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General Introduction I

Figure I.1.: Lung cancer tissue, extracted from the TCGA dataset (slide TCGA-05-4245-01Z-
00-DX1).
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Summary:
Whole Slide Images (WSIs) are digitalized versions of microscopic images that capture thin layers
of stained tissues. These images serve multiple purposes in cancer care, from clinical diagnosis to
various stages in the cancer treatment process. The primary focus of this thesis is the development of
prediction models based on WSIs. In this chapter, our aim is to provide a comprehensive introduction
to these unique objects, which have limited analogs outside of the medical domain. Specifically, we
will discuss the acquisition and utilization of WSIs, what we aim to predict from them, and conclude
with the broad objectives of this thesis.

Résumé:
Les images de lames entières (WSI) sont des versions numériques de vues microscopiques de fines
couches de tissus biologiques teintés. Elles ont diverses applications, allant du diagnostic clinique
à une assistance dans diverses étapes du traitement du cancer. Le but principal de cette thèse est
de développer des modèles prédictifs basés sur ces WSI. Ce chapitre propose une introduction à ces
objets singuliers, qui trouvent peu d’équivalents en dehors du domaine médical. Nous y aborderons
le protocole d’acquisition des WSI et listerons les singularités qui font de leur utilisation un défi.
Nous verrons ensuite dans quel cadre ces images sont utilisées en cliniques, puis en apprentissage
automatique -ce que nous visons à prédire avec elles-, et nous terminerons en énonçant les objectifs
clés de cette thèse.

2 Chapter I General Introduction



I.1 Context and scope

Histopathology refers to the microscopic examination of diseased tissue, and our
emphasis here is on its role in cancer care. The foundations of histopathology
can be dated back to 1840 with J. Müller’s landmark publication (“On the Nature
and Structural Characteristics of Cancer, and of Those Morbid Growths Which
May Be Confounded with It” 1840), and to this day, it remains pivotal for cancer
diagnosis and prognosis. It involves studying thin layers of fixed and stained tissues
from surgical resections or biopsies, mounted on glass slides, and viewed under a
microscope. Such slides display hundreds of thousands of cells, a large variety of
tissue types, and are thus informative on single cell phenotypes as well as general
tissue architecture.

The first virtual microscope, a product of computer science’s endeavor in spatial data
research, emerged in 1997 (Ferreira et al. 1997). This development, followed by the
release of the first commercial slide scanners (Pantanowitz et al. 2011), paved the
way for digital pathology. The field witnessed a synergy between evolving scanners
and specialized software, leading to the increasing prevalence of Whole Slide Images
(WSIs).

These digitalized versions of glass tissue slides offer promising avenues for the
development of sophisticated algorithms to assist pathologists in their daily tasks.
Another interesting application of computational approaches consists in building
predictive models taking these images as input, and predicting a large variety of
variables, such as the evolution of the disease, the effect of a treatment or the
molecular landscape of the underlying disease. This field of application is generally
known as “Computational Pathology”.

A significant stride in image processing was made with the advent of deep learn-
ing, particularly convolutional neural networks (CNN), which showcased their
prowess in pattern recognition for imaging (Krizhevsky, Sutskever, and Hinton
2012). This achievement quickly resonated with adjacent fields, including Computa-
tional Pathology, where the number of publication using machine learning grew at
an unprecedented rate (Asif et al. 2023).

This thesis is nestled within this evolving landscape, focusing on the development
of predictive models for WSIs through machine and deep learning techniques. On
the application side, I have been involved in several medically driven projects in
a variety of cancer types. All projects had in common that we wanted to predict
molecular features such as single gene mutations or mutational signatures from
WSIs.

The manuscript is organized as follows: this initial chapter introduces the biological
subject of focus in this thesis and outlines the objectives pursued. The second chapter
introduces literature pertinent to the posed questions and detail the solutions offered
by my studies. This will be followed by the articles themselves, either published or
under submission. For better readability, I have harmonized their formatting with
the general document setup. Each chapter preface outlines the research context
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and origins of key ideas. In some instances, unpublished sections that nonetheless
contribute to the problem-solving will be included. Lastly, a discussion chapter will
discuss the perspectives that this thesis open.

I.2 Whole Slide Images (WSI) acquisitions

I will start by introducing the protagonists of this work, the WSIs, by detailing how
they are made and used. Their unique characteristics indeed shaped this whole body
of work.

I.2.1 Slide preparation

Biological specimens from which WSIs are derived can be categorized into surgical
specimens or biopsies. Regardless of the type of sample, both undergo a standardized
process:

1. Fixation: This step is crucial for halting ongoing biological processes within
the tissue post-sampling, such as enzymatic reactions, apoptosis, and pro-
tein synthesis. Fixation can be achieved either using of a fixative solution,
with Formalin being the most prevalent today, or by freezing the samples.
Although freezing is simpler, it often results in less clean tissue slides due to
the deformation caused by growing ice crystals.

2. Dehydration: This step ensures the prevention of aerobic reactions and there-
fore preservation of the sample. Typically, this is done by rinsing the sample
with ethanol.

3. Embedding: This phase focuses on solidifying the sample. Bathing the speci-
men in Paraffin is the most common method, imparting a resin-like texture to
it.

4. Staining: The samples are stained according to a given protocole.

5. Sectioning: In the final step, samples are sliced into thin layers with the aid
of a microtome. These layers usually range from 5 to 10 microns in thickness
and are then placed on a microscope slide for subsequent examination.

Several staining protocols can be utilized (see Figure I.2 for examples):

• Non-specific protocols: These primarily highlight the fundamental components
of tissues. The Hematoxylin and Eosin (H&E) staining protocol, as detailed
by Fischer et al. (Fischer et al. 2008), is recognized internationally as the
standard routine staining technique. In this method, hematoxylin distinctly
colors nucleic acids (mainly found in the cell nucleus) in a deep purple hue,
while eosin non-specifically stains proteins, rendering a predominantly pinkish
tone to the slides as in Figure I.1. However, variations in this procedure exist.
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For example, in France, the HES staining protocol is more common, wherein
saffron is introduced to specifically tint collagen fibers.

• Specific protocols: These are formulated to target particular elements within
tissues, such as distinct proteins or cell types. A prime example of this is
Immunohistochemistry (IHC), which is achieved through the application of
specific antigens that are subsequently paired with fluorophores, as elucidated
by Kim et al. (S.-W. Kim, Roh, and Park 2016).

H&E HES (france) IHC (Ki67+)

Figure I.2.: Different staining protocoles exemplified.

In addition to crafting glass tissue slides, biological specimens can serve multiple
analytical purposes. These range from transcriptomic analysis, single-cell sequencing,
to Next-Generation Sequencing and proteomic studies. As a result, it often becomes
more practical to divide the original sample into distinct blocks: one dedicated to
slide creation and others reserved for diverse biological assessments.

Two crucial implications arise from these practices:

• A single slide provides only a partial view of the tumor. While a wealth of
information is encapsulated within this slice of tissue, it represents only a tiny
fraction of the tumor’s overall complexity.

• Variability can be introduced in the final appearance of slides due to differing
protocols and practices across health centers. These differences can often
manifest as distinct visual patterns in the images, that are specific identifiers
of health centers.

I.2.2 Slide digitalization

Similar to a microscope, WSI scanners maneuver slides in both x and y directions,
capturing images at designated magnifications such as 4x, 10x, 20x, and 40x, which
correspond to 2, 1, 0.50, and 0.25 microns-per-pixels (mpp), respectively. For
instance, most of the images in The Cancer Genome Atlas (TCGA) were acquired
at a 40x magnification (0.25 mpp), where a typical cell occupies approximately
a 10-20 pixel square, allowing some intracellular features to be discerned. The
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scanner utilizes precision mechanics to capture successive fields of view across
the entire slide, which are then stitched together to generate a comprehensive
digital representation. These digital slides are exceptionally large, containing several
billions of pixels, and can span up to 50,000 pixels squared.

To manage these large files, the development of WSI scanners has been paralleled by
advances in specialized software and file formats, often borrowed from geospatial
imaging. An example is the open-source project QuPath (Bankhead et al. 2017),
which provides a WSI viewer.

The resulting digital slides are stored as pyramidal files with extensions such as SVS
or TIF. These pyramidal files contain multiple levels of magnification, and at high
magnifications, the image is divided into composing tiles, usually sized at 512 × 512.
This pyramidal architecture allows visualization software to zoom seamlessly without
loading the entire slide into memory, with tile stitching performed in real-time for
x-y navigation. This setup mimics traditional microscopic examination, offering
capabilities similar to zooming and panning in platforms like Google Earth. Although
the initial cost and complexity of WSI scanners have impeded universal adoption,
their use is becoming increasingly prevalent in healthcare, driven by the benefits of
digital archiving, remote consultation, and computational analysis : the available
dataset are consequently growing rapidly in size.

I.2.3 Specific challenges of WSI processing

WSI processing faces distinct challenges in comparison to natural image process-
ing.

• Size: One primary constraint is the sheer size of the WSIs, which makes
standard algorithms inapplicable. While viewer software has been developed
to manage these large images, most image-processing algorithms still struggle
with the computational burden, even on high-performance hardware.

• Biases: Additionally, WSI datasets are susceptible to biases stemming from
their intricate preparation process, which results in varied visual features.
These features can confound WSI processing algorithms and spuriously corre-
late with variables of interest such as the response to treatment or the grade
of the tumour.

• Not object-centric: Unlike natural images, WSIs are not object-centric; they
lack a singular or limited set of focal points, and relevant information may be
present across the image at multiple magnification levels.

These constraints not only differentiate computational pathology from natural image
processing but also limit the applicability of algorithms developed in the latter
domain, despite its considerably larger research base. As a result, there is a need for
the development of algorithms specifically tailored to WSIs.

Although not the primary focus of this thesis, these challenges have been addressed
in each of the solutions proposed herein.
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Figure I.3.: Illustration of possible biases that may arise during WSI acquisition. Images
are adapted from Azevedo Tosta et al. (2019) and Babic et al. (2010).
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I.3 Applications of WSIs

I.3.1 Clinical use of WSIs

In clinical practice, these slides are inspected using both their physical form —as
glass slides— and in their digital WSI format. The digital format is particularly
useful when collaborative discussions on complex cases are needed.

Here, we outline some of the core tasks that pathologists routinely perform using
these slides:

• Diagnosis of Malignancy: The primary task is to diagnose whether a tumor is
benign or malignant. This determination is based on various morphological
signs such as atypical cell structures or unusual tissue growth patterns.

• Staging and Grading: Once a tumor is identified as malignant, the next steps
involve staging and grading it. The stage of cancer ranges from I to IV and gives
insights into how much the cancer has spread locally. On the other hand, the
grade of the tumor indicates its aggressiveness. Both these classification tasks
are carried out following the guidelines described in the WHO classification of
tumours. For instance, aspects like lymph node metastasis (Board n.d.b) and
mitotic count (Board n.d.a) are considered.

• Immunohistochemistry and Special Stains: As elaborated in Section I.2.1,
these techniques are employed to identify specific proteins in cancer cells.
Knowing the status of hormone receptors in breast cancer, for example, can
inform the choice of first-line treatments (Board n.d.a).

• Margin Assessment: Pathologists also examine the healthy tissue surrounding
a resected tumor to ensure the absence of residual cancer cells. This is crucial
for determining whether further surgical intervention is required or not.

The tasks listed here are not exhaustive but serve to illustrate the integral role that
diseased tissue slides play throughout the cancer care journey. From initial diagnosis
and treatment planning to monitoring treatment efficacy, these slides are central to
the practice of oncology.

I.3.2 Machine learning applications

The first goal of WSI processing is to facilitate automated workflows that aid clini-
cians in their daily practice. One dominant approach targets the automated detection
and segmentation of histological primitives such as cells and glands. The endgame
is to achieve superhuman accuracy in the quantification of these primitives and
to assimilate this information at the slide level for taking informed patient care
decisions. For instance, a seminal study by Yuan et al. (Yuan 2015) segmented lym-
phocytes and tumor regions to construct a spatial model of slides. They computed
specific quantities like the number of intra-tumoral and adjacent lymphocytes and
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correlated these metrics with patient survival data. This bottom-up methodology
has seen burgeoning research interest and benefits from advancements in image
processing, ranging from mathematical morphology algorithms to contemporary
deep-learning techniques. The approach is known for its rigorous methodology,
which facilitates high interpretability; each histological primitive extraction and the
associated feature is computed separately and can thus be individually optimized
and validated.

This technique mirrors the process by which a pathologist examines a tissue slide,
assisting them at various steps such as counting tasks, identifying regions of interest
(ROIs), or measuring areas of necrosis. This inherent compatibility allows for swift
integration into a pathologist’s workflow if adequately validated. This has been the
cornerstone of products from companies specializing in computational pathology
software, such as Primaa and PathAI, the latter of which relies on a comprehensive
set of automatically extracted histological primitives (Diao et al. 2021).

Despite their merits, the bottom-up methods employed in WSI processing are not
devoid of limitations. Primarily, these approaches are computationally demanding,
often necessitating the execution of multiple specialized and resource-intensive
algorithms (e.g., semantic segmentation algorithms for nuclei or ROIs, detection
algorithms) across the entire slide. This computational burden extends to the soft-
ware infrastructure required for the development and maintenance of such pipelines.
Furthermore, the outputs of these algorithms can be voluminous, generating data
artifacts like comprehensive slide segmentation masks or intricate proximity graphs
of cells or ROIs. A further limitation lies in the pre-defined set of extracted features,
such as segmented cell types, which imposes constraints on the modeling capacity
and could inhibit research flexibility.

Alternatively, emerging methodologies focus on direct, end-to-end predictions of
slide-level characteristics or classifications. Since the advent of deep learning, these
methods offer several competitive edges (Campanella, Hanna, Geneslaw, Miraflor,
Silva, et al. 2019; Coudray et al. 2018). They exploit deep learning for automated
feature extraction at both the region and slide levels, thus sidestepping the limitations
of our preconceived knowledge about the disease. These techniques also offer
computational advantages; they rely on the computation of compact numerical
vectors representation for predictions rather than the explicit histological primitives
extraction, making the algorithms faster and the outputs more condensed.

Importantly, the optimized task aligns more closely with the ultimate goal of WSI
processing: to derive patient- or tumour-level insights for informed treatment
decisions. My thesis focuses on these end-to-end prediction methodologies, aiming
to develop machine learning models that predict slide-level information directly from
the raw WSIs. Specifically, the goal is to utilize a given training dataset of WSIs X
with matched slide-level labels y to learn a parametric function f such that f(X) ≃ y.
In this framework, the nature of the label y delineates the type of supervision and
inherently presents its own set of challenges and opportunities.
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I.4 Supervision and WSIs

I.4.1 Supervise training with medical knowledge

Firstly, medical doctors themselves can serve as the source of supervisory signals,
an approach which is highly intuitive since this supervision emanates directly from
tasks embedded in clinical practice. Specifically, the tasks targeted by our algorithms
parallel those customarily carried out by clinicians, as outlined in Section I.3.1.
These supervised tasks, symbolized by an “eye” in Figure I.4, span a broad spectrum
of scales. At the cellular level, pathologists can perform tasks like cell segmentation
and classification. Moving to the region or tile level, pathologists can demarcate
ROIs and categorize them. For example, in the TissueNet challenge, clinicians were
tasked with identifying differently graded lesions in cervical biopsies, thus providing
non-exhaustive labelled regional images. Additionally, metrics like mitotic count can
be assessed in these regions. Pathologists can also synthesize information across an
entire slide to derive similar metrics or perform slide-level segmentation of ROIs
such as tumorous areas. They can further characterize the overarching structure of
the tumour, evaluating attributes like general architecture, differentiation, and cell
atypia. Ultimately, this information can be integrated with other patient-level data,
such as lymph node invasion or IHC data, to assign a definitive label to the tumour,
such as its stage.

This supervisory information is invaluable for WSI-level prediction algorithms but
comes with specific constraints.

• Cost. Foremost among these are the costs associated with medical expertise
required for annotation. As physicians themselves must undertake these tasks,
and given the vastness of WSIs, the process is exceedingly time-consuming.
As a consequence, datasets annotated in this manner are very limited in size
compared to those in natural image processing, when available at all.

• Low agreement. A second significant constraint is the issue of low agreement
between annotators, a problem that is especially pronounced in the field of
pathology. Studies have shown that the agreement among pathologists ranges
from low to moderate on tasks such as mitotic figure recognition (Malon et al.
2012), to tumour staging, grading, and classification (Costantini et al. 2003;
Krane et al. 2022). This variability in annotations underscores the necessity
of consultative meetings among board-certified pathologists, especially for
complex cases. Achieving more consistent supervision would necessitate the
concurrent labelling of cases by multiple pathologists, which would further
exacerbate the cost issue.

I.4.2 Supervise training with indirect supervision

A tumor is a complex biological system that can be investigated from multiple angles,
including but not limited to, genetics, epidemiology, and proteomics. This multidis-
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Figure I.4.: Overview of the different supervisory signal and their origin. Multiple
scales of study are employed, ranging from the patient-level down to individual
cellular observations within a tumor sample. The overarching aim is to predict
patient-level outcomes, such as overall survival or response to treatment. This
can be approached by generating predictions at finer scales, such as the cellular
or tile level, and then integrating this information into higher level (tumor
subtype) until patient level (survival etc. . . ). The primary focus of this thesis
is to develop predictive models based on WSIs. The availability and type of
supervisory signals y vary depending on their hierarchical level: Signals derived
from a level higher than WSIs, such as tumor samples or the patient, tend to
introduce noise into the model as y is not directly linked to the WSI. Conversely,
signals originating from a lower hierarchical level, such as regions, tiles, or
cells, offer a weak supervisory signal as y is linked to part of the WSI.
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ciplinary lens offers a wide array of methods to generate supervisory information,
which can subsequently be used to train WSI-based predictive algorithms. Given the
rich complexity and the sheer volume of information available in WSIs, it is plausible
that information from other modalities, such as Next Generation Sequencing, could
manifest discernible traces in these images. Utilizing WSIs to predict such modalities
would offer significant advantages, particularly given the relatively lower cost of
WSI acquisition.

Additionally, WSIs have the potential to contain markers that are prognostic in
nature. This opens another promising avenue—using WSIs to predict survival rates
or anticipate responses to treatment. In this context, supervision is determined by
future outcomes.

These methodologies share common challenges and opportunities, which we group
under the term “indirect supervision”: the label acquisition is decorrelated from the
WSI itself.

• Noisiness. One of the primary challenges is the issue of noisiness. As shown
in Figure I.4, other modalities are often measured from a different tissue
block than the one used for WSI. For example, in The Cancer Genome Atlas
(TCGA), the tumor sample is divided into several blocks; one is formalin-fixed
and paraffin-embedded to produce diagnostic WSIs, while others are frozen
for genetic and transcriptomic analyses. Tumor heterogeneity may introduce
discrepancies between these blocks. Moreover, higher-level supervisory signals
like overall patient survival may be influenced by extraneous factors such as
socio-economic conditions, adding noise to the supervisory information. As a
rule of thumb, we can say that the more global an assessment is, the noisier
the labels, e.g. while manual segmentation of nuclei may contain few errors,
manual grading is often less consisting.

• Uncertainty. Another challenge is the inherent uncertainty about where or
how the supervisory signal manifests within the tissue. Unlike more traditional
tasks in natural image processing, we lack a priori knowledge about the
localization or even the existence of such indirect signals in WSIs. This
uncertainty complicates the choice of algorithms, as we cannot be sure whether
to focus on cellular features, spatial arrangements, or long-range dependencies.
However, the absence of definitive locations for these signals presents a unique
research opportunity. If predictive algorithms can find a correlation between
the WSIs and indirect supervisory signals, then deciphering the visual features
responsible could potentially lead to novel discoveries related to phenotypes.

I.4.3 Objectives of the thesis

We have seen that WSIs play a pivotal role in cancer care, offering a multitude of
possibilities for automated processing. Predictive algorithms working on WSIs can
assist clinicians in daily tasks, serve as a surrogate for other biological modalities,
and even contribute to a deeper understanding of cancer biology. However, distinct
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challenges are associated with these predictive tasks, largely due to the nature of
the supervisory signals.

Under the constraints specific to WSI processing —such as image size and inherent
biases— this thesis aims to address some of the key limitations induced by the
supervision signals:

1. How to address the weakness of the slide-level supervision ?
2. How to adapt to the very limited availability of annotation?
3. What is the impact of weak and noisy labels on predictive algorithms, and how

can this be mitigated?

Throughout this thesis, we propose potential solutions to these questions. It should
be noted that while the individual studies are based on specific biological questions,
the primary focus lies on the broader theme of WSI algorithm development. The
importance of each unique biological problem solved should not be diminished,
although they are independent of the thesis’s core focus.
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Summary:
This chapter serves as a comprehensive guide to the contributions of this thesis by detailing them and
contextualizing them within relevant literature. The application of machine learning to Whole Slide
Images (WSIs) in histopathology presents a series of unique challenges that distinguish it from other
image processing domains. WSIs are characterized by their large size and multi-scale features, and
their acquisition process can introduce biases. In terms of supervision, WSIs may be labelled either by
medical experts or through in silico experiments. Both types of labels come with specific challenges.
They are often weak -concerning only a minute fraction of the WSI-, can be noisy -due to low expert
agreements for instance- or uncertain -The question of whether the WSI contains any signal related
to the label is often an open question-. We therefore proceed by presenting the solutions related to
weak labelling and introducing key training frameworks such as multiple instance learning and self
supervised-learning. We further address the challenge of limited labelled data, exploring methods to
leverage a small number of regional and global annotations while mitigating associated batch effects.
Lastly, we examine the impact of noisy and uncertain labels on model training, presenting both the
challenges they pose and the opportunities for machine-teaching they offer.

Résumé:
L’application de l’apprentissage automatique aux images de lames entières (WSI) en histopathologie
comporte des défis spécifiques qui la différencient des autres domaine d’application du traitement
d’image. Les WSI sont singulières par leur grande taille et car elle peuvent présenter des motifs
d’intérêt à plusieurs échelles de grossissement; leur processus d’acquisition peut en outre y ajouter des
biais. Les variables cibles des algorithmes d’apprentissages, ou étiquettes, peuvent être annotées soit
par des experts médicaux, soit par des expériences et mesures biologiques, référant à un étiquetage
in-silico. Chaque type d’annotation présente des défis particuliers: elles sont souvent faibles -car ne
référant qu’à une petite portion de la WSI, peuvent être imprécises -en raison d’un faible consensus
entre les experts annotateurs par exemple-, ou meme incertaines -l’incertitude portant sur l’existence
meme d’un signal relatif à l’étiquette au sein de la slide-; et dans tous les cas, elles sont rares. Nous
abordons les solutions aux défis d’étiquetage faible en introduisant des algorithmes d’apprentissage
clés comme l’apprentissage par instances multiples et l’apprentissage auto-supervisé. Ensuite, nous
traitons le problème du nombre limité d’annotations en utilisant des méthodes qui tirent parti de
quelques annotations régionales et globales tout en minimisant les effets de biais associés. Enfin,
nous étudions l’impact des annotations imprécises ou ambigües sur l’entrainement des modèles, en
explorant les défis qu’elles apportent, mais aussi l’opportunité d’apprentissage par la machine qu’elles
apportent.
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Preface

This chapter is structured around the three core questions identified in the thesis’s
problem statement. The primary objectives are threefold: first, to survey the perti-
nent literature for each question; second, to delineate how the work conducted in
this thesis contributes to resolving these questions; and third, to facilitate a dialogue
that interlinks the various research components of the thesis. Contributions of the
thesis are framed in gray to improve readability.

II.1 Tackling weak labels

Weak labels in WSI supervision are prevalent and introduce challenges for robust
model training. According to Zhou et al. (Zhou 2018), weak labelling or weak
supervision can manifest in various ways; and in the context of WSI, the weakness
in labels pertains to a specific case of inexact supervision, where only coarse-grained
information is available.

To elaborate formally, WSIs are inherently large and therefore, unsuitable for direct
processing (see Section I.2.3). As a result, these slides are divided into smaller, more
manageable images known as tiles. A WSI X can be formally represented as a set of
m tiles xj along with their coordinates cj , given by Xi = (xj , cj)1⩽j⩽m ∈ X , with X
the set of all possible WSI.

We suppose that it exists a surjective function Gt : X → Y, attributing to each slide
X a label y, that can be continuous or discrete. The objective is to learn a function
f : X 7→ Y , using a dataset D = Xtrain × Ytrain = {(X1, y1) , . . . , (Xm, ym)}, such that
on any new slide X /∈ Xtrain, f(X) = Gt(X).

In this setup, a label y is considered ‘weak’ if it accurately describes only a minor
subset of the tiles in X, that is, Gt depends on a small portion of X. To illustrate,
consider a biopsy X that is labelled as cancerous (y = 1) due to the presence of
cancerous cells concentrated in a single tile xj . In this case, y is not representative
of all the other tiles (xp)p ̸=j .

If we temporarily disregard the coordinates of the tiles, this learning framework
aligns with the framework of Multiple Instance Learning (MIL) that we describe in
the following section. It is therefore unsurprising that the community has readily
adopted this framework for the training of WSI predictive models.

II.1.1 The Multiple Instance Learning framework

II.1.1.1. The standard MIL problem

The MIL framework initially gained attention for its application in drug activity
prediction, specifically with the musk dataset (Dietterich, Lathrop, and Lozano-Pérez
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1997). The dataset consists of various molecules Xi ∈ X , and the objective is to
approximate their activity yi ∈ Y using a function f : X → Y. In this case, activity
is determined by whether the molecule has a Musk odour or not, 0 or 1, therefore
Y = {0, 1}. It is important to note that a molecule can have multiple conformations,
which are its instances, x ∈ x —different shapes it can adopt by rotating around its
bonds. If even one conformation binds to a musk receptor, the molecule is considered
active, introducing a function g : x → Y that maps a conformation to its activity.

Thus, the dataset consists of molecules and their corresponding activities (Xi, yi)i⩽N ,
with each molecule being a set or bag of conformations Xi = {xi1, . . . , xi,mi}.

We call a concept P a function that extract a bag statistic from the instance’s labels,
which is then used to classify the bag with a decision function C. The term C ◦ P :
Ym → Y represents the MIL problem’s assumption, specifically how instance labels
aggregate to form the bag’s label.

Here, the concept P asks if at least one instance is positive, and is formally described
as:

C(P(Xi)) = P(Xi) =
{

1, if ∃j such that g (xi,j) = 1
0, otherwise

(II.1)

The challenge lies in identifying g, which is unknown. This constitutes the standard
MIL setting, and Equation (II.1) is the standard MIL assumption.

The method of breaking down WSI into individual tiles, each potentially containing
a range of cell and tissue morphologies, naturally led the community to frame WSI
classification as a MIL problem. That’s why, for the latter, I may refer to tiles as
instances and vice versa.

However, the standard assumption might be insufficient for capturing the complex
relationship between instances and the bag label. Consider the problem of tumor
grading: one key feature is the mitotic index, or the number of dividing cells within
the tumor. A single tile containing a mitotic figure is not sufficient for classifying a
WSI as high-grade. In such cases, a broader assumption might be necessary:

C(P(X)) = C( Σ1{g(xi)=1} ) (II.2)

= Σ1{g(xi)=1} > s (II.3)

Concept: number of instances with mitotic figures

Assumption: high grade ↔ more than s mitotic figures

Here, 1 is the label for an instance containing a mitotic figure, and s is a threshold
delineating between high and low-grade tumors: the concepts P counts the number
of mitotic figures inside a WSI X and the assumption is to assume that X is high
grade if it contains more than s mitotic figures.
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Foulds and Frank (2010) review various MIL assumptions that have influenced WSI
classification methods. If the assumption linking instance classes to bag labels is
known a priori, creating a function to mimic it is advantageous.

However, many WSI classification problems come without such prior knowledge,
requiring a more generalized MIL framework.

II.1.1.2. From standard MIL to WSI-MIL

The building blocks To solve the MIL problem using machine learning, we then
have to parametrize each of the previously described functions:

1. A tile-specific function g that independently processes each instance, here
outputting one label per instance.

2. A pooling function P, that aggregates instance predictions into a fixed-size
bag concept.

3. A classification function C that generates a prediction from the bag concept,
effectively classifying the entire bag. .

The composition of these three functions defines the WSI classification function:

C ◦ P ◦ g(X) = ŷ ∈ [0, 1]

.

If C, P, and g are differentiable, a classic classification loss can be computed:

Lclassif(X) = Lclassif(y, C ◦ P ◦ g(X)) = Lclassif(y, ŷ)

where y is the label of X. Parameters for each function can then be optimized using
Stochastic Gradient Descent (SGD).

The standard assumption given in Equation (II.1) dictates that the function g outputs
a single probability for each instance, such as the likelihood of containing a cancerous
cell. similarly, P is typically the max function, and C is the threshold function
1{x>0.5}.

The choice of these functions directly depends on the underlying MIL assumption,
which varies according to the problem at hand. For example, when operating under
a different assumption as given in Equation Eq. (II.3), it may be necessary to adapt
the parametric functions g, P, and C to align with that specific assumption.

Typically, the MIL assumption at play in WSI classification reflects the architec-
tural choices, specifically the nature and form of g, P, and C. Consequently, most
advancements in this area focus on optimizing one or more of these components.
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Embedding and classification approaches in MIL The MIL architecture often incor-
porates an initial step of instance embedding. In domains like molecular activity
prediction, this step is essential. Specifically, before classifying a bag of molecule
conformations, the first task is to identify a suitable numerical representation for
each conformation, denoted as E(x), and taking value in E . Similarly, E can be built
to encode WSI’s instances in E .

One-step MIL training designates the training of this instance-embedder jointly with
the other MIL blocks. Two-step MIL training qualifies the independent training of
such a tile-embedder. In this case, it exists a function g′ such that g = g′ ◦ E. When
MIL operates on these embeddings E(x) the algorithm is said to be trained “on top”
of E. g therefore takes input from E .

We can further categorize MIL methods into two types: instance-based and bag-based
approaches.

• Instance-based Methods: These methods are designed to classify individual
instances first, with the subsequent bag-level classification relying on these
instance-level results. Such an approach is a straightforward implementation
of the fundamental MIL assumptions. In this context, the output of function g
serves as a classification result and its dimensionality matches the number of
instance classes assumed in the MIL assumption.

• Bag-based Methods: Unlike instance-based methods, bag-based approaches
focus on constructing a fixed-size representation vector at the bag level, which
is then classified. These methods utilize the same overall architecture but
diverge slightly from the original MIL assumptions. In bag-based methods,
function g projects instances into a new embedding space, and P aggregates
these embedded instances (g(xi))i⩽m into a unified bag representation.

II.1.1.3. A Zoo of MIL Variations

Overall, MIL offers a framework for addressing WSI classification problems, serving
as a well-defined pathway for algorithmic advancements. Many WSI classification
algorithms evolve from the core MIL framework, with updates typically focused on
one or more of the three primary building blocks previously outlined. This section
presents a non-exhaustive list of various MIL developments for WSI classification.

Basic MIL I refer to MIL architectures that implement straightforward pooling func-
tions, P, as Basic MIL. These can be further broken down into several categories:

• Instance-level Max: Here, the function g serves as a classification network
and may be as simple as a single linear layer. The pooling function P is defined
as the max function, while C acts as a threshold function. This setup directly
embodies the standard MIL assumption.
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• Instance-level Mean: This approach is similar to instance-level max, except
that the pooling function, P, is the average function defined as

P(Xi) =
∑mi

j=1 g(xij)
mi

. The threshold function C remains unchanged. The underlying assumption is
that a bag is classified as positive if the majority of its instances are positive.

• Bag-level Max: In this architecture, g can be a more complex encoding
function like a Multi-Layer Perceptron (MLP) or Convolutional Neural Network
(CNN). The pooling function P operates feature-wise and calculates their max
across all instances, resulting in a vector P(Xi) ∈ Re, where e is the size of the
instance embeddings. Finally, C is another classification network, which could
be an MLP.

• Bag-level Mean: Similar to the bag-level max approach, the pooling function
P calculates the feature-wise average.

Recurrent neural network aggregation A noteworthy adaptation of the standard
MIL algorithm is presented by Campanella, Hanna, Geneslaw, Miraflor, Werneck
Krauss Silva, et al. (2019). Their work is significant for its application to one of the
largest existing WSI database at the time. Their approach employs a two-step MIL
process. Initially, they train g, a Resnet50 (He et al. 2015b) using weakly supervised
learning, leveraging slide-level labels. They use a simple instance-level max model
for this first stage. Subsequently, they fine-tune g within another MIL framework:
They use the pretrained resnet up to the final linear layer as g. If we name l the final
layer of the pretrained resnet, the pooling function P is P = argtop-kxi

(l(g(xi))),
yielding the k best-scoring tiles embeddings with respect to l. They then train C as a
recurrent neural network that aggregates the top-k tiles into the final slide decision.
This added layer of complexity is reported to enhance the robustness of their model’s
predictions.

Positive and negative instance mining Courtiol et al. (Courtiol et al. 2018) focus
their MIL algorithmic adjustments primarily on the P pooling function. With ↕ ◦ g a
ResNet50 mapping to 1 neuron, with g the resnet up to the last linear layer l, their
method is similar to the approach by Campanella et al. Specifically, their pooling
function is defined as P = (argtop-kxi

l(g(xi)), arglow-kxi
l(g(xi))) ∈ R2k. The bag

concept is therefore the concatenation of the k highest and lowest tiles scores. The
classification function C is parameterized as a Multilayer Perceptron (MLP).

The team drew inspiration from Durand et al.’s work (Durand, Thome, and Cord
2016; Durand et al. 2017), which demonstrates the benefit of incorporating negative
instances into the final prediction. This approach is particularly relevant for natural
image classification. For example, the presence of a ‘giraffe’ instance would logically
decrease the bag’s probability of being classified as a mountain scene1.

1Not featuring Kilimandjaro, of course.
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Attention-based MIL: The attentionMIL algorithm The AttentionMIL algorithm, pro-
posed by Ilse et al. (Ilse, Tomczak, and Welling 2018), has gained considerable
attention and often serves as a baseline in numerous studies. Unlike previous
approaches that predefine the pooling function P, Ilse et al. introduce a learn-
able pooling function. In their framework, g is a neural network that produces a
low-dimensional embedding (of dimension e), rather than a single score.

The pooling function P is then formulated as a weighted sum of these embeddings.
The weights are themselves the output of a neural network parameterized by V ∈
RLe and W ∈ RLx1. The bag concept therefore writes:

P(g(X)) =
n∑

i=1
aig(xi)

where

ai =
exp

{
W⊤ tanh

(
Vx⊤

i

)}
∑n

j=1 exp
{

W⊤ tanh
(
Vx⊤

j

)}
Finally, C is parametrized by a MLP.

This approach adds flexibility to the MIL framework, allowing P to vary between
resembling the max or the mean function based on the specific problem at hand. Theo-
retically, this makes it suitable for addressing a broader range of MIL assumptions.

Multi-headed attention-based MIL: the CLAM algorithm The CLAM algorithm ex-
tends the attention-based MIL framework to tackle multiclass classification problems.
In this approach, g, P , and C each operate with N parallel attention layers, attention
pooling functions, and slide classifier MLP, respectively. As a result, the algorithm
outputs N values corresponding to each class, facilitating the computation of a
multiclass classification loss.

Additionally, the algorithm incorporates an auto-supervised instance clustering
objective, by computation of an instance clustering loss with the instance embeddings
g(x). This is designed to optimize g and assist in forming a well-structured instance-
level embedding space.

Pooling-based improvements Recent works, particularly those by Oner et al. (Oner
et al. 2023) and Schirris et al. (Schirris et al. 2021), have focused on the design of
innovative pooling functions, P, capable of capturing more nuanced information
from instances.

Oner initially introduced the concept of utilizing discrete estimations of instance-
feature distributions as bag representations. Specifically, for a bag of size m and
distributions represented with M bins (set as an hyperparameter), the resulting bag
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representation would have dimensions m × M . Building upon Ilse’s work, Oner
extends this idea by incorporating learned attention scores for each instance and uses
the discrete estimation of the weighted instance-features distributions-the weights
being the attention score-.

On the other hand, Schirris et al. (2021) advocates for employing mean and
variance estimations of the marginal distribution of attention-weighted features,
thereby resulting in a bag representation with dimensions m × 2.

Expanding on this idea, a possible generalization could involve computing higher
moments (M) of the distribution to capture more nuanced details in feature distribu-
tions across the bag. We hypothesize that such a generalization would offer a middle
ground between Schirris and Oner’s methods. Specifically, it would require fewer
parameters, similar to Schirris’s approach, while preserving maximal distributional
information as in Oner’s distribution pooling method.

A dynamic field of research I described the earlier algorithms because they served
as benchmarks at some point of this thesis: they were once considered state-of-the-
art for WSI classification. However, it’s important to note that the landscape of
research on MIL architectures is both dynamic and expansive: the previous list is not
exhaustive at all, and a lot of new MIL architectures and training framework have
been since developped (Shao et al. 2021; X. Wang et al. 2023; Xiang and Zhang
2022; Yang et al. 2023; Yu et al. 2023; H. Zhang et al. 2022).

