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Résumé

La découverte de médicaments, de l’identification de candidats jusqu’au développement
clinique, implique parfois de résoudre des problèmes de ’scaffold hopping’, dans le but
d’optimiser l’activité biologique, la sélectivité, les propriétés ADME, ou de réduire les
préoccupations toxicologiques des molécules. Ils consistent à identifier des molécules
actives dont les modes de liaison sont similaires mais dont les structures chimiques sont
différentes de celles des actifs connus. Le ’large-step scaffold hopping’, qui correspond
au degré le plus élevé de différence structurelle avec la molécule initiale, nécessite l’aide
de méthodes calculatoires. Le docking est considéré comme la méthode de choix pour
l’identification de telles molécules isofonctionnelles. Cependant, la structure de la pro-
téine peut ne pas être adaptée au docking en raison d’une faible résolution, voire être
inconnue. Dans de tels cas, les approches ’ligand-based’ sont prometteuses mais souvent
insuffisantes car basées sur des descripteurs moléculaires n’ayant pas été spécifiquement
développés pour le ’large-step scaffold hopping’. La résolution de ces problèmes se ré-
sume à l’identification de descripteurs correspondant à une représentation de l’espace
chimique dans laquelle deux molécules qui sont des cas de ’scaffold hopping’ sont sim-
ilaires, bien qu’elles soient dissemblables dans l’espace représenté par les descripteurs
basés principalement sur la structure chimique. Afin d’évaluer la capacité des descrip-
teurs à les résoudre, nous avons constitué un ensemble de cas de ’scaffold hopping’ de
haute qualité comprenant des paires de molécules actives pour une variété de protéines.
Nous avons ensuite proposé une stratégie pour évaluer la pertinence des descripteurs
pour résoudre ces problèmes, correspondant à des cas réels où une molécule active est
connue, et la seconde active est recherchée parmi un ensemble de molécules leurres
choisies de manière à éviter les biais statistiques. Nous avons ainsi illustré les lim-
ites des descripteurs classiques 2D et 3D. Par conséquent, nous proposons l’Interaction
Fingerprints Profile (IFPP), une représentation moléculaire qui capture les modes de
liaison des molécules via des dockings sur un panel de protéines diverses. L’évaluation
de cette représentation sur le benchmark démontre son intérêt pour l’identification de
molécules isofonctionnelles. Cependant, son calcul coûteux limite sa mise à l’échelle
pour le criblage de bibliothèques moléculaires très larges. Nous avons remedié à cela en
tirant parti du Metric Learning, qui permet une estimation rapide des similarités des
IFPP des molécules, fournissant ainsi une stratégie de pré-criblage efficace applicable
à de larges bibliothèques. Nos résultats suggèrent que l’IFPP est un outil intéressant
et complémentaire aux méthodes existantes afin de résoudre le ’scaffold hopping’.

Mots clés : Docking, Interactions moléculaires, Machine Learning, Représentation
moléculaire, Scaffold hopping





Abstract

The challenges of drug discovery from hit identification to clinical development some-
times involves addressing scaffold hopping issues, in order to optimise molecular biolog-
ical activity or ADME properties, improve selectivity or mitigate toxicology concerns of
a drug candidate. They consist in identifying active molecules of similar binding modes
but of different chemical structures to that of known active molecules. Large-step scaf-
fold hopping, which corresponds to the highest degree of structural dissimilarity with
the original hit, cannot be easily solved without the aid of computational methods.
Docking is usually viewed as the method of choice for identification of such isofunc-
tional molecules. However, the structure of the protein may not be suitable for docking
because of a low resolution, or may even be unknown. In such cases, ligand-based ap-
proaches offer promise but are often inadequate to handle large-step scaffold hopping,
because they are based on molecular descriptors that were not specifically developed
for it. Solving those problems boils down to the identification of molecular descriptors
corresponding to an embedding of the chemical space in which two molecules that are
examples of large-step scaffold hopping cases are similar (i.e. close), although they are
dissimilar (i.e. far) in the space embedded by molecular descriptors based principally on
the chemical structure. To evaluate molecular descriptors to solve this particular chal-
lenging task, we built a high quality dataset of scaffold hopping examples comprising
pairs of active molecules and including a variety of protein targets. We then proposed a
strategy to evaluate the relevance of molecular descriptors to that problem, correspond-
ing to real-life applications where one active molecule is known, and the second active
is searched among a set of decoys chosen in a way to avoid statistical bias. We assessed
how limited classical 2D and 3D descriptors are at solving these problems. Therefore,
we introduced the Interaction Fingerprints Profile (IFPP), a molecular representation
that captures molecules’ binding modes based on docking experiments against a panel
of diverse high-quality protein structures. Evaluation on the benchmark demonstrated
its interest for identifying isofunctional molecules. Nevertheless, its computation is ex-
pensive, which limits its scalability for screening very large molecular libraries. We pro-
posed to overcome this limitation by leveraging Metric Learning approaches, allowing
fast estimation of molecules IFPP similarities, thus providing an efficient pre-screening
strategy that is applicable to very large molecular libraries. Overall, our results suggest
that IFPP provides an interesting and complementary tool alongside existing methods,
in order to address challenging scaffold hopping problems effectively in drug discovery.

Keywords : Docking, Molecular interactions, Machine Learning, Molecular represen-
tation, Scaffold hopping
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1
Introduction

Abstract:
Identification of novel chemical compounds with biological activity similar to a

known active molecule is an important challenge in drug discovery called ‘scaffold hop-
ping’. Small-, medium-, and large-step scaffold hopping efforts may lead to increasing
degrees of chemical structure novelty with respect to the parent compound. Docking
is usually viewed as the method of choice for identification of isofunctional molecules,
i.e. highly dissimilar molecules that share common binding modes with a protein tar-
get. However, the structure of the protein may not be suitable for docking because of a
low resolution, or may even be unknown. In such cases, ligand-based approaches offer
promise but are often inadequate to handle large-step scaffold hopping, because they are
based on molecular descriptors usually relying on molecular structure and not dedicated
to this challenging task.

Résumé:
L’identification de nouveaux composés chimiques ayant une activité biologique sim-

ilaire à une molécule active connue est un défi important dans la découverte de médica-
ments, appelé ’scaffold hopping’. Les stratégies de ’small-step’, ’medium-step’, et ’large-
step’ scaffold hopping peuvent conduire à des degrés croissants de nouveauté de struc-
ture chimique par rapport au composé parent. Le docking est généralement considéré
comme la méthode de choix pour l’identification de molécules isofonctionnelles, c’est-
à-dire des molécules très différentes qui partagent des modes de liaison communs avec
une cible protéique. Cependant, la structure de la protéine peut ne pas être adaptée
au docking en raison d’une faible résolution, voire être inconnue. Dans de tels cas, les
approches ’ligand-based’ offrent des perspectives mais sont souvent insuffisantes pour
gérer le large-step scaffold hopping, car elles sont basées sur des descripteurs molécu-
laires qui reposent généralement sur la structure moléculaire et ne sont pas dédiés à
résoudre cette tâche.
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This PhD thesis is devoted to solving a particularly difficult task in drug discov-
ery: how to solve scaffold hopping cases? In other words, finding biologically active
molecules against a protein target of interest, but displaying dissimilar structures with
respect to known hits for this target. This task becomes even harder when the 3D
structure of the protein is unknown, which is the setting chosen in the present work. In
this introduction, I will start by briefly presenting the fundamentals of drug discovery,
in the particular case of small molecule drugs. Then, I will define the term scaffold
hopping in more details, summarily describe state-of-the-art approaches to solve these
problems, and present what challenges remain. I will finally provide an overview of my
thesis objectives and a summary of this manuscript to guide the reader.

1.1 Drug Discovery
Drug discovery is the search for molecular compounds of therapeutic interest to treat
a specific disease. On average, this risky process usually takes around 10 years from
inception to market entry, and may cost as much as several billion dollars [Hughes
et al.(2011)]. It consists in 5 stages that we describe briefly in the following.

Target Identification. Initiating the drug discovery process involves pinpointing a
protein that plays a role in a disease development, and whose functional modulation
(for example, activation or inhibition) by drugs provides a clinical benefit. Available
biomedical data, such as gene expression, proteomics data, or phenotypic screens are
the standard procedures for identifying a protein target, which is further validated
through a multi-validation approach involving for example in vitro tests, animal models
or protein modulation in patients.

Hit Discovery. Subsequently, the focus shifts to an exhaustive exploration for small
molecules capable of binding to the validated target, called “hits”, marking a crucial
step in the drug development pipeline. The chemical space, in which such compounds
are searched, is extremely vast: it encompasses between 1030 and 1060 synthetisable
molecules [Walters(2019)]. However, only a tiny portion of the chemical space has
been explored in silico, and even fewer molecules have been isolated as natural com-
pounds or synthesized. Large databases containing thousands to billions molecules have
been gathered [Bento et al.(2014), Wang et al.(2009), Pence et Williams(2010), Zhao
et al.(2020)] but their size is nowhere near the number of potential drug-like com-
pounds. Although the chemical space accessible in these chemical libraries is limited,
these resources still provide key starting points to search for molecules of therapeu-
tic interest, because they usually contain molecules that are available, because they
have been isolated or synthesized and characterized. More recently, advances in Deep
Learning lead to the design of generative models that allow exploration of the chemi-
cal space [Elton et al.(2019)]. Such models are trained to learn the correct syntax of
molecules, and fed with tailored rewards to navigate uncharted regions of the chemical
space to search for molecules expected to display the bioactivity of interest.

In practice, strategies for finding hits fall into two categories:

• Experimental in vitro screening: lead by High throughput screening, providing
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rapid assessment of molecules bio-activities, using assays allowing the screen of
100,000 molecules per day [Hertzberg et Pope(2000)]. Still, these assays re-
main expensive and impractical to screen large databases of millions of com-
pounds. Therefore, virtual screening approaches have gained momentum in the
last decades.

• Virtual screening (also called in silico screening), is often used prior to experimen-
tal screens. These approaches rely on computational methods that attempt to
predict molecules likely to present the desired biological activity. These molecules
can then be tested in vitro, with the goal of limiting the number of experiments
to be performed to discover hit molecules.

Hit to Lead. The identified hits undergo additional validation, usually composed of
confirmatory testing to ensure that the activity is reproducible, as well as biophysical
testing to rule out promiscuous binding. Following hit validation, intensive structure-
activity relationship (SAR) investigations are undertaken to optimize de chemical struc-
ture of the hits. Additional in vitro assays are performed to provide important infor-
mation with regard to absorption, distribution, metabolism, excretion and toxicology
(ADMET) properties, as well as physicochemical and pharmacokinetic (PK) measure-
ments, to meet the criteria required to design a drug molecule that can be administrated
to patients. The hits’ selectivity is also evaluated against classical off-targets known to
be responsible of deleterious side effect, such as hERG (KCNH2) for QT prolongation,
α1A adrenergic receptor (ADRA1A) modulation for arrhythmia (agonists) or ortho-
static hypotension (antagonists) [Sutherland et al.(2023)]. Those that do not meet the
standard drug criteria (target potency, selectivity, ADMET and PK profiles) are dis-
carded. The molecules that successfully passed these filters, called "lead" compounds,
are further optimised as detailed in the next paragraph.

Lead Optimisation. Once a lead compound has been identified, an optimisation
phase begins to improve the biological properties of the molecule: improved potency
and reduced off-target activities with reasonable PK profiles. This stage usually consists
in chemical modification of the lead structure by various techniques relying on the SAR.

Drug Development The drug candidates with optimal biological properties enter
the final evaluation stage, consisting in pre-clinical tests, clinical tests, and the phar-
macovigilance process (once on the market). In the pre-clinical step, the toxicity, the
pharmacokinetics and the metabolism of the compound are evaluated on microorgan-
isms and animals before conducting human trials in the clinical phase. The scarce
chemical entities (success rate ď 10% [Sun et al.(2022)]) validating all the pre-clinical
tests and proved to provide statistically clinical beneficial effects on patients are al-
lowed to enter the drug market, after approval of specific administrations, such as the
Food and Drug Administration in the United States, "Agence nationale de sécurité du
médicament" in France and the European Medicines Agency.

However, the journey from hit discovery to a clinical drug is loaded with various
challenges. Out of the thousands initial candidates after compound screening, only,
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if any, a dozen reaches the Drug Development phase [Sun et al.(2022)]. Such a low
success rate can be explained by the lack of hits identified, their poor selectivity or
ADME profiles, toxicity which is clinically unacceptable, or laborious, inefficient, or
expensive synthesis routes, which restrains development at the industrial level. For all
these reasons, a hit may not be viable, so that the exploration of the chemical space is
required to identify a suitable drug candidate. Such issues can be encountered in any
of the phases of the Hit Discovery to Drug Development journey.

Nevertheless, even when hits have to be discarded, they still provide fruitful infor-
mation to guide the identification of novel compounds with similar biological activity
against the target of interest. Novel compounds can be searched among molecules that
are close to the hits, because such molecules are expected to still display a relevant
activity with respect to the target. However, it is sometimes necessary to identify
active molecules with highly different chemical structures. This quest is referred to
as scaffold hopping [Schneider et al.(1999)], a critical obstacle often faced in Drug
Discovery.

1.2 Definitions of Scaffold Hopping

Solving scaffold hopping consists in identifying novel chemotypes with a biological activ-
ity similar to that of a known active molecule. Though the concept of scaffold hopping
might seem simple at first glance, this term has been used in different ways in the
literature, and remains ambiguous [Hu et al.(2017)]. One definition involves preserv-
ing substituents (R-groups) that are engaged in interactions with the targeted protein
pocket, while altering the molecule’s core structure, also called scaffold [Hu et al.(2016)].
This typically involves the substitution of ring systems and linker fragments between
rings with alternative molecular moieties. Medicinal chemists have formulated diverse
approaches to pinpoint such novel scaffolds originating from a parent molecule, en-
compassing the exchange of carbons and heteroatoms within heterocycles, as well as
the opening or closure of heterocycles. Additional contributions to the field involve
the identification of entirely dissimilar molecules unrelated to the parent compound,
lacking any definable common R-group or core structures. Thus, different degrees of
scaffold hopping have been characterised by [Sun et al.(2012)] to depict how much the
searched molecule needs to differ from the starting point. Three main classes of hops
can be defined, as described in the following.

1.2.1 Degrees of Scaffold Hopping

Small-step Scaffold Hopping. In this case, subtle changes are made to connect
fragments or substituents of a molecule, while preserving its overall scaffold. These
modifications typically involve swapping of atoms, like carbon, nitrogen, oxygen and
sulfur, or functional groups within heterocycles. Such a simple tactic can still improve
the binding affinity if the changes are involved in interactions with the protein.

This small-step scaffold hopping strategy was applied to find Cannabinoid 1 (CB1)
inhibitors [Sun et al.(2012)]. Rimonabant is an anorectic antiobesity drug targeting
CB1 developed by Sanofi. However, it was unable to enter the United-States market
because of safety concerns. This prompted AstraZeneca to search for novel antagonists
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targeting CB1 with improved ADMET and PK profiles. Three novel hits were thus
identified, with simple replacements of the core heterocycle [Boström et al.(2007)] as
displayed in Figure 1.1.

Figure 1.1: Example of small-step scaffold hopping. From Rimonabant, three novel
inhibitors were discovered by swapping heteroatoms in the core ring highlighted in red.

Medium-step Scaffold Hopping. Ring opening and closure have an effect on the
flexibility of molecules, which has a direct impact on membrane penetration and ab-
sorption [Vieth et al.(2004)]. This strategy provides a way to create novel scaffolds
from existing molecules to overcome such limitations, though the synthetic feasibility
of manipulating certain rings can sometimes be challenging.

Morphine and tramadol constitute a telling example of successful medium-step scaf-
fold hopping. While morphine acts on the µ-opiod receptor to increase pain tolerance,
it is well known for its adverse side effects like nausea or respiratory depression. This
prompted for the search for a new drug, tramadol, which was basically obtained with
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opening the fused rings of morphine, as showed in Figure 1.2. The flexibility thus
achieved decreased both potency and side effects.

Figure 1.2: Example of medium-step scaffold hopping. By breaking six covalent bonds
and three fused rings from morphine, a more flexible ligand, tramadol, was discovered.

Large-step Scaffold Hopping. Small- and medium-step strategies yield to novel
compounds that still maintain a certain degree of similarity to the parent compound
that is apparent when examining the chemical structures, and can be managed by
a proficient medicinal chemist. Though this degree of similarity can be sufficient to
overcome unacceptable ADMET and PK profiles, some cases need a larger jump in
the chemical space. For example, when the scaffold of the parent molecule (and of its
derivatives) is protected by a patent, it may be necessary to search for new molecules
of totally different structure. This may also be required when the hit molecule presents
unexpected deleterious off-targets, or when it cannot be purified or synthesised at the
industrial scale. Overall, solving large-step scaffold hopping cases requires to search for
a new molecule that shares very limited structure similarity with the original hit, and
cannot be easily solved without the aid of computational methods.

Such methods can help the discovery of compounds with high chemical novelty com-
pared to the parent compound, while still engaged in the same key interactions within
the targeted protein pocket, in order to keep the biological activity of interest. Such
pairs of molecules can be deemed as "isofunctional", and are also commonly referred
to as large-step scaffold hopping cases. In the following, we will consider the concepts
isofunctional molecules and large-step scaffold hopping molecules as synonyms.

Noteworthy examples of large scale scaffold hops include Indomethacin and Etori-
coxib, both serving as structurally unrelated Cyclooxygenase-2 (COX-2) inhibitors [Böhm
et al.(2004)]. Those nonsteroidal anti-inflammatory drugs display completely different
chemical structures, as illustrated in Figure 1.3.

Examples of large-step scaffold hopping are rare in the literature [Sun et al.(2012)].
Identification of isofunctional molecules is a very challenging problem, and new efficient
computational methods dedicated to solve such problems are eagerly required in the
field of drug design.

The different degrees of scaffold hopping are summarized in Table 1.1 through ad-
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Figure 1.3: Example of large-step scaffold hopping. Indomethacin and Etoricoxib dis-
play no common substructure.

ditional examples.

Scaffold Hopping
Degree

Description Example

Small-step Change of atoms
in heterocycles

Medium-step Ring opening and
closure

Large-step Novel core struc-
ture

Table 1.1: Summary of the three degrees of scaffold hopping.

1.2.2 Binding Modes Conservation

In the previous section, we only discussed about the degree of structural similarity be-
tween scaffold hopping molecules. However, another crucial aspect of scaffold hopping
is the similarity of the binding modes shared by pairs of isofunctional molecules. In-
deed, maintaining similar binding modes than the original hit compound ensures that
the newly designed molecules maintain their activity with respect to the target protein.
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However, very often, scaffold hopping exploration is experimentally performed based
on biological assays that do not provide information about binding modes. Such exper-
iments may identify hits with binding modes or binding location drastically different
from those of the original compound (a situation we could call scaffold hopping “right
for the wrong reasons”). This can be observed for example for competitive or allosteric
enzyme inhibitors. In such scenario, we face a lack of functional commonalities be-
tween the initial hit and the new active molecule, and there is no biological/functional
or chemical link between the initial hit to the newly identified molecule. Therefore, be-
cause there would not be any foundation to link molecules binding to different pockets,
or presenting very different mechanisms of action (i.e. binding modes), in the present
thesis, we only considered iso-functional molecules: molecules that share similar bind-
ing modes with the same protein pocket. This leads to exclude for example pairs of
enzyme inhibitors, one binding to the active site and the other to a distinct allosteric
site, or one being reversible and the other irreversible (forming a covalent bond withing
the active site).

Indeed, there would be no rationale that could be exploited to discover the second
molecule of such pairs, when starting from the first molecules of these pairs. I illustrate
this property in Figure 1.4.
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Figure 1.4: Illustration of the prominence of sharing similar binding modes for scaffold
hopping. In panel a) we show dissimilar molecules targeting distant binding sites of
PI3Kα. On the contrary, panel b) displays isofunctional molecules with similar binding
modes against Spleen Tyrosine Kinase. Only the latter case corresponds to scaffold
hopping, especially large-step scaffold hopping.
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1.3 Solving Large-step Scaffold Hopping

When solving scaffold hopping, researchers aim to modify the core structure of a
molecule, while preserving key interactions with the protein target. This can involve
making structural changes such as replacing or modifying functional groups, altering
ring systems, or even completely changing the molecular architecture while retaining
essential pharmacophoric features. Due to the extensive size of the chemical space,
computational methods play a crucial role in solving large-step scaffold hopping, by
facilitating its exploration, predicting the biological activity of designed molecules, and
guiding the selection of promising candidates for synthesis and testing.

However, the low number of successful examples of large-step scaffold hopping in
the literature is a telling proof of how challenging it is, and underlines that new com-
putational methods specifically tailored to address this category of problems need to
be developed.

In principle, one can distinguish two categories of computational approaches for
the discovery of isofunctional molecules: structure-based (SB) and ligand-based (LB)
approaches.

1.4 Structure-based Approaches for Scaffold Hopping

As its name suggests, in the SB approach, identification of novel hits relies on the
three-dimensional (3D) structure of the targeted protein. When the 3D structure of
the target protein is available, docking is the standard approach for hit discovery and
for solving large-step scaffold hopping. It has led to several successes documented in
the literature [Pang et al.(2021),Kaplan et al.(2022)]. Indeed, the molecular mechani-
cal equations on which it relies do not depend on the molecular structure, and should
theoretically allow accurate scoring of molecules belonging to very diverse regions of the
chemical space. In addition, docking facilitates rational drug design by providing in-
sights into ligand-receptor interactions, allowing further optimization of ligand binding
affinity and selectivity.

Determination of the protein 3D structure can be achieved either through ex-
perimental means such as X-ray Crystallography, Nuclear Magnetic Resonance Spec-
troscopy or Cryo-Electron Microscopy, or via computational methods like Homology
Modelling or based on advanced Deep Learning models like AlphaFold [Jumper et al.(2021)].

Identification of isofunctional molecules with docking boils down to screening large
molecular databases, and search for molecules that are highly dissimilar to the hit,
while displaying similar interactions with the protein binding pocket. Among these
molecules, those with the highest docking scores will be considered as candidate scaffold
hopping molecules that should be experimentally tested. In the present thesis, docking
has been used as a reference method to be compared to other approaches, but also
to derive original molecular descriptors, as described in Chapter 3. Therefore, in the
following, we recall the general principle of docking, and the steps than are required to
implement a typical docking pipeline.
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1.4.1 General Principle of Docking

Once the 3D structure of the protein target is available, docking is the standard ap-
proach for hit discovery, and has been applied since the 80s [Kuntz et al.(1982)]. Basi-
cally, its purpose is to fit a key (a molecule) into a lock (a protein binding site) using
molecular mechanical equations, and scoring functions that reflect the estimated bind-
ing energy. Note that docking is not limited to predicting interactions between small
molecules and a protein. Since the last decade, protein-protein docking, nucleic acid-
ligand docking and nucleic acid-protein-ligand docking are now strategies handled by
the different docking algorithms available in the literature (e.g. DOCK6, Vina, Gold,
Glide, AutoDock). However, in the context of large-step scaffold hopping, we consider
only protein-ligand docking, summarily referred to as docking in the following.

The docking process provides two outputs [Stanzione et al.(2021)]:

• The preferred orientation, conformation, and binding mode of a small molecule
(ligand) within the binding pocket of the targeted protein, i.e. the 3D coordinates
of the atoms of the molecule.

• The score of the pose obtained to assess its quality.

Pose Prediction. To predict the pose of a molecule inside a protein pocket, the dock-
ing algorithm must roam the conformational space of both the ligand and the protein.
Due to the high number of degrees of freedom, exploring the search space exhaustively is
not realistic. Several approaches have been developed to tackle the challenging problem
of sampling conformations and rotational and translational orientations.

• Rigid docking: both the protein and the ligand are treated as rigid bodies. Thus,
only the translational and rotational degrees of freedom of the ligand relative to
the receptor are explored.

• Semi-flexible docking: only the flexibility of the ligand is considered, while the
receptor remains rigid. Due to the ligand size, those computations are more likely
to be affordable.

• Flexible docking: both the ligand and the receptor are treated as flexible. How-
ever, the conformational degrees of freedom of the latter can be limited to residue
side chains.

For sampling ligand conformations, two families of methods are available. (1) Sys-
tematic methods are deterministic methods for conformation sampling. Some explore
conformations by rotating all rotatable bonds in the ligand with a given interval, result-
ing in a huge number of combinations. Others, like the fragmentation method, divide
the ligand into rigid fragments that are iteratively anchored to the protein binding site,
before reconstruction of the molecule. (2) On the contrary, stochastic methods explore
binding orientation and conformational space by applying changes on the ligand at
random. The changes thus obtained are then accepted or rejected according to specific
algorithms like genetic or Monte Carlo algorithms.
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Pose Scoring. To assess the quality of the poses obtained after the sampling process,
the docking algorithm predicts their binding affinity through internal scoring functions.
Scoring functions can be grouped into four main classes [Li et al.(2019a)]:

• Physics-based functions compute the binding energy by including terms that ac-
count for various types of intermolecular interactions, such as electrostatic inter-
actions, van der Waals forces, hydrogen bonding, and desolvation effects.

• Empirical functions also estimate the binding affinity of various energetic factors,
but multiplied by coefficients determined by multiple linear regression on datasets
gathering known binding affinities.

• Knowledge-based functions rely on statistical analyses of known protein-ligand
complexes to derive empirical parameters that quantify the likelihood of spe-
cific interactions contributing to binding affinity. These scoring functions do not
explicitly consider physical principles, but instead, leverage information from ex-
perimental data or structural databases to estimate the quality of ligand poses.

• Machine learning-based functions approximate those non-linear problems through
Machine or Deep Learning algorithms trained on datasets gathering known bind-
ing affinities.

The successive steps that need to be performed in a typical docking pipeline are
detailed below.

1.4.2 Typical Docking Pipeline

Docking requires a rigorous and exhaustive study of the protein as well as the ligand
to calibrate the protocol. Failing to do so may result in a scenario where the poses
predicted are meaningless and unrealistic. This is also why predicted poses are always
analysed, either based on computational approaches or by medical chemists, to evaluate
the relevance of the prediction. The docking workflow consists in six steps, described
below [Stanzione et al.(2021)].

Protein and ligand selection. Docking relies on the 3D structure of the protein.
Such structures can be found in the Protein Data Bank [Berman et al.(2000)] (PDB) in
the .pdb file format. For simplification, we will employ the term "PDB" when referring
to a .pdb file of a 3D structure. This database gathers more than 100,000 structures,
but their quality differ from one another. For X-ray structures, a measure of this
quality is provided by the crystal structure resolution. It quantifies the degree of order
in the crystal, and to which extent the atom positions are defined. Typically, a crystal
structure with a resolution below 2Å is considered of high-resolution, which translates
in high confidence in the atoms locations in the structure. When trying to identify new
hits for a protein using docking, an extensive prior study of all available 3D structures
is needed. Only those with the best resolutions and with a clear defined ligand are
considered for the following steps.
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Protein and ligand preparation. Once a PDB has been chosen, a careful prepara-
tion step is performed on both the protein and the ligand. One common task is adding
missing hydrogen atoms to entries in the PDB, which often lacks this information in
X-Ray structures. This process is challenging due to various structural ambiguities,
such as rotatable bonds affecting hydrogen atoms positions, tautomers, and protona-
tion states of amino acids, as well as alternative water orientations and side chain flips.
Additionally, protein preparation involves detecting and fixing missing bonds, assign-
ing bond orders, and selecting atoms positions with the highest frequencies in cases
of alternate locations. More complex procedures include predicting protonation states,
which may play an important role in the prediction of the correct binding mode of a
ligand.

Binding site identification. The binding site, also called pocket, corresponds to the
area in the 3D structure into which the docking protocol is applied. It is prominent to
accurately pinpoint the binding site to ensure that the molecular interactions considered
during docking are significant. Ideally, the binding pocket is defined from the structure
of the protein in complex with a known ligand, when available. Not only does this help
calibrate the docking protocol as the binding site is clearly identified, but the knowledge
of how this ligand interacts with the amino acids of the protein also provides valuable
insights on the key binding mechanisms that a molecule is expected to reproduce to be
considered a realistic candidate for further analysis.

In the absence such information, expert-knowledge or Deep Learning approaches
like [Zhao et al.(2020)] can still be used to predict the location of the binding site.

Structural water molecules. Water molecules play a key role in structure-based
drug design: they can improve protein-ligand binding affinity by mediating hydrogen
bonds and contribute to entropic and enthalpic changes in the protein-ligand complex.
Determining which water molecules should be retained in the protein structure is a
mandatory step to calibrate the docking algorithm.

Calibration of the docking protocol. Docking itself, as detailed above, explores
the conformational space of the ligand (and the protein in the case of flexible docking),
and proposes poses that are ranked according to internal scoring functions. Like all
algorithms, docking is error prone, and may produce irrelevant poses, and the docking
protocol needs to be tuned to the problem of interest. Typically, re-docking experi-
ments are performed to adjust the docking protocol. In practice, a known ligand for
which a structure in complex with the targeted protein is available is redocked in the
3D structure of the protein, and the quality of the best scoring predicted poses are
evaluated, with the aim that the position/conformation of the docked ligand matches
those observed in the X-Ray structure of the protein-ligand complex.

A simple yet effective way to assess the quality of the pose of a known ligand is to
compute the Root Mean Squared Deviation 1.1 (RMSD) of the crystallographic pose
and the predicted pose of the ligand. This quantity measures how well aligned those
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two conformations are.
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where:

• RMSD is the root mean square deviation,

• N is the number of atoms in the molecule,

• ri is the position vector of atom i in the reference structure,

• r1
i is the position vector of atom i in the compared structure.

If the RMSD is high (i.e. above 2 angströms), the true and predicted poses are not well
aligned, because the docking protocol did not succeed in retrieving the experimental
binding modes. In such cases, either the protocol needs to be adjusted to improve the
predicted poses, or the PDB chosen for conducting such experiments is discarded in
favor of another (if available), for which the re-docking experiment is successful.

1.4.3 Limits of Docking

When the resolution of the 3D protein structure is low, or when only apo structures
(i.e. structures without bound ligands) are available, docking approaches may suffer
from various limitations: it may be difficult to identify the binding pocket of interest,
the apo structure may display structural rearrangements with respect to the unknown
holo structure, so that the apo structure may not be reliable to perform docking.
Furthermore, the 3D structure of the target may be unknown. Various approaches are
available to predict the overall 3D models for proteins, including the efficient AlphaFold
algorithm [Jumper et al.(2021)] which has revolutionized protein folding, leading to
astonishing accurate 3D predictions only using the protein sequence. Nevertheless,
these models may not be reliable at the level of structural details such as the orientation
of side-chain or backbone loops, although these details are critical for the performance
of docking approaches [Scardino et al.(2023)]. Docking requires precise knowledge,
preparation and minimization of the protein pocket, as described previously, in order to
provide accurate and meaningful predicted binding modes. Starting from a questionable
protein pocket might decrease considerably the quality of docking predictions. Thus,
the applicability domain of docking, though theoretically infinite in the chemical space,
is limited in the protein space.

Therefore, docking is not always applicable to the scaffold hopping problem at hand,
which leaves space for ligand-based approaches.

1.5 Ligand-based Methods for Scaffold Hopping
Ligand-based approaches in drug discovery refer to computational methods that an-
alyze the chemical properties of known ligands, in order to identify new compounds
with similar biological activities. These approaches do not rely on the structure of
the target protein, but focus on the properties of the ligands themselves. Their general
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principle is that structurally similar molecules are likely to have similar properties [Hen-
drickson(1991)]. Therefore, the prediction performances of ligand-based approaches
strongly depend on the molecular properties that are considered, i.e. on the corre-
sponding molecular descriptors that are considered to represent the molecules, and on
the relevance of these descriptors with respect to the problem at hand.

