible futures. ILVM [Casas et al., 2020] uses a continuous latent distribution to encapsulate

all possible variations in the latent, and then decodes a deterministic estimated future conditioned on the

latent. Autobots [Girgis et al., 2021] learn discrete seed parameters as latent variables and use attention

to decode all latents in parallel in a single forward pass.

A main drawback from these generative methods is that they don’t provide probability estimation nor
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Figure 3.13: Different model architecture for multimodal and variational prediction

guarantee that the sampled modalities represent a good coverage of all the future possibilities. Lookout

[Cui et al., 2021] tries to remediate to these by training a sampler to improve the coverage of the sampled

modalities and a scorer to estimate their probabilities.

Generative Adversarial Networks
GANs [Goodfellow et al., 2014] are another generative techniques that train a generator to yield

realistic trajectories from a sampled noise input. The generator is trained through a discriminator com-

paring the generated distribution to the ground truth one. The training is called adversarial because the

discriminator learns to separate the scores attributed to ’fake’ or ’real’ trajectories, while the generator

tries to trick the disciminator by bringing the two distributions close to each other, resulting in opposed

losses. Compared to VAEs, the latent is directly sampled first without any context as illustrated in Fig.

3.13c, instead of being derived from a learned conditional prior. SocialGAN [Gupta et al., 2018], So-

Phie [Sadeghian et al., 2019] and MATF [Zhao et al., 2019] leverage a GAN to produce multiple diverse

trajectories.

Gaussian mixtures Other methods like [Ivanovic and Pavone, 2019] do not directly output coor-

dinates, but a Gaussian mixture from which the final position has to be sampled as in Fig 3.13e. This

resulting distribution has the added benefice of having an interpretable and visualizable form in the carte-

sian space, opposed to the initial or latent distributions of other variational methods which do not have

physical equivalents and cannot be interpreted as such.

3.4.2 Maneuvers

Some works predict intention or maneuvers as a supplement or instead of direct trajectory coordinates.

These maneuvers can be lane changes [Xing et al., 2019, Wang et al., 2021b], turns or decisions relative

to interactions [Phillips et al., 2017]. However their definitions remain ambiguous as one intention can

defer to multiple different trajectories, and these frameworks remain empirical to each paper, with a lack

of a common distinct framework. Maneuvers can however be utilized as an intermediary representation
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for better interpretability. IntentNet [Casas et al., 2018] produces trajectory and decision estimation in

parallel, while[Deo and Trivedi, 2018b] and [Mersch et al., 2021] leverage maneuver classification as a

discrete intermediary latent to predict maneuver-specific trajectories

3.5 Conclusion and motivation for our thesis

As we have described above, most existing learning methods for trajectory prediction suffer from mul-

tiple pitfalls. First and foremost, these methods need to be multimodal, but the provided ground-truth

data is unimodal in nature, and the commonly used multi-head structure from multiple future predic-

tion doesn’t rely on any concrete differentiator between each head, leading to heavy dependency on the

random initialization. The existing solutions of using anchors often rely on broad and bias-sensitive as-

sumptions and may exclude important eventualities, such as the agent deviating from the drivable area.

Our goal is therefore to design a prediction model that can be easily trained and produce a naturally

multimodal and unconstrained prediction.
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Limitations of the methods presented in previous chapters call for another output parametrization.

Outputting an intermediary probability distribution would then enable the user to use the sampling

method of their choice, depending on the intended use and performance criteria. Gaussian Mixture

Models (GMMs) outputs [Ivanovic and Pavone, 2019, Messaoud et al., 2021] provide an analytical dis-

tribution but constrain the prediction to a pre-defined number of modes with a very specific ellipsoidal

shape. If more modes are required than there are goals, stochastic sampling will have to be used which

lacks guarantees. Moreover, the shape of the road, especially during turns, doesn’t match ellipsoidal

shapes. There is therefore a need for a parametrization of an analytical, unconstrained probability distri-

bution.

This chapter presents our first contribution in this thesis: a grid-based heatmap probability distribu-

tion that enables an unconstrained bias-free multimodal prediction. We first describe what these heatmaps

are and how they can be used within a trajectory prediction framework. We then propose and compare

three different ways of generating and learning these heatmaps. Finally, we explain and justify the rea-

sons for using such methods instead of the other common state-of-the-art approaches.

4.1 Heatmap representation

Following many recent works [Zhao et al., 2021, Gu et al., 2021, Zeng et al., 2021], we focus on pre-

dicting the last point of the trajectory 𝑦𝑇 , and argue that the full trajectory can then be interpolated un-

equivocally from this endpoint. This allows us to simplify the problem to modelize only the probability

distribution of this last point. We represent the possible futures distribution by a 2D probability heatmap

that gives an unconstrained approximation of the probability of the agent position. Such a heatmap, with

corresponding context and trajectories, is illustrated in Fig. 4.1.

Figure 4.1: Heatmap output representing the final trajectory point prediction

This heatmap is represented as a squared image and it naturally accommodates for multimodal pre-

dictions where each pixel represent a possible future position of the target agent. It also enables to fully
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describe the future uncertainty in a probability distribution, without having to choose its modes or means.

In other words, we reformulate the usual regression task of trajectory prediction into a classification task,

where each grid pixel is a possible class.

4.2 Related works

Other works have already leveraged heatmaps or grids as outputs. [Kim et al., 2017] models the future

prediction on a highay as a rectangular occupancy grid but solely uses LSTMs and doesn’t apply CNNs

to exploit the natural local relationships of the grid. Consequently their grid size remains limited (36, 21)

with a coarse resolution (0.875 x 5) m2 per pixel. Moreover, as is common to many of these related grid

approaches, they predict the occupancy of all scene participants in one single grid, making individual

prediction and analysis impossible. [Sadat et al., 2020] also proposes an instance-free occupancy pre-

diction focused on semantic classes with CNNs this time around, which enables them to predict a much

wider and finer 140 x 80 m2 grid of 0.2 meter / pixel resolution. MP3 [Casas et al., 2021] expands on

this latter work by adding occupancy flow to provide velocity estimates. [Ridel et al., 2020] predicts

individual grid predictions for each vehicle through ConvLSTMs layers [Shi et al., 2015] but they focus

on pedestrian trajectories and predict one heatmap for each timestep which results in memory restrictions

and long trainings (about 5 days per epoch). Furthermore, their sampling is learned and doesn’t directly

leverage the properties of the occupancy grids. [Mangalam et al., 2021] also focuses on pedestrians

and models both long-term goals and intermediary waypoints in the two-dimensional space as an image

for pedestrian trajectory forecasting, combined with random sampling and KMeans clustering [Lloyd,

1982, MacQueen, 1967].

4.3 Decoding a heatmap into a trajectory

Figure 4.2: Pipeline for trajectory prediction through probability heatmap. a) Context map, target agent
(blue) and neighbor (green) trajectories are given as input to the network. b) Heatmap output of the
network. c) Sampled final points. d) Trajectories are built for each final point

We illustrate the process of using a heatmap for trajectory prediction in Fig. 4.2. The model first

predicts a spatial heatmap given the historical past trajectory, other agents and the local map context.

In a second step, we sample from the heatmap a finite number of possible future locations with the
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possibility to choose which metric we want to optimize without retraining the model. Finally, we build

the full trajectories based on the past history and conditioned on the sampled final points.

We will further describe how to obtain this heatmap in the later parts of this section, but for com-

pleteness we will start first with the post-processing of this probability grid and how it is used, as this

is common to all the different decoding methods we will later study, and put better into context the use

case of the heatmap.

4.3.1 Endpoint sampling

Our aim is here to sample the probability heatmap in order to optimize the performance metric of our

choice. In most datasets such as Argoverse [Chang et al., 2019] and NuScenes [Caesar et al., 2020], two

main metrics are used for the final predicted point: MissRate (MR) and Final Displacement Error (FDE).

MissRate corresponds to the percentage of prediction being farther than a certain threshold to the ground

truth, and FDE is simply the mean of 𝑙2 distance between the prediction and the ground truth. When the

output is multimodal, with 𝑘 predictions, minimum Final Displacement Error minFDE𝑘 and Miss Rate

over the 𝑘 predictions MR𝑘 are used.

4.3.1.1 Optimizing Miss Rate

We design a sampling method in order to optimize the Miss Rate between the predicted modalities and

the ground truth. A case is defined as missed if the ground truth is further than 2m from the prediction.

For a given area 𝐴, the probability of the ground truth 𝑌 being in this area is equal to the integral of the

probability distribution 𝑝 under this area.

𝑃(𝑌 ∈ 𝐴) =
∫
𝑥∈𝐴

𝑝(𝑥)𝑑𝑥 (4.1)

Therefore, for 𝑘 predictions, given a 2D probability distribution, the sampling minimizing the ex-

pected MR is the one maximizing the integral of the future probability distribution under the area defined

as 2m radius circles around the 𝑘 predictions:

𝐸 (1min𝑘 ∥𝑐𝑘−𝑌 ∥>2) = 1−
∑︁
𝑘

∫
∥𝑐𝑘−𝑥 ∥<2

𝑝(𝑥)𝑑𝑥 (4.2)

We therefore process in a greedy way as described in Algo. 1, and iteratively select the location with

the highest integrated probability value in its 2m circle. Once we obtain such a point, we set to zero the

heatmap values under the defined circle and move on to selecting the next point with the same method.

The result is illustrated in Fig. 4.3a. We see that each sampled point can be surrounded by a circle of

radius 2m that barely overlaps with other circles. Each point is sampled almost equidistant to the others,

as setting the probability under previous points to zero sets a very strict limit to the minimum distance

between points.

For implementation, we process the covered area for each point using a convolution layer with kernel

weights fixed so to approximate a 2m circle. In practice, we don’t actually use a radius of 2 meters, but

a 1.8 meters one as we found out it to yield better performance. We also upscale the heatmap to 0.25 x
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(a) MR sampling (b) FDE sampling

Figure 4.3: Illustration of heatmap sampling methods

Algorithm 1: MR Sampling Algorithm
input: Probability map p(x)

𝐾 number of predictions
𝑅 threshhold for Miss Rate

for k = 1..K do
Find 𝑐𝑘 maximizing

∫
∥𝑐𝑘−𝑥 ∥<𝑅

𝑝(𝑥)𝑑𝑥
Set 𝑝(𝑥) = 0 for all 𝑥 such that ∥𝑐𝑘 − 𝑥∥ < 𝑅

end

0.25 m2 per pixel with bilinear interpolation to have a more refined prediction location.

4.3.1.2 Optimizing Final Displacement Error

We inspire ourselves from KMeans [Lloyd, 1982, MacQueen, 1967] to optimize minFDE𝑘 . The image

output can be represented as a discrete probability distribution (𝑥𝑖 , 𝑝𝑖) where 𝑥𝑖 represents the pixel cen-

ters and 𝑝𝑖 the associated probability value. Optimizing the Final Displacement Error over 𝑘 predictions

means finding 𝑘 centroids 𝑐𝑘 that minimize the following quantity:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑐

∑︁
𝑖

𝑝𝑖 ∥𝑐− 𝑥𝑖 ∥ (4.3)

To do so we design our sampling algorithm for FDE optimization detailed in Algo. 2.

We replace the classic weighted average
∑

𝑖 𝑝𝑖𝑥𝑖 for each centroid 𝑐𝑘 by
∑

𝑖
𝑝𝑖

𝑑𝑘
𝑖

𝑥𝑖 where 𝑑𝑘
𝑖

is the dis-

tance between point 𝑥𝑖 and centroid 𝑐𝑘 to be more robust to outliers and take into account the optimisation

of 𝑙2 norm instead of its square.

In essence, we update each prediction as a weighted average of its local neighborhood in a radius of

3m. The coefficient 𝑚𝑖

𝑑𝑘
𝑖

, with 𝑚𝑖 the distance between point 𝑥𝑖 and its closest centroid allows for flexible
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Algorithm 2: FDE Sampling Algorithm
input: Set of points 𝑥𝑖 with probability weight 𝑝𝑖

𝐿 number of iterations to run the algorithm
Initialization of 𝐾 centroids 𝑐𝑘

for l = 1..L do
Compute 𝑑𝑘

𝑖
the matrix of distance of point 𝑥𝑖 to each centroid 𝑐𝑘

Compute 𝑚𝑖 the distance of point 𝑥𝑖 to the closest centroid 𝑐𝑘
for k = 1..K do

Compute new centroid coordinates :
𝑐𝑘 =

1
𝑁

∑
𝑖 1𝑑𝑘

𝑖
<=3

𝑝𝑖

𝑑𝑘
𝑖

𝑚𝑖

𝑑𝑘
𝑖

𝑥𝑖

with 𝑁 =
∑

𝑖 1𝑑𝑘
𝑖
<=3

𝑝𝑖

𝑑𝑘
𝑖

𝑚𝑖

𝑑𝑘
𝑖

end
end

partition boundaries compared to KMeans (where we would use 1𝑑𝑘
𝑖
<=𝑚𝑖

instead): when 𝑥𝑖 is in the

partition of prediction 𝑘 , its value is 1, while when it’s outside it decreases, so as to be 0 when at the

exact position of another prediction 𝑘 ′, where it could never be improved by a displacement of 𝑘 .

We initialize the centroids with the results of the Miss Rate optimization algorithm and use the num-

ber of iterations 𝐿 as a parameter to tune the trade-off between Miss Rate and FDE: when 𝐿 is zero, Miss

Rate is optimized while when 𝐿 increases MR is sacrificed to get better FDE. The output of the algorithm

is illustrated in Fig. 4.3b, where it can be observed that centroids are brought closer together, sacrificing

total coverage but getting closer to areas with high probabilities to reduce the expected distance. Results

of this trade-off are illustrated further in Sec. 4.3.1.3, where we show in Fig. 4.4 that every iteration of

Algo. 2 diminishes minFDE6 and increases MR6.

4.3.1.3 Experiments on endpoint sampling

We highlight our sampling results in Tab 4.1 and compare them to other possible sampling strategies: we

try ranking pixels by probability and select them in decreasing order while removing overlapping pixels

that are closer than a 1.8m radius following a classic Non-Maximum Suppression method. We also try

KMeans as is used in [Mangalam et al., 2021].

Table 4.1: Ablation study on trajectory sampling
(Argoverse validation set)

Bottleneck K=1 K=6
minFDE MR minFDE MR

Pixel ranking with NMS 3.07 51.0 1.21 10.7
KMeans 3.06 51.6 1.23 9.3
Ours (MR) 3.02 50.7 1.28 6.8
Ours (FDE L=6) 3.01 50.5 1.16 7.4

We show in Fig. 4.4 the results of our trade-off between MR6 and FDE6 on the Argoverse test

set thanks to the parameter 𝐿 of Algo. 2. We also include points for the other top 10 methods of the

38



CHAPTER 4. TRAJECTORY PREDICTION WITH HEATMAPS

Figure 4.4: FDE6 - MR6 trade-off. Lower-left is better. Points of the curve (blue) are obtained increasing
number of iteration 𝐿 of Algorithm 2 from 0 to 7. Points for other top-10 leaderboard methods are also
included (orange).

leaderboard at the date of 1st March 2021 for comparison. Our method reaches the best possible MR6,

and allows to improve FDE6 to second-best while still being first in MR6 (fourth curve point obtained

with 𝐿 = 4)

4.3.2 Full trajectory regression

For each sampled target a separate model is used to generate full trajectories conditioned on the final

endpoint. Any non-learning-based planning method could do this task, but in our case we use a simple

MLP illustrated in Fig. 4.5.

𝒙, 𝒚 𝒕𝟎..𝒕𝒉

𝝍𝒕𝟎..𝒕𝒉

𝒗𝒕𝟎…𝒕𝒉

Possible target

𝒙, 𝒚 𝒕𝟎..𝒕𝒇

𝒙𝒈𝒐𝒂𝒍, 𝒚𝒈𝒐𝒂𝒍

Figure 4.5: Goal conditional trajectory regression
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This model applies a fully-connected layer to encode the target agent history into a vector of 32

features, which is then concatenated with the (𝑥, 𝑦) coordinates of the target future location. Another

fully-connected layer is then applied to obtain a 64 feature vector, which is then transformed through a

last fully-connected layer to a set of locations representing the intermediate position of the agent in the

time frame [[1,𝑇]]. The probability of a trajectory is computed as the integral of the probability heatmap

under the circle of radius 2m around the end point of the trajectory.

During training, this regression model is trained with the ground-truth endpoint to regress the ground-

truth full trajectory in a teacher-forcing way.
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4.4 How to generate such a heatmap ?