II.1.2 Design of the tile embedder E

While designing a MIL architecture capable of identifying significant tiles in a WSI is
a crucial step for solving the weakly supervised problem of WSI classification, it’s
not the entire solution. Specifically, joint training of the tile-embedding network
and the MIL architecture introduces several constraints that must be considered.
One primary limitation arises from the computational overhead associated with
state-of-the-art image processing networks like ResNets (He et al. 2015b). These
architectures are inherently large and resource-intensive. When training a MIL
model that has a slide-level objective, each batch would need to include multiple
slides. Each of these slides, in turn, comprises a considerable number of individual
tiles. Thus, the volume of images that need to be processed by the image network
increases substantially, directly proportional to the batch size. To put this into
perspective, consider a surgical slide at 10× magnification: on average, it can be
divided into around 5000 tiles. This means that joint training would necessitate
selecting only a tiny subset of each WSI and generating exceedingly small batches,
severely limiting the model’s ability to generalize and learn effectively.
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II.1.2.1. Transfer learning

Transfer learning has emerged as the predominant approach to mitigate some of
these challenges. Initially, transfer learning was conceptualized for applying a model
trained on a source data domain to a distinct target domain (Weiss, Khoshgoftaar,
and Wang 2016). However, this definition has been broadened to include any model
trained for a specific task and later repurposed for a different one.

The advent of CNNs and their subsequent improvements in the ImageNet chal-
lenge have been a game-changer for the image processing community (Krizhevsky,
Sutskever, and Hinton 2012). ImageNet was groundbreaking as one of the first
large-scale datasets of natural images (Deng et al. 2009). It initially comprised
around 1.3 million images, spanning a wide array of categories including mammals,
insects, man-made structures, plants etc. . .

Such large, annotated datasets are far less common in the medical imaging realm
due to the difficulty in obtaining labelled images. However, we can transfer the
models trained on ImageNet to solve poblems in the medical imaging domain.

The study by Kieffer et al. (2017) compared transfer learning strategies of models
trained on natural images to models trained from scratch 2 on a histopathology
dataset, KimiaPath24, which contains 27,000 images. They found that features3

extracted from networks pre-trained on ImageNet were highly effective on the
histopathology domain. Simply using a Support Vector Machine on top of these
pre-trained features—as depicted in Figure II.1 3—yielded performance comparable
to state-of-the-art networks trained from scratch. Fine-tuning these pre-trained
networks further improved performance.

Subsequent studies have confirmed these results across different datasets and tasks
(Deniz et al. 2018, 2018; Kensert, Harrison, and Spjuth 2019). Furthermore, transfer
learning has also proven effective in a multiple instance learning (MIL) setting: using
a model pretrained on ImageNet directly within the MIL architecture as tile-encoder
significantly improved performance of WSI classification. (Kanavati and Tsuneki
2021; Sharma et al. 2021)

This suggests that the ImageNet dataset is sufficiently diverse to train networks
general enough to extract useful patterns also in histopathology.

II.1.2.2. Self-supervised learning

Leveraging pretrained models on ImageNet has emerged as a common practice in the
medical imaging domain. These models offer effective performance and are readily
accessible in popular deep-learning frameworks like PyTorch and TensorFlow.

2Training from scratch means training a neural networks with randomly initialized weights. For
example, PyTorch uses by default the initialization presented in He et al. (2015a).

3These features correspond to the activations from a specific layer in a pretrained network, often
chosen near the end of the network architecture, as illustrated in Figure II.1.
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Figure II.1.: Illustration of Transfer Learning Methods. A network is first pre-trained on a
base task, differing in domain, dataset, or objective from the target task. It can
be used in several ways: 1.a-b Fine-Tuning: The network is retrained on the
target task, starting with pre-trained weights. b specifies that this network can
be part of a larger architecture, a MIL architecture for instance. 2 Partial Fine-
Tuning: Only some layers are retrained, reducing computational cost while
maintaining performance. Retraining only the last layer is known as linear
probing. 3 Frozen Networks: The network remains unaltered; intermediate
activation weights are used as embeddings.
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However, observing the significant domain differences between medical and natural
images led to hopes that further improvements could be realized with models
pretrained on in-domain data. While the absence of sufficiently large labelled
datasets has long hindered the development of in-domain pretrained networks, the
medical imaging field is not short on large unannotated image datasets. This is
where self-supervised learning comes into play.

At the inception of my Ph.D. journey, spanning from the end of 2019 to the beginning
of 2020, self-supervised learning (SSL) witnessed significant advancements. While
SSL existed prior to 2020, it achieved major milestones during this period. SSL
creates its own supervised task and simultaneously trains a neural network on
it—this is what constitutes self-supervision. Early examples of SSL tasks include
information restoration, learning spatial context, and multi-view invariance, cited
in works such as, respectively, Balestriero et al. (2023), R. Zhang, Isola, and Efros
(2016), and Noroozi et al. (2018).

Recent advances in SSL such as SimCLR (T. Chen, Kornblith, Norouzi, et al. 2020),
MoCo (Xinlei Chen et al. 2020), CPC (Henaff et al. 2019), and BYOL (Grill et al.
2020) have benefited from innovations like the contrastive loss infoNCE and random
sampling of negative image pairs. Networks trained using these SSL frameworks
have exhibited remarkable performance in linear probing evaluations, coming close
to their fully supervised counterparts.

Furthermore, fine-tuning these models has proven to be extremely label-efficient,
especially evident when a pre-trained network outperformed a from-scratch model
by over 10 accuracy points on 1‰ of ImageNet (T. Chen, Kornblith, Swersky, et al.
2020).

The core idea common to these SSL frameworks, as depicted in Figure II.2, is to
train a neural network that maps an image x to an embedding vector E(x) ∈ Re that
is invariant to a set of random transformations T . Mathematically, this is expressed
as:

E(t1(x)) = E(t2(x))

where t1 ∼ T and t2 ∼ T .

Each optimization step in stochastic gradient descent aims to minimize a distance
between these embeddings, as illustrated in Figure II.2.

This learning paradigm aims to build robust feature vectors that encapsulate essential
characteristics of input images, thus termed representation learning. The rationale is
that invariant features—those unaffected by random transformations—capture the
semantic of the image. For example, both a coloured and grayscale image of a dog,
we would easily recognize the dog, and our internal representation of the pictures
would be close. This mean that these two images share core features like shape and
texture, invariant to colour transformation, and that are used by our brain to build
our representations.

However, an obstacle in SSL is the possibility of representation collapse. Indeed, a
network Ecollapse that maps all images x to the same constant c is a trivial solution
of this SSL objective:
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∀x Ecollapse(t1(x)) = c = Ecollapse(t2(x))

Each SSL method employs unique strategies to counteract these representation
collapse scenarios.

Contrastive learning methods Contrastive learning methods, including SimCLR
and MoCo, aim to cluster augmented views of the same image while pushing
views from different images apart. These methods often employ optimization
functions like the Normalized Temperature-scaled Cross-Entropy Loss (NT-Xent Loss)
or InfoNCE loss, initially introduced in (Sohn 2016).

Consider T as a distribution of random augmentations, with tij ∼ T for (i, j) ∈
N2. Also, let B denote a mini-batch of pairs of augmented images, denoted as
((ti1(xi), ti2(xi)))i⩽B. The encoder and predictor4 networks generate embeddings
(zi)i⩽2B for the images in B, as illustrated in Figure II.2.

The InfoNCE loss is defined as:

LinfoNCE = −
∑

(i,j)∈B

log

 esim(zi,zj)/τ∑2B
k=1 1{zk ̸=zi}esim(zi,zk)/τ


Over all oriented positive pairs

Increases similarity between positive pairs

Contrast with any negative pairs

Asymmetric learning methods Methods like SimSiam, BYOL, and DINO use an
asymmetric architecture to prevent feature collapse. They optimize a loss that can
be schematized by:

Lasym = 1
B

B∑
i=1

dist(Eθ(t1(xi)), Eµ(t2(xi)))

Here, dist is a distance, often the L2 distance. Eθ and Eµ are distinct encoding
networks. In BYOL, one is the moving average of the other; in SimSiam, they are
essentially the same but with an added MLP predictor for one. The asymmetry in the
encoding networks is thought to prevent collapse, as discussed in Chaoning Zhang
et al. (2022), and the intuition behind it is illustrated in Figure II.2.

4A small MLP network, termed the “predictor,” is stacked onto the output of the encoder network.
The contrastive loss is optimized in the latent space of the predictor’s output, but only the encoder
network is utilized in downstream tasks. (See T. Chen, Kornblith, Norouzi, et al. (2020) for
justification)
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II.1.3 Contributions

SSL is well-suited for histopathology. This domain features small slide-level datasets
but large tile-level ones. A single 10x magnification WSI can produce 5,000 to 10,000
tiles, making a tile dataset from 1,000 WSIs much larger than ImageNet. Therefore, I
chose to train self-supervised models in this domain early on.

MoCo models I chose MoCo (Xinlei Chen et al. 2020) due to its queue of negative
samples, reducing the need for large batch sizes. Initially, SimCLR was thought to
require large batches for diverse negative samples, but recent works have debunked
this (Balestriero et al. 2023; Bordes, Balestriero, and Vincent 2023).
Training these networks is computationally intensive, therefore limiting my ability
to experiment. Key parameters like encoder architecture and data augmentations
were carefully chosen but not exhaustively evaluated. Interesting recent research
efforts by Kang et al. (2022) have since provided benchmarks and guidelines for SSL
in histopathology.
During my PhD, I trained various MoCo models:

Architecture Organ dataset N Slides magnification N tiles

ResNet50 Cervix TissueNet 3062 10x (1 mpp) 1.2 M
ResNet18 Breast Curie 840 20x (0.5 mpp) 5.3 M
ResNet18 Breast TCGA 1041 20x (0.5 mpp) 2.2 M
ResNet18 Pan-cancer TCGA 2000 10x (1 mpp) 1.6 M

The underlined models are made publicly available.

Frozen MoCo embeddings for MIL A key optimization was the direct use of
frozen MoCo embeddings as input to MIL architectures in various projects. Bypassing
the fine-tuning of the encoder network considerably accelerated the MIL training
process. It was crucial, as it allowed me to use more tiles per WSI during training.
This increased tile count was especially significant given our MIL model’s sensitivity
to the number of tiles per slide, as highlighted in Figure B.1.
Evidence across multiple chapters (Chapters III and IV) —confirms the advantage
of employing an in-domain tile embedder in downstream MIL classification tasks.
This improvement was observed across several organs and different classification
problems.
Additionally, the findings of Chapter III indicate that using a tile embedder trained
on a dataset of the histopathological domain, but distinct from the target MIL dataset
yields better performance than using ImageNet embeddings. In this case, I trained
a MoCo model on the breast cancer slides of TCGA and used it on a breast cancer
slide dataset of Institut Curie. Given sufficient training, this approach even surpasses
the performance of an embedder trained on the source dataset. However, this
transferability appears to be constrained by the similarity between the source and
target datasets. Specifically, if the source and target datasets consist in WSI from
different organs, the performance gains from transfer learning diminish.

Frozen pre-trained WSI encoder In Chapter V, I introduce a pre-training strategy
specifically designed for training a MIL architecture without the need for labelled

II.1 Tackling weak labels 29



data. I leverage this strategy to extract generic WSI representations. Downstream
tasks can then be solved by training logistic regression models operating on these
WSI representations. Remarkably, these logistic regression models, when fed with
the pre-trained WSI representations, achieve performance metrics that either match
or exceed those obtained from fully supervised MIL methods.
Therefore, since instance aggregation is conducted without supervision in our model,
the approach effectively converts a weakly-supervised problem -classification of WSI-
into a simple fully supervised one -classification of WSI embeddings-.
To the best of my knowledge, this is the first algorithm capable of generating
competitive WSI representations without requiring labelled data.

MIL model used Beyond mere architectural refinements, an ensemble approach
provided substantial gains in performance. Specifically, in Chapter III, I demon-
strated that ensembling multiple MIL models could yield good improvements,
achieving up to a 5-point increase in the AUC for the HRD binary classification task.
In the same chapter, I also provide a benchmark of some MIL algorithm (mostly
these one) and, in accordance with (Ghaffari Laleh et al. 2022), show the suprising
efficiency of the most basic MIL pooling functions -bag or instance max or mean-.

Parallel to Chapters III and IV, other research teams have published findings that
align with our conclusions on the efficacy of SSL for training tile-embedders (De-
haene et al. 2020; Saillard et al. 2021; Schirris et al. 2021). SSL has rapidly gained
traction as a pivotal technique for enhancing MIL training.

Complementing these developments, extensive research has been devoted to un-
derstanding the nuances of SSL techniques in histopathology (Kang et al. 2022).
Other teams have advanced the state of tile-level SSL through key technological
innovations such as Visual Transformers and masked modelling. These innovations
have led to substantial performance gains over traditional SSL frameworks (Richard
J. Chen, Ding, et al. 2023; Filiot et al. 2023; X. Wang et al., n.d., 2022; Xiang and
Zhang 2022).

II.2 Addressing the scarcity of labelled data in
histopathology

Collecting a large dataset of labelled histopathological images, whether at the WSI-
level or tile-level, poses substantial challenges in terms of cost, time, and feasibility.
As elaborated in the introductory section, the rarity of labels in histopathology can
be attributed to several factors: the substantial time investment required by experts,
the associated costs of molecular profiling technologies, and sometimes the rare
incidence of the disease under study.

In front of this observation, our focus here is to survey existing approaches aimed at
mitigating this scarcity, particularly in the context of WSI classification.
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II.2.1 Combining supervision regimes

One general avenue for improvement for WSI classification is to integrate medical
expertise at the more granular level of regions or tiles within the WSIs. Medical
experts typically make WSI-level judgments based on a detailed examination of
specific regions within the slide. For instance, they may zoom in to assess tissue
differentiation in a particular area, evaluate the atypical nature of a cell layer in
a tumor region, or identify a unique lesion that can provide a grade for the entire
tumor. Their insights can be especially valuable when training end-to-end automatic
models like MIL models, as discussed in a zoo of MIL variations.

Given the aforementioned cost constraints, researchers typically face a trade-off:
either fully annotate a limited number of WSIs or provide partial, regional annota-
tions for a larger set of WSIs. In either scenario, the quantity of annotations remains
low. Consequently, utilizing this expert-level, regional information to enhance WSI
classification models becomes a complex task and is an active area of research.

I will here review various approaches aimed at integrating different scales and
types of supervision. The idea of enriching the training process through varying
levels of supervision is not new. For instance, transfer learning can employ a mix of
supervision regimes, utilizing self-supervised learning techniques before transferring
the acquired knowledge to a supervised downstream task. Our emphasis here is on
the concurrent training of a model under multiple types of supervision operating at
different scales. Figure II.3 provides an overview of the various scenarios related to
mixed-supervision in this context.

II.2.1.1. Leveraging global labels for regional-level Tasks

A specific set of approaches within mixed-supervision regimes focuses on solving
tasks at the regional level. For example, the study by Ciga and Martel (2021) aims to
segment histopathological images (not WSIs but region tiles), which is a pixel-level
task, by using both pixel-level mask-segmentation ground-truth and weak image-
level labels (either cancerous or benign). Similarly, the work by Mlynarski et al.
(2019) targets tumor segmentation in magnetic resonance (MR) brain images, using
both pixel-level ground-truth and global MR labels for supervision.

These works can be located in quadrant B.3 of Figure II.3. They have access to a
large dataset with global annotations, but only a subset includes detailed pixel-level
annotations. This configuration represents a moderately high level of data-labelling
cost, and annotation is exhaustive as all pixels in the locally annotated images
possess defined labels.

Both studies employ similar strategies involving multi-headed architectures inspired
by multi-task machine learning frameworks. In the case of Ciga and Martel (2021), a
ResNet18 architecture is used, where the outputs of fourth convolutional block serves
as segmentation masks, and a pixel-level segmentation loss is computed with them.
Additionally, the framework includes the optimization of a classification loss, derived
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global label. The axes represent the availability of regional annotations at both
slide and regional levels. Colors indicate the cost of each dataset configuration.
Regional annotations may be available for all slides or a subset (rows); they
may be partial -i.e. tile annotations- or exhaustive -i.e. segmentation maps-
(columns). The arrow indicates the path of increasing cost, as well as the
numbering of the quadrants.
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from the ResNet18 output. On the other hand, Mlynarski et al. (2019) utilizes a
U-Net (Ronneberger, Fischer, and Brox 2015) with an added MLP classification head.
Training batches include images both with and without local annotation, and the
loss function optimized is a linear combination of classification and segmentation
losses.

The shared weights in these architectures are expected to benefit from learning
both tasks, thereby improving performance on test data. The results support this
expectation, where both classification and segmentation metrics improve when
employing dual supervision. The studies also highlight that there exists an optimal
ratio for incorporating weak labels. Below this threshold, additional information can
still be extracted from weak supervision, whereas exceeding it introduces noise that
hampers performance.

II.2.1.2. Enhancing global tasks with regional annotations

Another focus within mixed-supervision research is to enhance global tasks, such
as WSI classification, by leveraging a subset of localized annotations. A concrete
example is the study by (Tourniaire et al. 2021), which addresses this problem using
the Camelyon16 dataset. The Camelyon16 dataset (Ehteshami Bejnordi et al. 2017)
comprises 399 WSIs of sentinel lymph nodes, annotated for the presence or absence
of metastases. All but 20 of these images are furnished with pixel-level segmentations
of all metastases, situating the dataset in quadrant B.4 of Figure II.3—the most costly
but accurate category. The task at hand is to classify WSIs based on the presence of
metastases.

Tourniaire et al. (2021) adapted the CLAM algorithm (Lu et al. 2021), which was
previously discussed, to incorporate such local annotations. CLAM is an attention-
based MIL algorithm with an additional instance clustering objective using tiles
pseudo-labels. In the initial algorithm, tiles are pseudo-labelled by the attention
mechanism, where high attention scores are expected to correspond to morpho-
logical patterns positively associated with the class label, and low attention scores
inversely (I question this hypothesis in Section II.3.1.2).
In their adaptation, Tourniaire et al. (2021) use hard labels from the local anno-
tations to randomly sample positive and negative tiles to optimize the clustering
objective. This enables CLAM to simultaneously optimize for both tile and slide
level objectives. Training proceeds in two steps: an initial phase utilizing slides with
local annotations, followed by training on the entire dataset in a weakly supervised
manner.

The approach demonstrates efficacy in incorporating local annotations into the MIL
framework, resulting in improved slide-level classification. However, this strategy
necessitates exhaustive local annotations, meaning segmentations, to facilitate robust
sampling of both positive and negative tiles during training.
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II.2.1.3. Contributions

Mixed-supervision strategy using inexpensive regional annotations In Chap-
ter IV, I introduce a mixed-supervision approach suitable for quadrant 1-2 of Fig-
ure II.3. The study’s goal, based on the TissueNet dataset from the SFP’s first data
challenge, was to predict the grade of epithelial lesions in cervical biopsies. The
grade of a biopsy is determined by its highest-graded lesion, which can be directly
expressed as a MIL assumption. During labelling, expert pathologists identified 3 to
5 regions with bounding boxes and the grade of the lesion present in it, with at least
one region containing a lesion that dictates the slide’s grade. We thus had both slide
labels and a small annotated tile dataset (~5000 images).
Chapter IV propose a multi-head strategy that combines tile-encoder fully-supervised
training with self-supervised contrastive learning. This encoder is later integrated
into a MIL setup for slide classification.
Table IV.3 demonstrates that pre-training the tile encoder with a small annotated
tile dataset significantly enhances performance. However, this is only effective
if the tile encoder has undergone prior self-supervised learning. An encoder
pre-trained solely on the supervised task did not outperform one with ImageNet
pre-trained weights, despite good tile-level classification performance (see Table D.1).

A tile-classifier filter as an alternative to manual segmentation I demonstrate
in Chapter VI that for the tasks benefiting from preprocessing steps like tumor
segmentation (Jakob Nikolas Kather et al. 2020), employing a tile-classifier offers an
effective compromise. Specifically, this tile-classifier is trained on a small, randomly
chosen subset of tiles’ embeddings and utilizes binary labels (keep/don’t keep). This
strategy effectively balances expert annotation time with the performance of the
subsequent classification task.

II.2.2 Dealing with batch-effects

WSI classification datasets often suffer from a limited number of WSI-level labels,
generally containing fewer than 1,000 slides. This limitation significantly amplifies
the influence of batch-effects on algorithms trained on such datasets. Batch-effects
refer to variations that occur due to differences in data acquisition, handling, or
other experimental conditions. Unlike larger datasets where the impact of spurious
correlations is diluted, the problem is exacerbated in smaller datasets.

Compounding this issue is the practice of amalgamating datasets acquired from
different healthcare centers to increase dataset size. As previously discussed in
the introduction, data acquisition protocols can introduce visual variables that may
spuriously correlate with the target variable. The greater the number of contributing
centers, the higher the probability of such spurious correlations arising. For instance,
Figure II.4 shows that the center of origin often correlates with various classification
targets.

In such cases, the risk of predicting the spurious correlate rather than the true
target variable is heightened. Furthermore, it has been reported that classification
algorithms can even amplify existing biases in the data, leading to predictions more
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Figure II.4.: Tumor characteristics of breast cancer across sites with 20 or more
slides in TCGA. Adapted from (Howard et al. 2021)Each rows is a tumor
characteristic, potentially a target variable that one would want to predict
from WSI. Columns are different centers. It appears clear that the repartition
of the target variable candidate is highly dependant from the center of origin,
which could lead to spurious correlation between visual features related to
WSI acquisition protocols and the target variables.
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correlated with the confounding variable than the actual label (J. Zhao et al. 2017).
This phenomenon, known in the machine learning community, is addressed in fair-AI
research, where the aim is to make predictions independent of certain protected
classes, such as ethnic origin or sex.

For histopathology datasets, Howard et al. (Howard et al. 2021) showed that
the site of origin for WSIs could be accurately predicted in TCGA. They further
proposed a dataset stratification strategy to ensure unbiased evaluation of a model’s
generalization capabilities, by making sure that the training and testing sets are
composed of samples from different centers. This approach led to a significant
drop in classification performance in 51 out of 56 tasks across the TCGA dataset
when adopting site-aware dataset splits. Some variables even became entirely
unpredictable, thereby confirming that the model had learned features that were
partially or entirely tied to the center of origin.

Various strategies have been employed to mitigate these challenges outside of the
computational pathology field, including of course constructing intentionally un-
biased datasets (Richard J. Chen, Wang, et al. 2023). Other methods range from
adversarial training that aims to eliminate confounder information (Adeli et al. 2020;
Ganin et al. 2016; Q. Zhao, Adeli, and Pohl 2020) to dataset alignment via feature
disentanglement (Dwork et al. 2011; Tartaglione, Barbano, and Grangetto 2021).
Image normalization techniques, such as grayscale and Macenko normalization (Ma-
cenko et al. 2009), have been explored but show limited impact on site-predictability
(Hari et al. 2021; Howard et al. 2021; Zanjani, Zinger, and Bejnordi, n.d.).

Z. Wang et al. (2020) benchmarked key bias-mitigation strategies in natural image
datasets, revealing that “strategic sampling” is surprisingly competitive, although
it requires sufficient samples per attribute of the predicted classes (health centers
for instance). Yet, mitigating biases usually comes at the cost of reduced model
performance (Richard J. Chen, Wang, et al. 2023).

Husky classi�ed as wolf Explanation

Figure II.5.: Illustration of the use of a spurious correlation by a classification algo-
rithm. Adapted from (Ribeiro, Singh, and Guestrin 2016). The explanation
shows portions of the image on which a classification agorithm based its incor-
rect prediction -wolf instead of husky-.

Biases also complicate model interpretation. Techniques like LIME (Ribeiro, Singh,
and Guestrin 2016) can highlight spurious correlations, as demonstrated by the
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well-known example where a model mistakingly identified a husky as a wolf based
on the snowy background (Figure II.5). In histopathology, biases may manifest in
ways not easily discernible by the human eye, making it challenging to separate
“good” model interpretations from misleading ones.

II.2.2.1. Contributions

Bias-mitigation strategy In Chapter III, I address dataset biases and introduce
a strategy for bias mitigation along with an easily interpretable measure for bias
in the model’s prediction. This study utilizes a dataset of WSIs from the Institut
Curie hospital, collected within a period spanning over 15 years. The objective is
to predict the status of homologous recombination (HR) in breast cancer patients
based on these WSIs. Importantly, the cohort was specifically enriched with homolo-
gous recombination deficient (HRD) patients after a particular date—following the
demonstration of the clinical significance of HRD status. Coinciding with this date, a
modification in the WSI acquisition protocol occurred at the hospital, most notably
affecting the fixation step, as illustrated in Figure I.3. This change was found to be a
technical confounder, biasing the predictions made by the developed MIL model.
In addition to these technical confounders, the study also identifies biological
confounders, specifically the molecular subtype of breast cancer, which likewise
biased the HR status prediction. This biological confounder was also present when
predicting HR status in the public TCGA dataset. I propose a strategy to mitigate both
types of biases through strategic sampling of mini-batches, while aiming to minimize
the divergence of this new sampling distribution from a uniform distribution. Until
the TCGA study by Howard et al. (2021), dataset biases had not received adequate
attention in the field, in my opinion. Indeed, very recently, this question has been
ignored even in high-impact studies, thereby raising discussions in the scientific
community about the generalizability of reported results (Richard J. Chen et al.
2022; Howard, Kather, and Pearson 2022). My work on bias identification and
correction therefore contributed to the awareness of the computational pathology
domain to this problem and demonstrates that strategic sampling is an efficient
strategy to mitigate bias in digital pathology studies.

Moreover, the most effective bias-mitigation strategy has been found to be the
training of separate, independent classifiers for each protected attribute (Z. Wang et
al. 2020). However, sub-datasets sharing the same protected attribute are inevitably
smaller than the original dataset. In this context, the work presented in Chapter V
indirectly contributes to this issue by the development of a model that enables the
training of robust, generalizable predictors even on tiny datasets.

Using a curated dataset for phenotype-related discoveries In Chapter III, I
discuss how we utilized deep-learning models and their interpretations to explore
the phenotypic consequences of the HR status. I argue that when the goal is to
discover new visual correlates, models should be trained on smaller but carefully
curated datasets. Given the presence of technical and biological confounders, we
opted to use a model trained on a carefully curated, bias-free dataset for subsequent
interpretation. This approach allowed us to isolate the un-altered signal related to
HR status in the cohort.
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II.2.3 Dealing with the size of WSI datasets

At the risk of repeating myself: WSI datasets are often small compared to other
domain datasets. First, acquiring labels for these datasets can be a costly endeavour,
involving technologies such as Next-Generation Sequencing, RNA sequencing data,
or manual annotations by medical doctors. Second, the scale of the healthcare center
contributing to the dataset may be limited. Third, the rarity of specific diseases could
necessitate prolonged data collection efforts. The datasets used in the early phases
of clinical trials often comprise also a small number of patients. Finally, training
models on carefully curated sub-populations to mitigate biases could further reduce
the size of the dataset.

Consequently, mastering the art of training on small datasets is imperative, as this is
a common challenge in WSI processing.

II.2.3.1. Overfitting of MIL models

Traditional MIL models have shown a tendency to overfit when trained on small
datasets. Campanella, Hanna, Geneslaw, Miraflor, Silva, et al. (2019) trained their
models on a large dataset comprising 44,732 WSIs, roughly equivalent to ~88
ImageNet datasets in terms of tiles. Their work indicated that the error rate did
not saturate even with such a large dataset, and a minimum of 10,000 slides was
required to achieve near-clinical classification performance. Below this threshold,
the error rates increased disproportionately, pointing to the issue of underperforming
models through overfitting. Indeed, a WSI comprises a large matrix of tiles, each
containing hundreds of features. However, only a fraction of these tiles is usually
relevant for classification, rendering the rest as noise. This high signal over noise
ratio may promote overfitting.

II.2.3.2. Improving label-efficiency

CLAM (Lu et al. 2021) aims to enhance label efficiency by adding a clustering
objective to the learning process. Apart from optimizing for WSI classification, the
model also focuses on clustering the tile embeddings, pseudo-labelled by its attention
head. When trained on a small subset of the data, this additional clustering objective
led to significant improvements, as evidenced by an increase of 10 AUC points in
lymph node metastasis detection tasks and approximately 2 AUC points in lung and
renal cancer subtyping.

SSL models have also shown excellent label-efficiency (T. Chen, Kornblith, Swersky,
et al. 2020; Azizi et al. 2023). Using embeddings from SSL models pretrained
on large datasets can result in good performance even on smaller datasets. This
observation holds true at the tile-level (X. Wang et al. 2022; Kang et al. 2022;
Ciga, Xu, and Martel 2021). However, the question is still pending on whether this
label-efficiency transfers to the slide level when using an SSL pretrained encoder
within an MIL architecture.
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HIPT (Richard J. Chen et al., n.d.) utilizes hierarchical Vision Transformers (ViT)
(Dosovitskiy et al. 2020) and trains them sequentially via the DINO framework
(Caron et al. 2021). The approach successfully pre-trains embeddings for regions as
big as 4096 square pixels without supervision. A final ViT trained on top of these
embeddings with WSI weak labels exhibits improved label-efficiency at the WSI level.
Despite these advancements, the technique has yet to achieve success in pre-training
complete WSI representations.

II.2.3.3. Contributions

Giga-SSL for increased label-efficiency In chapter Sections V.1 and V.2, I in-
troduce Giga-SSL, the first self-supervised learning framework designed to generate
embeddings for full WSIs. Utilizing tile encodings from a conventional SSL pre-
trained network, this framework focuses on training the aggregation component or
MIL component. This framework, which requires approximately 10 hours to train on
the entire TCGA dataset, can easily scale to datasets that are orders of magnitude
larger.
In terms of label-efficiency, logistic regression models trained on top of WSI embed-
dings generated by Giga-SSL show remarkable results. Specifically, when utilizing
just 50 slides for downstream classification, Giga-SSL outperforms traditional MIL
frameworks like AttentionMIL (Section V.1) and CLAM (Section V.2) by an average
of 6.3 and 7 AUC points across five classification tasks.
Lastly, Giga-SSL’s effectiveness extends to predicting point mutations in the TCGA
dataset, as demonstrated in Section V.2. We hypothesize that this success can be
attributed to two factors: first, the use of an SSL pre-trained tile encoder, which is
not employed in the MIL model used for comparison (Jakob Nikolas Kather et al.
2020); and second, the cumulative label-efficiency advantages of Giga-SSL. This
is particularly relevant for mutation prediction tasks that frequently involve highly
imbalanced classifications; the mutant class is significantly less common than the
wild type. Such a situation can closely resemble a scarce data regime: the minority
class consists of very few individuals. Supporting this, it has been shown that SSL pre-
training enhances performance in highly imbalanced tasks (Chuyan Zhang, Zheng,
and Gu 2023).

II.3 Noise and uncertainty of labels

Noise in labels refers to incorrect label assignments within a dataset. Such noise
may stem from a variety of sources. Human error during the labelling process
is a common origin. Additionally, the ‘distance’ between the WSI and the label
acquisition can introduce noise (see Figure I.4). For example, a label might be
determined based on measurements from a different tissue block than the one
displayed in the WSI. This could result in the label being influenced by a different
clonal population of cancerous cells. Or again, if the label is linked to patient-level
outcomes such as survival data, which could be influenced by other factors like
environmental or societal variables. Generally, the further the label and the WSI
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are from each other in terms of data acquisition, the greater the likelihood for noise
since additional causal factors apart from the WSI can influence the label.

Label uncertainty is more ambiguous than label noise and generally applies to the
entire dataset. This uncertainty falls into two categories:

1. Strong uncertainty arises when it’s unclear whether a discernible signal exists
in the WSI.

2. Weak uncertainty arises when the visual features supporting the label are not
known a priori.

The primary source of this uncertainty is our incomplete knowledge of the phenotypic
markers for the variables we aim to predict. This gap in understanding leads to
challenges in algorithm selection for these ill-defined problems and complicates the
task of establishing fair benchmarks.

On the positive side, the prediction of uncertain labels can reveal complex and
previously unknown statistical links between input and output variables, and thus
help formulating hypotheses about causal relationships. In this scenario, AI acts like
a hypothesis generator potentially revealing new morphological biomarkers, and
ultimately contributing to our understanding of disease mechanisms.

II.3.1 Uncertainty: deep learning as a machine-teaching tool

To extend our understanding of trained predictive models, the field of model inter-
pretability offers a robust toolkit.

II.3.1.1. Interpretability in machine learning

Interpretability serves multiple purposes. One primary use is to refine the archi-
tecture of a model by focusing on its failure modes, thereby aiding in debugging
and pointing to limitations of the tested method. It can also uncover biases in
the data, exemplified by the wolf/snow bias, as discussed in Figure II.5. Further,
interpretability ensures that the machine learning models align with societal values,
particularly in the context of fairness and protected attributes. Given its broad
applications, interpretability has become a subject of extensive research across all
machine learning disciplines. The techniques within this field can generally be
categorized into two types: local explanations and global explanations.

Local Explanations Local explanations aim to explain the reasoning behind a
model’s specific prediction on an individual data point. This involves analyzing the
model’s behaviour in the proximity of the data point. Techniques such as SHAP
(Lundberg and Lee 2017) and LIME (Ribeiro, Singh, and Guestrin 2016) assess
how altering a data point influences the model’s decision. Specifically, LIME masks
random sections of images to observe model behaviour, whereas SHAP examines
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feature importance with feature mixing. Methods like GradCAM (Selvaraju et al.
2020) and its derivatives (Shrikumar et al. 2017; Smilkov et al. 2017; Sundararajan,
Taly, and Yan 2017) backpropagates the gradient of the predicted logits on the
input image - illuminating the significant regions in an image related to a specific
prediction. However, these approaches have limitations (Binder et al. 2022) and
should not be used exclusively. Counterfactual explanations also offer a way to
scrutinize a model’s decision boundary (Zemni et al. 2023). The objective is to
identify an image that is semantically closest to the original but would result in a
different prediction from the model.

Employing local explanations is particularly beneficial for understanding a model’s
failure modes. In medical applications, such as histopathology, these explanations
can guide clinicians or pathologists by offering model-derived insights that can be
compared to human interpretations.

Global Explanations Global explanations extend beyond the scope of individual
predictions to provide insights at the dataset level. The focus here is not on explain-
ing a model’s choice for a specific sample but understanding the features in the
dataset that influence the model’s general decision-making. Often, deriving global
explanations requires starting with local explanations. The next step is to aggre-
gate these local explanations across the dataset, which presents its own challenges.
The difficulty lies in designing local explanation methods allowing for full dataset
integration - for example, there is not straighforward way to integrate GradCAM
heatmaps at the dataset scale. Here, both the local explanation and the aggregation
method need to be carefully chosen in order to provides meaningful results.

A prominent approach for global explanations is TCAV (Testing with Concept Acti-
vation Vectors) (B. Kim et al. 2018). In this method, the user defines a “concept”
by grouping images that represent it. For instance, the concept of ‘stripes’ could be
represented by a set of images featuring striped objects or animals. A designated in-
termediate layer l in the classification neural network is selected, and its activations
are computed for the concept images as well as a random set of images. A linear
classifier is then trained on these activation vectors to define a concept activation
vector vC .

Subsequently, for each image-prediction pair, the gradient of the activations at layer
l concerning the prediction is computed ∆l. This gradient indicates the direction
along which the prediction varies. The dot-product EC = ∆l · vC measures the
influence of that concept on the prediction and is suitable for aggregation to create
global explanations. For example, the average measure for all images classified as
‘zebra’ would likely indicate a high influence of the ‘stripe’ concept.

Further developments have improved upon these concept-based methods. Recent
research aims to define ‘complete’ concepts that are sufficient to explain a decision
(Yeh et al. 2020). Other work integrates the concept design directly into the network
architecture (Koh et al. 2020).
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II.3.1.2. Interpretability in WSI processing

In the field of histopathology, interpretability also has the potential to guide new
scientific discoveries. One contributing factor to the widespread use of MIL in WSI
processing is its architecture, which allows for relatively straightforward interpreta-
tion. Specifically, the functions g or P (see this section) can incorporate tile-specific
information such as classification scores.

As a practical example, Courtiol et al. (Courtiol et al. 2019a) employed a similar
approach to predict survival in mesothelioma and used tile classification scores to
isolate tiles with a correlation to survival. Likewise, models like the AttentionMIL
compute attention scores for individual tiles. These scores can serve as an indicator
of the tile’s relative importance in making the overall MIL prediction.

A prevalent approach for interpreting these scores involves generating heatmaps
directly on the WSIs (see Figure II.6). This method is common in most WSI classifi-
cation studies using deep learning (Ehteshami Bejnordi et al. 2017; Lu et al. 2021;
Qu et al. 2021; Schmauch et al. 2020; B. Xu et al. 2019) and provides a local
explanation, allowing users to identify regions that played a pivotal role in model
predictions.

A. B.

C. D.

Figure II.6.: Local attention-based visualization of the best (in red) and worst (in blue)
scoring tiles, as well as the heatmaps for four successful predictions of the
molecular class and HRD. A. Visualization for a triple-negative breast cancer
(TNBC) WSI. B. Visualization for a triple-negative breast cancer (TNBC) WSI.
C. Visualization for an HRP WSI. D. Visualization for an HRD WSI. Outputs
can be obtained with my open-source repository, wsi_mil
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Moreover, these MIL-derived tile scores can facilitate the localization of ROI. For
example, attention scores have been used for weakly-supervised segmentation
tasks, such as localizing metastasis in the Camelyon dataset. These segmentation
performances can sometimes also serve as an indirect measure of the overall MIL
algorithm’s effectiveness.

Global explanations often rely on these tile scores as well. One can pool together
tile scores from an entire dataset and identify the highest and lowest-scoring tiles.
While interpreting these scores is generally straightforward for models that directly
implement MIL assumptions (Courtiol et al. 2019b), it becomes less clear when
dealing with attention scores. In the case of CLAM (Lu et al. 2021), high attention
scores are interpreted as positive evidence for a class prediction, and low scores as
negative evidence, an assumption we consider to be generally misleading, because
nothing in the model construction assures that low attention tiles will negatively
participate to the prediction.