In the following, we shortly review classical descriptors used in ligand-based ap-
proaches.

1.5.1 Molecular Representations

Various molecular representations encoding chemical properties have been designed and
reported in the literature, with increasing levels of complexity: from simple 1D string-
based formats such as the Simplified Molecular-Input Line-Entry System [Weininger(1988)]
(SMILES), to molecular graphs [Dalby et al.(1992)] which are primary structural data,
to feature-based formats that consist in vectors whose elements encode various molec-
ular characteristics, and even computer-learned representations computed by neural
networks [Jiang et al.(2021)]. We will not provide a more detailed description of the
latter, because they have not been used in the present thesis, and because these rep-
resentations strongly depend on the Deep Learning architecture that is used, so that
they cannot be shortly reviewed.

The most commonly used molecular representations are molecular fingerprints en-
coding different types of descriptors. These representations have proved to help iden-
tify new hits [Dick et Cocklin(2020),Lovrics et al.(2019),Grisoni et al.(2018b),Nakano
et al.(2021)]. They demonstrated that, even in the absence of information about the 3D
structure of the binding pocket, ligand-based approaches still catch prominent informa-
tion on binding and provide an interesting alternative to structure-based approaches.
Figure 1.5 illustrates the information such encoded in the two prevailing molecular
descriptors: the Morgan Fingerprints and the 3D Pharmacophore.

Morgan Fingerprints Historically, the Morgan Algorithm [Morgan(1965)] was de-
veloped to solve the molecular isomorphism problem, i.e. identify cases where two
molecules with different atom numberings are identical. It consists in an iterative pro-
cess where numeric identifiers are assigned to each atom, from a rule encoding invariant
atom information at first, then using the identifiers from the previous iteration. The
iteration process stops when all atom identifiers are unique.

Recently, this algorithm lead to the design of a novel class of topological finger-
prints: the Extended-connectivity fingerprints [Rogers et Hahn(2010)] (ECFPs), also
called Morgan fingerprints. They consist in a binary vector encoding the different sub-
structures present in the molecule structure. They are generated in three sequential
phases analog to the Morgan Algorithm:

• An initial assignment phase in which all atoms are assigned integer identifiers,

• An iterative updating phase in which all atoms identifiers are updated to reflect
the identifiers of each atom’s neighbors, which is controlled by a diameter input,
including identification of whether it is a structural duplicate of other features,
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• A duplicate identifier removal phase in which multiple instances of identical fea-
tures are reduced to a single entry in the final feature list.

Morgan fingerprints are often used to assess the 2D structural similarity between
molecules, by computing their Tanimoto similarity:

T “
c

a ` b ´ c
(1.2)

where:

• T is the Tanimoto similarity coefficient,

• c is the number of common features (bits) between the two Morgan fingerprints,

• a is the number of features (bits) in the first Morgan fingerprint,

• b is the number of features (bits) in the second Morgan fingerprint.

Although these descriptors have proved to be successful in many applications in
drug design, they do not appear to be suitable to the scaffold hopping problem. Indeed,
Morgan fingerprints are tightly linked to the molecular graph, and therefore, searching
for active molecules that are similar to a known hit based of Morgan fingerprints will
not allow to identify molecules that display highly dissimilar chemical structures.

Pharmacophore descriptors A pharmacophore is a chemical feature that encodes
information about whether a molecule can engage interactions with a protein. Typi-
cal pharmacophore features include hydrogen bond donors/acceptors, aromatic rings,
positively or negatively charged groups, and hydrophobic regions.

Identifying the pharmacophores of a molecule and pinpointing which are involved in
binding to a protein target can help design new molecules of therapeutic interest, which
is the basis of pharmacophore modeling. Besides, identical pharmacophore features
can represent different chemical structures. For instance, both phenyl and imidazole
structures are aromating rings, thus will be encoded with identical pharmacophores.
Incorporating the equivalence between such groups in ligand-based approaches when
navigating the unknown chemical space is a crucial task for solving scaffold hopping, a
property provided by pharmacophore approaches.

While 2D pharmacophore fingerprints have been described in the literature [Mc-
Gregor et Muskal(1999)], the standard approach employs 3D pharmacophores. They
rely on the generation of 3D conformers for each molecule. Several algorithms explore
the conformational space of molecules and generate multiple energetically favorable
conformations, like in RDKit [Landrum et al.(2021)]. Pharmacophore detection is then
applied to these conformations in order to define the relative 3D positions of pharma-
cophore features present in the molecule.

Then, one possible way to compute the 3D pharmacophore similarity between two
molecules is to align both conformers, and calculate the resulting Tanimoto similarity
(as illustrated in the case of volume features):

T “
VOverlap

pVA ` VB ´ VOverlapq
(1.3)
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where:

• T is the Tanimoto similarity coefficient,

• VOverlap is the maximum volume overlap of the pharmacophores,

• VA is volume of the pharmacophores of molecule A,

• VB is volume of the pharmacophores of molecule B.

Although in principle, 3D encoding appears more relevant, because protein-ligand
interactions are events that occur in the 3D space, when the active conformation of the
ligand is unknown, 3D pharmacophore approaches may not reach the performances of
2D approaches [Mahé et al.(2006)].



1.5. Ligand-based Methods for Scaffold Hopping 19

Figure 1.5: Example of two molecular representations. Substructural information of
molecule in panel a) is encoded with the Morgan fingerprint b). This molecule can
also be represented through its 3D pharmacophore c), which requires generation of a
conformer.
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1.5.2 Classical Ligand-based Algorithms

Quantitative Structure-Activity Relationship (QSAR) Models.

QSAR models correlate structural or/and physico-chemical properties of ligands, as
encoded by their descriptors with their biological activities. By leveraging the relation-
ship between these descriptors and the known ligands’ activities, QSAR models aim
at screening large molecular databases and predict the activity of new compounds, ac-
cording to their descriptors. Globally, they rely on the idea that molecules with similar
structures are expected to display similar biological activities, and in particular, bind
to similar protein binding sites.

When the descriptors mainly encode the chemical structure of the molecules, such
as Morgan fingerprints, QSAR approaches are not expected to be suited to identify
new molecules that solve scaffold hopping problems. In fact, these approaches are
more relevant at the optimisation step, when only subtle molecular modifications are
searched, for example to optimise the ADME profile of a confirmed hit molecule.

As detailed above, pharmacophore descriptors capture the essential physico-chemical
features that are present in a molecule and that govern protein-ligand interactions, such
as hydrogen bond donors/acceptors, hydrophobic regions, aromatic rings and charged
atoms. These descriptors don’t depend on the chemical structure as tightly as Mor-
gan fingerprints do, because various chemical groups can be associated to the same
pharmacophores. For example, an O-H group or an N-H group can both be viewed as
hydrogen donor pharmacophores.

Globally, QSAR approaches based on pharmacophore descriptors apply the idea
that molecules with similar pharmacophores are expected to bind to similar protein
pockets. Because different chemical groups may be represented by similar pharma-
cophores, in its principle, pharmacophore QSAR is expected to be a better choice to
tackle the scaffold hopping problem, as illustrated in the case of [Carosati et al.(2007)].

Machine Learning Algorithms

Machine and Deep learning algorithms can be trained on known protein-ligand inter-
action databases, thus providing prediction models. They can then be used in virtual
screening campaigns, to predict new ligands for a protein, and potentially to solve scaf-
fold hopping problems. As for QSAR models, their performance for these problems is
expected to strongly depend on the descriptors that are used to encode molecules.

However, one advantage of machine-learning algorithms is that they can be used
in a multi-task setting, in which predictions of ligands for a given protein can be
made based on all other ligands known for all other proteins. These algorithms allow
to leverage much more information about any known protein-ligand interactions than
QSAR models, because the latter can only take as input known ligands for the protein
under study. We will not further study these approaches, and let the interested reader
refer to the publication provided in Appendix A.
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1.6 Formalisation of our Approach of the Scaffold Hop-
ping Problem

As mentioned above, in the present thesis, we chose to tackle the problem of scaffold
hopping specifically in the case where the 3D structure of the protein is not available,
or not suitable for docking studies. In this context, LB approaches are the relevant
computational methods to help solving such problems.

More precisely, we also focus on large-step scaffold hopping, the most difficult set-
ting, where isofunctional molecule are searched. This means that one hit molecule is
known, and a new molecule of dissimilar structure but that is expected to share the
same binding mode within the binding pocket is searched. At this stage, this may
seems to be an impossible mission where the 3D structure of the protein is unknown,
but Chapter 3 presents the strategy that was used to overcome this problem.

In the previous sections, the choice of the molecular descriptors used as input of
LB methods has a strong impact on their prediction performances. Currently used
molecular descriptors were not specifically developed for scaffold hopping, and may not
be optimal to solve these problems, even if, at this stage, pharmacophore descriptors
appear to be a reasonable default choice. However, we reasoned that developing new
molecular descriptors dedicated to scaffold hopping would have a stronger impact to
solve these problems than fine-tuning available prediction algorithm for these prob-
lems. Indeed, the principle behind any computational method will be to implement
the idea that "similar molecules will bind to similar protein pockets", and therefore,
the performances will critically depend on how this "similarity" is measured, i.e. on the
underlying molecular descriptors used to encode molecules.

Formally, our representation of solving large-step scaffold hopping problems boils
down to the identification of molecular descriptors corresponding to an embedding of
the chemical space in which two molecules that are examples of large-step scaffold
hopping cases are similar (i.e. close), although they are dissimilar (i.e. far) in the
space embedded by molecular descriptors based principally on the chemical structure.
In other words, once such descriptors have been designed, given a hit molecule, solving
scaffold hopping problems is equivalent to search for candidates that are close to the
hit in the chemical space resulting from this embedding.

1.7 Goals and Manuscript Summary

1.7.1 Goals

The main goals of the thesis are presented below.

Design chemical descriptors specifically tailored to the problem of scaffold
hopping. As mentioned above, most classical molecular descriptors are not adapted
to solving large-step scaffold hopping problems, because they mainly rely on the chem-
ical structure of molecules, while isofunctional molecules should lie in remote regions
of the embedding of the chemical space resulting from such descriptors.

In this context, molecular representations based on biological properties are ex-
pected to be better suited to large-step scaffold hopping. Several encodings have been
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described in the literature [N. Muratov et al.(2020), Wassermann et al.(2015)]. Some,
like CBFP [Xiong et al.(2021)], encode predicted activities for a profile of assays, thus
defining bioactivity fingerprints for molecules. However, many of these bioactivity fin-
gerprints need to be predicted for most molecules, because the corresponding assays
were conducted on a limited number of molecules, and the corresponding prediction
models may lack generalisation properties. Consistent with this remark, pre-training
a convolution neural network that predicts protein-ligand interactions based on the
PCBA dataset that contains a profile of 90 bioactivities for thousands of molecules, did
not improve the prediction performances of the algorithm [Playe et Stoven(2020)]. The
present thesis will therefore explore new types of bioactivity fingerprints.

Build a large-step scaffold hopping benchmark to provide a panel of cases
on which the chemical descriptors can be evaluated. As a matter of fact, a
few large-scale benchmark studies have been reported, comparing the performances of
various topology-based (or other ligand-based) methods [Grisoni et al.(2018a),Nakano
et al.(2020)]. However, they only considered proteins with a relatively large number
of known ligands, so that these ligands can be used to train prediction models. In
addition, they evaluated the performances based on the chemical diversity of known
ligands retrieved among the top ranked molecules. This does not clearly specify to
which extent the structures of retrieved ligands were distant from those of molecules
in the training set, which prevents from drawing conclusions about the ability of these
methods to specifically solve large-step scaffold hopping problems. Finally, because
of their design, these benchmarks do not mimic real-life applications, where an active
hit has been identified (or a small number of hits), and where a new active with very
different chemical structure is searched. Hence, these benchmarks do not allow to
anticipate the performances of the methods proposed in these studies in the general
case. In addition to the degree of chemical novelty searched, one must distinguish ‘easy’
targets with many known ligands, and ‘hard’ targets with only one known ligand. Most
available computational methods may fail on the latter [Bajorath(2019)]. Overall, one
of the main challenges in the field of computational methods for scaffold hopping is
the lack of appropriate benchmarks to evaluate those methods on ’hard’ targets and
large-step hops, because these settings are typically encountered in the design of new
drugs, and correspond to the most difficult cases.

Propose a strategy to evaluate the relevance of these encodings to that prob-
lem. Most studies reporting large step scaffold hopping success cases using 2D or 3D
ligand-based approaches considered a given protein under study, or a very small number
of proteins [Dick et Cocklin(2020), Lovrics et al.(2019), Grisoni et al.(2018b), Nakano
et al.(2021)]. These cases corresponds to unique stories with extensive prior knowl-
edge, and ad hoc procedures to solve these specific cases. In fact, the performances of
molecular representations and of computational methods for scaffold hopping problems
is essentially unpredictable [Sun et al.(2012)] in the general case, and there is a crucial
need to design benchmarks that span a variety of proteins, to improve performance
evaluation of these approaches.
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1.7.2 Manuscript Summary
In Chapter 2, I present the design a benchmark for large-step scaffold hopping that can
be used to evaluate new molecular encodings for their use in computational approaches.
This contribution lead to a publication that illustrates how difficult scaffold hopping
is, and why new approaches are needed.

In Chapter 3, I introduce new molecular descriptors based on possible binding modes
of molecules, called the Interaction Fingerprints Profile (IFPP). These descriptors are
intended to encode bio-activity of molecules, and to implement the idea that molecules
belonging to scaffold hopping pairs are expected to be similar based on this encoding.
I detail the rationale behind this representation, and explain why it may be relevant
for solving scaffold hopping. The interest of this representation is evaluated on the
proposed benchmark. However, the promising results of this new representation of the
chemical space needs to be nuanced with regard to its cost in terms of computation
time.

In Chapter 4, I propose to use Deep Learning approaches to avoid the explicit
computation of molecular IFPPs, while keeping in mind the idea that isofunctional
molecules share similar IFPPs. We first show that predicting these IFPPs with Deep
Learning approaches greatly reduces their computation time, but at the cost of degrad-
ing their quality because scaffold hopping pairs are "farther" in the resulting chemical
space derived from predicted IFPPs than with the actual computed IFPPs.

Therefore, we then propose an alternative method based on Metric Learning and
that appears far more promising. Interestingly, this approach directly predicts the
IFPP similarity of molecules, without explicitly computing the molecules IFPPs. In
other words, it directly implements the idea of searching scaffold hopping candidates for
a given hit molecules among molecules that are close in the embedding space, without
calculating the corresponding descriptors.

The performances of this approach is evaluated on both the scaffold hopping bench-
mark and on an external dataset, LIT-PCBA [Tran-Nguyen et al.(2020)], providing a
glance of its interest in realistic virtual screening settings.

Finally, in Chapter 5, I summarize the results of the thesis, and provides future
perspectives in the field of scaffold hopping.





2
Large-Hops Benchmark

Abstract:
In this Chapter, I detail the approach adopted to build the Large-Hops bench-

mark (LH), designed for problems of large-step scaffold hopping. Pairs of isofunctional
molecules are gathered from PDBbind by selecting ligands targeting the same protein
with dissimilar molecular structures but similar binding modes that are not solely ex-
plained by a common substructure. Then, I propose a strategy to evaluate molecular
descriptors using the benchmark. It relies on the choice of appropriate decoy molecules
for each pair, possessing similar global physical and chemical properties to those of the
ligands, while being as distant from each ligand of the pair as these ligands are from
each other, in terms of chemical structure. Classical 2D and 3D molecular descriptors
are evaluated using this criterion, and display limited performances. Finally, I illustrate
how this benchmark can also be used as test set for chemogenomic approaches.

Résumé:
Dans ce Chapitre, je détaille l’approche adoptée pour construire le benchmark Large-

Hops (LH), conçu pour les problèmes de ’large-step scaffold hopping’. Des paires de
molécules isofonctionnelles sont rassemblées à partir de PDBbind en sélectionnant des
ligands ciblant la même protéine avec des structures moléculaires dissemblables mais des
modes de liaison similaires qui ne sont pas uniquement expliqués par une sous-structure
commune. Je propose ensuite une stratégie d’évaluation des descripteurs moléculaires
à l’aide du benchmark. Elle repose sur le choix de molécules ’decoy’ appropriées pour
chaque paire, possédant des propriétés physiques et chimiques globales similaires à celles
des ligands, tout en étant aussi éloignés de chaque ligand de la paire que ces ligands
le sont l’un de l’autre, en termes de structure chimique. Des descripteurs moléculaires
2D et 3D classiques sont évalués à l’aide de ce critère et affichent des performances
limitées. Enfin, je montre comment ce benchmark peut également être utilisé comme
ensemble de tests pour les approches chémogénomiques.
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Our main contribution in this chapter is to provide a flowchart to build a high-
quality and well characterized large-step scaffold hopping benchmark for ‘hard’ targets,
which is a prerequisite to develop and test new methods dedicated to these problems.
We also propose a strategy to compare the performance of molecular descriptors for
solving scaffold hopping, using this benchmark. Specifically, we illustrate this strat-
egy for a few classical 2D and 3D molecular descriptors. In addition, we show that
this benchmark can also be used as a test dataset to evaluate the performances of
chemogenomic algorithms to solve scaffold hopping problems. This allows us to evalu-
ate the difficulty of large-step scaffold hopping problems in a setting that corresponds
to real-case studies.

These results are published in the article [Pinel et al.(2023)] and available online at
https://github.com/iktos/scaffold-hopping:

P. Pinel, G. Guichaoua, M. Najm, S. Labouille, N. Drizard, Y. Gaston-Mathé, B.
Hoffmann, V. Stoven (2023), Exploring isofunctional molecules: Design of a

benchmark and evaluation of prediction performance, Molecular Informatics 42 (4),
2200216. doi:10.1002/minf.202200216

2.1 Building the Large-Hops Benchmark
As detailed in 1.6, the field of scaffold hopping lacks of a well characterised benchmark
of large step scaffold hopping cases for a panel of diverse proteins.

Although the present thesis tackles the problem of scaffold hopping for proteins
of unknown 3D structure, we built this benchmark from examples extracted from the
PDBbind database [Wang et al.(2004b)] to ensure that the selected pairs of molecules
are ‘true’ large-step scaffold hopping cases, i.e., highly dissimilar compounds that share
similar binding modes with the same protein, as identified by the same UniProt ID.
Indeed, as already pointed, there would not be any rationale to relate two inhibitors of
an enzyme binding to two distinct and distant binding sites, and such ‘false’ scaffold
hopping cases must not be present in the benchmark. Identification of such examples is
not straightforward: some examples presented below show that it is not possible to use
only one criterion based on a single molecular similarity measure. The next subsections
present the subsequent steps that are used to perform this task.

2.1.1 Identifying Molecules with Dissimilar Structures

Filtering the PDBbind database

To identify scaffold hopping cases, we need to search for pairs of highly different
molecules that bind to the same protein pocket with similar binding modes, because
molecules that would present totally different binding modes in the same pocket, or
bind to different pockets of the protein, do not meet the definition of scaffold hop-
ping. To enable the selection of such pairs, we use the PDBbind database [Wang
et al.(2004b)] that contains 17.652 PDB files (2019) of 3D crystallographic structures
of protein-ligand complexes. We only keep structures with a resolution below 2.8 Å, to
ensure that the binding modes of the ligands can be analysed with confidence. Second,
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as some compounds can be co-crystallized with the protein in soaking experiments,
even with unspecific affinities in the millimolar range, we remove all complexes with
affinity above 10µM. This allows to only select ‘successful’ scaffold hops, for which
both molecules present specific activities against the same target. Finally, we discard
proteins for which only one ligand is available in PDBbind, since scaffold hopping ex-
amples cannot be searched for these proteins. This leads to 181.635 pairs of ligands for
997 proteins. Examples of large-step scaffold hopping cases are further searched among
these pairs.

Selecting pairs of drug-like molecules

Because our study stands in the context of drug design, the selected molecules need to
represent molecular characteristics encountered in drug-like molecules. Otherwise, the
performances of computational methods on our benchmark may not be representative
of those expected in drug design applications. We only keep pairs involving ligands of
molecular weight between 200 and 900g/mol, to discard salts, solvent or other molecules
present in crystallisation buffers, and large interacting partners like peptides. This
leads to 6.494 PDB files, corresponding to 148.002 pairs of ligands and involving 856
different proteins. Among the 148.002 pairs, we select those in which both molecules
have a quantitative estimate of drug-likeness (QED) [Bickerton et al.(2012)] above 0.5,
which allows to remove molecules with unwanted physical-chemical properties, leading
to 49.686 pairs involving 449 proteins.

Selecting pairs of large-step hops ligands

Among the 49.686 pairs of molecules, we use several criteria to exclude those corre-
sponding to small- or medium-step hops cases. First, we determine the generic Murcko
scaffolds of molecules because they characterize the core structure of molecules [Bemis
et Murcko(1996)]. These scaffolds are obtained by removal of all substituents, while
retaining ring systems and linker moieties between rings, and converting all bonds
to single bonds. To remove small-step hops, we exclude pairs of ligands whose generic
Murcko scaffolds have Morgan fingerprints Tanimoto similarities [Rogers et Hahn(2010)]
above 0.6 (in the following, this similarity is called Murcko-based Morgan similarity),
which selects 45.534 pairs. This single criterion does not always guarantee that the two
molecules are highly dissimilar: in a few cases, they still display significant similarities,
as illustrated in Figure 2.1 for one pair. To discard these cases, pairs of molecules
with an overall Morgan fingerprints Tanimoto similarity above 0.3 are removed (in the
following, this similarity is called molecular Morgan similarity), as they may represent
medium-step hops rather than large-step hops. This leads to 44.386 pairs of molecules.

2.1.2 Identifying Molecules with Similar Binding Modes

Molecular Interactions

Before detailing how scaffold hopping pairs are selected, it is necessary to thoroughly
describe how a molecule can bind to a protein target. Indeed, scaffold hopping molecules
have similar binding modes, so in order to verify this property, we must be able to
encode how a ligand interacts with a protein.



2.1. Building the Large-Hops Benchmark 29

Figure 2.1: Example of a pair of molecules with low Murcko-based Morgan similarity
but similar structures, leading to a higher molecular Morgan similarity. On the left
the pair of molecules (PDBs: ‘2fl2’ and ‘2fl6’) is displayed and, on the right, their
corresponding generic Murcko scaffolds are shown. This pair should not be present in
the LH benchmark. It is excluded based on the molecular Morgan similarity between
the molecules greater than the chosen threshold.

Protein-ligand interactions are reversible non-covalent interactions that do not in-
volve the sharing of electrons [Bongrand(1999)]. We present the molecular interactions
we considered when characterising ligand binding modes.

Hydrogen Bond. This interaction requires one hydrogen (H) bond donor, i.e. a
polar hydrogen covalently bonded to an electronegative atom, and one H bond acceptor,
an atom exhibiting a partial negative charge. However, this interaction is dependent
on the geometry of the interacting atoms [Nittinger et al.(2017)]. Indeed, the hydrogen
must be directed towards the lone pair of the H bond acceptor, which conversely must
be directed towards the most polarized region of hydrogen. Variations of the angle
between the H bond donor and acceptor have an important impact on the energy of
the interaction [Li et al.(2011)].

Many studies describe hydrogen interactions as being either weak or strong de-
pending on their energy estimation [Nittinger et al.(2017)]. Strong hydrogen bonds
correspond to interactions whose energy is close to the optimal value. Weak hydrogen
bonds result from imperfect geometry, a weak bond acceptor like sulfur, an aromatic
cycle, or moderate polarization of the hydrogen bond donor.

Halogen Bond. Halogens are atoms belonging to the 17th group of the periodic
table: fluorine (F), chlorine (Cl), bromine (Br) and iodine (I). They are covalently
bonded to only one atom. For Cl, Br and I, there is in the extension of this bond,
on the halogen, an electropositive zone called the σ-region, due to the anisotropic
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distribution of electrons. The σ-region can interact with Lewis bases which can be
hydrogen bond acceptors or other atoms with an electronegative moment, creating
the halogen bond. In terms of geometry, the halogen bond behaves similarly to the
hydrogen bond [Nittinger et al.(2017)].

Salt Bridge. Salt bridges correspond to any interaction involving an entity carrying
a positive or negative charge. Salt bridges can sometimes be assimilated to hydrogen
bonds in cases where a hydrogen bond donor faces an entity carrying a negative charge.
Ionic bonds are generally identified as two elements carrying opposite charges in contact.
The strength of this interaction is highly variable and depends both on the elements
involved and the distance.

Multipolar. Similar to halogen bonds, multipolar interactions involve halogen atoms
and carbonyl carbon or amide nitrogen [Paulini et al.(2005)]. These interactions entail
favorable dipolar interactions between a C-X group (primarily with fluorine) and an
electrophilic center, such as the amide group in the backbone or side chain of proteins.
Rather than approaching the negatively polarized center in a head-to-head manner, the
C-X interacts orthogonally to the carbonyl group.

π-Stacking. π-Stacking interactions involve two aromatic rings, i.e. rings having
4n ` 2 delocalized electrons, n being an integer starting from 0. The most common
value is 1, for 6-membered aromatic rings. The electrons are evenly distributed along
the alternation of single and double bonds of the ring. This phenomenon results in the
creation of a specific dipole around the aromatic ring. The two electron-rich regions,
called π regions, are located on either side of the plane of the aromatic ring and are
centered on its center of mass. The periphery of the aromatic ring will be essentially
positively charged due to the low density of the electron cloud. The two aromatic rings
can interact with two different geometries:

• Face-to-face: both aromatic rings are parallel, with eventually a small offset be-
tween them.

• Edge-to-face: both aromatic rings are perpendicular.

Cation-π. This electrostatic interaction is created when the negatively charged elec-
tron cloud of a π system meets a positively charged electron cloud of a cation [Ferreira de
Freitas et Schapira(2017)].

Amide-π. This interaction corresponds to when the π-surface of the amide bond
stacks against the π-surface of the aromatic ring [Harder et al.(2013)]. The sp2 orbital
of the carbon of the amide perfectly fits the electron-rich region of the ring.

Hydrophobic-π. Hydrophobic-π interactions occur between aromatic rings or other
π-electron-rich systems and hydrophobic groups or surfaces. In these interactions, the
delocalized π-electron cloud of the aromatic ring interacts with the hydrophobic envi-
ronment, such as non-polar residues in proteins or hydrophobic regions on the surface
of molecules.
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Hydrophobic. Hydrophobic regions tend to avoid contact with water molecules due
to the unfavorable energy associated with disrupting the hydrogen bonding network of
water. As a result, hydrophobic molecules or regions tend to aggregate or associate with
each other to minimize their exposure to water, leading to the formation of hydrophobic
interactions. Any group is generally considered to be hydrophobic if it is apolar and/or
alkyl. Since we distinguish hydrophobic-π interactions from hydrophobic interactions,
aromatic rings are not considered in this definition.

We illustrate all those interactions in Figure 2.2.

Interactions Fingerprints

Interaction fingerprints (IFPs) are used to encode the binding modes of ligands. These
fingerprints are target-focused binary vectors that incorporate, for each protein residue
in the binding site, its interactions with the ligand. Bits are allocated for each residue,
each encoding for the presence of one type of interaction with the ligand. To build
those IFPs, detection of the protein-ligand interactions is needed.

Various binary target-focused protein-ligand interaction fingerprints have been pro-
posed in the literature [Marcou et Rognan(2006),Chupakhin et al.(2014),Da et Kireev(2014),
Salentin et al.(2014)]. They are an easily interpretable way to encode binding modes.
However, they lack a few key interactions, which led us to develop our own tool to
detect and encode them.

Starting from PLIP [Salentin et al.(2015)], a freely available algorithm that de-
tects such interactions, including hydrogen bond, weak hydrogen bond, halogen bond,
salt bridge, hydrophobic, pi-cation, and pi-stacking, we built an extended version
adding several interactions [Bissantz et al.(2010), Freitas et Schapira(2017), Shinada
et al.(2019),Kuhn et al.(2019),Nittinger et al.(2017)] that are missed by classical IFPs:
hydrophobic-π, amide-π and multipolar. In particular, I optimized the interaction de-
tection to make it faster. For this purpose, I used a Ball Tree algorithm [Liu et al.(2006)]
to store the coordinates of the protein atoms. It organizes data points in a hierarchical
tree structure, facilitating efficient nearest neighbor search, and range query operations
in multidimensional space. This allows to use less memory, but more importantly, it
enables us to quickly determine the protein atoms close to the ligand atoms. It allows
to define the binding site of the protein, and to search for interactions only on this
reduced list of atoms, which was then the most time-consuming step in the calculation
process. Our tool made the interaction detection step five-time faster than PLIP. We
released the code used to detect these interactions at:

https://github.com/iktos/structure-interactions

The detection criteria are described in Table 2.1. The thresholds used here are
less restrictive than those of the original package, because we want to avoid missing
the interaction detection in low resolution PDB structures. The interaction fingerprint
associated to a given protein target is of fixed size for all molecules. Specifically, this
size corresponds to the number of residues in the binding site times the number of
considered interactions (10). The binding site is defined by all residues having at least
one atom within a radius of 10 Å from the crystallographic ligand of the protein.
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Figure 2.2: Illustration of the ten considered interactions. Those interactions were re-
trieved from analysing several PDBs (’1zyl’, ’1zzl’, ’3fhe’, ’3hp2’, ’4dfl’). The proteins
are colored in green, and their natural ligands in white. For the sake of visibility, only
the interacting residues and ligands are represented with sticks. The molecular interac-
tions are represented through dash lines, colored according to the type of interaction.
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Table 2.1: Interactions thresholds used for the detection. The offset for π-systems
correspond to the projected distance between the center of masses of interacting groups.
A and D correspond respectively to H bond acceptor and donor. X-bond donor is a C
bonded to either a Cl, Br or I. X-bond acceptor corresponds to O, N or S with lone
pair.
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Selecting pairs with similar binding modes

Among the 44.386 pairs of highly dissimilar molecules, we need to identify those that
correspond to a scaffold hopping case, i.e., to select those in which two molecules have
similar binding modes within the same protein pocket. A Tanimoto similarity between
IFPs is used to compare the binding modes of ligands and remove ‘false’ scaffold hopping
cases, as illustrated in Figure 2.3. Ligands forming only few interactions with the
protein (less than five) are removed, as the computation of Tanimoto similarities would
not be reliable. We keep pairs of ligands with IFPs similarities above 0.6. This leads to
821 pairs of molecules with highly dissimilar chemical structures, but similar binding
modes.

Figure 2.3: Example of a pair of dissimilar ligands for Beta-Secretase 1 (PDBs: ‘3udm’
and ‘4zsq’) occupying different areas of the binding site of the protein. The molecules
are shown in a). The crystallographic conformations are displayed in b). Table c)
compares the two molecules: they share little common binding modes and cannot be
considered as a scaffold hopping case.
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Discarding pairs based on Maximum Common Substructures

Among the 821 pairs, visual analysis allowed us to observe cases where the two molecules
share a common substructure forming most of the interactions with the protein. These
cases cannot be considered as scaffold hops if the common substructure is responsible
for most of their interactions with the protein pocket, since these substructures can then
be viewed as a common scaffold that drives binding to the protein. To remove these
instances, we use the Maximum Common Substructure (MCS) concept, because it has
been shown to help identify scaffold hopping cases [Barker et al.(2006)]. For each pair
of molecules, we search for their MCS and compute the ratio between the number of
common interactions arising from chemical groups in the MCS, and the total number
of common interactions to the two molecules. A high ratio means that the MCS is
responsible for most of the common interactions, and the corresponding pair should
not be considered as a large-step scaffold hopping case, as described in Figure 2.4.