4.4.1 Convolutional neural network: HOME (Heatmap Output for Motion Estimation

The most straightforward way to yield image heatmaps is to use a CNN model that also takes images

as inputs. However we also want to leverage the granular information present in the past sequence of

coordinates, and therefore we design a hybrid architecture that merges rasterized and scalar information.

4.4.1.1 Map and past trajectory encoding

The local context is available as a High Definition Map centered on the target agent. We rasterize the HD-

Map in 5 semantic channels: drivable area, lane boundaries and directed center-lines with their headings

encoded using HSV on 3 channels. We also add the target agent trajectory as a moving rectangle on

20 history channels and the other agents history on 20 more channels. The final input is a (224, 224,

45) image with a 0.5 x 0.5 m² resolution per pixel. This image is processed by a classic CNN model

alternating convolutional layers and max-pooling for downscaling to obtain a (14, 14, 512) encoding

𝐸𝑟𝑎𝑠𝑡𝑒𝑟 as illustrated in the top-left part of Fig. 4.6.

The scalar history of the agents is also taken as input to the model as a list of 2D coordinates.

Missing timesteps are padded with zeros and a binary mask indicating if padding was applied or not

is concatenated to the trajectory, as well as the timestamps for each step, so that we obtain a (𝐻,4)
input for each agent. Each agent trajectory goes through a 1D convolutional layer followed by a UGRU

[Rozenberg et al., 2021] recurrent layer. The weights are shared for all agents except the target agent.

4.4.1.2 Inter-agent attention for interaction

Similar to [Mercat et al., 2020, Messaoud et al., 2020], we use attention [Vaswani et al., 2017] to model

agent interaction. A query vector is generated for the target agent, while key and value vectors are

created for the other actors. The normalized dot product of query and keys creates an attention map

from the target agent to the other agent, then used to pool their value features into a context vector. The

context vector is then added to the target vehicle feature vector through a residual connection followed

by LayerNormalization [Ba et al., 2016]. The obtained trajectory encoding 𝐸𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟 𝑦 is then repeated

to match the context encoding 𝐸𝑟𝑎𝑠𝑡𝑒𝑟 dimensions. The final encoding 𝐸𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is the result of the

concatenation of both encodings 𝐸𝑟𝑎𝑠𝑡𝑒𝑟 and 𝐸𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟 𝑦 .

4.4.1.3 Increased output size for longer range

Due to high speed, some cars may go through a greater range in the time horizon 𝑇 that is covered by

the input range of 56m. However, simply increasing input size would greatly add to the computational

burden while not necessarily bringing useful information. We therefore want to increase the output size

while retaining the spatial correspondences through the layers. In order to do so, we apply Tranpose

Convolutions with stride 1 and kernel size 3. Since 1 input pixel is connected to a grid of 3x3 output

pixels, the edge pixels generate a new border of pixels around them, increasing the encoding size by 1 in

each direction. We apply 2 of these layers, resulting in a (18, 18, 512) augmented encoding so that once

upscaled the decoded image output will be of size (288, 288), corresponding to a 72m range.
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Figure 4.6: Goal conditional trajectory regression

4.4.1.4 Heatmap decoding and training

The final part of the model is a convolutional decoder alternating transpose convolutions for upscaling

and classic convolutions, topped with a sigmoid activation. We output an image𝑌 with similar resolution

as the raster input (0.5 x 0.5 m² / pixel). The output target is an image 𝑌 with a Gaussian centered around

the ground truth position. This image is trained with a pixel-wise focal loss inspired from [Zhou et al.,

2019], averaged over the total 𝑃 pixels 𝑝 of the heatmap:

𝐿 = − 1
𝑃

∑︁
𝑝

(𝑌𝑝 −𝑌𝑝)2 𝑓 (𝑌𝑝,𝑌𝑝)

with 𝑓 (𝑌𝑝,𝑌𝑝) =


log(𝑌𝑝) if 𝑌𝑝=1

(1−𝑌𝑝)4 log(1−𝑌𝑝) else

(4.4)

where the non-null pixels around the Gaussian center serve as penalty-reducing coefficients, and the

square factor of error allows the gradient to focus on poorly-predicted pixels. We use a standard deviation

of 0.67 pixels for the Gaussian.

4.4.1.5 Implementation details

We train all models for 16 epochs with batch size 32, using Adam optimizer initialized with a learning

rate of 0.001. Each sample frame is centered on the target agent and aligned with its heading. We divide

learning rate by half at epochs 3, 6, 9 and 13. We augment the training data by dropping each raster

channel with a probability of 0.1 and rotating the frame by a uniform random angle in [−𝜋/4, 𝜋/4] in

50% of the samples. All convolution layers are CoordConv [Liu et al., 2018] with a kernel of size 3x3 (3

for 1D Convs) and are followed by BatchNormalization and ReLU activation.
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4.4.1.6 Comparison with State-of-the-art

We show in Tab. 4.2 our results compared to other methods on the Argoverse motion forecasting test

set. The benchmark is ranked by MR6, where we rank first and significantly improve on previous results,

demonstrating that having the heatmap output enables the best coverage with respect to the prior art.

We also outperform other methods on p-minFDE6, demonstrating superior modelling of the probability

distribution between predictions. Another interesting observation is that methods performing very well

on minFDE6 such as LaneGCN [Liang et al., 2020] and TPCN [Ye et al., 2021] have a worse MR6

as drawback. PRIME [Song et al., 2022] has the closest MR6 to ours but a much higher minFDE6 in

comparison. We show the results of both our sampling optimized for MR and minFDE with the same

trained model. Our FDE sampling with 𝐿 = 4 sacrifices 1.1 points of MR6 for 9 cm of minFDE6, which

gets us second best on minFDE6 while still being good enough for 1𝑠𝑡 position on the leaderboard.

Table 4.2: Results on Argoverse Motion Forecasting Leaderboard [lea, ] (test set)

K=1 K=6
minADE minFDE MR minADE minFDE p-minFDE MR

WIMP [Khandelwal et al., 2020] 1.82 4.03 62.9 0.90 1.42 3.21 16.7
LaneGCN [Liang et al., 2020] 1.71 3.78 59.1 0.87 1.36 3.16 16.3
Alibaba-ADLab 1.97 4.35 63.4 0.92 1.48 3.23 15.9
TPCN [Ye et al., 2021] 1.64 3.64 58.6 0.85 1.35 3.11 15.9
HIKVISION-ADLab-HZ 1.94 3.90 58.2 1.21 1.83 3.62 13.8
TNT [Zhao et al., 2021] 1.78 3.91 59.7 0.94 1.54 3.33 13.3
Jean [Mercat et al., 2020] 1.74 4.24 68.6 1.00 1.42 3.21 13.1
TMP [Liu et al., 2021b] 1.70 3.78 58.4 0.87 1.37 3.16 13.0
LaneRCNN [Zeng et al., 2021] 1.69 3.69 56.9 0.90 1.45 3.24 12.3
SenseTime_AP 1.70 3.76 58.3 0.87 1.36 3.16 12.0
poly 1.70 3.82 58.8 0.87 1.47 3.28 12.0
PRIME [Song et al., 2022] 1.91 3.82 58.7 1.22 1.56 3.04 11.5
Ours-HOME (FDE L=4) 1.72 3.73 58.4 0.92 1.36 3.08 11.3
Ours-HOME (MR) 1.73 3.73 58.4 0.94 1.45 3.03 10.2

4.4.1.7 Ablation study: Impact of heatmap output

We show the effect of output representation in Tab. 4.3 by using the same encoding backbone and replac-

ing the image decoder with a global pooling followed by a regression head of 6 coordinate modalities.

We train the regression output with a winner-takes-all 𝑙1 regression loss similar to [Messaoud et al.,

2021, Liang et al., 2020, Khandelwal et al., 2020, Ye et al., 2021, Cui et al., 2019] and a classification

loss where target is obtained through a softmax on distances between predictions and ground-truth, as in

[Zhao et al., 2021, Song et al., 2022]. Since the global pooling leads to loss of spatial information from

the image, for fair comparison we also include a model with "scalar bottleneck" where pooling is also

applied on the image encoding and is then reshaped to form an image on which the heatmap decoder

is applied. For the heatmap outputs, MR sampling is used. We observe that heatmap outputs yields

much better Miss Rate, and that having a scalar pooling bottleneck diminishes performance as it creates
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information loss, but not significantly. Interestingly, the regression output reaches better minFDE6 when

compared to the MR-optimized sampled image output models, but is still worse than FDE-optimized

model, as this scalar coordinates output doesn’t leave room for any post-processing optimization.

Table 4.3: Ablation study on output representation
(Argoverse validation set)

Bottleneck Output K=1 K=6
minFDE MR minFDE MR

Scalar Regression 3.81 61.7 1.26 13.0
Scalar Heatmap 3.07 51.9 1.30 8.0
Image Heatmap 3.02 50.7 1.28 6.8

4.4.1.8 Qualitative results

We show supplementary qualitative results in Fig. 4.7. We highlight examples of straight line, overtaking,

curve road, going outside the map and intersections. Our model heatmap output makes use and usually

follows the prior from the context map, but it is also able to divert from it based on interactions, realistic

observations and hints of divergence from history.

Figure 4.7: Qualitative examples. The yellow/red heatmap is our predicted probability distribution and
the blue points are the sampled final point predictions. The ground truth trajectory is shown in green.
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4.4.1.9 Limitations

Despite their widespread use and optimization on most deep learning frameworks, convolutional layers

remain quite slow compared to simple scalar fully-connected layers, especially considering the respective

sizes of processed inputs (a full image versus a few coordinates). As a consequence, we observe our

training times to be a bit slower than what would be optimal for fast and efficient research (a few days

per training), and ill-suited for real-time on-board inference ( ∼ 200 ms per inference, while <100 ms

would be desirable for a full real-time self-driving pipeline).

Moreover, while the original maps provided in most datasets provide connectivity information (which

lane are connected together), which is especially convenient when it comes to complex intersections with

multiple possible lane changes and turns as in the last bottom-right example of Fig. 4.7, our convolutional

encoder doesn’t consider this information, and represents the whole road map in one single layer where

overlapping lanes might occlude each other.
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4.4.2 Lane-based heatmaps (GOHOME)

HOME uses a fully-convolutional model and is limited to a restricted image size. GOHOME iterates on

this work and presents an optimized motion forecasting framework solely based on graph operations to

provide efficiently a heatmap with uncertainty measure exploiting the vectorized form of HD map.

GOHOME system focuses on lane-level operations as illustrated in Fig. 4.8. The local HD-Map is

provided in the dataset as a graph of 𝐿 lanelets. A lanelet represents a macro section of the road (10 to

20 meters on average), as our goal is to encode connectivity at a macro level (lane segments), and not

micro level (every meter). Each lanelet is defined as a sequence of centerline points, and is connected

to its predecessor, successor, left and right neighbors if they exist. We encode each lanelet into a road

graph, where geometric and connectivity information are represented. Our model yields a score for each

of these lanelets, that is used to identify most probable lanes. A partial heatmap is then generated for

the top ranking lanelets, and projected onto a global heatmap. Afterwards, we sample a set of endpoints

from the heatmap and recreate a trajectory for each.

Lane heat maps
Graph encoding 
& Lane scoring

Top k 
lanes

Top k 
lane 
rasters

Global heat map

Trajectory sampling

0.4

0.30.1

0.1

0.05

Context

Figure 4.8: GOHOME pipeline. The lane graph extracted from the HD-Map is processed through a graph
encoder. Each lane then generates a local curvilinear raster that is combined into a predicted probability
distribution heatmap.

4.4.2.1 Graph neural network for HD-Map input

The model architecture is illustrated in Fig. 4.9. We encode each lanelet through a shared 1D convolution

and UGRU [Rozenberg et al., 2021] recurrent 𝐿𝑎𝑛𝑒𝐸𝑛𝑐𝑜𝑑𝑒𝑟 into features 𝐹 of 𝐶 channels. The lanelet

features 𝐹 are then updated through a 𝐺𝑟𝑎𝑝ℎ𝐸𝑛𝑐𝑜𝑑𝑒𝑟1 made of a sequence of four graph convolution

operations similar to [Liang et al., 2020] in order to spread connectivity information:

𝐹← 𝐹𝑊 +
∑︁
𝑟

𝐴𝑟𝐹𝑊𝑟 (4.5)

where 𝐹 is the (𝐿,𝐶) lane feature matrix , 𝑊 is the learned (𝐶,𝐶) weight for ego features encoding.

𝐴𝑟 and 𝑊𝑟 are the respective adjacency matrix (𝐿, 𝐿) and learned weight (𝐶,𝐶) for the relation 𝑟 ∈
{𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟, 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡} derived from the lane graph. 𝐴𝑟 is fixed as it comes from the HD

Map, while𝑊𝑟 enables to learn different operations for each possible relation.

Parallelly, each agent trajectory, defined as a sequence of position, speed and yaw, is encoded with

a shared 𝑇𝑟𝑎 𝑗𝐸𝑛𝑐𝑜𝑑𝑒𝑟 also made of a shared 1D convolution and a UGRU layer. Each agent feature is

then updated with map information through a cross-attention 𝐿𝑎𝑛𝑒𝑠2𝐴𝑔𝑒𝑛𝑡𝑠 layer on the lanelet features.
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Figure 4.9: GOHOME model architecture

Interactions between agents are then taken into account through a self-attention 𝐴𝑔𝑒𝑛𝑡𝑠2𝐴𝑔𝑒𝑛𝑡𝑠 layer

between agents. Finally the target agent feature is concatenated to all the lanelet features by 𝐸𝑔𝑜2𝐿𝑎𝑛𝑒𝑠
and then treated through a final 𝐺𝑟𝑎𝑝ℎ𝐸𝑛𝑐𝑜𝑑𝑒𝑟2 layer, also made of 4 graph convolutions to obtain the

final graph encoding that will be used to generate the different predictions.

Compared to other methods using graph neural networks, our method uses graph convolutions like

LaneGCN [Liang et al., 2020] and LaneRCNN [Zeng et al., 2021], but applies them to lanelets instead

of lane nodes (a lane node is a single point in the sequence of a lanelet). VectorNet [Gao et al., 2020] and

TNT [Zhao et al., 2021] also use lanelets, called polylines, but connect them through global attention

instead of using graph connectivity. We chose to use a GNN on the lanelets since we wanted an effi-

cient and high-level representation allowing to spread information easily through the graph, while still

leveraging connectivity. A more detailed description of the architecture is given in Appendix A.

4.4.2.2 Heatmap generation through Lane-level rasters

For the heatmap output, we wish to have a dense image in cartesian coordinates of dimensions (𝐻,𝑊). To

do so without using any convolution on the full image, we create a raster for every lanelet in curvilinear

coordinates. We use lane ranking to generate these lane rasters only for the top 𝑘 lanelets and not all of

them.

Lane raster generation Each of the small lane rasters of size (ℎ,𝑤) has a longitudinal lenght of

20m and a transversal width of 4m. These lane rasters are created as a discretization of the Frenet-

Serret referential along the lane, as illustrated in Fig. 4.10. We decompose the probability distribution

along a lanelet in a longitudinal component (ℎ,1,8) and a lateral component (1,𝑤,8) predicted from the

lanelet encoding. These components are summed together with broadcast to create a (ℎ,𝑤,8) 𝑅 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

volume. This way the complexity to create the volume is (ℎ+𝑤) ×8 instead of ℎ×𝑤 ×8. The obtained

volume is then concatenated with pixelwise cartesian coordinates, heading, lane occupancy and curvature

informations before a final linear layer on which is applied a sigmoid to get the 𝑅𝑝𝑟𝑜𝑏𝑎 output.

The resulting lane-level 𝑅𝑝𝑟𝑜𝑏𝑎 heatmaps are then projected onto the full cartesian heatmap 𝑌 using

each pixel cartesian coordinates as illustrated in Figure 4.10. If multiple lane-level pixels fall into the

same cartesian pixel, their values are averaged. The lane raster widths are set such that adjacent lane

rasters overlap and can cover lane change behaviors. The target 𝑌 for this final prediction 𝑌 is a Gaussian

centered around the target agent ground truth position. We use the same pixel-wise focal loss as HOME

defined in Eq. 4.4.
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𝑛

𝑠

𝑥

𝑦

b)  Curvilinear rastera)  Lanelet c)  Cartesian raster

Figure 4.10: Lane raster grid projection onto cartesian coordinates. a) A single node of the graph is a
lanelet and describes a road segment. b) A rectangular raster is generated along the curvilinear coor-
dinates of the lanelet. c) The lanelet coordinates are then used to project the predicted raster back into
cartesian coordinates to complete the final heatmap output.