Indeed, following the assumption about attention scores, low-attention scores trans-
lates to useless tiles. However, we also find this “importance” interpretation of the
attention score quite misleading.

In models like AttentionMIL, the WSI representation vector VX is computed as a
weighted sum of the tile embeddings: VX = aX · g(xX) =

∑
i axig(xi), where aX is

the vector of attention scores for each tiles of X. The influence of a tile xi in the
norm of the bag representation VX is thus proportional to its attention score ai:

∥∆VX(xi)∥ = ai∥g(xi)∥

However, this influence is also dependent on the norm of the tile embedding ∥g(xi)∥.
When g is trained jointly with C (the attention network), and there is no normal-
ization of embeddings, interpreting the attention score becomes nontrivial and
must be considered alongside the norms of the embeddings. This complexity could
potentially explain the subpar performance of AttentionMIL in weakly supervised
segmentation tasks.

II.3.1.3. Contributions

A Global Explanation Algorithm for AttentionMIL To address the interpretability
challenges in AttentionMIL, I first removed the tile embedding network g as described
in Chapter III. Therefore, P acts directly on the pre-trained tiles embeddings E(x).
This step was essential for resolving ambiguities in the interpretation of attention
scores, highlighted in Chapter III. Specifically, both negative and positive evidence
for a prediction can exhibit high attention scores, a phenomenon that can mislead
interpretation efforts.
In the same chapter, I introduce a new algorithm aimed at providing a global
explanation for AttentionMIL. This algorithm leverages attention scores to
filter out less relevant tiles and thus to focus the subsequent steps on highly
relevant tiles only. It uses the fact that the bag representation VX and the
tile embeddings E(x) live in the same vector space. This enables the decision
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network, initially trained to classify VX , to be repurposed for classifying in-
dividual tile embeddings. We interpret these tile classification scores as their
“signed” contribution to the overall WSI prediction: tiles with positive scores
provide positive evidence, while those with negative scores serve as negative
evidence. This procedure of scoring an individual tile using the decision network C
can be interpreted as classifying a WSI that predominantly consists of this specific tile.

New morphological patterns associated to HRD The resulting interpretations
themselves stand as contributions to the field. In Chapter III, the interpretation ap-
proach not only corroborated the association of HRD with well-known morphological
features like necrosis and high nuclear atypia but also uncovered a new relationship
with a specific kind of fibrosis surrounding the tumor, termed laminar fibrosis.

WSI latent space interpretation In Section V.3, we put forth flexible methodology
for interpreting the latent space of WSI embeddings -outputs of the Giga-SSL models-
using linear models. Our method involves projecting the classifier’s hyperplane onto
a series of user-defined concepts, or interpretable WSI labels, such as the number
of lymphocytes or the size of the tumor. This process aids in identifying specific
morphological profiles that are descriptive of a given task, thereby providing a “global
explanation” for it.
We demonstrate the scalability of this approach and its applicability to datasets that
were not part of either the Giga-SSL model’s training or the interpretation method’s
parametrization.

Recently, a notable advancement in the area of morphological prognostic factors has
been made through a two-part study. In the initial phase, Wulczyn et al. (2021)
utilized a deep learning system to predict overall survival in patients with colorectal
cancer. Alongside the predictive model, the researchers developed an interpretation
method that identified a novel histo-prognostic factor, Tumor Associated Fat (TAF).

Subsequently, L’Imperio et al. (2023) validated this newly discovered feature with
the help of human pathologists. The pathologists were trained to recognize TAF
using the data patches extracted from the initial study (Wulczyn et al. 2021). After
the training, these pathologists independently graded slides from a new colorectal
dataset, with respect to the TAF pattern. Their assessments not only displayed signif-
icant prognostic value but also exhibited reasonable inter-pathologist agreement.

This sequential approach is a convincing proof-of-concept for machine-teaching in the
medical field. Adopting a similar validation protocol for the morphological pattern
that we found associated to HRD (laminated fibrosis for instance) would offer a
promising perspective.

II.3.2 Decrypting and mitigating label noise

Noise in the labelling process is a common issue in the field of medical imaging,
and it can affect both tile-level and WSI-level tasks in computational pathology. The
sources and types of this label noise can vary significantly. For example, one form of
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noise stems from expert annotation errors. This can be evidenced by the relatively
low agreements of human annotators on challenging cases (Costantini et al. 2003;
Krane et al. 2022).

To explore the impact of such expert-induced label noise, a study by Hekler et al.
(2020) focused on a skin cancer classification dataset derived from dermatoscopic
images. This dataset contains both expert-provided labels and biopsy-confirmed
labels, the latter being considered noise-free. Their findings revealed that CNNs
trained on expert labels exhibited a 10% drop in accuracy when tested on a noise-free
dataset, compared to their performance on an expert-labelled test dataset.

It is commonly assumed that difficult or borderline cases are the one responsible for
label noise. These ambiguous cases, that can exhibit characteristics of several classes
simultaneously, often demonstrate low inter-observer agreement among experts. But
does this uncertainty observed within expert assessments translates to the trained
algorithm ?

A growing body of research is aimed at developing reliable uncertainty measures
for neural networks (Lubrano et al., n.d.; Mehrtens et al. 2023). Utilizing such
confidence scores may help mitigate the impact of label noise during network
inference, particularly by excluding predictions with high uncertainty (Mehrtens et
al. 2023).

Another facet of label noise relates to cases where the provided labels may not
accurately capture the biological state in the image. For example, the binary labels
used for HRD prediction, as discussed in Chapter III, are derived from a continuous
measure. Such arbitrary binarization can introduce noise and provoke a loss of
information, particularly for borderline cases. In these instances, Nahhas et al.
(2023) suggests that regression-based deep learning models, trained on continuous
labels, perform better than their classification-based counterparts.

However, it’s worth noting that the existing solutions for mitigating label noise
primarily address issues with borderline cases. Mehrtens et al. (2023) specifically
identifies different types of label noise in their work, which benchmarks various
confidence scores for machine learning predictions. They explore a tile-classification
task using the Camelyon17 dataset, where the labels are either ‘tumor’ or ‘healthy.’
To study the impact of noise, they create two distinct datasets with controlled levels
of label noise.

• The border dataset is created by flipping the labels of tiles at the border of the
tumor area. These tiles are often borderline cases containing both cancerous
and healthy tissue.

• The uniform dataset involves flipping labels randomly across the entire slide.
Unlike the border dataset, the uniform dataset includes blatant mislabelling
of clearly tumorous or healthy tiles. This type of noise is considered unreal-
istic as it doesn’t mirror the variability commonly seen in real-world expert
annotations.

While existing confidence measures effectively identify mislabelled samples in the
border dataset, they fall short in detecting erroneous labels in the uniform dataset.
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Therefore, current approaches are limited in addressing label noise that is not
associated with borderline cases.

II.3.2.1. Contributions

Label noise due to tumoral heterogeneity In the study outlined in Chapter VI,
I aimed to predict the molecular subtypes of cholangiocarcinomas using RNA-seq
analysis on tumor samples. These labels were attributed at the patient level. For each
patient, we had access to multiple WSIs, some of which originated from the same
sample used for RNA-seq analysis, termed paired WSIs, and others from different
samples, termed unpaired WSIs.
Interestingly, the results showed that models trained on all available WSIs performed
worse than those trained exclusively on paired WSIs when subsequently tested
on paired WSIs. I hypothesize that this reduction in accuracy is attributable to
noise introduced by the unpaired WSIs. Specifically, I suspect that intratumoral
heterogeneity is the source of this noise.
This conjecture is supported by the nature of intratumoral heterogeneity itself. Be-
cause of this heterogeneity, certain unpaired WSIs may exhibit characteristics that are
vastly different from their corresponding paired WSIs, even though they share the
same label. This phenomenon would introduces the type of noise that was previously
considered unrealistic by the uniform dataset.
We thus hypothesize that such noise exists in WSI classification tasks and that it may
be a widespread issue.
For example, I speculate that most TCGA-based classification tasks, such as those
explored in Section V.2, are likely subject to this specific kind of label noise. This
speculation is further substantiated by the study conducted by Jakob Nikolas Kather
et al. (2020). Surprisingly, they found that many genetic signatures and mutation
tasks were more accurately predicted using the frozen WSIs from TCGA, despite their
ostensibly lower quality compared to FFPE slides. This observation, which remained
unexplained, may be accounted for by the influence of intratumoral heterogeneity.
Indeed, it’s important to note that the biological assessments used to produce genetic
signature labels in TCGA are based on these same frozen samples, making them
paired slides, while the FFPE slides are unpaired.
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Figure III.1.: Mosaic of breast cancer tiles from the Curie Institute. Made thanks to
github.com/xstc55/ImageMosaicBVH.
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Preface

This work, my first PhD project, spanned almost the entire duration of my doctoral
studies and resulted in a published article. It underwent many twists and turns, and
its structure- which includes several focus points- reflects our research journey.

The idea of Guillaume Bataillon and Anne Vincent-Salomon initiated the project:
predict Homologous Recombination (HR) status in breast tumors using only H&E
stained slides. HR-deficient patients have been shown to be susceptible to specific
medications like PARP-I or platinum salts, but current molecular tests for HR status
are costly. The clinical implications of such a prediction tool were evident, although
the goal was ambitious: There were indeed no known markers for HR status in WSIs,
and it was uncertain if WSIs even contained this information.

Despite these challenges, our classification network yielded very good results, but
they seemed too good to be true. Further investigation into the model’s predictions
revealed a staining inconsistency within our dataset; some slides were stained with
HES, while others were stained with H&E. After re-staining the entire cohort, thanks
to the insights of the clinicians, we identified three additional variables that could
confound HR status prediction. This revelation prompted a deeper investigation into
the potential biases affecting predictive models and the means to prevent it.

Regarding the algorithm developpement,the recent success of self-supervised learn-
ing methods (SSL) in natural image processing inspired us to explore their applica-
bility to WSIs. This led to the development of the two-step multiple instance learning
algorithm detailed in the paper.

Lastly, motivated by the capabilities of deep neural networks for disease analysis, I
addressed shortcomings in current attention-based visualization techniques. This
led to a new method centered on the decision scores of the network. The method
facilitated important morphological findings, which, when medically interpreted,
became a crucial aspect of the paper.

In summary, the tight collaboration between computational biologists and clinicians
from the Institut Curie was instrumental at every phase of this project. Each decision
point was influenced by this interdisciplinary approach and concerns, shaping the
work into its final form. Additionally, this work catalyzed further research at the
Institut Curie. Open-sourcing the code for WSI encoding, model training, and
interpretation spurred its use in a series of related projects, including predicting
prognostic factors in adenocortical tumors, studying the phenotypic effects of ATM
mutations in breast cancer, and utilizing the classification models in a clinical trial
related to HRD.
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Summary:
Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker
of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast
cancers. While large- scale screening for HRD using genomic markers is logistically and economically
challenging, stained tissue slides are routinely acquired in clinical practice. With the objectives of
providing a robust deep-learning method for HRD prediction from tissue slides and identifying related
morphological phenotypes, we first show that digital pathology workflows are sensitive to potential
biases in the training set, then we propose a method to overcome the influence of these biases, and
we develop an interpretation method capable of identifying complex phenotypes. Application to
our carefully curated in-house dataset allows us to predict HRD with high accuracy (area under the
receiver-operator characteristics curve 0.86) and to identify morpho- logical phenotypes related to
HRD. In particular, the presence of laminated fibrosis and clear tumor cells associated with HRD open
new hypotheses regarding its phenotypic impact.

Résumé:
Le déficit en réparation de l’ADN par recombinaison homologue (HRD) est un marqueur clé pour
certaines chimiothérapies dans les cancers de l’ovaire et du sein. Le dépistage à grande échelle de
la HRD est complexe et coûteux, mais au contraire les lames de tissus sont couramment utilisées
en clinique. Nous proposons ici une méthode d’apprentissage profond pour prédire la HRD à partir
de ces lames et identifier les phénotypes qui y sont associés. Nos résultats montrent que les méth-
odes de pathologie numérique peuvent être biaisées et nous offrons donc une solution basée sur
l’échantillonnage des mini-batch d’apprentissage pour y remédier. En utilisant notre méthode sur des
données internes, nous pouvons prédire la HRD avec une bonne précision (AUC : 0,86) et identifier
les phénotypes morphologiques spécifiques associés.En particulier, la présence de fibrose stratifiée et
de cellules tumorales claires associée à la HRD ouvre de nouvelles hypothèses concernant son impact
phénotypique.
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This chapter has been made in collaboration with G. Bataillon (with whom I share first autorship), P.
Naylor, T. Popova, F-C. Bidard, D. Stoppa-Lyonnet, M-H. Stern, E. Decencière, T. Walter and A.

Vincent-Salomon. It has been published in Cell Reports Medicine.

III.1 Introduction

Worldwide, 2.1 million women are newly diagnosed per year with breast cancer
(BC), which is a leading cause of cancer-related death. Improvement of metastatic
BC treatment is therefore of highest priority. BC is a heterogeneous disease with
four major molecular classes (luminal A and B, HER2 enriched, and triple-negative
breast cancer [TNBC]) benefiting from different therapeutic approaches. If early
BC patients have an overall survival of 70%–80%, metastatic disease is incurable
with a short duration of survival (Deluche et al. 2020) . Homologous recombination
(HR) is a major and high-fidelity repair pathway of DNA double-strand breaks. Its
deficiency, HRD, results in high genomic instability (Miller et al. 2020) and occurs
through diverse mechanisms, including germline or acquired somatic mutations in
DNA-repair genes, most frequently BRCA1, BRCA2, or PALB2, or through epigenetic
alterations of BRCA1 or RAD51C. Importantly, HRD leads to high sensitivity to
polyADP-ribose polymerase inhibitors (PARPi) in vitro, (Bryant et al. 2005; Farmer
et al. 2005) a treatment that has been shown to improve metastatic BC progression-
free survival (Tung et al. 2020; A. N. J. Tutt et al. 2021). HRDs induced by BRCA1
and BRCA2 mutations are known predictive markers for response to PARPi (Miller
et al. 2020; A. N. J. Tutt et al. 2021) and platinum salt (A. Tutt et al. 2018), and
somatic HRD has been more recently recognized as a predictive marker for PARPi in
ovarian cancer (Miller et al. 2020) and BC (Chopra et al. 2020).

Several methods have been developed to detect HRD, including genomic instability
profiling, mutational signatures, or integrating structural and mutational signatures
(Popova et al. 2012; Birkbak et al. 2012; Abkevich et al. 2012; Polak et al. 2017;
Davies et al. 2017). Today, HRD is diagnosed in clinical practice by DNA-repair
gene sequencing, germinal in BCs and somatic in ovarian cancers, respectively. For
ovarian cancers, HRD is also assessed by genomic instability tests such as the HRD
MyChoice CDx test (Myriad Genetics).

The majority of hereditary BRCA1 cancers are TNBC and up to 60%–69% of sporadic
TNBCs harbor a genomic profile of HRD.(Chopra et al. 2020; Popova et al. 2012;
Alexandrov et al. 2013) In contrast, the majority of hereditary BRCA2 cancers are
luminal (Lakhani et al. 2002), and HRD also exists in sporadic luminal B (Manié et
al. 2016), or in HER2 tumors (Ferrari et al. 2016; Turner 2017). Of note, germline
or sporadic alterations of BRCA harbor indistinguishable genomic alterations in
triplenegative or luminal tumors (Manié et al. 2016; Holstege et al. 2010). Also,
the recent results of the Olympia trial emphasize the need for an efficient method of
screening for BRCA1 and BRCA2 mutations across all BC phenotypes (A. N. J. Tutt
et al. 2021).

In this context, it seems appropriate to systematically screen for HRD induced by
BRCA1 and BRCA2 mutations not only for TNBC (18% of all BCs), but also for
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luminal B tumors (35% of all BCs). This, however, would represent a real challenge
in clinical practice, both economically and logistically. To overcome these challenges,
we hypothesized that HRD might be predictable from its phenotypic consequences
visible in stained tissue slides acquired in clinical practice. On the other hand, no
specific routinely assessed phenotype has been reported to indicate the presence of
HRD. For this reason, we set out to predict HRD from whole slide images (WSIs) by
deep learning and to identify the underlying morphological patterns.

Deep learning has revolutionized biomedical image analysis and in particular digital
pathology. Traditionally, the majority of methods developed in this field were dedi-
cated to computeraided diagnosis, whereby the objective is to partially automatize
human interpretation of slides in order to help pathologists in their diagnostic task,
e.g., the detection of mitoses(Veta et al. 2015; Ehteshami Bejnordi et al. 2017; Cam-
panella, Hanna, Geneslaw, Miraflor, Silva, et al. 2019). Beyond the automatization
of manual inspection, deep learning has also been successfully applied to prediction
of patient variables, such as outcome (Mobadersany et al. 2018), and molecular
features, such as gene mutations (Jakob Nikolas Kather et al. 2020; Coudray et
al. 2018), expression levels (Schmauch et al. 2020), or genetic signatures (Jakob
Nikolas Kather et al. 2020; Diao et al. 2021). However, one of the major drawbacks
of deep-learning algorithms is their black-box character: because deep learning relies
on automatically generated rather than predefined features with a clear biological
interpretation, it is difficult to know how a decision was made. This has two major
consequences: first, it is difficult to identify potential confounders, i.e., variables
that correlate with the output because of the composition of the dataset and that are
predicted instead of the intended output variable. Second, even in the absence of
statistical artifacts, understanding how the decision was generated in the first place
can point to interesting mechanistic hypotheses and to patterns in the image that
have so far been overlooked.

One way to overcome the latter problem is to use hand-crafted biologically meaning-
ful features (Diao et al. 2021). This, however, requires an extraordinary effort in
terms of annotation. Here, we take a conceptually different approach. Instead of
working in a pan-cancer setting on a large number of signatures, we concentrate
on one single medically highly relevant signature in one cancer type in a controlled
dataset, where we can investigate and correct for potential biases. To understand
how the deep-learning decision is generated and which morphological patterns are
related to the output variable, we propose a visualization technique that overcomes
limitations of current approaches in the presence of complex phenotypes. This paves
the way to “machine teaching,’ ’ i.e., a data-driven approach to identify phenotypic
patterns related to genomic signatures that is capable of pointing to new mechanistic
hypotheses.

In this study, we present an image-based approach to predict HR status from WSIs
stained with hematoxylin and eosin (H&E) using deep learning from a large retro-
spective series of luminal and triple-negative breast carcinomas with a genomically
defined HR status from a single cancer center. Furthermore, we identify the mor-
phological patterns associated with HRD. For this we have to tackle two important
methodological challenges: the identification and correction of biases in the training
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data and the identification of morphological patterns linked to the output variable
in the presence of complex pleiotropic phenotypes. Application of these methods
to our curated dataset allows us to predict HRD with high accuracy and allows the
discovery of decisive, previously unknown morphological patterns related to HRD,
leading to new hypotheses on disease-relevant genotype-phenotype relationships.

III.2 Results

III.2.1 A deep-learning Architecture to Predict HRD from Whole Slide
Images

We scanned the most representative H&E-stained tissue section of the surgical
resection specimens of BC from 714 patients with known HR status. The series was
composed of 309 homologous recombination proficient (HRP) tumors and 406 HRD
tumors (Table C.4).

Because of their enormous size, analysis of WSIs typically relies on the multiple
instance learning (MIL) paradigm (Ilse, Tomczak, and Welling 2018; Maron and
Lozano-Perez, n.d.; Amores 2013; Courtiol et al. 2018). MIL techniques only require
slide-level annotations and share the overall architecture (Figure III.2), consisting of
four main steps: tiling and encoding, tile scoring, aggregation, and decision.

The WSI is divided into tile images (dimensions: 224 × 224 pixels) arranged in a
grid. Background tiles are removed and tissue tiles are encoded into a feature vector.
Instead of using representations trained on natural image databases and unlike
most studies in this domain, we used the self-supervised technique momentum
contrast (MoCo (He et al. 2020); see STAR Methods). This method consists in
training a neural network (NN) to recognize images after transformations, such
as geometric transformations, noise addition, and color changes. By choosing
the type and strength of transformations, we can impose invariance classes, i.e.,
variations in the input that do not result in significantly different representations.
After tile encoding, the feature vector of each tile is then mapped to an attention
score by an NN. The slide representation is obtained by the sum of the individual
tile representations, weighted by the learned attention scores (Ilse, Tomczak, and
Welling 2018). Finally, the slide representation is classified by the decision module
(Figure III.2). We optimized hyperparameters by a systematic random search strategy
(see STAR Methods). For hyperparameter setting and performance estimation, we
used nested 5-fold cross-validation, which allowed us to obtain realistic performance
estimations. All reported performance results are averaged over five independent
test folds (see STAR Methods).
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Figure III.2.: From WSI to prediction. Four major components are used in this end-to-end pipeline. First, the WSIs (x) are tiled, the tissue parts
are automatically selected, and the resulting tiles are embedded into a low-dimensional space (block 1). The embedded tiles are then
scored through the attention module (2). An aggregation module outputs the slide-level vector representative (3) that is finally fed to
a decision module (4), which outputs the final prediction. When training, the binary cross-entropy loss between the ground truth y
and the prediction ŷ is computed and back-propagated to update the parameters of the modules. Both the decision module and the
attention module are multilayer perceptrons, the encoder is a ResNet18, and the aggregation module consists of a weighted sum of
the tiles, the weights being the attention scores.
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III.2.2 HRD prediction with correction for potential biases

III.2.2.1. Prediction results obtained without bias correction

We applied this method to predict HRD from the WSI in The Cancer Genome Atlas
(TCGA) cohort and obtained results (area under the receiver-operator characteristics
curve [AUC] = 0.71, Figure III.3) in line with previous reports (Diao et al. 2021;
Jakob Nikolas Kather et al. 2020; Schirris et al. 2021; Valieris et al. 2020).
While TCGA is an invaluable resource for pan-cancer studies in genomics and
histopathology, it is often seen rather as a starting point whose results need to be
corroborated by other cohorts.36 Furthermore, TCGA contains images from many
centers around the world with potentially different sample preparation and image-
acquisition protocols. While this technical variability might reflect to some degree
what could be expected in clinical practice for multiple institutions, we hypothesized
that to prove the predictability of HRD independently of potential technical and
biological biases, as well as in an in-depth study of morphological patterns related
to HRD, it might be advantageous to work on a more homogeneous dataset where
we can carefully control for potential technical and biological confounders. We thus
turned to our in-house dataset, hereafter referred to as the Curie dataset (see STAR
Methods), with data from 714 patients.

We trained an NN to predict HRD on this carefully curated dataset, and we observed
a prediction performance largely superior to the best reported to date, trained and
tested on TCGA (AUC = 0.88, Figure III.3).

III.2.2.2. Identification and Correction of Biases

As the cohort was generated over 25 years, two experimental variables representing
changes in experimental protocols have been identified as potential confounders
(c1 corresponding to the fixation protocol and c2 to the impregnation protocol, see
STAR Methods).

To measure the confounding effects of these variables on the model predictions,
we developed a bias score (see STAR Methods). This score is close to zero in the
unbiased case and increases with increasing bias. We found that model predictions
were indeed biased by these two confounders (Figure III.3A).

We then devised a sampling strategy that mitigates biasing during training. Bias
mitigation is an increasingly important line of research in machine learning. For
instance, it is a well-known problem in training predictive models for functional MRI
data, where the age of the patient has been shown to be an important confounder
(Varoquaux et al. 2017). While several techniques for bias mitigation exist (Adeli
et al. 2020; T. Wang et al. 2019; J. Zhao et al. 2017; Q. Zhao, Adeli, and Pohl
2020), a recent comparison Z. Wang et al. (2020) indicates that strategic sampling
is the method of choice if the distribution is not too imbalanced. Strategic sampling
aims at ensuring that irrespective of the composition of the training set, each batch
presented to the NN is composed of roughly the same number of samples for each
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Figure III.3.: Bias corrections and prediction performances. (A and B) Estimation of the
bias score of two technical confounders (c1; c2) and one biological confounder
(c3) for the Curie dataset (A) and the bias score of the confounder c3 for TCGA
dataset (B) for different correction strategies. A Mann-Whitney-Wilcoxon test,
two-sided with Bonferroni correction, is performed for each pair of correction
strategies. As detailed in STAR Methods, for each correction strategy a series
of 30 unbiased subtest sets are sampled on which the model’s bias is evaluated.
Error bars indicate standard deviations over the subtest sets. The significance
test is performed on this distribution of 30 estimations. The bias score of
a model is the average of this distribution. ns, not significant (p > 0.05);
p < 0.05, p < 0.01, p < 1 × 103 , ****p < 1 × 104. (C) Receiver-operating
characteristic curves. The name of each model indicates the origin of its
training set. Indices indicate the correction applied through strategic sampling
(Curiec1 has been debiased with respect to c1). Curieluminals corresponds to
the model trained on a subset containing only luminal tumors.
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value combination of output and confounding variable. Correcting for c1 and c2
resulted in a 4-fold reduction of the bias score in comparison with the uncorrected
model and a slightly lower accuracy (AUC = 0.86, Figure III.3C). These results are
corroborated using the bias-amplification (BA) measure, a metric widely used in the
machine learning fairness literature (Z. Wang et al. 2020; J. Zhao et al. 2017): on
the in-house dataset, correcting for c1 and c2 lowers the BA from -0.02 to -0.05; on
TCGA dataset, the subtype correction lowers the BA from -0.06 to -0.15.

In addition to these technical confounders, we identified the molecular subtype
of the tumor to be a potential biological confounder. Successful correction of this
biological confounder in TCGA (Figure III.3B) led, however, to a dramatic drop in
performance (AUC = 0.63). This result suggests that NN trained on the entire BC
subset of TCGA for HRD prediction without stratification or bias correction might
actually predict to a large extent the molecular subtype, which is also a predictable
variable (AUC = 0.89). This shows that the molecular subtype is indeed a biological
confounder. In our in-house dataset, we decided to build a subtype-specific NN that
specifically predicts HRD for luminal BC instead of applying bias mitigation. The
reason for this decision was 3-fold: first, we argued that a dataset focusing on only
one molecular subtype was more likely to reveal the underlying patterns exclusively
related to HRD; second, HRD prediction in luminal BC is of particular importance
for clinical practice, as very few morphological patterns are known to be related
to HRD in luminal BC, the most frequent BC phenotype; and third, the relatively
low number of TNBCs in our dataset made strategic sampling on three confounding
variables challenging. Therefore, we composed a dataset containing only luminal BC
and setting both technical confounders, leading us to keep 251 BC WSIs (188 HRD
tumors and 63 HRP tumors). We obtained a good, albeit slightly lower performance
of this bias-corrected NN (AUC = 0.83; Figure III.3 and Tab. III.1). The trained
model carefully freed from both technical and biological biases and validated with
respect to cross-dataset performance (Table C.3) was then used for the identification
of morpho logical patterns described in the next section. We additionally performed
benchmarking experiments to evaluate the influence of the tile encoder network and
the MIL algorithm on the classification performances (Tables C.1 and C.2).

III.2.3 Visualization reveals HRD-specific tissue patterns

III.2.3.1. Visualization of attention scores can be misleading

To understand which phenotypic patterns are related to HRD on the WSI, we
turned to visualization techniques for NNs. The used MIL framework is equipped
with an inherent visualization mechanism: the second module of the algorithm,
the tile-scoring module, is in fact an attention module that assigns to each tile
an attention score that determines how much a given tile will contribute to the
slide representation (and thus to the decision). Attention scores are often used for
visualization in the field of digital pathology (Dehaene et al. 2020; Lu et al. 2021;
Mobadersany et al. 2018), in the form of either heatmaps to localize the origin of the
relevant signals or galleries of tiles of interest (tiles with highest attention scores).
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AUC Bacc

Mean SD Mean SD

TCGAraw 0.71 0.10 0.59 0.08
TCGAc3 0.63 0.08 0.54 0.02
Curieraw 0.88 0.03 0.81 0.02
Curiec1+2 0.86 0.03 0.78 0.04
Curieluminals 0.83 0.07 0.72 0.06

Table III.1.: Classification performances Summary of performance metrics. Mean and
standard deviation (SD) are computed over the five test sets of the cross-
validation. The name of each model indicates the origin of its training set.
Indices indicate the correction applied through strategic sampling (Curiec1 has
been debiased with respect to c1). Curieluminals corresponds to the model
trained on a subset containing only luminal tumors. We provide an in-depth
benchmark of the algorithm in Tables C.1 and C.2 and cross-dataset experi-
ments in Table C.3. AUC, area under the (receiver-operating characteristics)
curve; BAcc, balanced accuracy.

However, attention scores do not per se extract the tiles that are related to a certain
output variable; they simply reflect that the tile has been taken into consideration in
the decision. In particular, in the case of genetic signatures, where we would expect
that the output variables can be related to several morphological patterns, analyzing
only the attention scores might thus be limited. Figure C.2 illustrates the results
obtained by attention-based explanation: while we observe one specific cluster for
HRP, most attended tiles seem to be present in both HRD and HRP slides. A possible
explanation is that the HRD/HRP decision might be related to the frequency of
certain tissue phenotypes rather than to their mere presence.

III.2.3.2. The decision-based visualization technique provides a global
explanation of the model

Given these limitations, we propose a visualization protocol that allows us to extract
the tiles that are directly associated with a particular slide-level label. As the slide
representation is the weighted sum of the tile representations, we applied the
decision module, specifically trained to classify slide representations between HRD
and HRP, to the individual tile representations. This gives us a score for each tile
that can be interpreted as the (tile) probability of being HRD or HRP (see STAR
Methods for details). Selecting the tiles with the highest posterior probability for
HRD and HRP, respectively, and projecting the tile representations of this selection
to a low-dimensional space leads to the emergence of distinct clusters corresponding
to different tumor tissue patterns with a clear relation to HRD or HRP and therefore
providing a morphological map of HRD (Figure III.5).

Two expert pathologists labeled these clusters. The HRD signal relied on several clus-
ters: HRD tumors present a high tu-mor cell density, with a high nucleus/cytoplasm
ratio and conspicuous nucleoli. They also show regions of hemorrhagic suffusion
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associated with necrotic tissue. In the stroma, the HRD signal revealed the presence
of striking laminated fibrosis and, as expected, high content of tumor-infiltrating
lymphocytes (TILs). Lastly, one large cluster contained a continuum of several
phenotypes, namely adipose tissue intermingled with scattered and clear tumor
cells, histiocytes, and plasma cells. In contrast, the HRP signal was mostly carried
by one cluster characterized by low tumor cell density, the cells being moderately
atypical, and tumor cell nests separated from the stroma by clear spaces. Notably, it
included a few invasive lobular carcinomas (all of the tiles per cluster are available
in Figures C.6 to C.8).

III.2.3.3. Validation of the morphological patterns

Some of these patterns, namely high-grade and TIL, had been previously associated
with phenotypic hallmarks of HRD in TNBCs (Rakha et al. 2009). To validate these
results in the luminal BC cohort, TIL density and nuclear grade were evaluated for
each luminal tumor of the in-house dataset by an expert pathologist. As predicted
by our algorithm, TILs and nuclear grade were positively associated with the HR
status of the tumor in the luminal subset (mean TIL HRD, 29; mean TIL HRP, 17;
t-test p value, 0.017; mean nuclear grade HRD, 2.7; mean nuclear grade HRP, 2.3;
c2 p value, 1.2 ×10−6). Moreover, a logistic regression trained on the components
of the grade (architecture grade, atypia grade, and mitosis grade) and on the TIL
count estimation has an average AUC of 0.76 (5-fold cross-validation).

To further validate the association of these morphological patterns with HRD, we
turned to the independent TCGA cohort. Despite the modest prediction accuracy
after bias correction, we found that a NN trained on TCGA-extracted morphological
patterns strikingly similar to those obtained from our in-house dataset (Figure C.3),
with the exception of cluster 4 (Figure III.5). Regarding HRP, we were able to
validate all patterns related to HRP, but artifact classes were also identified, which is
unsurprising given the limited slide quality and heterogeneity of TCGA dataset and
may explain the poor classification performance.

To test the subtype specificity of the morphological patterns, we trained a network
on the small TNBC subset of TCGA (129 slides). While classification performances
remain poor (AUC = 0.62), because of the small size and large heterogeneity of the
dataset, the extracted patterns explaining the predictions are in line with the litera-
ture (Figure C.4), suggesting that HRD for TNBC is characterized by high content of
TILs and necrosis, while the retraction figures are still an explanation of the HRP
signal. This result further confirms the specificity of our extracted morphological
patterns and suggests that there are indeed HRD-related morphological patterns
specific to the luminal subtype.

Our NN works with different internal representations. While the tile representa-
tions provided by MoCo permit the emergence of phenotypic similarity clusters
(Figure III.5), internal representations closer to the decision module encode infor-
mation relevant for HRD. The representation in the penultimate layer can therefore
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Figure III.4.: llustration of two phenotypic HRDness trajectories (A) UMAP projection
of the HR status-specific representation of the meaningful tiles relative to the
HRD. HRD-ness is the score given to each tile by the HRD output neuron. Two
tile trajectories have been extracted (blue and magenta) starting from the
same low HRD-ness region, each leading to a different high HRD-ness region.
(B and C) Tiles sampled along each of the trajectories. These are ordered from
low HRD-ness to high HRD-ness and read from left to right and from top to
bottom. Scale bars, 100 µm. (B) Magenta trajectory, toward densely cellular
tumors or inflammatory cells. (C) Blue trajectory, toward fibroinflammatory
tumor changes and hemorrhagic suffusions.
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Figure III.5.: Decision-based visualization. (A) Mechanism of the decision-based visualization. 1: each tile in the whole dataset is scored by the attention module. 2: per slides, the
300 best scoring tiles are selected as candidate tiles. 3: the selected tiles are presented to the decision module, and the logit of the probability of each of these tiles
being HRD or HRP (yellow or green) is kept. 4: finally, the K tiles with maximal probability for either HRD/HRP are selected. (B) Morphological map of the HR status
in the luminal BC cohort. Each dot is the uniform manifold approximation and projection (UMAP) of a tile extracted by the decision-based visualization method.
Crosses (circles) are tiles with high HRD (HRP) logit. Each cluster has been linked to a morphological phenotype by two expert pathologists. We identified six different
morphological phenotypes associated with the HRD and two associated with the HRP. The exhibited tiles have been randomly sampled among each cluster. 228 slides
contributed to the HRP clusters and 232 to the HRD cluster. In total, 249 among 251 slides contributed to the whole figure. The same protocol has been applied to the
public datasets TCGA breast invasive carcinoma (BRCA), TCGA BRCA-TNBC, and TCGA ovarian cancer (see Figures C.3 to C.5, respectively). Scale bars, 100 µm. (C)
Pathological interpretation of the clusters presented in (B).
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be interpreted as encoding “HRD-ness’ ’ of the tiles. Figure III.4 illustrates a low-
dimensional representation of this HRD-ness for the same tiles as those present
in Figure III.5, where point color represents the HRD score (tile probability to be
classified as HRD). From there, we extracted two tile trajectories going from low
HRD-ness to high HRD-ness. The magenta trajectory illustrates the successive visual
changes corresponding to an increase in tumor cells or inflammatory cell density
(from low-density tiles to high-density tiles with large nuclei, nuclear atypia, and
infiltrative lymphocytes). The blue trajectory shows, conversely, a decrease in tumor
cell density replaced successively by an inflammatory reaction and apoptotic cells,
loose fibrosis, and hemorrhagic suffusion associated with necrosis. These different
trajectories illustrate the manifestations of HRD and show the pleiotropic character
of the induced phenotypes. Moreover, the highlighted gradation of these phenotypes
opens the path to a possible reading grid of WSIs for pathologists.

III.3 Discussion

In this study, we set out to predict the HR status in BC from H&E-stained WSIs
and to analyze the phenotypic patterns related to HRD. The prediction of HRD
is an important challenge in clinical practice. The use of PARPi for BC patients
was initiated for metastatic TNBC patients with germline mutations of BRCA1 or
BRCA2. However, BRCA2, as well as PALB2 and a minority of BRCA1 cancer patients,
develop luminal tumors. The necessity of predicting HRD is therefore not limited
to TNBC but extends also to luminal BC. On the other hand, luminal BCs represent
a far more frequent group than TNBC. For this reason, systematic screening of HR
gene alterations for luminal cancers will be problematic and, in many countries,
even unfeasible due to both economic and logistic issues. Therefore, preselection of
patients with a high probability of being HR deficient by analysis of WSIs is a cost-
efficient strategy that has so far only been hampered by the lack of knowledge about
HRD-specific morphological patterns in luminals. Indeed, only high grades and to a
lower extent pushing margins have previously been reported to be associated with
HRD. In this context, the identification of HRD from WSIs by deep learning and the
identification of related morphological patterns could both facilitate the preselection
of BCs for molecular determination of HRD, which is particularly important for
luminal cancers.

TCGA provides a precious dataset from which to train models for the prediction of
genetic signatures from H&E data (Diao et al. 2021; Jakob Nikolas Kather et al.
2020). While we obtained promising results for the prediction of HRD on TCGA
dataset in line with previous reports, we found that this result was partly due to the
fact that the molecular subtype acts as a biological confounder. This was particularly
problematic, as we wanted to investigate the morphological signature of HRD. Of
note, the existence of biological and technical confounders is presumably not limited
to HRD prediction but may concern many genetic signatures. The use of carefully
curated datasets where technical and biological confounders can be controlled for is,
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thus, an important step in investigating the predictability of genetic signatures as
well as the identification of their morphological counterparts.