Concretely, the MCS between two molecules is searched based on three different
types of MCS, as defined in RDKit [Landrum et al.(2021)]: MCS with matching of
complete rings, MCS with partial matching of rings and MCS with allowed ring break-
ing. In particular, the first MCS searches for complete ring matches, allowing to discard
pairs of molecules that would correspond to small-step scaffold hops.

The maximum ratio of the number of common interactions formed by MCSs and
the total of common interactions between the two molecules of a pair is computed
as following. Each MCS type is matched on both ligands, and the ratio of the num-
ber of common interactions formed by the considered MCS and the total of common
interactions is calculated as following:

ratioMCS interaction “
|InteractionsCommon X InteractionsMCS |

|InteractionsCommon|
(2.1)

When several MCS matches are possible on a molecule, the match with the highest
ratio is kept. The final ratio is defined as the highest of the ratios for all MCS types.
Pairs with a final ratio above 0.8 were discarded, resulting in 531 pairs for 79 proteins.

Overall, the three types of substructure search are complementary, and the max-
imum ratio of common interactions formed by the MCSs over the total number of
common interactions ensures to retrieve only large-step scaffold hopping cases. An
example of MCS search between two molecules is given in Figure 2.5.
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Figure 2.4: Example for Polycomb protein EED of molecules (PDBs: ‘5u6d’ and ‘5u8
f’) with similar binding modes explained by a common substructure. The two ligands
are displayed in a) with their common substructure highlighted in light red. Their
crystallographic conformations are shown in b) along with their interactions with the
protein. The red interactions corresponds to common interactions arising from the
common substructure (colored in light red in the molecules), while the light grey inter-
action is the only common interaction arising from dissimilar parts of the molecules.
Table c) compares the two molecules. As 5 out of the 6 common interactions are ex-
plained by the MCS, such a case cannot be considered as a scaffold hopping example.
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Figure 2.5: Illustration of the three different MCS searched. A pair of molecules (PDBs:
‘4hvb’ and ‘4ps7’) is displayed in a), and the table describing the three different MCS
searched on this pair along with their ratios of common interactions is shown in b).

2.1.3 Discarding Redundant Pairs

We observe that for some of the 79 proteins, the selected pairs are strongly redundant
and represent only slightly different examples of scaffold hopping cases: they involve
two molecules that belong to the same chemical series (for instance, they differ by
the addition of a small group not involved in the binding). A compelling example
is given in Figure 2.6. To avoid redundancy in our dataset, which may lead to bias
for performance evaluation of computational methods, we remove pairs in which both
ligands are similar to both ligands of another pair, using a threshold of 0.5 on both their
molecular Morgan similarities as detailed in the following. To discard redundant pairs,
which differ by only slight molecular modifications, the Tanimoto similarities based on
the Morgan fingerprints of the generic Murcko scaffolds and of the whole molecules are
calculated. When two pairs of ligands have one of these Tanimoto coefficient above 0.5,
only one pair is kept in the dataset, which finally leads to 178 pairs.

2.1.4 Resulting Large-step Scaffold Hopping Dataset

The global selection flowchart is shown in Figure 2.7. Overall, 178 large-step scaffold
hopping cases of drug-like pairs binding to 79 different proteins are selected. On average,
each protein is involved in 2.3 large-step scaffold hopping cases in the dataset. For the
most represented protein, cell division protein kinase 2, 10 cases are selected. The most
represented family of proteins is the kinases family, with 61 pairs involving 21 different
kinases. This can be explained by the fact that kinases belong to a highly studied
family of proteins, with many therapeutic targets against which many drug design
projects have been devoted [Advani et al.(2013)]. However, the dataset still contains
significant protein diversity, since the 79 proteins belong to 35 different super-families
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Figure 2.6: Example of redundant scaffold hopping cases for the cell division protein
kinase 2: the two pairs are highly similar, since the second pair (PDBs: (‘2vto’, ‘4eok’))
can be obtained from the first pair (PDBs: (‘2vto’, ‘1oiy’)) by replacing the amide
group on one of the molecule by a sulfonamide. In such cases, one of the two pairs was
discarded.

of the SCOP protein family’s hierarchy database [Murzin et al.(1995)]. On average,
each super-family is involved in 5.1 scaffold hops.

Each selection step involves criteria with threshold values. The above paragraphs
show that one must be careful to avoid ‘false’ large-step hops, or ‘false’ scaffold hop-
ping cases, which has scarcely been discussed in previous benchmark studies. In the
present work, the thresholds are chosen arbitrarily and somewhat stringently, to build
a highly reliable dataset, as judged by visual analysis of the selected pairs. Of course,
these thresholds can be changed. Examples of selected large-step scaffold hopping are
provided in Figures 2.8 and 2.9.
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Figure 2.7: Flowchart describing the successive filters applied to identify large-step
scaffold hopping cases. Starting from PDBbind crystal structures with good resolutions
of proteins in complex with at least two ligands (181.635 pairs), we keep those involving
drug-like molecules of dissimilar structures but similar binding modes. We removed
pairs containing a common substructure responsible for most common interactions.
We then discarded redundant pairs, leading to 178 large-step scaffold hopping cases.
Among these cases, we keep those for which 499 decoy molecules could be found (see
below). The chosen thresholds are arbitrary but ensured us to retrieve only confident
large-step scaffold hopping cases, as detailed in subsection 2.5.
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Figure 2.8: Large-step scaffold hopping case for Tyrosine-protein kinase SYK. The
binding modes of the ligand in PDB ’4dfl’ are illustrated in panel a), those of ’6hm7’
in panel b). The protein-ligand interactions are represented with dash lines and colors
according to the type of molecular interaction. The interactions with high-spacing dash
lines are interactions made only by one ligand of the pair, whereas those of low-spacing
are common interactions. The resulting IFPs are displayed in panel c), as well as their
Tanimoto similarity.
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Figure 2.9: Large-step scaffold hopping case for Poly (ADP-ribose) polymerase. The
binding modes of the ligand in PDB ’1efy’ are illustrated in panel a), those of ’2pax’
in panel b). The protein-ligand interactions are represented with dash lines and colors
according to the type of molecular interaction. The interactions with high-spacing dash
lines are interactions made only by one ligand of the pair, whereas those of low-spacing
are common interactions. The resulting IFPs are displayed in panel c), as well as their
Tanimoto similarity.
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At this point, we have gathered 178 non redundant scaffold hopping pairs of active
molecules, for a panel of diverse proteins. As detailed in 1.6, one of the main goals
of the thesis is to design new molecular descriptors specifically tailored to help solving
scaffold hopping problems. More precisely, the goal is to search for molecular descriptors
according to which scaffold hopping molecules are similar, although they are dissimilar
in terms of chemical structure. Relevant molecular descriptors should bring one of
the active molecules closer to the other active than to randomly chosen molecules, in
their corresponding embedding space. It is not straightforward to define a criterion
to compare the relevance of various molecular encodings. We propose to define decoy
molecules that are added to the LH benchmark, for each scaffold hopping pair. Then,
for each pair, given one active (the known active), we will rank the other active (the
unknown active) among the decoys, based on their similarity with respect to the known
active. Thus, the better the molecular descriptors for the problem of scaffold hopping,
the lower the rank of the unknown active (best rank being 1).

The global principle of the benchmark design is illustrated in Figure 2.10.

Figure 2.10: Principle of performance evaluation on the Large-Hops benchmark. For
instance i, one molecule of the pair is set as the known active, and the other as the
unknown active. The unknown active and the decoys are ranked according to their
similarity of the evaluated molecular descriptors to the known active. The rank j of
the unknown active is used to evaluate the considered molecular descriptors.

More precisely, we propose to compare molecular descriptors based on two criteria:
(1) We draw Cumulative Histogram Curves (CHC), representing the number of cases
for which the considered molecular descriptors ranked the unknown active below a given
rank (as detailed in 2.5). The curves of the best performing molecular descriptors will
stand above those of others. (2) In real-life screening campaigns, only the best ranked
molecules are usually considered as candidate molecules for experimental tests. Thus,
we also compare the relative positions of the CHC curves at best ranks and determine
the proportion of cases where the unknown active is retrieved in the top 5% best ranked
molecules [Grisoni et al.(2018a)], which can be seen as the success rate of the molecular
descriptors.

Therefore, the following step consists in gathering decoy molecules for each scaffold
hopping case in the benchmark.
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2.2 Choice of Decoy Molecules

For each scaffold hopping pair, we selected 499 decoys to reach meaningful active/in-
active ratio of 1/500, which is well below the frequently used ratio of 1/50 [Lagarde
et al.(2015)]. These numbers reproduce real-world virtual screening campaigns, as de-
tailed in 2.1. Thus, as illustrated in Figure 2.11, our final benchmark consists in a
dataset of pairs of molecules representing large-step scaffold hopping cases, and their
corresponding decoy molecules.

Selection of decoy compounds is not an easy problem, since we need to avoid sta-
tistical bias with respect to the active molecules [Réau et al.(2018)]. In particular,
when decoys stand in regions of chemical space that are very distant from the two
active molecules, the resulting benchmark may suffer from ‘analogous bias’ [Good et
Oprea(2008)], and the success rate may be artificially overestimated. In addition, since
we also want to mimic real-life applications, the decoys must be realistic scaffold hop-
ping candidates that, in practice, would be searched among molecules sharing some
physicochemical characteristics with the known active.

Figure 2.11: The Large-Hops benchmark was built from a dataset of large-step scaffold
hopping cases extracted from PDBbind for which 499 decoy molecules were gathered.
Overall, it comprises 144 cases defined by a pair of active molecules against the same
protein target, and their corresponding decoys.

It has been shown that random selection of decoys from large chemical databases
does not prevent the occurrence of statistical bias [Réau et al.(2018)]. Therefore, to
avoid statistical bias between molecules in the active pairs and their corresponding
decoys, decoys are selected from the ZINC database [Irwin et Shoichet(2004)], among
molecules with physical and chemical properties similar to those of the active molecules,
as detailed below. The considered physical and chemical descriptors are:

• Number of hydrogen bond donor and acceptor ;
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• Number of aromatic and aliphatic rings ;

• Number of consecutive rotatable bonds ;

• Lipophilicity (ability to dissolve in fats, oils, lipids, and non-polar solvents);

• Topological polar surface area (surface sum over all polar atoms).

More precisely, molecules are selected if their physical and chemical descriptors
fulfill the following criteria:

descriptor molecule P rminpdescriptor ligandsq ´ c, maxpdescriptor ligandsq ` cs (2.2)

where c “ 1 for integer descriptors, and

c “
10
100 |descriptor ligand1 ´ descriptor ligand2 | (2.3)

for continuous descriptors.
As the decoys need to be realistic large-step scaffold hopping candidates, they are

chosen at a Murcko-based Morgan similarity from the molecules in the active pairs
below 0.6, since this threshold is used to select pairs of active molecules. In addition,
the decoys should not either be too distant from the ligands, in order to avoid analogous
bias, and to mimic real-life screens for the search of scaffold hop candidates. Thus, the
decoys selected from the ZINC also have to be as similar to the ligands as the ligands
are similar to each other, according to their overall structure Morgan fingerprints:

similarity molecule, ligands P
“

similarity ligand1, ligand2 ´ c1, similarity ligand1, ligand2 ` c1
‰

(2.4)
where c1 “ 0.15 to have an interval of size 0.3 and capture enough decoy molecules

(i.e., a number of 499 decoys), neither too distant nor too close, with respect to the
molecules in the active pair.

These criteria were successively applied to molecules in the ZINC database, and 499
decoys satisfying these criteria could be found for 144 pairs of active molecules.

Note that we cannot rule out the possibility of a few false negatives [Vogel et al.(2011)],
because we may have accidentally picked decoys that bind to the same protein as the
molecules in the pair. However, we assume that such cases are rare, and that their
potential presence does not change the overall conclusions of the analyses.

The resulting benchmark finally consists in 144 pairs of molecules associated with
their corresponding proteins and their 499 decoys (the 499 decoys are different for
each of the 144 pairs). These 144 pairs of active molecules involve 69 different pro-
teins, belonging to 31 different super-families of the SCOP [Murzin et al.(1995)]. This
benchmark contains scaffold hops cases within protein families that have been more
extensively studied than others. Nevertheless this panel of proteins is wide enough to
set apart from a case study, and to get a broader glance at how well a computational
method performs to solve large-step scaffold hopping problems. Taken together, the
rules used to select the active pairs and their decoys are stringent, but this ensures
to build a realistic, high-quality, and well characterized benchmark dedicated to the
problem of large-step scaffold hopping.
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2.3 Considered Molecular Descriptors
Many types of 2D descriptors have been proposed in the literature, and perform very
well for the prediction of various molecular properties [Helguera et al.(2008)]. Since
scaffold hopping relates to ligand binding to a protein, a phenomenon occurring in
the 3D space, 3D descriptors are expected to be more relevant in this context. We
first explore the performance of classical 2D descriptors (usually employed for small- to
medium-step scaffold hops), and then study classical 3D descriptors. Finally, we also
consider a more original chemogenomic algorithm, to show how the benchmark could
be used for the development of new methods dedicated to large-step scaffold hops.

2.3.1 Baseline 2D Descriptors
Because they neither require the 3D structure of the target, nor the 3D conformations
of the molecules, we first consider 2D structure descriptors. Although they are not
meant to best encode ligand binding properties, it is interesting to see whether these
simple methods capture some valuable information to solve scaffold hopping problems.
We consider three types of 2D representations.

(1) Morgan fingerprints that encode 2D molecular structures. These descriptors
are not expected to perform well on our benchmark, because solving large-step scaf-
fold hopping problems requires to search for molecules with highly dissimilar chemical
structures. In addition, the molecular Morgan Tanimoto similarity was used to select
pairs of dissimilar active molecules, so that ranking the unknown active and the decoys
according to this similarity is doomed to fail. Testing 2D Morgan fingerprints encoding
is a kind of internal control to confirm that our benchmark is an interesting tool for the
development of original methods dedicated to large-step scaffold hopping. This finger-
prints implements the ECFP extended connectivity fingerprint [Rogers et Hahn(2010)]
with radius 2 as a 4096-bit binary vector.

(2) MACCS keys fingerprints [Durant et al.(2002)], that in principle should suffer
from the same limitations as the Morgan fingerprints. In fact, since the former en-
codes the presence or absence of particular chemical groups rather than the molecular
graph itself, it is interesting to test if this can be beneficial to the current problem.
This fingerprint corresponds to a binary 166-bit vector that encodes the presence of
SMARTS-based (SMILES arbitrary target specification, a language for specifying sub-
structural patterns in molecules) strings in the molecular structure.

(3) 2D pharmacophore fingerprints, that encode for the presence and relative posi-
tions in the 2D graph of the molecular structure of chemical groups able to drive differ-
ent types of interactions with the protein, as defined in RDKit [Landrum et al.(2021)].
They are calculated using the distance separating 2- and 3-point pharmacophores de-
fined as SMARTS strings, in a planar representation of molecules. Although these
descriptors implement a notion of 2D (but not 3D) topology, they may improve over
MACCS keys fingerprints.

These three types of 2D representations lead to a binary vector encoding for the
molecules, allowing the definition of corresponding similarity measures based on Tan-
imoto coefficients. Thus, for each pair of active molecules in the benchmark, the un-
known active and the decoys are ranked according to their molecular Morgan, MACCS
keys and 2D pharmacophore Tanimoto similarities with respect to the known active.
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2.3.2 3D Molecular Descriptors

We also tested 3D descriptors, since they capture molecular features that can be better
related to ligand binding. We consider two types of representations: 3D molecular
shape, and 3D pharmacophores, because both approaches have been described as useful
tools to help solving scaffold hopping problems [Rush et al.(2005)]. We study the
general case where the 3D structure of the protein is unknown, so that the ‘active’
conformations (i.e. the ligand conformation when bound to the protein pocket) of the
active molecules are unknown.

In both cases, this first requires generating 3D molecular conformers. For all pairs of
active molecules and their 499 decoys, a pool of 500 conformers is calculated, from which
we keep up to ten conformers of local minimal energy that differ from a RMSD value
of at least 1.5Å, under MMFF94 force field [Tosco et al.(2014)] using RDKit. Then, all
conformers of the known active are aligned pairwise with those of the unknown active
or those of the decoy molecules, to maximize their overlap. For the 3D-pharmacophore
similarity, for each pair of active molecules and their decoys, the freely available Pharao
software [Taminau et al.(2008)] is used to detect the pharmacophore groups for con-
formers. The Tanimoto coefficient quantifying the overlap between aligned conformers
of the known active and those of the unknown active or of the decoys is calculated pair-
wise. The largest Tanimoto 3D pharmacophore coefficient observed is used to define
the 3D-pharmacophore similarity between the corresponding known active and the un-
known active or the decoys. The same method is used for the shape similarity [Taminau
et al.(2008)], where the largest Tanimoto shape coefficient observed between conform-
ers is used to define the shape similarity between the known active and the unknown
active or the decoys. Finally, for each pair of active molecules, the unknown active and
the decoys are ranked according to their Tanimoto 3D pharmacophore, or 3D shape,
similarity.

In the previous sections, we have studied the interest of various molecular descrip-
tors with respect to the scaffold hopping problem. In real-life applications, one would
search to solve these problems not only by ranking candidate molecule according to
their similarity with respect to the hit. One would also consider predicting candidate
molecules based on more sophisticated computational methods that use these encod-
ings.

However, the LH benchmark cannot be used as such to train QSAR or Machine
Learning algorithms, because it only contains two actives per case. Nevertheless,
chemogenomic algorithms offer an interesting option. Indeed, as detailed in the fol-
lowing, they can be trained using any protein-ligand information available in other
databases. Therefore, we evaluated the interest of a chemogenomic approach to solve
scaffold hopping problems, using the LH benchmark as a test set.

2.4 The LH Benchmark as a Test Set for Chemogenomic
Algorithms

As stated above, the LH benchmark cannot be used as a training set because it con-
tains too few active molecules. Chemogenomic algorithms can overcome this limitation
if bindings involving other molecules and other proteins are known (these molecule-
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protein pairs are noted pm, pq pairs in the following). Such pm, pq pairs can be collected
from many public databases, such as the PubChem at NCBI [Bolton et al.(2008)]. Ba-
sically, the main difference between ligand-based and chemogenomic methods is that
the former predicts ligands for a query protein given its known ligands (one known
active in our case), while the latter predicts ligands for a query protein given its known
ligands and those known for other proteins. In the case of the benchmark, chemoge-
nomic algorithms can be trained with the (known active, query protein) binding pair
and additional (ligand, protein) pairs known to bind, or not, gathered from an external
database. Once trained, the prediction model provides a binding probability for the
(decoys, query protein) and (unknown active, query protein) pairs, and the unknown
active can be ranked among the 499 decoys according to these probabilities.

Kernel SVM. The chemogenomic approach used in the present study recasts the
problem as a supervised learning binary classification over the space of pairs pm, pq of
molecules and proteins, to separate binding pairs from a carefully selected set of non-
binding pairs. We rely on a kernelized Support Vector Machines (SVM) classifier [Cortes
et Vapnik(1995)] to perform this classification. Briefly, the SVM is trained on a dataset
of pm, pq pairs and learns the optimal hyperplane that separates pairs that bind from
those that do not. The kernel SVM leverages a kernel K encoding similarities between
pm, pq pairs [Schölkopf et al.(2004)]. A general method to build a kernel on pm, pq pairs
is to use the Kronecker product of molecule and protein kernels as done in [Schölkopf
et al.(2004)] and [Vert et Jacob(2008)]. Given a molecule kernel Kmolecule and a protein
kernel Kprotein, the Kronecker kernel Kpair is defined by:

Kpairppm, pq, pm1, p1qq “ Kmoleculepm, m1q ˆ Kproteinpp, p1q

where m and m1 are molecules and p and p1 are proteins.
We chose the Local Alignment kernel for proteins [Saigo et al.(2004)] and the Tan-

imoto kernel with Morgan fingerprints for molecules [Swamidass et al.(2005)], whose
hyperparameters are validated by cross validation in [Playe et al.(2018)]. The Local
Alignment kernel for proteins sums up the contributions of all possible local alignments
with gaps of the sequences which is efficient for detecting remote homology [Saigo
et al.(2004)]. The Tanimoto kernel between two molecules is calculated as the Tan-
imoto similarity of their Morgan fingerprints [Swamidass et al.(2005)]. Protein and
molecular kernels are centered and normalized.

The SVM algorithm also requires a regularisation parameter classically called C,
which controls the trade-off between maximising the margin (the distance separating
the hyperplane and the two classes’ distributions) and minimizing classification error
on the training points. To implement this algorithm, we use the sklearn [Pedregosa
et al.(2011)] function SVC with the parameter C “ 10 validated by cross validation in
[Najm et al.(2021)]. Once the SVM is trained, it can be applied to any pair pm, pq to
give a binding probability. This probability is computed by applying a sigmoid function
to the SVM outputs, where the parameters are trained by cross validation as explained
in [Platt(1999)]. It is implemented in the predict_proba method of SVC.
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Training Dataset. To build our training set, we use the DrugBank database v1.5.1
[Wishart et al.(2018)] which defines a set of pm, pq pairs which bind together (i.e. m

targets p). Indeed, DrugBank provides high quality bio-activity information regarding
approved and experimental drugs, including their targets. It contains around 15.000
curated drug-target pm, pq pairs for 2.670 proteins. Although much smaller than other
databases like PubChem or ChEMBL, DrugBank appears relevant to the benchmark
because it contains drug-like ligands. We kept molecules with molecular weights be-
tween 100 and 800g/mol which is in the range of drug-like molecules [Lipinski(2000)].
Thus, the train dataset comprises 5.071 molecules, 2.670 proteins and 14.638 positive
bindings. To complete the dataset, we need to select negative pairs. This selection
should be designed with care to correct potential statistical bias in the database and
reduce the number of false positive predictions. We use the greedy algorithm in [Najm
et al.(2021)], which randomly chooses the same number (14.638) of negative pairs so
that each molecule and each protein have the same number of positive and negative
pairs in the training dataset.

Training Scheme. The Machine Learning (ML) chemogenomic algorithm is trained
for each of the 288 scaffold hopping cases in the benchmark as follows: one molecule
of the pair is considered as the only known active for the query protein. If this pair
is not already present in the DrugBank database, it is added to the training set. All
other pairs involving the query protein that are present in DrugBank are removed from
the training set. This allows us to exclude the pm, pq pair between the unknown active
of the pair with the query protein if this pair is in DrugBank. Hence, for each pair of
ligands in the benchmark, the chemogenomic algorithm is trained with the same infor-
mation about ligands of the query protein than the ligand-based algorithms: a single
known active ligand. Once trained, the algorithm predicts the binding probabilities
of pmolecule, query proteinq pairs involving the 499 decoys and the unknown active
molecule. In order to have a more robust score, this scheme is repeated 5 times for
different sets of negative examples in the training set and the binding probabilities are
averaged over these 5 versions. We observe that the variance across these repetitions
is low (below 10´2) which highlights the stability of the method. Finally, the unknown
active molecule and the 499 decoys are ranked according to their averaged binding
probabilities. Figure 2.12 summarizes the difference between the similarity searching
experiments for molecular descriptors and the chemogenomic setups.

2.5 Results on LH Benchmark
For all the considered molecular descriptors and the chemogenomic algorithm, Cu-
mulative Histogram Curves (CHC) corresponding to the rank of the unknown active
molecules are plotted. The CHC curves of the most efficient approaches (molecular
descriptors or chemogenomic algorithms) stand above the others. The x-axis repre-
sents the rank, and the y-axis represents the proportion of cases (i.e., the proportion
of scaffold hopping cases, among the 144 ˚ 2 “ 288 scaffold hopping problems in the
Large-Hops benchmark) where the approach recovers the unknown active at a rank
below the x-axis value. For instance, for the chemogenomics approach, the unknown
active was ranked in top 50 molecules for 45% of cases, as seen in Figure 2.13. Ap-
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Figure 2.12: llustration of the schemes followed by molecular descriptors and by the
chemogenomics approach to solve a scaffold hopping case.

proaches are also compared to random ranking: we perform one thousand random
rankings for the unknown active for the 288 scaffold hopping problems. This leads to
1.000 CHC curves plotted in grey in Figure 2.13. For each approach, we compute the
percentage of cases where the unknown active is ranked in the top 5%, i.e., in the first
25 molecules. This metric can be viewed as the percentage of successful cases, which
replaces the Enrichment Factor that can not be computed since there is only one active
in the datasets.

As shown in Figure 2.13, the molecular Morgan fingerprints display overall very
poor performances in terms of success rate. At top ranks, its CHC curve stands only
slightly above those random rankings, and the unknown active is retrieved in the top 5%
in only 11.5% of the cases. Global failure of the Morgan fingerprints confirms that our
benchmark mainly comprises large-step scaffold hopping cases. The MACCS keys and
2D pharmacophore fingerprints both improve over the molecular Morgan fingerprints.
The 2D pharmacophore fingerprints were expected to perform better than the MACCS
keys fingerprints, but their relative positions of CHC curves at high ranks, and success
rates in the top 5% best ranked molecules are comparable. Overall, the performances
of these two molecular descriptors remain modest since their success rate in the top 5%
is below 15%.

The performance of the 3D pharmacophore and shape descriptors are also presented
in Figure 2.13. 3D pharmacophore performs better than 3D shape on all criteria: rela-
tive positions of the CHC curves and success rate at 5%. This may be explained by the
fact that 3D pharmacophore descriptors encode key information about chemical groups
able to form interactions with a protein that are not present in the solely molecular
shape. This result is in agreement with previous studies where 3D pharmacophore
is depicted as a reference method for scaffold hopping [Hessler et Baringhaus(2010)].
The performances of 3D pharmacophore remain above those of the shape similarity, or
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Figure 2.13: Results on the LH benchmark. The cumulative histogram curves of each
approach are plotted in a). A zoom of the same graphs is provided in b) with vertical
grey lines corresponding to ranks of top 5% ranks. Table c) displays the percentage of
successful scaffold hopping problems for methods using various molecular representa-
tions, according to a rank of the unknown active in the top 5%.
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those of 2D methods. This is an interesting result, because some studies have reported
that when the active conformations are unknown, performances of 2D methods might
outperform those of 3D methods with calculated conformers, in the context of ligand
binding prediction [Jacob et al.(2008)].

According to our results, a classical 3D pharmacophore appears as a good default
similarity measure to solve large-step scaffold hopping problems. Note however that
the achieved success rate at 5% lies around 20%. This allows to quantify the range
in performance that can be expected, in general, with classical molecular descriptors
on these types of problems, thus answering to the question raised by [Bajorath(2019)].
This leaves much room for the development of molecular descriptors more specifically
designed to solve large-step scaffold hopping problems.

The performances of the chemogenomic algorithm are shown as well in Figure 2.13.
It outperforms all tested molecular descriptors on all considered criteria. These perfor-
mance improvements arise from the additional (ligand, protein) pairs provided during
training, besides the (known active, query protein) pair. Similarity searching experi-
ments cannot leverage such additional information, and the ML chemogenomic algo-
rithm provides a computational framework to profit from such otherwise accessible prior
knowledge. Note that the performances inside families of proteins are heterogeneous:
on average, the families’ success rate is about 37.8%, and for the most represented one,
the kinases, the success rate is 35.1%. This means that the method depends little on
the family of the proteins. However, the general success rate of 34.4% still leaves room
for improvements. In particular, the kernel Support Vector Machine (SVM) algorithm
used in the present study should be better adjusted to the scaffold hopping problem.
Indeed, the SVM use a Tanimoto kernel for molecules that is calculated based on the
molecular Morgan similarity [Swamidass et al.(2005)].
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2.6 Conclusion

The scope of this Chapter is essentially: (1) to propose a flowchart to cover the need for
a publicly available and well-characterized large-step scaffold hopping benchmark for
the community; (2) to provide a method to assess the interest of molecular descriptors
for solving large-step scaffold hopping problems.

To our knowledge, the benchmark is the first public high-quality benchmark dataset
for large-step scaffold hopping. Starting from PDBbind, the proposed flowchart requires
threshold values for various criteria. These thresholds were chosen in an expert-based
manner to exclude irrelevant scaffold hopping cases. Some criteria enable the selection
of pairs of highly different molecules, while others ensure that molecules in the same pair
share similar binding modes, i.e., correspond to ‘true’ scaffold hopping cases. We use
stringent thresholds for both types of criteria, because our goal is to build a high quality
large-step scaffold hopping dataset. The resulting size for the benchmark is smaller than
that reported for other less characterized benchmarks [Grisoni et al.(2018b), Nakano
et al.(2020)], but this illustrates that the number of large-step scaffold hopping cases
reported is much smaller than that of small- to medium-step scaffold hops. Note how-
ever that available benchmarks are not comparable to the present benchmark, because
they were not conceived in a comparable setting. Should a large-step scaffold hopping
benchmark of larger size be desired, the same flowchart could be followed with a lower
drug-likeliness threshold, a larger range in molecular weights, or a higher threshold for
redundancy between the pairs of molecules. Should an easier benchmark be designed,
including medium-step hops, the thresholds in Murcko-based and molecular Morgan
similarities could be increased. However, we advise not to relax the IFPs and MCS
thresholds, to avoid selecting pairs of molecules that could correspond to ‘false’ scaffold
hopping cases. An important contribution of this Chapter is to underline that building
a reliable scaffold hopping benchmark must be a well-controlled multi-step process and
cannot be achieved with the blind use of a few criteria. This important point, illustrated
by the ‘false’ scaffold hopping examples shown in Figure 2.1, Figure 2.3 and Figure 2.4,
has not been discussed in previous work reporting the construction of scaffold hopping
benchmarks.

Based on the benchmark, all molecular representations tested display modest per-
formances, which confirms that solving large-step scaffold hopping is a difficult problem.
This was expected, but our study allows to quantify how difficult these problems are,
in general.

Other promising topology-based descriptors not tested in the present study have
been recently proposed [Grisoni et al.(2018b),Nakano et al.(2020),Nakano et al.(2021)],
and future work could be to evaluate their performance on the Large-Hops benchmark.

Strategies based on descriptors that encode the bioactivity profiles of molecules
have also been proposed [Petrone et al.(2012),Helal et al.(2016),Xiong et al.(2021),Hu
et al.(2017)]. This is an interesting idea, because it allows to abstract from the chem-
ical structure and address scaffold hopping issues. However, some of these profiles are
not publicly available, but descriptors based on public domain HTS studies [Helal
et al.(2016)] are interesting starting points to test their implementation in computa-
tional methods. In this context, we hope that the Large-Hops benchmark will be a
convenient tool provided to the community, in order to test new strategies for the
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difficult but important problem of large-step scaffold hopping.
The chemogenomic algorithm leads to the best performances, although the kernel

SVM algorithm can be improved. Because our benchmark contained drug-like molecules
for proteins belonging to diverse families, we trained the chemogenomic algorithm based
on a DrugBank-derived dataset. However, other larger training sets can be used, for
example derived from larger databases such as PubChem. For more focused problems
like scaffold hopping problems involving a protein belonging to a specific well studied
family, such as kinases or GPCRs, one can also use other training databases that gather
(ligand, protein) molecular interactions known within these families of proteins [Carles
et al.(2018),Okuno et al.(2006)]. As an illustration, although chemogenomics has been
hardly explored in the field of large-step scaffold hopping, this approach was used
in one study within the GPCR family, reporting identification of a new scaffold for
an antagonist of Vasopressin 1A [Ratni et al.(2015)]. This underlines the interest to
further explore these strategies in the field of scaffold hopping.