Lane ranking The lanelet classification is obtained with a linear layer on the graph encoding, fol-

lowed by a sigmoid activation. The ground-truth is defined by a 1 for all lanelets where the future car

position is inside the lanelet polygon and 0 otherwise. The loss is a binary cross-entropy added to the

pixel-wise loss of Eq. 4.4 with a 1𝑒−2 coefficient. Since only a fraction of the lanelets will actually be

useful to represent the future car location, we can compute the lane-level rasters only for a subselection

of lanelets, saving more computation. We use the classification score 𝑐𝑙𝑎𝑛𝑒 predicted by the network to

select only the top 𝑘 ranking lanelets, and only compute and project the lane raster for these. Since the

raster predictions for the other unselected lanelets would have been very close to zero anyway, this does

not decrease performance at all, as demonstrated in Sec. 4.4.2.4.

Cartesian image connection Some lane rasters may be projected onto the same pixels and over-

lap, which is very difficult for the model to know of beforehand. To help the model know of overlaps

and propagate location information through the lane rasters, we do a first projection of the lane rasters

onto the cartesian coordinates before the final probability estimation. The (ℎ,𝑤,8) lane raster features

𝑅 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 are projected onto a (𝐻,𝑊,8) cartesian image 𝐼 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 through the same operation previously

described for the probability heatmaps, with the overlaps averaged. The occupancy (number of raster

pixels aggregated in each cartesian pixel) information is also concatenated to the volume 𝐼 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠. A

linear layer is then applied on the last dimension of 𝐼 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, which is then reprojected onto curvilin-

ear coordinates and concatenated to the initial lane rasters 𝑅 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 before final probability estimation

and projection. This way, the features of overlapping lanes are shared between them so that they can

propagate information and homogenise probability.
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4.4.2.3 Comparison with State-of-the-art

We report our results on the online Argoverse test set in Tab. 4.4, on the online NuScenes leaderboard

in Tab. 4.5, and on the Interaction validation set in Tab. 4.6. We compare it to the published methods

on each of these benchmarks. On Argoverse, our GOHOME method reaches 2𝑛𝑑 place in MR6, with

the use of a lighter and faster model than 1𝑠𝑡 HOME as will be showed in Sec. 5.4.3. On NuScenes and

Interaction, GOHOME ranks first in multiple metrics as well.

Table 4.4: Argoverse Leaderboard [Chang et al., 2019] 1

K=1 K=6
minFDE MR minADE minFDE MR

LaneGCN [Liang et al., 2020] 3.78 59.1 0.87 1.36 16.3
TPCN [Ye et al., 2021] 3.64 58.6 0.85 1.35 15.9
Jean [Mercat et al., 2020] 4.24 68.6 1.00 1.42 13.1
SceneTrans [Ngiam et al., 2021] 4.06 59.2 0.80 1.23 12.6
LaneRCNN [Zeng et al., 2021] 3.69 56.9 0.90 1.45 12.3
PRIME [Song et al., 2022] 3.82 58.7 1.22 1.56 11.5
DenseTNT [Gu et al., 2021] 3.70 59.9 0.94 1.49 10.5
HOME 3.65 57.1 0.93 1.44 9.8
GOHOME 3.65 57.2 0.94 1.45 10.5

Table 4.5: NuScenes Leaderboard [Caesar et al., 2020] 2

K=5 K=10 k=1
minADE MR minADE MR minFDE

CoverNet [Phan-Minh et al., 2020] 1.96 67 1.48 _ _
Trajectron++ [Salzmann et al., 2020] 1.88 70 1.51 57 9.52
ALAN [Narayanan et al., 2021] 1.87 60 1.22 49 9.98
SG-Net [Wang et al., 2021a] 1.86 67 1.40 52 9.25
WIMP [Khandelwal et al., 2020] 1.84 55 1.11 43 8.49
MHA-JAM [Messaoud et al., 2021] 1.81 59 1.24 46 8.57
CXX [Luo et al., 2020] 1.63 69 1.29 60 8.86
LaPred [Kim et al., 2021] 1.53 _ 1.12 _ 8.12
P2T [Deo and Trivedi, 2020] 1.45 64 1.16 46 10.50
GOHOME (r=2.6m) 1.42 57 1.15 47 6.99
GOHOME (r=1.8m) 1.59 46 1.15 34 7.01

4.4.2.4 Ablation studies

We highlight the gains made by replacing convolution operations with graph operations. To measure

inference time, we use a batchsize of 16, which can be considered as an average number of agents to be

1https://eval.ai/web/challenges/challenge-page/454/leaderboard/1279
2https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659
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Table 4.6: Interaction Validation [Zhan et al., 2019]

minFDE1 minFDE6
TNT [Zhao et al., 2021] _ 0.67
HEAT-I-R [Mo et al., 2021] 0.66 _
ReCoG [Mo et al., 2020] 0.65 _
ITRA [Scibior et al., 2021] _ 0.49
GOHOME 0.61 0.45

predicted at a given time. We report only the model forward pass, omitting preprocessing and postpro-

cessing, but notice that image preprocessing is sensibly slower, particularly because of the rasterization

of the different semantic layers. All times are measured with a Nvidia 2080 TI. While we report infer-

ence time, we also notice that training times record an even greater difference. We mostly consider three

different architectures: HOME, GNN-HOME which is a modified HOME model with a GNN encoder

but the usual CNN decoder, and our new method GOHOME. All numbers are reported on the Argoverse

validation set.

Graph operation speed-up
We evaluate the speed-up gained by using graph encoding and lane rasters instead of full convolutions

in Tab. 4.7. The CNN encoding and decoding corresponds to the full HOME model, and the GNN with

Lane Rasters (LR) to the GOHOME model. We also estimate the impact from the encoding separately

by testing a model with GNN encoding and CNN decoding. We report FLOPs, number of parameters

and Frame per Seconds. We measure an average number of 140 lanelets and 10 agents per sample to

compute FLOPs.

Table 4.7: Performance/Complexity comparison

Model K=6 #Param FLOPs
minFDE MR

HOME 1.28 6.8 5.1M 4.8G
GNN-HOME 1.28 7.2 0.43M 0.81G
GOHOME 1.26 7.1 0.40M 0.09G

Table 4.8: Lane ranking speed-up

# lanes K=6 FPS
minFDE MR

All 1.28 7.5 17
20 1.26 7.1 34
10 1.26 7.3 45

Trade-off from lane ranking
We show in Tab. 4.8 the effects of only selecting the top 𝑘 lanes to extract rasters. We fix an input

range of 128 and output range of 192 with 0.5m x 0.5m pixel resolution. We observe that this ranked

selection doesn’t decrease performance, as limiting the number of projected lanes seems to actually

improve the metrics, and brings effective speed-up.

Image size and resolution scaling
While a 192m image range, which amount to a 88m reach in each direction, may be sufficient in

most urban driving predictions with a time horizon of 3s, other datasets can require predictions up to 6

or 8 seconds [Caesar et al., 2020, Ettinger et al., 2021]. There is therefore a need to increase this output

range, which can be done without necessarily increasing the input size, as far distances are reached with
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long straight trajectories that can be easily extrapolated on highways.

Figure 4.11: Inference time as a function of
output range

Figure 4.12: Inference time as a function of
pixels per meters

We compare the scaling of our graph-based GOHOME model to the one of an image-based HOME

model with regard to output range and resolution. Fig. 4.11 highlights the output range scaling, where

we use a fixed input range of 128 meters, and a resolution of 0.5m per pixel. Whereas the CNN decoders

of HOME and GNN-HOME lead to a quadratic scaling, the lane rasters combined with the top 20 lane

ranking enable a scaling that is even less than linear.

We show in Fig. 4.12 the inference time with regard to the number of pixels per meter, which is the

inverse of the resolution. While efficient optimization of convolution and constant costs lead to close

inference times for the initial 2 pixels per meter, the more efficient scaling shows clearly for GNN inputs

and especially Lane Rasters outputs. As the resolution of the lane rasters is also scaled with the total

resolution, the quadratic complexity is still applied, but with a much lesser coefficient that allows for

realistic training and inference times for finer resolutions.

4.4.2.5 Qualitative analysis

We show in Fig. 4.13 some qualitative results of our GOHOME model. The lane prediction displayed

on top can be assimilated to the representation of epistemic uncertainty, as the choice of where the driver

will decide to go, whereas the spread of the final heatmap modes models aleatoric uncertainty in the

trajectory controls. We observe that the model assigns different modes for each lane possibility, and

that each of these modes is well aligned with the corresponding lane with a spread along the curvilinear

direction. More qualitative examples are given in Appendix B.

We also display in Fig. 4.14 the comparison of outputs between HOME and GOHOME on the same

sample. GOHOME is more tightly correlated to centerlanes, which can help with the accuracy of the

final point, but has a less exhaustive coverage of possible lane change maneuvers and going outside of

the drivable area. HOME on the other hand is more diffuse, and can cover cars going out the road more

easily. Their combination allows them to combine their advantages and fill their drawbacks, leading to

improved performance.
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Figure 4.13: Qualitative examples of GOHOME output. Graph lane classification is shown in framed
inserts

Figure 4.14: Comparison of HOME and GOHOME predictions on the same sample. The prediction of
GOHOME follows the centerlanes more closely, while HOME is more spread between the lanes.
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4.4.3 Cross-attention for heatmap generation (THOMAS)

The approach of GOHOME remains constrained to the drivable area and to fixed lane-widths. More-

over, a significant amount of preprocessing has to be done to prepare the lane raster coordinates. We

inspire ourselves from DenseTNT [Gu et al., 2021] to simplify the sparse heatmap generation process

in THOMAS, by using attention, but extend their work by not being constrained to a neighborhood of

the drivable area, and implementing a hierarchical process to only decode the grid areas with high prior

probability. THOMAS uses the same architecture as GOHOME for context encoding, and only differs in

the heatmap decoding part. We give a precise illustration of our model architecture with each layer size

in Appendix C.

4.4.3.1 Attention to grid points

We use sparse points to generate probability heatmaps as in DenseTNT [Gu et al., 2021]. Each pixel on

the grid is defined by its 2D coordinates, from which features are computed by a 2-layer MLP applied

on the point coordinates. These features are then concatenated to the agent encoding obtained through

the GOHOME encoder, passed through a linear layer, and finally enriched by a 2-layer cross-attention

on the graph lane features, before applying a linear layer with sigmoid to get the probability.

Figure 4.15: Use of attention to generate heatmap probabilities [Gu et al., 2021]. Grid points are ini-
tialized by their coordinates, and then cross-attention is processed between these grid-points as queries
and the context as key/values. Once context information has been included, linear layers are applied to
obtain a final probability value.

4.4.3.2 Hierarchical grid decoder

We use hierarchical predictions at various levels of resolutions so that the decoder has the possibility of

predicting over the full surroundings of the agent but learns to refine with more precision only in places

where the agent will end up with high probability. This hierarchical process is illustrated in Fig. 4.16.

Starting from an initial full dense grid probability at low resolution 𝑅0× 𝑅0 by pixels, we iteratively

refine the resolution by a fixed factor 𝑓 until we reach the desired final resolution 𝑅 𝑓 𝑖𝑛𝑎𝑙×𝑅 𝑓 𝑖𝑛𝑎𝑙 . At each

iteration 𝑖, we select only the 𝑁𝑖 highest ranking grid points from the previous iteration, and upsample

only these points to the 𝑅𝑖 ×𝑅𝑖 = 𝑅𝑖−1/𝑓 × 𝑅𝑖−1/𝑓 .
For a given 𝑊 output range, this hierarchical process allows the model to only operate on 𝑊/𝑅0 ×

𝑊/𝑅0+
∑

𝑖 𝑁𝑖 × 𝑓 2 grid points instead of the 𝑊/𝑅 𝑓 𝑖𝑛𝑎𝑙×𝑊/𝑅 𝑓 𝑖𝑛𝑎𝑙 available. In practice, for a final output range
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Figure 4.16: Hierarchical iterative refinement of the grid probabilities. First, the full grid is evaluated at a
very low resolution, then the highest cells are up-sampled and evaluated at a higher resolution, until final
resolution is reached. We highlight in grey the restricted area considered for refinement at each step.

of 192 meters with desired 𝑅 𝑓 𝑖𝑛𝑎𝑙 = 0.5𝑚 resolution, we start with an initial resolution of 𝑅0 = 8𝑚 and

use two iterations of (𝑁1, 𝑁2) = (16,64) points each and an upscaling factor 𝑓 = 4. This way, we compute

only 1856 grid points from the 147 456 available, with no performance loss.

The heatmap is trained on each resolution level using as pixel-wise focal loss as in Eq. 4.4, with the

ground truth being a Gaussian centered at the target agent future position.

4.4.3.3 Comparison with State-of-the-art

We report the results of our THOMAS prediction model on the datasets Argoverse and nuScenes in Tab.

4.9 and 4.10 respectively.

Table 4.9: Argoverse Leaderboard [Chang et al., 2019] 1

K=1 K=6
minFDE MR minADE minFDE MR

Autobot [Girgis et al., 2021] _ _ 0.89 1.41 16
TPCN [Ye et al., 2021] 3.64 58.6 0.85 1.35 15.9
SceneTrans [Ngiam et al., 2021] 4.06 59.2 0.80 1.23 12.6
DenseTNT [Gu et al., 2021] 3.70 59.9 0.94 1.49 10.5
GOHOME 3.65 57.2 0.94 1.45 10.5
HOME 3.65 57.1 0.93 1.44 9.8
THOMAS 3.59 56.1 0.94 1.44 10.4

THOMAS reaches similar or better performance than both HOME and GOHOME, and also fares

very well with other state-of-the-art methods, notable on the minFDE1 metric, while reducing consider-

ably its memory and computing footprint.

1https://eval.ai/web/challenges/challenge-page/454/leaderboard/1279
2https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659

54

https://eval.ai/web/challenges/challenge-page/454/leaderboard/1279
https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659


CHAPTER 4. TRAJECTORY PREDICTION WITH HEATMAPS

Table 4.10: NuScenes Leaderboard [Caesar et al., 2020] 2

K=5 K=10 k=1
minADE MR minADE MR minFDE

P2T [Deo and Trivedi, 2020] 1.45 64 1.16 46 10.50
GOHOME 1.42 57 1.15 47 6.99
Autobot [Girgis et al., 2021] 1.37 62 1.03 44 8.19
PGP [Deo and Trivedi, 2020] 1.30 57 0.98 37 7.72
THOMAS 1.33 55 1.04 42 6.71

4.4.3.4 Ablation study

We use the Interaction v1.2 dataset that has recently opened a new multi-agent track in the context of its

Interpret challenge. It contains 47 584 training cases, 11 794 validation cases and 2 644 testing cases,

with each case containing between 1 and 40 agents to predict simultaneously.

We assess the speed gain of our proposed hierarchical decoder compared to the lane rasters of GO-

HOME. In Tab. 4.11. We report training time for 16 epochs with a batchsize of 16, and inference time

for 32 and 128 simultaneous agents (if one scene contrains less than the infered number of agents, the

lacking agents are padded with zeros and therefore still processed by the model in a similar time budget).

Table 4.11: Comparison of consistent solutions on Interpret multi-agent validation track

Training Inference 32 agents Inference 128 agents
GOHOME 12.8 hours 36 ms 90 ms
THOMAS 7.5 hours 20 ms 31 ms

For additional comparison, the other existing dense prediction method DenseTNT [Gu et al., 2021]

reports an inference speed of 100ms per sample for their model.

Speed / Performance trade-off with hierarchical refinement We also display the trade-off between

inference speed and coverage from hierarchical refinement in Fig. 4.17, with marginal MissRate6 as the

coverage metric.

The curve is obtained setting the number 𝑁 of upsampled points at the last refinement iteration from

2 to 128. From 𝑁 = 16 and lower, coverage performance starts to diminish while little speed gains are

made. We still kept a relatively high N=64 in our model as we wanted to insure a wide coverage, and the

time loss between 41 ms and 46 ms remains acceptable.

4.4.3.5 Qualitative examples

We display examples of multi-agent heatmap prediction from out THOMAS model in Fig. A.3.
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Figure 4.17: Curve of MissRate6 with regard to inference time with varying number of points upsampled
at the last hierarchical refinement iteration.
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Figure 4.18: Qualitative examples of heatmap output from our multi-agent model. All the heatmaps from
one scene are resulting from one single forward pass in our model predicting all agents at once. We use
matching colors for the agent history, current location and their future predicted heatmap (best viewed in
color).
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4.5 Advantages of heatmaps

After presenting different ways of generating a heatmap, we now interest ourselves to the general concept

of heatmap-based trajectory prediction and investigate their pros compared to more common motion

forecasting methods.