In most cases, such in-house datasets also contain technical and biological biases due
to the long period during which the dataset is acquired. This motivated us to propose
a method to mitigate bias in computational pathology workflows, based on strategic
sampling. Such strategies are already used in other fields of medical imaging but
have so far, to the best of our knowledge, not been used in computational pathology.
We have shown that this approach can successfully mitigate or even eliminate bias.
In a larger perspective, it is essential to investigate potential confounding variables
in the dataset when applying deep-learning based methods for the prediction of slide-
level variables. Biased datasets can lead to false expectations and misinterpretation.
For this reason, we expect proper treatment of such variables to become a standard
in the field.

While bias correction on TCGA led to a drop in AUC to 0.63, we found that HRD
was predictable in our in-house dataset of 251 luminal BC patients with an AUC of
0.83. While homogeneous datasets do not reflect the variability between centers
and thus limit direct applicability of the trained networks, they allow for controlled
feasibility studies, which now need to be complemented by multicenter studies. In
addition, we will validate this algorithm in a prospective neoadjuvant clinical trial
for which patients’ HRD status will be assessed with the MyChoice CDx test (Myriad
Genetics).

Homogeneous datasets are well suited for the identification of underlying phenotypic
patterns, even in cases where no or few such patterns are known a priori, such
as in the case for HRD. To identify a phenotypic signature related to an output
variable (here HRD), either we can use biologically meaningful encodings, also
known as human interpretable features (HIF), and infer the most relevant features
by analyzing the weights in the predictive model (Diao et al. 2021), or we can
turn to network introspection. The HIF approach relies on detailed and exhaustive
annotations of a large number of WSIs, for instance (Diao et al. 2021), leverage
annotations provided by hundreds of pathologists consisting of hundreds of thou-
sands of manual cell and tissue classifications. Here, we provide a new network
introspection scheme relying on the powerful MoCo encodings, trained without
supervision directly on histopathology data, and a decision-based tile selection that
allows us to automatically cluster tiles and to relate these clusters to the output
variable. Interestingly, while our approach confirms the recently published finding
that necrosis is a hallmark of HRD (Diao et al. 2021) and identifies morphological
features common to HRD in TNBC and luminal BC, such as necrosis, high density
in TILs, and high nuclear anisokaryosis (Rakha et al. 2009), it also points to more
specific patterns that have so far been overlooked. For instance, we found tiles
enriched in carcinomatous cells with clear cytoplasm, suggesting activation of spe-
cific metabolic processes in these cells. Moreover, we found intratumoral laminated
fibrosis as an HRD-related pattern. Also, we were able to validate most of these
patterns on TCGA. This leads to the hypothesis that cancer-associated fibroblasts
(CAFs) within the stroma of HRD luminal tumors may play a role in the viability
and fate of tumor cells. Furthermore, the presence of adipose tissue within the
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tumor suggests first, a different tumor cell density and second, a specific balance
between CAFs and adipocytes in the context of a luminal HRD tumor. The molecular
mechanisms achieving these patterns remain to be determined by in vitro models.

Similar to what we have shown here with respect to HRD, the visualization frame-
work we have developed is versatile and can in principle be applied in the context
of other genetic signatures. In particular, our visualization scheme overcomes the
limitations of the thus far predominating technique of visualizing attention scores
alone. Indeed, attention scores were used previously to identify tumor regions
under weak supervision. However, if the output variable depends on the quantity of
several morphological patterns in contrast to the presence/absence of a single tissue
phenotype, attention scores might not provide a suitable tile selection and visualiza-
tion tool and might thus be ill suited to investigate the underlying morphological
phenotypes. Because the algorithm is fully automated, using the MIL algorithm and
the proposed visualization method can constitute a useful tool for the discovery of
morphological features related to the predicted genetic signatures. This has the
potential to generate new biological hypotheses about the phenotypic impact of these
genetic disorders. To maximize the benefit for the scientific community, we release
the code to train MIL models on WSIs and create morphological maps as well as tile
trajectories publicly and free of charge, and provide detailed documentation.

Altogether, this study provides new and versatile tools for the prediction and phe-
notypic dissection of genetic signatures from histopathology data. Application to
luminal BCs allowed us to show that HRD is predictable from WSIs and to shed light
on the phenotypic consequences of HRD. These tools have the potential to impact
BC patient care.

III.3.1 Limitations of the study

Our study involves a homogeneous, carefully controlled cohort that allowed us to
train a network for HRD prediction with high accuracy and correction for technical
and biological confounders. We could thus convincingly show that HRD is predictable
from WSIs. However, the study was not designed for the demonstration of clinical
applicability. To use HRD prediction in clinical practice, we will need to validate the
workflow on larger, multicenter cohorts.

Furthermore, we have identified morphological patterns related to HRD. While our
validation results obtained from TCGA suggest that the method works robustly and
that these patterns are truly linked to HRD, we will need to validate these findings in
a larger independent cohort. In addition, the development and demonstration of a
mechanistic model explaining these morphological phenotypes will be a challenging
and exciting perspective. Finally, it will be important to further explore the variability
of the morphological patterns in different cancer types.

At a methodological level, we have proposed strategic sampling as a method to
mitigate biases in digital pathology datasets. While we were able to show that this
method is highly effective, it must be noted that it is limited by the number of
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variables we can correct for as well as by the class imbalance it can handle. In some
cases, stratification might therefore be preferable. Furthermore, we have proposed
a method to improve the interpretability of the MIL approach for HRD prediction.
However, it is still difficult to precisely understand how the identified tiles impact
the prediction. For instance, the method does not give information on a potential
hierarchical relation between the morphological clusters. Also, the current strategy
does not allow us to assess whether the tiles of a given cluster influence the decision
by their proportion on the slide, their mere presence, or the simultaneous presence
of tiles from other clusters. A promising methodological perspective is therefore the
improvement of these visualization techniques.
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III.4 STAR Methods

III.4.0.1. Method Details

In-house dataset (Institut Curie) We retrospectively retrieved a series of 715 pa-
tients with HE slides of surgical resections specimens of untreated breast cancer and
a genomically known HR status (Table C.4). The series is composed of 309 Homolo-
gous Recombination Proficient tumors (HRP) and 406 Homologous Recombination
Deficient tumors (HRD). The HRD status was either identified by the presence of a
germline BRCA1/ 2 (gBRCA1/2) mutation or assessed by LST genomic signature
according to Popova et al. (2012) for the sporadic triple-negative and luminal
cancers.
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All patients have been treated and followed at the Institut Curie between 1995
and 2020. The patient agreed for the use of tumor samples from their surgical
resection specimens for research according to the law. Ethical approval from the
Institutional Review Board (Institut Curie breast cancer study group N-DATA190031)
was obtained for the use of all specimens. Clinical data have been retrieved from
the Institut Curie electronic medical records and saved using Research electronic
data capture (REDCap) tools hosted at the Institut Curie.

Public dataset (TCGA) This public dataset is composed of 815 WSI of breast cancer
fixed in formalin (FFPE) and stained in H&E. They are available at https:// por-
tal.gdc.cancer.gov/. Low-resolution WSI, WSI containing artifacts such as large pen
marks, tissue-folds and blurred WSI were removed. The final dataset encompasses
673 WSIs. The HR status of the corresponding tumors was obtained using the LST
genomic signature

Architecture and optimization parameters Hyperparameters have been set thanks
to a random search evaluated through 5-fold nested cross-validation. The benchmark
task is the prediction of the molecular class of the TCGA WSIs. Both the decision
module and the tile-scoring module are multi-layer perceptrons with batch normal-
ization (Ioffe and Szegedy 2015) after each hidden layer. The decision module has
3 hidden layers of 512 neurons, the tile-scoring module has 1 hidden layer of 256
neurons.

Dropout has been fixed at 0.4, the optimizer is ADAM (Kingma and Ba 2014) with
a learning rate of 3e-3. A batch consists of 16 samples of WSI. A sample of WSI
corresponds to a uniform sampling of 300 of its composing tiles. In fact, we observed
that this uniform subsampling of the WSIs regularized training as well as diminishes
its computational workload. Finally, training is performed during 200 epochs.
Training and performance evaluation are done in a 5-fold nested cross-validation
framework.

Each dataset is split into 5 independent folds. For each of these folds, a validation
set is randomly sampled in the complementary 4/5th. A model is trained on the
remaining dataset (= 4/5 * 4/5 th of the total dataset). This process is repeated 10
times for each test fold, then the 3 best models are selected according to their vali-
dation performances, ensembled and finally tested on their test set. This process of
model selection and ensembling drives itself a net improvement of the performances
(see Figure C.1).

Each test and validation set preserves the stratification of the whole dataset with
respect to the target variable as well as the confounding variables in case we correct
for them. The final performance estimation of the model is the performance averaged
over the 5 test performances. During inference time, all the tiles of each WSI are
processed.
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Strategic sampling Strategic sampling is used both for balancing the training
dataset with respect to the output variable (T (X) ∈ {t1, t2, . . . , tm}) and to correct
for biases (B(X) ∈ {b1, b2, . . . , bn}).

If X is a given WSI sampled from the dataset, then T (X) and B(X) are respectively
the target value and the bias value of X. We note |tk| the total number of slides in
the dataset labeled with tk, and |bi| the total number of slides for which the bias
variable takes the value i. |tk&bi| is the total number of slides with label value tk

and bias value bi.

For achieving both balancing with respect to the output and correcting for biases, we
sample the WSIs X in each batch in a distribution P under which P (T (X) = tk) =
P (T (X) = tk′) for all k ̸= k′. And. P ({T (X) = tk} ∩ {B(X) = bi}) =
P ({T (X) = tk′} ∩ {B(X) = bi}) for all i and k ̸= k′. That is, we sam-
ple the slide X depending on its target and bias value with probability:
P (X |{T (X) = tk} ∩ {B(X) = bi}|) ∝ |bi|

|tk&bi| for each i ≤ n, k ≤ n Strategic
sampling is performed on the fly when building the batches. When correcting for
several confounders simultaneously, B ∈ {b1, b2, . . . , bn1} and C ∈ {c1, c2, . . . , cn2},
we simply correct for a new confounder variable that takes values in all combinations
of bi and cj .

Bias score We introduce the following notation: for a WSI XD, sampled in a
dataset D under the distribution PD, T (XD) is the label of XD and B (XD) is the
candidate confounder value of XD (for instance bouin).

We want to measure the bias of a predictive algorithm m that outputs, for each
XD, a prediction m (XD). We moreover define the accuracy Accm of m as: Accm =
E

(
1{m(XD)=T (XD)}

)
The mutual information MI (B (XD) , m (XD)) between B (XD) and m (XD)
measures the mutual dependence between B and m and highlights the bias of
a model. The idea of the bias score is to compute how far away the predic-
tions of a model are from a perfectly unbiased case. To simulate this perfectly
unbiased case, we subsample (with strategic sampling) a dataset Di such that
Ml (B (XDi) , T (XDi)) = 0, i.e. such that the target variable and the confounder
variable are statistically independent in this dataset. If m is unbiased, then we
should observe that MI (B (XDi) , m (XDi)) = 0 too. In contrast, the more m is
biased, the more MI (B (XDi) , m (XDi)) ≥ 0 will be far away from 0 . In order to
obtain a more accurate estimation of the bias score, we iterate this measure over
several unbiased datasets {Di}i≤30. The bias score BS(B, m) is then the average of
MI (B (XDi) , m (XDi)) over i.

Because by construction, BS(B, m) is non-negative, we build an unbiased reference
m∗ such that P ( m∗(X) = T (X)) = Accm, and compute its bias-score as a reference
value.
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Learning MocCo representations For learning MoCo-v2 (Xinlei Chen et al. 2020)
representation we used the MoCo repository available at https://github.com/fac
ebookresearch/moco. We randomly used the following transformations: Gaussian
blur, crop and resize, color jitter, grayscale, horizontal and vertical symmetries, and
a color augmentation in the Hematoxylin and Eosin specific space. (Ruifrok, n.d.)
The training dataset is composed of 5.3e6 images of size 224x 224 pixels, or half the
Curie dataset at magnification 20x (0.46 µm.px) We used a Resnet18 and trained it
from scratch for 60 epochs on 4 GPU Nvidia Tesla V100 SXM2 32 Go. We used the
SGD optimizer with a momentum of 0.9, a weight decay of 1e-4, a learning rate of
3e-3 and a batch size of 512. We used a cosine scheduler with a warm restart on the
learning rate.

III.4.0.2. Visualization methods

The model used to extract the visualizations has been trained on the luminal subset
of the Curie dataset (251 WSI). To benefit from the biggest dataset possible, the
model has been trained on the whole dataset, without using early stopping nor
testing, during 200 epochs.

To generate the attention-based visualization, the highest ranked tile with respect
to the attention score is extracted, for each WSI. The selected tiles are then labeled
according to the label of their WSI of origin. Concerning the decision-based visual-
ization, for each WSI the 300 highest ranked tiles with respect to the attention score
are selected. Among this pool of tiles, the 2000 highest ranking tiles with respect
to the logit of the posterior probability for HRD and HRP are selected. In order to
promote diversity in the extracted images, no more than 20 tiles per slide can be
selected.

III.4.0.3. Quantification and statistical analysis

Technical biases in the Curie dataset Both technical confounders are related to
technical protocols that were modified over time with an unbalanced representation
between the HRD and HRP cohorts: −c2 corresponds to a change of fixative agent.
c2 ∈ { Bouin, AFA } - c1 corresponds to a change of impregnation technique. c1 ∈ {
Ethanol, Ethylene }.

We performed the exact Fisher test to test for a correlation between:

1. HRD - c1(impregnation): test-statistic 12; p value 3.9e − 30
2. HRD - c2 (fixation): test-statistic 31; p value 2.8e − 78

Showing the statistical relationship between both confounders and our target vari-
able, the HR status. Fisher test was performed with the scipy package. (Virtanen et
al. 2020)
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Manual validation of the morphological patterns The t-test and the Xi2 test per-
formed respectively to test the difference of TILs count and nuclear grade between
HRD and HRP tumors were done with the scipy package. The logistic regression used
to predict HRD from the grade and TILs count was implemented with scikit-learn
(Pedregosa et al., n.d.) package, with a parameter C = 10, all other parameters set
to their default values.

Bias metric significance test The Mann-Whitney-Wilcoxon test two-sided with
Bonferroni correction appearing in the legend of Figure III.3 has been performed
using the scipy package. The two compared distribution correspond to the mutual
information measure iterated over the 30 sub-datasets, as described in the bias score
method subsection.

III.4.0.4. Key Resources table

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
TCGA GDC Portal N/A
In-house Dataset Curie Hospital, Paris N/A
Model predictions mendeley-dataset zenodo DOI
Software and algorithms
wsi-mil wsi-mil zenodo versioning
scikit-learn sklearn RRID: SCR-019053
openslide-python OpenSlide N/A
MoCo MoCo N/A
SciPy SciPy RRID: SCR-008058
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Preface

This work maturated from our involvement in the inaugural DataChallenge of the
Société Français de Pathologie (SFP), titled “Tissuenet”. These time-constrained
data challenges present a unique platform to devise new algorithms and evaluate
them against competitors in real-time. Crucially, these challenges address pertinent
clinical problems, selected by pathologists, on datasets that replicate actual use-case
scenarios (sourced from various centers across France).

This work was done in collaboration with another PhD student in the lab, Mélanie
Lubrano. The challenge took place before she joined the CBIO, and so we participated
independently. It allowed me to apply the self-supervised learning framework to
histopathological images for the first time and to experiment with cost-sensitive
losses. After the challenge, we decided to work together on the data of the challenge
in order to to address a specific aspect we hadn’t explored during the challenge:
leveraging the provided regional annotations to enhance slide-level classification
tasks

Disclaimer: as the second author, my contribution to this work was less predominant
compared to other projects in this thesis. While I was involved in designing the
training framework, planning experiments, and contributing to the writing, I did not
execute the experiments.

Contribution

A Publications - communications

• M. Lubrano, T. Lazard, et al. Automatic Grading of Cervical Biop-
sies by Combining Full and Self-supervision. 13807, Springer Nature
Switzerland, pp.408-423, 2023, Lecture Notes in Computer Science,
10.1007/978-3-031-25082-8_27.
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Summary:
In computational pathology, the application of Deep Learning to the analysis of Whole Slide Images
(WSI) has provided results of unprecedented quality. Due to their enormous size, WSIs have to be split
into small images (tiles) which are first encoded and whose representations are then agglomerated in
order to solve prediction tasks, such as prognosis or treatment response. The choice of the encoding
strategy plays a key role in such algorithms. Current approaches include the use of encodings trained
on unrelated data sources, full supervision or self-supervision. In particular, self-supervised learning
(SSL) offers a great opportunity to exploit all the unlabelled data available. However, it often requires
large computational resources and can be challenging to train. On the other end of the spectrum,
fully-supervised methods make use of valuable prior knowledge about the data but involve a costly
amount of expert time. This paper proposes a framework to reconcile SSL and full supervision and
measures the trade-off between long SSL training and annotation effort, showing that a combination
of both has the potential to substantially increase performance. On a recently organized challenge
on grading Cervical Biopsies, we show that our mixed supervision scheme reaches high performance
(weighted accuracy (WA): 0.945), outperforming both SSL (WA: 0.927) and transfer learning from
ImageNet (WA: 0.877). We further provide insights and guidelines to train a clinically impactful
classifier with a limited expert and/or computational workload budget. We expect that the combination
of full and self-supervision is an interesting strategy for many tasks in computational pathology and
will be widely adopted by the field.

Résumé:
En pathologie computationnelle, l’utilisation de l’apprentissage profond pour analyser les images
de lames entières (WSI) a donné d’excellents résultats. Les WSI, en raison de leur grande taille,
sont divisées en petites tuiles. Ces tuiles sont d’abord encodées, puis leurs représentations sont
agglomérées par des modèles d’apprentissage par instance multiple (MIL) pour résoudre des tâches
de prédiction à l’échelle de la lame ou du patient, comme le pronostic ou la réponse au traitement.
La méthode d’encodage des tuiles est cruciale. Les approches actuelles utilisent des représentations
pré-entraînées sur des images naturelles, des images histopathologiques étiquetées ou non étiquetées
via auto-supervision. L’apprentissage auto-supervisé (SSL) permet d’utiliser des données non étiquetées
mais est gourmand en ressources. Les méthodes entièrement supervisées sont moins coûteuses en
calcul mais nécessitent un étiquetage laborieux. Cet article propose une méthode combinant SSL et
supervision standard, et évalue le compromis entre le temps d’entraînement SSL et l’effort d’annotation.
Nous démontrons que cette combinaison peut améliorer la performance de classification des WSI.
Dans un data-challenge sur le classement des biopsies du col de l’utérus, notre méthode mixte atteint
une précision pondérée (WA) de 0,945, surpassant une méthode basée uniquement sur SSL (WA :
0,927) ou un pré-entraînement sur ImageNet (WA : 0,877). Nous offrons en outre des conseils pour
entraîner un classificateur efficace avec un budget limité en termes d’annotations ou de ressources de
calcul. Nous pensons que la combinaison de supervision complète et d’auto-supervision pourrait être
bénéfique pour diverses tâches en pathologie computationnelle.
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IV.1 Introduction

Recent advances in slide digitization have led to increased interest in Artificial
Intelligence (AI) applications for histopathology. The development of AI models
could help reduce pathologists’ workloads, limit subjectivity and help contributing to
medical discoveries. Deep learning models can now match pathologist performance
for many tasks: diagnostic, detection of mitoses (Veta et al. 2015), prediction of
gene mutations (Coudray et al. 2018; Jakob Nikolas Kather et al. 2020) or genetic
signatures (Diao et al. 2021; Jakob Nikolas Kather et al. 2020; Lazard et al. 2022),
cancer subtyping (Coudray et al. 2018) and more.

One of the applications, automated diagnosis from Whole Slide Images (WSIs),
induces two main challenges: first, WSIs are very high-resolution and, because of
memory constraint, cannot be fed directly into traditional neural networks. Second,
expert annotations are laborious to attain, costly and prone to subjectivity. The most
popular methods today rely on Multiple Instance Learning (MIL), which frames
the problem as a bag classification task. WSIs are split into small workable images
(tiles), which are processed separately. Features from each of the individual tiles are
extracted and then aggregated to classify the WSI.

The extraction of these tiles’ specific representation is crucial to the downstream
WSI classification task. One common approach consists of initializing the feature
extractor with pre-trained weights on ImageNet, a natural image dataset. This
technique allows one to extract generic features that are powerful, but that do not
lie within the histopathological domain. Different strategies have been developed
to extract these tile encodings taking advantage of the available data and their
respective level of supervision.

A first strategy aims to learn tile features with full supervision (Ehteshami Bejnordi
et al. 2017). To create a supervised dataset, one or several experts manually review
tiles and sort them into meaningful classes (preferably related to the downstream
task of classifying the WSIs). Even though experts’ annotations can bring powerful
prior knowledge to the model, this technique often requires large quantities of
annotations.

A second strategy consists of learning tile representations through self-supervision.
It leverages the unannotated data by training a convolutional neural network on a
pretext task. It has proven its efficacy (Saillard et al. 2021) and even its superiority
to the fully supervised scheme (Dehaene et al. 2020). However, this approach has
a non-negligible computational cost, as training necessitates around 1000 hours
of computation on a standard GPU (Dehaene et al. 2020). Moreover, it is not
guaranteed that the obtained encodings are most relevant for the prediction task we
are trying to solve.
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Techniques from both sides of the supervision spectrum have proven to bring im-
portant benefits for relevant feature extraction. Combining them could allow us
to benefit from the best of both worlds. In this work, in addition to proposing a
joint-optimization process mixing self, full and weak supervision (Figure IV.1), we
measure the trade-off in performance between the number of annotations and the
computational cost of training a self-supervised model. We thus provide guide-
lines to train a clinically impactful classifier with a limited budget in expert and/or
computational workload.

Weights transfer

Weights transfer

Unlabelled tiles

Labelled tiles

Labelled slides

Step 1:
Self-supervised 

training

Step 2:
Fine-tuning

Step 3:
Whole slide

classification

a

b

c

Attention

Figure IV.1.: Mixed Supervision Process: a)A self-supervised model (SimCLR) is trained
on unlabelled tiles extracted from the slides. Feature extractor and contrastive
layer weights are transferred to the joint-optimization architecture b ) Joint-
optimization model is trained on the labeled tiles of the dataset. The feature
extractor weights are transferred to the WS classification model. c) WS
classification model is trained on the 1015 whole slide images.
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IV.2 Related Work

Mixed Supervision Medical data is often limited. For this reason, one might want to
take advantage of all the available data even if annotations might not be homoge-
neous and even though they might be difficult to exploit because multiple levels of
supervision are available. For instance, whole slide images are often associated with
one global label (weak supervision), they can contain millions of unlabelled tiles (no
supervision), but, as a pathologist reviews the slides and performs a diagnostic, it is
almost effortless for them to mark the region of interest that signs the corresponding
diagnostic (strong supervision). AI applications have usually been dichotomized
between supervised and unsupervised methods, spoiling the potential of combining
several types of annotations. For this reason, mixing supervision for medical images
analysis has gained interest in past years (Y.-J. Huang et al. 2020; J. Li et al. 2021;
Z. Li et al. 2018).

For instance, in Mlynarski et al. (2019) the author showed that combining global
labels and local annotations by training in a multi-task setting, the capacities of the
model to segment brain tumors on Magnetic Resonance Images were improved.

In Tourniaire et al. (2021), the author introduced a mixed supervision framework
for metastasis detection building on the CLAM (Lu et al. 2021) architecture. CLAM
is a variant of the popular attention based MIL (Ilse, Tomczak, and Welling 2018)
with 2 extensions: first, in order to make the method applicable in a multi-class
setting, class-specific attention scores are learned and applied. Second, the last
layer of the tile encoding network is trained to also predict the top and bottom
attention scores, thus mimicking tile-level annotations. In Tourniaire et al. (2021),
the authors highlight the limitations of this instance-classification approach and
propose to leverage a low number of fully annotated slides to train the attention
mechanism. In a second step, they propose to turn to a standard MIL training (using
only slide-level annotations). Even with few annotated slides, this approach allows to
boost classification performance. However, there are also some limitations. First, the
method relies on exhaustive annotation of selected slides: for the annotated slides,
all the key regions are annotated pixel-wise. Second, due to the CLAM architecture,
the approach only fine-tunes a single dense layer downstream the pre-trained feature
extractor. Third, the algorithm has been designed for an application case in which
the slide and tile labels coincide (tumour presence). This however is not always the
case: when predicting genetic signatures, grades or treatment responses, it is unclear
how tile and slide level annotations relate to each other. In this article, we propose
to overcome these limitations. We propose to combine self-supervised learning with
supervision prior to training the MIL network. We thus start from more powerful
encodings, that are not only capable of solving the pretext task of self-supervised
learning, but also the medical classification task that comes with the annotated tiles.
Consequently, this method does not require full-slide annotations, optimizes the
full tile encoding network and does not come with any constraint regarding the
relationship between tile and slide level annotations.

76 Chapter IV Mixing local and weak supervision



IV.3 Materials and Method

IV.3.0.1. Dataset and Problem Setting

The Tissue Net Challenge DrivenData organized in 2020, the Société Française
de Pathologie (SFP) and the Health Data Hub aimed at developing methods to
automatically grade lesions of the uterine cervix in four classes according to their
severity. The training dataset for the challenge was made up of biopsy samples from
female uterine cervix, focusing on squamous lesions (Figure IV.2). These lesions
are often benign but can also be qualified as low grade or high grade depending
on the risk of invasion of the underlying conjunctive tissue and evolution into
carcinomas. The grade of the lesions depends on the proportion of squamous
epithelium affected by dysplastic criteria. Lowgrade squamous intraepithelial lesions
(LSIL) are defined as having a dysplastic criteria involving less than one third of
the thickness of the epithelium. High-grade squamous intraepithelial lesions (HSIL)
indicate a greater proportion of the epithelium composed of undifferentiated basal
cells with abnormalities. Carcinoma is diagnosed when abnormal epithelial cells
invade the underlying conjunctive tissue. The class of a WSI was determined by the
highest lesion’s grade present on it.

IV.3.0.2. Fully Supervised Dataset

5926 annotated Regions of Interest (ROIs) of fixed size 300x300 micrometers were
provided. Each ROI had roughly the same size as a tile at 10x magnification and
were labeled by the severity of the lesion it contained: “Normal” (0) if tissue was
normal, (1) LSIL or (2) HSIL if it presented precancerous lesions that could have
malignant potential and (3) invasive squamous carcinoma (Table IV.1).

Classes Number of Slides Number of Tiles
0 (Normal) 270 1923

1 (Low Grade) 288 1405
2 (High Grade) 238 1368
3 (Carcinoma) 219 1230

Total 1015 5926

Table IV.1.: Dataset Summary

IV.3.0.3. Weakly Supervised Dataset

The dataset was composed of 1015 WSIs acquired from 20 different centers in
France at an average resolution of 0.234 + / − 0.0086mpp(40X). The slide resolution
varied slightly due to the multicentric provenance of the data. The class of the WSI
corresponded to the class of the most severe lesions it contained (grade from 0 to 3
also). All the native WSI formats were converted to pyramidal TIFF (Tagged Image
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File Format). Both the WSI-level and tile-level labels have been attributed by a
consortium of expert pathologists (Table IV.1).

Figure IV.2.: Illustration of Uterine cervix dysplasia - National Cancer Institute, 2011
provenance of the data. The class of the WSI corresponded to the class of the
most severe lesions it contained (grade from 0 to 3 also). All the native WSI
formats were converted to pyramidal TIFF (Tagged Image File Format). Both
the WSI-level and tile-level labels have been attributed by a consortium of
expert pathologists (Table IV.1)

IV.3.0.4. Misclassification Costs

Misclassification errors do not lead to equally serious consequences (i.e predicting
a benign lesion if it is cancerous is more serious than predicting a LSIL instead
of a HSIL). Accordingly, a panel of pathologists established a grading of each of
these errors i.e they attributed to each pair of possible outcome (i, j) ∈ {0, 1, 2, 3}2 a
severity score 0 ⩽ Ci,j ⩽ 1 (Table IV.2)

The metric used in the challenge to evaluate and rank the submissions is computed
from the average of these misclassification costs.

More precisely, if we name P (S) the prediction of a slide S labelled l(S), the
challenge metric MW A is:

MW A = 1
N

∑
S

(
1 − Cl(S),P (S)

)

with N the number of samples.

The problem is thus framed as a cost-sensitive classification problem, and, to our
knowledge, all the winning solutions took awareness of this cost in their training
procedure.
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Ground Truth/pred Benign Low-grade High-grade Carcinoma
Benign 0.0 0.1 0.7 1.0
Low-grade 0.1 0.0 0.3 0.7
High-grade 0.7 0.3 0.0 0.3
Carcinoma 1.0 0.7 0.3 0.0

Table IV.2.: Weighted Accuracy Error Table - Error table to ponderate misclassification
according to their gap with the ground truth.

IV.4 Proposed Architecture

IV.4.0.1. Multiple Instance Learning and Attention

In Multiple Instance Learning, we are given sets of samples Bk = {xi | i = 1 . . . Nk},
also called bags. The annotation yk we are given refers only to the bags and not
the individual samples. We assume however, that such tile-level labels exist in
principle, but that we just do not have access to them. The strategy is to first map
each tile xi to its encoding zi, which is then mapped to a scalar value ai, often
referred to as attention score. The tile representations zi and attention scores ai

are then agglomerated to build the slide representation sk which is then further
processed by a neural network. The agglomeration can be based on tile selection
(Campanella, Hanna, Geneslaw, Miraflor, Silva, et al. 2019; Courtiol et al. 2018), or
on an attention mechanism (Ilse, Tomczak, and Welling 2018), which is today the
most widely used strategy.

IV.4.0.2. Self-Supervised Learning

Self-supervised learning provides a framework to train neural networks without
human supervision. The main goal of self-supervised learning is to learn to extract
efficient features with inputs and labels derived from the data itself using a pretext
task. Many self-supervised approaches are based on contrastive learning in the
feature space. SimCLR, a simple framework relying on data augmentation was
introduced in T. Chen, Kornblith, Norouzi, et al. (2020). Powerful feature represen-
tations are learned by maximizing agreement between differently augmented views
of the same data point via a contrastive loss applied in the feature space.

An image is transformed through random data augmentations into two new images.
They are then embedded using the feature extractor. The two features vectors (zi

and zj) are mapped with a projection head (dense layers) to obtain final vectors
hi and hj . The feature extractor and projection head are trained to maximize
agreement using the contrastive loss. Positive pairs consist of the two augmented
views of the same image, the other 2(n − 1) views play the role of negative samples.
The loss function (NT-Xent) for a positive pair (i, j) is defined as:
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LSSL = − log exp (sim (hi, hj) /τ∑2n
k=1 1k ̸=i exp (sim (hi, hj) τ

Where sim(u, v) = uT v
∥u∥·∥v∥ , the cosine similarity, 1k ̸=i∈(0,1) determines if k ̸= i and

τ is a parameter. After convergence, the projection head is discarded and the
pretrained feature extractor can be used for subsequent tasks.

IV.4.0.3. Cost-Sensitive Training}

Instead of the traditional cross-entropy loss we used a cost-aware classification loss,
the SmoothOne-Sided Regression Loss LSOSR . First introduced to train SVMs in Tu
and Lin (n.d.), this objective function was smoothed and adapted for backpropaga-
tion in deep networks in Chung, Lin, and Yang (2016). When using this loss, the
network is trained to predict the class-specific risk rather than a posterior probability;
the decision function chooses the class minimizing this risk.

The SOSR loss is defined as follows:

LSOSR =
∑

i

∑
j

ln (1 + exp (2i,j · (ĉi − Ci,j))) (IV.1)

With 2i,j = −1i ̸=j + 1i=j , ĉi the i-th coordinate of the network output and C the
error table.

IV.4.0.4. Mixed Supervision

To be tractable, training of attention-MIL architectures requires freezing the feature
extractor weights. While SSL allows the feature extractor to build meaningful
representations (Dehaene et al. 2020; Saillard et al. 2021), they are not specialized
to the actual classification problems we try to solve. Several studies have shown that
such SSL models benefit from fine-tuning specific to the downstream task (T. Chen,
Kornblith, Swersky, et al. 2020)

We therefore added a training step to leverage the tile-level annotation and fine-
tune the selfsupervised model. However, as the final WSI classification task is not
identical to the tile classification task, we suspect that fine-tuning solely on the
tile classification task may over-specialize the feature extractor and thus sacrifice
the generalizability of SSL (and for this reason ultimately also degrading the WSI
classification performances). To avoid this, we developed a training process that
optimizes the self-supervised and tile-classification objectives jointly.

Two different heads, plugged before the final classification layer, are used to compute
both loss functions LSSL and LSOSR The final objective L is then:

L = βLSSL + (1 − β)LSOSR (IV.2)
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where β is a hyperparameter that has to be tuned. Here, we found β = 0.3 (see
Supplementary).

IV.5 Understanding the Feature Extractor with Activation
Maximization

To further understand the features learned by the different pre-training policies
(ImageNet, supervised, SSL and mixed), we used Activation Maximization (AM)
to visualize extracted features and provide an explicit illustration of the specificity
learned.

Methods to generate pseudo-images maximizing a feature activation have been
introduced in Erhan et al. (2009). This technique consists in synthesizing the images
that will maximize one feature activation. It is summarized as follow (Nguyen,
Yosinski, and Clune 2019):

If we consider a trained classifier with set of parameters θ that map an input image
x ∈ Rh×w×c, (h and w are the height and width and c the number of channels) to a
probability distribution over the classes, we can formulate the following optimization
problem:

x∗ = arg max
x

(
σl

i(θ, x)
)

where σl
i(θ, x) is the activation of the neuron i in a given layer l of the classifier. This

formulation being a non-convex problem, local maximum can be found by gradient
ascent, using the following update step:

xt+1 = xt + ϵ
∂σl

i(θ, x)
∂xt

The optimization process starts with a randomly initialized image. After a few steps,
it generates an image which can help to understand what information is being
captured by the feature. As we try to visualize meaningful representations of the
features, some regularization steps are applied to the random noise input (random
crop and rotations to generate more stable visualization, details can be found in
Supplementary Materials). To generate filter visualization within the HE space, we
transformed the RGB random image to HE input thanks to color deconvolution
(Ruifrok, n.d.). This preprocessing allowed to generate images with histology-like
colors when converted back to the RGB space.

To select the most meaningful features for each class, we trained a Lasso classifier
without bias to classify the extracted feature vectors into the four classes of the
dataset for the four pre-training policies. The feature vectors for each tile were first
normalized and divided element-wise by the vector of features’ standard deviation
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across all the tiles. The L1 regularization factor λ was set to 0.01. Details about
Lasso training can be found in Supplementary Materials. Contribution scores for
each feature were therefore derived from the weights of the Lasso linear classifier:
negative weights were removed and remaining positive weights were divided by their
sum to obtain contribution scores [0, 1]. By filtering out the negative weights, the
contribution score corresponds to the proportion of attribution among the features
positively correlated to a class, and allows to select feature capturing semantic
information related to the class, leaving out those containing information for other
classes.

IV.6 Experimental Setting

IV.6.0.1. WSI Preprocessing

Preprocessing on a downsampled version of the WSIs was applied to select only tissue
area and non-overlapping tiles of 224 × 224 pixels were extracted at a resolution of
1mpp. (Details in Supplementary Materials)

IV.6.0.2. Data Splits for Cross-Validation

To measure the performances of our models we performed 3-fold cross-validation for
all our training settings. Because the annotated tiles used in our joint-optimization
step were directly extracted from the slides themselves, we carefully split the tiles
such that tiles in different folds were guaranteed to originate from different slides.
The split divided the slides and tiles into a training set, a validation set and a test
set.

All subsequent performance results are then reported as the average and standard
deviation of the performance results on each of these 3 test folds.

IV.6.0.3. Feature Extractor Pre-Training

The feature extractor is initialized with pre-trained weights obtained with three
distinct supervision policies: fully supervised, self-supervised or a mix of supervision.
These three policies rely on the fine-tuning of a DenseNet121 (G. Huang et al. 2018),
pretrained on ImageNet. The fully-supervised archicture is fine-tuned solely on the
tile classification task. The SSL architecture is derived from SimCLR framework and
is trained on an unlabeled dataset of 1 million tiles extracted from the slides. Finally
for the mixed-supervised architecture, a supervised branch is added to the previous
SSL network and trained using the mixed objective function (see Figure IV.1 and
Equation (IV.2)) on the fully supervised dataset. Technical details of these three
training settings are available in the supplementary material.

82 Chapter IV Mixing local and weak supervision

https://www.biorxiv.org/content/10.1101/2022.01.14.476330v1.supplementary-material?versioned=true
https://www.biorxiv.org/content/10.1101/2022.01.14.476330v1.supplementary-material?versioned=true
https://www.biorxiv.org/content/10.1101/2022.01.14.476330v1.supplementary-material?versioned=true


IV.6.0.4. Whole Slide Classification

After tiling the slides, the frozen feature extractor (DenseNet121) was applied
to extract meaningful representations from the tiles. This feature extractor was
initialized sequentially with the pre-trained weights mentioned above and generated
as many sets of features. These bags of features were then used to train the Attention-
MIL model with SOSR loss applied slide-wise. (Supplementary Materials).

IV.6.0.5. Feature Visualization

To select the most relevant features, we trained an unbiased linear model on the
feature vectors extracted from the annotated tiles. The feature vectors were stan-
dardised. The weights of the linear model were used to determine which features
were the most impactful for each class. Feature visualizations were generated for
the selected features and for each set of pre-trained weights. We extracted the
tiles expressing the most of these features by selecting the feature vectors with the
higher activation for the concerned feature. Implementation details are provided in
Supplementary Materials.