With those results in mind, we pursued the development of a new chemogenomic
architecture trained on a wider custom dataset, not only as a tool to solve scaffold hop-
ping, but as a way to identify hits for any protein. This article [Guichaoua et al.(2024)]
is currently in revision:

G. Guichaoua, P. Pinel, B. Hoffmann, C.-A. Azencott, V. Stoven (2024), Advancing
Drug-Target Interactions Prediction: Leveraging a Large-Scale Dataset with a Rapid

and Robust Chemogenomic Algorithm.
doi:10.1101/2024.02.22.581599 (Currently in review.)

Details on this work are provided in Appendix A.
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Abstract:
The performances of baseline molecular representations on the LH benchmark

illustrated their limits in solving large-step scaffold hopping. Therefore, we propose
the Interaction Fingerprints Profile (IFPP), a molecular representation that captures
molecules binding modes based on docking experiments against a panel of diverse high-
quality proteins structures. Evaluation on the LH benchmark demonstrates the inter-
est of IFPP for identification of isofunctional molecules. Nevertheless, computation
of IFPPs is expensive, which limits its scalability for screening very large molecular
libraries.

Résumé:
Les performances des représentations moléculaires classiques sur le LH bench-

mark ont illustré leurs limites dans la résolution du ’large-step scaffold hopping’. Par
conséquent, nous proposons l’Interaction Fingerprints Profile (IFPP), une représenta-
tion moléculaire qui capture les modes de liaison des molécules basés sur des expéri-
ences de docking contre un panel de structures protéiques diverses et de haute qualité.
L’évaluation sur le LH benchmark démontre l’intérêt de l’IFPP pour l’identification de
molécules isofonctionnelles. Cependant, le calcul des IFPP est coûteux, ce qui limite
sa mise à l’echelle pour le criblage de bibliothèques moléculaires très volumineuses.
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Most classical molecular descriptors are not adapted to solving large-step scaffold
hopping problems, because they tightly depend on the chemical structure of molecules,
while isofunctional molecules lie in remote regions of the chemical space.

Therefore, the problem of finding isofunctional molecules boils down to defining
an encoding that maps molecules into a space where molecules that bind to the same
pocket are close to each other. This encoding needs to be as much as possible agnostic
of the 2D structure of molecules, in order to allow molecules that are dissimilar in terms
of chemical structure to be close in the feature space. In this context, molecular repre-
sentations based on biological properties are expected to be better suited to large-step
scaffold hopping. Several encodings have been described in the literature [N. Muratov
et al.(2020), Wassermann et al.(2015)]. Some, like CBFP [Xiong et al.(2021)], encode
predicted activities for a profile of assays, thus defining bioactivity fingerprints for
molecules. However, many of these bioactivity fingerprints need to be predicted for
most molecules, because the corresponding assays were conducted on a limited number
of molecules, and the corresponding prediction models may lack generalization prop-
erties. Consistent with this remark, pre-training a convolution neural network that
predicts protein-ligand interactions based on the PCBA dataset that contains a profile
of 90 bioactivities for thousands of molecules, did not improve the prediction perfor-
mances of the algorithm [Playe et Stoven(2020)].

In this Chapter, we propose a novel biological representation of molecules inspired
from such profiles. This encoding integrates information about protein-ligand inter-
actions according to docking experiments against a panel of proteins for which a 3D
structure of high quality is available. In the following, we refer to this molecular profile
as the Interaction Fingerprints Profile (IFPP). We evaluate the interest of this rep-
resentation in addressing large-step scaffold hopping problems using the Large-Hops
(LH) benchmark.

3.1 The Interaction Fingerprints Profile Representation

In this section, we describe the motivation for the proposed IFPP as molecular repre-
sentation, and explain how it is computed.

3.1.1 Rationale

As depicted in Chapter 2, none of the classical ligand-based methods relying on struc-
tural features of molecules display good performances in the challenging task of solving
large-step scaffold hopping problems.

We suggest that molecular features derived from interactions that can be formed
between a given molecule and protein pockets may be more relevant to solving this
problem. Indeed, by definition, isofunctional molecules display dissimilar structures
but share similar binding modes with a targeted protein. When the 3D structure of the
target is available, docking can be used to search for candidates sharing similar binding
modes. Our assumption is that even when the 3D structure of the target is unknown,
the tendency to form similar interactions could be observed in other proteins.

The proposed approach is related to "ensemble methods" in Machine Learning, and
particularly to "weak learners" methods [Kearns et Valiant(1989)]. A weak learner is a
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model that performs only slightly better than the random prediction for a given task.
In other words, it captures limited signal about the task at hand. Alone, it is not very
useful, especially when compared to a "strong learner" that captures much of the signal,
thus achieving good accuracy on the considered task. Unfortunately, such strong learner
is often too hard to train, or even inaccessible. However, when aggregating several weak
learners that may be easier to access, the performances of the resulting ensemble model
can reach those of the strong learner. As an example, this general principle corresponds
to the theory behind random forest algorithms [Breiman(2001)]. With this concept in
mind, we introduce the following analogy. The strong learner would be docking in the
protein target: based on the hit molecule binding mode, docking can be used to search
for highly dissimilar molecules that present similar binding modes with this protein
pocket. This strong learner is unavailable for a protein of unknown 3D structure. In
such cases, the weak learners consist in docking the molecules in other proteins of
known 3D structure. More precisely, we assume that two isofunctional molecules for a
given protein would present a tendency to form similar interactions with proteins, in
general, and that this tendency could be detected by docking. Docking a molecule in
various proteins would allow to detect interactions between this molecule and protein
pockets. Using "enough" weak learners, i.e. docking in "enough" proteins could be used
to define the Interaction Fingerprint Profile of the molecule. The IFPP could then be
used in ligand-based methods, replacing the unavailable strong learner (i.e. docking in
the protein of interest).

It is important to note that the docking experiments used to build the IFPPs can
be viewed as pure simulations. We are primarily interested in understanding how
molecules would interact with the considered pockets, rather than whether they are
true ligands with high affinity for these proteins.

In summary, our proposal relies on the idea that, within the space defined by IFPPs,
two isofunctional molecules would be closer to each other than to randomly chosen
decoys. They would also be closer to each other in this space than in the space defined
by chemical descriptors.

3.1.2 Principle of IFPP Computation

The IFPP is built from weak learners that correspond to docking molecules into a panel
of proteins of known 3D structures. The number and the nature of the proteins in this
panel must be defined. We assume that a more diverse protein panel will cover a wider
range of potential interactions that molecules can form.

The IFPP of a molecule is computed based on the interactions detected when dock-
ing this molecule in the panel of proteins. Details about the type of interactions as well
as their retained detection thresholds are provided in 2.1.2.

We derive an Interaction Fingerprint for the molecule in the considered pocket,
in the form of a fixed-size binary vector that incorporates, for each residue in the
binding site, the types of interactions it forms with the molecule. The binding site is
defined as all residues having at least one atom within a radius of 10 Å from the known
crystallographic ligand of the protein.

The final IFPP is obtained by concatenating the fingerprint determined for each
protein of the panel. Figure 3.1 illustrates how the IFPP of a molecule is obtained.
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Figure 3.1: Illustration of how molecular IFPPs are built. In this example, a panel
of 3 proteins is chosen. First, the molecule is docked in each of the proteins. Then,
interactions of the best scoring pose are retrieved and encoded in a binary interaction
fingerprint. L, M and N represent the length of the interaction fingerprints, dependent
of the size of the binding site. Finally, interaction fingerprints are concatenated to form
the final IFPP of length L ` M ` N .
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However, as the binding sites’ sizes vary from one protein to another, the length of
the IFP also varies from one pocket to another. This results in the final IFPP to more
bits allocated to some proteins than others. We did not perform any normalisation to
have equal contributions for every protein because we wanted to keep the raw interac-
tions. Besides, having a longer IFP for one protein does not lead to more “on” bits for
a molecule, as it will only occupy a limited area in the binding site. It just leads to
more possible binding poses. Thus, the number of "on" bits remains almost constant
from one protein to another, regardless of the size of the binding site.

3.1.3 Choice of the Panel of Proteins

Ideally, we would like to dock in a large panel of diverse proteins as it would lead to
the most complete sampling of possible binding modes for molecules. However, this is
not realistic due to the cost of computing the resulting IFPP representation because:

• the proteins in the panel must be suitable for reliable docking experiments, which
(among other criteria) requires careful preparation of its pocket and successful
re-docking of the crystallographic ligand, to ensure that the docking protocol is
adapted to this pocket.

• docking in too many pockets to compute the IFPP would be very costly.

Selecting Proteins with "drug-like" molecules

Therefore, to define a diverse but limited set of proteins, we considered the PDBbind
database [Wang et al.(2004b)] containing 19.443 PDB files (2020) of 3D crystallographic
structures of protein-ligand complexes. Only structures with resolution below 2.5 Å,
and in which a drug-like ligand was bound, were kept, in order to keep only proteins
with binding sites that are suitable for docking experiments with drug-like molecules.
We selected complexes in which the ligand satisfied the following physicochemical pa-
rameters:

• No atoms other than H, C, N, O, F, P, S, Cl, Br

• 400g/mol ď Molecular weight ď 900g/mol

• -7 ď logplipophilicityq ď 7

• Maximum ring size = 7

• No more than 7 rotatable bonds (to simplify docking and conformer sampling)

• Topological Polar Surface Area ě 30

• QED ě 0.3

These conditions exceed the criteria for drug-likeness, but they help removing un-
wanted chemotypes, such as salts, solvent or other molecules present in crystallisation
buffers, and large interacting partners like peptides. This led to 1, 248 PDB structures
of complexes involving 378 different proteins.
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These structures include pan-inhibitors or ligands belonging to the same chemical
series. In order to avoid redundancies in terms of pockets, we clustered ligands accord-
ing to their Morgan similarity with a threshold of 0.4. For each resulting cluster, we
only keep the PDB with the best resolution. This led to 872 PDB structures for 358
different proteins. We retained only one structure per protein, keeping the PDB struc-
ture with the ligand of largest molecular weight, in order to define the largest binding
site for the subsequent docking experiments, leading to 358 structures.

Protein Preparation for Docking

As explained in 1.4.1, prior to performing docking, each protein of the panel needs to
be prepared. I describe in this subsection the different steps applied to prepare a PDB
structure, as well as how the docking of a molecule in its pocket is performed.

To prepare a protein-ligand structure, we applied the following steps:

• To simplify, all water molecules are removed.

• The molecule and the protein are protonated using the softwares SimulationPlus
and PDB2PQR [Dolinsky et al.(2007)] respectively.

• We parametrise the complex for the molecular dynamics engine using Gromacs [Van
Der Spoel et al.(2005)] with an Amber force field [Wang et al.(2004a)].

• We minimise the complex in vacuo so that all the hydrogens are well positioned.

Dockings are performed using the DOCK6 software [Lang et al.(2009)]. It performs
semi-flexible docking, considering the protein is rigid but exploring the conformational
space of the molecule using the fragmentation method as explained in 1.4.1. For a
molecule, only the pose with the best Grid-Based Score, an internal scoring function
which relies on the non-bonded terms of the molecular mechanic force field, is retained.

Those preparation steps of PDBs and docking protocols were applied to all these
structures.

Selecting Diverse Proteins

We then re-docked the crystallographic ligands in their corresponding pockets. We
only kept those for which the best ranked docking poses had a RMSD below 2Å with
respect to the crystallographic, ensuring that the docking protocol was adapted to these
pockets. The final set of proteins should also avoid strong bias towards a few extensively
studied families of proteins such as transferases or hydrolases, constituting almost 70%
of crystallised PDBs [Burley et al.(2023)]. Therefore, to assess structural diversity
of the proteins belonging to the final panel, we used the SCOP database [Murzin
et al.(1995)]. This database provides a hierarchical classification of proteins according
to their 3D fold. The proteins unrecognised by the SCOP database (using the UniProt
ID) were discarded, leading to 283 different proteins. We observed that our set was
still highly enriched in some protein structural families, such as some of the kinases
folds. In order to form a panel of diverse proteins, we kept only one PDB structure per
superfamily. A superfamily, as defined by the SCOP database, gathers proteins with
different sequences, but that may have a common evolutionary origin according to their
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structures and functional features. This filtering process left 73 superfamilies (therefore,
73 PDB structures) defined in the SCOP database. To evaluate the effectiveness of the
IFPP using the LH benchmark, we excluded 4 proteins that were also included in the
benchmark to prevent bias. Overall, these successive filters led to 69 PDB structures
of proteins belonging to various superfamilies. Detailed information about this panel
of proteins can be found in Appendix Table B.1.

Influence of the Size of the Protein Panel

However, real-life studies may require screening millions of molecules, and docking large
chemical libraries against 69 proteins to derive the IFPPs would lead to high compu-
tational costs. Therefore, we undertook a preliminary study on the LH benchmark.
The goal was to assess whether we could reduce the size of the IFPP (i.e. consider
a smaller number of proteins to build the IFPP), without degrading the performance
of its associated similarity measure. The corresponding similarity measure between
molecules was defined as the Tanimoto similarity (1.2) of their IFPPs.

This preliminary study would require 34, 569 docking experiments for each scaffold
hopping pair (2 actives and 499 decoys docked in 69 pockets), and consequently, almost
5 million docking experiments for the whole LH benchmark. To reduce these compu-
tational costs, for each scaffold hopping case, we kept 49 randomly picked decoys (out
of 499), among which the unknown active was ranked according to its similarity with
respect to the known active. We considered that a successful experiment corresponded
to ranking the unknown active in the top 5% molecules (out of 49 + 1 = 50 molecules,
thus corresponding to a rank ď 2.5). We tested different sizes of protein sets from the
initial panel, ranging from 10 to 65. We performed 100 random draws of pockets for
each set size from the 69 initially selected proteins.

The "Grid Score" scoring function was also used to dock molecules in this protein
panel, to ensures that the docking score was adapted to predict the best poses of
molecules in the protein of this panel, and compute the resulting IFPP molecular
representations.

As shown in Figure 3.2, the performance of the IFPP increases with the size of
the protein set. We do not seem to reach a plateau yet, suggesting that considering a
higher number of proteins would improve the performances. However, as a compromise
between computational cost of the IFPPs and performances of the associated similarity
measure, we kept a panel of 37 proteins randomly picked from the 69 initially selected
proteins. The list of these proteins is provided in Appendix Table B.1.

3.2 Performance of IFPP on LH Benchmark

3.2.1 Performance of IFPP

As introduced in Chapter 2, one method to evaluate the relevance of molecular rep-
resentations for solving scaffold hopping cases is to compare the performance of their
associated similarity measures in the LH benchmark.

In addition to the IFPP, we considered several classical structure-related encod-
ings: Morgan fingerprints and 2D Pharmacophore fingerprints computed with RD-
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Figure 3.2: Influence of the size of the protein panel used to define the IFPP on
the performance of the associated similarity measure on a reduced LH benchmark.
Successful experiments are defined by a rank below 2.5 for the unknown active.

Kit [Landrum et al.(2021)], as well as 3D Pharmacophore and 3D Shape computed
with Pharao [Taminau et al.(2008)].

Figure 3.3 shows the performances of these 5 encodings. All molecular descrip-
tors display modest performances on this benchmark, with success rates below 25%.
Interestingly, the similarity in IFPP outperforms the others.

We performed the Kolmogorov-Smirnov test with the alternative hypothesis being
that the cumulative distribution of ranks of the IFPP is greater than that of the 3D
Pharmacophore. This resulted in a p-value of 0.038, a limited but significant improve-
ment.

Morgan 2D Pharm. 3D Pharm. 3D Shape IFPP
Morgan - 0.41 0.48 0.27 0.34

2D Pharm. 0.41 - 0.34 0.18 0.18
3D Pharm. 0.48 0.34 - 0.23 0.31
3D Shape 0.27 0.18 0.23 - 0.40

IFPP 0.34 0.18 0.31 0.40 -

Table 3.1: Spearman correlations between the rank of the unknown active for molecular
descriptors.

We also computed the Spearman correlation of ranks between all methods, and
summarised the results in Table 3.1. It shows that the IFPP is uncorrelated to the 3D
Pharmacophore, and also to other methods. This indicates that this new representation
captures information about the protein-ligand interactions that is absent in the other
considered molecular representations. Because of their low correlation, we can combine
the IFPP and 3D Pharmacophore representations, according to the minimum rank from
both methods. This allowed to improve the performances, as illustrated in Figure 3.3
with a success rate of 27.4% in the top 5%.
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Figure 3.3: Results on the LH benchmark. The cumulative histogram curves of each
molecular descriptors are plotted in a). A zoom of the same graphs is provided in b)
with vertical grey lines corresponding to ranks of top 5% ranks. Table c) displays the
percentage of successful scaffold hopping problems for molecular descriptors, according
to a rank of the unknown active in the top 5%.
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We confirmed that the IFPP descriptors were not successful only in specific fam-
ilies of proteins, by computing the mean, standard deviation and quartiles ranks it
assigns to the unknown active for scaffold hopping cases involving proteins from differ-
ent superfamilies, as illustrated in Table 3.2. A superfamily, as defined by the SCOP
database [Murzin et al.(1995)], gathers proteins with different sequences, but that may
have a common evolutionary origin according to their structures and functional fea-
tures. For example, in the case of the kinase superfamily, in 75% of the 94 related
scaffold hopping cases (out of 288 cases), the unknown active was ranked above 36.8,
i.e. not in the top 5% best ranked molecules.
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Superfamily Name Cases Mean STD 25% 50% 75%
ARID-like 2 85.5 29.0 75.2 85.5 95.8
ARM repeat-like 12 150.4 188.6 5.5 48.5 256.4
Acid proteases 4 48.2 58.2 18.5 27.0 56.8
Ankyrin repeat 12 256.6 104.7 218.0 274.5 319.5
Arginase/deacetylase-like 6 215.8 162.3 87.2 201.5 328.1
Bromodomain 16 189.1 136.0 90.0 152.5 288.4
DEATH domain 2 271.5 146.4 219.8 271.5 323.2
DPP6 N-terminal domain-like 8 217.4 181.8 53.8 234.8 302.0
Domain of poly(ADP-ribose)
polymerase

10 144.8 137.3 28.2 146.2 183.0

FAT domain of focal adhesion
kinase

2 381.0 113.1 341.0 381.0 421.0

GHKL (Gyrase, Hsp90, Histi-
dine Kinase, MutL) domain-
like

12 187.2 157.3 65.8 122.5 327.5

HD-domain/PDEase-like 28 162.6 147.1 25.5 122.5 230.8
Hemopexin-like domain 6 294.8 162.7 241.0 267.2 423.6
Inhibitor of apoptosis (IAP)
repeat

4 85.0 136.4 13.0 23.5 95.5

Lipocalins 2 77.0 90.5 45.0 77.0 109.0
Macro domain-like 2 306.0 25.5 297.0 306.0 315.0
Metallo-
hydrolase/oxidoreductase

4 68.5 22.8 60.2 73.5 81.8

Metalloproteases (zincins),
catalytic domain

6 78.2 64.9 20.2 82.8 121.2

P-loop motor domain 4 372.0 140.3 250.5 371.8 493.2
PH domain-like 2 367.0 38.2 353.5 367.0 380.5
Polo-box domain 2 50.0 65.1 27.0 50.0 73.0
Protein kinase-like (PK-like) 94 173.5 157.4 36.8 123.5 273.2
Retrovirus capsid dimeriza-
tion domain-like

2 13.0 17.0 7.0 13.0 19.0

Rudiment single hybrid motif 4 245.2 146.1 171.0 184.0 258.2
SH3-domain 2 212.8 97.2 178.4 212.8 247.1
Terpenoid synthases 4 147.8 166.2 41.1 99.8 206.4
Trypsin-like serine proteases 12 168.6 173.9 20.5 111.0 256.0
Type 2 solute binding protein-
like

4 19.1 22.4 7.2 9.5 21.4

WGR domain-like 4 178.0 126.5 129.0 202.5 251.5
WW domain 4 23.2 29.9 2.8 12.5 33.0
Unknown 12 144.7 164.5 26.8 85.5 196.2

Table 3.2: Performances of IFPP across superfamilies. The number of scaffold hopping
experiments, as well as the mean, standard deviation (STD) of the ranks of the unknown
active are reported for each superfamily. We also provide the 3-quantiles (25%, 50%
and 75%) of those distributions of ranks.
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3.2.2 Contributions of Proteins in the Panel
In order to further characterise the results of this method, we quantified the influence of
each protein pocket considered to build the IFPP in the retrieval of the unknown active.
Indeed, some of these pockets could have a prejudicial effect on the performances,
whereas other may significantly contribute to the better ranking of the ligands, when
using the IFPP descriptors.

To evaluate the contribution of the proteins of the panel in the ranking of the
unknown active, we first categorized each of the 288 similarity searching experiments
according to its ranking of the unknown active with the IFPP similarity. We defined 7
categories:

• Rank ď 25

• 25 ă Rank ď 50

• 50 ă Rank ď 100

• 100 ă Rank ď 200

• 200 ă Rank ď 300

• 300 ă Rank ď 400

• 400 ă Rank

For each category and each protein, we computed the IFP similarity between the known
active and the unknown active, as well as the median IFP similarity between the known
active and its decoys, for all corresponding experiments. Comparing these two quanti-
ties provides useful information on the influence of the protein in the ranking.

Then, for each protein, we performed T-tests with the null hypothesis being that the
similarity between ligands is either less or greater than the median similarity between
the known active and the decoys. Thus, the p-values obtained provide an indication on
how contributive or counteracting a protein is for each binned class of ranks.

P-values of the T-test with the alternative hypothesis being that the IFP similarity
between the ligands is greater than between the known active and the decoys are
displayed in panel a) of Figure 3.4. The lower the p-value, the more likely the alternative
hypothesis is. As we can see, in all pockets the IFP similarity between the ligands is
significantly greater (p-value ď 0.05 ) than with the decoys when the experiment is
successful (rank ď 25), even though some proteins seem to contribute more: pockets
’3sff’ and ’6mob’ have very low p-values compared to ’4gvm’ and ’2ovx’ that are barely
significant. This means that all pockets contribute to the successful experiments. In
general, for the unsuccessful cases (rank of the unknown active ě 25), only a few
proteins bring a positive signal (’1t48’, ’6ccy’, ’4pv5’, etc), while most show insignificant
differences between the IFP similarity of ligands and the IFP similarity of the known
active to the decoys.

On the contrary, when trying to explain why in some experiments the unknown
active is ranked very high (rank ě 400), a few pockets display low p-values for the
alternative hypothesis that the IFP similarity between the ligands is less than between
the known active and the decoys, displayed in panel b) of Figure 3.4. This means that
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Figure 3.4: T-tests comparing the ligands IFP similarity and the IFP similarity between
the known active and decoys across pockets represented through polar graphs. The
radius corresponds to the p-value in logarithmic scale, and the edges are proteins of
the panel. The lower the p-value, the more likely the alternative hypothesis stands for
the considered protein in the studied rank category. Panel a) (resp. b)) displays the
p-values of the alternative hypothesis "IFP similarity between the ligands is greater
(resp. less) than between the known active and the decoys".



3.2. Performance of IFPP on LH Benchmark 69

those pockets have a significant deleterious effect, and may explain the poor perfor-
mances of the IFPP in some cases. It is not surprising, as pockets have been arbitrarily
chosen to construct this molecular representation, and not to maximise the success rate
on the benchmark. Proteins ’5ufp’ and ’6std’ are amongst them, and there is no doubt
that removing them would increase the performance of our method.

One explanation of the contribution of proteins in accurately ranking the unknown
active could be that, if the protein in which we dock is similar to the protein for which
we observed the scaffold hopping pair, then for this protein the ligands will have a
higher IFP similarity than the known active with the decoys. The rationale behind
this claim is that, as the two proteins are close, the ligands might reproduce similar
binding modes as initially observed. To evaluate this hypothesis, for each case and each
protein, we computed:

• The sequence similarity between the protein used for docking and the protein of
the scaffold hopping case using the Needleman-Wunsch algorithm [Needleman et
Wunsch(1970)], which reconstructs the optimal alignment between sequences of
amino acids by assigning scores to matches, mismatches and gaps. We used the
BLOSUM62 substitution matrix [Eddy(2004)] to score the alignments. We did
not penalise gaps during the scoring process here.

• The IFP similarity between the known active and the unknown active in the
considered protein,

• The median IFP similarity between the known active and its corresponding de-
coys.

• Finally, we calculated the difference between those two values:
IFP Similarity ligands ´ Median IFP Similarity known active, decoys.

We plotted in Figure 3.5 the variation of this difference with the sequence similarity for
all cases and all proteins, splitting by the rank categories defined above. We observe
that there is no correlation: high differences in IFP similarity are observed with any
value of sequence similarity. Conversely, low differences in IFP similarity exist for high
sequence similarity. We also notice the overall low sequence similarity between the
proteins of the panel and the proteins of the LH benchmark (gaps were not penalised),
demonstrating they were chosen arbitrarily and not to optimise the performance on the
LH benchmark.

The signal is blurred for most, meaning that though all proteins contribute in
the successful cases, the protocol applied for the protein selection might be improved.
However, the criteria for such an enhancement are not clearly identified, and might be
specific to the benchmark, hence lack generalisation.
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Figure 3.5: Variation of the difference between IFP Similarity(ligands) and Median
IFP Similarity(known active, decoys) with the sequence similarity between the protein
in which the molecules are docked and the protein for which we observed the scaffold
hopping pair.
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3.2.3 Comparison to Docking
Interestingly, in the LH benchmark, the 3D structures of the proteins targeted by
the 144 scaffold hopping pairs are known, because these pairs were initially extracted
from protein-ligand complexes of known 3D structures available in PDBbind [Wang
et al.(2004b)]. In such cases, docking would be the reference method to solve scaf-
fold hopping problems. Therefore, we assessed the performance of docking on this
benchmark.

We prepared the structures for docking as explained in 3.1.3. In fact, for each
scaffold hopping pair in the benchmark, two PDBs for the same protein are available,
i.e. one complex for each of the two ligands. The crystallographic ligands were redocked
inside their prepared pockets, and we computed the RMSD between the best docked
pose according to the Grid Score and the crystallographic pose. Cases for which the
RMSD was above 2.5Å were discarded as the preparations steps and docking protocol
are not calibrated, and fixing the preparation steps in a case-dependant manner would
have been extremely time-consuming. Thus, docking was assessed only for the 135
scaffold hopping experiments of the LH benchmark for which preparation of the PDBs
succeeded. For each considered scaffold hopping case, the unknown active and the 499
decoys were ranked according to their docking score in the PDB structure of the known
active to reproduce a real-life screening situation with docking. The performance of
docking was assessed based on the percentage of cases for which the unknown active is
ranked in the top 5%.

Docking retrieves the unknown active in the top 5% in 28.9% out of 135 considered
scaffold hopping experiments. This performance would probably be higher in real-life
cases, when a single protein target is considered. The docking protocol would then be
finely tuned for this particular protein, which was not done in our benchmark applica-
tion. Assuming that they would still remain in the same range, these performances are
modest. This illustrates that large-step scaffold hopping is on average a difficult task,
even when the structure of the protein is known. Note that on the same subset of 135
scaffold hopping experiments, the IFPP similarity measure had a success rate 30.4%,
which is higher, although comparable to docking, as displayed in Figure 3.6.
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Figure 3.6: Performance of docking on a subset of the LH benchmark. The cumulative
histogram curves of each method are plotted in a). A zoom of the same graphs is
provided in b) with vertical grey lines corresponding to ranks of top 5% ranks. Table
c) displays the percentage of successful scaffold hopping problems for the approaches,
according to a rank of the unknown active in the top 5%.

3.2.4 Application on a Kinase Subset

The IFPP represents an estimation of the possible binding modes of a molecule, ac-
cording to the panel of diverse considered proteins. The higher the number of proteins,
the better the estimation is expected to be. Without using any knowledge about the
targeted protein and for which hits are searched, we demonstrated that the IFPP en-
coding from which a similarity-based method is applied provides a promising approach
for solving large-step scaffold hopping cases.

However, when targeting a specific protein belonging to a well studied family, such
a representation might not be optimal. Indeed, a more relevant approach may be to
select a panel of proteins belonging to the same family, to derive an estimation of the
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possible binding modes within the target protein family. Such a representation would
take into account the intricacies and specific features of the allowed binding modes of
the protein family. It may be more appropriate than a global estimation of possible
binding modes based on proteins belonging to the whole human proteome.

Again, we illustrate this property on the protein Kinase family. Kinases are a
type of enzyme that catalyze the transfer of phosphate groups from high-energy donor
molecules, such as ATP (adenosine triphosphate), to specific target proteins. This phos-
phorylation plays a crucial role in cellular signaling pathways, regulating various cellular
processes such as cell growth, differentiation, metabolism, and apoptosis (programmed
cell death). By adding phosphate groups to proteins, kinases can modify their activity,
localization, stability, and interactions with other molecules. Dysregulation of kinase
activity is associated with various diseases, including cancer, inflammatory disorders,
and neurodegenerative diseases. The LH benchmark contains 20 different kinases, cor-
responding to 47 scaffold hopping pairs, allowing to conduct this study according to
the protocol described below.

Defining a Kinase Panel of Proteins. To compare IFPPs derived from a diverse
protein panel to IFPPs derived from kinases to solve kinase-related scaffold hopping
cases, we first selected the kinases that will define a kinase panel to compute the
IFPP. We followed exactly the same steps as in 3.1.3, starting from PDBbind [Wang
et al.(2004b)]:

• Only proteins belonging to the protein kinase superfamily as defined by the SCOP
database [Murzin et al.(1995)] are considered,

• PDBs should have a resolution below 2.5Å,

• They should include "drug-like" ligands, as defined in 3.1.3,

• PDBs with redundant ligands are discarded,

• Only one PDB is kept for each protein,

• PDBs are subsequently prepared for docking,

• Only the structures with a successful redocking of the crystallographic ligand
(RMSD ď 2.5Å) are kept.

To limit the number of dockings to be performed, only 10 kinases were kept, leading to a
total of 11 considered kinases (adding one kinase that was present in the panel of diverse
proteins). Table 3.3 provides information on the retained kinases. All molecules (i.e.
ligands and corresponding decoys) associated to the 47 kinase-specific scaffold hopping
cases of the LH benchmark were subsequently docked in each of those selected kinases,
leading to a total of 235,470 dockings.

Comparison of IFPPs. To compared the performances at solving scaffold hopping
(i.e. ranking the unknown active in the top 5%) between the kinase-specific and the
diverse proteins IFPPs, for different sizes of the panel of proteins. For each size, one
hundred draws amongst available proteins (11 proteins for kinases, 37 for the diverse
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PDB UniProt Protein
4i5h P63086 MITOGEN-ACTIVATED PROTEIN KINASE 1
6slg P28482 MITOGEN-ACTIVATED PROTEIN KINASE 1
6ccy P31749 RAC-ALPHA SERINE/THREONINE-PROTEIN KINASE,PIFTIDE
6mob P10721 MAST/STEM CELL GROWTH FACTOR RECEPTOR KIT
3wf8 P23443 RIBOSOMAL PROTEIN S6 KINASE BETA-1
5vee O96013 SERINE/THREONINE-PROTEIN KINASE PAK 4
2ivu P07949 PROTO-ONCOGENE TYROSINE-PROTEIN KINASE
5lmk P24941 CYCLIN-DEPENDENT KINASE 2
5l2s Q00534 CYCLIN-DEPENDENT KINASE 6
4eqc Q13153 SERINE/THREONINE-PROTEIN KINASE PAK 1
3bi6 P30291 WEE1-LIKE PROTEIN KINASE

Table 3.3: All kinases used for the panel of proteins. Note that the two first belong
to the same protein, but not in the same conformation: ’4i5h’ corresponds to the
"DFG-out" conformation and ’6slg’ to the "DFG-in" conformation. This phenomenon
translates in a flip of residues creating a new allosteric pocket, which leads to different
binding sites and thus different IFPs.

set) are performed to get more meaningful comparisons and draw statistical conclusions.
For each draw of proteins that define the IFPP, the proportion of experiments for which
this representation ranked in the unknown active in the top 5% is computed for all the
47 ˆ 2 “ 94 kinase-related scaffold hopping experiments.