4.5.1 Performance

As we have reported in multiple benchmarks [Chang et al., 2019, Zhan et al., 2019, Caesar et al., 2020]

on Tables 4.2, 4.4, 4.5, 4.6 and 4.9, heatmap models obtain state-of-the-art performance, notably in the

minFDE1 and MR6, which we can translate in the following ways:

The resulting per-pixel multimodality provides a very good ranking of the most likely places where

the agents will go, resulting in an accurate ordering of the predicted modes (low minFDE1. Compared to

most Winner-Takes-All [Liang et al., 2020, Ngiam et al., 2021] models which have troubles estimating

which of their multiple modes is the most probable, the probability values our model attributes to each lo-

cation translate to a globally precise and comparable estimate, showcasing a good predicted probabilistic

distribution.

The final sampled modes give a very good coverage of the possible reachable positions, reaching

MR6 values unequalled in any other method. Since our model prediction is unconstrained and trained

in a framework that strongly encourages to not disregard any probable pixel, and through the use of a

sampling algorithm designed with coverage performance in mind, we are able to provide a prediction

that, while not necessarily the most accurate to the nearest centimeter, will almost always have at least

one predicted mode in the local vicinity of the ground truth.

4.5.2 Multi-modality

We compare the effect of adding more modalities obtained by HOME to the one derived from a regression

output in Fig 4.19. Even if the MR𝑘 improves for the total number of modalities as 𝑘 increases, the

performance for a fixed 𝑘 such as 1 or 6 worsens. [Khandelwal et al., 2020] and [Zhang et al., 2020]

notice a similar trend, obtaining much better results for 𝑘 = 1 metrics when training less total modalities.

Furthermore, for a regression output model a new training is required each time to accommodate the

maximum number of modalities, whereas with heatmap output any number of modalities can be obtained

at will with the same training, and the lower 𝑘 numbers are not impacted by the total number of modalities

extracted, as showed by the dashed horizontal lines displayed for MR1, MR3 and MR6. Finally, our

model heatmap output scales better with the number of 𝑘 modalities, converging to a 0% MR faster that

the regression output model.

4.5.3 Ensembling for increased performance and highlight of model differences

Because of the multimodal nature of the predictions, model ensembling is usually tedious in trajectory

prediction, as it is not possible to determine which modality should be averaged with which, and even

shortest distance matching doesn’t guarantee that two predictions highlight the same decision and would

make sense averaged together. On the other hand, probability heatmap are a great way of representing
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Figure 4.19: Effect of maximum number 𝑘 of predicted modalities trained on metrics of lower fixed
modality numbers. Full lines are results of regression output model. Dashed lines are result of our
heatmap output model. We show the Miss Rate for total number of predicted modalities 𝑘 (blue) and
fixed number of modalities 1 (orange), 3 (green) and 6 (red). In the regression output case, since the
training of each individual modality is dependent on the total number 𝑘 of modality trained, the metrics
MR1,3,6 are not fixed and worsen when 𝑘 increases.

information coming from different sources or models in a common system of reference and can be

averaged together without any assumption nor risk of mode collapsing.

We report the results of our ensembled models on the test set in Tab. 4.12. We first highlight

that the ensemble of two similar HOME models (HO+HO) brings significant improvement compared

to HOME alone. As a general rule, the more different and complementary two models are, the greater

the performance increase will be. We notice that the combination of HOME and GOHOME models

(HO+GO) brings a greater improvement than HO+HO, despite each HOME model being better in single

performance than the GOHOME model. Our best ensembling, a weighted combination of 9 HOME and

GOHOME models, allows us to improve on the existing state-of-the-art by a significant margin, with a

more than 15% MR6 decrease.

Table 4.12: Argoverse Leaderboard [Chang et al., 2019] 1

K=1 K=6
minFDE MR minADE minFDE MR

HOME 3.65 57.1 0.93 1.44 9.8
GOHOME 3.65 57.2 0.94 1.45 10.5
HO+HO 3.57 56 0.92 1.41 9.4
HO+GO 3.53 55.8 0.92 1.40 9.1
Best ensemble 3.68 57.2 0.89 1.29 8.5

We also show in Fig. 4.20 the heatmap output of two model sharing the same architecture but

1https://eval.ai/web/challenges/challenge-page/454/leaderboard/1279
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different training seeds. Each model chooses a separate lane, highlighting the benefits of the ensemble

that covers all possible lane changes.

Figure 4.20: Complementarity of models in an ensemble. Model 1 predicts a lane-change to the right
while Model 2 predicts keeping the same lane, and the Ensemble covers both case.

4.6 Conclusion

We have demonstrated in this chapter the advantages of heatmap-based trajectory prediction. We have

also identified their weaknesses, notably their slower compute time, and tried to remediate to this problem

by designing new model architectures enabling a more efficient heatmap generation, with inference times

close to the non-heatmap based ones. We have highlighted the very significant gains in metrics such as

MR6, but also note that these gains also come at a cost on other metrics like minFDE6. We notice that a

trade-off usually exists, not only with our methods but in almost all state-of-the-art approaches, between

these two metrics. While this trade-off is not absolute, as a more powerful model can gain performance

on both fronts, for a fixed model design choices will usually lead to preferences in one quality (coverage)

or another (accuracy). We note that an advantage of our heatmap approaches is that we can explicitly

tune this trade-off after training by setting a single parameter in the sampling step during inference time.
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The methods presented in the previous chapters focus on individual agent forecasts, however this

prediction always takes place in a multi-agent interactive setting. In this chapter we now focus on how

to obtain scene-level multi-agent consistent predictions.

5.1 Scene-level consistent prediction

In the context of autonomous driving, the self-driving stack must detect, track and predict not one, but

𝐴 multiple surrounding agents at any given time. Following what we have said in earlier chapters, this

prediction must be 𝐾 multimodal for every agent. However, if no additional constraint is applied, the 𝑘 𝑡ℎ

modality of the first agent will not be consistent with the 𝑘 𝑡ℎ modality of the second agent, and may even

collide with it. This means that the planning step cannot use the agent modalities in unison with each

other, and therefore has to explore all 𝐾𝐴 possible combinations, growing exponentially with the number

of agents. Such a strategy is not viable, hence a need for consistency constraints on the multi-agent

multimodal prediction.

Figure 5.1: Two failure cases of multi-agent consistency. Left: Both agents are predicted to cross the
intersection at the same time. Right: Both agent yield and nobody crosses.

Fig. 5.1 illustrates two possible errors in consistent multi-agent prediction. Both cases can be consid-

ered as the first (left) and second (right) predicted modality for each agent. The right modalities showcase

that the model has encoded and taken into account interactions between agents: both see another car at

the crossing and infer that one of the modalities should slow down and stop for the other one. However,

since the multimodal decoding has no consistency constraint, both agents predict crossing first as their

first modality, and yielding as their second one. The usual minFDE𝑘 loss will still be minimal for this

prediction, no matter which agent actually crosses first.

Our goal is therefore to output a multimodal prediction for each agent, where the first modalities

of each agents are consistent with each other, and so is the second, and so for every 𝑘𝑡ℎ modality. The

definition for the performance metric of such consistency is proposed by ILVM [Casas et al., 2020] scene-

level displacement errors minSFDE and SMR. To define these, we recall the usual marginal definition

of the metrics minFDE𝑘 and MR𝑘 , which is averaged over agents after the minimum operation, which
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means that the best modality of each agent is selected independently for each and then averaged:

𝑚𝑖𝑛𝐹𝐷𝐸𝑘 =
1
𝐴

∑︁
𝑎
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𝑚𝑖𝑠𝑠 𝑘

(5.1)

For consistent scene multi-agent prediction, we report the joint scene-level metrics, where the average

operation over the agents is done before the minimum operator. In this formulation, the minimum is taken

over scene modalities, meaning that only the best scene (joint over agents) modality is taken into account:

𝑚𝑖𝑛𝑆𝐹𝐷𝐸𝑘 = 𝑚𝑖𝑛𝑘
1
𝐴
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𝑚𝑖𝑠𝑠 𝑘

(5.2)

In other words, the marginal metrics pick their optimal solutions in a pool of 𝐾 to the power of 𝐴

predicted solutions, while the joint metrics restrict this pool to only 𝐾 possibilities, making it a much

more complex problem.

5.2 Related works

While very little work has directly tackled multi-agent prediction and evaluation so far, multiple meth-

ods hint at the ability to predict multiple agents at the same time [Liang et al., 2020, Ivanovic et al.,

2020, Zeng et al., 2021] even if they then focus on a more single-agent oriented framework. Other works

[Alahi et al., 2016, Tang and Salakhutdinov, 2019, Rhinehart et al., 2019, Girgis et al., 2021] use autore-

gressive roll-outs to condition the future step of an agent on the previous steps of all the other agents.

SceneTransformer [Ngiam et al., 2021] repeats each agent features across possible modalities, and per-

forms self-attention operations inside each modality before using a loss computed jointly among agents

to train a model and evaluate on the WOMD dataset [Ettinger et al., 2021] interaction track. ILVM [Casas

et al., 2020] uses scene latent representations conditioned on all agents to generate scene-consistent sam-

ples, but its variational inference does not provide a confidence score for each modality, hence LookOut

[Cui et al., 2021] proposes a scenario scoring function and a diverse sampler to improve sample effi-

ciency. AIR2 [Wu and Wu, 2021] extends Multipath [Chai et al., 2019] and produces a cross-distribution

for two agents along all possible trajectory anchors, but it scales exponentially with the number of agents,

making impractical for a real-time implementation that could encounter more than 10 agents at the same

time.

The main other works proposing an actual solution to the joint multi-agent prediction problem are

ILVM [Casas et al., 2020] and SceneTransformer [Ngiam et al., 2021].

ILVM [Casas et al., 2020] shown in Fig. 5.2 uses variational inference to learn a latent representation

of the scene conditioned on each agent with a Scene Interaction Module, and decodes it with a similar

Scene Interaction Module. The required number of modalities is obtained by sampling the latent space

as many times as required. Even though the sampling is independent for each agent, the latent space is

generated conditionally on all the agents. Since each sampled inference is evaluated and trained over all
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the agents together, with likelihood of the whole scene according to the model, the network is effectively

trained to provide scene-consistent samples.

Figure 5.2: ILVM workflow. Latent values are sampled conditionally on the whole scene, and decoded
taking into account the decoding of other agents.

SceneTransformer [Ngiam et al., 2021] duplicates the agent encoding with the number of modali-

ties required and adds a one-hot encoding specific to each modality. They then apply a shared transformer

architecture on all modalities to encode intra-modality interactions between agents and generate the final

trajectories. The scene-consistency is obtained by simply using the joint version of minSFDE𝑘 loss as

descrived in Eq. 5.2 instead of Eq. 5.1 commonly used.

5.3 Consistent multi-agent heatmap-based forecasting

Since our heatmap output is a dense prediction and doesn’t have direct discrete multi-modalities, we can-

not add multi-agent consistency as a simple constraint loss on the heatmap output, as SceneTransformer

did on their scalar output. Indeed, the heatmap represents all the possible positions of the agent with

probabilities, and there is no notion of 𝑘 𝑡ℎ modality we could synchronize in-between-agents. There is

therefore a need for a post-processing operation applied during or after the endpoint sampling to insure

multi-agent coherence.

5.3.1 Collision-free endpoint sampling

We first try to design a deterministic sampling algorithm based on the heatmaps generated in previous

Chap. 4 in order to sample endpoints for each agent in a collision aware manner. We use the same

sampling algorithm as in Sec. 4.3.1.1 based on MR optimization, but add a sequential iteration over the

agents for each modality.

For a single modality 𝑘 , we predict the possible endpoint of a first agent 𝑎 by taking the maximum

accumulated predicted probability under an area of radius 𝑟 . We then not only set to zero the heatmap

values of this agent heatmap I𝑎
𝑘′ around the sampled location (so not to sample it in the next modalities

𝑘 ′), but we also set to zero the same area on the heatmaps I𝑎′

𝑘
of the other agents 𝑎′ on the same

modality 𝑘 , so that these other agents cannot be sampled at the same position for this modality. We

describe formally this collision-free sampling in Algorithm 3.

This way, we try to enforce collision-free endpoints, and expect that considering collisions brings

logic to improve the overall consistency of the predictions. However, as will be highlighted in Sec. 5.4.3,
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Algorithm 3: MR Sampling Algorithm
input: Probability map p𝑎 (𝑥) 𝑓 𝑜𝑟𝑒𝑎𝑐ℎ𝑎𝑔𝑒𝑛𝑡a

𝐾 number of predictions
𝐴 number of agents 𝑅 threshhold for Miss Rate

for k = 1..K do
for a = 1..A do

Find 𝑐𝑎
𝑘

maximizing
∫
∥𝑐𝑎

𝑘
−𝑥 ∥<𝑅 𝑝

𝑎 (𝑥)𝑑𝑥
for a’ = 1..A do

Set 𝑝𝑎
′ (𝑥) = 0 for all 𝑥 such that ∥𝑐𝑎′

𝑘
− 𝑥∥ < 𝑅

end
end

end

this methods significantly lowers the collision rate without the need for any additional learned model

but it does barely improve the multi agent consistency. Indeed, considering the example cases in Fig

5.1 again, this sampling method takes care of the collision in the left example, but doesn’t bring any

improvement to avoid cases like the right one where there is no collision but the scene-level prediction

remains inconsistent.

5.3.2 Modality recombination (THOMAS)

5.3.2.1 Reminder of the graph encoding and heatmap generation steps

In this part, we will first assume that heatmaps have been predicted marginally for each agent. To do so in

an efficient and distributed way, we leverage the encoding from GOHOME and the hierarchical decoding

from Sec. 4.4.3, but optimize it by sharing the scene encoding between all agents present in the scene

and only having a separate flow for the heatmap decoding part as illustrated in Fig. 5.3. The resulting

heatmaps are then sampled independently (not using the proposed modified collision-free algorithm from

the previous section Sec. 5.3.1).

We use the same encoder as the GOHOME model [Gilles et al., 2021a]. The agent trajectories are

encoded though 𝑇𝑟𝑎 𝑗𝐸𝑛𝑐𝑜𝑑𝑒𝑟 using a 1D CNN followed by a UGRU recurrent layer [Rozenberg et al.,

2021], and the HD-Map is encoded as a lanelet graph using a GNN 𝐺𝑟𝑎𝑝ℎ𝐸𝑛𝑐𝑜𝑑𝑒𝑟 made of graph

convolutions. We then run cross-attention 𝐿𝑎𝑛𝑒𝑠2𝐴𝑔𝑒𝑛𝑡𝑠 to add context information to the agent fea-

tures, followed by self-attention 𝐴𝑔𝑒𝑛𝑡𝑠2𝐴𝑔𝑒𝑛𝑡𝑠 to observe interaction between agents. The final result

is an encoding 𝐹𝑎 for each agent, where history, context and interactions have been summarized. This

encoding 𝐹𝑎 is used in the next decoder operations and is also stored to be potentially used in modal-

ity recombination described in the next section 5.3.2.2. The resulting architecture of these encoding

operations is illustrated in the first half of Fig. 5.3.