IV.7 Results

IV.7.0.1. Self-Supervised Fine-Tuning

We saved the checkpoints of the self-supervised feature extraction model at each
epoch of training, allowing us to investigate the amount of time needed to reach good
WSI classification performances. We computed the embeddings of the whole dataset
with each of the checkpoints and trained a WSI classifier from them. Figure IV.3
reports the performances of WSI classification models for each of these checkpoints.
SSL training led to a higher Weighted Accuracy than using ImageNet weights after 3
epochs and resulted in a gain of +4.8% after 100 epochs. Interestingly, as little as 6
epochs of training are enough to gain 4% of Weighted Accuracy: a significant boost
in performance is possible with 50 GPU-hours of training. We then observe a small
increase in performance until the 100th epochs.

IV.7.0.2. Pre-Training Policy Comparison

To compare the weights obtained with the various supervision levels, we ran a
3-fold cross-validation on the WS classification task and summarized the results
in Table IV.3. The results indicate that the SSL pre-training substantially improves
the WSI classification performance. In contrast, we see that initializing the feature
extractor with fully-supervised weights gives an equivalent or poorer performance
than any other initialization. SSL pre-training allows us to extract rich features
that are generic, yet still relevant to the dataset (unlike ImageNet). On the other
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Figure IV.3.: Weighted Accuracy evolution - Weighted Accuracy evolution on WS classifi-
cation task with respect to the number of epochs of SSL training

hand, fully supervised features are probably too specific and seem to not represent
the full diversity of the image data. The joint-optimization process manages to
balance out generic and specialized features without neutralizing them: mixing
the supervision levels brings significant improvements (+2%) to the performance,
leading to a Weighted Accuracy of 0.945 .

We additionally compared the benefits introduced by the cost-sensitive loss (Equa-
tion (IV.1)) with the crossentropy loss. Our results show that with ImageNet weights
the SOSR loss improves the Weighted Accuracy by 1% and the accuracy by 3%.

In conclusion, the combination of the SSL pre-trained model, its fully supervised
fine-tuning, and the cost-sensitive loss leads to a notable improvement of 8 Weighted
Accuracy points over the baseline MIL-imagenet model.

Accuracy SFP-metric
imagenet+ce 0.758 ± 0.034 0.865 ± 0.023

imagenet+sors 0.787 ± 0.032 0.877 ± 0.029
supervised+sors 0.772 ± 0.055 0.874 ± 0.027

ssl+sors 0.803 ± 0.016 0.925 ± 0.006
mixed+sors 0.845 ± 0.028 0.945 ± 0.005

Table IV.3.: Pre-training policies - Performances summary

IV.7.0.3. Number of Annotations vs Number of Epochs

We have seen that both SSL and supervised pre-training bring together an improve-
ment in the WSI classification task. To further investigate the relationship between
these two supervision regimes, we trained models with only some of the fully super-
vised annotations (15, 65, 100%) on top of intermediate SSL checkpoints. Results are
reported in Table IV.4.
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It appears that without SSL pre-training (or with too few epochs of training), the
supervised finetuning does not bring additional improvement in WSI classification.
This is in line with the work of Chen et al. (Chen, Kornblith, Swersky, et al. 2020)
that showed that an SSL model is up to 10x more label efficient than a supervised
one.

However, for the 100-epoch checkpoint, we observe an improvement of 2 points
of the Weighted Accuracy when using 100% of the tile annotations. Moreover, fine-
tuning the models by mixed supervision with too few annotations (15%) leads to
a slight drop in WSI classification performances. Finally, we see a diminution of
the standard deviations across splits for the different pre-training policies, showing
better stability for longer SSL training and more annotations.

We draw different conclusions from these observations:

• In this context, it is always better to pre-train the feature extractor with SSL
rather than only invest in annotations.

• The supervised fine-tuning needs enough annotations to bring an improvement
to the WSI classification task. We can note however that even when considering
the 100% annotation settings, the supervised dataset (approx. 5000 images) is
still rather small in comparison to traditional image datasets.

• A full SSL training is mandatory to leverage this small amount of supervised
data.

IV.7.0.4. Features Visualisations

We generated the pseudo-images of the most important features for each class and
each pre-training policy and extracted the related tiles. The Figure IV.5 displays the
most important features along with

0 Annot.
∼ 1 Annot. / slide

(1015 tiles)
∼ 4 Annot. / slide

(3901 tiles)
∼ 6 Annot. / slide

(5926 tiles)
ImageNet (no SSL) 0, 877 ± 0.029 0.872 ± 0.024 0.872 ± 0.023 0, 874 ± 0.027

SSL-epoch10 0, 912 ± 0.019 0, 907 ± 0.024 0, 903 ± 0.029 0, 916 ± 0.019
SSL-epoch50 0, 915 ± 0.014 0, 913 ± 0.024 0, 916 ± 0.014 0, 914 ± 0.022
SLL-epoch100 0, 925 ± 0.006 0, 916 ± 0.010 0, 921 ± 0.010 0, 945 ± 0.005

Table IV.4.: Relationship between self-supervision and full-supervision - Study on the
performance improvement on WS classification for different proportion of
labelled data versus different training time of SSL

the tiles activating each feature the most for the class “Normal” (0). Although
interpretation of such pseudo images must be treated carefully, we notice that
the features obtained with SSL, supervised and mixed training are indubitably
more specialized to histological data than those obtained with ImageNet. Some
histological patterns, such as nuclei, squamous cells or basal layers are clearly
identifiable in the generated images. The extracted tiles are strongly correlated
with class-specific biomarkers. Feature e represents a normal squamous maturation,
i.e. a layer of uniform and rounded basal cells, with slightly larger and bluer
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nuclei than mature cells. We can also observe several layers of mature cells with
small nuclei and moderately abundant cytoplasm (pink halo around), equidistant
from each other. Features c and d highlight clouds of small regular and rounded
nuclei (benign cytological signs). Feature g and h are characteristic of squamous
cells (polygonal shapes, stratified organization lying on a straight basal layer).
Interestingly, features extracted with the supervised method (g, h) manage to sketch
a normal epithelium with high resemblance, the features are more precise. On the
other hand, features extracted with SSL (c, d) highlight true benign criteria but do
not entirely summarize a normal epithelium (no basal maturation). The mixed model
displays both, suggesting that mixed supervision highlights pathologically relevant
patterns to a larger extent than the other regimes (Sellors and Sankaranarayanan
2003).

We can also note by looking at the real tiles that while features from ImageNet (a, b),
SSL (c, d) and the supervised model (g, h) focus on the upper half of the cervix
epithelium, it appears that features from the mixed supervision model (e, f) are
focusing on the lower half which is known to be the relevant region for discrimination
between class Normal (0) and Low Grade (1) (abnormal cells are constricted to the
lower third of the epithelium).

In Figure IV.4 we can further identify class-related biomarkers for dysplasia and
carcinoma grade. Tiles with visible koilocytes (cells with a white halo around the
nucleus) have been extracted from the top features for Low Grade class. Koilocytes
are symptomatic of infection by Human Papillomavirus and are a key element for
this diagnosis (almost always responsible for precancerous lesions in the cervix,
(Sellors and Sankaranarayanan 2003)). High Grade (2) generated image represents
disorganised cells with a high nuclear-to-cytoplasmic ratio, marked variations in size
and shape and loss of polarity. For the class “Carcinoma” (3), we observe irregular
clusters of cohesive cells with very atypical nuclei, separated by a fibrous texture
that can be identified as stroma reaction. All these criteria have been identified in
Sellors and Sankaranarayanan (2003) as key elements for diagnosis of dysplasia
and invasive carcinoma. In Figure IV.6, we observe that features extracted from
ImageNet and SSL models are diverse, in particular, features extracted from SSL
reflect rich tissue phenotypes which correlates to their generic capacities of image
representations. On the other hand, features extracted with supervised and mixed
methods are more redundant. We additionally observe in Figure IV.6 that feature
visualisation from the mixed model picture realistic histopathological patterns spe-
cific to the class. Visualisation for other classes are available in Supplementary
Materials.

IV.8 Discussion

In pathology, expert annotations are usually hard to obtain. However, we are often in
a situation where a small proportion of labeled annotation exists but not in sufficient
quantities to support fully supervised techniques. Yet, even in small quantities, expert
annotations carry meaningful information that one could use to enforce biological
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Figure IV.4.: Feature comparison per class - The top row displays the top filter for the
Mixed Supervised model for each class. The bottom row displays the tile
expressing the feature the most.

context to deep learning models and make sure that networks learn appropriate
patterns. On the other hand, self-supervised methods have proven their efficacy
to extract generic features in the histopathological domain and their usefulness
for downstream supervision tasks, even in the absence of massive ground truth
data. Methods capable of reconciling self-supervision with strong supervision can
therefore be useful and open the door to better performances.

In this paper, we presented a way to inject the fine-grained tile level information
by fine-tuning the feature extractor with a joint optimization process. This process
allowed to mix self-supervised learning features with tile classification ones and
helped the downstream WSI classification task.

We applied our method to the TissueNet Challenge, a challenge for the automatic
grading of cervix cancer, that provided annotations at the slide and tile level, thus
representing an appropriate use case to validate our method of mixed supervision.
We also propose in this study insights and guidelines for the training of a WSI
classifier in the presence of tile annotations.

First, we showed that SSL is always beneficial to our downstream WSI classification
tasks. Fine-tuning pre-trained weights with SSL for only 50 hours brings a 4%
improvement over WSI classification weighted accuracy, and near to 5% when
fine-tuning for longer (100 epochs).

Second, a small set of annotated tiles can bring benefit to the WSI classification task,
up to 2% of weighted accuracy for a supervised dataset of around 5000 images.
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Score: 0.54
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Figure IV.5.: Feature Visualization - Top Features for class “Normal” (0) and associated
tiles.
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Figure IV.6.: Feature Diversity for the class “Carcinoma” (3) (top 5 features) - Class
“Normal” (0) and top 10 features in Supplementary Materials
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Such a set of tiles can be obtained easily by asking the pathologist to select a few
ROIs that guided his decision while labeling the WSIs, which can be achieved without
a strong time commitment. However this boost in performance can be reached only
if the feature extractor is pre-trained with SSL, and for sufficiently long: SSL unlocks
the supervised fine-tuning benefits.

To further understand the differences between the range of supervision used to
extract tile features, we conducted qualitative analysis on features visualizations
by activation maximization and observed that features obtained from SSL, super-
vised or mixed trainings were more relevant for histological tasks and that class-
discriminative patterns were indeed identified by the model. We also observed
that supervised training on the tiles alone led to much less diversity in the features
extracted by the model than the ones obtained with SSL.

The scope of this study contains by design three limitations. First, SSL models were
trained by fine-tuning already pre-trained weights on imagenet. This may explain
the rapid convergence and boost in performance observed; however it may also
underestimate this boost if the SSL models were trained from scratch. We did not
compare SSL trained from scratch and fine-tuned SSL, and left it to future work.

Second, all the conclusions reached are conditioned by the fact that we do not fine-
tune the feature extractor network during the WSI classification training. Keeping
these weights frozen, and even pre-computing the tiles representations brings a large
computational benefit (both in memory and speed of computations), but prevents
the feature extractor from specializing during the WSI classification training.

Third, the tendency observed in table 4 of better performances correlated with larger
numbers of annotations is modest and would require more annotations to validate
it.

Finally, our method can be improved in several ways. First, SimCLR, was a pioneer
method in self-supervised learning architecture and has proven to be efficient but
it suffers from high performance drop when decreasing the batch size (T. Chen,
Kornblith, Norouzi, et al. 2020). Other SSL models have been developed to alleviate
this limitation. MoCo (He et al. 2020) actually propose a momentum mechanism al-
lowing optimal performances even without large batch size and therefore, numerous
available parallel GPUs. Other models like VICReg (Bardes, Ponce, and LeCun 2022)
proposed techniques to maximize the variance between the features and therefore
limit their redundancies. It will be interesting to benchmark these SSL variants with
respect to their impact on WSI classification accuracy and feature interpretability.

To conclude, we present a method that provides an interesting alternative to using
full supervision, pre-training on unrelated data sets or self-supervision. We con-
vincingly show that the learned feature representations are both leading to higher
performance and providing more intermediate features that are more adapted to
the problem and point to relevant cell and tissue phenotypes. We expect that the
mixed supervision will be adopted by the field and lead to better models.
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Preface

This chapter centers on the Giga-SSL framework and explores its various applica-
tions across different sections. The framework employs a self-supervised learning
approach specifically designed to learn WSI representations.

Applying SSL to WSIs posed a challenge. While WSIs are essentially large images,
they haven’t traditionally been treated as such in computational pathology. Instead,
they are typically divided into tiles and treated as collections of these tiles. Until
recently, the spatial relationship between the tiles was largely ignored, with the
community focusing on MIL algorithms to solve WSI classification tasks.

This discrepancy led to questions about how to adapt self-supervised learning
methods for WSIs. During the development of the MIL algorithms presented in
Chapter III, I observed that sampling only a small fraction of WSI tiles during training
was sufficient for effective classification on a variety of tasks. This performance
reached a saturation point after a certain number of tiles were included, suggesting
that crucial classification information resides in only a subset of the WSI.

Besides, a vital element of successful self-supervised training is the transformation
applied to the image. This transformation should alter the image’s numerical
properties while preserving its semantic content. Given that WSIs could be strongly
subsampled without losing key classification information, it became clear that self-
supervised methods could be adapted to extract this critical biological information,
focusing specifically on the tile subsampling transformation.

In collaboration with Marvin Lerousseau, we worked to identify the key compo-
nents of a WSI-level self-supervised learning framework. These included a hybrid
architecture of standard and sparse convolutions, the significance of shared tile
augmentations—a visual interpretation of which can be found in Figure E.1 —and
the finite approximation of tile augmentation, which allowed for scalability and
ablation studies.

The Section V.1 of this chapter details the overall framework, training specificities,
evaluation against a limited set of downstream tasks as well as ablation studies
providing a detailed understanding of design choices.
The second Section V.2 demonstrates its applicability for the prediction of single-
gene mutations and mutational signatures in a pan-cancer context. It also proves
that resource-intensive experiments can now be carried out on a regular laptop using
Giga-SSL. The final, shorter Section V.3 aims to interpret the latent spaces shaped
by the training process with Giga-SSL. While the first two sections have either been
published or are under review, the third section is not intended for publication but
offers avenues for future research. The first section has been published at the CVPR
workshop on Computer Vision for Microscopy Images (CVMI); the second section
corresponds to a preprint and is currently under review. The third section has not
been published.
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As a postscript, a simpler variant of Giga-SSL (without convolutions) also achieved
good results in the VisioMel DataChallenge, securing a third-place ranking based on
negative log-likelihood loss metrics and second place in terms of the AUC metric.

Contributions

A Publications - communications

• Lazard, T., Lerousseau, M., Decencière, E., and Walter, T. (2023).
Giga-SSL: Self-Supervised Learning for Gigapixel Images. In 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Vancouver, BC, Canada, 2023 pp. 4305-4314.
10.1109/CVPRW59228.2023.00453

• Lazard, T., et al. (2023). Democratizing Whole Slide Images: optimized
representations for The Cancer Genome Atlas. preprint.

Ð Open-source repository

• Package to perform Giga-SSL training.
• Reproduce the VisioMel results of Giga-SSL
• Repository to esily encode WSI using pre-trained Giga-SSL models.
• Optimized representations of public WSI datasets.

� Other achievements

• Third place at the VisioMel challenge (cash prize: 5000$).

95

https://doi.ieeecomputersociety.org/10.1109/CVPRW59228.2023.00453
https://github.com/trislaz/gigassl
https://github.com/drivendataorg/visiomel-melanoma/tree/main/3rd%20Place
https://github.com/trislaz/Democratizing_WSI
https://data.mendeley.com/datasets/d573xfd9fg/5
https://drivendata.co/blog/visiomel-melanoma-winners


Summary:
Whole slide images (WSI) are microscopy images of stained tissue slides routinely prepared for
diagnosis and treatment selection in medical practice. WSI are very large (gigapixel size) and complex
(made of up to millions of cells). The current state-of-the-art (SoTA) approach to classify WSI subdivides
them into tiles, encodes them by pre-trained networks and applies Multiple Instance Learning (MIL)
to train for specific downstream tasks. However, annotated datasets are often small, typically a few
hundred to a few thousand WSI, which may cause overfitting and underperforming models. Conversely,
the number of unannotated WSI is ever increasing, with datasets of tens of thousands (soon to be
millions) of images available. While it has been previously proposed to use these unannotated data
to identify suitable tile representations by self-supervised learning (SSL), downstream classification
tasks still require full supervision because parts of the MIL architecture is not trained during tile level
SSL pre-training. Here, we propose a strategy of slide level SSL to leverage the large number of WSI
without annotations to infer powerful slide representations. We show that a linear classifier trained on
top of these embeddings maintains or improves previous SOTA performances on various benchmark
WSI classification tasks. We also show the high label-efficiency of these linear models compared to MIL
models. Then, we showcase the abilities of Giga-SSL representations on a large set of classification
tasks (1288) across various cancer types in the TCGA (14). The number of mutations predictable
using Giga-SSL roughly doubled compared to the previous MIL method, and we also observed an
improvement in the classification performance. Finally, we present a simple yet flexible framework to
interpret the latent space of the Giga-SSL embeddings and therefore lead phenotypic studies at the
scale of the whole TCGA.

Résumé:
Les WSIs sont des images microscopiques de lames de tissus colorées, préparées en routine pour le
diagnostic et le choix du traitement dans la pratique médicale. Les images de lames entières sont très
grandes (de l’ordre du gigapixel) et complexes (composées de millions de cellules). L’approche actuelle
de l’état de l’art (SOTA) pour classer les WSI consiste à les découper en tuiles, à les encoder à l’aide
de réseaux pré-entraînés, et à entraîner des réseaux via l’apprentissage par instances multiples (MIL)
pour résoudre des tâches de classification spécifiques en aval. Toutefois, les ensembles de données
annotées sont souvent de petite taille, généralement de quelques centaines à quelques milliers de WSI,
ce qui peut entraîner un risque de surapprentissage. En revanche, le nombre de WSI non annotés ne
cesse d’augmenter, avec des ensembles de données comptant des dizaines de milliers de WSI. Nous
proposons ici une stratégie de SSL au niveau des WSIs qui exploite le grand nombre de WSI non annotés
afin de construire des représentations vectorielles puissantes. Nous montrons qu’un classificateur
linéaire entraîné sur ces représentations numériques maintient ou améliore les performances SOTA sur
diverses tâches de classification de WSI de référence. Nous montrons également que l’utilisation de
ces représentations apporte un avantage d’autant plus compétitif que les jeux de données utilisés sont
petits. Ensuite, nous présentons les capacités des représentations Giga-SSL sur un grand ensemble
de tâches de classification (1288) à travers divers types de cancer dans le TCGA (14). Le nombre de
mutations prédictibles à l’aide de Giga-SSL est environ doublé par rapport aux méthodes de MIL, et
nous avons également constaté une amélioration des performances de classification dans ce contexte
pan-cancer. Enfin, nous présentons une méthode simple mais flexible pour interpréter l’espace latent
des représentations Giga-SSL, ce qui nous permet de mener des études phénotypiques à l’échelle de
l’ensemble du TCGA.
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This chapter has been made in collaboration with M. Lerousseau, E. Decencière and T. Walter. It has been
published in the CVPR "workshop for computer vision for microscopy" proceedings.

V.1 Giga-SSL: Self-Supervised Learning for Gigapixel
Images

V.1.1 Introduction

Whole slide images (WSI) are microscopy images of stained tissue sections. They are
enormous (billions of pixels) and complex, often containing millions of individual
cells, their environments, and the overall tissue structure. They are routinely used in
cancer treatment centers for diagnosis, patient stratification, and treatment selection.
Computational pathology is the field concerned with the automatic analysis of WSI.
The most clinically impactful task in computational pathology is to make predictions
directly from the WSI, such as predicting cancer subtype, survival of the patient, or
response to treatment. The major challenges in building predictive models operating
on WSI are:

• Prohibitive memory requirements (typically 15GB uncompressed per WSI);

• Signal/noise: The high amount of biological material, not necessarily related
to the output variable, is making models: (i) fail to identify the region of
interests; (ii) prone to overfitting.

• Technical complexity: WSI are technically demanding to deal with given their
large size, which presents a considerable barrier for multi-modal analyses of
genomic and pathology data.

Today, the leading methods for WSI classification rely on Multiple Instance Learning
(MIL): WSI are tessellated into small images, called tiles, which are encoded by an
embedder. Tile embedders are usually pre-trained, either on natural images or -
more recently and with great effect - by self-supervised learning (SSL). WSI are then
seen as bags of tiles, and the slide representation is obtained by combining the tile
embeddings, which are then used as input for the slide classification network. The
agglomeration strategy comes in different flavors and usually relies on tile selection
or weighted averaging of tile embeddings (Courtiol et al. 2019a; Ilse, Tomczak, and
Welling 2018; B. Li, Li, and Eliceiri 2021; Lu et al. 2020; Rymarczyk, Tabor, and
Zieliński 2020). The slide classification network is usually trained from scratch on
the specific classification task.

While these methods successfully predict a large variety of output variables, such
as grade, cancer subtype, gene signatures, mutations or response to treatment
(Campanella, Hanna, Geneslaw, Miraflor, Silva, et al. 2019; Coudray et al. 2018;
Echle et al. 2021; Jakob Nikolas Kather et al. 2020; Lazard et al. 2022; Naylor
et al. 2022; Qu et al. 2021) , the performances remain highly dependent on the
size of the training dataset (Campanella, Hanna, Geneslaw, Miraflor, Silva, et al.
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2019). Indeed, MIL performance reaches saturation when using thousands of slides
with associated ground truth for training (Campanella, Hanna, Geneslaw, Miraflor,
Silva, et al. 2019). This might be realistic for the most frequent cancer types and
routinely acquired output variables, but in most real-world projects only a few tens
or hundreds of WSI with corresponding ground truth are available. However, with
the digitalization of many pathology facilities, there is an increasing access to WSI
without ground truth which are digitalized in clinical routine. Following the SSL
paradigm that has been successfully applied at the tile level (Ciga, Xu, and Martel
2021; Dehaene et al. 2020; Lazard et al. 2022; Saillard et al. 2021) , there is a
challenging opportunity to make use of these unannotated data at the slide level
to derive meaningful slide representations. These would be particularly useful for
small cohorts and non-standard output variables, such as prognosis for rare cancer
types or prediction of treatment response in clinical trials.

However, learning representations at the WSI level is difficult since WSI cannot be
manipulated as one image object due to their size, impeding the straightforward use
of self-supervised learning frameworks developed on natural images. The community
needs to innovate to translate SSL at the WSI level regarding the design of pertinent
augmentations. For instance, the crop augmentation plays a central role for learning
good representations with SSL on natural images (T. Chen, Kornblith, Norouzi,
et al. 2020; Misra and van der Maaten 2019). However, randomly cropping one
memory-fittable image from a WSI can lead to a complete loss of the cells and
tissues that determine its ground-truth, due to the inherent heterogeneity of tissues.
Further developments should also be done on the architecture of a SSL framework
for WSI representations, as was done in the only paper tackling SSL at the WSI level
(Richard J. Chen et al., n.d.).

Here, we propose Giga-SSL, a strategy to perform SSL for gigapixel images. Designed
for pathology data, our method is capable of leveraging large datasets, such as The
Cancer Genome Atlas (TCGA) (Weinstein et al. 2013), to learn representations at
the WSI level without using any ground truth data – but only whole slide images.
Our main contributions are:

• Giga-SSL, an efficient self-supervised learning framework for learning discrimi-
native WSI representations.

• Extensive experiments show that a linear classifier that uses these embeddings
outperforms the current state-of-the-art performance on several clinically
impactful classification tasks. The gains are especially significant for small
datasets.

We expect that this method will have an important impact in the field of computa-
tional pathology in two ways: (1) Our method specifically boosts performance for
small datasets, which are very common in practice. We therefore address a major
bottleneck in computational pathology. (2) Having light and discriminative WSI
representations would alleviate the use of the image modality for a larger commu-
nity of researchers in cancer bioinformatics, in order to investigate the complex
relationships between genetic, transcriptomic and phenotypic data. Currently, WSIs
are mostly used by computer vision experts. To facilitate reproducibility and the
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broad use of Giga-SSL, the complete source code of this work will be available upon
publication.

V.1.2 Background

V.1.2.1. Multiple instance learning for gigapixel images

In the MIL paradigm, objects (called bags) comprise other objects (called instances).
For gigapixel images, the bag is a gigapixel image, and its instances are subimages
(also called tiles or patches) extracted throughout the gigapixel image. While
traditional MIL assumes independent and identically distributed (i.i.d.) instances
within each bag (Ilse, Tomczak, and Welling 2018), this assumption is relaxed
for gigapixel images because instances are extracted from the same image, and
are therefore not independent. Given a gigapixel image X made of nx instances
(x1, . . . , xnx), MIL is implemented as a combination of three modules: (i) an instance
embedder eθ1(·), (ii) a pooling operator pθ2(·) and (iii) a classifier cθ3(·) such that a
decision ŷ is obtained with

ŷ = cθ3

(
pθ2

(
{eθ1(x1), . . . , eθ1(xn)}

))
.

Most MIL architectures differ in the design of the pooling operator pθ2 . There are
two families of operators: (i) those that consider instances as i.i.d. and (ii) those
that exploit the relationship between instances of a bag. Architectures that consider
instances as i.i.d. are either parameterless (using the operators average, maximum,
a concatenation of both (Lerousseau et al. 2021), or a noisy-OR function (Srinivas
2013)), or trainable, such as an attention-based neural network (Ilse, Tomczak,
and Welling 2018). While these architectures obtain good performances, instances
of gigapixel images are dependent and contain information that can be leveraged
to produce accurate predictions. Modern MIL architecture for gigapixel images
have been designed to exploit the spatial relationship of instances. For instance,
transformer-based MIL approaches (Shao et al. 2021) extend the attention mecha-
nism of Ilse, Tomczak, and Welling (2018) by incorporating the positions of instances
for decision prediction. Of particular interest in this work, the SparseConvMIL (Ler-
ousseau et al. 2021) architecture leverages spatial information by building a sparse
map from both the instance embeddings and their sampled locations. This map is
further processed by a sparse-input convolutional neural network that outputs a
latent vector to be further classified by a generic classifier.
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V.1.3 Self-supervised learning for gigapixel images

Self-supervised learning has been investigated in computational pathology at the
tile level, for patches extracted from whole slide images (Ciga, Xu, and Martel 2021;
Dehaene et al. 2020; Lazard et al. 2022; Saillard et al. 2021). The findings suggest
that SSL indeed improved the performance on WSI classification tasks by using the
SSL pre-trained tile level model as a frozen tile encoder. Because patches extracted
from WSI are of size similar to datasets of natural images, the majority of the work
successfully used off-the-shelf frameworks developed on natural images such as
SimCLR (T. Chen, Kornblith, Norouzi, et al. 2020) or MoCo (He et al. 2020).

To the best of our knowledge, only one prior work has proposed a self-supervised
learning framework for learning representations at the Giga-pixel scale (Richard
J. Chen et al., n.d.). To do so, the authors design a new architecture made of 3
hierarchically stacked visual transformers (Dosovitskiy et al. 2020) which is trained
on unlabelled WSI regions with the DINO framework (Caron et al. 2021), notably by
enforcing consistency between two perturbed views of the same image. As stated by
the authors (Richard J. Chen et al., n.d.), their approach cannot be trained end-to-
end due to memory issues and needs to be trained in stages, starting from the visual
transformer at higher magnification. A major bottleneck of this approach is the
necessity to train the last transformer from scratch in order to perform downstream
tasks at the WSI level, implying that (i) the whole system does not benefit fully of
SSL pretraining, and that (ii) general and discriminative WSI representations are not
directly available (Richard J. Chen et al., n.d.). Conversely, we designed an efficient
method for learning WSI representations that obtained state-of-the-art performance
with a linear classifier without the need to fine-tune any part of our system.

V.1.4 Methods

V.1.4.1. Algorithmic design

Notations and algorithmic background Giga-SSL training comprises 6 sequential
steps to extract WSI representations which we detail here, and which is illustrated
in Figure V.1. Lets us consider a WSI X. We introduce here an extension of the
SparseConvMIL architecture for WSI classification (Lerousseau et al. 2021) by
considering a ResNet network fθ (ResNet18) (He et al. 2015b), which is cut at the
beginning of the fourth residual block into two sequential parts:

1. the first part, acting as the tile embedder eθ1 , is made of all layers of fθ up to
the first layer of the fourth block,

2. the second part, acting as the pooling function pθ2 , is made of all layers after
and including the fourth block of fθ up to the fully connected layer. It has
been converted into a submanifold convolutional network (Graham and van
der Maaten 2017) such that it can process sparse data.
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such that for any image i, the ResNet embedding is:

fθ(i) = pθ2

(
eθ1(i)

)
∈ R512

Step 1: Augmentation of the WSI at the tile-level Two augmentation functions t1
and t2 are sampled from an image augmentation domain A made of color augmenta-
tions (color jitter, grayscale) and geometric augmentations (flips, rotations, scaling,
blurring). First, T tiles are subsampled from X for each augmentation function t1
and t2, yielding two sets of patches {X1} and {X2}. The coordinates of the top-left
pixel of the tiles are stored for further processing. Finally, t1 is applied to all patches
of {X1}, yielding a set of augmented patches denoted as t1

(
{X1}

)
, and similarly a

set t2
(
{X2}

)
for the second set of patches {X2}.

Step 2: Embedding of tiles Each tile of both t1
(
{X1}

)
and t2

(
{X2}

)
are concur-

rently and independently forwarded through the tile embedder network eθ1 . Each
image is thus converted into a feature map which is averaged across all pixels,
yielding a tile embedding of size F (256 for ResNet18) for each tile of t1

(
{X1}

)
and

t2
(
{X2}

)

Step 3: Building of the sparse maps Following the framework of SparseConvMIL
(Lerousseau et al. 2021), a sparse map S1 is built by assigning each produced
embedding of t1

(
{X1}

)
at the location where each of its original tiles was sampled

in Step 1 3.1.0.2 but downsampled by a factor d = 224. Similarly, a sparse map S2 is
built from the embeddings t2

(
{X2}

)
.

Step 4: Augmentations of the WSI at the slide-level While WSI are difficult to
manipulate due to their huge size, a sparse map can be augmented with geometric
transformations, enabling our framework to perform slide-level transformations
in real-time. S1 and S2 are randomly flipped, rotated, and scaled with a factor
uniformly sampled in [0.5, 2] independently for the x and y axis.

Step 5: Embedding of the sparse maps into two augmented WSI representations
To compute representations, we apply pθ2 on both augmented sparse maps S1 and
S2. At this stage, the two augmented views of the input WSI X (augmented at the
tile-level and at the slide-level) are vector representations of the WSI.

Step 6: Loss optimization As is done in SimCLR, augmented views are finally fed to
a projector, giving two augmented projections with which the loss will be computed.
We train the weights of the pooling function pθ2 by optimizing the contrastive loss
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NT-XENT loss (T. Chen, Kornblith, Norouzi, et al. 2020). Given a minibatch B of
augmented WSI (Xi

1, Xi
2)i∈B , we set the loss function for a positive pair of WSI as

ℓi = − log exp
(
sim

(
Xi

1, Xi
2
)

/τ
)∑

x∈B 1{x ̸=Xi
1} exp

(
sim

(
Xi

1, x
)

/τ
)

where τ is the temperature parameter and 1{.} the indicator function. The final loss
is computed as the average of these terms across all views.

V.1.4.2. Design choices

Selection of the underlying CNN architecture Giga-SSL does not theoretically rely
on a ResNet architecture. There are many choices of good architectures that could
be used for the tile encoder and pooling function, including two parts of different
architectures. However, the pooling function must be implemented such that it
can handle sparse data since it processes the augmented sparse maps (see Step 5
3.1.0.6).

Off-line augmentation strategy A key computational bottleneck of Giga-SSL train-
ing is the online computation of tile embeddings for a batch of B WSI, each composed
of T tiles. GPU memory limitations put constraints on B and Nt, which effectively
limits the number of total tiles per batch that can be used. Besides, it has been shown
in SSL for natural images that a large batch size is required to yield representations
with good downstream classification performances (T. Chen, Kornblith, Norouzi, et
al. 2020; T. Chen, Luo, and Li 2021; Xinlei Chen and He 2020). A strategy for over-
coming these issues is to freeze the tile encoder eθ1 and pre-compute the embeddings
of randomly sampled and augmented tiles for each WSI, essentially bypassing steps
1 and 2](#methods_step2){reference-type=“ref” reference=“methods_step2”}. For
encoding a WSI, this is implemented by: (i) sampling 50 tile-level augmentation
functions (both color and geometric augmentations) (tk)k⩽50, (ii) for each k, ran-
domly subsampling 256 tiles from the WSI and augment them with tk, and (iii)
concurrently and independently forwarding each augmented tile into eθ1 and storing
them. This process leads to N*50*256 tile embeddings where N is the total number
of WSI of the Giga-SSL training dataset.

Giga-SSL is then trained, starting from step 3) by performing the following to sample
a view of a WSI: (i) sample one of the 50 tile-level augmentations, (ii) sample a
subset T of the 256 embeddings obtained from this augmentation, (iii) build the
sparse map, and (iv) carry on from step 4 .
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V.1.5 Experimental validation

V.1.5.1. Step 1: self-supervised pre-training

Self-supervised pre-training of Giga-SSL is done using The Cancer Genome Atlas
(TCGA) (Weinstein et al. 2013), a public dataset that comprises 11754 whole slide
images containing tissue from virtually all types of solid cancers. This dataset is the
result of an international data-collecting effort and therefore features a high variety
of participant centers (190). Such slides are crucial for patient care since they are
the basis of diagnosis and treatment selection. On average, images have a width of
93000 pixels and a height 67500 pixels, for an average of 6.5 billion pixels per image.
Fully compressed, TCGA weighs more than 16 Terabytes, orders of magnitude more
than ImageNet (Deng et al. 2009). We tessellated non-overlapping square patches
of size 256 pixels from all diagnostic slides of the TCGA at 10x magnification.

eθ1 pre-training We choose to pre-train eθ1 using MoCo (He et al. 2020). We trained
a full ResNet18 on a subset of 6 millions of these tiles extracted from a random
set of 3000 slides from the TCGA for 200 epochs. eθ1 is then extracted from this
network as described in 3.1.0.1.

Giga-SSL pretraining: we trained Giga-SSL on the full TCGA dataset, using the
augmented embeddings extracted with the previously described pre-trained tile
embedder (see 3.2.0.2), with Adam (Kingma and Ba 2014) for 1000 epochs.

V.1.5.2. Step 2: learning from linear embeddings

Training design For Giga-SSL, similarly to the works on natural images (Caron et
al. 2021; T. Chen, Kornblith, Norouzi, et al. 2020; He et al. 2020), we measured the
quality of the learned representations by performing linear probing either with all
the labels available for a given task or by artificially reducing the number of labels
to simulate a semi-supervised setting. To do so, one representation was extracted
for each WSI after SSL pretraining. These representations were then used as input
data to train a logistic regression for each considered downstream task.

Datasets This protocol was applied to six diagnostic WSI classification tasks highly
pertinent for clinical practice:

• 3 tasks performed by Chen (Richard J. Chen et al., n.d.) aiming at automating
the routine diagnosis of Non-Small Scell Lung Cancer (NSCLC), Breast Cancer
(BRCA), and Kidney Cancer (RCC);

• 3 tasks aiming at inferring molecular properties from tissue slides towards
faster, cheaper and more accessible molecular testing for cancer therapy selec-
tion.
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For each of these 6 tasks, 1 reports the number of training WSI of the corresponding
dataset, and their class distribution. All the datasets for these tasks are subsets of the
TCGA (Weinstein et al. 2013). Results were computed on 10 bootstrapped splits of
the data for each experiment, as was done in Chen (Richard J. Chen et al., n.d.), and
we also used their train/test splits to ensure fairness of performance comparisons.

Task # samples # labels per class

BRCA subtyping 1041 831 - 210
Kidney subtyping 924 510 - 294 - 120
NSCLC subtyping 1033 528 - 505
BRCA Molecular 595 129 - 466
BRCA mHRD 912 447 - 465
BRCA tHRD 634 318 - 316

Table V.1.: Total number of samples and number of samples per class for all of the 6
benchmarked tasks in this paper.

Default settings The number T of tiles sampled per slide to 5. For a slide X, we
bootstrap R = 50 views without tile augmentation (differing only in the sampled
tiles), compute their embedding {Wr}1,...,50 and consider the WSI representation
as the elementwise average of the {Wr}1,...,50. Average embeddings are normalized
using a standard scale, while the Giga-SSL embeddings are normalized using the L2
unit.

V.1.5.3. Results

Classification results on benchmarked tasks Table V.2 synthesizes the results on
all tasks for 5 models average, an attention-based MIL (Ilse, Tomczak, and Welling
2018) on top of a ResNet18 pretrained with MoCo , DeepSMILE (Schirris et al. 2021)
and HIPT (Richard J. Chen et al., n.d.). Results from HIPT and DeepSMILE are taken
from their respective articles and constitute the SoTA on the task on which they are
cited.