The box plots of success rates per sizes of protein panels for the kinase-specific
and the diverse IFPP for all draws are gathered in Figure 3.7. Kinase-specific IFPP
tend to better rank the unknown active than the diverse IFPP. The gap between both
representations increases with the number of proteins used to define the IFPP, as shown
by Figure 3.7. This demonstrates that, at least for kinases, defining an IFPP based
on a panel of protein close to the targeted protein is expected to perform better than
a panel of diverse proteins. However, this property might be somewhat overestimated
because the above results were obtained of a highly structurally conserved family of
proteins. We did not perform this analysis on other superfamilies of the benchmark
for technical reasons (not enough scaffold hopping cases, high computational cost).
Besides, for most proteins apart from kinases, we do not have enough scaffold hopping
cases to provide a statistical conclusion.
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Figure 3.7: Comparison of success rates between the diverse IFPP and the kinase-
specific IFPP with different sizes of the protein panel. The latter surpasses the former
systematically, the median gap between both increasing with the size of the protein
panel.

3.3 Conclusion

The main contribution in this Chapter was to propose a novel molecular representa-
tion dedicated to the scaffold hopping problem: the Interaction Fingerprints Profile
(IFPP). This profile is a representation that intend to capture possible binding modes
of molecules, based on docking experiments in a panel of 37 diverse proteins. The IFPP
was computed using a single docking protocol that was not optimized for each of the
37 proteins. However, the successful re-docking of the crystallographic ligand present
in the binding sites for these proteins indicates that the docking protocol was adapted
to these structures, if not optimized. Future studies could consider evaluating several
docking scores or using different docking software. This may allow to define consensus
IFPPs with increased relevance with respect to the scaffold hopping problem.

We showed that increasing the number of proteins in the panel improves the perfor-
mances of the IFPP descriptors, but one needs to find a compromise between improving
the performances and increasing the cost of computing larger IFPP descriptors (see be-
low). We consider that the Interaction Fingerprints Profile is essentially a new string
to the bow of available methods for addressing these challenging problems. This rep-
resentation should not replace others, but should rather be used in conjunction with
other existing methods. Indeed, as shown in the Results 3.2.1, combining IFPP and
3D pharmacophore similarities increases the success rate on the LH benchmark.

Besides, as illustrated with the kinase subset in 3.2.4, when dealing with a specific
protein with extensive knowledge of its family, choosing a panel of proteins belonging
to the same family may improve the ability of IFPP to solve scaffold hopping. Such a
representation would provide a more accurate understanding of potential binding modes
within the family of target proteins, thus be more adapted to the protein at hand. This
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bring a new rationale for the protein selection to build the IFPP in a real-life setting
where hits are searched for only one protein target: picking proteins belonging to the
same family.

However, a drawback of the IFPP is its computational cost. Indeed, building the
IFPP of a molecule requires its docking in 37 protein pockets. For example, to per-
form our study on the LH benchmark, a total of 2, 669, 328 docking experiments were
required to compute the IFPPs of all molecules in the benchmark. This included 144
pairs of ligands and their 499 decoys docked in 37 pockets. In real applications, solv-
ing a given scaffold hopping problem by screening 100.000 molecules (i.e. medium-size
chemical libraries) would require 3, 700, 000 docking experiments, which is accessible.

Nevertheless, screening of very large chemical libraries (millions of molecules) using
IFPP molecular representations would lead to computational burdens. Due to the cost
of docking used to define the IFPP, as it stands, this encoding is not scalable to screen
large molecular libraries (millions of molecules), although in the case where a large
library would be screened recurrently, it would be feasible to calculate this embedding
only once.



4
Overcoming Limitations Through Deep Learning

Abstract:
We illustrated how computationally expensive IFPP is, which limits its use for

screening very large molecular libraries. We propose to overcome this limitation by
leveraging two different Deep Learning approaches: one trying to predict IFPs for each
protein of the panel, the other relying on Metric Learning concepts. The latter allows
fast estimation of molecules IFPP similarities, thus providing an efficient pre-screening
strategy that is applicable to very large molecular libraries. We illustrate on an external
dataset, LIT-PCBA, how such a method can help identify new hits in a more realistic
drug discovery setting.

Résumé:
Nous avons illustré à quel point l’IFPP est coûteux en calcul, ce qui limite son

utilisation pour le criblage de bibliothèques moléculaires très volumineuses. Nous pro-
posons de surmonter cet inconvénient en exploitant deux approches de Deep Learning
différentes : l’une visant à prédire les IFPs pour chaque protéine du panel, l’autre re-
posant sur des concepts de Metric Learning. Cette dernière permet une estimation
rapide des similarités entre les IFPPs des molécules, offrant ainsi une stratégie de
pré-criblage efficace applicable aux bibliothèques moléculaires très volumineuses. Nous
illustrons sur un ensemble de données externe, LIT-PCBA, comment une telle méthode
peut aider à identifier de nouveaux hits dans un contexte plus réaliste de découverte de
médicaments.
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As it stands, the Interaction Fingerprints Profile is limited to small to medium
sized chemical libraries of hundred thousands of compounds due to the cost of its
computation. However, solving large-step scaffold hopping requires roaming remote
chemical spaces in search for new hits. This strategy may require scoring a number of
molecules several orders of magnitude higher than our method allows. In this Chapter,
I describe two approaches relying on Deep Learning (DL) to overcome the computation
cost limitations of the IFPP. I also illustrate how the most promising one, based on
Metric Learning concepts, can be used in virtual screening through an external hit
discovery benchmark.

4.1 Prerequisites

Before describing the models designed to democratise the Interaction Fingerprints Pro-
file by addressing its cost and computation burdens, I recall some basic concepts em-
ployed throughout this Chapter. In particular, we built Deep Learning models with
Graph Neural Network architectures. The goal is not to perform an extensive review
of Deep Learning and Graph Neural Networks but rather recall key concepts before
dwelling on more sophisticated architectures and ideas. For more information about
those domains, the reader can browse [Goodfellow et al.(2016),Hamilton et al.(2018)].

4.1.1 Deep Learning

In Machine Learning (ML), a neural network is a model inspired by the structure and
function of biological neural networks in animal brains. It consists in connected units
that mimic the functioning of a neuron, which is an electrically excitable cell that
transmits action potentials via synapses to other cells through the nervous system. In
this analogy, artificial neurons are connected by edges, which model the synapses, and
transmit "signals", which are real numbers, to other neurons of the network. Each
artificial neuron outputs a value computed by some non-linear function of the sum of
its inputs, called the activate function. The magnitude of the signal at each connection
is governed by a weight (or parameter), which undergoes adjustment throughout the
learning process.

Usually, neurons are organized into layers, each layer potentially executing distinct
transformations on its inputs. Signals propagate from the initial layer (the input layer)
to the last layer (the output layer), potentially traversing several intermediate layers
(hidden layers). A neural network is commonly referred to as a deep neural network
(DNN) when it possesses at least 2 hidden layers [Bishop(2006)].

This gave birth to Deep learning (DL), a sub-field of ML that focuses on arti-
ficial neural networks with multiple layers. These neural networks are capable of
learning complex representations of data by composing multiple layers of non-linear
transformations. DL has revolutionized various fields by enabling the development
of highly accurate and flexible models for tasks such as image recognition [Taigman
et al.(2014)], natural language processing [Hochreiter et Schmidhuber(1997)], speech
recognition [Hannun et al.(2014)], and reinforcement learning [Mnih et al.(2015)].

We provide the mathematical formalism for an example of DNN architecture with
3 hidden layers in the following, summarised in Figure 4.1.
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Let x denote the input vector of size n, and y denote the output vector of size k.
The DNN consists of 3 hidden layers each with m neurons.

The input layer is denoted by x “ px1, x2, . . . , xnqT , where xi represents the i-th
input feature.

For the l-th hidden layer, l “ 1, 2, 3, the output vector hplq is computed as follows:

zplq “ W plqhpl´1q ` bplq,

hplq “ σpzplqq,

where W plq is the weight matrix of size m ˆ m, bplq is the bias vector of size m, σp¨q is
the activation function that introduces non-linearity, and hp0q “ x.

Finally, the output layer computes the output vector y as:

y “ W p4qhp3q ` bp4q,

where W p4q is the weight matrix of size k ˆ m and bp4q is the bias vector of size k.
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Figure 4.1: Illustration of Deep Neural Network architecture. In this example, the
input layer receives external data, which successively go through three hidden layers
with m neurons each. Finally, the output layer contains the ultimate predicted result.

During training, the DNN learns to optimize its parameters (weights and biases) to
minimize the loss function, which measures the difference between the predicted and
actual values. It is typically trained using a process called back-propagation. It involves
comparing the predicted output of the network with the actual output (ground truth)
using the loss function. Then, the gradient of the loss function with respect to the
weights and biases of the network is computed, using the chain rule of calculus. This
step involves propagating the error backward through the network. The weights and
biases of the network are adjusted in the opposite direction of the gradient to minimize
the loss function. This step is usually performed using optimization algorithms such
as stochastic gradient descent (SGD) or its variants. Those steps are repeated for
multiple epochs (iterations) until the model converges to a satisfactory solution or
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reaches a predefined stopping criterion.
DL has demonstrated success across diverse tasks essential for drug discovery,

including property and activity prediction [Mayr et al.(2016), Ma et al.(2015)], de
novo design [Gómez-Bombarelli et al.(2018),Segler et al.(2018)], and prediction of lig-
and–protein binding modes [Krishna et al.(2024)].

4.1.2 Graph Neural Networks

Graph Neural Networks (GNN) are a class of neural networks designed to operate on
graph-structured data. This class of algorithms has gained momentum since 2016 [Li
et al.(2019b), Hamilton et al.(2018), Veličković et al.(2018), Xu et al.(2019)]. Graphs
consist of nodes (vertices) and edges (connections), representing entities and relation-
ships between them, respectively. Mathematically, a graph G can be defined as a tuple
G “ pV, Eq, where:

• V is the set of vertices (nodes) in the graph.

• E is the set of edges (connections) between vertices.

Let V “ tv1, v2, . . . , vnu denote the set of vertices, and E “ te1, e2, . . . , emu denote
the set of edges. Each edge ei can be represented as a tuple pvj , vkq indicating the
connection between vertices vj and vk.

A graph G can also be represented by an adjacency matrix A, where Aij “ 1 if
there is an edge between vertices vi and vj , and Aij “ 0 otherwise.

The degree dpviq of a vertex vi is the number of edges incident to vi. For an
undirected graph, it is given by:

dpviq “

n
ÿ

j“1
Aij

For a directed graph, the in-degree dinpviq and out-degree doutpviq of a vertex vi

represent the number of incoming and outgoing edges, respectively.
GNNs extend traditional neural networks to handle such non-Euclidean data struc-

tures. In GNNs, each node in the graph is associated with a feature vector representing
its attributes. The goal of GNNs is to learn either node or whole graph representations
by aggregating information from neighboring nodes and their features.

The key components of GNNs include:

• Node Embeddings: GNNs learn low-dimensional representations (embeddings) for
each node in the graph, capturing both structural and attribute information.

• Message Passing: GNNs propagate information between neighboring nodes through
message passing. At each layer, nodes aggregate information from their neighbors
and update their own representation based on the aggregated information.

• Aggregation Function: GNNs use aggregation functions to combine information
from neighboring nodes. Common aggregation functions include summation, av-
eraging, or weighted aggregation based on attention mechanisms.
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• Graph Convolutional Layers: Graph convolutional layers are the building blocks
of GNNs, performing message passing and aggregation operations. These layers
typically consist in a message passing step followed by a node-wise aggregation
step.

• Pooling and Readout: GNNs often incorporate pooling layers to aggregate in-
formation across nodes or subgraphs, as well as readout functions to generate
graph-level representations for downstream tasks.

Graph Neural Networks have emerged as powerful tools in drug discovery due to
their ability to model and analyze graph-structured data, which naturally represents
molecules and their interactions [Duvenaud et al.(2015), Li et al.(2017), Brocidiacono
et al.(2024)]. Indeed, a molecule can be represented by a 2D (or 3D in some contexts)
graph G “ pV, Eq where the nodes V represent the atoms and the edges E represent
the bonds.

I provide an example of such an architecture, which achieved state-of-the-art pre-
dictions to a wide range of molecular properties [Xiong et al.(2020)], called Attentive
FP.

Attentive FP This GNN architecture relies on the attention mechanism [Vaswani
et al.(2017)], and takes into account edge embeddings in the message passing steps of
the nodes. I detail the workflow for a molecule M, where v are atoms of M, u are
neighbours of v, h corresponds to embeddings, W is a trainable matrix and i is the i-th
attentive layer. Attentive FP consists in 3 steps:

(1) Initial atom and bond embedding to vectors of same length. Initial node em-
beddings are obtained by the concatenation of the two previous vectors.

(2) Stacked attentive layers performing message passing with an attention mech-
anism to update node embeddings, aggregating information from neighbouring nodes
through the following process. For each node v of the graph:

- Compute the alignment for each neighbour u:

ei´1
vu “ LeakyReLUpW ¨ rhi´1

v , hi´1
u sq (4.1)

- Compute the weight (attention) of this neighbour with the softmax:

ai´1
vu “

exppei´1
vu q

ř

uPNpvq exppei´1
vu q

(4.2)

- Compute the context of the node v:

Ci´1
v “ elup

ÿ

uPNpvq

ai´1
vu ¨ W ¨ hi´1

v q (4.3)

- The node embedding is updated using a Gated Recurrent Unit (GRU) [Chung
et al.(2014)]:

hi
v “ GRUpCi´1

v , hi´1
v q (4.4)



4.2. IFP Prediction per Protein 83

(3) To get the final graph embedding of a molecule, the entire graph is treated as a
supervirtual node (summing all node embeddings) that goes through stacked attentive
layers (as detailed above) which output a state vector for the whole molecule.

To sum up, first, a molecule is encoded by a 2D graph G “ pV, Eq where the nodes
V represent the atoms and the edges E represent the bonds. Initial state vectors of
same length for each node and edge are obtained with a fully connected input layer.
Then, GNN layers perform message passing on the node embeddings using an attention
mechanism to include local information of the relevant neighbouring atoms. The mes-
sage passing mechanism relies on a context vector incorporating neighbouring node and
edge embeddings that goes through a gated recurrent unit GRU that updates the state
vector of the node. To get the final embedding of the molecule, an initial molecule state
vector is obtained by summing all node embeddings. Then, a readout block consisting
in two attentive pooling layers is applied. In each pooling layer, a context vector of the
molecule is computed using an attention mechanism on all node embeddings, which
goes through a GRU that updates the molecule embedding.

4.2 IFP Prediction per Protein

Docking and identifying interactions in each protein to define the IFPP require signif-
icant resources in terms of cost and time. In this section, we propose an alternative
strategy to bypass these expenses: directly predict the IFPP for any molecule, using
DL. The approach involves building a separate model for each protein belonging to
the panel. These models are designed to predict how a given input molecule interacts
with its corresponding protein. By predicting the interaction fingerprints (IFP) with
the protein, these models supplant the need for docking, i.e. the bottleneck of IFPP.
The aggregation of predictions from these models generates a predicted IFPP. Once
the models are trained, predicting the IFPP for a new molecule becomes rapid and
straightforward, easing the use of this representation in virtual screening.

I illustrate in the following subsections the architecture of a model that predicts the
IFP for a single protein target.

4.2.1 Model Architecture

As explained in 2.1.2, the IFP is a target-focus binary vector encoding protein-ligand
interactions between the target protein and a molecule. In particular, each residue of
the protein is associated to a ten-long binary vector informing on how it interacts with a
molecule considering the ten possible interactions described in 2.1.2. The concatenation
of all those vectors forms the IFP of a molecule.

To recreate such a design, we built the IFP Predictor model so that it is composed
of blocks, each specialised in predicting, for a molecule, how it interacts with a specific
residue. The aggregation of the outputs of those residue-specific blocks forms the
predicted IFP. To ensure that the model keeps a general idea of the whole molecule,
and that residue-specific blocks share information, we also added a block outputting a
graph embedding that is incorporated to all other blocks.

Concretely, we distinguish two types of blocks:
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• The shared block: a GNN with a readout function to get a graph embedding of
the molecule.

• Residue-specific blocks: each is composed of two parts. The first is a GNN with
a readout function. To the output embedding of this GNN is concatenated the
embedding of the shared block. Then, this aggregated embedding serves as in-
put to a multilayer perceptron (MLP) that outputs the predicted protein-ligand
interactions between the molecule and the residue expressed by the block.

Figure 4.2 summarises the architecture of the model. The number of residues in the
binding site of the studied protein has to be determined, so that only possible interacting
amino acids are considered. We used Attentive FP, the Graph Neural Network (GNN)
described in 4.1.2 using the attention mechanism proposed by [Xiong et al.(2020)] to
encode molecules with a readout function, in order to obtain a graph representation
for each molecule. Each GNN of Figure 4.2 represents one Attentive FP architecture,
composed of three GNN layers perform message passing, a GRU that updates the state
vector of the nodes, and finally a readout block consisting in two attentive pooling
layers. We used the python packages dgl-life [Li et al.(2021)] and PyTorch [Paszke
et al.(2019)] to implement the corresponding architecture.

During the training phase, we chose to minimise the Binary Cross Entropy 4.5 of
the concatenated predicted outputs:

BCEpy, ŷq “ ´
1
N

N
ÿ

i“1
ryi logpŷiq ` p1 ´ yiq logp1 ´ ŷiqs (4.5)

Where:

• y is the ground truth (true interactions)

• ŷ is the predicted probabilities

• N is the batch size

The weights of all blocks are updated simultaneously by back-propagating this loss.
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Figure 4.2: Architecture of IFP Predictor for a given protein. I illustrate the archi-
tecture for two residue-specific blocks, corresponding to residues GLN69 and TYR100.
The graph embedding obtained from the shared block is concatenated to each of the
graph embeddings inside the residue-specific blocks, which then go through a MLP to
output predicted interactions for each residue. The aggregation of those outputs cre-
ates the predicted IFP.
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4.2.2 Training Dataset

The objective of this study is to develop a computational model capable of predicting
the interactions between small molecules and a given protein pocket. To train this
model, a comprehensive dataset containing crystallographic poses of diverse molecules
within the target protein pocket would be required. Unfortunately, such a dataset is
not readily available due to the extensive resources required for its compilation. An
alternative approach involves leveraging docking datasets, wherein large collections of
molecules have been virtually docked into the protein pocket. These datasets can be
used to train the IFP prediction models.

Furthermore, using these docking datasets for model training is consistent with our
prior use of docking poses to build the Interaction Fingerprints Profile.

A few ultra-large docking libraries have been published in the literature [Lyu et al.(2019),
Stein et al.(2020),Sadybekov et al.(2020),Gorgulla et al.(2020)], gathering several mil-
lions to more than a billion compounds. Before handling such large datasets, we per-
formed a proof of concept of the proposed approach. Indeed, in order to evaluate the
interest of IFPP-derived similarity measures for solving scaffold hopping cases in the
LH benchmark, we already performed docking of more than 70,000 molecules in 37
proteins pockets. Therefore, we started from these available docking results to train
the IFP algorithm models.

We chose the protein MDM4 from the protein panel, a human protein contributing
to TP53 regulation, because of its relatively small binding site involving few residues,
as shown in Figure 4.3. The binding site comprises 23 residues, each can form up to
ten possible protein-ligand interactions with a molecule, so that the IFP to predict is of
length 230. The model trained on this dataset is thus composed of 23 residue-specific
blocks, each aiming at predicting how a molecule would interact with this residue, as
well as a shared block. More precisely, we train a multitask model that simultaneously
predicts the binary values of the 230 bits defining the IFP for the MDM4 protein (one
task corresponds to predicting one bit of the IFP).

The 71,856 molecules from the LH Benchmark are mostly decoys that cover a wide
chemical space, and do not contain any chemical series. Therefore, in a first draft, we
performed a 80/10/10 random split to create the train, validation and test sets.

4.2.3 Results

We trained the multi-task model to predict the IFP on MDM4 for 50 epochs. As
a metric to evaluate the model, we computed the Tanimoto similarity between the
predicted IFP and the true IFP (i.e. the IFP computed based on docking). This highly
interpretable metric is more informative than the BCE loss to evaluate the performance
of the model. We computed the Tanimoto similarity for molecules in the validation set,
for each epoch of the training. We observed that this metric consistently converged, as
well as the loss, to a low value (median of 0.3 at best, 1 being the maximum), even when
changing different hyperparameters of the model (embedding size of blocks, number of
GRU steps, etc).

Considering the nature of the IFP vector, where molecules usually are involved in
around ten interactions with proteins, therefore displaying around ten "on" bits, we
argue that the model was able to learn some information. Indeed, predicting a random
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Figure 4.3: Protein MDM4 with its bound ligand (PDB ’6q9w’). The dark blue residues
are the amino acids comprised in the binding site.

IFP would result in a Tanimoto similarity near 0. However, the low value obtained,
even when evaluating on the validation set, indicates that this approach is not reliable.
We discuss the possible reasons that may prevent efficient training of the model in the
next subsection.

4.2.4 Limits

We tried several strategies to improve learning of the model, changing the hyperparam-
eters and the architecture. In particular, increasing the number of model parameters
did not lead to overfitting the data, which indicated that this approach may be flawed
because of two reasons.

Too many tasks? With a large number of tasks (230), the model architecture be-
comes complex, leading to increased computational requirements. The model needs to
simultaneously learn representations for each task. This can result in slower conver-
gence and problems in finding an optimal solution. Besides, having too many tasks can
decrease the model’s ability to generalize well to unseen data, as it may focus too much
on each task rather than learning robust features.

Lack of Data. Although the network architecture may not be optimal, the low pre-
diction performances appears to be probably due to the lack of data. Indeed, the 71k
available training points in our study appears to be insufficient to train a 230-multitask
prediction model. To tackle this issue we would need datasets comprising millions
of molecules. Even if such data exist [Lyu et al.(2019), Stein et al.(2020), Sadybekov
et al.(2020), Gorgulla et al.(2020)], they are related to a handful of proteins, involve
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non overlapping chemical spaces and are obtained using different docking protocols and
softwares. In the context of predicting the Interaction Fingerprints Profile, one would
require several models trained on homogeneous data, i.e. the same molecules docked
inside different proteins with the same protocol and software, so that the predictions
of IFPs are consistent from one model to another.

Unfortunately, such datasets do not exist. Building them would require several
million of dockings in many different proteins, since the ability of the IFPP to solve
scaffold hopping increases with the size of its protein panel (see 3.1.3). We argue
that the computational cost of building such a collection of datasets is too high for the
reward, particularly when lacking proof of concept for this approach.

In the next section, we propose an alternative method that implements the idea that
isofunctional molecules are expected to be close in the space of the IFPPs, although far
in a space defined according to their chemical structure, without computing the IFPP
itself. This leverages the computation limitations, allowing pre-screening of very large
compound libraries.

4.3 Predicting IFPP Similarity through Metric Learning
We proposed to solve scaffold hopping problems by searching for molecules with similar
IFPPs to that of a reference hit molecule, which requires to compute these IFPPs.
One idea to bypass this calculation would be to train a ML algorithm that predicts
the similarity of molecules in the space of IFPPs, without calculation of the IFPPs
themselves. This approach uses concepts introduced in the domain of Metric Learning.

4.3.1 Metric Learning

Metric Learning is a subfield of ML which principle is to approximate a real-valued
metric through an algorithm trained on available examples. The key idea behind metric
learning is to transform the original feature space into a new space where the distances
between data points are more meaningful, accessible or discriminative for the specific
task at hand.

Its goal is to define a distance measure that can accurately capture the similarity or
dissimilarity between pairs of data points in a given dataset. In practice, this distance
metric is often learned in a supervised or semi-supervised manner, where the model is
trained on labeled or pairwise similarity information. The learned metric is then used
to compute distances or similarities between data points.

This strategy has been applied in many fields, from face recognition [Liu et al.(2018)]
to representation learning [Kim et al.(2019)]. Recently, Deep Neural Networks (DNN)
have been employed for this purpose: they are trained to learn an embedding space in
which the distance between points mimics the real-valued metric in the original space.

The three important factors of Metric Learning architectures are:

• The structure of the model: not all structures are compatible with Metric Learn-
ing, and some may depend on the choice of the loss function.

• The loss function: as with any task, the loss function drives the training phase.
It is prominent for the architecture as it serves to map similar data points closer
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together and dissimilar data points farther apart in the learned embedding space.

• The sampling protocol: the accuracy of the model depends on the discriminating
power of the samples that are presented. Even a state of the art model will have
limited learning ability if provided with informative-less examples.

In our case, starting from the 2D structure of molecules as input, a Metric Learning
approach would learn a new representation of the molecules such that, in this abstract
space, the similarity between two molecules matches that of their similarity in Inter-
action Fingerprint Profiles. The learned embedding space serves as a surrogate of the
IFPP space and can be interpreted as a dimension reduction of the IFPP.

4.3.2 Model Architecture
Siamese Networks

We chose a simple architecture that relies on the same principle as Siamese Net-
works [Koch et al.(2015), Bromley et al.(1993)]. This architecture consists in twin
networks that take distinct inputs, here two molecules, and output representations
for each input, for which similarity or distance metrics can be computed. Note that
the twin networks share the same weights (they are identical), so that two identical
molecules will be identical in the feature space, and thus, their distance in this space
equals zero. Figure 4.4 displays the global architecture that was adopted.

Graph Neural Network for molecule embedding

We used Attentive FP, a Graph Neural Network (GNN) using the attention mecha-
nism proposed by [Xiong et al.(2020)] to encode molecules with a readout function to
obtain a graph representation for each molecule. Initial state vectors of length 128 for
each node and edge are obtained with a fully connected input layer. Then, three GNN
layers perform message passing on the node embeddings using an attention mechanism
to include local information of the relevant neighbouring atoms. The message passing
mechanism relies on a context vector incorporating neighbouring node and edge em-
beddings that goes through a gated recurrent unit GRU that updates the state vector
of the node. To get the final embedding of the molecule, an initial molecule state vec-
tor is obtained by summing all node embeddings. Then, a readout block consisting in
two attentive pooling layers is applied. In each pooling layer, a context vector of the
molecule is computed using an attention mechanism on all node embeddings, which
goes through a GRU that updates the molecule embedding. Finally, we get a graph
embedding of length 256.

We used the python packages dgl-life [Li et al.(2021)] and PyTorch [Paszke
et al.(2019)] to implement the corresponding architecture.

Training the DL model with a Loss function

The DL model is trained so that, in the learned feature space, the similarity between
embeddings of molecules is similar to that computed with the IFPP of molecules.

Given a set of N molecules of known IFPP, we can define NˆpN´1q

2 pairs, and
compute their IFPP similarity, defined as the Tanimoto coefficient of their fingerprints,
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Figure 4.4: Illustration of the network architecture. A Siamese Neural Network is used
to get the graph embeddings of pairs of molecules using Attentive FP. The GNN is
composed of an input layer, node embedding layers and graph embedding layers. The
similarity between molecules in the latent space are compared to their similarity in the
IFPP space to compute the loss and train the model, as illustrated by the red arrow.

as above. In addition, for each pair, the DL model provides two graph embeddings
(GE), for which we can also compute a similarity according to the following formula:

Similarity GE “
1

1 ` dEuclidean
(4.6)

where dEuclidean is the euclidean distance between the graph embeddings of a pair of
molecules.

Training our DL model boils down to matching these two similarity measures.
Therefore, we choose to compute the Root Mean Squared Log Error (RMSLE) be-
tween these two quantities, and use it as a part of the cost function to train our model:

RMSLE “

d

1
n

n
ÿ

i“1

´

log p1 ` Similarity GEq ´ log p1 ` Similarity IF P P q

¯2
(4.7)

which can be rewritten as:

RMSLE “

d

1
n

n
ÿ

i“1

´

log 1 ` Similarity GE

1 ` Similarity IF P P

¯2
(4.8)

Where n is the batch size. This loss can be broadly interpreted as the relative error
between the predicted and the actual similarities.

We also included the Kullback-Leibler divergence (DKL) to the RMSLE loss as
a regularisation term to encourage the posterior distribution to be close to the prior
distribution [Kingma et Welling(2022)]. Therefore, the final loss used to train the model
is defined as:

Loss “ RMSLE ` DKL (4.9)
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4.3.3 Training Dataset

The model requires a training dataset of pairs of molecules with known IFPP.
In subsection 3.2.1, we already computed the IFPPs for all actives and 144 ˆ 499 “

71, 856 decoys in the LH benchmark. From the 71, 856 decoys, we randomly picked
60, 000 molecules to define the training set, and 10, 000 molecules to define the valida-
tion set, and the network was trained as following. Pairs of molecules are formed during
the training phase in each batch. We chose 64 as the batch size, so for each batch there
are 64ˆ63

2 “ 2016 pairs. Each epoch consists in 937 batches, leading to 1, 890, 000 pairs
formed at each epoch of the training. A learning rate of 0.0001 was used for Adam
optimisation algorithm. We performed 200 epochs and kept the model with the lowest
validation loss. Pairs are also formed inside batches for the validation, thus the model
is evaluated on 10,000

64 ˆ 64ˆ63
2 “ 315, 000 pairs. The size of graph embedding was set at

256 to encompass the intricacies of the IFPP.
This allowed to train the model on pairs of molecules that are not considered with

the LH benchmark. In this benchmark used to explore the efficacy of molecular rep-
resentations, decoys and unknown actives are ranked according to their similarity with
the known actives. Therefore, a training dataset containing only pairs of decoys ensures
that the model is trained without any information about the actives, i.e. without using
any pair of molecules taken into account for ranking. This limits potential bias in per-
formance evaluation. Although the model will have seen decoys pairs during training,
it will be tested only on pairs that include an unseen active molecule.

Figure 4.5 displays the evolution of the loss during training. The loss on the valida-
tion set is decreasing with the number of epochs, and seems to have reached a plateau.
The training loss is still decreasing, indicating that the model is beginning to overfit.
We chose to keep the weights of the model with the smallest validation error.

Figure 4.5: Evolution of both the training and validation losses in the logarithmic scale
with number of epochs.

Once trained, this model can be employed to screen large compound libraries, al-
lowing replacement of the expensive calculation of the IFPP by a quick inference of
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molecule embeddings, from which a predicted IFPP similarity is computed.

4.3.4 Performance of the Metric Learning Approach on LH Bench-
mark

The proposed DL model was evaluated on the LH benchmark to assess its ability to
solve scaffold hopping cases. The protocol used to rank molecules is similar to that
described in subsection 3.2.1:

• For each scaffold hopping pair, one of the ligand is set as the known active and
the other, the unknown active, is joined to 499 decoys.

• The DL model is used to compute molecule embeddings.

• According to this embedding, the similarities of decoys and unknown active with
respect to the known active are computed.

• Decoys and the unknown active molecules are ranked according to their similarity
with the known active.

• The above steps are repeated by switching the active and unknown active roles
to provide two scaffold hopping problems per pair of actives.

Figure 4.6 gathers the CHC of the predicted IFPP similarity measure, in addition
to those of other similarity measures considered above.