5.3.2.2 Modality recombination for multi-agent consistent prediction

We address the scene consistency after the initial endpoint deterministic sampling. As single agents

metrics are usually noticeably better than joint ones, this hints us that a potential solution already exists

in the individually sampled modalities, and only a re-ordering of these is needed.
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Figure 5.3: Model architecture for multi-agent prediction with shared backbone

Initially, the prediction output of the model can be defined as marginal, as all 𝐴 agents have been

predicted and sampled independently in order to get 𝐾 possible endpoint each. Our goal is to output a set

of scene predictions J = (𝐿, 𝐴) from the marginal predictionM = (𝐴,𝐾), where each scene modality 𝑙

belonging to J is an association of endpoints 𝑝𝑎
𝑙

for each agent 𝑎. To achieve this, our main hypothesis

lays in the fact that good trajectory proposals are already present in the marginal predictions, but they

need to be coherently aligned among agents to achieve a set of overall consistent scene predictions. For

a given agent 𝑎, the modality selected for the scene 𝑙 would be a combination of this agent available

marginal modalities 𝑝𝑎
𝑘
∈ M. Each scene modality 𝑙 would select a different association between the

agents. In practice we are claiming that a consistent multi-agent prediction J could be achieved by

smartly re-orderingM among agents. The resulting pipeline is detailed in Fig. 5.4.
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Figure 5.4: Illustration of the THOMAS multi-agent prediction pipeline

We illustrate our scene modality generation process in Fig. 5.5. The model learns 𝐿 scene modality

embeddings 𝑆𝑙 of 𝐷 features each. 𝐾 × 𝐴 agent modality vectors 𝐴𝑎
𝑘

are also derived from each agent

modality endpoint. These vectors are obtained through a 2-layer MLP applied on the agent modality

coordinates 𝑝𝑎
𝑘

, to which the stored agent encoding 𝐹𝑎 (previously described in Sec. 5.3.2.1) is concate-

nated in order to help the model recognise modalities from the same agent. The scene modality vectors 𝑆𝑙
are ’specialized’ by querying the available modality proposals 𝐴𝑎

𝑘
of each agent through cross-attention

layers. Subsequently, a matching score 𝑐𝑘,𝑎
𝑙

between each scene modality 𝑆𝑙 and each agent modality 𝐴𝑎
𝑘

is computed. This matching score can be intuitively interpreted as the selection of the role (maneuver 𝑘)

that the agent 𝑎 would play in the overall traffic scene 𝑙:

𝑐
𝑘,𝑎

𝑙
= 𝑆𝑙 .𝐴

𝑎
𝑘
𝑇
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Since argmax is non-differentiable, we employ a soft argmax as a weighted linear combination of the

agent modalities 𝑝𝑎
𝑘

using a softmax on the 𝑐𝑘,𝑎
𝑙

scores:

𝑝𝑎𝑙 =
∑︁
𝑘

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑐𝑘,𝑎
𝑙
)𝑝𝑎𝑘

The recombination module is trained with the scene-level minimum displacement error, where for each

modality inside a single scene all predicted agent displacement losses are averaged before taking the

minimum (winner-takes-all loss) over the 𝐿 scene modalities, as defined in Eq. 5.2 (minSFDE𝑘).
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Figure 5.5: Illustration of THOMAS methods for generation of scene-consistent agent modalities

5.4 Experiments

5.4.1 Dataset

We use the Interaction v1.2 dataset that has recently opened a new multi-agent track in the context of its

Interpret challenge. It contains 47 584 training cases, 11 794 validation cases and 2 644 testing cases,

with each case containing between 1 and 40 agents to predict simultaneously.

5.4.2 Comparison with State-of-the-art

We compare our THOMAS model performance with other joint predictions methods ILVM [Casas et al.,

2020] and SceneTransformer [Ngiam et al., 2021]. For fair comparison we use a GOHOME encoder

for each of the method, and adapt them accordingly so that they predict only endpoints similar to our

method. For each method, we focus on implementing the key idea meant to solve scene consistency and

keep the remaining part of the model as close as possible to our approach for fair comparison:

Implicit Latent Variable Model We use a GOHOME encoder for the prior, posterior and decoder
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Scene Interaction Modules. We weight the KL term with 𝛽 = 1 which worked best according to our

experiments.

Scene Transformer The initial paper applies a transformer architecture on a [𝐹, 𝐴,𝑇,𝐷] tensor

where 𝐹 is the potential modality dimension, 𝐴 the agent dimension and 𝑇 the time dimension, with 𝐷

the feature embedding, with factorized self-attention to the agent and time dimensions separately, so that

agents can look at each-other inside a specific scene modality. The resulting output is optimized using a

jointly formalized loss. For our implementation, we get rid of the 𝑇 dimension as we focus on endpoint

prediction and coherence between the 𝐴 agents. The initial encoded [𝐴,𝐷] tensor is obtained with a

GOHOME encoder, multiplied across the 𝐹 futures and concatenated with a modality-specific one-hot

encoding as in [Ngiam et al., 2021] to obtain the [𝐹, 𝐴,𝐷] tensor. We then apply two layers of agent

self-attention similar to the original paper, before decoding the endpoints through a MLP.

The results are reported in Tab. 5.1. While having comparable marginal distance performance

(demonstrating that our model is not inherently more powerful or leveraging more information), THOMAS

significantly outperforms other methods on every joint metric. SMR is improved by about 25% and SCR

by almost 30%, leading to a combined cSMR decreased by also more than 25%.

Table 5.1: Comparison of consistent solutions on Interpret multi-agent validation track

Marginal metrics Joint metrics
mADE mFDE MR mFDE MR SCR cMR

ILVM [Casas et al., 2020] 0.30 0.62 10.8 0.84 19.8 5.7 21.3
SceneTranformer [Ngiam et al., 2021] 0.29 0.59 10.5 0.84 15.7 3.4 17.3
THOMAS 0.31 0.60 8.2 0.76 11.8 2.4 12.7

We also report our numbers from the Interpret multi-agent online test set leaderboard in Tab. 5.2 and

Tab. 5.3. It is to be noted that the DenseTNT solution explicitely checks for collisions in the search for

its proposed predictions, which we don’t, hence their 0% collision rate (SCR) and its direct impact on

consistent collision-free joint Miss Rate (cSMR).

Table 5.2: Results on Interpret multi-agent regular scene leaderboard (test set)

minSADE minSFDE SMR SCR cSMR
MoliNet 0.73 2.55 44.4 7.5 47.4
ReCoG2 [Mo et al., 2020] 0.47 1.16 23.8 6.9 26.8
DenseTNT [Gu et al., 2021] 0.42 1.13 22.4 0.0 22.4
THOMAS 0.42 0.97 17.9 12.8 25.2

5.4.3 Ablation studies

5.4.3.1 Recombination module

We establish the following baselines to assess the effects of our THOMAS recombination.
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Table 5.3: Results on Interpret multi-agent conditional scene leaderboard (test set)

minSADE minSFDE SMR SCR cSMR
ReCoG2 [Mo et al., 2020] 0.33 0.87 14.98 0.09 15.12
DenseTNT [Gu et al., 2021] 0.28 0.89 15.02 0.0 15.02
THOMAS 0.31 0.72 10.67 0.84 11.63

Scalar output: we train a model with the GOHOME graph encoder and a multimodal scalar regres-

sion head similar to [Liang et al., 2020]. We optimize it with either marginal and joint loss formulation.

Heatmap output with deterministic sampling: we try various sampling methods applied on the

heatmap, with either the deterministic sampling as described in Sec. 4.3.1.1 or a learned sampling trained

to directly regress the sampled modalities from the input heatmap.

Compared to these baselines, THOMAS can be seen as a hybrid sampling method that takes the

result of deterministic sampling as input and learns to recombine it into a more coherent solution.

We report the comparison between the aforementioned baselines and THOMAS in Tab. 5.4, where

our approach THOMAS corresponds to the bottom line with combinatorial learned sampling.

With regard to the joint algorithmic sampling that only tackled collisions but has little to no effect on

actual consistency, as highlighted by the big drop in collision rate from 7.2% to 2.6% in Tab. 5.4 but a

similar joint SMR, THOMAS actually brings a lot of consistency in the multi-agent prediction and drops

the joint SMR from 14.8% to 11.8% in Tab. 5.5. We also note that initializing the scalar joint training

with the results of the scalar marginal training in order to correctly initialize multi-modality solves this

problem and improves significantly the results (jointMR6=15%), but choose not the report these numbers

on the Table since they would be the result of a training twice longer and therefore unfair comparison to

other methods and baselines.

Table 5.4: Comparison of consistent solutions on Interpret multi-agent validation track

Marginal metrics Joint metrics
Output Sampling Objective mADE mFDE MR mFDE MR Col cMR
Scalar _ Marg 0.28 0.59 10.4 1.04 23.7 6.4 24.9
Scalar _ Joint 0.34 0.77 16.2 0.90 19.9 49 21.7
Heat Learned Marg 0.26 0.46 4.9 0.98 20.9 4.1 21.9
Heat Learned Joint 0.29 0.58 9.8 0.88 15.2 3.0 16.4
Heat Algo Marg 0.29 0.54 3.8 0.83 14.8 7.2 15.9
Heat Algo Joint 0.29 0.54 3.8 0.83 14.8 2.6 15.6
Heat Combi Joint 0.31 0.60 8.2 0.76 11.8 2.4 12.7

Usually, scalar marginal models already suffer from learning difficulties as only one output modality,

the closest one to ground-truth, can be trained at a time. Some modalities may therefore converge faster

to acceptable solutions, and benefit from a much increased number of training samples compared to

the others. This problem is aggravated in the joint training case, since the modality selected is the

same for all agents in a training sample. The joint scalar model therefore actually fails to learn multi-
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modality as illustrated by a higher marginal minFDE6 than any other model, and an extremely high

crossCollisionRate since some modalities never train and always point to the same coordinates regardless

of the queried agent. Note that, despite a similar training loss, SceneTransformer doesn’t suffer of the

same pitfalls in Tab. 5.1 as is shares the same weights between all modalities and only differentiates

them in the initialization of the features.

We isolate more closely the effects of our proposed recombination module in Tab. 5.5, where the

first line is the raw marginal trained model without joint recombination, and the second line the result of

our THOMAS learned recombination applied on top of this exact same prediction model.

Table 5.5: Ablation study of the recombination module

Marginal metrics Joint metrics
mADE mFDE MR mFDE MR Col cMR

No recombination 0.29 0.54 3.8 0.83 14.8 7.2 15.9
With recombination 0.31 0.60 8.2 0.76 11.8 2.4 12.7

5.4.4 Qualitative examples

In this section, we will mostly compare the model before recombination, which we will refer by the

𝐵𝑒 𝑓 𝑜𝑟𝑒 model, to the model after recombination, referenced as the 𝐴 𝑓 𝑡𝑒𝑟 model. We display four

qualitative examples in Fig. 5.6 with colliding modalities in the 𝐵𝑒 𝑓 𝑜𝑟𝑒 model (in dashed orange) and

the solved modality (in full line orange) after recombination. For each model (𝐵𝑒 𝑓 𝑜𝑟𝑒-dashed or 𝐴 𝑓 𝑡𝑒𝑟-

full), the highlighted modality in orange is the best modality according to the 𝑆𝑀𝑅6 metric among the

6 available modalities. We also display in dashed grey the other 5 predicted 𝐵𝑒 𝑓 𝑜𝑟𝑒 modalities, and

highlight that the recombination model indeed selects modalities already available in the vanilla set and

reorders them so that non-colliding modalities are aligned together.

We also show more qualitative examples in Fig. 5.7, where we highlight the comparison in modal-

ity diversity between the 𝐵𝑒 𝑓 𝑜𝑟𝑒 model (in dashed lines) and the 𝐴 𝑓 𝑡𝑒𝑟 model (in full lines). While

the 𝐵𝑒 𝑓 𝑜𝑟𝑒 model tries to spread the modalities for all agents to minimize marginal miss-rate, the re-

combined model presents much less spread compared to the original model, maintaining a multimodal

behavior only in presence of very different possible agent intentions such as different possible exits or

turn choices. For most other agents, almost all modalities are located at the same position, that is, the

one deemed the most likely by the model. Thus, if the truly uncertain agents have to select the second or

third most likely modality, the other agents still have their own most likely modality

5.5 Conclusion

We have presented THOMAS, a recombination module that can be added after any trajectory prediction

module outputing multi-modal predictions. By design, THOMAS allows to generate scene-consistent

modalities across all agents by making the scene modalities select coherent agent modalities and re-

stricting the modality budget on the agents that truly need it. We show significant performance increase
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Figure 5.6: Qualitative examples of recombination model assembling collision-free modalities together
compared to initial colliding modalities. For each example we display the general context with high-
lighted agents and area of interest, then two zooms in on the agents, one displaying the initial best
modality before recombination in dashed orange and all the other available modalities in grey. The
second zooms shows the best modality after recombination in full line orange.

when adding the THOMAS module compared to the vanilla model and achieve state-of-the-art results

compared to already existing methods tackling scene-consistent predictions.
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Figure 5.7: Qualitative examples of recombination model selecting fewer but more pronounced and
impactful agent modalities compared to initial colliding modalities. For each example we display on
the left the vanilla model modalities with dashed lines, with the initial best modality in dashed orange
and all the other available modalities in grey. On the right we display the selected modalities after
recombination, where the model focuses on the most likely occurrence in most agents.
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CHAPTER 6. EXPANDING THE EVALUATION OF TRAJECTORY PREDICTION

While the pursuit of performance and the adaptability to high complexity problems are important,

both remain focused on very specific tasks, and very rarely is the relevancy of the evaluation process

questioned.

In this chapter, we now study the robustness and interpretability of trajectory prediction models.

We first conduct a cross-dataset analysis of generalizable performance, to observe which methods, but

also which datasets, perform best in new unseen environments. We then tackle the topic of uncertainty

estimation, how to calculate this uncertainty but also how to evaluate and use it in practice. Finally the

check the calibration of our heatmap models to assess its interpretability.

6.1 Cross-dataset Generalizability

As learned methods grow in performance and popularity [Liu et al., 2021a, Gomes and Wolf, 2022, Karle

et al., 2022] by either extending existing traditional methods [Jouaber et al., 2021] or replacing them

completely [Mercat, 2021], so does the dependency to the data coverage these models are trained on.

Such methods may encounter distributional shift due to changing geographical or weather conditions

[Malinin et al., 2021]. It becomes therefore crucial to study the adaptability and performance of these

methods across varying distributions.

Multiple trajectory prediction datasets [Zhan et al., 2019, Chang et al., 2019, Caesar et al., 2020,

Malinin et al., 2021] have been used separately to train and evaluate motion estimation models, but

few works actually study the performance of their models on more than one of these datasets at a time,

and even more importantly, no study has yet been done to evaluate the representative coverage and

generalization potential of the datasets across each other.

6.1.1 Related work

Recently, more reflection has been carried out on the ways of evaluating these trajectory prediction

methods. Some argue that motion estimation should be evaluated with regards to its downstream effect

on the planner [Ivanovic and Pavone, 2021b, Ivanovic and Pavone, 2021a, McAllister et al., 2022], while

others focus on their lack of generalization to new scenarii [Bahari et al., 2022]. Similar cross-datasets

studies have been conducted for fields related to autonomous driving such as human intention [Gesnouin

et al., 2022] or detection [Hasan et al., 2022].

6.1.2 Trajectory prediction methods

In order to be representative of the wide scope of existing trajectory prediction methods, we compare

two state-of-the-art baselines both representative of the different possibilities for output formulation, i.e.

scalar coordinates output or probability heatmap output.

SceneTransformer [Ngiam et al., 2021] is one of the most recent trajectory prediction model re-

gressing multiple scalar trajectories using a transformer architecture. In its encoding phase, it retains the

time dimension across all agents present in the scene, and applies factorized self-attention either across

agents or time, as well as cross-attention onto the map context. It uses modality one-hot embeddings

and a transformer decoder to predict multiple modalities, so that it can share the decoding weights of

the multiple futures that are trained using a Winner-Take-All loss as in most scalar output methods [Cui
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et al., 2019, Chai et al., 2019, Liang et al., 2020, Narayanan et al., 2021, Varadarajan et al., 2022]. We

reimplement a similar architecture with the same number of layers as in the original paper but with a

smaller hidden dimension D=128 to make it fit on a single GPU and be more comparable to our second

baseline in parameter size and training time.

GOHOME is part of a growing class of methods using occupancy grids [Kim et al., 2017, Park

et al., 2018, Hong et al., 2019, Kurbiel et al., 2020, Ridel et al., 2020, Mangalam et al., 2021, Gilles

et al., 2021b, Casas et al., 2021, Gu et al., 2021, Gilles et al., 2022, Schäfer et al., 2022, Mahjourian

et al., 2022]. The occupancy grid usually represents a probability distribution in the form of a heatmap

describing the possible future locations of the vehicle at the end of the prediction horizon 𝑇 . Given the

predicted heatmap, a set of final future positions is sampled. In a final step, for each sampled locations,

the full trajectory is regressed [Gilles et al., 2021a]. In order to sample the possible future locations from

the heatmap, usually a Non-Maximum Suppression (NMS) method is applied [Gu et al., 2021, Gilles

et al., 2021b, Schäfer et al., 2022]. This NMS requires a sampling radius parameter 𝑟 to determine how

far apart the sampled endpoints should be from each other.

We apply some slight modifications to the GOHOME architecture to adapt it to our case analysis.

First, since some datasets don’t provide connectivity information between lanes [Malinin et al., 2021],

we replace the graph convolutions with global attention, in a VectorNet-like manner as in [Gu et al.,

2021, Ngiam et al., 2021, Pustynnikov and Eremeev, 2021]. We also replace the lane-based heatmap

decoder with the hierarchical sparse grid decoder from [Gilles et al., 2022] for faster inference and once

again independence from the HD-Map connectivity information

6.1.3 Datasets and Metrics

We evaluate performance on the widely used trajectory datasets Argoverse [Chang et al., 2019], Inter-

action [Zhan et al., 2019], NuScenes [Caesar et al., 2020] and Shifts [Malinin et al., 2021], all focusing

on car trajectories. These benchmarks have slightly different initial settings as described in Tab. 6.1.