Our proposed approach, Giga-SSL, outperforms the state-of-the-art on two out of
three tasks benchmarked in (Richard J. Chen et al., n.d.) when using 100% of
the available training labels NSCLC and BRCA subtyping. For BRCA subtyping,
the AUC is increased by 3 points. Our proposed approach also achieves superior
performances for all the other remaining tasks (mHRD, tHRD and BRCA molecular
profiling). However, the power of the proposed approach seems to be in the low data
regime. This is evident by the results obtained by using only 25% of the available
labels. In this semi-supervised regime, the proposed approach obtained the best
results on all tasks. While this finding may be expected when comparing Giga-SSL
to methods without pretraining, Giga-SSL obtained superior results compared to the
other SSL-based approach HIPT. For example, there is a gain of 6.9 AUC points for
BRCA subtyping.
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Method Giga-SSL (proposed) AverageMIL DeepMIL HIPT DeepSMILE

Linear ✓ ✓ ✗ ✗ ✗

Task % data

NSCLCsubtyping
100 0.952 ± 0.020 0.913 ± 0.023 0.948 ± 0.017 0.952 ± 0.021 -
25 0.939 ± 0.017 0.885 ± 0.036 0.922 ± 0.034 0.923 ± 0.020 -

BRCAsubtyping
100 0.905 ± 0.032 0.859 ± 0.038 0.874 ± 0.050 0.874 ± 0.060 -
25 0.890 ± 0.058 0.822 ± 0.072 0.860 ± 0.042 0.821 ± 0.069 -

RCCsubtyping
100 0.982 ± 0.007 0.973 ± 0.011 0.986 ± 0.008 0.980 ± 0.013 -
25 0.975 ± 0.012 0.959 ± 0.015 0.970 ± 0.016 0.974 ± 0.012 -

BRCAmolecular
100 0.938 ± 0.035 0.920 ± 0.037 0.924 ± 0.042 - -
25 0.853 ± 0.075 0.799 ± 0.068 0.810 ± 0.093 - -

BRCA mHRD
100 0.756 ± 0.028 0.706 ± 0.030 0.736 ± 0.047 - 0.727 ± 0.010
25 0.743 ± 0.039 0.643 ± 0.050 0.660 ± 0.046 - -

BRCA tHRD
100 0.855 ± 0.023 0.799 ± 0.034 0.836 ± 0.052 - 0.838 ± 0.012
25 0.781 ± 0.050 0.698 ± 0.078 0.721 ± 0.075 - -

Table V.2.: Benchmark study reporting the 10-fold cross-validated AUC performances of a logistic regression trained with Giga-SSL WSI representa-
tions or AverageMIL WSI representations, and retrained from scratch for other benchmarked approaches. For each task, we evaluate the
methods with two data budgets with either 100% or 25% of the available training data.
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Compared to attention-based MIL and HIPT, the proposed approach (Giga-SSL)
provides an overall gain in performance while working in a linear regime. This is
in contrast to HIPT and attention-based methods, which require fine-tuning and
learning from scratch, respectively. Consequently, the downstream training pipeline
for Giga-SSL is extremely efficient in comparison to the other two approaches.
For instance, training for BRCA subtyping with 100% of the training data on 10
bootstrapped splits took 1.25 CPU-seconds for the proposed approach versus 150
GPU-minutes for attention-based MIL. This is a difference of 7200 times in favor of
Giga-SSL – while also obtaining superior performances.

Tiny datasets In practice, pathological datasets can be tiny for the prediction of
treatment response. For instance, phase II clinical trials typically involve 50 patients.
Training a model to identify responding and non-responding patients is therefore
challenging due to the low number of available labels.

We measured the performance of Giga-SSL in such a context by artificially reducing
the size of all 6 datasets to 250, 100 and 50 samples. We compare Giga-SSL to the
DeepAttnMIL model, which performances are on par with all other benchmarked
algorithms (see Table V.2).

NSCLCsubtyping RCCsubtypingBRCAsubtyping BRCAmolecular mHRD tHRD

Figure V.2.: Difference between the average AUC performances of Giga-SSL and DeepMIL
(in %) as a function of the training set size. The red line represents equal
performance. Above the red line, the advantage is given to Giga-SSL.

Figure V.2 shows that the performance gap between the proposed approach and the
standard WSI classification method strengthens as the number of samples decreases.
The average improvement over all tasks brought by Giga-SSL features is of 5.1 AUC
points when using 100 WSI and up to 6.3 AUC points when using only 50 WSI.

V.1.6 Ablation study and sensitivity analyses

In this section, we aim to understand the impact of some of Giga-SSL design choices
over the predictive power of the learned representations. All subsequent experiments
were conducted with the same conditions (including hyperparameters, epochs, and
training dataset) as in the previous experiments, unless otherwise stated.
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V.1.6.1. Sharing tile augmentations within views improves performance

Table V.3 reports the performance of Giga-SSL when removing one component at a
time, (i) with a tile embedder pre-trained on ImageNet rather than pre-trained with
MoCo on histopathological data (Giga-SSLim), (ii) without slide-level augmentation
during the WSI-level SSL pretraining; (iii) without shared augmentations across all
tiles of a view, each tile is transformed by a randomly and independently sampled
augmentation.

100% data 50 WSI

NSCLC CRC BRCA NSCLC CRC BRCA

Giga-SSL 0.952 0.982 0.905 0.894 0.960 0.793
w/o slide-aug 0.935 0.973 0.894 0.86 0.951 0.80
NS 0.933 0.971 0.875 0.847 0.939 0.774
Giga-SSLim 0.922 0.978 0.888 0.813 0.952 0.751
Giga-SSLim NS 0.897 0.975 0.853 0.777 0.935 0.707

Table V.3.: 10-fold cross-validated AUC performances of ablated Giga-SSL models. w/o
slide-aug is a Giga-SSL model trained without slide-level augmentations. NS
(Not Shared) is a Giga-SSL model trained without sharing the tile-level aug-
mentation among views. Giga-SSLim stands for a Giga-SSL model trained with
tiles embeddings transferred from an ImageNet pretraining.

Using a tile-level SSL algorithm to pretrain the tile encoder eθ1 brings improvement to
the WSI-level representations: the Giga-SSL trained with MoCo features outperforms
its ImageNet (Giga-SSLim) counterpart on all tasks. On the contrary, the slide-level
augmentation does not seem to be extremely important for the SSL task, as removing
it has a small to no impact on performances.

However, applying independent transformations to each tile (not shared) degrades
substantially the performances with an average decrease of 1.9 AUC points using
100% of the data down to 2.8 AUC points when using only 50 WSI, over the
classification tasks. When ablating the shared transformations from a Giga-SSL
model trained with tile features pretrained with ImageNet, the drop of performances
compared to a Giga-SSLim is even more important: 2.1 AUC points with 100% of
the data, 3.2 AUC points with 50 WSI.

Using shared augmentation thus allows the learning of useful features in abundant
and scarce data regimes. We hypothesize key features linked to the slide preparation
and shared by all the tiles on the slide are still available for shortcut learning if the
tile-level augmentations are not shared. It seems that these shortcut features may
be more prevalent with ImageNet than with MoCo tile representations. Highlighting
such features and finding even more stringent ways to suppress them when learning
Giga-SSL should further improve its performance.

The fewer tiles, the better Figure V.3.A presents the performances of 4 Giga-SSL
models trained with different numbers of sampled tiles per view. The fewer tiles we
sample, the better the resulting WSI representations. This behaviour strengthens
when the downstream problem has a smaller training set and is comparable among
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Figure V.3.: Experiments on key parameters of Giga-SSL. Each point is a 10-fold cross-
validated AUC performance of a logistic regression fed with Giga-SSL features.
The classification task is NSCLC subtyping for the three experiments. A. Effect
of the number of sampled tiles T per WSI during training. B. Effect of the
number R of bootstrapped non-augmented views of WSI to feed Giga-SSL at
inference time, using a model trained with either 5 or 100 tiles per WSI. C.
Evolution of the performances of a Giga-SSL with a SparseConvMIL (blue line,
normal situation) or an attention-MIL network (orange line) as an aggregator.

all the downstream classification tasks. Interestingly, we can observe the opposite
effect when using a DeepMIL model to classify a WSI: the fewer tiles used at training
time, the worse the performances (Lerousseau et al. 2021). A very small number
T of sampled tiles per view when training Giga-SSL can be seen as an aggressive
augmentation. It has been reported (T. Chen, Kornblith, Norouzi, et al. 2020) that
SSL benefits from stronger augmentations more than classification tasks, and Tian
et al. (2020) have shown that there is an optimal strength of augmentation for each
downstream task. This optimum results from a trade-off between keeping enough
information to solve the downstream task and minimizing irrelevant features.

As sampling 5 tiles per WSI is enough to learn useful information to solve all the
proposed downstream tasks, we can deduce that the signal relative to these problems
is distributed among most of the tiles of the WSI. It would be interesting to test the
performances of Giga-SSL on a classification task for which we know that the signal
is highly concentrated on a few instances.

Ensembling representations brings improvement A constraint of the Giga-SSL
model with a SparseConvMIL aggregation module is that it must use the same
number of tiles per WSI at inference and training. We therefore decided to bootstrap
R views of a WSI at inference time before averaging the Giga-SSL embeddings
of these R views. Figure V.3.B investigates the effect of R on the downstream
performances of the Giga-SSL representations. If the training uses 100 tiles per
view, ensembling WSI representations does not improve their discriminative power.
However, when training uses 5 tiles per view, it helps a lot (+4 AUC points on
NSCLC subtyping). This performance gain saturates around R = 50. Two conditions
are therefore required for an efficient training:
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data regime 100% data 50 WSI
Full dataset 0.952 ± 0.020 0.894 ± 0.045
Independent training set 0.948 ± 0.017 0.885 ± 0.045

Table V.4.: Linear classification performances (AUC) on NSCLC subtyping of embeddings
trained on either the full TCGA or a subset of the TCGA independent from the
downstream task dataset.

• A small number of sampled tiles per view at training time, which makes the
contrastive task difficult

• The ensembling of WSI views at inference, which helps integrating information
from discriminative but incomplete views.

Generalization Giga-SSL has been trained on the full TCGA dataset, and down-
stream classification dataset also comes from the TCGA. In order to investigate the
extent to which Giga-SSL could transfer to other datasets, we extracted from the
TCGA all slides coming from the 41 centers that contributed to the NSCLC dataset,
leading to an independent set of 6840 WSI. We trained Giga-SSL for 1000 epochs
on this training set and reports the results in Table V.4.

Interestingly, Giga-SSL performs almost as good when trained on a set of WSI totally
independent from the downstream task set. This suggests that Giga-SSL would
generalize well on a different dataset.

Attention-deep-MIL unlearns when trained with SSL Instead of using a sparse-CNN
as a tiles features aggregator, one could choose any other MIL model. We trained a
Giga-SSL model with a DeepMIL aggregation module and evaluated its downstream
linear performances on the NSCLC dataset. Figure V.3.C shows that the performances
of such a model decrease while the SSL training is in progress. Although the DeepMIL
shows very good classification performances (see Table V.2) when trained from
scratch, this architecture seems not suitable for Giga-SSL pretraining. We suspect
that the DeepMIL architecture has too easily access to shortcuts features to learn the
WSI identity. Understanding what causes its collapse may highlight key pitfall for
Giga-SSL training and therefore allow to improve it.

V.1.7 Conclusion

Limitations While Giga-SSL has been shown to generalize well outside of its training
data distribution, the tile-embedder is not pre-trained on a dataset that is entirely
independent from the downstream tasks’ datasets. It would be interesting to conduct
the same experiment as Table V.4 but excluding the WSI from the tile-embedder
pre-training dataset too. In addition, a drawback of working with frozen embeddings
of WSI is that it removes any possibility of building explainable models.
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Finally, we have explored self-supervised learning for whole slide images with
a versatile design based on specific data augmentation tailored for the multiple
instance learning framework. Our proposed approach achieved or beat state-of-
the-art performance over a wide range of clinically impactful tasks in both high
and low data regimes. In particular, for small datasets ( slides), our approach
achieved a performance improvement of 6.3 AUC points on average compared to
competing methods. Ablation studies and sensitivity analyses highlighted the key
components of our approach – including tile encoder pretraining and how to apply
augmentations to tiles – to better understand the pitfalls of self-supervised whole
slide image representation learning.
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This chapter has been made in collaboration with M. Lerousseau, A.V. Salomon, M-H. Stern, M. Rodrigues,
S. Gardrat, E. Decencière and T. Walter. It is currently under review.

V.2 Democratizing computational pathology: optimized
WSI representations for TCGA

V.2.1 Introduction

Cancer diagnosis heavily relies on the examination of H&E-stained tissue slides,
which offer crucial insights into the disease and potential treatment options and
which are routinely acquired in pathology labs. Digitizing these slides into Whole
Slide Images (WSI) enables automated analysis, aiming at assisting clinicians in
executing tedious tasks, such as counting mitoses(Veta et al. 2015), identification
of metastases(Ehteshami Bejnordi et al. 2017) and grading(Lubrano Di Scandalea
et al. 2022). Furthermore, the availability of large data repositories, such as
The Cancer Genome Atlas (TCGA) provides us with the challenging opportunity
to identify morphological biomarkers related to survival (Courtiol et al. 2019b;
L’Imperio et al. 2023) or treatment response(Naylor et al. 2022), and to unravel
the complex genotype-phenotype relationships by building predictive models for
molecular features, such as single gene mutations(Jakob Nikolas Kather et al. 2020),
and mutational signatures(Lazard et al. 2022).

However, WSI are not yet extensively used outside the pathology community for
two primary reasons. First, the size and complexity of WSI require special skills
and equipment for their analysis. A single WSI may contain billions of pixels,
complicating storage, processing, and analysis. Second, while pathology labs are
generating ever increasing WSI datasets, annotated WSI datasets are often scarce,
in particular for rare diseases, specific molecular subtypes or in the context of
clinical trials. Training current deep learning models on such datasets often leads to
underperforming models with poor generalization capability.

Self-supervised learning (SSL) offers a promising approach for addressing these
chalenges. This training paradigm leverages unlabeled datasets to pretrain neural
networks which then demonstrate exceptional performance when fine-tuned on
smaller, annotated datasets. Numerous studies in the computational pathology field
have already adopted SSL, but only at the tile level (Dehaene et al. 2020; Lazard
et al. 2022; Lubrano Di Scandalea et al. 2022; Saillard et al. 2021; Schirris et al.
2021).

They used such pretrained networks to encode the small images that compose the
WSI-the tiles-, effectively reducing them from billions of pixels to a few thousand
feature vectors. These feature vectors then serve as the basis for training multiple
instance learning (MIL) algorithms (Ilse, Tomczak, and Welling 2018; B. Li, Li,
and Eliceiri 2021; Lu et al. 2021; Shao et al. 2021). Nonetheless, the sheer
volume of tiles per WSIs still makes MIL models both computationally intensive to
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train and prone to overfitting. While (Richard J. Chen et al., n.d.) is a fair effort
toward training without supervision wide histopathological images -up to 4096 pixel
squared-, they do not succeed in training WSI representations.

Here, we introduce Giga-SSL, a novel self-supervised method that utilizes large,
unlabeled WSI datasets to learn compact and highly discriminative WSI-level fea-
tures. It can encode a WSI into a single vector of 512 values, and we show that
a simple logistic regression operating on these representations achieves equal or
better performance than fully-supervised MIL architectures across several tasks and
datasets. Furthermore, we open-source these representations for the entire TCGA-
formalin-fixed, paraffin-embedded (FFPE), reducing its size from 12 TB to 23 MB
without loss of predictive power.

Giga-SSL aims to use the principle of contrastive learning (CL) at the slide level, i.e.,
on an array of tile representations. CL is a SSL framework whose primary task is to
draw closer the representations of two randomly transformed versions of the same
object, while pushing away-contrasting- the representations of different objects.

In order to optimize this objective at the scale of WSIs, we devised a specialized
approach that involves both tile-scale and slide-scale transformations. This design is
executed through a two-step architecture, as illustrated in Figure V.4A. The architec-
ture consists of two distinct neural networks; the first network, which is pretrained
on histopathological images, is responsible for encoding the transformed tiles, and
only the second network, comprising sparse convolutional layers, undergoes opti-
mization during the giga-SSL training process.

The output of this second block, the WSI representations, are used in all the down-
stream analysis tasks by training L2-regularized logistic regressions. For the sake of
brevity, we refer to these models as Giga-SSL classification models. Their correspond-
ing performance metrics are designated as Giga-SSL performances.

V.2.2 Results

Giga-SSL outperforms fully-supervised methods on several classification tasks
and across cancer types. We first compared Giga-SSL models to state-of-the-art WSI
classification algorithms across five TCGA benchmark tasks. These include breast
cancer subtyping (lobular/ductal), lung cancer subtyping (lung adenocarcinoma
(LUAD)/ lung squamous cell carcinoma (LUSC)), kidney subtyping (clear/papil-
lary/chromophobe cells), and two breast cancer-related tasks: homologous recombi-
nation deficiency / proficiency (HRD/HRP) and molecular profiling (Triple Negative
Breast Carcinoma (TNBC)/luminal). We gradually reduced the training dataset
size through stratified subsampling down to 50 WSIs and assessed the performance
of models trained on these subsets (see Fig. V.4B). We compared Giga-SSL to the
CLAM-SB algorithm (Lu et al. 2021) operating on the same tile representations than
the one used by the Giga-SSL model. Fig. V.5 A. shows the absolute performance of
Giga-SSL and CLAM models and their difference as a function of the training set size.
Across all tasks, using 100% of the training data, Giga-SSL consistently achieves
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state-of-the-art performance. The advantage of Giga-SSL over CLAM grows as the
training set size shrinks. With only 50 WSIs, Giga-SSL provides an average gain of 7
AUC points over CLAM.

Giga-SSL transfers well to other datasets.

To confirm these findings, we performed external validation experiments to explore
the generalization capabilities of our representations. For this we applied Giga-SSL
to two in-house WSI datasets for two different cancer types:

• Breast cancer (BC): 788 in-house H&E stained WSIs from BC patients with
known Homologous Recombination s

• atus. We conducted two classification tasks: HRD prediction and subtype
prediction (TNBC/luminal) (Lazard et al. 2022).

• Uveal Melanoma (UM): 516 in-house H&E stained WSIs from UM patients. The
objective here was to predict chromosome 3 status (disomy 3 or monosomy 3,
which represent two major UM subtypes with contrasted prognosis) (Cassoux
et al. 2014).

Fig. V.5.B shows the improved performance of logistic regression with Giga-SSL
representations compared to CLAM. The average AUC increase is 3.8% using 100%
of the data and 5.7% using 50 WSIs: Giga-SSL weights maintain their performance
and label efficiency when applied to unseen datasets.

Giga-SSL can predict more mutations and genetic signatures than MIL.

We next turned to the prediction of mutations and genetic signatures across cancer
types. Kather et al. showed in a seminal study that many mutations and genetic
signatures are predictable from H&E stained tissue slides (Jakob Nikolas Kather et
al. 2020). Our objective was to assess whether logistic regression could effectively
predict mutations and signatures using Giga-SSL representations, as an alternative
to employing a full MIL. The data workflow for these experiments is delineated in
Fig. V.4D. In total, the prediction tasks encompass (1) 830 point mutation predictions
across 14 tumor types (2) 376 known oncogenic driver mutations and (3) 182
subtyping and genetic signature tasks. Of note, genetic variant prediction tasks
are usually imbalanced, with the minority class comprising 8% of the dataset on
average. This contrasts with subtyping and genetic signature prediction tasks, where
the minority class represents on average 33% of the dataset.

The Venn diagram in Fig. V.5.D illustrates the number of mutations that can be
predicted by the Giga-SSL model (represented by the blue areas), the Average model
-see methods- (shown as the red area), and the MIL model (Jakob Nikolas Kather et
al. 2020) (depicted by the green area).

We observe that Giga-SSL is able to predict most of the mutations that are predictable
with the previously published method (30/45 for the point mutations, 26/34 for
the oncogenic driver mutations). Furthermore, the Giga-SSL representation allow
the prediction of an additional 64 point mutations and 30 driver mutations, which
roughly doubles the number of predictable mutations from WSIs across these 14
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cancer types. Details about the predictable mutations are available in Supplementary
Tables F.3 and F.6.

A similar result is obtained for genetic signatures: out of 374 binary classification
tasks (see methods) the majority of signatures predictable by the MIL model (Jakob
Nikolas Kather et al. 2020) can also be predicted by Giga-SSL (140 out of 154)
and the average model (127 out of 154). Compared to the MIL model, the Giga-
SSL model can predict an additional 50 signatures. Additionally, as illustrated in
Fig. V.5E, Giga-SSL provides enhanced classification accuracy across all tasks. Details
about the performances of Giga-SSL on these tasks are available in Supplementary
Figures F.2 and F.4

Finally, the same experiments have also been led by training Giga-SSL-based lo-
gistic regressions on site-corrected folds (Howard et al. 2021) leading to similar
conclusions (see Figure F.1).

Giga-SSL is modular. Contrary to monolithic frameworks and algorithms, Giga-SSL
relies on the correct adjustment of different training elements: the tile-encoder
pre-training, tile-level and slide-level augmentations, and the aggregation module.
Each module can be updated independently, allowing the entire framework to
continuously benefit from advancements in their respective domains. We illustrate
this by comparing various pre-trained tile-encoders as shown in Supplementary
Table F.1, notably the recent ctranspath network, and demonstrate that the WSI
Giga-SSL representation benefits from an improved tile-encoder; a research effort
that already receives much attention (Filiot et al. 2023; X. Wang et al. 2022; Xiang
and Zhang 2022).

Giga-SSL is computationally efficient. To highlight Giga-SSL’s computational
efficiency, Fig. V.5.C shows the GPU-days required for our experiments. Training
a Giga-SSL model for 1000 epochs on the complete TCGA dataset takes only 10
GPU-hours on a single GPU. Once we have obtained the representations, downstream
prediction tasks become highly efficient. This is because the classification algorithm
fits only logistic regression, and the cross-validated experiments take approximately
1 hour on a laptop CPU — a sharp contrast to the 92 GPU-days reported in (Jakob
Nikolas Kather et al. 2020). When applied to external datasets, Giga-SSL showcases
good scalability: on average, a WSI can be encoded by Giga-SSL in roughly 5 seconds
using a single GPU. This implies that encoding a typical dataset of 1000 WSIs can be
completed in less than 1.5 hours.

V.2.3 Discussion

In this article, we aimed to develop generic representations for H&E stained WSI,
targeting robust solutions for small datasets and simplified training, thus lower-
ing barriers for morpho-molecular cancer analyses. Addressing these challenges,
we introduce Giga-SSL, the first SSL framework able to derive concise yet highly
discriminative WSI-level embeddings. Using logistic regression, we highlight the
advantages of these features, achieving state-of-the-art classification performances
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on small datasets, exhibiting robust generalization to external datasets and doubling
the number of predictable gene mutations in the TCGA across cancer types.

A major advantage of Giga-SSL is its computational efficiency, at training and
inference time. This efficiency allows for the potential training of Giga-SSL models
on datasets significantly larger than the TCGA at minimal cost and with much lower
environmental impact. Moreover, even scientists without detailed knowledge of
image analysis and deep learning can easily utilize this modality, facilitating tests
on new outcome variables or experiments with different datasets stratifications.
We are releasing the entire encoded TCGA-FFPE dataset to the public, reducing its
size from 12 TB to 23 MB. Such readily available embeddings can be integrated
into TCGA’s bioinformatics evaluations without any need for prior image-processing
know-how or specialized equipment. We are optimistic that this initiative will spark
interest within the bioinformatics sector, encouraging comprehensive integration of
pathology and molecular data, and fostering joint exploration of cancer’s molecular
and morphological landscape.

V.2.4 Methods

V.2.4.1. Training and inference details

Tile embeddings We obtain tile embeddings using contrastive learning. Specifically,
we employ MoCo (Xinlei Chen et al. 2020), training a ResNet18 on 6 million
tiles extracted from a random set of 3000 FFPE slides from the TCGA over 200
epochs using MoCoV2’s standard transformation. The tile embeddings are obtained
through spatial pooling of the activations of the third block of this network. The tile
representations are kept static, meaning they are not further optimized during the
Giga-SSL training phase.

Giga-SSL architecture The architecture of Giga-SSL combines the ResNet18 frame-
work with SparseConvMIL (Lerousseau et al. 2021). The first four residual con-
volution blocks independently encode each tile. The resulting tile encodings are
aggregated within a SparseMap and processed by 4 sparse convolution blocks (Ler-
ousseau et al. 2021). Together, these components achieve functionality akin to a full
ResNet18, as detailed in (Lazard et al. 2023), and the final layer of this architectural
blocks are the WSI embeddings used in the downstream analysis. A final multi-layer
perceptron called projector further encodes the embeddings of the WSI, following (T.
Chen, Kornblith, Norouzi, et al. 2020). The CL loss is computed using the output of
the projector network.

Slide-level transformations aim to generate different views that are to be pulled
closer or pushed apart, depending on whether they originate from the same WSI,
while maintaining part of the biological information of the WSI. To generate these
views, we use the following transformations:
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• Subsampling: Tiles are randomly sampled among all the tissue-tiles of a
WSI. The harshness of the transformation is given by the number T of tiles
subsampled per view. Notably, when T = 1, the Giga-SSL training framework
becomes equivalent to HiDisc-Slide (Jiang et al. 2023).

• Tile transformations: The tiles are randomly augmented with classical image
augmentations (hue, rotation, Gaussian blur, flips, crops) before being encoded
by the tile encoder. Training Giga-SSL requires this transformation to be shared
among views; that is, when building a transformed view of a WSI, the same
augmentation must be applied to all sampled tiles.

• Sparse-map transformations: The sparse-maps undergo scale, rotation and
flips transformation, augmenting the geometries of the WSIs.

Giga-SSL Training Training is performed in 2 steps. First, the tile encoder is pre-
trained on histopathology data using MoCo (Xinlei Chen et al. 2020) and frozen,
like in (Lazard et al. 2023). This allows to compare Giga-SSL to competing methods
based on the same tile encodings. In a second step, the sparse units (in orange in
Figure V.4) are trained on the full TCGA with the WSI-level contrastive pretext task
under the slide-level transformations before. Training is performed for 100 GPU-
hours on a single V100 GPU. We use the Adam optimizer with a starting learning rate
of 0.003. We use a cosine annealing learning rate scheduler with 10 warming epochs
and a final learning rate to 3e−6. As described in the methodological publication
(Lazard et al. 2023), we approximate the tile-level augmentations by randomly
sampling 25 augmentations per WSI. We then uniformly sample 64 tiles per WSI
per augmentation, augment and embed them using the tile-encoder described
previously.

WSI representation computation To regularize the embeddings, the Giga-SSL net-
work is applied to R = 50 different views of each slide, each view being composed of
5 tiles. The Giga-SSL representations are the average of these 50 runs. The Average
representations are the feature-wise average of the representations of all the tiles of
a WSI. We call Average models the logistic regressions operating on these representa-
tions. Both the Average and Giga-SSL representation are then unit-normalized using
scikit-learn (Pedregosa et al., n.d.) Normalizer.

Label acquisition Labels for various datasets are extracted from different
sources:

• Lung (LUAD/LUSC): GDC Portal
• Breast Cancer (Ductal/Lobular): GDC Portal
• Kidney (clear/papillary/chromophobe cells): GDC Portal
• mhrd Breast Cancer (HRP/HRD): GerkeLab Repository, as in Knijnenburg et

al. (2018). HRD score are binarized using mean as threshold.
• All pancancer experiments: Supplementaries of Jakob Nikolas Kather et al.

(2020). The continuous variables are binarized using mean as threshold.
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V.2.4.2. Statistical procedure

To address downstream classification challenges, we deploy an L2-regularized logistic
regression (parameters: C=10, class_weight=‘balanced’). We report the perfor-
mance of these logistic regressions over 10 random dataset splits for benchmarking
and generalization experiments, and 3 splits for mutation prediction experiments
(to account for the very imbalanced nature of the mutation prediction task). The
same splits are used in compared methods.

For mutation prediction, the primary criterion is task predictability. As outlined in
(Jakob Nikolas Kather et al. 2020), we accumulate the model’s posterior probabilities
predictions throughout the cross-validation folds. We then conduct a t-test between
the predictions of the samples belonging to one class and the predictions from the
remainder of the dataset. We adjusted the resulting p-values for multiple testing,
accounting for a total of 1388 classification tasks, using the Benjamini-Hochberg
correction. We set the significance threshold, pthres, to 0.01 and compare the
predictability of tasks between Giga-SSL and the MIL model implemented in the
original publication. Each task of the pan-cancer experiments employs a patient-level
three-fold cross validation strategy.
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This work is unpublished.

V.3 Interpretation: Morphological Profiles

One of the primary limitations of using Giga-SSL representations lies in the lack of a
straightforward interpretation algorithm. While MIL models allow for the investi-
gation of attention scores to identify ROIs and generate explanations, interpreting
frozen Giga-SSL representations can be challenging. To address this, we propose a
method for interpreting the Giga-SSL embedding space, drawing inspiration from
the TCAV approach (see Section II.3.1.1). This work has not yet been submitted in
the form an article, and I describe the method therefore in more detail. I would like
to mention that the method makes use of individual cell classifications that have
been kindly provided by Marvin Lerousseau, Postdoc at the CBIO.

V.3.1 Method Description

Our methodology is inspired by TCAV (B. Kim et al. 2018), where we employ
user-defined concepts to construct morphological profiles for a specific binary task.
Unlike local explanations that focus on individual WSI, our method offers a global
explanation for the classification task at hand.

In TCAV, specific directions in a model’s latent space are attributed to a predefined
concept. We adopt a similar strategy by defining concepts and associating them with
specific directions in the Giga-SSL embedding space. These concepts are human
interpretable morphological features, either continuous or categorical, such as the
number of tumor-infiltrating lymphocytes (TILs), tumor size, or cell atypia. The
representation of each concept is built from a WSI dataset annotated with relevant,
interpretable labels.

As an example, for a specific subset of WSIs, one might assess the area covered by
necrotic tissue. This measurement serves as an interpretable concept.

A concept c then acts as a target for a linear model trained on Giga-SSL embed-
dings. Ridge regression is used for continuous labels, while L2-regularized logistic
regression is employed for binary labels. These models yield weights Wc, defining di-
rections in the latent space on which the concept varies. Figure V.6A. illustrates that
whether the concept is continuous or binary, moving along Wc either increases the
value of c (if c is continuous) or approaches its decision boundary (if c is discrete).

We assemble a set of p concepts (ci)i⩽p and their corresponding directional vectors
(Wci)i⩽p. For a binary classification task T , we train a logistic regression model and
obtain weights WT . The cosine similarity between WT and each Wci is calculated
as:

P T
i = WT · Wci

∥WT ∥∥Wci∥
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122 Chapter V Learning WSI representations without supervision



This similarity, P T
i , signifies the contribution of concept ci to the decision process in

task T . Iterating across all concepts, we build a morphological profile:

PT = (P T
i )i⩽p

V.3.2 Applications

V.3.2.1. Concepts

To demonstrate the method’s effectiveness, we utilized an in-house, unpublished
detection and segmentation tool. This tool quantified various features on 981 slides
from the TCGA-BRCA dataset, such as the number of invasive tumor cells and the
area of necrotic regions. These quantities serve as concept labels ci:

• glands: number of healthy glands in the WSI.
• connective: number of cells composing connecting tissues.
• tissue: area of tissue free of detected nucleus.
• epithelial: number of epithelial cells.
• necrosis: area of necrotic tissue.
• inflammatory: number of inflammatory cells.
• TAStroma: Tumor Associated Stroma
• in-situ tumor: number of in-situ tumor cells.
• invasive-tumor: number of invasive tumor cells.

In our example, all features were continuous, although binary variables can also be
used. We work in the feature space of the Giga-SSL model used in Section V.2.

V.3.2.2. Morphological profiles

We then used these concepts to devise the morphological profiles of a serie of tasks.

Transfer to Other Datasets During the work presented in Chapter III, an expert
pathologist, Guillaume Bataillon, evaluated the number of Tumor Infiltrating Lym-
phocytes (TILs) on each slide from our Curie breast cancer WSI dataset. We binarized
these counts using the average as a threshold and computed the morphological pro-
file for this binary classification task.

Figure V.7 shows the morphological profiles for three different tasks on this Curie
dataset. Apart from TILs, tumor grading and a molecular classification task were
also examined. For tumor grading, grade 3 was used as the binarization threshold.

Both the Triple Negative and High-Grade profiles are consistent with literature
findings, showing spikes in inflammation and necrosis (Rakha et al. 2009; Livasy
et al. 2006). Importantly, the TILs profile strongly aligns with the inflammation
concept. This finding validates the cross-dataset applicability of our interpretation
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Figure V.7.: Morphological profiles of three classification tasks. Classification is per-
formed on the Curie dataset. Glands referes to the number of healthy glands,
tissue to the area of tissue without cells and TAStroma to the Tumor Associated
Stromal cells.

method: it is possible to train from concepts on one dataset and use them to interpret
a classification on another dataset.

Phenotypic study at the TCGA scale The computational efficiency of this global
explanation method enables scalability, allowing us to extend our analysis to large
datasets like TCGA. Utilizing a consistent set of concepts, described in Section V.3.2.1,
we computed morphological profiles for all predictable binary classification tasks T
that we tackled in Section V.2.

These tasks contain binary mutation predictions as well as genetic signatures and
subtyping tasks, for 14 different TCGA projects. It means that a given classification
task may be present in several occurrences. For instance, the TGF − β response was
found to be predictable among almost all of the TCGA projects.

To capture the relationships among these tasks, we applied KMeans clustering to
their profiles (PT )T ∈T , setting the number of clusters (K) to 4.

Figure V.8 A shows the average profile for each of the four clusters. Wordclouds
facilitate the visual representation of the cluster composition. A noteworthy observa-
tion is the similarity in morphological profiles for certain classification tasks across
different types of cancer. Specifically, the tasks related to the immune signatures used
in Thorsson et al. (2018) for constructing immune subtypes seem to be predictable
thanks to the same morphological profile among many cancer types.

For example, tasks dominated by TGF − β signals are mainly grouped in cluster 4.
Similarly, tasks featuring IFN − γ are predominantly found in cluster 2, while tasks
related to Wound Healing appear in cluster 1.

Figure V.8 further breaks down the average profiles for specific tasks across multiple
cancer types.

These are overall coherent findings.

124 Chapter V Learning WSI representations without supervision



A.

B.
TGF- Wound Healing TP53 - Mut Profileration HRDIFN-

coSim(       ,      ) coSim(       ,      )

coSim(       ,      )

Figure V.8.: Average profiles of the 4 clusters. A. The average profile are accompany with
wordcloud describing the composition of the clusters: the bigger the name of
the task is, the more prevalent the task is in the cluster, meaning that this task
shares a common profile across TCGA project. B. Average profiles of 6 tasks
accross the 14 TCGA projects: 5 genetic signatures (TGF-β, Wound-healing,
Proliferation, IFN-γ and HRD) and one point mutation, TP53.
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V.3.3 Limitations and Perspectives

While the interpretation method presented here offers valuable insights, caution is
essential in its application. The risk of confirmation bias is always present, making it
imperative to validate any findings through alternative means before giving them
credits. This method should ideally be employed alongside other interpretability
techniques for robust analysis.

In addition, the morphological profiles generated are subject to noise and their
reliability correlates with the predictability of the task and the individual concepts
involved. Nevertheless, this approach serves as a cost-effective way to formulate
hypotheses about phenotypes and transfer knowledge across datasets.

The method’s scope is restricted by the set of concepts initially defined. However,
it can be augmented by integrating it with other interpretability tools, such as
those outlined in Chapter III. These complementary tools can identify morphological
patterns without prior knowledge. Once identified, these new patterns could be
used to train human observers, who could then select WSIs where these patterns
are prevalent. The creation of a new concept dataset could then be used to validate
initial findings and extend their application to broader datasets, such as different
types of cancer.

In summary, this interpretability method complements the GigaSSL model effec-
tively. Its ease of use, speed, and adaptability make it a useful addition to the WSI
interpretation toolbox. It significantly broadens the scope for investigating cancer
phenotypes at the scale of large datasets like TCGA, and across different cancer
types.
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Preface

This research concludes my PhD thesis and was executed in close partnership with
Aurélie Beaufrère, an anatomopathologist with expertise in cholangiocarcinoma.
Intrigued by the potential therapeutic benefits of novel molecular subtyping, Aurélie
saw an opportunity to apply a cost-effective deep-learning technique. The primary
objective was to predict these molecular subtypes using raw Hematoxylin, Eosin and
Saffron (HES, see Figure I.2) stained Whole Slide Images (WSIs), for which we had
morphological clues.

I opted to utilize the recently developed Giga-SSL encoder, seizing the chance to
evaluate its representations on both an external cohort and a tissue stain different
from H&E. The ease and speed of classification using these embeddings further
enabled a more in-depth exploration of the dataset. Notably, the comprehensive
dataset assembled by Aurélie provided additional opportunities for investigation.

It included multiple types of samples, such as biopsies and surgical resections,
and multiple samples per patient. Furthermore, these samples originated from
different tumor blocks, as illustrated in Figure I.4. Importantly, not all samples were
derived from the blocks used for molecular analysis. This provided us with a unique
opportunity to investigate the influence of WSI origin, especially its correlation with
the molecular sample, on classification performance.

In addition to demonstrating the feasibility of this molecular subtyping using only
HES-stained WSIs, this study also highlights the impact of tumor heterogeneity at
the resection level. Most existing studies focus on tumor heterogeneity at the slide
level, making our research distinctive. This work, just like Chapter III testifies the
value of interdisciplinary collaboration within our laboratory.