As expected, the predicted IFPP similarity does not reach the performance of the
similarity measure based on the true IFPP representation. We might argue that adjust-
ments during the training phase and tuning of the model architecture may improve the
performances. Still, this relatively simple model displays performances that reach those
of the 3D Pharmacophore, while being much faster. Indeed, the 3D pharmacophore de-
scriptors require computation of conformers and alignment of pharmacophores, leading
to heavy calculations that are hardly compatible with screening of very large compounds
libraries. On the contrary, once trained, the proposed Metric Learning approach quickly
infers IFPP similarities, allowing large scale virtual screening campaigns. When screen-
ing very large compound libraries (millions of molecules), this approach could be used
as a fast pre-screening campaign, keeping the best few percent ranked molecule. The
top-scoring molecules (up to hundreds of thousands of molecules) could be screened
based on the computed IFPP representation. Note that in real-case applications, this
representation could be used as input of any ligand-based approach, and not only with
the simple similarity measure used in the present study.



4.3. Predicting IFPP Similarity through Metric Learning 93

Figure 4.6: Results on the LH benchmark. The cumulative histogram curves of each
similarity-based method are plotted in a). A zoom of the same graphs is provided in b).
Table c) displays the percentage of successful scaffold hopping problems for molecular
descriptors according to a rank of the unknown active in the top 5%.
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4.3.5 Conclusion

The definition of the Interaction Fingerprints Profile, its performance as well as the
Metric Learning framework were gathered into an article [Pinel et al.(2024)] that is
currently being reviewed:

P. Pinel, G. Guichaoua, N. Devaux, Y. Gaston-Mathé, B. Hoffmann, V. Stoven
(2024), A molecular representation to identify isofunctional molecules.

doi:10.1101/2024.05.03.592355 (Currently in review.)

Based on the LH benchmark we demonstrated that Metric Learning can be applied
to make accessible the costly IFPP thanks to simple heuristics. Indeed the architecture
retained as well as the training protocol for the model are transparent and still leads
to decent performances. In the case of the IFPP similarity predictor, its performance
surpasses those of 2D baseline methods, and are as accurate than 3D Pharmacophores, a
state of the art method for solving scaffold hopping in a ligand-based context. However,
with a success rate 4.9% under the true IFPP representation, we argue that there is
room for improvement.

As area of progress for the Metric Learning model we can think of different training
protocols. Here, we chose to train the models using pairs of molecules, but other ap-
proaches have been described in the literature, for instance triplets of molecules [Coupry
et Pogány(2022),Koge et al.(2021)]. The idea is to form triplets of molecules (anchor,
positive, negative) within batches so that the two first molecules (anchor, positive) of
the triplets are closer in terms of similarity than the pairs (anchor, negative) by a mar-
gin to be defined. That way, this Triplet model learns to distinguish between similar
and dissimilar pairs.

However, [Gong et al.(2018)] argues that Siamese and Triplet networks neglect the
structural information of training samples in each training step. During training, tradi-
tional Metric Learning methods update the model parameters based solely on the simi-
larity relationships between pairs or triplets of examples within a single batch, without
considering the structural information present in the entire dataset. This approach can
neglect important information about the relationships between different samples, par-
ticularly when dealing with limited training data. Forming training examples results
in a polynomial growth of training pairs/triplets which are highly redundant and less
informative.

To address those challenges, other strategies resulting from different losses have
been designed, such as the clustering loss introduced by [Song et al.(2017)]. It aims
at clustering similar samples based on structural information. Besides, it does not
require the training data to be preprocessed in a rigid paired format. Another possible
approach has been developed by [Wang et al.(2019)]. They defined the multi-similarity
loss, which aims to collect informative pairs, and weight these pairs through their own
and relative similarities. It enables to reduce the computational burden of assembling
pairs while limiting redundant information.

The choice of the loss is critical in Metric Learning. It drives the sampling method
followed to train the model. In this subsection, we chose to use a simple Siamese Net-
work architecture that still displayed promising performance. By employing a more
suitable loss function, increasing the size of the dataset (i.e. compute IFPPs for ad-



4.4. Evaluation on LIT-PCBA 95

ditional molecules) and developing sampling strategies to avoid redundancy, such a
performance could be further improved.

4.4 Evaluation on LIT-PCBA
To overcome the cost limitation of IFPP, we proposed to leverage a Metric Learning
approach to predict the IFPP similarity to the known active, which allows pre-screening
of large molecular databases at a much lower computational cost. In a second step,
screening using the computed IFPPs could be performed on pre-filtered, and thus
reduced, chemical libraries.

In the previous section, the interest of the IFPP representation was assessed accord-
ing to the performance of its corresponding similarity measure on the LH benchmark.
However, we would like to point that the proposed IFPP molecular representation is
meant to be used as input in more sophisticated ligand-based method. Indeed, in real-
life applications, unlike in this benchmark, several known active and inactive molecules
would usually be available for the target of interest. Encoding molecules with the IFPP
would allow to train QSAR or ML algorithms dedicated to help solving scaffold hopping
problems.

We illustrate this principle in the present section, and show how the IFPP Similarity
Predictor could be used in realistic virtual screening setting, based on the LIT-PCBA
benchmark [Tran-Nguyen et al.(2020)].

4.4.1 Dataset Description
LIT-PCBA was designed for both ligand- or structure-based virtual screening, and ML.
It was assembled from processed dose-response PubChem bioassays [Wang et al.(2009)]
to remove false positives and assay artifacts, and gather active and inactive compounds
within similar molecular property ranges. The final dataset comprises active and inac-
tive datasets of various sizes for 15 different targets. The dataset mimics experimental
screening decks in terms of hit rate (ratio of active to inactive compounds). Addition-
ally, each target is associated with 1 to 15 template PDBs for structure-based virtual
screening.

Another interest of the LIT-PCBA dataset is that training and validation splits
have been created using the asymmetric validation embedding (AVE) method [Wallach
et Heifets(2018)]. It limits bias by measuring the pairwise distance in chemical space of
active and inactive molecules in the training and validation sets to assemble the splits.

The LIT-PCBA dataset in summarised in Table 4.1.
The Enrichment Factor (EF) serves as the standard metric for evaluating the per-

formance of methods in retrieving active compounds. It quantifies the degree of en-
richment of active molecules within the top X% (typically the top 1%) compared to
random selection. This metric is particularly informative and realistic, mirroring the
scenario in real drug discovery projects where only the top-ranked molecules undergo in
vitro testing. Hence, it provides valuable insights into the retrieval of active compounds
among the tested molecules. It is computed using following formula:

Enrichment Factorx% “
Number activestop x%

Number moleculestop x%

Number moleculesdataset

Number activesdataset
(4.10)
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Target Target Name Number
PDBs

Actives
Validation

Actives
Training

Inactives
Validation

Inactives
Training

ADRB2 Beta2 adrenergic receptor 8 4 13 78,078 234,363
ALDH1 Aldehyde dehydrogenase 1 8 1,343 4,032 27,088 77,606

ESR1_ago Estrogen receptor alpha 15 3 10 1,284 4,188
ESR1_ant Estrogen receptor alpha 15 25 77 1,176 3,711

FEN1 Flap endonuclease 1 1 91 277 88,612 266,552
GBA Glucocerebrosidase 6 41 125 73,636 222,039
IDH1 Isocitrate dehydrogenase 14 9 30 90,287 271,537

KAT2A Histone acetyltransferase 3 48 146 86,750 261,411
MAPK1 Mitogen-activated protein kinase 1 15 77 231 15,657 46,972

MTORC1 Mechanistic target of rapamycin 11 24 73 8,267 24,729
OPRK1 Kappa opioid receptor 1 6 18 67,443 202,362
PKM2 Pyruvate kinase muscle isoform 2 9 136 410 61,467 184,143

PPARG Peroxisome proliferator-activated receptor γ 15 6 21 1,227 3,909
TP53 Cellular tumor antigen p53 6 16 60 981 3,126
VDR Vitamin D receptor 2 165 498 66,494 199,906

Table 4.1: Description of LIT-PCBA dataset. We removed some duplicated molecules
present in the bioassays.

An EF of 1 means that the method is no better than random picking.
LIT-PCBA has been extensively used in the literature to evaluate performances

of various structure-based or ML approaches [Berenger et al.(2021), Cai et al.(2022),
Brocidiacono et al.(2024)]. The limited performances obtained (median EF1% of 0.0
when using the docking software Gold [Berenger et al.(2021)] on the validation set)
demonstrate how difficult this dataset is.

Note that though LIT-PCBA was not built as a scaffold hopping benchmark, as it
integrates actives of similar chemical structure and no information on binding modes
is available, it still provides a suitable way to evaluate the ability of IFPP in retrieving
active molecules.

However, to avoid docking the 2.6 millions molecules of LIT-PCBA in 37 proteins
to build their true IFPP, we evaluated the ability of our IFPP Similarity predictor to
enrich the top ranked molecules in actives. The decoys from the LH benchmark have a
priori nothing in common with molecules of LIT-PCBA, as they originate from distinct
databases, and were selected through different processes. Hence, this dataset is also a
way to test the domain adaptability of the IFPP Similarity predictor, as the molecules
it will perform inference for should be from a chemical space remote from its training
set.

Indeed, we used the UMAP algorithm (Uniform Manifold Approximation and Pro-
jection) [McInnes et al.(2020)] to visualise the overlap of chemical spaces between decoys
of the LH benchmark and molecules of LIT-PCBA for each of the 15 targets. This non-
linear dimension reduction algorithm consists in learning the manifold structure of the
data and finding a low dimensional embedding that preserves the essential topological
structure of that manifold. We used the Tanimoto similarity of the Morgan fingerprints
to evaluate the distance between molecules.

Figures 4.7 and 4.8 display the overlap in chemical spaces between decoys of the
LH benchmark and molecules from 2 datasets of LIT-PCBA: MAPK1 and ESR1
antagonist. The other 13 UMAP representations are provided in Appendix C. They
show very little overlap, demonstrating that molecules used to train the IFPP Similarity
Predictor are from distant chemical spaces to those of LIT-PCBA. Thus, LIT-PCBA
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is outside of the theoretical applicability domain of the IFPP Similarity Predictor,
and provides an interesting dataset to assess the generalisation properties of our IFPP
Similarity Predictor.

Figure 4.7: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from MAPK1 dataset.

We assessed the performance of our approach through similarity searching and
predictive models as described in the following subsections.
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Figure 4.8: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from ESR1 antagonist dataset.

4.4.2 Similarity Searching

For each target of the dataset, between one and 15 template structures are provided,
along with their respective ligands, which are absent from both the training and vali-
dation datasets. These ligands can serve as reference actives to rank other molecules
based on their similarity, according to various encodings, as performed with the LH

hopping benchmark.
Docking was conducted in the original article using Surflex-Dock v.3066 [Jain(2007)]

on the available crystallographic structures, and molecules were ranked according to
their docking scores. The structure-based approach resulted in low enrichment factors
at 1%, averaging 1.8 across the 15 targets. We assessed ligand-based methods to deter-
mine whether they yield higher enrichment of active compounds among the top-ranked
molecules. We used Morgan Fingerprints as the baseline method, wherein molecules
are ranked based on their Tanimoto similarity to the reference ligands. For each protein
of LIT-PCBA, we also performed such similarity searching experiments based on the
predicted IFPP Similarity described in Section 4.3, and ranked molecules accordingly,
using in turn each ligand as known active.

Figure 4.9 and Table 4.2 display the enrichment factors at 1% of the considered
methods across all 15 targets. The low enrichment factors obtained illustrate how
difficult this benchmark is. Still, the IFPP Similarity prediction shows better perfor-
mances than docking, while only using information about one active. However, the
higher performances on average of the Morgan fingerprints mitigate those encouraging
results.

Nevertheless, due to the high imbalance between the number of active and inac-
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tive molecules across the targets of LIT-PCBA, we argue that computing the average
enrichment factors to compare methods is troublesome and not really reliable as the
EF1% do not vary on the same scale across proteins. Rather, we propose to count
the number of times a method performed better than others considering the same ref-
erence ligand. That way, we can compare broadly different methods in enriching the
top molecules in actives. Out of the 129 similarity searching experiments, the IFPP
Similarity prediction outperforms the Morgan fingerprint 53 times, and is beaten by
the latter 49 times. Globally, both methods display the same performances, and both
outperforms docking on most experiments.

Figure 4.9: Enrichment Factors for similarity searching experiments across LIT-PCBA
proteins. For each protein, between 1 and 15 experiments were conducted using the
reference ligands in the available PDB structures.

Method Mean Standard Deviation Median
Docking 1.81 2.86 1.033

Morgan Similarity 3.58 5.05 1.459
IFPP Similarity prediction 2.40 2.82 1.567

Table 4.2: Mean, standard deviation and median enrichment factors at 1% of tested
methods across all similarity searching experiments.

The rather good performances of the Morgan fingerprints can be explained by the
fact that this dataset is not a scaffold hopping benchmark, and some actives in the train-
ing or validation sets are closer to the reference ligands than most inactive molecules.
Indeed, we computed the 2D structure similarity (using the Morgan Fingerprint) be-
tween the actives in the top 1% of the 3 method and the reference ligands.
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Figure 4.10 and Table 4.3 display the structure similarity between top actives and
reference ligands. Docking retrieves actives belonging to the most remote chemical
spaces from the known ligands. It confirms the property we described in 1.4.3: docking
is able to handle various chemical spaces, and its applicability domain is theoretically
infinite in the chemical space. Its poor performances overall could be explained by an
under-calibrated docking protocol, or poor quality structures.

The actives retrieved by the IFPP Similarity Predictor are consistently of low struc-
tural similarity to the reference ligands, confirming that this representation can retrieve
actives from distant chemical space. It catches actives that are not identified by Mor-
gan fingerprints, illustrating that combining the methods could help retrieve even more
active compounds.

Figure 4.10: Structure similarity between top actives identified by the methods and
reference ligands across LIT-PCBA proteins.

Method Mean Standard Deviation Median
Docking 0.08 0.04 0.08

Morgan Similarity 0.20 0.09 0.18
IFPP Similarity prediction 0.14 0.10 0.11

Table 4.3: Mean, standard deviation and median structure similarity between top ac-
tives and reference ligands of tested methods across all similarity searching experiments.
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4.4.3 Predictive Models
As outlined in subsection 4.4.1, separate training and validation splits have been con-
structed for every protein in LIT-PCBA. This facilitates the comparison of models
trained on the training sets and assessed on the validation sets. Such studies have been
conducted in several articles in the literature [Berenger et al.(2021), Cai et al.(2022)].
Especially [Cai et al.(2022)] compared different machine and DL frameworks on LIT-
PCBA. Unfortunately, only ROC-AUC were computed on the models, and we argue
that considering how imbalanced LIT-PCBA datasets are, with far more inactive than
active molecules, it is not the most suited way to compare different approaches. Indeed,
a dummy model classifying all molecules as inactive would get a high ROC-AUC while
not being relevant. Again, we prefer to use the enrichment factor at 1% to confront
methods as it is more informative as to what might be obtained in real-life experiments.

In this subsection, we illustrate the practical application of the IFPP Similarity
Predictor in retrieving active compounds from datasets containing various active and
inactive molecules for specific targets of interest. The Metric Learning model generates
a graph embedding based on an input molecule. Up to this point, we have calcu-
lated the similarity of graph embeddings (refer to Equation 4.3.2) between molecules
to rank them. However, this graph embedding can also be interpreted as a dimensional
reduction of the IFPP, and serves as a molecular representation. This molecular repre-
sentation, which we call in the following IFPP ’Predicted’ to simplify, can be employed
as input for ML models tasked with predicting activity.

[Cai et al.(2022)] compared different Machine and Deep Learning architectures
combined with different molecular representations over the LIT-PCBA benchmark, and
showed that DNNs with Morgan Fingerprints had one of the highest ROC-AUC overall.
We kept the Morgan fingerprints as baseline molecular representation to compare the
IFPP Predicted to, as it showed to perform the best combined with predictive models.

We chose basic Machine and Deep Learning frameworks to compare those repre-
sentations: Deep Neural Networks (DNNs) with three layers as in [Cai et al.(2022)]
and Logistic Regression. Indeed, the latter predicts the probability of belonging to a
particular category, either active or inactive, and has not been tested yet on LIT-PCBA.

For each molecular representation, we trained a Logistic Regression model and a
DNN for each target of LIT-PCBA using its training set. The training set was further
split into two separate sets: one for the training (90%) and one as validation (10%)
to monitor the generalisation power of the model during the training phase before
evaluation on the testing set (also called validation set in [Tran-Nguyen et al.(2020)]).
Thus, we conducted NumberRepresentations ¨ NumberAlgorithms ¨ NumberP roteins “ 2 ¨

2 ¨ 15 “ 60 training experiments. We also performed a hyperoptimisation phase for
each experiment to select the best hyperparameters for each model, as done in [Cai
et al.(2022)]:

• For Logistic Regressions, the best C (inverse of regularization strength) was sam-
pled out of a Uniform Distribution Up´4, 2q ;

• For DNNs, we optimised several hyperparameters:

– Weight decay for Adadelta backpropagation algorithm with a Uniform Dis-
tribution Up0, 0.01q ;
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– Dropout for all layers with Uniform Distribution Up0, 0.3q ;
– For each of the three layers, the number of neurons are chosen from the set

{64, 128, 256, 512} ;

• 50 hyperoptimisation steps were conducted.

We used the Python packages hyperopt for the hyperoptimisation phase, scikit´learn
for Logistic Regressions models and Pytorch for the DNNs models.

We gather the results of all experiments in Figure 4.11. Molecules of the testing
sets were ranked according to their probability of being active, and we calculated the
resulting EF1%. Note that since protein targets of LIT-PCBA have various active rates,
models have to be compared column-wise. Enrichment factors at 1% from one protein to
another are not comparable because they do not evolve on the same scale. Overall, the
best combination is the Morgan fingerprints with Logistic Regression, which exhibited
best performance overall on 5 targets (FEN1, GBA, MAPK1, PKM2, VDR). It
also ties at first place on 2 other targets (IDH1, MTORC1). For Logistic Regression
models, none beat those with Morgan fingerprints. Still, models using IFPP Predicted
ties those of the Morgan fingerprints for a few proteins (ESR1 antogonist, IDH1,
PPARG, TP53).

Interestingly, the DNN models with IFPP Predicted challenge the Logistic Re-
gression models with the Morgan, achieving best performance overall on 3 targets
(KAT2A, PPARG, TP53) and tying at best for 4 proteins (ESR1 antogonist,
IDH1, MTORC1). The former combinations still have lower enrichment factors on
6 other (ALDH1, FEN1, GBA, MAPK1, PKM2, VDR).

One possible explanation of the results showing Morgan Fingerprints with Logistic
Regression outperforms other combinations is the fact that for some datasets, the ac-
tives in the testing set are from close chemical spaces to the actives in the training set.
We illustrate this hypothesis in the following. For the two best combinations (DNN
with IFPP Predicted and Logistic Regression with Morgan), we computed the struc-
ture similarity (expressed by their Morgan fingerprints) between the retrieved active
molecules in the top 1% and the actives in the training sets. These similarities char-
acterise for each target how close the chemical space of found hits is to the chemical
space of the training set.

Figure 4.12 display the results. Models with IFPP Predicted show a tendency to
retrieve actives of remote chemical spaces from the original active molecules in the
training set. This property is especially true of the proteins GBA, IDH1, KAT2A,
PPARG and TP53. The Logistic regressions with Morgan tend to find actives with
high structure similarity to the known hits, indicating that they retrieved "easier" com-
pounds. However, in large-step scaffold hopping, we search for molecules of distant
chemical structures with biological activity. In this context, models with the IFPP
Predicted molecular representation tend to be better suited as the identified hits show
high structure dissimilarity compared to the known hits.

This study also illustrates that the models do not retrieve the same active com-
pounds. This suggests that in a purely hit discovery approach, combining molecular
representations could help identify more hits, and increase the enrichment factors.

To test this hypothesis, additional Logistic Regression models were trained using
concatenated inputs of Morgan fingerprints and IFPP Predicted embeddings for each



4.4. Evaluation on LIT-PCBA 103

Figure 4.11: EF1% of predictive models across LIT-PCBA proteins. The ratio of actives
in the validation sets are reported for each protein. We compared the combination of
different ML architectures (DNN or logistic regression) with different molecular repre-
sentation (Morgan fingerprint or IFPP ’Predicted’ from the Metric Learning approach).
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Figure 4.12: Structural similarity between actives retrieved by models and actives in
training set across proteins. The two best model combinations are considered: DNN
with IFPP Predicted and logistic regression with Morgan Fingerprints.

protein in LIT-PCBA. Once again, 50 hyperoptimisation steps were performed for each
model.

Comparison of Enrichment Factors are gathered in Figure 4.13. The results clearly
demonstrate that combining different descriptors undoubtedly increase the performances.
The Logistic Regression models that integrate both Morgan fingerprints and IFPP
Predicted outperform those relying solely on Morgan fingerprints for 5 targets (FEN1,
IDH1, KAT2A, OPRK1, PKM2), while being surpassed for only one target (ALDH1).
This aligns with the findings of [Cai et al.(2022)].
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Figure 4.13: EF1% of logistic regression when combining Morgan fingerprints and IFPP
Predicted across LIT-PCBA proteins.

4.4.4 Conclusion
Though LIT-PCBA is not a benchmark designed to address scaffold hopping, it pro-
vides a high quality dataset mimicking real virtual screening conditions for 15 protein
targets. Several complex DL architectures have been tested on it, and displayed limited
performances. In [Brocidiacono et al.(2024)], they computed the enrichment factors at
1% of their DL architecture BANANA, which combines the 3D pocket graph of the
protein with the molecule graph to predict affinity. This model performed modestly,
with a median EF1% of 1.81, comparable to another model that performs molecular
docking with DL, GNINA [McNutt et al.(2021)], with a median EF1% of 2.58.

Those performances are in the same range of the IFPP Similarity predictor (median
EF1% of 1.57), while only similarity searching was conducted. Besides, the complex
models described above might have used external information about the studied pro-
teins during their training phase, while for the latter only one active was used.

Based on the LIT-PCBA dataset, we illustrated the interest of the ’approximated’
representation of the true IFPP obtained through the Metric Learning approach. It
can quickly infer molecular representation for any molecule, which encodes prominent
information on activity that is comparable to state of the art methods, while being
uncorrelated. Hence, combining this molecular representation to others may help iden-
tify more hits, which is critical in Drug Discovery. Besides, its promising results on
this dataset outside from its theoretical applicability domain show it can handle var-
ious chemical spaces, even far from those used for its training: it has great domain
adaptability.
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In this PhD thesis, our primary focus was addressing a challenging task often faced
in the drug discovery process: solving large-step scaffold hopping problems, when the
3D structure of the protein target is unavailable or of poor quality. In this setting,
docking is not reliable, and only ligand-based approaches remain applicable. We chose
to tackle this demanding setting, because it represents a critical area where tailored
computational methods are required the most. The problem is to find biologically
active molecules displaying dissimilar structures to known hits for a protein target of
interest.

5.1 Results of the Thesis
5.1.1 LH Benchmark and its use to Evaluate Molecular Descriptors
Chapter 2 describes the iterative process employed to construct a publicly available
and well-characterized benchmark dataset for large-step scaffold hopping, in the con-
text of drug discovery. The methodology involved gathering pairs of ligands from
PDBbind [Wang et al.(2004b)] exhibiting dissimilar 2D structures but sharing similar
binding modes with the same protein, without a common substructure that is respon-
sible of akin interactions. The LH benchmark comprises high-quality and well char-
acterized 144 pairs of molecules that are clear examples of large-step scaffold hopping
cases. These cases were gathered from the PDBbind database, in order to ensure that
they were examples of isofunctional molecules. This benchmark is an open resource
that was missing in the community, to test new molecular encodings or new prediction
algorithms dedicated to that problem, and that was meant to be used in ligand-based
approaches. However, any docking algorithm could also be tested on this benchmark,
since 3D structures of the targets are also available for the 144 pairs. Overall, this
benchmark is a tool provided to the community in order to design and evaluate novel
strategies for solving large-step scaffold hopping. Note that the LH benchmark is not
a training dataset: no learning is possible due to the low number of actives, since it
contains only 2 active molecules per case.

For each of the 144 pairs, the LH benchmark also comprises 499 corresponding decoy
molecules that are used in the strategy proposed to evaluate molecular descriptors. For
each scaffold hopping case, the 499 decoys are as "far" from the two molecules of the pair
than these two molecules are from each other, for structure-based descriptors such as
Morgan fingerprints. Therefore, we proposed that, given one molecule of the pair (the
known active), ranking the other (the unknown active) among the 499 decoys according
to new descriptors, provided a means to evaluate the interest of these new descriptors for
solving scaffold hopping problems. The underlying idea was that, molecular descriptors
allowing to rank the unknown active among the best ranked molecules in terms of
similarity with respect to the known active, were well suited to solve these problems.

5.1.2 The Interaction Fingerprints Profile
In Chapter 3, a novel molecular representation called the Interaction Fingerprints Pro-
file (IFPP) was introduced, specifically designed for addressing scaffold hopping chal-
lenges. The IFPP aims to capture potential binding modes of molecules through dock-
ing experiments across a panel of diverse proteins. We showed that it outperformed
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the classical molecular representations on the LH benchmark.
Since IFPP descriptors contain information that is uncorrelated to classical repre-

sentations, combining the IFPP to other state-of-the-art encodings may lead to im-
proved success rates, as demonstrated when they were combined with 3D pharma-
cophore descriptors. The IFPP appears to be essentially a new string to the bow of
available methods for solving large-step scaffold hopping.

Furthermore, increasing the diversity and size of the protein panel was found to im-
prove the performance of the IFPP encoding. Additionally, for specific protein families,
selecting a panel of proteins from the same family could enhance the IFPP’s ability to
solve scaffold hopping problems, as shown for kinases. This provides a rationale for the
selection of proteins for the panel in the case of solving scaffold hopping for a target
belonging to an extensively described family.

However, the IFPP has a high computational cost, as it requires docking in multiple
protein pockets. While feasible for medium-sized chemical libraries, screening very large
libraries would induce significant computational burdens.

5.1.3 Predicting the IFPP Similarity between Molecules
To address this computational constraint, we developed a Metric Learning approach to
predict the IFPP similarity between molecules in Chapter 4, without computing the
IFPP themselves. We trained a model to learn a new representation of the molecules
such that, in the corresponding abstract embedding space, the similarity between two
molecules matches that of their similarity in Interaction Fingerprint Profiles. Though
imperfect, the model demonstrated performance comparable to the 3D pharmacophore
similarity on the LH benchmark, while not requiring any docking for its inference.
Hence, it offers a rapid, cost-effective screening solution for very large chemical libraries.

The interest of the approach was demonstrated using LIT-PCBA [Tran-Nguyen
et al.(2020)]. This high quality benchmark comprises active and inactive compounds
identified by HTS for 15 proteins and has shown to be extremely challenging in the
literature [Brocidiacono et al.(2024), McNutt et al.(2021), Berenger et al.(2021), Cai
et al.(2022)]. Despite operating beyond its theoretical applicability domain, the Met-
ric Learning model’s molecular embeddings proved competitive in retrieving active
compounds compared to sophisticated state-of-the-art methods. These embeddings,
whether utilised for similarity searching or employed as inputs for Machine Learning
algorithms, displayed promising performance.

Besides, when compared to the Morgan fingerprint, the standard molecular repre-
sentation for drug discovery, the Metric Learning model demonstrated enhanced diver-
sity in hit identification, highlighting its efficiency for scaffold hopping scenarios.

5.2 Perspectives
5.2.1 From Test Dataset to a Train Dataset for Scaffold Hopping
As mentioned above, the LH benchmark is not a training dataset, because it contains
only two active molecules per case. Therefore, it can only be used as a test dataset,
in order to evaluate new protocols that would be proposed to solve scaffold hopping
problems. In the era of Deep Learning and advanced predictive models, the creation of a
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benchmark comprising both training and testing datasets for scaffold hopping retrieval
would be a significant asset to the research community.

Assembling such a dataset presents challenges due to the scarcity of crystallographic
poses and the limited number of tested molecules. Additionally, careful filtering steps
would be required to avoid introducing bias in the chemical space of the dataset splits
for instance.

Nevertheless, chemogenomic methods stand out as interesting ML algorithms that
are able to use the LH benchmark as a test dataset. Indeed, chemogenomic algorithms
can be trained on external datasets of protein-ligand interactions, leveraging interaction
information available for any protein, in order to make predictions for a protein of
interest, even if this protein is orphan or has very few known ligands (1 known active,
for all cases in the LH benchmark).

5.2.2 Predicting the IFPPs

In Section 4.2, we described a method to predict interaction fingerprints for specific pro-
teins, which can be used to compute the IFPPs by concatenation the predicted IFPs.
This approach led to somewhat deceiving preliminary results, but it prompted us to
pursue the Metric Learning strategy that proved to be more promising. However, there
is an unexplored alternative worth considering. Recent literature has introduced Deep
Learning models capable of predicting the 3D poses of molecules within proteins [Kr-
ishna et al.(2024), Cai et al.(2024)]. Leveraging these models to predict the poses of
molecules within each protein in our panel, could enable our interaction detection al-
gorithm to build the interaction fingerprints within each protein. Concatenating these
results would then yield an alternative predicted IFPP.

While this approach may be slower than the Metric Learning method, it promises
greater precision. Moreover, expanding the protein panel’s size would be considerably
easier and wouldn’t require additional training, as those models are supposed to handle
any protein.

5.2.3 Combining Chemogenomics with (predicted) IFPPs

The considered chemogenomic model exhibited promising performances on the LH

benchmark, despite lack of any optimisation. This suggests that it still captures crucial
information for retrieving actives, despite its simple architecture. However, we argue
that the model could achieve better results by using better molecular descriptors as
input. In particular, using the IFPPs as molecular descriptors, instead of the Mor-
gan fingerprints (used in the present thesis) would be an interesting option to evaluate.
Alternatively, because of their computational cost, IFPPs could be replaced by the pre-
dicted IFPPs introduced in Chapter 4, since this representation successfully identified
hits of novel chemical structures on both the LH benchmark and LIT-PCBA. Although
not as efficient as the IFPP for the scaffold hopping problem, predicted IFPPs may be
an interesting option as input descriptors for chemogenomic algorithms, alone, or in
combination with classical descriptors such as Morgan fingerprints.

In [Guichaoua et al.(2024)], we developed a more sophisticated chemogenomic archi-
tecture using a larger and unbiased training dataset. This model achieved state-of-the-
art performance across various tasks, including active retrieval on the LH benchmark.
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Integrating this model with IFPP Predicted as the molecular representation could fur-
ther improve predictive performance and should be explored.

5.2.4 Perspectives on Metric Learning
In Section 4.3, we illustrated the interest of Metric Learning to reduce cost and com-
putation time of the IFPP. We already discussed the area of improvement of the ar-
chitecture in 4.3.5, including a better chosen loss, and a sampling method avoiding
redundancy.

However, the scope of Metric Learning goes beyond predicting the IFPP similarity:
it can be used to simplify any costly representation. This principle could be applied
to the 3D Pharmacophore fingerprint, which requires both conformer generation of
molecules, and the 3D alignment of molecules for comparison. Although some methods
are agnostic of this latter step, like [Berenger et Tsuda(2023)] that rely on autocorre-
lation, a mathematical function which renders an object rotation-translation invariant,
to build 3D pharmacophore fingerprints, they still suffer from long computation, which
limits their downstream use in virtual screening. Exactly as for the IFPP, we could
build models using Metric Learning to project molecules in a trained feature space that
accurately mimics the 3D Pharmacophore space. Once trained, it become effortless to
score molecules, which overcomes the scalability issue. More complex and costly molec-
ular representation could also be considered. For instance, with Metric Learning, we
could create an embedding space encoding quantum information of molecules by train-
ing a model to mimic the quantum-based similarity method introduced by [Al-Dabbagh
et al.(2015)].