Namely, the history and prediction horizons are not always the same, and can be sampled at different

rates. For fair evaluation and transferability, we standardize these datasets to always use 1s of history

and predict 3s in the future. We also interpolate the trajectories to resample them at 10Hz each.

Table 6.1: Dataset settings

Dataset Argoverse Interaction NuScenes Shifts
History (s) 2 1 2 5
Prediction horizon (s) 3 3 6 5
Frequency (Hz) 10 10 2 5
Training size 200k 400k 30k 5M

In our analysis we consider the well established multimodal metrics minFDE𝑙 and MR𝑙 [Zhan et al.,

2019, Chang et al., 2019]. minFDE𝑙 represents the minimum final displacement error at time horizon 𝑇

over the 𝑙 top-ranked trajectories. MR𝑙 represents the percentage of samples in the dataset on which the

ground truth future position of the target agent at time horizon 𝑇 is farther than 2m from any of the 𝑙

top-ranked predicted trajectories.
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6.1.4 Cross-dataset evaluation

We analyze here the trajectory prediction performance of both models presented in section 6.1.2 when

they are trained on the training split of one dataset and tested on the validation splits of all datasets.

6.1.4.1 Training details

We trained each model for 50 epochs of 2000 iterations each, with a batch size of 64. The GOHOME

hyper-parameter 𝑟 related to the sampling radius has been optimized on the training-split of the training

dataset and kept unchanged for the test datasets. Few data augmentation schemes were employed to

optimize the generalizability performance. First, all models are trained with random rotations to prevent

overfitting on the current car heading measurement. Furthermore, we noticed that the Argoverse dataset

does not present any case where the target agent to be predicted has a speed lower than 1 m/s. Contrarily,

other datasets include vehicles to be predicted that stand still or with very low speed values for the

whole prediction horizon. For this reason, it has been necessary to augment the Argoverse dataset with

prediction samples related to vehicles present in the scenes that move slowly or are parked other than the

predefined target. Without this augmentation procedure, models trained on the plain Argoverse ends up

with poor generalization performance on other datasets.

6.1.4.2 Results

We report onto Fig. 6.1 the cross-dataset performance matrices for minFDE6 and MR6 for both prediction

models. The label on the rows indicates the dataset used for training while the label on the columns

represent the target test datasets. The numbers in the matrix corresponds to the performance measured

on the validation split of the corresponding target dataset. We use a correlation matrices visualization

with unified colormap for better highlighting of the comparison with good and poor performances, but

also provide the same tabular results for minFDE6 in Tab. 6.2.

As expected, the best performance are visible on the diagonals, since both models perform better

when tested on data coming from the same distribution as the training.

We observe that Argoverse training exhibits the smallest loss of performance when tested on other

datasets. We also observe that despite its relatively short size (only 30k samples), the training on

NuScenes also performs reasonably on other datasets, whereas when trained on Interaction, the mod-

els performs poorly on every other domain. We attribute the poor performance of Interaction to its

different data collection and processing, done with top-view images from drones instead of the usual

perception pipeline from the autonomous vehicle. Therefore Interaction is trained on an almost perfect

object detection and tracking, and does poorly on other datasets filled with detection inaccuracies and

tracking jumps caused by occlusions. Surprisingly, despite its superior sample size, training on Shifts

doesn’t provide better transferability performance compared Argoverse and NuScenes.

Data Augmentation on Argoverse We mentioned in Sec. 6.1.4.1 the need to include non-target

agents in the training data of Argoverse to correctly generalize to other datasets. We illustrate here this

distributional gap in Fig. 6.2, where we display the average speed of the target agent during the future

to be predicted. We can therefore observe that Argoverse has little to no agent that stay stationary, com-

pared to other datasets. This mostly comes from the sample selection in Argoverse [Chang et al., 2019],
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Figure 6.1: Prediction performance in a cross-datasets evaluation setting. The rows (left label) refer to
the TRAIN dataset, while the columns (bottom label) refer to the TEST dataset.

where "interesting" samples have been selected according to some hand-designed criteria. Understand-

ably, stationary cars were not deemed to have interesting trajectories and were therefore not selected.

However, in a real life application, parked cars need to be predicted as such, otherwise models trained on

exclusively non-stationary cars as in Argoverse will systematically predict stopped cars to start moving

again at a certain minimum speed. Since the Argoverse data also contains non-target surrounding agents

that were not subjected to this selection, we use the surrounding agents with sufficient historical data to

enrich the model training.

This leads to the performance gap observed in Fig. 6.3a, where the model trained strictly on Argov-

erse has way higher errors on the other datasets, and notably on the Shifts dataset which has a very high

proportion of stationary samples. However, when we include a random sampling of 30% of agents other

than the predefined target, the resulting speed distribution reported in Fig. 6.3b is much more represen-

tative of lower speed cases, and transfers much better onto the other datasets without losing performance

on Argoverse itself.

Ideal mixed training In order to assess ideal cross-dataset performance, for completeness we also

present the results that are obtained when training the models on all the available datasets at the same

time. To achieve this, each sample loaded during training is drawn randomly from one of the 4 datasets,
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Figure 6.2: Distribution of average speed between initial agent position and last future position. Shifts
reaches more than 40% samples of 0 m/s average speed, this bin is therefore out of scale for easier
cross-dataset comparison.

(a) Performance difference (b) Speed distribution after augmentation

Figure 6.3: Impact of incorporating non-target agents in Argoverse to demonstrate slow-moving behav-
iors

with equal probability. We report the results of this training across all datasets in Tab. 6.2, as well as the

performance of the individual dataset trainings from Fig. 6.1 for better comparison.

The resulting mixed trained model has very close to best performance on each of the dataset com-

pared to single dataset models evaluated on the same dataset. The mixed model sacrifices a bit of speci-

ficity but gains a lot of generalizability across all datasets. In some cases, training on all the datasets even

improves the best performance trained only on this dataset: SceneTransformer trained on all datasets per-

forms better on Shifts than SceneTransformer trained only on the Shifts dataset.

The main first conclusion we can draw from this cross-dataset performance is that it is not so much

the size of the data that matters, rather than its ability to faithfully represent real conditions.

When comparing the performance between the heatmap-based and the scalar-based models, we can

notice how the heatmap output provides the best MR on the training datasets (with the exception of

NuScenes) while scalar output provide the best minFDE. Regarding the transferability performance,

SceneTransformer present the smallest performance loss compared to GOHOME when tested on other

datasets.

Finally, such an evaluation allows us to have a first impression of the relative difficulty of each dataset.

The main conclusion seems to be that Argoverse dataset is the more difficult to predict, and Interaction

the simplest. Many interpretations can be submitted as to the reason for this difficulty difference, going

from the different type of intersection layout, to the amount of interactions in the recorded scenes and

the perception quality varying in-between datasets.

Noise distribution
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Table 6.2: Prediction performance minFDE6 in a mixed dataset training setting

Training Argoverse Interaction NuScenes Shifts
GOHOME Argoverse 1.21 1.11 1.00 0.81
GOHOME Interaction 32.40 0.36 5.81 6.09
GOHOME NuScenes 2.96 1.17 0.86 1.62
GOHOME Shifts 1.96 1.24 1.13 0.55
SceneTransformer Argoverse 1.21 1.04 0.97 0.76
SceneTransformer Interaction 13.60 0.42 2.37 1.97
SceneTransformer NuScenes 2.27 1.00 0.75 0.90
SceneTransformer Shifts 2.34 1.51 1.24 0.65
GOHOME Mixed 1.34 0.66 0.88 0.70
SceneTransformer Mixed 1.33 0.58 0.81 0.58

We hypothesize that one of the non-exhaustive reason for this difficulty reason comes from the per-

ception noise present in each dataset. In order to estimate perception noise in each dataset, we filter

each trajectory with a Kalman filter and report the maximum displacement between the raw trajectory

and the filtered one. We report the resulting noise distribution in Fig. 6.4 and notice that the Interaction

distribution is shifted towards lower noises than the other datasets, while Argoverse reaches higher noise

values. These differences may explain the poor performance of the Interaction-trained model on other

datasets, as well as the higher difficulty on the Argoverse dataset

Figure 6.4: Distribution of perception noise across each dataset

6.1.5 Unsuccessful trials

Following the noise observations made in Sec. 6.1.4.2, we tried to augment the training data on Interac-

tion with synthetic perception noise to bridge the gap to the other datasets. We were however not able

to gain any kind of significant performance this way. This failure may be due to the way we modelled

perception noise (independent Gaussian noise at every timestep) that could be inappropriate, or to the

fact that the performance gap is due to other factors other than input noise.

We also noticed a difference in speed distribution in Fig. 6.2 that reaches a lower upper limit (approx.

12.5 m/s) in Interaction compared to other datasets (although NuScenes also has a similarly limited

distribution), and tried global random scaling (multiplying all coordinates by a global factor between

0.75 and 1.25 as in [Ye et al., 2021]) to simulate higher speed, but this didn’t bring much improvement

either.

We hypothesize that the remaining performance gap when training on Interaction may be due to
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overfitting on the limited number of maps, as Interaction has a discrete set of relatively small intersection

maps compared to other dataset maps that scale closer to city sizes, but didn’t explore this hypothesis

further.
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6.2 Uncertainty estimation

In this section, we present a method to leverage the heatmap output formulation of models like GOHOME

in order to estimate how much the model is uncertain when performing a trajectory prediction. We first

present the formulation of the uncertainty estimation and in a second step we show how the uncertainty

can be utilized to improve prediction performance.

6.2.1 Evaluation of uncertainty prediction

We first define the framework within which we can evaluate the quality of our uncertainty prediction.

We will define here the different methods we will use to evaluate the uncertainty estimation, as this will

also enable us to define better the actual task and justify some design choices made.

6.2.1.1 Error correlation

Classification uncertainty is relatively straightforward to evaluate, through checking that for a given

confidence bin value, the amount of predictions being correct is close in percentage to the confidence

value, as illustrated in Fig. 6.5, ie the confidence (𝑐𝑜𝑛 𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 1− 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) is representative of

the expected failure percentage.

Figure 6.5: Reliability diagram from [Gesnouin, 2022]. For each 𝑥 confidence bin, the accuracy 𝑦 value
is the percentage of cases correct amongst cases within that confidence interval. The closer the diagram
is to the identity function, the better (here right is much better than left).

However in our case, regression uncertainty has no direct connection between uncertainty and per-

centage of failure, as opposed to classification uncertainty. The main goal of uncertainty estimation is to

provide an appraising of the prediction quality, so that complementary measures can be taken when the

uncertainty goes above a certain threshold. The intended evaluation should then check that higher error

cases also have higher uncertainty than lower error cases, effectively checking the ranking ability of the

uncertainty. [Lakshminarayanan et al., 2017, Malinin, 2019] therefore propose to look at error-retention

curves, which ranks predicted samples by uncertainty, and then replaces a fraction of the dataset with

ground truth instead of the prediction. The retained fraction of predicted samples is called retention

fraction. For this retention fraction, the error metric (eg minFDE or CNLL) can be measured, and a

curve called error-retention curve can then be drawn for every parsed value of this retention fraction, as
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illustrated in Fig. 6.6. This means that the curve point at 0% will be at 0 error (only ground truth) and

the point at 100% will be at the error usually measured on the dataset by the prediction method.

Figure 6.6: Error-retention curves from [Malinin et al., 2021]. For a given retention fraction, the selected
wADE metric is calculated on the predicted set by replacing the higher uncertainty values with the
ground truth. The worst case uncertainty prediction (random) and the best optimal case (perfect ranking)
are illustrated in blue and green respectively.

As a result, the lower the curve the better it is. The Area Under the Curve (AUC) is therefore used as

an aggregated metric to characterize the global estimation performance.

For uncertainty evaluation in this framework, we will use the dataset Shifts [Malinin et al., 2021]

designed specifically for that purpose and for the analysis of distributional shift between training and

testing data, where uncertainty can be used to detect these shifts and take appropriate counter-measures.

Shifts uses R-AUCcCNLL as their main scoring metric, which is the Area Under the Retention Curve of

the corrected Negative Log-Likelihood error. The CNLL error is defined as:

𝐶𝑁𝐿𝐿 = − log(
∑︁
𝑘

𝑤𝑘 exp(−∥𝑝𝑘 − 𝑝𝑔𝑡 ∥2)) (6.1)

Shifts [Malinin et al., 2021] uses this cNLL metrics as they argue it to be more suited to multimodal

predictions than wADE𝑘 which suffers from mode collapse as its optimal solution when hesitating be-

tween two equally possible modes where the metric minimum is reached by averaging the two possble

modes, while cNLL optimal solution consists in two separate modes as expected.

Another more qualitative analysis of uncertainty correlation with error correlation can be to simply

display the plot of error with regard to uncertainty, which can help identifying correlation and highlight-

ing domains where the uncertainty stops being relevant, as we will illustrate later in Fig. 6.10.

6.2.1.2 Error improvement

While providing a direct analysis of the performance of our uncertainty prediction, the correlation de-

scribed in the above section doesn’t provide any suggestions as to how the uncertainty should actually
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be used in practice, namely in order to improve the prediction. In the next sections, after detailing our

uncertainty estimation method, we will propose in Sec. 6.2.3 an approach for improving our trajectory

prediction with this uncertainty, which will enable us to simply evaluate in Sec. 6.2.4.2 our uncertainty

performance through the final performance improvement it brings to the full motion forecasting pipeline.

6.2.2 Uncertainty formulation

As argued in Sec. 6.2.1.1, our goal is to design a good error estimator. We formalize the predicted

heatmap 𝐻 (𝑝), where 𝐻 is the function that for the pixel/position 𝑝 returns the predicted probability

value of the agent being at this position in the future. Given an error function E, that for a prediction

𝑝𝑝𝑟𝑒𝑑 and a ground truth 𝑝𝑔𝑡 returns the error E(𝑝𝑝𝑟𝑒𝑑 , 𝑝𝑔𝑡 ), and the aforementioned prediction 𝑝𝑝𝑟𝑒𝑑 ,

we can then compute the expected error value:

E(E) =
∑︁
𝑝

𝐻 (𝑝)E(𝑝𝑝𝑟𝑒𝑑 , 𝑝) (6.2)

The whole process is illustrated in Fig. 6.7. This can then also apply to multimodal predictions 𝑝𝑘
𝑝𝑟𝑒𝑑

with adapted multimodal metrics E.

Heatmap estimation Target Sampling

Possible targets 𝑝𝑘Heatmap 𝐻(𝑝)

Uncertainty Estimation

Expected Error

Figure 6.7: Uncertainty estimation from heatmap using expected error estimation

Given the future probability heatmap, we are therefore able to compute the expected values of any

desired metric according to the probability distribution from the heatmap. We study here a few possible

expected metrics we could compute to estimate the uncertainty of a prediction.

Variance As a general rule, the more spread the predicted heatmap will be, and the higher the cor-

responding uncertainty should be. Therefore the most straightforward metric to evaluate the uncertainty
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would be the variance 𝑉 of this heatmap:

𝐸 =
∑︁
𝑝

𝐻 (𝑝)𝑝

𝑉 =
∑︁
𝑝

𝐻 (𝑝)∥𝑝−𝐸 ∥2
(6.3)

where we iterate over the positions 𝑝 of the heatmap, with the probability heatmap value 𝐻 (𝑝) for a given

position. Despite being a bit outlier-sensitive due to the square distance, and not taking multi-modality

nor the actual prediction into account, this metric gives already a remarkably good and simple proxy for

uncertainty, and has the advantage of not depending on the sampling result, which we will use later.

Corrected negative log-likelihood (CNLL) Another intuitive metric to estimate would be the CNLL

itself, since it is the actual metric used for evaluation in Shifts [Malinin et al., 2021].

𝐶𝑁𝐿𝐿 = − log(
∑︁
𝑘

𝑤𝑘 exp(−∥𝑝𝑘 − 𝑝𝑔𝑡 ∥2))

E(𝐶𝑁𝐿𝐿) = −
∑︁
𝑝

𝐻 (𝑝) log(
∑︁
𝑘

𝑤𝑘 exp(−∥𝑝𝑘 − 𝑝∥2))
(6.4)

Note that we only evaluate it on the last trajectory point at T=5s instead of the full trajectory, as we

approximate that the error on the full trajectory is proportional to the error at the last point. However, if

the variance was already a bit outlier sensitive, CNLL is extremely sensitive, as it applies an exponential

on the square distance, before multiplying by the probability and applying a log function.