Contributions

A Publications - communications

• A. Beaufrère*, T. Lazard*, et. al. Self-supervised learning for predicting
transcriptomic classes on whole slides images in intrahepatic cholangio-
carcinoma, preprint.
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Summary:
Transcriptomic classification of intrahepatic cholangiocarcinoma (iCCA) has been recently improved
from two classes to five classes, associated with pathological features, targetable genetic alterations
and survival. Despite its prognostic and therapeutic value, the classification is not routinely performed
due to technical limits such as insufficient material or the cost of molecular analyses. Our aim was
to predict iCCA transcriptomic classes on whole-slide digital histological images (WSI) using a self-
supervised learning (SSL) model. We trained logistic regressions on top of representations extracted
with a self-supervised model, Giga-SSL, and show that each transcriptomic class is predictable with
good performances (AUC: 0.55-0.81) in a cross-validation setting, particularly for the hepatic stem-like
class (AUC=0.81). These models generalized well on two external datasets-the TCGA and an external
French test set-. In addition, we studied the role of the training set composition and highlight the
potential deleterious effect of tumoral heterogeneity on the trained models.

Résumé:
La classification transcriptomique du cholangiocarcinome intrahépatique (iCCA) a récemment évolué,
passant de deux à cinq classes, associées à des caractéristiques pathologiques, des altérations génétiques
ciblées, ainsi qu’à la survie globale. Malgré sa valeur pronostique et thérapeutique, cette classification
n’est pas couramment réalisée en routine en raison de contraintes techniques, telles que l’insuffisance
de matériel biologique prélevé ou le coût élevé des analyses moléculaires. Notre objectif est de prédire
les classes transcriptomiques de l’iCCA à partir d’images histologiques numériques de lames entières
(WSI) en utilisant un modèle d’apprentissage auto-supervisé (SSL). Nous avons entraîné des régressions
logistiques sur les représentations extraites à l’aide d’un modèle de représentation de WSI entraîné sans
supervision, appelé Giga-SSL. Nous avons démontré que chaque classe transcriptomique est prédictible
avec de bonnes performances (AUC : 0.55-0.81) lors de la validation croisée, en particulier pour la
classe de type tige hépatique (AUC=0.81). De plus, nous avons confirmé la validité de ces modèles en
les appliquant avec succès à deux ensembles de données externes : le TCGA et un jeu de test externe
provenant de l’hôpital Beaujon. En outre, nous avons mené une analyse approfondie du rôle de la
composition de l’ensemble d’entraînement et avons mis en évidence l’effet potentiellement néfaste de
l’hétérogénéité tumorale sur les modèles entraînés.
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VI.1 Introduction

Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary malig-
nant liver tumour with an increasing incidence worldwide (Global Burden of Disease
Liver Cancer Collaboration 2017; Rahnemai-Azar et al. 2017). Despite the absence
of chronic liver diseases, the prognosis of patients with iCCA remains very poor.
Currently, the only curative treatment for iCCA is surgery; however, only 20-40% of
patients can benefit from it due to a diagnosis at an advanced stage of the disease
with an overall five-year survival after surgical resection < 40% (Endo et al. 2008;
Mavros et al. 2014). In unresectable patients, locoregional treatment in purely
intrahepatic cases or systemic treatment (gemcitabine and cisplatin +/- durvalumab
in first line) in metastatic cases are proposed with a median overall survival of
respectively 15 and 12 months (Bridgewater et al. 2014; European Association for
the Study of the Liver. Electronic address: easloffice@easloffice.eu and European
Association for the Study of the Liver 2023; Oh et al. 2022).

Recent advances in the pathobiological and molecular understanding of iCCA have
provided prognostic and theranostic factors for a better clinical management of
patients with iCCA (European Association for the Study of the Liver. Electronic
address: easloffice@easloffice.eu and European Association for the Study of the
Liver 2023). From a transcriptomic point of view, for a long time, only two distinct
groups of iCCA have been identified: including an inflammatory class (40% of cases)
characterised by activation of inflammatory signalling pathways, and a proliferation
class (60% of cases) characterised by activation of oncogenic signalling pathways and
associated with a worse prognosis (Sia et al. 2013). Recently, this classification has
been improved by passing from two groups into five groups. The inflammatory class
has been divided into two sub-classes (inflammatory stroma and immune classical)
while the proliferative class has been divided into three subclasses (Hepatic stem-
like, tumour classical and desert-like). Interestingly, this classification has been
associated with tumour microenvironment composition, genetic alterations and
prognosis (Martin-Serrano et al. 2022). In particular, Hepatic stem-like group,
which represents the most frequent transcriptomic group, has been associated
with a better prognosis and with targetable genetic alterations such as IDH1-2
mutations and FGFR2 fusions, particularly relevant clinically, since specific inhibitors
(e.g. Pemigatinib or Ivosidenib) have been approved by the FDA as second-line
treatments for locally advanced or metastatic iCCA (Abou-Alfa et al. 2020; Moeini et
al. 2016). However, this transcriptomic classification is not used in routine practise
since it is currently based on sophisticated molecular biology techniques (expensive,
accessible in expert centres) and requires histological samples rich in tumour cells.

130 Chapter VI Predicting transcriptomic classes on whole slides images in intra-
hepatic cholangiocarcinoma



Artificial intelligence (AI) models and in particular deep neural networks (Deep
Learning) are rapidly emerging in the medical field, particularly in imaging Calder-
aro and Kather (2021). With the development of digital pathology and wide access
to digitised whole slide images (WSI), AI approaches have shown first their perfor-
mance for classification tasks, as for example the distinction of cholangiocarcinoma
from secondary forms of liver adenocarcinoma (Albrecht et al. 2023). Interestingly,
AI approaches have also shown their performance for identifying prognostic mi-
croscopic features and transcriptomic classification for example in liver pathology
in hepatocellular carcinoma Cheng et al. (2022). Despite these successes, deep
learning techniques require large datasets (over a thousand slides (Campanella,
Hanna, Geneslaw, Miraflor, Silva, et al. 2019)) and are heavy computational ma-
chinery that limit in-depth studies on stratified datasets. We recently introduced
Giga-SSL, a self-supervised learning (SSL) algorithm designed to generate generalist
low-dimensional feature vectors of WSI, which offer both computational efficiency
and label-efficiency. The aim of the present study was to predict iCCA transcriptomic
classes on WSI using the Giga SSL model, with a specific focus on identifying the
hepatic stem-like class.

VI.2 Methods

VI.2.1 Patient and samples

The workflow of the study is summarised in Figure VI.1. For the discovery set, we
selected 246 formalin-fixed paraffin-embedded (FFPE) iCCA cases (109 surgical
specimens and 137 biopsies) archived between 2000 and 2021 in the Pathology
department of Beaujon Hospital (Clichy, France) representing 769 Hematein eosin
saffron (HES) slides, divided into 5 folds at the patient level to perform cross-
validation. All available slides for the surgical specimens (including preoperative
biopsy when available, n=25) were selected for the study (median of WSI per case:
5 [1-12]). The slides were scanned at 20x magnification with an Aperio scanner
(ScanScope AT Turbo).

For the validation sets, we selected 32 iCCA surgical FFPE samples (32 WSI corre-
sponding to the one most representative slide for each case) from the Pathology
department of Henri Mondor Hospital (Créteil, France) (French external validation
set) and 29 iCCA cases (surgical FFPE samples, 29 WSI) from The Cancer Genome
Atlas cholangiocarcinoma (TCGA-CHOL) public dataset. The selection criteria in-
cluded 1) iCCA diagnosis after reviewing by an expert pathologist, 2) ⩽ 1 available
WSI from FFPE material, 3) tissue material in sufficient quantity and quality for
molecular analysis or molecular analysis already performed. Written consent was
obtained from all patients as required by French legislation. This study was approved
by the local ethics committee (IRB 00006477 N° CER-2022-168). The clinical and
biological data recorded were age at surgery, sex, risk factors of iCCA, tumour size,
number of tumours and overall survival (OS).
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Figure VI.1.: Flow-chart of the study. The model was first trained for the prediction of
the five transcriptomic classes in a discovery set of FFPE iCCA biopsy and
surgical samples (n=246 patients, Beaujon Hospital, Clichy, France) in a
5-fold cross-validation scheme according to three different ROI extraction
methods. Finally, it was validated in a French external validation set (n=32
patients, Henri Mondor Hospital, Créteil, France) and in a set of slides from
TCGA (n=29 patients). Formalin-fixed paraffin-embedded, FFPE; Hemateine
eosin, HE; Hemateine eosin saffron, HES; cross-validation, CV; Region of interest,
ROI; Slide from biopsy sample, slide B; Slide from surgical sample corresponding
to the sample used for the transcriptomic analysis, slide S + ; Slide from surgical
sample, not corresponding to the sample used for the transcriptomic analysis,
slide S-; Self-supervised learning, SSL; The cancer genome atlas, TCGA.
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VI.2.2 Pathology reviewing

All histological slides were reviewed by an expert liver pathologist (AB) and the
assessed features in the tumour were listed in Table G.1 and Fig. G.1. Stage of
fibrosis in the non-tumoral liver when available was evaluated according to the
METAVIR staging system (Bedossa and Poynard 1996).

VI.2.3 RNA sequencing

VI.2.3.1. RNA extraction

RNA sequencing was performed on the FFPE block selected for surgical specimens
corresponding to the most representative slide in the discovery and the French exter-
nal sets. These slides directly associated with transcriptomic analysis (consecutive
slides), have been labelled as surgical slides S+ whereas slides from other blocks
indirectly associated with transcriptomic analysis in the discovery set and in the
TCGA set have been labelled S-. For biopsy, the FFPE block used for RNA sequencing
corresponded directly to the slide selected (labelled as slide B) (Figure VI.1).

Briefly, five µm-thick sections with macrodissection when needed were cut from
FFPE blocks. Total RNAs were further isolated using the Qiagen FFPE RNA extraction
kit (RNeasy FFPE kit, Qiagen) for the discovery set and the Recover AllTM Total
Nucleic Acid Isolation Kit for the French external validation cohort (Invitrogen,
Thermo Fisher Scientific).

VI.2.4 Gene expression analysis

Gene expression was analysed using SMARTer Stranded Total RNA-Seq Kit for the
discovery set and QuantSeq 3’ mRNA-seq Kit for the French external validation
set. Only genes quantified in at least 50% of samples were kept for the analysis.
Gene expression profiles were quantile-normalized. The average expression of each
gene set defined gene signature was computed following a gene-wise centering in
each dataset (without variance scaling). The transcriptomic class with the highest
gene-set averaged expression was assigned to each sample. The same process was
applied to the TCGA dataset.

VI.2.4.1. Slide preprocessing and tessellation

Slides from the discovery set were stained with HES and encoded in svs format.
Slides from the external French validation set were stained with HES and encoded
in ndpi format. Slides from the TCGA validation set were stained with hematoxylin-
eosin (HE) and encoded in svs format. Tissue regions automatically extracted using
Otsu thresholding were then exhaustively split into 2899811 patches of 224×224
pixels (without overlapping) at 10x using the OpenSlide library in Python. We
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present the results in the discovery set according to three different pre-processing
protocols with or without extraction of region of interest (ROI), each requiring
varying levels of expert pathologist involvement (Fig. VI.1):

• No-Filter (∅): All tiles including tumour and non-tumour are processed as
they are, encompassing both tumour and non-tumour regions.

• Manual-Filter (M): An expert pathologist (AB) extensively annotates tumour
regions using ImageScope software, from which patches are extracted.

• Learning-Filter (A): Tiles are filtered using a logistic regression trained on a
dataset of 3000 tile embeddings, randomly extracted and labelled by an expert
pathologist (AB).

A detailed illustration of these various ROI extractino methods is available in Fig-
ure G.3.

VI.2.5 Machine Learning algorithms

VI.2.5.1. Data-split

Training was done using a 5-fold cross-validation framework in the discovery set.
Splits were stratified according to the output variable, at the patient level. They
were shared among all training to ensure the fairness of comparison.

VI.2.5.2. Giga-SSL representations

The Giga-SSL model was trained on a single V100 GPU on the TCGA-FFPE dataset
following the training framework provided in Lazard et al. (2023) at the exception
of the following details: Training was performed for 100 hours, or 7800 epochs WSI
embeddings are ensemble over 100 views, then L2-Normalized. Finally, we used
L2-regularised logistic regressions (C=7, max_iter = 10000, and class_weight set as
‘balanced’) as end classification models.

VI.2.5.3. MIL baseline algorithms

Beside the giga-SSL based classifications, we provide some baseline classification
algorithms for comparison. They are based on the deep attention multiple instance
learning (MIL) algorithm introduced in the work of Ilse et al30 and slightly modified
in Lazard et al (Lazard et al. 2022). The results are achieved using a ResNet18 tile
encoder (He et al. 2015b) pre-trained on imagenet or on the TCGA (i.e the one used
in the giga-SSL model).
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VI.2.5.4. External dataset inference

The probabilities predicted by the 5 trained logistic regression on the training set
(each corresponding to a training fold) are averaged, performances are computed
using these pooled probabilities.

VI.2.5.5. Statistical analysis

Continuous variables were compared by the use of Student’s t-test, and categorical
variables were compared by use of chi-square or Fisher’s exact tests. Survival
curves were represented by using the Kaplan-Meier method compared with log-rank
statistics. p ⩽ 0.05 was considered statistically significant (SPSS software). The
performance of AI models were assessed thanks to area under the curve (AUC) score,
balanced accuracy score and F1 score (macro-average).

VI.3 Results

VI.3.1 Patient characteristics

Discovery French external TCGA p
Clinical features set N=246 (%) validation set N= 32 (%) validation set N= 29 (%)

Age (mean) 63 [27-88] 64 [25-85] 63 [29-82] 0.810
Sex (Male/Female) 141 (57) / 105 (43) 23 (72) / 9 (28) 13 (45) / 16 (55) 0.099
HBV 28 (11) 3(9) NA 0.734
HCV 16 (7) 0 (0) NA 0.231
MS 72 (30) 5 (16) NA 0.141
Chronic alcohol intake 43 (18) 6 (19) 0.035 0.859
PSC 4 (2) 3 (9) NA
Other 11 (4) 1 (3) NA 1.000
No risk factor 72 (29) 17 (53) NA 0.003

Pathological features
Cirrhosis (F4 Metavir stage) 24 (10) 4 (12) NA 0.544
Multinodularity 67 (27) 10 (31) NA 0.633
Size (mean, cm) 7 [1-22] 7 [1-16] NA 0.604
Small duct type 214 (87) 22 (69) 27 (93) 0.010
Large duct type 18 (7) 7 (22) 1 (3) 0.018
Well differentiated tumour 82 (33) 15 (47) 12 (41) 0.253
Moderately differentiated tumour 135 (55) 14 (44) 14 (48) 0.426
Poorly differentiated tumour 29 (12) 3 (9) 3 (10) 1.000
Fibrosis
(no or mild / moderate or intense) 49 (20) /197 (80) 4 (12) /28 (88) 6 (21) / 23 (79) 0.723
Immune infiltration
(no or low / moderate or high) 166 (67) / 80 (33) 13 (41) / 19 (59) 18 (62) / 11 (38) 0.011
TLS 8 (3) 5 (16) 8 (28) <0.001
Necrosis (median, %) 18 [0-90] 0 [0-60] 0 [0-30] <0.001

Table VI.1.: Clinical and pathological features of the different datasets of the study. Data not
available, NA; hepatitis virus B, HBV; Hepatitis virus C, HCV; Metabolic syndrome, MS; Primary
sclerosing cholangitis, PSC; Tertiary lymphoid structures, TLS. In case of not available in the TCGA
set, the statistical analyses were performed only between the discovery and the French external
validation sets.
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The main clinical and pathological features of the patients and tumours for each
dataset are presented in Table VI.1. The three sets were similar for most clinical
and pathological features in particular for the age (63 years for the discovery and
the French external validation sets and 64 for the TCGA set, p=0.810) and the
sex distribution (male sex, 57%, 72% and 45%, p=0.99). In the discovery and the
French external validation sets, the main risk factors were chronic alcohol intake
(18% and 19%, respectively, p=0.859) and metabolic syndrome (30 and 16%,
p=0.141). At the pathology level, higher proportions of large duct tumours and
intense immune tumour infiltration were observed in the French external validation
set compared to the two other sets (22% vs 7% vs 3%, p=0.018; 59% vs 38% vs 33%,
respectively). A higher proportion of tumours with TLS was observed in theTCGA
set (28% vs 16% vs 3%, p<0.001).

VI.3.1.1. Transcriptomic classes

The proportion of each transcriptomic class in each dataset is represented in Fig-
ure VI.2. The most frequent transcriptomic class was the Hepatic stem-like class
observed respectively in 37% of cases in the discovery set, 43% of cases in the French
external validation set and 59% of cases in the TCGA validation set. Interestingly,
in the discovery set, the repartition of the five transcriptomic classes was different
between surgical samples and biopsy samples (Table G.2). The hepatic stem-like
class was more represented in surgical samples compared to biopsy samples (49% vs
27%, p<0.001) whereas the immune classical class was more represented in biopsy
samples (31% vs 14%, p<0.002).

As expected, transcriptomic classes in all cohorts were associated with some patho-
logical features (Fig. VI.2B-C). An intense tumour fibrosis was mainly observed in
the inflammatory stroma group ( n=38/66, 58%). A high tumour immune infil-
tration was mainly observed in inflammatory stroma and immune classical groups
(n=19/66, 29% and n=8/69, 16%, respectively). A low tumour immune infiltration
was observed in hepatic stem-like and desert-like groups (n=67/120, 56% and
n=7/15, 47%, respectively). No significant difference was observed between the
five transcriptomic groups according to the tumour histological type (Figure G.2).

At the clinical level, three transcriptomic classes in all cohorts were significantly
associated with OS. Hepatic stem-like group had an improved OS compared to other
transcriptomic groups (OS median: 49 vs 35 months, HR 0.58; 95%CI 0.44-0.75;
p<0.001) whereas tumour classical and inflammatory stroma groups presented
an altered OS compared to other groups (OS median: 21 vs 43 months, HR 1.76;
95%CI 1.09-2.82; p=0.003 and OS median: 31 vs 43 months, HR 1.50; 95%CI
1.04-2.17; p=0.011, respectively) (figure Fig. VI.2D-F).
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Figure VI.2.: Repartition and characterisation according to histological features and
overall survival of the five transcriptomic classes. (A) Repartition of
each transcriptomic class according to the different sets used in the study
and representative histological images of each transcriptomic class (HES),
(B) Semi quantitative assessment of the abundance of tumour fibrosis in
each transcriptomic class (*p<0.005), (C) Semi quantitative assessment of
the abundance of tumour immune infiltration in each transcriptomic class
(*p<0.005), kaplan-Meier Curves for OS according to (D) Hepatic stem-like,
(E) Tumour classical and (F) Inflammatory stroma transcriptomic class.
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VI.3.2 Utilising self-supervised WSI representations for
transcriptomic class prediction

We initially focused on the binary classification task of Hepatic stem-like, the most
frequent class, before expanding our analysis to other transcriptomic classes.

VI.3.2.1. Prediction of the Hepatic stem-like class

Model Tile Filter AUC score Balanced accuracy score F1 score

Giga-SSL
A 0.82 0.74 0.75
M 0.84 0.76 0.76
∅ 0.8 0.72 0.72

MoCo + MIL
A 0.82 0.75 0.74
M 0.82 0.75 0.75
∅ 0.74 0.67 0.67

Table VI.2.: Cross-validated performances of both the Giga-SSL and MIL models on
the discovery cohort for the Hepatic stem-like binary classification task
according to three different pre-processing protocols : No-Filter (∅): All
tiles are processed as they are, encompassing both tumour and non-tumour
regions, manual-Filter (M): Tiles are extracted from pathologist annotations of
tumour regions, learning-Filter (L): A small dataset of randomly extracted tiles
is labelled as either tumour or non-tumour by a pathologist. These labels are
then used to train a logistic regression model on the tile embeddings, which
subsequently filters the tiles across all WSIs. Area under the curve, AUC; Learning-Filter,
L; Manual-Filter, M; No-Filter, ∅; Multiple intance learning, MIL; Self-supervised learning, SSL

Table VI.2 showcases the cross-validated performances of both the Giga-SSL and MIL
models on the discovery cohort for the Hepatic stem-like binary classification task.
The Giga-SSL model peaks in performance when combined with a manual tumour
annotation, achieving an average AUC of 0.84.

Indeed, performance improves when WSI are refined, regardless of whether this
refinement is manual or learned. This improvement is particularly noticeable when
using the classic MIL models, where the absence of WSI filtering leads to an 8-point
drop in the AUC. For the Giga-SSL models, the absence of WSI filtering results in a
4-point decline in AUC.

VI.3.3 External validation of the model for Hepatic-stem like class
prediction

Table VI.3 presents the results of the external validation of models trained on all the
slides of the discovery cohort, with a manual filter applied to the Whole Slide Images
(WSI). The logistic regression trained on the giga-ssl embeddings of the discovery
cohort demonstrates strong transferability to both the French external (AUC=0.86)
and TCGA sets (AUC=0.76). Notably, the TCGA cohort slides were stained with HE,
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Validation dataset AUC score Balanced accuracy score F1 score

TCGA set 0.76 0.73 0.74
French external set 0.86 0.73 0.71

Table VI.3.: Main external validation results: The models trained on the discovery cohort
shows good generalisations when applied to the external cohort. Area under the
curve, AUC; The cancer genome atlas, TCGA

which differs from the staining protocol used for the discovery cohort’s slides (HES)
which further emphasises the generalizability of the models.

VI.3.3.1. Influence of the pre-processing protocol

We detailed in Table G.3 the external validation results when models are trained with
different ROI extraction methods. As observed in the cross-validated experiments,
using an ROI extraction method is advantageous for both external datasets.

VI.3.3.2. Impact of the composition of the training set

0.60 0.65 0.70 0.75 0.80 0.85 0.9   .6 0.65 0.70 0.75 0.80 0.85 0.90
Validation AUC on the French Cohort (S+) Validation AUC on the TCGA Cohort (S-)

Training set
size

Training set
composition

S+ B S-

Figure VI.3.: Effects of the composition of the training set on the performances of the
Giga-SSL model for the Hepatic stem-like binary classification task. We set
the manual method for extracting the Region of Interest (ROI). Each row
represents the performance of models trained on a specific subset of the
discovery cohort. The characteristics of these subsets can be understood
by looking at where the dotted line intersects with the items “training set
size” (on the right) and “training set composition” (on the left). For example,
the third row represents models trained on the complete training dataset
(S+, B, and S-), which signifies it as the largest training set. Area under the
curve, AUC; Self supervised learning, Slide from biopsy sample, B; Self-supervised
learning, SSL; Slide from surgical sample corresponding to the sample used for
the transcriptomic analysis,S+; Slide from surgical sample, not corresponding to
the sample used for the transcriptomic analysis, S-; Region of interest, ROI.
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In Figure VI.1, the discovery dataset is illustrated to contain various types of slides,
including both surgical slides and biopsy slides. We can categorise these slides into
two groups:

1. Slides on which transcriptomic analysis has been conducted, labelled as surgi-
cal slides S+ and biopsies B.

2. Slides that have not undergone transcriptomic analysis (S-).

Our objective was to determine how the composition of the training set influenced
the generalisation performance of classification models. For this, we trained models
using training sets with different compositions regarding S+, S- and B, and moni-
tored the prediction performance on the two external validation sets. The results
are shown in Figure VI.3.

For the French external validation set, which comprised solely S+ slides, incorporat-
ing S- slides into the training set appeared detrimental to performance. Remarkably,
the highest performance was achieved when the training set was limited to slides
that were directly associated to the transcriptomic analysis (S+ and B). Furthermore,
training solely with S+ slides, despite them being the smallest possible training
dataset, yielded a performance very close to the combined set (S+ and B). Moreover,
we noted that the addition of biopsy slides B to surgical specimen slides slightly
improved the validation performance.

Next, we turned to the validation on the TCGA dataset, which is exclusively com-
posed of S- slides, i.e. slides for which the transcriptome was analysed on a different
block. On this dataset with a putatively noisier ground truth, the model’s perfor-
mance seems to be closely related to the size of the training data rather than to its
composition (Figure VI.3).

VI.3.4 Prediction of the four other transcriptomic classes

Transcriptomic classes CV French external set TCGA set

Hepatic stem-like 0.84+0.06 0.86 0.76
Desert like 0.52+0.08 0.0† 0.85†
Tumour classical 0.77+0.09 0.88 na
Inflammatory stroma 0.72+0.10 0.92 0.80
Immune classical 0.63+0.08 0.62 0.78

Table VI.4.: Predictions for the five transcriptomic classes. This table presents cross-
validated (CV) and generalisation outcomes on both the French external
and TCGA sets for the classification tasks related to other subtypes. The TCGA
cohort lacked any tumour classical samples. We trained the models using
all slides (biopsies and surgical resections) and applied both automatic and
manual filters on the training and validation sets. † is present when the metric
is computed using less than two samples. Cross-validation, CV; Not applicable, na; The
cancer genome atlas, TCGA.
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We conducted analogous experiments for predicting other transcriptomic classes:
Inflammatory Stroma, Desert-like, Tumour Classical, and Immune Classical. As
with the Hepatic Stem-like class, we trained binary classifiers for each class using
a patient-level 5-Fold CV setting and then applied them to the validation sets. We
manually set the ROI method and trained using the complete dataset (S+, B, S-
). Tab. VI.4 presents the results of these experiments. With the exception of the
Desert-like class, all other classes can be predicted in a CV setting and demonstrate
generalisation capabilities on the validation sets. The classification task for the
Inflammatory Stroma class outperforms the others on the validation set, achieving
an AUC of 0.92 for the French set and 0.80 for the TCGA set. Despite the absence
of Tumour Classical slides in the TCGA dataset, this class still appears predictable
and shows good generalisation with an AUC of 0.88 on the French set. On the other
hand, while there is some discernible signal for the Immune Classical class, the
models find it the most challenging to classify. As for the Desert-like class, no clear
signal is observed in a CV setting. Performance on the French and TCGA external
sets cannot be determined with reasonable confidence, as they contain respectively
one and two cases

VI.4 Discussion

We show in this study that our SSL method applied to routine WSI has the abil-
ity to predict iCCA transcriptomic classes. Transcriptomic classes are particularly
interesting in iCCA because of its association with the tumour microenvironment
composition, the prognosis and its probable impact on the treatment response such
as immunotherapy and targeted therapies (Martin-Serrano et al. 2022; Sia et al.
2013). As previously described, the most frequent transcriptomic group in our three
datasets was the hepatic stem-like class (representing 37% to 59% of cases), which
was associated with a better OS. Moreover, this class was interestingly described
as associated with targeted molecular alterations in the study of Martin-Serrano et
al. (Martin-Serrano et al. 2022) We confirmed also in our cohorts the association
between the tumour microenvironment composition (inflammation and fibrosis)
and the transcriptomic groups in particular for the two inflammatory groups, groups
which may benefit from immune checkpoint inhibitor treatments (Martin-Serrano et
al. 2022).

Our model showed good performance for predicting the transcriptomic groups
in particular the hepatic stem-like, the tumour classical and the inflammatory
stroma classes with AUC around 80% in the two external validation sets. The
good predictions of these three transcriptomic classes are particularly interesting
because they are all associated with OS in our cohorts and in most of the cohorts
used in the Martin-Serrano study (Martin-Serrano et al. 2022).

Currently, the leading methods for WSI classification rely on MIL (Ilse, Tomczak,
and Welling 2018; B. Li, Li, and Eliceiri 2021; Lu et al. 2020). However, annotated
datasets are often small, typically a few hundred to a few thousand WSI, which
may cause overfitting and underperforming models, whereas large unannotated
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datasets of tens of thousands WSI are available. Here, we used a slide level SSL
model, called Giga-SSL, allowing us to leverage the large number of WSI without
annotations to infer powerful slide representations (Lazard et al. 2023). Our model
surpassed the performance of the standard MIL model in the binary classification
task for the hepatic stem-like subtype. Depending on the availability of a tumor
region annotation, we observed a gain of 2 to 6 points in AUC. Besides a slight im-
provement in classification performance, this model significantly improves efficiency
through increased speed and reduced use of computational resources. After the WSI
embedding, all analyses used logistic regression and were seamlessly processed on a
laptop CPU.

Our model has demonstrated better prediction results when applied to tumour
tiles, rather than to the integrality of tiles (including non-tumour tiles) suggesting
that the essential information regarding transcriptomic subclasses is contained in
the tumour itself, rather than in its environment and other parts of the tissue.
To bypass the time-intensive process of manual annotations by a pathologist, we
suggest an automatic learning filter given its close performance to manual filter,
which represents a favourable balance between time invested and classification
performance.

Furthermore, we provided a comparative analysis that explores the influence of
training set composition on prediction accuracy. Our findings suggest that intra-
tumoral heterogeneity can negatively impact training when non-consecutive slides
are employed for molecular profiling and pathological assessment. This discrepancy
introduces label noise, as the molecular class we aim to predict may not align with
the tissue captured in the image. While it is a well-known requirement to have large
datasets for effective neural network training, our results suggest that datasets with
high-confidence labels outperform larger, noise-prone datasets.

Moreover, Jakob Nikolas Kather et al. (2020) found that flash-frozen slides yielded
better performance in molecular prediction tasks within the TCGA dataset, despite
their poorer morphological quality compared to FFPE slides. We propose that this
anomaly could also be attributed to label noise arising from tumor heterogeneity,
as the molecular labels in TCGA are extracted from flash-frozen samples. These
insights underscore the importance of using consecutive slides for molecular class
prediction and could potentially inform the design of future studies. Finally, though
more research is needed to validate the clinical usage of such predictive models, we
conjecture that patient stratification would benefit from ensembling the prediction
of several WSIs sampled in different blocks, which would help capture the main
iCCA class of the tumour.

We included both biopsy and surgical samples in the discovery set because we
believed it was essential for our model to handle both sample types. Even though
using biopsies might have reduced our model’s performance during cross-validation,
it improved performance on the French external validation set. This suggests
that biopsies provide complementary information to surgical specimen WSIs (see
Fig. VI.3). Currently, most AI studies of primary liver cancers have focused on
surgical samples (Cheng et al. 2022; Jakob N. Kather and Calderaro 2020; Saillard
et al. 2020; Zeng et al. 2022), but most patients do not have such samples during
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their entire cancer history introducing a selection bias. In our study, noticeably, we
found that transcriptomic groups were differently represented between surgical and
biopsy cases highlighting the importance of work in both samples. Few studies,
mainly focused on diagnosis tasks, have laid the groundwork for using biopsies and
have demonstrated that encouraging deep-learning–based results can be obtained in
this type of sample despite their size (Albrecht et al. 2023; Pantanowitz et al. 2020;
F. Xu et al. 2021).

Our study has some limitations. The proportion of each transcriptomic group was
very different and in particular the desert-like was infrequent representing less
than 10% of cases in all sets making model learning for this class more difficult
and leading to poorer prediction performance. In addition, we were unable to
evaluate the predictive performance of our model for the tumour classical class in
the TCGA set, as there were no cases of this subtype in this set. Learning from a
larger number of cases could be beneficial, nevertheless it is difficult to find very
complete datasets containing survival and transcriptomic data, and histological slides
of FFPE iCCA samples, as evidenced by the low number of cases available in the
TCGA dataset. Finally, the giga-SSL models are not visually interpretable. However,
the histological reviewing carried out beforehand and the results of Martin-Serrano
et al. (2022) have enabled to highlight different histological characteristics between
transcriptomic groups, particularly in the tumour microenvironment composition.

VI.5 Conclusion

We have developed and validated a SSL model able to predict iCCA transcriptomic
classes on routine WSI from biopsy and surgical samples. This model has shown
good performance for the classification of hepatic stem-like class, tumour classical
and inflammatory stroma. Our model surpassed the performance of the standard MIL
model and our results suggest that datasets with high-confidence labels outperform
larger, noise-prone datasets.
The ability to predict transcriptomic iCCA classes on routine WSI could thus have an
impact on the management of patients by predicting their prognosis and guiding the
treatment strategy.
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Discussion VII
VII.1 Conclusions

In this thesis, I focused on developing predictive models operating on WSI. Although
these models may have significant potential for clinical applications—a point elabo-
rated in the introduction of each chapter—the central questions of this thesis are
geared towards the methodology of how to train and use these models, rather than
delving into the biomedical context, which was brought by our collaborators.

A distinctive challenge in applying machine learning to computational pathology is
the unique nature of supervision. In this field, labels are not only scarce but also
costly to obtain, weak, and noisy. Therefore, a pivotal question that arised is how to
adapt machine learning algorithms to operate effectively under these constraints.

VII.1.1 Weakness of the slide-level supervision

The limitations of slide-level supervision in WSI classification are intrinsically tied to
the signal-to-noise ratio. Specifically, when only a few tiles carry the classification
signal, the remaining tiles introduce noise rather than useful information. This
challenge led the community to employ MIL frameworks as a primary approach for
addressing WSI classification issues. In this thesis, we introduce several strategies to
enhance weakly supervised classification problems:

1. Improved Instance Representations: focusing on improving the represen-
tations of individual tiles has a direct impact on WSI-level classifications.
Self-supervised learning techniques for training the tile-embedder emerged as
a central component in this approach. We employed self-supervised learning
in all studies presented in this thesis with notable success. Moreover, regional
annotations, when available, can further refine the tile-embedder, provided
that the model has undergone prior self-supervised training (Chapter IV).

2. Pre-trained WSI Representations: Our work in Chapter V shows that using
pre-trained WSI representations effectively transforms a weakly supervised
problem into a strongly supervised one. The framework, presented in this
chapter, autonomously aggregates tile-level information without requiring
strong or weak supervision. These aggregated representations demonstrated
robust discriminative power across a diverse array of classification tasks.
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VII.1.2 Scarcity of labels

The issue of label scarcity is another area where SSL proves beneficial. Our WSI-level
SSL framework, as discussed in Sections V.1 and V.2, constructs WSI representations
that enable highly label-efficient classifier training. Indeed, these classifiers maintain
robust performance even when trained on a dataset containing as little as 50 WSIs.
This makes them particularly well-suited for applications with limited labeled data,
such as clinical trials.

The paucity of labels can also results in strong batch-effect in merged datasets. As
suggested in Chapter III, we offer a method to counteract this effect during WSI
classification training.

VII.1.3 Label uncertainty - label noise

Highly clinically relevant classification tasks, such as those outlined in Chapters III
and VI, often use biological measurements like RNA and DNA sequencing obtained
from tissue samples. The correlation between these measurements and the WSI
content is uncertain, posing questions about whether a relationship exists and,
if so, its nature. This uncertainty increases the importance of interpretability; a
well-understood algorithm could bridge gaps in current knowledge.

We introduce two methods for algorithmic interpretation in Chapter III and Sec-
tion V.3. The first is an unsupervised1 method that extracts visual explanations
as sets of representative tiles. While powerful for discovering new patterns, as in
the case of identifying laminated fibrosis in HR-deficient tumors, this approach is
qualitative, outputting visual explanations in the form selected tile images. This
makes it difficult to combine with other datasets or explanations for a more general
understanding, such as comparing HRD classifications between luminal and general
breast cancer cohorts. The second method is based on predefined interpretation
concepts and delivers quantitative explanations, thereby facilitating broader insights.
Combining these two methods could provide an interesting avenue. For instance,
the unsupervised approach could define morphological concepts that could then
be queried in a shared WSI latent space, enhancing our understanding of cancer
phenotypes.

Another problem of datasets in computational pathology is label noise. This issue
can arise when the measured tumor sample is spatially separated from the WSI
sample, with tumor heterogeneity possibly leading to inconsistencies between the
two. We demonstrate the significance of this effect in Chapter VI. In scenarios like
this, classification models benefit more from training on a smaller, accurate dataset
than a larger, potentially noisy one.

1This method is unsupervised because it doesn’t require predefined prototypes of morphological
interpretations. However, it interprets a classification model trained with supervision.
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VII.2 Perspectives

This section outlines research directions opened by this study. I’ll begin with short-
term opportunities, followed by an insight on long-term prospects.

VII.2.1 Short-term opportunities

VII.2.1.1. Improving the Giga-SSL framework

Firstly, there is room for improvement by using more advanced architecture for the
Giga-SSL aggregation network. Visual transformers have shown performance gains
and integrating them into the Giga-SSL aggregation block could boost effectiveness.
Also, the bottleneck in Giga-SSL training is the pre-computation of augmented tile
embeddings. Zaffar et al. (2022) recently suggested a generative model to generate
augmentations in the embedding space. This could lower computational costs of
Giga-SSL training. If used to augment Giga-SSL WSI embeddings directly -and not
tile embeddings-, it could be used to regularize the logistic regression trained on
top of the Giga-SSL representations and hopefully improve their performances, for
example on small datasets.

VII.2.1.2. Studying label noise at scale

We made the hypothesis in Chapter VI that the mismatch in performance accuracy
between paired and unpaired WSIs is attributable to intra-tumoral heterogeneity
(ITH). Indeed, a model trained on WSIs paired with their label’s acquisition process
will yield poorer results on un-paired WSIs simply because of the mis-labeling of
some. We name this measure mismatch-ITH for clarity. This hypothesis would first
need a proper validation using a dataset with multiple samples per patient for both
RNA-seq and WSI acquisition. This approach would allow us to measure true RNA
expression heterogeneity and correlate it with mismatch-ITH.