Overall, the work presented in this manuscript illustrates that the important field
of scaffold hopping still presents many exciting challenges. However, it provides various
routes that could be further followed to help solving these problems in the context of
drug discovery programs.
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Abstract

Predicting drug-target interactions (DTIs) is crucial for drug discovery, and heav-

ily relies on supervised learning techniques. Supervised learning algorithms for DTI

prediction use known DTIs to learn associations between molecule and protein fea-

tures, allowing for the prediction of new interactions based on learned patterns. In this

paper, we present a novel approach addressing two key challenges in DTI prediction:

the availability of large, high-quality training datasets and the scalability of prediction

methods. First, we introduce LCIdb, a curated, large-sized dataset of DTIs, offering

extensive coverage of both the molecule and druggable protein spaces. Notably, LCIdb

contains a much higher number of molecules than traditional benchmarks, expanding

coverage of the molecule space. Second, we propose Komet (Kronecker Optimized
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METhod), a DTI prediction pipeline designed for scalability without compromising

performance. Komet leverages a three-step framework, incorporating efficient compu-

tation choices tailored for large datasets and involving the Nyström approximation.

Specifically, Komet employs a Kronecker interaction module for (molecule, protein)

pairs, which is sufficiently expressive and whose structure allows for reduced compu-

tational complexity. Our method is implemented in open-source software, leveraging

GPU parallel computation for efficiency. We demonstrate the efficiency of our approach

on various datasets, showing that Komet displays superior scalability and prediction

performance compared to state-of-the-art deep learning approaches. Additionally, we

illustrate the generalization properties of Komet by showing its ability to solve chal-

lenging scaffold-hopping problems gathered in the publicly available LH benchmark.

Komet is available open source at https://komet.readthedocs.io and all datasets,

including LCIdb, can be found at https://zenodo.org/records/10731713.

1 Introduction

Most marketed drugs are small molecules that interact with a protein, modulating its func-

tion to prevent the progression of a disease. Therefore, the development of computational

methods for the prediction of drug-target interactions (DTIs) has been an active field of

research in the last decades, intending to reduce the number of wet-lab experiments to be

performed for solving various problems related to drug discovery.

Among current computational approaches, we focus on chemogenomic DTI prediction

methods, i.e. methods that predict whether a (molecule, protein) pair interacts or not,

based on known DTIs in a reference database of interactions. In the present paper, we

formulate DTI prediction as a classification problem: (molecule, protein) pairs are classi-

fied as interacting (i.e. positive examples, labelled +1) or not interacting (i.e. negative

examples, labelled −1). Chemogenomic methods offer a global framework to predict drugs’

protein interaction profiles, or proteins’ drug interaction profiles, at large scales both in the
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molecule and protein spaces, which cannot be performed by other methods (mainly QSAR

and docking) directly. Therefore, chemogenomic methods make it possible to tackle impor-

tant problems in drug design. In particular, predicting a drug’s protein interaction profiles

allows for the prediction of deleterious off-targets responsible for unwanted side-effects and

potentially leading to drug withdrawal or beneficial off-targets that may be of interest to

treat other diseases thus offering drug repositioning opportunities. Conversely, the predic-

tion of a protein’s drug interaction profiles is an interesting tool to solve scaffold hopping

problems in the context of drug design1 .

Enhancing the performance of DTI predictions requires to use of ever-larger training

datasets and the development of Machine-Learning (ML) algorithms capable of scaling

to these dataset sizes. In this paper, we tackle these challenges by presenting a curated

large-sized dataset LCIdb and Komet, a GPU-friendly DTI prediction pipeline. These two

components complement each other, resulting in state-of-the-art performance achieved with

minimal use of computer resources.

2 State-of-the-art in chemogenomic approaches

Most chemogenomic DTI prediction methods rely on the global framework comprising three

main steps and presented in Figure 1. Therefore, we present a short review of state-of-the-art

approaches used in these three steps.

2.1 Step 1: Feature representations for proteins and molecules

Various methods2 have been designed to compute feature representations for proteins and

molecules. For molecules, several types of features are considered, as discussed in recent pa-

pers3,4 . They can globally be classified into: (1) string-based formats such as the Simplified

Molecular-Input Line-Entry System5 (SMILES), or the International Chemical Identifier6

(InChI); (2) table-based formats that represent the chemical graph of the molecule such as
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Figure 1: Global framework for DTI prediction in 3 key steps

the sdf format7 ; (3) feature-based formats that consist in vectors whose elements encode var-

ious molecular characteristics. They include Morgan fingerprints or Extended-Connectivity

fingerprints8 (ECFP), as well as 2D and 3D pharmacophore fingerprints as described in

the RDKit toolbox9 ; (4) computer-learned representations that are derived by neural net-

works and used to encode molecules in deep learning approaches. These representations

can be learned from recurrent neural networks or convolutional neural networks that use

SMILES representations as input10,11 . Graph convolutional networks have also been ap-

plied to 2D molecular graphs to learn small molecule representations12,13 , and strategies

to pre-train graph neural networks have been studied by Hu et al. 14 to compute molecule

embeddings. Similar to natural language models, Mol2vec15 and SMILES2vec16 adapt the

principles of the word2vec method17 to learn embeddings for molecular structures. Addi-

tionally, transformer-based models like MolTrans18 have emerged in this domain. Finally,

other learned representation methods such as X-Mol19 or MolGNet20 use AutoEncoder (AE)

techniques for molecular representation.

Similarly, proteins can globally be described by: (1) string-based representations corre-

sponding to their primary sequence of amino-acids; (2) vector-based feature representations,

where the elements of the vector are calculated according to various characteristics, as re-
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viewed in Zhu et al. 21 . Such representations include the classically-used composition, tran-

sition, and distribution (CTD) descriptors22 ; (3) computer-learned representations derived

by neural networks in deep learning approaches. In this context, protein features can be

acquired by a variety of deep learning architectures, including recurrent neural networks or

convolutional neural networks10,11 , as well as transformer models18 . As in natural lan-

guage models, protein embeddings can also be learned from pre-trained transformer-based

models on external tasks such as ESM223 , or auto-encoder models such as ProtBert24 and

ProtT5XLUniref5024 .

2.2 Step 2: Features for (molecule, protein) pairs

The second step of many DTI prediction pipelines consists of defining a representation for

(molecule, protein) pairs, thus defining a latent space for pairs. The method that is used to

define this latent space has a critical impact on the prediction performance, and a key as-

pect is that the features representing the (molecule, protein) pair should capture information

about the interaction, which is not fully achieved by simple concatenation between molecule

and protein features25 . Therefore, step 2 usually consists of a non-linear mixing of the pro-

tein and molecule embeddings, to better encode information about interaction determinants.

One common approach is to use the tensor product, which is equivalent to a Kronecker ker-

nel26,27 . Alternatively, in deep learning methods, the features for pairs can be learned from

an interaction module that consists of fully connected multi-layer perceptrons10,28–30 . Atten-

tion mechanisms applied to molecule and protein features constitute another option11,18,31 .

Then, the last layer of the network can be interpreted as an embedding for the (molecule,

protein) pairs.

2.3 Step 3: DTI prediction model

The third step consists of a supervised classifier that is trained in the latent space of

(molecule, protein) pairs, using a training dataset of positive and negative DTIs. These
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classifiers include tree-based methods32 and network-based inference approaches33 . In lin-

ear models, step 3 consists of the optimization of the weights applied to the pair features

calculated in step 2, according to a logistic loss, or a hinge loss for Support Vector Machines

(SVM)34 . For example, all methods of Pahikkala et al. 27 , Nagamine and Sakakibara 35 , Ja-

cob and Vert 36 , Playe et al. 37 rely on a linear model on a latent representation of pairs. In

deep learning chemogenomic algorithms, step 3 relies on the pair features determined by the

last layer of the neural network in step 2. The features’ weights are optimized based on a

loss function, typically binary cross-entropy, as the input progresses through the network in

a feed-forward manner. This approach is used in several recent papers10,11,18,28–31 .

2.4 Challenges in chemogenomic studies

Although different chemogenomic approaches have been proposed, as briefly reviewed above,

all require a training dataset of positive and negative (molecule, protein) pairs. Recent ML

chemogenomic algorithms have often been trained on small to medium-sized benchmarks

that present various biases. Indeed, most classical benchmark datasets are extracted from

a single biological database, and often favour drug and target families that have been more

widely studied, and for which many known DTIs have been recorded38,39 . Additionally,

Bagherian et al. 40 highlights that most datasets use negative DTIs randomly chosen among

pairs with unknown interaction status, and may therefore include false negative DTIs. One

suggestion to overcome this problem is to derive training datasets from interaction databases

that compile continuous values for binding affinities and choose stringent activity thresholds

to derive confident positive and negative pairs, as suggested by Wang et al. 41 .

In addition, learning chemogenomic models that are broadly applicable and can generalize

to many different families of proteins and drugs requires training on very large, high-quality,

verified and well-established DTI datasets. This appears to be an important bottleneck since

publicly available training datasets that meet these criteria are seldom.

However, training ML algorithms on very large datasets, potentially comprising hundreds
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of thousands of molecules and therefore DTIs, leads to challenges in terms of computation

times and memory requirements. In particular, the choice of the interaction module in

step 2 has significant implications for computation time and memory resources in large-sized

datasets. In the case of deep learning approaches, the complexity of neural network architec-

tures, and the size of parameter spaces, may also contribute to the computational expense.

Learning the interaction module requires iteratively adjusting the model parameters, leading

to time-consuming training phases.

Overall, there is a critical need for chemogenomic approaches that can scale to very large

datasets.

3 Contributions

In the present paper, we tackle the two important challenges mentioned above:

• in Section 4.2, we propose the Large Consensus Interaction dataset, called LCIdb

hereafter, a new very large and high-quality dataset of DTIs that was designed to

train chemogenomic ML algorithms for DTI prediction at large scale in the protein

and molecule spaces. In particular, our dataset comprises a much larger number of

molecules than commonly used datasets, offering a better coverage of the chemical

space. Additionally, we paid attention to limiting potential bias among negative DTIs.

• in Sections 4.3 and 4.4, we propose Komet (Kronecker Optimized METhod), a simple

yet efficient DTI prediction method that lies within the global pipeline presented in

Figure 1. This method incorporates specific computation choices that provide scala-

bility for very large training datasets, without compromising prediction performance.

We show that Komet competes with or outperforms state-of-the-art deep learning ap-

proaches for DTI prediction on medium-sized datasets, but that it scales much better to

very large datasets in terms of prediction performances, computation time, and memory

requirements (see Section 5.4).
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Finally, we illustrate the performance of Komet trained on LCIdb using DrugBank as

an external dataset for DTI prediction, and on a publicly available benchmark42 designed

to evaluate the performance of prediction algorithms in solving difficult scaffold hopping

problems.

Komet adopts the global three-step framework shown in Figure 1, which aligns with

recent computational pipelines, such as in Huang et al. 28 . However, Komet includes specific

choices whose principles are presented below, while mathematical details are provided in

Materials and Methods.

In step 1, molecule (resp. protein) features ψM (resp. ψP ) are computed based on the

distances of the considered molecule (resp. protein) to molecules in the training set, thus

leveraging ideas from kernel methods. However, when the number of points in the training set

becomes very large, the kernel matrix cannot be stored in memory. Therefore, from a small

randomly chosen set of reference landmark molecules (resp. proteins) that are extracted

for the training dataset, we use the Nyström approximation in addition to dimensionality

reduction to efficiently compute embeddings ψM (resp. ψP ) that approximate the feature

maps corresponding to the chosen molecule and protein kernels. The parameters of the

method are the numbers mM (resp. mP ) of molecule (resp. protein) landmarks, and the

dimension dM (resp dP ) of the molecule (resp. protein) embeddings. The impact of these

parameters is studied in Section 5.2.

In step 2, the interaction module consists of the tensor product between the protein and

molecule spaces. One of the motivations for using the tensor product is that it offers a

systematic way to encode correlations between molecule and protein features, independently

from the choice of these features. A potential issue with this approach, however, is that

the size of the resulting vector representation for the (molecule, protein) pair equals dMdP ,

and may be prohibitively large for computation time and memory. However, a classical

property of tensor products is their factorization between inner products between the two

tensor product vectors of molecules and proteins, called the Kronecker product. This allows
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to avoid the explicit calculation of the interaction embedding, thus addressing the challenges

posed by large datasets. Overall, as shown in Section 5, we found that this tensor product

representation efficiently captured information about features interactions that govern the

(molecule, protein) binding.

In step 3, Komet uses a simple SVM loss together with a BFGS optimization algorithm.

This allows to leverage the Kronecker factorization of pairs’ features, leading to a significant

speedup of the training. It is important to note that, in the proposed approach, steps 2 and

3 are executed simultaneously. This is made possible by avoiding the implicit calculation of

pairs’ features, thanks to the Kronecker interaction module.

Our method is implemented in an open source software, leveraging parallel computation

on GPU through a PyTorch43 interface, and is available at https://komet.readthedocs.io.

All datasets, including LCIdb, can be found at https://zenodo.org/records/10731713.

4 Materials and Methods

We first recall known and publicly available medium-sized DTI datasets that are used in the

present paper (Section 4.1), and describe the construction of our large-sized DTI dataset

LCIdb (Section 4.2). Then, we detail our computational approach for large-sized DTI pre-

diction with Komet (Sections 4.3 and 4.4), and present the methodology used to compare the

performance of Komet to those of a few state-of-the-art deep learning algorithms (Section

4.5). Finally, we introduce LH, a publicly available benchmark dataset for scaffold hopping

problems.

4.1 Medium-scale datasets

We first use medium-scale datasets to compare the performance of Komet to those of state-

of-the-art algorithms: BIOSNAP, BIOSNAP_Unseen_drugs, BIOSNAP_Unseen_proteins,

BindingDB, and DrugBank. The four first of these datasets are publicly available and were
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established in Huang et al. 18 . They are used in various recent studies28,44 . The last one is the

DrugBank-derived dataset established in Najm et al. 45 , from which we built an additional

set called DrugBank (Ext) to be used as an external validation dataset, as detailed below.

Huang et al. 18 and Singh et al. 44 proposed to train and compare the performance of

various DTI prediction algorithms based on splitting the datasets in training (Train), val-

idation (Val), and test (Test) sets according to a 7:1:2 ratio. We followed this scheme to

make fair comparisons. The number of drugs, targets, and interactions for all datasets used

in the present study is given in Table 1. In addition, the number of positive and negative

interactions across the Train, Val, and Test sets for all datasets used in the present paper is

detailed in Table 2.

BIOSNAP in its three prediction scenarios The ChGMiner dataset from BIOSNAP46

contains exclusively positive DTIs. Negative DTIs are generated by randomly selecting an

equal number of positive DTIs, assuming that a randomly chosen (molecule, protein) pair

is unlikely to interact. As proposed in Huang et al. 18 , we considered three scenarios that

are achieved based on different splits of BIOSNAP to build the Train, Val and Test sets.

The first scenario, referred to as BIOSNAP, corresponds to random splitting of the DTIs in

BIOSNAP. In the BIOSNAP_Unseen_targets scenario, the Train and Test sets do not share

any protein. The BIOSNAP_Unseen_drugs dataset follows a similar process for molecules.

The two last scenarios allow us to evaluate the generalization properties of the algorithm on

proteins or molecules that were not seen during training.

BindingDB-derived dataset The BindingDB database47 stores (molecule, protein) pairs

with measured bioactivity data. We used a dataset derived from BindingDB and introduced

by Huang et al. 18 , where BindingDB is filtered to include only pairs with known dissociation

constants (Kd). Pairs with Kd < 30 nM are considered positive DTIs, while those with Kd >

30 nM values are considered negative. This leads to a much larger number of negative DTIs

than positive DTIs. Although the resulting dataset does not include the whole BindingDB
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database, for the sake of simplicity, it will be called BindingDB hereafter.

DrugBank-derived datasets We used the dataset provided in Najm et al. 45 . This

dataset was built by filtering drug-like molecules and human protein targets in the Drug-

Bank database, adding an equal number of negative DTIs through balanced sampling. More

precisely, to avoid bias towards well-studied proteins for which many interactions are known,

negative examples are randomly chosen among unlabeled DTIs in such a way as to ensure

that each protein and each drug appear an equal number of times in positive and negative

interactions, using a greedy algorithm. This dataset will be referred to as DrugBank in the

following, for the sake of simplicity, and corresponds to the dataset called DrugBank (S1) in

the original paper.

We created another dataset called DrugBank (Ext), derived from the above dataset, and

used it as an external validation to compare the prediction performances of the considered

algorithms when trained on BindingBD or on LCIdb. Positive interactions from DrugBank

were selected, excluding those present in BindingDB and LCIdb, to gather a set of positive

DTIs absent from the BindingDB and LCIdb datasets. All other DTIs in DrugBank are

kept in DrugBank (Ext). As above, balanced negative interactions were added in DrugBank

(Ext), using the greedy algorithm of Najm et al. 45 .

4.2 Building the new large scale dataset LCIdb

To build a large-sized dataset of DTIs, we started from the database described by Isigkeit

et al. 48 , as it combines and curates data from prominent databases including ChEMBL49

, PubChem50 , IUPHAR/BPS51 , BindingDB52 , and Probes & Drugs53 . We filtered the

DTIs in this database according to 4 filters, as detailed below.

Filtering positive DTIs : (1) Chemical structure quality filter: for DTIs present in

several of the source databases, we only retained those for which the SMILES representation

of the molecule was identical in all sources, to exclude potential erroneous (molecule, protein)
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pairs. We only kept molecules with molecular weights between 100 and 900 g.mol−1, which

is a standard choice for selecting drug-like molecules. Among these molecules, we selected

those that target at least one human protein. These filters were used because the goal was to

build a training dataset of DTIs that are relevant in the context of drug discovery projects.

(2) Bioactivity filter: we retained only DTIs for which inhibition constant Ki, dissociation

constant Kd, or half maximal inhibitory concentration IC50 measurements were available in

at least one of the source databases.

(3) Quantitative bioactivities filter: for DTIs with bioactivity measurements present in

multiple source databases, we only retained those with bioactivities within one log unit from

one another.

(4) Binary labelling of DTIs: Bioactivity measurements were converted into binary in-

teractions based on a threshold. If the bioactivity value was less than 100 nM (10−7M),

the interaction was classified as positive DTI (binding). If the bioactivity value (Ki, Kd

or IC50) was greater than 100µM (10−4M), the interaction was classified as negative DTI

(non-binding). When the bioactivity value was in the intermediate range, i.e. between 100

nM and 100µM, DTIs were classified as known non-conclusive.

This scheme leads to the selection of 274 515 molecules, 2 069 proteins, 402 538 positive

interactions and 8 296 negative interactions. We then added negative interactions to build a

balanced dataset, as described below.

Completion of a balanced negative DTI dataset: We randomly split the dataset into

training (Train), validation (Val), and testing (Test) sets in a 7:1:2 ratio. We used unlabeled

DTIs to include negative interactions in these three sets, assuming most unknown DTIs

are negative. For the training set, the selection of additional negative interactions should

be designed with care to tackle two classical issues: (1) reduce the number of false negative

DTIs present in the training set; (2) correct potential statistical bias in the database towards

highly studied molecules or proteins. To take into account the former, we excluded known
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non-conclusive interactions, and for the latter, we applied the algorithm by Najm et al. 45

for selecting additional negative DTIs. In the Val and Test sets, remaining negative and

randomly chosen unknown interactions are added. These sets form LCIdb, mirroring the

DrugBank dataset scenario discussed in Section 4.1.

Different prediction scenarios: To evaluate performance in different prediction scenar-

ios, we also derive different datasets from to LCIdbbased on specific splits of the Train,

Val, and Test sets, as proposed in Huang et al. 18 and Singh et al. 44 . Datasets are built to

correspond to LCIdb, LCIdb_Unseen_drug, LCIdb_Unseen_protein, and LCIdb_Orphan

(unseen molecule and protein) scenarios. We added the Orphan case, which presents the

greater difficulty for prediction tasks.

More precisely: (1) LCIdb is balanced in positive and negative pairs chosen at ran-

dom; (2) LCIdb_Unseen_drugs is built so that (molecule, protein) pairs in one of the

Train/Val/Test sets only contain molecules that are absent from the two other sets; (3)

LCIdb_Unseen_targets is built so that (molecule, protein) pairs in one of the Train/Val/Test

sets only contain proteins that are absent from the two other sets; (4) LCIdb_Orphan is

built so that (molecule, protein) pairs in one of the Train/Val/Test sets only contain pro-

teins and molecules that are absent from the two other sets. The number of drugs, targets,

and interactions in these four datasets is given in Table 1. Table 2 provides the number of

positive and negative interactions across the Train, Val, and Test sets in these four datasets.

4.3 Features for proteins and molecules in Komet

The initial step of our DTI prediction framework consists of computing simple and fixed

features for molecules and proteins.

Nyström-based molecule and protein features ψM and ψP in Komet: In Komet, we

encode molecules and proteins leveraging the Nyström approximation54,55 and dimensionality

reduction. For a molecule m (for instance, represented as a SMILES string), let us explain
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how we compute its embedding ψM(m) in RdM . The same computation applies for the

protein embedding ψP (p) ∈ RdP (where p is for instance a FASTA string). ψM is built

from a small set of landmark molecules {m̂ℓ}mM
ℓ=1 with mM ≥ dM that are randomly chosen

in the training dataset. The other ingredient in Komet is a kernel kM(m,m′) that can be

viewed as a similarity measure between two molecules, and that is used to define molecule

features (the choice of this kernel is discussed below). We first compute a small kernel

matrix over the landmarks: K̂M ∈ RmM ×mM where (K̂M)i,j := kM(m̂i, m̂j). Then, we define

the extrapolation matrix E ∈ RmM ×dM from the Singular Value Decomposition of K̂M =

U diag(σ)U⊤ as E := U [:, : dM ] diag(σ−1/2
s )dM

s=1. This extrapolation matrix allows to compute

molecule embedding for any molecule m (in particular for molecules in the training set that

are not in the landmark set) as:

ψM(m) :=
( mM∑

ℓ=1
Eℓ,s kM(m̂ℓ,m)

)dM

s=1
∈ RdM .

Note that when no dimensionality reduction is performed (dM = mM), this embedding

satisfies the relation kM(m̂i, m̂j) = ⟨ψM(m̂i), ψM(m̂j)⟩ (see Appendix C for details). In this

case, for any molecule m that is not in the landmark set, kM(m, m̂i) ≈ ⟨ψM(m), ψM(m̂i)⟩,

according to a so-called Nyström approximation (see Appendix C for details). Hence, E

allows us to “extrapolate” the embedding ψM , which is the underlying kernel map of kM ,

from the landmarks to new molecules.

Finally, we mean-center and normalize the features:

ψM(m)← ψM(m)− m̄
∥ψM(m)− m̄∥ where m̄ := 1

mM

mM∑

ℓ=1
ψM(mℓ).

We adopt a similar approach to build ψP but use all proteins from the data set as

landmarks, as their number is much smaller. Again, because the number of proteins is small

enough, we do not apply dimensionality reduction: dP = mP = nP .
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Choice of molecule and protein kernels: The embeddings ψM and ψP depend on the

choice of molecule and protein kernels. We follow the choices made in Playe et al. 37 and

adopt the Tanimoto kernel kM for molecules. For each molecule m represented in SMILES

format, we calculate ECFP4 fingerprints, generating a 1024-bit binary vector using the RD-

Kit package9 . Values of the Tanimoto kernel between two molecules are then computed

as the Jaccard index between their fingerprints. The Tanimoto kernel hence measures the

similarity between two molecules based on the substructures they share. For each protein

represented as a sequence p of amino acids, we opt for the Local Alignment kernel (LAker-

nel)56 . This kernel kP detects remote homology by aggregating contributions from all po-

tential local alignments with gaps in the sequences, thereby extending the Smith–Waterman

score57 . We used the same hyperparameters as Playe et al. 37 , where they were adjusted

by cross-validation.

4.4 Large-scale chemogenomic framework with Komet

We address DTI prediction as a supervised binary classification problem, incorporating es-

tablished steps, as outlined in Sections 2.2 and 2.3.

Features for molecule-protein pairs: Let us consider a DTI dataset containing molecules

and proteins (mi)nM
i=1 and (pj)nP

j=1, where nM and nP are respectively the number of molecules

and proteins in the dataset. To alleviate notations, in what follows, we denote by m :=

ψM(m) the embedding of a molecule m and by p := ψP (p) the embedding of a protein p.

The training dataset consists of a set of nZ (molecule, protein) pairs with indices (ik, jk)nZ
k=1

and their associated labels yk ∈ {−1, 1}. If yk = 1 (resp. −1), molecule mik
and protein pjk

interact (resp. do not interact). The classification is performed in the space of pairs, which

we define as the tensor product of the space of molecules and the space of proteins. Hence,

the embedding for pairs is given by φ(m, p) := (m[s]p[t])1≤s≤dM ,1≤t≤dP
∈ RdZ , where m[s] is

the s-th coordinate of m and p[t] is the t-th coordinate of p.
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Thus, the space of pairs has dimension dZ = dMdP . This embedding corresponds to

the use of a Kronecker kernel, already shown to be efficient in several publications27,37,45 .

Using a Kronecker kernel is crucial in our approach, not only because it is a state-of-the-art

method, but also due to its favourable mathematical properties, which we will detail below.

It is worth noting that our approach avoids explicitly calculating the embedding φ, which

mitigates the computational burden associated with the large value of dZ .

SVM classification: Our classification approach follows previous work (see Section 2.3),

relying on a linear model with weight vector w ∈ RdZ and bias term b ∈ R. The class

decision for a pair feature vector z ∈ RdZ is determined by sign(⟨w, z⟩ + b) ∈ {−1, 1}. The

parameters w and b are obtained by minimizing a penalized empirical risk:

min
w∈RdZ

nZ∑

k=1
ℓ(⟨w, zk⟩+ b, yk) + λ

2∥w∥
2. (1)

In Komet, we employ a Support Vector Machine (SVM) classification where ℓ(y′, y) =

max(0, 1− yy′).

The minimization of Equation (1) is computationally demanding, particularly when nZ

and dZ are large. A conventional Stochastic Gradient Descent (SGD)58 can result in slow

convergence. Therefore, we use an alternative approach that leverages the specific structure

of our embedding φ, as was previously done by Airola and Pahikkala 59 . Specifically, we

exploit: (1) the tensor product nature of φ and (2) the fact that the sizes nM and nP of the

input databases are much smaller than the number nZ of interactions.

Efficient computation The core ingredient leading to a significant improvement in com-

putational efficiency on a large-sized dataset is the efficient computation of the gradient by

bypassing the evaluation of φ. Indeed, the function to be minimized in Equation (1) has the

form L(Zw + b) + λ
2∥w∥2, where the rows of Z ∈ RnZ×dZ are the vectors z⊤

k , and L takes

into account ℓ and y. The main computational burden for evaluating this function and its

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.02.22.581599doi: bioRxiv preprint 



gradient is the computation of Zw. A naive implementation would require nZdZ operations

just to compute Z, which would be unavoidable if one used a generic φ, such as a deep neural

network. However, we bypass this bottleneck by directly computing Zw. This relies on the

following identity:

(Zw)k = ⟨w, zk⟩RdZ

(a)= ⟨mik
,Wpjk

⟩RdM

(b)= ⟨mik
, qjk
⟩RdM , (2)

where W ∈ RdM ×dP is such that it has w as flattened representation in RdZ and qj := Wpj.

Equality (a) exploits the tensor product structure of φ. Please refer to the Appendix D

for a detailed proof.

Equality (b) is interesting because all the (qj)nP
j=1 can be computed in only nPdZ oper-

ations. Once this has been computed, evaluating all nZ values of (Zw)k = ⟨mik
, qjk
⟩RdM

require nZdM operations. We then minimize Equation (1) using a full batch method, which

enables the use of efficient quasi-Newton methods. In practice, we use the BFGS method

with limited memory60 . The complexity of our algorithm is then O(nPdZ + nZdM) where

O(.) takes into account the number of iterations of the BFGS algorithm to reach a fixed

accuracy. This number is quite small (10 to 50) in our numerical experiments. Note that

we can exchange the role of the protein embeddings and the molecule embeddings in this

calculation, resulting in a complexity of O(nMdZ + nZdP ). In our setting nP ≪ nM so we

prefer the initial formulation of Equation (2).

From classification to probability estimation Once the weight vector w has been

computed, Platt scaling61 computes a probability of belonging to the positive class using

the formula pk := σ(−yk(s⟨zk, w⟩ + t)), where σ is the logistic function σ(u) = eu

1+eu , and

the scale s (which can be interpreted as a level of confidence) and the offset t need to be

optimized. This is achieved by minimizing the same energy as in logistic regression:

min
s,t

E(s, t) :=
∑

k

ℓ(−yk(s⟨zk, w⟩+ t))
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where ℓ(u) := log(1 + eu). We use the BFGS method to solve this equation.

4.5 Evaluation of prediction performance

Comparing the prediction performances of various algorithms requires defining the evaluation

strategies and the metrics used.

Metrics: We formulate the DTI prediction problem as a classification task, therefore, we

use AUPR (area under the precision–recall curve), ROC-AUC (area under the ROC curve)

and prediction accuracy, as metrics to compare prediction performances.

Evaluation strategies: There is only one hyperparameter in our model, as shown in

Equation (1). We select the best λ ∈ {10−11, 10−10, ..., 10, 100} based on AUPR performance

from the validation (Val) set. This value is used to train the parameters of the model 5 times

on the training set, each time with new landmark molecules and approximated molecule

features, and we calculate the mean prediction probability. The final computed model is

then evaluated on the Test set.

Implementation details and data availability: We use a server with 2 CPUs and

1 NVIDIA A40 GPU with 48 GB of memory. We provide a Python implementation of

Komet and the code used to build LCIdb at https://komet.readthedocs.io. We provide

the LCIdb itself at https://zenodo.org/records/10731713 and other files at https://

github.com/Guichaoua/komet/tree/main/data.

4.6 Application to the scaffold hopping problem

To assess computational methods for solving large-step scaffold hopping problems, Pinel

et al. 42 built a high-quality benchmark called Large-Hops (LH) comprising 144 pairs of

highly dissimilar molecules that are active against diverse protein targets. In LH, one

active molecule is considered as known, and the second active molecule must be retrieved
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among 499 decoys carefully selected to avoid statistical bias. This dataset is available at

https://github.com/iktos/scaffold-hopping.

For each case, the considered algorithms were trained with one molecule of the pair con-

sidered as the only known active for the query protein. If the known interaction was absent

from the training dataset, it was added to it, and all other interactions involving the query

protein potentially present in the database were removed. After training, the algorithms

ranked the unknown active and the 499 decoy molecules, according to the predicted bind-

ing probabilities of the (molecule, query protein) pairs. The lower the rank of the unknown

active, the better the prediction performance.

As in62 , we employ three criteria to compare ranking algorithms: (1) Cumulative His-

togram Curves (CHC) are drawn to represent the number of cases where a method ranks the

unknown active below a given rank, with better-performing methods having curves above

others; (2) Area Under the Curve (AUC) of CHC curves provide a global quantitative as-

sessment of the methods; (3) the proportion of cases where the unknown active was retrieved

in the top 1% and 5% best-ranked molecules.

5 Results

In the following, we first present the new LCIdb DTI dataset, analyze its coverage of the

molecule and protein spaces, and compare it to other available and widely used datasets.