A bit more insight into the CNLL metric Let’s consider a set of sampled endpoints 𝑝𝑘 with their

corresponding modality probabilities 𝑤𝑘 . Assuming that the endpoints were sampled with a radius 𝑅 of

2m, the closest modality 𝑘𝑚𝑖𝑛 to the ground truth would be about 2m closer than the other modalities at

minimum. As a consequence, after exponential inside the CNLL metric, the modalities other than 𝑘𝑚𝑖𝑛

would be a coefficient 𝑒−4 at least smaller than 𝑘𝑚𝑖𝑛, making them non-significant. Therefore the CNLL

can be approximated as:

𝐶𝑁𝐿𝐿 ≈∥𝑝𝑘𝑚𝑖𝑛
− 𝑝𝑔𝑡 ∥2− log(𝑤𝑘𝑚𝑖𝑛

))

which will already be a bit less outlier-sensitive. Since ∥𝑝𝑘𝑚𝑖𝑛
− 𝑝∥2 and ∥𝑝𝑘𝑚𝑖𝑛

− 𝑝∥ share the same

monotonicity, this motivates our next expected metric.

minFDE𝑘 is a more simple and robust estimator than its square equivalent, and matches well will

trajectory prediction metrics used in traditional benchmarks:

E(𝑚𝑖𝑛𝐹𝐷𝐸𝑘) ≈
∑︁
𝑝

𝐻 (𝑝)min
𝑘
{∥𝑝𝑘 − 𝑝∥} (6.5)

The result is a very simple and robust expected metric that gives a very good uncertainty estimation.

The proposed uncertainty formulation is based on the fact that prediction methods designed to pro-

duce an heatmap provide a natural intrinsic uncertainty estimator in the spread of their output. We use

the variance of the predicted spatial probability distribution as an indicator of the model uncertainty𝑈:

𝑈 =
∑︁
𝑝

𝐻 (𝑝)∥𝑝−𝐸 ∥2 with 𝐸 =
∑︁
𝑝

𝐻 (𝑝)𝑝 (6.6)
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where we iterate over the positions 𝑝 of the heatmap and we indicate with 𝐻 (𝑝) the probability value

for the given position. 𝐸 corresponds to the expected value of the probability distribution described by

the heatmap. With this formulation, we claim that the heatmap provides for free an unconstrained and

non-parametric measure of uncertainty without the need of adding and training a model part specific to

uncertainty prediction as in [Pustynnikov and Eremeev, 2021] and [Postnikov et al., 2021].

6.2.3 Controlling prediction diversity with uncertainty

GOHOME outputs a heatmap estimating the probability distribution of the position of the target agent,

onto which we apply a Non-maximum Suppression (NMS) method to sample the desired number of

endpoint modalities. This NMS requires a sampling radius parameter 𝑟 to determine how far apart the

sampled endpoints should be from each other. We illustrate in Fig. 6.8 the effect of this radius on the

sampling.

Figure 6.8: Left column: High uncertainty heatmap. Right column: Low uncertainty heatmap. Top
line: high sampling radius. Bottom line: low sampling radius. As seen in the bottom left, using a low
radius for a very spread heatmap leads to uncovered areas that may account for missed predictions. On
the other hand, setting a high radius on a very focused heatmap spreads the sampled endpoints more than
necessary and may generate a higher error if the ground truth is in-between two sampled points.

As seen in the Fig. 6.8 above, given a fixed number of future modalities, the distance between these

future points should be adapted with regards to how spread the heatmap is, which correlates with the

uncertainty of the model. We demonstrate this correlation further in Fig. 6.12, where we plot for each

dataset, for the model trained on this dataset, the average optimal radius (according to the minFDE6

metric) for uncertainty values grouped into integer bins.

We leverage the presented uncertainty estimation to control the diversity of the predicted future loca-

tions at the prediction horizon 𝑇 . Intuitively, when the network is more uncertain, in order to minimize
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the prediction error it is required to increase the diversity of the predictions to cover a wider span of

possibilities. In practice we control this behavior, by adapting the sampling radius 𝑟 presented in section

4.3.1.1 to adjust the diversity of the sampled locations to the spread of the heatmap. This behavior is

depicted in Fig. 6.9 where a bigger sampling radius is employed on the left example to cope with a more

uncertain prediction testified by the bigger spread in the heatmap.

Figure 6.9: Endpoint sampling with different radii adapted to the uncertainty of the model

This method also enables us to illustrate the uncertainty evaluation approach hinted at in Sec. 6.2.1.2,

where the uncertainty quality can be tested by recording the performance improvement it brings.

6.2.4 Results

6.2.4.1 Uncertainty as prediction error estimator

To motivate our uncertainty definition, we first show how the uncertainty estimated through Equation

6.6 is correlated with the prediction error that the model ends up making. We start these experiments

using only the Variance proxy from Eq. 6.3 for simplicity. Figure 6.10 shows the average prediction

error minFDE1 of the GOHOME model for uncertainty values grouped into integer bins. In the case

of GOHOME, minFDE1 represents the error made by a single prediction on the most probable location

highlighted by the heatmap. The prediction error is calculated on the validation split of each dataset in

consideration.

We can clearly see a strong correlation between uncertainty and prediction error testifying that

heatmap based methods intrinsically carry a notion of their performance when making a prediction in-

ference. It is interesting to notice how a similar trend is maintained even when the analysis is done

cross-dataset, i.e. when the model is evaluated on a dataset different from the training dataset.

As we use the same 𝑥 scale for every cross-dataset combination, we can observe quite various uncer-

tainty distribution from one dataset to another.

A more precise comparison is done in Tab. 6.3, where we compare the R-AUC from the error-

retention curves performance between the 3 uncertainty proxys defined in Sec. 6.2.2.

86



CHAPTER 6. EXPANDING THE EVALUATION OF TRAJECTORY PREDICTION

0

5

10
Ar

go
ve

rs
e

Argoverse Interaction NuScenes Shifts

0

50

In
te

ra
ct

io
n

0

5

10

Nu
Sc

en
es

0 100
0

5

10

Sh
ift

s

0 100 0 100 0 100
Uncertanty [-]

Pr
ed

ict
io

n 
Er

ro
r [

m
]

Figure 6.10: Analysis of correlation between uncertainty and prediction error in a cross-dataset setting.
Line: dataset onto which the model has been trained. Column: dataset onto which the model has been
tested.

Table 6.3: Uncertainty estimation with different expected metrics

Variance CNLL minFDE5
R-AUC CNLL 2.31 2.38 2.20

The results that 𝑚𝑖𝑛𝐹𝐷𝐸5 provides the best proxy for the estimated uncertainty according to the

error-retention of cNLL, despite being a different metric, as it actually performs better than the actual

cNLL proxy, which we attribute to 𝑚𝑖𝑛𝐹𝐷𝐸5 being less outlier-sensitive for a proxy that has to be

computed on every possible pixel, even ones very unlikely and afar from the predicted modalities. In-

terestingly, while very simple in definition and computation, the variance proxy also does very well,

out-performing the CNLL proxy. Since the variance proxy presents the advantage of not requiring a

sampled multi-modal prediction for its calculation, and not being biased towards a specific metric, we

will use it in the following experiments.

6.2.4.2 Uncertainty enhanced performance

In this section we show the benefit of using the presented uncertainty to adapt the diversity of the pre-

dicted locations through the sampling radius 𝑟 . First, we experimentally show that the optimal sampling

radius 𝑟𝑜𝑝𝑡 that minimize the prediction error follows a linear trend with respect the estimated uncer-

tainty. Figure 6.11 depicts the average optimal sampling radius calculated over the Argoverse dataset

versus the estimated uncertainty grouped in bins of integer values. Note that this is different from the
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previous plots in Fig. 6.10, where the 𝑦 axis was the measured error, while here in Fig 6.11 we sampled

multiple sets of multimodal predictions for each case, using sampling radii in a grid from 0.6 to 2.4 with

0.1 increments. Then for each uncertainty bin, we report average of the radius with optimal performance

(minFDE6) for each case. Indeed, since our goal is to show that the uncertainty can be used to adapt

the sampling radius for better performance, our aim is to show an actual linear relationship between this

radius and the uncertainty, that we could then use during inference.
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Figure 6.11: Average optimal radius with regard to uncertainty. We bin uncertainty values per equal
integer values, and average the optimal radius for each of the cases in the bin. We show in orange the
plot resulting from a linear regression

This plot justifies well our motivation to infer an adaptive sampling radius from uncertainty, as it

shows an almost linear correlation between uncertainty and the best sampling radius for a fiven prediction

case.

Fig. 6.12 highlights that this intuition for adaptive sampling is present across many datasets, for most

of the uncertainty values range. We therefore apply ordinary least squares to find regression coefficients

between our estimated uncertainty and the optimal radius for a given case. The resulting curves are

plotted in Fig. 6.12 and we report the resulting regression coefficients in Tab. 6.4, as well as the optimal

fixed radii without adaptation for each dataset.

Table 6.4: Optimal radii and linear regression parameters per dataset

Dataset Argoverse Interaction NuScenes Shifts
Radius 1.5 0.6 1.1 1.5
Affine 0.020x+0.78 0.026x+0.96 0.014+1.32 0.022x+0.91
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Figure 6.12: Average optimal radius with regard to uncertainty. We bin uncertainty values per equal
integer values, and average the optimal radius for each of the cases in the bin. We plot in orange the
linear curve obtained from applying least square regression on the points.

Results of performance improvements

Furthermore, we report cross-datasets results using an adaptive sampling radius to adjust the pre-

diction diversity depending on uncertainty. Left image in Fig. 6.13 shows the minFDE6 cross-dataset

performance when the model is trained on the dataset denoted in the row label and evaluated on the

datasets denoted by the column label. In each one of this experiment the radius is adapted following

the linear model calibrated on the dataset used for training and kept unchanged for evaluation on target

datasets. We can see in the middle image of 6.13 how the adaptive sampling strategy is significantly

better in almost all cases compared to the constant radius sampling presented in Fig. 6.1.

We benchmark our method of computing the prediction uncertainty by comparing it to a learned

variance 𝑉 of a Gaussian distribution as in [Kendall and Cipolla, 2017, Meyer and Thakurdesai, 2020,

Ngiam et al., 2021, Moreau et al., 2022]. As in [Kendall and Cipolla, 2017] we directly predict 𝑠 = log(𝑉)
for numerical stability with the following loss:

𝐿 (𝑠) = 𝐸 · 𝑒𝑥𝑝(−𝑠) + 𝑠 with 𝐸 = 𝑚𝑖𝑛𝐹𝐷𝐸6 (6.7)

We report on the right image of Fig. 6.13, the improvement in minFDE6 when using our uncertainty
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Figure 6.13: On the Left: Absolute cross-dataset performance when using a sampling strategy based
on uncertainty On the Middle: Relative improvement in cross-dataset minFDE6 when using uncertainty
compared to fixed radius sampling On the right: Relative improvement in cross-dataset minFDE6 when
using our heatmap-based uncertainty compared to a learned uncertainty baseline

definition of Equation 6.6 compared with the learned baseline of Equation 6.7 to adapt the sampling

radius. While it yields similar results on the same train-test diagonal, the learned uncertainty tends to

overfit on its training data and doesn’t perform as well on out-of-distribution data.

Qualitative analysis We display qualitative prediction examples in Fig. A.2. Each line is an example

sample of one dataset, and each column the prediction result of the model trained on the corresponding

dataset. We also report uncertainty numbers for each sample to observe how uncertainty matches the

heatmap spread and the resulting adapted endpoint sampling.
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Figure 6.14: Qualitative results across datasets. Sampled endpoints are displayed in blue and ground
truth in magenta. Heatmap variance is displayed on top of each example
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6.3 Heatmap Calibration

Other than post-sampling metrics and uncertainty estimation, another path to evaluate the quality of

a predicted heatmap can be to check its calibration. Our heatmap prediction can be interpreted as a

classification task, where each pixel is a possible class. We can then observe our model calibration on

this classification task. We follow the same approach as in [Naeini et al., 2015, Guo et al., 2017, Heo

et al., 2018, Ovadia et al., 2019, Gesnouin et al., 2022] by plotting reliability diagrams. However one

difference compared to these usually evaluated classification tasks is their focus on a relatively limited

number of classes (they usually apply to binary classification, ie 2 classes [Naeini et al., 2015, Heo et al.,

2018, Gesnouin et al., 2022], up to rarely 100 or 1000 [Guo et al., 2017, Ovadia et al., 2019]) compared to

our 256×256 = 65536 classes, which remains a few orders of magnitude above, albeit with very similar

classes, most of which being easy to eliminate (outside of drivable area locations, opposite lanes, etc...).

6.3.1 Reliability diagram

Reliability diagrams compare model confidence against measured accuracy. In our case confidence is the

given probability 𝑝𝑖 of a pixel 𝑖, and accuracy defined by the fraction of cases where the ground truth is

actually inside the pixel. As a reminder, a pixel is defined as a 0.5×0.5𝑚2 cell in the 𝑥𝑦 plane. We divide

possible confidence values into bins 𝐵𝑚 and compute the average accuracy acc (𝐵𝑚) within the bin:

acc (𝐵𝑚) =
1
|𝐵𝑚 |

∑︁
𝑖∈𝐵𝑚

1 ( 𝑦̂𝑖 = 𝑦𝑖) (6.8)

We then plot the histogram of accuracy values acc (𝐵𝑚) for each bin. Ideally, the diagram should be

close to the identity line where the average accuracy is equal to the average confidence within each bin.

We first display such diagram in Fig. 6.15 the reliability diagram for a THOMAS heatmap with sigmoid

activation, as is during training.

Figure 6.15: Reliability diagram of raw predicted heatmap with simple sigmoid activation

In this diagram and the following ones, we adapt the bin size to have a sufficient amount of sample per
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bin so that the average computed accuracy is significant enough. Notably, this model is trained without

normalization on the outputed heatmap, ie the sum of probabilities is not necessarily equal to 1, because

of the huge imbalance of label distribution (only one positive pixel and all the other are negatives).

Additionally, since this model is trained with hard negative mining by selecting and back-propagating

on only the top-k predicted pixels (only the top k = 8192 predicted locations are estimated and therefore

back-propagated), we can observe on the diagram that the model is over-confident on the low probability

values, as the measured accuracy is lower than the predicted confidence. This can be explained by the

fact that the model is only trained on a fraction of the negative samples, which are the most likely to be

positive, and therefore doesn’t have the additional regularization of multiple orders of magnitude more

negative pixels in the loss. However, for high confidence pixels, we observe that the measured accuracy

is actually higher than the predicted confidence, which means our model does a good job of increasing

its confidence on the most likely positions.

6.3.2 Output normalization

Since the final model output should match a probability distribution that sums up to 1, we normalize the

output after training by switching the activation from a sigmoid to a softmax on the final layer:

sigmoid(𝑥𝑝) =
exp(𝑥𝑝)

1+ exp(𝑥𝑝)

softmax(𝑥) =
exp(𝑥𝑝)∑
𝑝′ exp(𝑥𝑝′)

(6.9)

The observed distribution then changes when we actually normalize the predicted heatmap distribu-

tion, and gives a different reliability diagram displayed in Fig. 6.16.

Figure 6.16: Reliability diagram of the model heatmap after softmax normalization

We notice that our model calibration is now shifted above the identity line, which means that predic-

tions have accuracies usually above their predicted probability value. However we notice again a good
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global trend where the actual accuracy increases very linearly with the predicted probability.

6.3.3 Heatmap recalibration

We can confirm this correlated trend by applying re-calibration, as explored in [Guo et al., 2017], through

a simple temperature re-scaling method: we add a temperature coefficient 𝑇 inside the softmax to control

the contrast between high and low predicted confidence values. A temperature below 1 would make the

model more confident, which is our aim in this case, by spreading high confidence values further apart

from the low confidence cases.

softmax(𝑥) =
exp(𝑥𝑝/𝑇)∑
𝑝′ exp(𝑥𝑝′/𝑇)

(6.10)

We find a temperature of 𝑇 = 0.01 to yield the best reliability on our case, as illustrated in Fig. 6.17.

We observe that the model remains slightly under-confident in low probability values, but still correlates

quite well with its effective accuracy.

Figure 6.17: Reliability diagram after temperature recalibration on the softmax activation

We can then conclude that, while the initial heatmap output of our model is not perfectly calibrated,

overconfident on low probability values and under-confident on high probability values due to its hard-

mining training and un-normalized output, it can easily be re-normalized to a pretty well calibrated

representation by simply adapting its activation for inference through a softmax with a suite temperature.
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6.4 Conclusion and Limitations

In this work we have tried to expand the traditional benchmarks of trajectory prediction by assessing the

first cross-dataset analysis in the field of vehicle trajectory prediction for autonomous driving. We have

analyzed the cross-dataset transferability performance of two state-of-the-art trajectory prediction mod-

els. We have also proposed a new way to estimate uncertainty for heatmap-based trajectory prediction

methods that doesn’t require any further training and works better than classically learned uncertainties.