This surrogate measure of morphological ITH could be useful in two ways: first,
it could aid in identifying WSI classification tasks with minimal label noise, thus
facilitating the establishment of a robust set of benchmark tasks as outlined in
Section VII.2.2.1. The measure could also provide insights about evolutionary
processes that either encourage or inhibit different levels of ITH associated with
specific genetic signatures. Finally, it could also inform the development of effective
inference protocols in clinical settings where predictive algorithms are used. For
instance, if WSI-derived HRD predictions are used in a clinical setting, it could help
determine the optimal number of WSIs to sample per patient in order to minimize
the rate of false negatives -in case of high heterogeneity-.
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VII.2.1.3. Improving the morphological interpretation

As outlined in Section VII.1.3, the two interpretability algorithms developed in this
thesis can function in a complementary manner. For a given classification task, we
could train both a MIL model and logistic regressions in the Giga-SSL space. The
unsupervised visualization method described in Chapter III would then operate on
the trained MIL model and provide a qualitative approach for identifying unknown
morphological patterns linked to the task. Once these patterns are discovered,
they can serve for creating new morphological concepts to be integrated into the
morphological profiles discussed in Section V.3. Subsequently, these newly identified
patterns can be evaluated for their relevance across different types of cancer, in
relation to different classification tasks, which could in-turn yield insights into the
causes of these phenotypes.

VII.2.2 Broader perspectives

VII.2.2.1. Collective choice of benchmark tasks

The research practices in computational pathology, especially the integration of ML
techniques, inheritate much to established practices in ML research. This approach
is model-centric: new algorithms are developed to compete on a predefined set of
benchmark tasks. This has significant implications; the specific challenges presented
by these tasks have the potential to steer future developments. I argue here that
our limited understanding of the link between the WSI and the labels, i.e. the
ground-truth function Gt, may be slowing the field’s progress.

A notable example underscoring this limitation is the issue of signal localization
within WSIs. MIL algorithms assume by design a certain localization of the signal,
i.e. that the slide level is driven by specific tiles, even though their number might be
very low, as detailed in Section II.1.1.1. MIL’s initial adoption was largely due to
its capacity to mimic pathological diagnosis criteria2 and its success in early data
challenges like Camelyon3. However, I argue that most of the classification tasks we
confront likely depend on signals that are diffused across the WSI rather than being
highly localized.

Support for this claim comes from the Giga-SSL algorithm discussed in Section
Section V.1. This method employs a strong tile sub-sampling transformation, which
have the effect of diluting localized information within WSI embeddings. Despite this,
Giga-SSL has exhibited strong performance across a range of tasks. This suggests that
the ground-truth function Gt for these tasks may be far more reliant on diffuse signals
across the WSI than on isolated, localized signals. Further evidence comes from the
nature of the tasks tackled in Chapter III and Secs. V.1 and V.2, which predominantly

2Answering question such as “does the WSI contains tumourous cells ?” or “Does this WSI contains at
least one high grade lesion?”

3The aim of Camelyon was to detect WSIs of lymph nodes containing metastatic tumor, which is
likened in some cases to a needle in a haystack problem.
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involve bulk measurements on tumor samples. These measurements inherently
average out any localized features, potentially explaining the acceptable performance
achieved even by basic MIL models like instance-mean and the improvements seen
with Giga-SSL.

Given these observations, we must question whether MIL is the most appropriate
framework for WSI classification. Moreover, if we continue to benchmark algorithms
exclusively on tasks with diffuse signals, the ability of these algorithms to effectively
handle localized information may remain unexplored and unoptimized. This high-
lights the need for a critical reassessment of the benchmark tasks commonly used
for algorithm development in computational pathology.

The issue extends beyond signal localization. Other potential pitfalls include con-
founding variables causing batch-effects. As highlighted by Howard et al. (2021),
site-specific information can confound the prediction outcomes for various classifi-
cation tasks. Despite this, numerous studies still utilize these flawed benchmarks,
raising questions about the validity of algorithmic improvements.

Similarly, as indicated in Chapter VI, labels based on RNA/DNA sequencing can be
noisy. This is particularly relevant for TCGA datasets, where biological measures
are obtained from frozen samples, different from the FFPE samples used to prepare
the slides. Such inconsistencies may mask real algorithmic improvements in current
benchmark tasks.

Considering all these factors—signal localization, potential confounding variables,
and an unknown level of noise—I advocate for the careful design of a new set of
benchmark tasks. These tasks should have a minimized level of label-noise and
known and controled biases. They also should span a wide array of problems,
allowing the development of specialized algorithms based on the specifics of each
task’s ground-truth function Gt.

Thus, a concerted collective effort should be made to focus on the dataset side of the
equation, rather than solely on model development, to genuinely propel the field of
computational pathology forward.

VII.2.2.2. Toward multimodal foundation models

SSL has significantly advanced various disciplines, including medical imaging and
pathology, and it has been at the basis of the improvements discussed in this thesis.
WSI becomes increasingly prevalent in healthcare settings, and we are on the cusp of
having access to datasets comprising tens of thousands of slides. Effectively utilizing
this wealth of data will be critical for enhancing the performance of future WSI
algorithms, and SSL offers this opportunity.

In recent months, key actors of the domain such as academic researchers and
industrial R&D teams, have developed various SSL methods for training tile-encoder
networks (Richard J. Chen, Ding, et al. 2023; Filiot et al. 2023; X. Wang et al. 2022;
Lin et al. 2023). Some have even utilized tiles from as many as a million WSIs in
their training sets (Vorontsov et al. 2023). The overarching aim is to create versatile
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“foundation models” that can be fine-tuned for specialized tasks. These foundation
models not only serve as the basis for improved downstream classifiers but also
offer a better understanding of the input data. Their learned latent spaces act as
manipulable interfaces, which can be explored using methods like those detailed in
Section V.3, for example.

These SSL-derived latent spaces are not limited to image modalities. For example,
textual data, such as medical descriptions of histopathological features, can also be
embedded within these spaces. The CLIP framework (Radford et al. 2021) provides
a successful algorithm to learn joint visual and textual embeddings using only image
and text pairing. This concept has been recently applied to histopathology through
works like PLIP, Conche, and Quilt (Z. Huang et al. 2023; Ikezogwo et al. 2023;
Lu et al. 2023). The success reported by these joint embeddings, exhibiting zero-
shot classification capabilities that rival state-of-the-art supervised methods, thereby
expand the realm of what is achievable.

The next frontier lies in extending this multimodal framework beyond traditional
image and text data. For instance, recent progress in developing foundation models
for genomic data (Fishman et al. 2023) signals an opportunity for further integration.
Similarly, radiology data can be informative about another scale and about other
properties of tumors and metastases.

Aligning the manifold embeddings of various tumor modalities, similar to what has
been done with CLIP, could yield groundbreaking insights. Such an approach would
promote inter-modality dialogue and represent a significant step toward a more
comprehensive understanding of cancer.
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Figure B.1.: Effect of Number of Sampled Tiles per WSI on Training. Using the dataset
from Chapter IV, I sampled 160, 480, and 800 WSIs, preserving output variable
proportions. I trained attention-MIL models (from Chapter III) on these
datasets using 1 to 1000 tiles per WSI. Validation accuracy initially increases
with more tiles but plateaus around 100 tiles. On smaller datasets, loss and
accuracy decline after this plateau, indicating overfitting. Tile sub-sampling
may help regularize MIL networks.
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Appendix - Chapt. III. C
Architecture AUC F1 Bacc

mean std mean std mean std
AVG -IT 0.81 0.07 0.69 0.06 0.69 0.07
AVG +IT 0.79 0.09 0.71 0.07 0.7 0.07
ARGMAX -IT 0.58 0.12 0.58 0.06 0.58 0.04
ARGMAX +IT 0.65 0.07 0.48 0.03 0.52 0.017
MAX -IT 0.58 0.04 0.43 0.005 0.5 0
MAX +IT 0.82 0.06 0.68 0.06 0.67 0.05
K-RANK -IT 0.71 0.13 0.6 0.1 0.60 0.07
K-RANK +IT 0.75 0.06 0.56 0.09 0.58 0.05
ILSE -IT (ours) 0.83 0.07 0.72 0.06 0.72 0.06
ILSE +IT 0.81 0.05 0.74 0.03 0.73 0.05
CLAM 0.80 0.05 0.66 0.12 0.68 0.12

Table C.1.: MIL models benchmark. related to Figure III.3 and Table III.1. Benchmarking
of different models for the prediction of the HRD on the Curie luminal dataset.
AVG: average of the tile encodings; MAX: element-wise maximum of the file
encodings; ARGMAX: selects the most attended tile. K-RANK: selects the top-k
most attended tiles and bottom-k least attended tiles and stack them. ILSE:
encodings are mapped to an attention score; the slide encoding is the weighted
sum of the tile encodings, where the attention scores are the weights 1. CLAM:
the current state of the art weakly supervised WSI classification algorithm 2.
For each architecture, we considered two variants: a version where instance
representations are first mapped to a lower dimensional vector (128) with a
Multi-Layer-Perceptron (MLP), as proposed by llse et al., and another version
where this is omitted. This mapping is referred to as "Instance Transformation"
(IT) and we note +IT the versions with instance transformation, and -IT the
versions without. Ilse performed best, followed closely by AVG -IT and MAX
+IT; but unlike them, is interpretable through attention and decision scores.
Bacc stands for balanced accuracy. F1 reported is the average of the F1 for both
classes.
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Figure C.1.: Influence of ensembling. Related to the Results section and Table III.1. 10
models are trained for each test fold, on the Curie-Luminal dataset. Among
these 10 models, we can randomly sample n of them and compute the perfor-
mances of the ensembling of the e best models among this selection, according
to the validation metrics. Average test-AUC-ROC performances of the pairs
(n, e) of trained and ensembled models (n >= e) are reported here: the num-
ber at line i and column j correspond to the average test AUC performance
of the ensemble of the j among i best performing models. Training several
models and ensembling the best performers allows a gain between 3 to 5 AUC
points. We fixed (n, e) = (10, 3).
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Figure C.2.: Attention based visualization. Related to the visualization section and Figure
III.5. The 200 most attended tiles are extracted from the 20 slides predicted
with the highest probability as being HRD or HRP. Points are here the umap
projection of the embeddings of each of these 200 tiles, their color is the
label of their slides of origin. We set the maximum number of extracted tiles
per slides at 20 (like in Figure 3). Although a clear morphological cluster
associated to HRP emerges, corresponding to cluster 6 of Figure III.5, the tiles
associated to HRD do not cluster apart from other tiles associated with HRP.
This suggest that these tiles may be predictive for HRD but still be present in
HRP slides, and make the ABV method difficult to interpret. Scale bar = 50µm.
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Figure C.3.: Morphological Patterns associated with HRD (left) and HRP (right), extracted
from the TCGA breast cancer dataset. Related to Figure III.5. The procedure
of extraction is similar to the one used in the core article, using a model
trained on the TCGA-BRCA dataset with subtype correction. Interestingly, we
observe an important overlap in the previously unknown patterns associated
with HRD in luminal tumors that we identified in our breast cancer series.
These results indicate that the patterns related to HRD are to a large extent
reproducible. The patterns related to HRP contain the retraction pattern
(clear space surrounding the tumoral cell nests) also observed in Figure III.5.
However, the patterns include artifacts (bubbles under the coverslip, written
annotations on the glass slides. . . ) that escaped us during the manual review
of the slides. This shows that the quality of the TCGA dataset is less well
controlled and this may be one source of errors contributing to the lower AUC.
Scale bar = 50µm.
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TILs high content Necrosis

Nest of apocrine cells with retractation artifacts Loose fibrosis

A.

B.

TNBC subset of the TCGA

Figure C.4.: Patterns extracted with a model trained on the TNBC subset of the TCGA. We
trained a NN on the TCGA TNBC data set (129 slides, test AUC: 0.62 ) and
extracted the patterns as described in the methods. Even though the AUC of
the NN is relatively low, the identified patterns related to HRD correspond to
patterns that have been previously identified for this cancer subtype (in partic-
ular high percentage of TILs and necrosis). This is an additional indication that
the association provided by our algorithm reflects a biological reality. Related
to Figure III.5. Scale bar = 50µm. A. patterns positively associated with HRD.
B. Patterns positively associated with HRP.
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A. B.

Figure C.5.: HR status related patterns extracted by a model trained on the Ovarian cohort
of the TCGA dataset (92 FFPE WSIs). We trained a NN on the ovarian cancers
of the TCGA (90 slides, test AUC: 0.73). Our method identified hyperchromatic
cells with high atypia and clear cancerous cells, as well as fibrosis rich in TILs
as patterns related to HRD. As patterns related to HRP, the algorithm again
identified cell nests surrounded by clear space in addition to other patterns. The
TCGA ovarian cancer dataset is small, and the results need to be corroborated
by the analysis of larger independent and carefully controlled datasets, but
even so, we observe some overlap in patterns across cancer types. Related
to Figure III.5. Scale bar = 50µm. A. Patterns related to the HRD. We can
see hyperchromatic cells with high atypia, clear cancerous cells and TILs rich
fibrosis. B. Patterns related to the HRP.
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Figure C.6.: A. Tiles of the cluster 6 of Figure III.5. Scale bar = 200µm.
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Figure C.7.: Scale bar = 100µm. A. Tiles of the cluster 3 of Figure III.5.
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Figure C.8.: Scale bar = 100µm. A. Sub-clustering of the cluster 4 of Figure III.5. This
cluster features tiles from very cellular tiles (subcluster 3) to adipocyte-rich
tiles.
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Tile-encoder AUC F1 Bacc

mean std mean std mean std
Imagenet
No SSL pretraining

0.80 0.12 0.70 0.11 0.69 0.1

MoCo-Curie
600 K steps

0.83 0.06 0.72 0.06 0.72 0.06

TCGA-BRCA
600 K steps

0.81 0.05 0.73 0.05 0.72 0.05

TCGA-BRCA
1600K steps

0.84 0.06 0.76 0.08 0.74 0.1

Table C.2.: Tile-encoder pretraining influence. Related to Figure III.3 and Table III.1. Study
of the impact of the feature encoder on the HRD classification performances, for
the luminal BC dataset. Except for the Imagenet model, pretrained on Imagenet
but without self-supervised pretraining, all models have been pre-trained from
scratch, with the MoCo objective. Because the Curie dataset and the TCGA-
BRCA dataset are different in size, models are compared in regard to their
number of processed steps. Curie dataset = 5.3 million tiles, TCGA-BRCA = 2.2
million tiles. Bacc stands for balanced accuracy. F1 reported is the average of
the F1 for both classes. All models have been trained and used for inference
at the same magnification of 20 × (0.46µm.px). It is to note that all the pre-
trained models outperform the ImageNet pre-trained model. In addition, while
high performances are more quickly reached for a model trained on its target
downstream dataset, similar or higher performances can be reached when
training for longer the encoder on a different dataset of the same organ.
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model inference AUC-ROC

Curie-Whole
TCGA-Whole 0.66
TCGA-Luminal 0.62

Curie-Luminal
TCGA-Whole 0.62
TCGA-Luminal 0.65
TCGA-OV - Whole 0.64

Table C.3.: Results of the cross-dataset experiments. Related to the Results section and
Table III.1. The model column indicates the dataset on which the tested
model had been trained, either the entirety of the in-house dataset with bias
correction (Curie-Whole) or the Luminal subset of the in-house dataset (Curie-
Luminals). The ’inference’ column indicates on what dataset the model was
tested. Prediction performances were relatively low, but we still observe that
performances on the TCGA of the models trained on the Curie Dataset are
close to performances of bias-corrected models trained directly on the TCGA,
thus suggesting that the signal relative to the HRD is not tied to our particular
dataset. Moreover, we observe that training on the whole dataset causes a
decrease in performance when inferring on the luminal subset of the TCGA,
contrary to training only on the luminal slides. This further supports our
hypothesis that the subtype information is used when predicting the HR status.
We used the model learned on the Curie-luminal dataset with the small ovarian
cohort of the TCGA (TCGA-OV) composed of 90 FFPE WSIs balanced with
respect to the HR status. The resulting ROC-AUC score is 0.64 . We also trained
a NN directly on the TCGA-OV and obtained a test AUC of 0.73 . Even though
the number of slides is too low in order to reach a final conclusion, this suggests
that probably the HR status signal is partly generalizable across organs, but
that there are also tissue specific properties. Whether in the future there will be
specialized neural networks for different cancer types or generalist networks
for HRD prediction across organs still remains an open question.
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HRP HRD Total
Cases 309 406 715

Age at diagnosis (year) 52 ± 10 47 ± 11 49 ± 11
Tumor size (mm) 17 ± 8 19 ± 13 19 ± 12

Lymph node
pNO 255 83% 278 68% 533 75%
pNi+ 0 0% 2 0% 2 0%
pNmi 1 0% 11 3% 12 2%
pN1 32 10% 69 17% 101 14%
pN2 9 3% 33 8% 42 6%
pN3 4 1% 5 1% 9 1%
pNx 8 3% 8 2% 16 2%

Laterality
Right 156 50% 193 48% 349 49%
Left 147 48% 206 51% 353 49%
ND 6 2% 7 2% 13 2%

Histological type
Non special type 277 90% 343 84% 620 87%

Lobular 17 6% 18 4% 35 5%
Other 14 5% 45 11% 59 8%

Grade (EE)
I 80 26% 13 3% 93 13%
II 161 52% 116 29% 277 39%
III 68 22% 275 68% 343 48%
ND 0 5% 2 1% 2 3%

Mitotic index 3, 5 ± 5 10 ± 9 7, 5 ± 7
TILs (%) 16 ± 17 38 ± 24 30 ± 24

Molecular class
Triple Negative 25 8% 208 51% 233 33%

Luminal 284 92% 198 49% 482 67%
BRCA status

gBRCA1 0 0% 188 46% 188 26%
gBRCA2 8 3% 174 43% 182 25%

Somatic mutation in
HRD genes

0 0% 42 10% 42 6%

ND 301 97% 7 0% 308 43%

Table C.4.: Supplementary Table 4: Details of the in-house Curie dataset.
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Appendix - Chapt. IV. D
Pre-training Policy Weighted Accuracy
ImageNet 0.865
Supervised 0.941
SSL 0.897
Mixed 0.965

Table D.1.: Performances of L2-regularized logistic regression trained on top of en-
coder with different pre-training policies. The task is the tile-level classifica-
tion grading task. Interestingly, the performances of the supervised network is
very good, while its usage in a MIL setting does not yield such good results at
the WSI scale.
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WSI 1

tiles of view 1 of WSI 1
tiles of view 2 of WSI 1
tiles of view 1 of WSI 2
tiles of view 2 of WSI 2

Average of the representations
 of a view of a WSI

WSI 2

A. Not shared augmentations

B. Shared augmentations

Avg

Avg

Figure E.1.: Interpretation of Effectiveness of Shared Augmentations in Giga-SSL. The figure progresses from left to right. It shows two WSIs and their tiles, projected into a
space that captures color variations—consider the blue and red channels for instance. The left side displays the projections of all tiles from these two WSIs. In Giga-SSL
training, two views are created for each WSI. First, the WSIs are subsampled, indicated by slight variations in color. Then each tile is transformed, such as through color
alteration. Because hue transformations act as centered random augmentations to color channels, averaging independently augmented tiles likely retains information
about their original color; i.e. what we aim at removing using the color transformation. In case A, where transformations are not shared, tiles of all views get randomly
shuffled in the color space. It is likely howevere that averaging these transformed views can restore the slide-specific color, making the SSL task too simple by providing
it with short-cuts. In contrast, case B involves sharing transformations among views. Simple operations like averaging no longer simplify the SSL task, as the averaged
transformed views from the same slide remain distinct.
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Appendix - Chapt. V.2 F
Tile-encoder task AUC F1 Score Balanced Accuracy

MoCo

brca 0.919 ± 0.023 0.792 ± 0.024 0.84 ± 0.031
kidney 0.982 ± 0.014 0.891 ± 0.033 0.91 ± 0.028

lung 0.959 ± 0.014 0.897 ± 0.012 0.898 ± 0.012
mhrd 0.783 ± 0.042 0.734 ± 0.035 0.734 ± 0.035
thrd 0.843 ± 0.032 0.778 ± 0.036 0.779 ± 0.036

CtransPath

brca 0.95 ± 0.024 0.849 ± 0.019 0.875 ± 0.026
kidney 0.991 ± 0.005 0.929 ± 0.023 0.943 ± 0.016

lung 0.968 ± 0.013 0.914 ± 0.023 0.914 ± 0.022
mhrd 0.814 ± 0.045 0.749 ± 0.032 0.749 ± 0.032
thrd 0.879 ± 0.026 0.795 ± 0.036 0.796 ± 0.036

Table F.1.: Effect of the tile-encoder on Giga-SSL representation performance. Results
show a 5-fold patient-level stratified cross-validated average. Models are logistic
regressions (C=10, class_weight=’balanced’) built on Giga-SSL representations
using various tile-encoders. Advances in tile-encoder design enhance the efficacy
of Giga-SSL representations. The tasks referenced are the 5 benchmark tasks
from the main paper. The same cross-validation folds are used for all the
experiment of the same task.

N Patients N Slides Labels repartition

TCGA - brca 1041 977 831 (ductal) / 210 (lobular)
TCGA - lung 1033 936 528 (TCGA-LUAD) / 505 (TCGA-LUSC)
TCGA - mhrd 912 853 465 (0) / 447 (1)
TCGA - kidney 924 882 510 (ClearCell) / 294 (Papillary) / 120 (Chromophobe)
TCGA - thrd 634 586 318 (HRD) / 316 (HRP)
Curie - HRD 787 787 485 (HRD) / 302 (HRP)
Curie - Subtype 787 787 514 (luminal) / 273 (TNBC)
Curie Melanoma 515 515 336 (Monosomy) / 179 (Disomy)

Table F.2.: Detail of the composition of the datasets used for the benchmark tasks.

189



Mutations Driver mutations Subtype - Genetic signatures

B.

A.

C.

A
U

C
A

U
C

Number of predictable variables

Mutations Drivers Subtype, genetic signatures

Mutations Drivers Subtypes
Genetic signatures

Giga-SSL

Av. MIL

tasks 
predictable by:

Figure F.1.: Results of logistic regression on top of Giga-SSL representation, trained
and evaluated on folds stratified by center, following the method of
Howard et al. (2021). The results corresponding to Giga-SSL show results
corrected for the health-center bias. However, MIL results are not corrected
and are the same as the one used in Figure V.5. The site-corrected evaluation
of Giga-SSL methods still shows an improvement in all metrics, compared to
the non-corrected results of MIL. A. The number of predictable tasks for each
model and each task type (mutations, driver mutations, subtypes, and genetic
signatures) in a pancancer setting. B. Displays the average cross-validated AUC
for the three different types of classification tasks- mutation, oncogenic drivers,
subtypes and genetic signatures-for Giga-SSL-corrected and MIL models. In the
upper panel, the results are averaged across all tasks that are predictable by
the Giga-SSL-corrected or MIL model (union). The lower one shows averages
across the tasks predictable by both models. C. Provides a detailed breakdown
of item A., focusing on the granularity of the TCGA projects.
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Project Mutations predictables by GigaSSL and MIL

BRCA MAP3K1 PIK3CA TP53

CESC STK11

CRC
APC BRAF KMT2B KMT2D KRAS

MGA PIK3CA PTCH1 RNF43 TP53

HNSC CASP8 NSD1 TP53

KIRC PBRM1

KIRP SETD2

LIHC CTNNB1

LUAD PDGFRB TP53

PRAD TP53

STAD
FBXW7 KMT2B KMT2C KMT2D MTOR

PIK3CA TP53

Table F.3.: All point mutations predictable by Giga-SSL and the MIL model, sorted by TCGA
project.
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Project Mutations predictables by GigaSSL only

BRCA BRCA1 ERBB2 FBXW7 GATA3 PBRM1

CESC APC ERBB2 KMT2D KRAS TCERG1 TP53

CRC

ACVR2A ATM BRCA2 CDC27 FAT1 FBXW7

JAK2 MIER3 MSH6 PPP6C PTEN RB1

RHOA TCERG1 TTN

HNSC APC HRAS JAK2

KIRP PBRM1

LIHC TP53 TSC2

LUAD EGFR KRAS MED12 NFE2L2 TTN

LUSC KEAP1 RAC1 TP53

PAAD TP53

PRAD TTN

STAD
ACVR2A ARHGAP6 ARID1A B2M CDK12 KMT2A

MAP3K1 MET MGA RBM10 RHOA TCERG1

SKCM01 MGA PIK3CA RNF43 TTN

SKCM06 CDC27 CDKN2A FBXW7 GNAS KDM6A PPP6C

Table F.4.: All point mutations newly predictable with the Giga-SSL features, sorted by
TCGA project.
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Project Driver mutations predictable by GigaSSL and MIL

BRCA MAP3K1 PIK3CA TP53

CRC APC BRAF KMT2B KMT2D KRAS

PIK3CA RNF43 TP53

HNSC NSD1 TP53

KIRC PBRM1

KIRP KRAS SETD2

LIHC CTNNB1

LUAD EGFR TP53

PAAD KRAS

PRAD TP53

STAD BRCA2 FBXW7 KMT2B KMT2D PIK3CA

Table F.5.: Oncogenic driver mutations predictable by Giga-SSL and the MIL model, sorted
by TCGA project.
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Project Driver mutations predictable only by GigaSSL

BRCA BRCA1 GATA3 SMAD4

CESC KRAS STK11

CRC BRCA2 MGA NRAS PTEN

HNSC CASP8

KIRC TP53

KIRP MET PBRM1

LIHC TP53

LUAD KRAS MGA U2AF1

LUSC NFE2L2 PIK3CA

PAAD TP53

SKCM01 PIK3R1

SKCM06 CDKN2A CTNNB1

STAD
AMER1 ARID1A KMT2C PTCH1

RHOA RNF43 TP53

Table F.6.: Oncogenic driver mutations newly predictable with the Giga-SSL features,
sorted by TCGA project.
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HNSCCESC

BRCA CRC
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Figure F.2.: Performances of the non-mutation tasks for BRCA, CRC, CESC and HNSC
TCGA projects. Plots shows the performances of the logistic regression trained
on top of the Giga-SSL features against the performances of the MIL model
used in Jakob Nikolas Kather et al. (2020). Red line indicates same perfor-
mances between the two models. PR - PRStatus (Progesterone Receptor); AR - AR_protein
(Androgen Receptor); N_HistGrade - Neoplasm Histologic Grade; T_Grade - Tumor Grade; DCell-
sAct - Activated Dendritic Cells; SCNA - Somatic Copy Number Alterations; TCGA_Sub - TCGA
Subtypes; HER2 - HER2 Final Status; ImmSub - Immune Subtypes; HypMethCat - Hyperme-
thylation Category; WHeal - Wound Healing; CD8_T - T Cells CD8; PanGyn - Pan-Gynecologic
Clusters; GHistClass - Gastric Histological Classification; GrowthPat - Major Growth Pattern; Prolif -
Proliferation; ClinGleason - Clinical Gleason Sum; PanKidPath - Pan-Kidney Pathology; IFN_gResp -
IFN-gamma Response; MReg - Macrophage Regulation; HomRecDef - Homologous Recombination
Defects; HCCSub - Hepatocellular Carcinoma Subtypes; ERG - ERG Status; ColCMS - Colorectal
Cancer CMS; MSI - Microsatellite Instability Status; ER - Estrogen Receptor Status; BRCA_Path -
BRCA Pathology; Hypermut - Hypermutated; TGF_bResp - TGF-beta Response; BRCA_SubP50 -
BRCA Subtype (PAM50)
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Figure F.3.: Performances of the non-mutation tasks for KICH, KIRC, KIRP and LIHC
TCGA projects. Plots shows the performances of the logistic regression trained
on top of the Giga-SSL features against the performances of the MIL model
used in Jakob Nikolas Kather et al. (2020). Red line indicates same perfor-
mances between the two models. PR - PRStatus (Progesterone Receptor); AR - AR_protein
(Androgen Receptor); N_HistGrade - Neoplasm Histologic Grade; T_Grade - Tumor Grade; DCell-
sAct - Activated Dendritic Cells; SCNA - Somatic Copy Number Alterations; TCGA_Sub - TCGA
Subtypes; HER2 - HER2 Final Status; ImmSub - Immune Subtypes; HypMethCat - Hyperme-
thylation Category; WHeal - Wound Healing; CD8_T - T Cells CD8; PanGyn - Pan-Gynecologic
Clusters; GHistClass - Gastric Histological Classification; GrowthPat - Major Growth Pattern; Prolif -
Proliferation; ClinGleason - Clinical Gleason Sum; PanKidPath - Pan-Kidney Pathology; IFN_gResp -
IFN-gamma Response; MReg - Macrophage Regulation; HomRecDef - Homologous Recombination
Defects; HCCSub - Hepatocellular Carcinoma Subtypes; ERG - ERG Status; ColCMS - Colorectal
Cancer CMS; MSI - Microsatellite Instability Status; ER - Estrogen Receptor Status; BRCA_Path -
BRCA Pathology; Hypermut - Hypermutated; TGF_bResp - TGF-beta Response; BRCA_SubP50 -
BRCA Subtype (PAM50)
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Figure F.4.: Performances of the non-mutation tasks for LUAD, LUSC, PRAD, STAD
and SKCM TCGA projects. Plots shows the performances of the logistic
regression trained on top of the Giga-SSL features against the performances of
the MIL model used in Jakob Nikolas Kather et al. (2020). Red line indicates
same performances between the two models. PR - PRStatus (Progesterone Receptor);
AR - AR_protein (Androgen Receptor); N_HistGrade - Neoplasm Histologic Grade; T_Grade -
Tumor Grade; DCellsAct - Activated Dendritic Cells; SCNA - Somatic Copy Number Alterations;
TCGA_Sub - TCGA Subtypes; HER2 - HER2 Final Status; ImmSub - Immune Subtypes; HypMethCat
- Hypermethylation Category; WHeal - Wound Healing; CD8_T - T Cells CD8; PanGyn - Pan-
Gynecologic Clusters; GHistClass - Gastric Histological Classification; GrowthPat - Major Growth
Pattern; Prolif - Proliferation; ClinGleason - Clinical Gleason Sum; PanKidPath - Pan-Kidney
Pathology; IFN_gResp - IFN-gamma Response; MReg - Macrophage Regulation; HomRecDef -
Homologous Recombination Defects; HCCSub - Hepatocellular Carcinoma Subtypes; ERG - ERG
Status; ColCMS - Colorectal Cancer CMS; MSI - Microsatellite Instability Status; ER - Estrogen
Receptor Status; BRCA_Path - BRCA Pathology; Hypermut - Hypermutated; TGF_bResp - TGF-beta
Response; BRCA_SubP50 - BRCA Subtype (PAM50)
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Appendix - Chapt. VI. G
Histological criteria Assessment

Tumour grade Classification into well, moderately or poorly dif-
ferentiated tumour according to the 5th edition
of the WHO classification

Tumour histological type Small duct, large duct or other subtypes

Necrosis Percentage

Tumour fibrosis Semi quantitatively assessed, classified into three
classes: no or mild, moderate and intense

Immune tumour infiltration Semi quantitatively assessed, classified into four
classes: no inflammation, low, moderate and
high

Tertiary lymphoid structure (TLS) Presence or absence

Table G.1.: List of morphological criteria assessed by the expert pathologist for all cases of
the three datasets

Transcriptomic groups Total n=246 (%) Surgical samples n=109 (%) Biopsies n = 137 (%) p

Hepatic stem-like 90 (37) 53 (49) 37 (27) <0.001

Desert like 11 (4) 4 (4) 7 (5) 0.759

Tumor classical 34 (14) 16 (15) 18 (13) 0.853

Immune classical 57 (23) 15 (14) 42 (31) 0.002

Inflammatory stroma 54 (22) 21 (19) 33 (24) 0.439

Table G.2.: Repartition of the five transcriptomic classes according to the type of samples
in the discovery set.
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Transcriptomic groups Total n=246 (%) Surgical samples n=109 (%) Biopsies n = 137 (%) p

Hepatic stem-like 90 (37) 53 (49) 37 (27) <0.001

Desert like 11 (4) 4 (4) 7 (5) 0.759

Tumor classical 34 (14) 16 (15) 18 (13) 0.853

Immune classical 57 (23) 15 (14) 42 (31) 0.002

Inflammatory stroma 54 (22) 21 (19) 33 (24) 0.439

Table G.3.: Repartition of the five transcriptomic classes according to the type of samples
in the discovery set.

Figure G.1.: Histological features of iCCA. A. Example of small duct type iCCA. B. Example
of large duct type iCCA. C. Example of an iCCA with an abundant fibrous
stroma. D. Example of an iCCA with an abundant inflammatory stroma
containing tertiary lymphoid structures.
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Figure G.2.: Type of slides including in the study. The slides directly associated with tran-
scriptomic analysis (consecutive slides), have been labelled as surgical slides
S+ whereas slides from other blocks indirectly associated with transcriptomic
analysis in the discovery set and in the TCGA set have been labelled S-. For
biopsy, the FFPE block used for RNA sequencing corresponded directly to the
slide selected (labelled as slide B).
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Surgical specimen tile extraction

Randomly 
extracted tiles
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(   ) No filter: automatic tissue extraction

(M) Manual segmentation of the tumour

(A) Learning fitler : automatic tile filtering

Automatic tissue
filtering Tile extraction

Otsu thresholding

Manual delineation Tile extraction

Time consuming

Figure G.3.: Three different pre-processing protocols with or without extraction of
region of interest (ROI). -No-Filter (∅): All tiles including tumour and non-
tumour are processed as they are, encompassing both tumour and non-tumour
regions. -Manual-Filter (M): An expert pathologist (AB) extensively annotates
tumour regions using ImageScope software, from which patches are extracted.
-Learning-Filter (A): Tiles are filtered using a logistic regression trained on a
dataset of 3000 tile embeddings, randomly extracted and labelled by an expert
pathologist (AB).
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Validation dataset ROI extraction method AUC Balanced accuracy F1 score

TCGA

L 0.82 0.68 0.68

M 0.78 0.73 0.74

ø 0.75 0.61 0.6

mondor

L 0.8 0.73 0.72

M 0.86 0.76 0.74

ø 0.81 0.71 0.68

Table G.4.: Effects of the ROI extraction method on the external validation perfor-
mances for the Hepatic stem-like binary classification task. The same
method is applied on both the training and validation datasets. On the TCGA
set, no distinct advantage is observed for method A over M or vice versa, as
it varies based on the metric under consideration. In the French external set,
manually segmenting the tumour seems to be advantageous. Nevertheless, in
both datasets, using an ROI extraction method is more effective than not using
any. Area under the curve, AUC; Learning-Filter, L; Manual-Filter, M; No-Filter, ∅; Region of
interest, ROI
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MOTS CLÉS

Apprentissage Automatique, Apprentissage Profond, Images de Lames Entières, Cancérologie, Auto-
Supervision, Interprétabilité, Histopathologie, HRD.

RÉSUMÉ

Les images de lames entières (WSI) sont des versions numérisées de coupes microscopiques de tissus colorés. Ces
images remplissent plusieurs fonctions dans la prise en charge du cancer. Elles servent non seulement d'outil diagnostique
de référence, mais aussi pour la stratification de patient, le sous-typage de la maladie et l'orientation vers des options de
traitement personnalisés. Elles sont également utilisées pour évaluer l'efficacité des traitements et suivre leurs résultats
au fil du temps.
En effet, les WSI contiennent des informations biologiques complexes. On peut y trouver des centaines de milliers de cel-
lules à travers différents types de tissus ainsi que des motifs visuels allant de la texture nucléaire à l'architecture des tissus.
Cette thèse se concentre sur l'utilisation de l'apprentissage automatique pour extraire l'information importante contenue
dans lesWSI, un processus connu sous le nom d'apprentissage de représentation. La supervision pour l'apprentissage de
représentation d'images d'histopathologie peut prendre plusieurs formes, allant des étiquettes générées par les médecins
à des mesures biologiques supplémentaires telles que les données de séquençage de l'ADN et de l'ARN. Cependant, ces
signaux de supervision présentent des défis : ils peuvent être faibles, bruités, incertains et surtout, rares, car difficilement
accessibles.
L'objectif principal de cette thèse est donc de répondre à ces défis par le développement d'algorithmes d'apprentissage de
représentation qui fonctionnent efficacement sous ces contraintes de supervision. Nous y détaillerons des contributions
de plusieurs natures, allant du développement de nouveaux algorithmes d'interprétabilité à l'introduction d'un nouveau
cadre d'apprentissage auto-supervisé conçu spécifiquement pour l'apprentissage de représentation de WSI. Finalement,
chacune de ces avancées seront présentées dans le cadre de la résolution de tâches de classification de WSI, basées
sur des données moléculaires et ayant une importance clinique significative.

ABSTRACT

Whole-slide images (WSI) are digitized versions of microscopic images that capture thin layers of stained tissue samples.
These images serve multiple roles in cancer care, functioning not only as the gold standard for cancer diagnosis but
also as a tool for patient stratification, disease subtyping, and guiding personalized treatment plans. They are also used
for evaluating treatment efficacy and monitoring outcomes over time. Indeed, WSIs carry complex biological information,
capturing data from hundreds of thousands of cells across different tissue types, and features ranging from nuclear texture
to tissue architecture.
This thesis focuses on using machine learning and deep learning to automate the extraction of meaningful information from
WSIs, a process known as representation learning. Supervision for representation learning can take multiple forms, from
human-generated labels to additional biological measurements such as DNA and RNA sequencing data. However, these
supervision signals often present challenges; they can be weak, noisy, uncertain, and most critically, scarce in availability.
The primary objective of this thesis is to address these challenges by developing robust algorithms for histopathological
image representation learning that operate effectively under these supervisory constraints. The contributions of this work
are of several natures, spanning from the development of new interpretability algorithms to the introduction of a novel
self-supervised framework designed explicitly for WSI-level representation learning. In addition, these advancements are
contextualized within WSI classification tasks that rely on molecular data and hold significant clinical importance.

KEYWORDS

Histopathology, Weak Supervision, Self Supervision, Oncology, Interpretability, Machine Teaching, HRD.
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