We showed how uncertainty can be used to boost the trajectory prediction performance of heatmap-based

methods in a cross-dataset setting. Finally, we have checked the quality of our predicted heatmaps by

verifying their calibration and adjusting in a simple and efficient way.

Limitations This analysis has been limited to car trajectory prediction, a similar analysis across

different type of traffic participants such as bicycles and pedestrians would also be of interest. Further-

more, while this study demonstrates that the use of heatmap variance for uncertainty estimation and

sampling radius adaptation brings a significant performance improvement to heatmap output methods,

the comparison to scalar outputs methods like SceneTransformer shows a less clear trend. The heatmap

based method enriched with uncertainty has similar transferability performance to SceneTransformer.

SceneTransformer is trained end-to-end to directly predict a set of multimodal coordinates and some-

how internally learns to adapt the diversity of the predictions without explicitly outputting an uncertainty

value. On the other hand we strongly believe that having an explicit uncertainty output can be useful also

for other downstream tasks in the autonomous driving stack.
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7.1 Summary of contributions and limitations

Overall, this thesis focused on three main research directions:

• Design and Comparison of Fast Heatmap-based trajectory prediction models Focusing on

the multimodal aspect of the forecast, we proposed a heatmap representation quite different from

most existing scalar output methods. Starting from the most simple convolution-based architecture

HOME, we observed unachieved coverage performance compared to the best existing methods,

but noticed inference speed limitations. We therefore move towards a fully vectorized graph-based

architecture GOHOME that retained the same performance gains but attained way faster training

and prediction times. We then simplified this fully-vectorized heatmap generation by leveraging

cross-attention in THOMAS, which enabled us to incorporate a hierarchical efficient heatmap

decoder unlocking further speed gains.

• Scene-level multi-agent consistent prediction Starting from the observation that it is much easier

to train an independent trajectory predictor than a joint consistent one for all agents, and from

the limitation that a heatmap is inherently agent-specific, we designed a second-step module in

THOMAS, able to take an independent multimodal prediction as input and to recombine it into a

coherent scene prediction. Such a module can be trained on the output of any marginally trained

prediction model to provide a joint forecast.

• Further exploring trajectory prediction evaluation After reaching top spots on multiple mo-

tion forecasting benchmarks, one can wonder if incremental improvements of a few centimeters

matter anymore. Instead, we shift towards the actual application of a prediction module. First we

study how stable the prediction performance is in places and situations it has never seen before,

by training it on one dataset and evaluating it on another. We observe that data augmentation is

sometimes necessary to reach satisfactory cross-dataset performance, but that the main factors re-

main data quality and diversity, and often cannot be fixed by simple data augmentation techniques.

Interestingly, we observe that dataset size does not necessarily correlate with model transferable

performance, but that the most important factor is the difficulty of the dataset. The harder the train-

ing dataset (lower validation performance when trained and tested on the same dataset), the more

generalizable to other testing datasets. We also investigate the growing importance of providing

uncertainty estimates along with our prediction, and propose a way of estimating this uncertainty

directly from heatmap. While most uncertainty works are usually limited to observing the uncer-

tainty ability to correlate with error, we incorporate it into our multimodal sampling to improve

final performance.

We also conducted real world experiments by implementing our HOME algorithm on a prototype

to train it on home-collected data and run real-time on a few kilometers of open-roads in Shanghai (the

prediction was however not used to plan and control the car, it was mostly for visualization, evaluation

and demonstration purposes).
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7.2 Perspectives and Future Work

While an essential part of the autonomous pipeline, the prediction module cannot be simply tackled as a

single independent entity. It is inherently reliant on the inputs that are provided to it, and its design must

follow the constraints brought by the planning algorithm that will use its prediction.

Strengthening the connection between perception and prediction As human drivers, we use mul-

tiple cues that do not exist in most commonly used trajectory datasets. A striking example are turn

signals, which are our prime information to know if a car is going to turn, but are not provided in many

datasets. Some works [Casas et al., 2020, Cui et al., 2021] try to bypass the limitations of having to list

every required feature in a tabular way by directly using perception features (eg. a direct back-propagated

layer input to the perception network). At the same time, interpretability should exist as to what infor-

mation is used by prediction in order to not overfit or generate unwanted biases. This perception data can

also be flawed, and could therefore be provided with caveats to the prediction model, such as multiple

hypothesis [Weng et al., 2021] or uncertainty estimates [Ivanovic et al., 2022c]

Leveraging more self or unsupervised training methods for improved performance and/or
physics feasibility The task we usually perform on trajectories data is to predict the future using the

past. However the trajectory data is way richer than this simple application. Why wouldn’t neural net-

works gain as much understanding of physics or driving behaviors by reconstructing the past using the

future, or re-interpolating large sections of trajectories only knowing their first and last point extremities

? Modern transformer architectures [Vaswani et al., 2017, Dosovitskiy et al., 2021] can indifferently

reconstruct any piece of their inputs by knowing their position in the sequence/image, and masked auto-

encoders have demonstrated great pre-training improvements on both NLP and image tasks [Radford

et al., 2018, He et al., 2022]. These masked auto-encoders pretraining could be adapted for trajec-

tory prediction, by adding further motion specific constraints, such as constraining the prediction to be

kinematically feasible/differentiable with an added loss to denoise the raw trajectory data, or using the

existing road map to generate artificial trajectories [Azevedo et al., 2022].

Not limiting the prediction to already observed entities Predicting where the cars we see might go

is one thing, but as drivers we also identify dangerous and unseen intersections, and try to anticipate if

an unseen car could pop up from some blind spot or transversal street. A good example of this behavior

is when we slow down for intersections even if we don’t see immediate other cars on it. Translated into a

prediction task, we could train a model to predict the spawning of new road agents from occluded areas,

by identifying when tracked vehicles are first seen (first data point on their trajectory). Since we cannot

provide agent-specific representations for this task, a probabilistic heatmap would be very well suited to

predict the joint spawning probability of a new agent on each 𝑥𝑦 pixel in the top-view plan.

Evaluating prediction through planning A plethora of metrics are available on each trajectory

benchmark: minFDE1, minFDE6, MissRate1, MissRate6, ... However, we do not really know which of

these metrics, if any, is the most relevant for the use that the planning step will make of it. An extensive

evaluation of a prediction system could be done by choosing or designing a planning method, and eval-

uating the final driving performance, as in collision rate, comfort, miles covered without intervention or

incident, for a given prediction model. [Ivanovic and Pavone, 2021a, McAllister et al., 2022] already

take into account planning to either propose new metrics or identify important agents for planning, but

they remain quite general and don’t investigate every aspect of prediction performance.This would also

99



CHAPTER 7. CONCLUSION

enable further analysis to know the actual importance of multimodality, how many modes are really

needed, which metric is the most relevant (precision/minFDE or coverage/MissRate), and if consistent

scene-level predictions are necessary.
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8.1 Summary of contributions and limitations

Design and Comparison of Fast Heatmap-based trajectory prediction models Focusing on the mul-

timodal aspect of the forecast, we proposed a heatmap representation quite different from most existing

scalar output methods. Starting from the most simple convolution-based architecture HOME, we ob-

served unachieved coverage performance compared to the best existing methods, but noticed inference

speed limitations. We therefore move towards a fully vectorized graph-based architecture GOHOME

that retained the same performance gains but attained way faster training and prediction times. We then

simplified this fully-vectorized heatmap generation by leveraging cross-attention in THOMAS, which

enabled us to incorporate a hierarchical efficient heatmap decoder unlocking further speed gains.

Scene-level multi-agent consistent prediction Starting from the obseration that it is much easier to

train an independent trajectory predictor than a joint consistent one for all agents, and from the limitation

that a heatmap is inherently agent-specific, we designed a second-step module in THOMAS, able to take

any independent multimodal prediction as input and to recombine it into a coherent scene prediction.

8.2 Perspectives and Future Work
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A Detailed architecture of GOHOME

Figure A.1: Detailed illustration of the GOHOME model architecture
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B Additional qualitative results for GOHOME

Figure A.2: Additional qualitative cases, with both heatmap and lane classification (in the small frame)
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C Detailed architecture of THOMAS

TrajEncoder

1D Conv, 64

UGRU, 64

Agent input A x 4

Agent features A x 64

Lanelet input L x 3

LaneEncoder

1D Conv, 64

UGRU, 64

Lanelet features L x 64

GraphEncoder1

GraphConv, 64

GraphConv, 64

GraphConv, 64

GraphConv, 64

GraphEncoder2

GraphConv, 32

GraphConv, 32

GraphConv, 32

GraphConv, 32

Lanes2Agents

Attention, 64

Linear, 64

Agents2Agents

Attention, 64

Linear, 64

Map-aware Agent features A x 64

Ego2Lanes

Concatenate, 128

Linear, 64

Lane scoring

Linear, 1

Sigmoid

Lanelet scores A x L x 1

Agent graphs A x L x 64

Hierarchical decoder

Probability heatmap (H, W, 1)

Low res grid G0 x 2

Interaction-aware Agent features A x 64

Step Grid decoder

Probability scores (G, 1)

Low res grid G x 2

Linear, 32

Concatenate, 96

Linear, 32

Attention, 32

Linear, 32

Attention, 32

Linear, 1, Sigmoid

Step Grid decoder 1

Top N1

Upsample

Mid res grid G1 x 2

Step Grid decoder 2

Top N2

Upsample

High res grid G2 x 2

Step Grid decoder 3

Final res grid (G2 , 1)

Sparse2Dense

Agent features

Graph features

Top K lanelets A x K x 32

Figure A.3: Detailed illustration of the THOMAS heatmap generator model

105



APPENDIX A. APPENDIX

106



Appendix B
Résumé en français

Introduction Cette partie présente le contexte de la prédiction de trajectoire pour voitures autonomes,

ses problématiques et les principales solutions proposées dans cette thèse.

Méthodes de prédiction de trajectoire non basées sur l’apprentissage machine Dans ce chapitre,

nous présentons les méthodes traditionnellement utilisées pour la prédiction de trajectoire en excluant

l’apprentissage machine. Nous présentons les modèles cinématiques utilisant la physique du mouvement

et le temps, les modèles stochastiques modélisant les possibles phénomènes aléatoires dans les trajec-

toires futures, les manières de représenter les interactions entre voitures et des méthodes hiérarchiques

pour décomposer les trajectoires en plusieurs couches décisionnelles.

Méthodes d’apprentissage pour la prédiction de trajectoire Dans ce chapitre, nous analysons les

méthodes existantes d’apprentissage pour les différents aspects de la prédiction de trajectoire. Nous

détaillons les différentes architectures pour le traitement de signal temporal et la modélisation des inter-

actions entre agents. Ensuite, nous étudions les manières d’intégrer le contexte routier autour du véhicule

autonome, en ajoutant la carte sous la forme d’une image, d’un graph ou d’un ensemble de points ou de

lignes. Enfin, nous observons les différentes manières de représenter une future trajectoire en sortie d’un

réseau de neurones, et notons leurs limitations actuelles.

Prédiction de trajectoire par des cartes de probabilité Dans ce chapitre, nous présentons notre pre-

mière principale contribution, qui consiste à représenter une future trajectoire non pas par une séquence

de coordonnées, mais par une carte de probabilité pour un point futur à un horizon de temps donné. Nous

expliquons ensuite comment une telle carte de probabilité peut être décodée en une trajectoire. Nous dé-

taillons les différentes manières de générer ce genre de carte de probabilité, que ce soit par des réseaux de

convolutions (HOME) ou par des graphes de segments de route (GOHOME). Enfin, nous expliquons les

avantages de cette nouvelle représentation, notamment vis à vis de leur capacité à représenter plusieurs

futures en même temps.

Prédiction cohérente de plusieurs agents Dans ce chapitre, nous commençons par expliquer les chal-

lenges de la prédiction de trajectoire de plusieurs agents à la fois, notamment pour leurs interactions.
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Nous proposons une méthode adaptée aux cartes de probabilité présentées dans le chapitre précédent,

pour transformer des prédictions marginales indépendantes pour chaque agent en une seule prédiction

jointe et cohérente. Nous détaillons les expériences conduites pour prouver les performances de cette

approche.

Repenser l’évaluation des modèles de prédiction de trajectoire Dans ce chapitre, nous posons le

problème de la capacité des modèles de trajectoire appris à généraliser sur de nouvelles donnes. Nous

menons une analyse systématique sur quatre datasets et comparons les capacités et limitations de dif-

férents modèles. Nous proposons ensuite une nouvelle manière d’estimer l’incertitude des cartes de

probabilités et de l’utiliser pour prédire les données hors distribution et améliorer les performances du

modèle.

Conclusion

Nous résumons cette thèse et identifions les orientations futures potentielles de notre recherche.
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MOTS CLÉS

Prediction de Trajectoire, Apprentissage automatique, Voiture autonome

RÉSUMÉ

Les récentes avancées dans les méthodes d’apprentissage automatique ont permis des progrès considérables dans le
domaine de la conduite autonome. L’attention se porte donc désormais sur les étapes suivantes du pipeline de la conduite
autonome, où la prédiction joue un rôle important. Une fois que les agents routiers environnants ont été détectés, suivis
et filtrés, le système de conduite doit prédire leur trajectoire future et planifier en conséquence pour éviter les collisions.
Cette prédiction de trajectoire doit répondre à de multiples exigences. Tout d’abord, elle doit être évidemment précise et
sûre, afin que son résultat puisse être utilisé de manière fiable dans les processus suivants. Le futur peut présenter de
multiples possibilités, qu’il n’est pas toujours possible de differencier sur la seule base des données historiques passées.
La prévision doit donc être multimodale, en prédisant plusieurs futurs probables simultanés. Puisque la prévision doit être
faite sur tous les agents environnants, et que les comportements de ces agents sont très influencés par leurs interactions,
le modèle doit prendre en compte ces interactions, et ses prévisions multimodales doivent être cohérentes entre elles.
Enfin, pour la sécurité et la fiabilité, la prédiction de trajectoire doit être facile à interpréter, largement évaluée, capable
de fournir des évaluations de confiance et conçue avec son utilisation finale dans le processus global à l’esprit.
Nous proposons d’aborder le problème de la prédiction de trajectoire en utilisant des grilles probabilistes pour faciliter
la multimodalité. Nous concevons trois manières différentes de générer ces cartes thermiques et nous les évaluons les
unes par rapport aux autres et par rapport à l’état de l’art existant. Nous fournissons également une méthode d’extraction
complète pour obtenir les trajectoires réelles à partir de ces cartes de probabilités, et nous étudions les avantages et
les inconvénients de ces méthodes de grilles par rapport à d’autres approches couramment utilisés. Dans le chapitre
suivant, nous nous concentrons sur la prédiction multi-agents, et plus particulièrement sur les prédictions cohérentes au
niveau de la scène, pour ce type de modèles de grilles par le biais de l’extraction et d’une seconde étape apprise. Enfin,
nous explorons différentes manières d’étendre l’évaluation des modèles de prédiction par l’évaluation de l’incertitude, la
calibration et l’analyse de la généralisabilité entre jeux de données.

ABSTRACT

Recent advances in machine learning methods have enabled tremendous progress in autonomous driving. The focus is
now therefore shifting towards the next steps in the autonomous pipeline, where prediction plays an important role. Once
the surrounding road agents have been detected and tracked, the driving system needs to predict their future trajectory
and plan accordingly to have a collision-less course.
This trajectory prediction must follow multiple requirements. First, it should obviously be accurate and trustworthy, so
that its output can be reliably used in the following processes. The future can present multiple possibilities, from which
it may not always be possible to disambiguate solely based on past historical data. The forecast must therefore be
multimodal, by predicting multiple simultaneous probable futures. Since the prediction is to be made on all surrounding
agents, and these agents behaviors are very much influenced by their interactions with each other, the model should take
these interactions into account, and its multimodal predictions should be coherent with each other. Finally, for safety and
reliability, the trajectory prediction should be easy to interpret, extensively evaluated, able to provide confidence evaluates
and designed with its final use in the pipeline in mind.
We propose to tackle the trajectory prediction problem using probability heatmaps to facilitate multimodality. We design
three different ways of generating these heatmaps and evaluate them against each other and the existing state-of-the-
art. We also provide a complete sampling method to extract actual trajectories from these heatmaps, and study the pro
and cons of these heatmap methods compared to other commonly used frameworks. In the next chapter, we focus on
multi-agent prediction, and more specifically consistent scene-level outputs, for these type of heatmap models through
sampling and learned post-processing. Finally, we explore different ways of expanding prediction model evaluation by
uncertainty assessment, calibration and cross-dataset generalizability analysis.

KEYWORDS

Trajectory Prediction, Machine learning, Autonomous Driving
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