Next, we explore different parameters within the Komet pipeline, to find a balance between

speed and prediction performance. We then show that Komet displays state-of-the-art DTI

prediction performance capabilities on the considered medium- and large-sized datasets, and

on the external dataset DrugBank (Ext). Finally, we highlight the efficiency of our approach

on the publicly available (LH) benchmark dataset designed to address challenging scaffold

hopping problems.
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5.1 Coverage of the protein and molecule spaces in the LCIdb

dataset

Different reviews introduce numerous biological databases that can be used to derive large-

sized training datasets2,40 , to best cover the protein and molecule spaces. Following Isigkeit

et al. 48 , we combine and filter curated data from prominent databases including ChEMBL49

PubChem,50 IUPHAR/BPS,51 BindingDB52 , and Probes & Drugs53 , and built LCIdb,

a large-sized high-quality DTI database, as detailed in Section 4.2. Table 1 provides the

numbers of molecules, proteins, and interactions in all the DTI training datasets considered

in the present study.

Table 1: Numbers of molecules, proteins, and positive/negative DTIs in the considered
datasets. “random” indicates that negative DTIs were randomly chosen among unlabeled
DTIs. “balanced” indicates that negative DTIs were randomly chosen among unlabeled
DTIS, but in such a way that each protein and each drug appears in the same number of
positive and negative DTIs.

Datasets Molecules Proteins Positive
DTIs Negative DTIs

BIOSNAP 4,510 2,181 13,836 (13,647 random)
Unseen_drugs 13,836 (13,647 random)
Unseen_targets 13,836 (13,647 random)

BindingDB 7,161 1,254 9,166 23,435
DrugBank 4,813 2,507 13,715 (13,715 balanced)
DrugBank (Ext) 4,257 1,216 10,838 (10,838 balanced)
LCIdb 274,515 2,069 402,538 8,296 (+ 394,242 balanced)
Unseen_drugs 274,515 2,069 402,538 8,296 (+ 394,242 balanced)
Unseen_targets 232,018 2,069 431,011 8,296 (+ 422,715 balanced)
Orphan 143,255 2,069 151,690 8,296 (+ 143,394 balanced)

Table 1 reveals that DrugBank- or BIOSNAP-derived datasets and BindingDB share a

few characteristics: their numbers of proteins are similar (in the range of one to two thou-

sand), their numbers of molecules are modest (in the range of a few thousand), their number

of known positive DTIs are similar (in the range of thousands). BindingDB contains true

negative DTIs, while the DrugBank- or BIOSNAP-derived datasets use DTIs of unknown

status as negative DTIs, randomly chosen for BIOSNAP-derived datasets, and randomly

chosen in such a way that all molecules and proteins appear in the same number of posi-
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tive and negative DTIs (labelled “balanced” in Table 1) for the DrugBank-derived datasets.

Overall, these observations underline the need for a larger dataset, as required for chemoge-

nomic studies. As shown in Table 1, LCIdb includes 40 times more molecules and 30 times

more positive DTIs than the other considered datasets, the number of human proteins being

in the same order of magnitude.

However, it is important to evaluate whether this larger number of molecules corresponds

to better coverage of the chemical space and whether the different datasets are comparable in

terms of biological space coverage. Indeed, the chemical space is estimated to be extremely

large63 , and efficient sampling of this space by the training dataset is expected to have a

great impact on the generalization properties of the prediction models.

We use the t-SNE algorithm64 on the molecule features ψM derived from the Tanimoto

kernel, as defined in Section 4.3, to visualize the resulting high-dimensional molecular space

in a two-dimensional space, thus facilitating analysis. Figure 2 shows not only that LCIdb

contains a much larger number of molecules than BIOSNAP, DrugBank, and BindingDB,

but also that the molecules it contains are more diverse,

While it is far from covering the entire vast and unknown chemical space, LCIdb spans

a much larger area on the t-SNE plot, therefore providing a better sampling of this space

overall. In addition, it shows that LCIdb also covers the chemical space more uniformly

than the other datasets. Figure 2 also highlights that the BIOSNAP dataset was built from

DrugBank, displaying similar patterns of red clusters of molecules.

We also ran the t-SNE algorithm based on Tanimoto features computed using an alter-

native set of molecule landmarks, and based on other molecule features (see Figure 2 of the

Appendix A). In all cases, plots confirmed the above conclusions that LCIdb presents a

wider and more uniform coverage of the chemical space, underscoring their robustness.

Isigkeit et al. 48 analyze the space formed by the five databases from which LCIdb origi-

nates. Specifically, they examined distributions of common drug-like features such as molec-

ular weight, the number of aromatic bonds, the number of rotatable bonds, and predicted
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Figure 2: 2D representation of the molecular space with the t-SNE algorithm based on
molecule features. In blue: the large-sized LCIdb dataset, and in red: the medium-sized
DrugBank, BIOSNAP, and BindingDB datasets.

octanol-water partition coefficients. The authors observed that these distributions are simi-

lar across all sources. In Appendix A, we present plots illustrating the distribution of drugs

in our LCIdb dataset, based on the five databases from which they originate.

By contrast, the number of human proteins is comparable across all considered datasets,

although not identical (see Figure 3). We also used t-SNE plots based on protein features

defined in Section 4.3 to explore the coverage of the protein space by LCIdb . As shown in the

resulting 2D representation presented in Figure 4, the protein space covered by LCIdb con-

tains clusters that align with functional families of proteins. This was expected when using

features calculated using the LAkernel (see Section 4.3), since proteins that share high se-

quence similarity usually belong to the same protein family. Thus, we can leverage this

representation to discuss the diversity of proteins in our datasets. As shown in Figure 5,

although LCIdb contains slightly fewer proteins than the DrugBank dataset, their cover-

age of the biological space is similar. BIOSNAP appears to have a lower coverage of a few

protein clusters (such as protein kinases), while BindingDB focuses more on a few clusters

corresponding to specific protein families.

As detailed in Section 4.1, for BIOSNAP and LCIdb, additional datasets are derived,

as suggested in various studies10,11,27,37,65 , as well as in Huang et al. 18 and Singh et al. 44 ,

two papers that respectively introduced the MolTrans and ConPLex algorithms. They cor-

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.02.22.581599doi: bioRxiv preprint 



Figure 3: Overlap between LCIdb , DrugBank, BIOSNAP, and BindingDB datasets in terms
of proteins.

respond to scenarios of varying difficulties encountered in real-life situations in drug discov-

ery projects: (1) the Unseen_drugs case is typical of new drugs identified in phenotypic

screen and for targets are searched to elucidate the drug’s mechanism of action; (2) the Un-

seen_targets case is typical of newly identified therapeutic targets against for which reposi-

tioning opportunities if known drugs are searched; (3) The Orphan case is typical of a new

therapeutic target has been identified, and against which ligands (inhibitors or activators)

are searched at large scale in the molecule space.

The composition of the corresponding datasets is provided in Table 1. In Huang et al. 18

and Singh et al. 44 , only the Unseen_drugs and Unseen_targets were considered, but we

added the Orphan case for LCIdb.

Finally, following Huang et al. 18 and Singh et al. 44 , in all the prediction experiments

reported in the Results, the prediction performances of all considered algorithms are com-

puted based on the Test set, after optimization of the parameters on the Train/Val sets

built from the considered DTI datasets. Details about the Train/Val/Test sets are given in

Section 4.1). The number of molecules, proteins and interactions in these sets are provided

in Table 2.
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Figure 4: Representation of the protein space in LCIdb according to the t-SNE algorithm
based on protein features derived from the LAkernel. A few protein families are labelled and
coloured.
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LCIdb DrugBank BIOSNAP BindingDB

Figure 5: Representation of the protein space according to the t-SNE algorithm based on
protein features derived from the LAkernel. In blue: LCIdb, in red: DrugBank, BIOSNAP,
and BindingDB.

Table 2: Full specification of the Train/Val/Test sets for all datasets. DrugBank (Ext) is
only used as an external validation dataset when algorithms are trained on BindingDB or
LCIdb (see Section 5.4.3). Therefore, no Train, Val, or Test sets were built for DrugBank
(Ext)

Datasets #Train #Val #Test
BIOSNAP 9,670/9,568 1,396/1,352 2,770/2,727
Unseen_drugs 9,535/9,616 1,383/1,353 2,918/2,675
Unseen_targets 9,876/9,499 1,382/1,386 2,578/2,762

BindingDB 6,334/6,334 927/5,717 1,905/11,384
DrugBank 10,972/10,972 1,098/1,098 1,645/1,645
DrugBank (Ext) - - 10,838/10,838
LCIdb 161,015/161,015 32,204/32,204 48,304/48,304
Unseen_drugs 156,942/156,942 32,326/32,326 56,328/56,328
Unseen_targets 154,683/161,015 32,349/32,349 60,822/60,822
Orphan 59,132/59,132 10,145/10,145 22,503/22,503

5.2 Parameters set-up of the model

Due to the vast number of molecules in LCIdb (see Table 1), our Komet algorithm incor-

porates the Nyström approximation to calculate molecular features as well as a dimension

reduction, which involved parameters mM (number of landmark molecules) and dM (dimen-

sion of molecular features). By contrast, for proteins, we retain all the proteins in the Train

set as protein landmarks (nP = mP = dP ). It is therefore crucial to evaluate the potential

impact of the mM and dM parameters on the prediction performance of Komet, the resulting

gain in calculation time, and to study whether good default values can be determined. This

study was performed on LCIdb_Orphan and BindingDB, respectively large- and medium-
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sized datasets. LCIdb_Orphan was chosen as the large dataset for exploring the impact of

mM and dM because it corresponds to the most difficult dataset, on which it is critical not to

degrade the prediction performances. Figure 6 shows that for both datasets, we can signifi-

cantly reduce the number of landmark molecules (mM) and the dimension (dM) of molecular

features without losing performance, while saving time and computational resources. In par-

ticular, results on BindingDB illustrate that reducing mM from the total number of molecules

(7 161) to 5 000 or 3 000 does not significantly affect precision-recall curves. In addition, for

the large-sized datasets like LCIdb_Orphan, reducing mM from 10 000 to 5 000 or 3 000 does

not degrade the prediction performance.

Moreover, the precision-recall curves reach a plateau for dM values between 1 000 and

2 000, suggesting that we can limit the number of molecular features without a loss in perfor-

mance. This observation is confirmed with the medium-size dataset BindingDB, for which

a plateau is also reached for similar values of dM , particularly when no approximation was

made (nM = mM = 7 161). This suggests that dM values in the range of 1 000-2 000 could

be good default values for the number of features used in molecular representations. In

addition, Figure 6 illustrates that, as expected, reducing mM and dM significantly reduces

computational time and GPU memory usage. Consequently, we choose dM = 1 000 and

mM = 3 000 as a good compromise to design a rapid and less resource-intensive algorithm,

without majorly compromising performance.

5.3 Impact of different molecule and protein features on Komet

prediction performances

We explored the impact of molecule and protein features on the prediction performances of

Komet. For molecule features, we consider the features extracted from the Tanimoto kernel

between ECFP4 fingerprints, as described in Section 4.3, with the ECFP4 fingerprints them-

selves. This is equivalent to using the dot product between ECFP4 fingerprints, rather than

the Tanimoto kernel, and no approximation (neither through the choice of a reduced set of
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Figure 6: Influence of mM and dM on AUPR on the validation set of LCIdb_Orphan,
computation time (in seconds) and usage and peak GPU RAM (in Gb). In each graph,
the three curves correspond to three values of mM , i.e. the number of random molecules
used by the Nyström approximation of the molecular kernel. Error bars correspond to the
choice of different landmark molecules. Graphs on the left refer to the large-sized dataset
(LCIdb_Orphan) and on the right to the medium-sized dataset (BindingDB).
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landmark molecules nor through dimensionality reduction). Previous studies have shown

that ECFP4 fingerprints perform as well as state-of-the-art fingerprint-based 3D models66

, and are not significantly outperformed by embeddings learned from deep learning meth-

ods67 . Therefore, we also considered pre-trained Graph Neural Networks (GNNs) for the

generation of molecule features. Specifically, Hu et al. 14 outline several pre-training strate-

gies for GNNs using a dataset of two million molecules. These strategies include supervised

learning for molecular property prediction and semi-supervised learning methods such as

context prediction, mutual information maximization between local and global graph repre-

sentations, encouraging similarity in representations of adjacent nodes while differentiating

distant nodes, and predicting masked node and edge attributes. We use the trained models

adapted by Li et al. 68 to calculate the molecular embeddings and we present in Table 3

only the features giving the best results. These features correspond to a model for super-

vised learning for molecular property prediction combined with semi-supervised learning on

context prediction.

For proteins, we compare features extracted from the LAkernel, as described in Sec-

tion 4.3, with features computed similarly, but using the 20 605 proteins of the UniProt

human proteome69 as landmark proteins, with a dimension reduction step (dP = 1 200).

In addition, we used three embeddings from deep learning models: ESM223 which is based

on transformers, and ProtBert24 and ProtT5XLUniref5024 which are based on variational

autoencoders trained on very large data sets of proteins.

Results are displayed in Table 3 for LCIdb_Orphan, the most challenging large-sized

dataset. They show that the features proposed for Komet in the present study lead to

the best prediction performance. However, replacing the molecular embeddings built from

the Tanimoto kernel between ECFP4 fingerprints with the ECFP4 fingerprints themselves

barely degrades the performance. This could indicate that the molecular information lost

by approximations (using a subset of landmark molecules and performing dimensionality

reduction) is compensated by the Tanimoto kernel being a more appropriate kernel than
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Table 3: AUPR of Komet using different molecule and protein features on the
LCIdb_Orphan dataset. “Tanimoto” features are built from the Tanimoto kernel between
ECFP4 fingerprints as described in Section 4.3, and the “GNN supervised contextpred” fea-
tures are available in the DGL-LifeSci package68 . “LAkernel” features are built from the
Local Alignment kernel between proteins as described in Section 4.3. “UniProt LAkernel”
features are built in the same way, but considering all human proteins from UniProt as land-
marks proteins and using dimensionality reduction.

Protein embedding
LAkernel UniProt LAkernel ProtBert ProtT5XLUniref50 ESM2

Tanimoto 0.897 0.873 0.834 0.632 0.864
Molecule ECFP4 0.893 0.861 0.829 0.630 0.866

embedding GNN supervised
contextpred

0.887 0.857 0.834 0.618 0.858

the dot product. The protein embedding derived from the LAkernel on the 2 069 druggable

proteins69 , i.e. human proteins for which at least one drug-like ligand is known, leads to the

best prediction performances. One explanation could be that the human druggable proteins

present some sequence and family bias, and do not span the whole human proteome space.

As a consequence, generic embeddings learned in deep learning approaches on very large

sets of proteins from multiple species (ProtBert, ProtT5XLUniref50, ESM2), may be less

appropriate for the specific problem DTI prediction in the context of drug-like molecules and

human druggable proteins. This may also explain why features derived from the LAkernel

computed on 20 605 human proteins also degrade the prediction performance. For this latter

case, using the whole human proteome comes with the necessity of dimensionality reduction

(dP = 1 200), which may also contribute to reducing the prediction performance.

As a consequence, the molecule features derived from the Tanimoto kernel on and the

ECFP4 fingerprints and the protein features derived from the LAkernel on the 2 069 drug-

gable proteins are used in all the following prediction experiments performed with Komet.

However, one should note that except for the ProtT5XLUniref50 protein features, the pre-

diction performances of Komet remain relatively stable to molecule and protein features.
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5.4 Comparison of the prediction performances between Komet

and deep learning algorithms

Because LCIdb is large, deep learning methods are expected to perform well on it70 . There-

fore, we compare Komet to the recently proposed ConPLex44 algorithm, a deep learning

approach that was shown to achieve state-of-the-art performance on medium-sized datasets.

ConPLex uses as input molecules encoded with Morgan fingerprints and proteins encoded

by pre-trained Protein Language Model ProtBert24 . The latent space for (molecule, pro-

tein) pairs is learned through a non-linear transformation into a shared latent space. This

learning phase combines a binary DTI classification phase with a contrastive divergence

phase, in which the DUD-E database71 , comprising 102 proteins together with ligands and

non-binding decoys, is used to compute a loss that minimizes the target-ligand distances

(corresponding to positive DTIs) and maximizes the target-decoy distances (corresponding

to negative DTIs).

We also compared Komet to MolTrans18 , another recent and state-of-the-art deep learn-

ing framework. MolTrans uses a representation of molecules (resp. proteins) based on

frequent subsequences of the SMILES (resp. amino acid) strings, combined through a trans-

former module.

5.4.1 DTI prediction performances on medium-sized datasets

We first compare the performance of Komet to those of ConPLex and MolTrans on the

medium-sized datasets BIOSNAP, BindingDB and DrugBank introduced in Section 4.1. We

only use the AUPR score because most negative interactions in the considered datasets are

unknown interactions. The results are presented in Table 4. Note that the performance of

a random predictor would correspond to an AUPR score of 0.5 (except for BindingDB in

which the number of negative DTIs is much larger than the number of positive DTIs, and for

which the performance of a random predictor would be equal to 0.4). We report the average

and standard deviation of the area under the precision-recall curve (AUPR) for 5 random
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initializations of each model. Interestingly, in all cases, Komet’s AUPR performances (with

dM = 1 000 and mM = 3 000) are similar to or higher than those of the two deep learning

methods. This is consistent with the expectation that deep learning methods only outperform

shallow learning methods when training data are abundant, due to their larger number of

parameters to fit.

Table 4: AUPR performances of Komet, ConPLex, and MolTrans on medium-sized datasets
BIOSNAP, BindingDB, and DrugBank. The ConPLex and MolTrans algorithms were re-run
on these three datasets, and the resulting AUPR are very close (in fact slightly better) to
those in the original paper.

Dataset Komet ConPLex MolTrans
BIOSNAP 0.940 ± 0.001 0.921 ± 0.002 0.893 ± 0.001
Unseen_drugs 0.914 ± 0.001 0.899 ± 0.011 0.871± 0.002
Unseen_targets 0.891 ± 0.001 0.863 ± 0.005 0.683 ± 0.005

BindingDB 0.667 ± 0.005 0.669 ± 0.003 0.611 ± 0.004
DrugBank 0.939 ± 0.001 0.935 ± 0.002 0.809 ± 0.004

In the Unseen_drugs and Unseen_targets scenarios on BIOSNAP, as expected, the

AUPR performances decrease for all algorithms but remain high, except for MolTrans which

overall tends to display lower performances than the two other algorithms.

5.4.2 DTI prediction performances on large-sized datasets

Then, we trained Komet, ConPlex, and MolTrans on the four large-sized LCIdb-derived

datasets. The results demonstrate that Komet achieves state-of-the-art prediction perfor-

mance in all cases (see Table 5) at a much lower cost in terms of training time (see Table 6).

Table 5: Comparison of AUPR scores on large-sized datasets

Komet ConPLex MolTrans
LCIdb 0.990 ± 0.001 0.969 ± 0.002 0.967 ± 0.001
Unseen_drugs 0.994 ± 0.0003 0.978 ± 0.003 0.968 ± 0.002
Unseen_targets 0.915 ± 0.001 0.894 ± 0.031 0.591 ± 0.007
Orphan 0.896 ± 0.0008 0.846 ± 0.003 0.552± 0.013

Overall, the performance of Komet is consistently high, with AUPR scores above 0.9 in

most cases. Because the number of molecules is still very large in the LCIdb Unseen_drugs
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Table 6: Comparison of training time for the considered algorithms

Komet ConPLex MolTrans
LCIdb 15s 907.3s 69838s
Unseen_drugs 15s 1734s 68400s
Unseen_proteins 15s 888s 64800s
Orphan 8s 1329s 25200s

dataset, thus covering a broad chemical space, the performance remains excellent, although

molecules in the Test set are absent in the Train set. In LCIdb Unseen_targets and

LCIdb_Orphan, where the proteins in the Test set are absent in the Train set, the per-

formances are slightly lower but remain high. The ConPLex algorithm also displays high

performances (although lower than those of Komet) in all cases, while MolTrans appears to

be less stable.

We conducted a comparison using various performance measures, and the outcomes con-

sistently align with the above results. For these additional insights, please refer to the

Appendix B.

5.4.3 Validation on DrugBank (Ext) as external dataset

In the above sections, the performances of the algorithms are compared based on Train/Val

/Test splits on all the considered datasets. To better assess the generalization properties of

the algorithms, we used as an external dataset the DrugBank (Ext) introduced in Section 4.1.

The prediction performance of the three considered algorithms on DrugBank (Ext), when

trained on BindingDB or on LCIdb, are reported in Table 7, from which two conclusions

can be drawn. First, all ML algorithms perform better when trained on LCIdb compared to

BindingDB. This improvement is attributed to LCIdb’s more large coverage of both chemical

and protein spaces. Indeed, according to Figure 2, the molecule space covered by LCIdb

globally includes that covered by DrugBank, but this does not appear to be the case for the

BindingDB dataset. Similarly, according to Figure 4, the protein space of LCIdb globally

covers that of DrugBank, whereas the protein space of BindingDB does not seem to cover
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that of DrugBank.

Second, Komet always outperforms the two deep learning algorithms. Overall, Komet

trained on LCIdb displays the best generalization performances on DrugBank (Ext).

Table 7: AUPR performance for considered algorithms trained on BibndingDB and LCIdb

Training set \ Algorithm Komet ConPLex MolTrans
LCIdb 0.848 0.822 0.558
BindingDB 0.659 0.611 0.503

5.5 Case Study: solving scaffold hopping problems

Finally, we evaluate the ability of the pipeline that leads to the best performance, i.e. Komet

trained on the LCIdb dataset, to solve scaffold hopping problems. This requires highly

demanding generalization properties and corresponds to an important challenge in drug

discovery1 . Indeed, various problems can restrain the downstream development of a new

candidate drug such as inadequate ADME profile, poor selectivity potentially resulting in

unacceptable toxicity, or an expensive synthesis route. The hit molecular scaffold may also

be protected by patents, which poses problems for its industrial exploitation. To circumvent

these limitations, other active molecules with different molecular scaffolds are searched. The

difficulty of the problem posed by this search depends on the degree of “dissimilarity” that is

required for the new active molecule concerning the known hit. Although various examples

of successful scaffold hopping cases have been reported, these types of problems remain

difficult and new concepts are required to help in silico approaches efficiently solve these

difficult cases72 .

Pinel et al. 42 proposed the LH benchmark to assess the performance of computational

methods to solve scaffold hopping problems. They focused on the most difficult case, i.e.

the “large-step” scaffold hopping scenario, where one ligand molecule for a given target is

known, and another ligand molecule of a highly dissimilar structure is searched for the same

target. The LH benchmark comprises 144 pairs of highly dissimilar molecules that are active
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against diverse protein targets. Computational methods are evaluated as follows: for each

pair, one active molecule is considered as known, and the second active has to be retrieved

among decoys that were carefully selected to avoid statistical bias. Since either molecule of

the pair can be chosen as the known active, this leads to 288 scaffold hopping cases to solve.

More precisely, given one molecule of the pair, the objective is to rank the other (considered

as unknown active) among a pool of decoy molecules. The lower the rank of the unknown

active, the better the prediction performance.

In Figure 7, we compare the performance of Komet and ConPLex prediction algorithms

trained on LCIdbor BindingDB, using Cumulative Histogram Curves (CHC). This criterion

illustrates the frequency of cases where the method ranked the unknown active molecule

below a specific rank. Table 8 supplements this evaluation by providing the Area Under

the Curve (AUC) of CHC curves, offering a quantitative comparison of methods, along with

the proportion of cases where the unknown active was retrieved within the top 1% and

5% of best-ranked molecules. These metrics serve as indicators of the success rate of the

methods. We also re-computed the results obtained by the Kronecker kernel with an SVM

calculated with the scikit-learn toolbox, using the same kernels as in Komet, and trained on

the DrugBank dataset. These results align with those of the original paper by Pinel et al. 42 .

As shown in Figure 7 and Table 8, Komet trained on LCIdb leads to the best performances

on all criteria. The ConPLex deep learning algorithm trained on LCIdb (and fine-tuned

with DUD-E) performs better on all criteria than when trained on BindingDB (and fine-

tuned with DUDE-E), while the Kernel SVM trained on DrugBank of the original paper

displays performances that are intermediates with those of ConPlex on the two considered

training datasets. The fact that ConPLex does not outperform Komet specifically on the

LH benchmark is somewhat puzzling. Indeed, one of the reasons why we chose ConPLex is

that it incorporates a contrastive learning step based on DUD-E, which should help separate

the unknown positive from the decoys in LH. One explanation may reside in the fact that

DUD-E presents a hidden bias that was shown to mislead the performance of deep learning
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algorithms73 . The use of an unbiased database for contrastive learning may improve the

performance of ConPLex on the LH benchmark.

Table 8: Prediction performances on the LH benchmark.

Dataset Komet
on LCIdb

Kernel SVM
on DrugBank

ConPLex on BindingDB
and contrastive on DUD-E

ConPLex on LCIdb and
contrastive on DUD-E

ROC-AUC 0.85 0.77 0.70 0.75
Top 1% 32% 22% 12% 24%
Top 5 % 52% 36% 26% 43%

Notably, in 50% of cases, our pipeline involving Komet trained on LCIdb successfully

ranks the unknown active in the top 5%. This performance surpasses those of all ligand-

based methods tested in the original paper by Pinel et al. 42 , the best of which, involving 3D

pharmacophore descriptors, ranked the unknown active in the top 5% in 20% of cases.
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Figure 7: Cumulative Histogram Curves of the considered algorithm, measuring the cumu-
lative proportion of cases the unknown active is retrieved below a given rank.

The fact that Komet trained on LCIdb outperforms ConPLex trained on the same dataset

35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.02.22.581599doi: bioRxiv preprint 



may again be explained by more expressive features for the (molecule, protein) pairs in

Komet. In addition, the facts that (1) the performances of ConPLex are improved when

trained on LCIdb over those obtained with BindingDB, and that (2) the performances of

Komet trained on LCIdb over than those obtained with Kernel SVM trained on DrugBank,

may be explained by a better coverage of the active molecules space in LH by LCIdb than by

BindingDB and DrugBank. Indeed, we used the t-SNE algorithm to visualize the molecule

space coverage of the LCIdb , DrugBank, BindingDB and superposed with the space of active

molecules in LH. As shown in Figure 8, LCIdb uniformly spans the entire space of active

molecules in LH, which is not the case for the DrugBank and the BindingDB datasets.

Figure 8: t-SNE on molecule features. In blue and from left to right: LCIdb, DrugBank and
BindingDB, in orange: active molecules of LH.

6 Discussion

An important contribution of the present work resides in providing the LCIdb DTI dataset,

which appears much larger than most public datasets used in the recent literature. A key

feature of this dataset is a wider and more uniform coverage of the molecular space. A

recurrent problem when building DTI datasets for training ML algorithms is that negative

interactions are usually not reported. One way to circumvent this problem is to use reference

databases that provide quantitative bioactivity measurements and choose threshold values

to define positive and negative interactions. In previous studies18,44 , other authors chose
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a common and rather low threshold value of 30 nM for both types of DTIs, leading to a

modest number of positive (9 166) and three times more negative DTIs (23 435), as shown

in Table 1. The notion of positive and negative DTIs is not absolute, because bioactivities

are continuous, and threshold values are somewhat arbitrary. In the present paper, we

chose distinct thresholds for positive and negative interactions, respectively under 100 nM

(10−7M) and above 100µM (10−4M). This leads to a limited number of known negative DTIs

in the dataset (8 296) compared to known positives (402 538). Overall, our goal was to limit

the potential false negative DTIs and the bias towards well-studied molecules and proteins.

Therefore, true negative DTIs were completed by randomly chosen DTIs according to the

algorithm in Najm et al. 45 , while excluding all DTIs with activities falling in the 10−4−10−7M

range. However, we are aware that using a lower threshold value for the negative DTIs in

LCIdb would have allowed us to select a high number of DTIs considered as known negatives.

Another important contribution is the proposal of the Komet pipeline, a DTI prediction

algorithm designed to learn on very large training datasets such as LCIdb. This algorithm

has two parameters, mM (number of landmark molecules) and dM (dimension of molecular

features). We were able to define good default values for these parameters (dM = 1 000

and mM = 3 000), significantly reducing the computational time and memory requirements.

Interestingly, computational resources will not increase drastically if the size of the Train set

increases (if new DTIs are added), as can be judged from Figure 6.

We also showed that the performance of the algorithm was robust for the choice of the

landmark molecules and the molecule and protein features, although learned features tended

to decrease the performance, as shown in Table 3.

Importantly, Komet belongs to the family of shallow ML algorithms and proved to out-

perform ConPLex and MolTrans, two recently proposed deep learning algorithms, at a much

lower computational cost. One explanation for the good performance of Komet could be

that features for the (molecule, protein) pairs derived by Komet in Step 2, simply based on

the Kronecker product, may better capture determinants of the interaction than the com-
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bined learned features in the considered deep learning algorithms. The Kronecker product

strategy to combine molecule/protein features to encode interactions seems more important

than the choice of features for (molecule, protein) pairs since different molecule features did

not significantly impact performance (see Table 3), and since ConPLex does not reach the

performance of Komet when both are trained on LCIdb (see Table 7). In addition, the ar-

chitectures of ConPLex and MolTrans may not yet be fully optimized for the DTI prediction

problem. Furthermore, our study focuses on DTI prediction in the human druggable space of

proteins, because our goal is to propose a tool for drug discovery projects. The dimension of

this space is modest, as illustrated by the number of proteins in LCIdb (2 069), concerning

that of the human proteome (above 20 000, but expected to be in the order of 90 000 when

including splicing variants). Therefore, the druggable human proteins may present some

sequence bias, and the protein features used in ConPLex and MolTrans and learned based

on a much wider space of proteins may not be optimal for the DTI prediction problem at

hand. This is consistent with the results in Table 3, showing that learned features did not

improve the performances of Komet.

Komet proved to display state-of-the-art performances on various prediction scenarios,

including the most difficult problems. In particular, it proved to be efficient in solving

scaffold hopping cases. Although it was not designed and tuned for this specific scenario,

it appears as an effective tool to guide medicinal chemists in solving such problems. One

possible future improvement would be to use other molecule kernels. Indeed, the Tanimoto

molecule kernel used in Komet is a measure of structure similarity between molecules, which

is a priori not well suited to the scaffold hopping problem. Other molecule kernels based on

pharmacophore features may improve the prediction performances of Komet on the specific

problem of scaffold hopping.
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A Molecule space coverage of various datasets

This section shows cases of a 2D visualization of the chemical space covered by various

datasets considered in the paper, using the t-SNE algorithm on various molecule features.

Figure 9 shows the drug distribution in LCIdb across the five databases from which the

initial dataset48 is extracted. It highlights a significant contribution from the ChEMBL and

PubChem databases, enhanced mainly by data from Probes&Drugs.
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Figure 10 shows the t-SNE visualizations of the molecular space for various considered

datasets, based on Tanimoto features (as in Figure 2) for one choice of 3000 landmark

molecules, for another choice of 3000 landmark molecules, and ECFP4 features. It confirms

that LCIdb offers broader and more uniform coverage of the chemical space than BindingDB,

DrugBank, or BIOSNAP.

Figure 9: t-SNE on molecule features. In blue: large-sized benchmark LCIdb, in red: 5
databases from which the initial dataset48 is extracted.

B Several metrics to compare prediction performances

Table 9 presents various metrics for comparing prediction performances on the four LCIdb-

datasets. While ConPlex has better accuracy in two cases, overall, Komet outperforms the

other algorithms in most cases according to AUPR, ROC-AUC and Accuracy prediction

performances, supporting the main conclusions in the paper.

Table 9: AUPR, ROC-AUC and Accuracy prediction performances

Komet ConPLex MolTrans
AUPR ROC-AUC Accuracy AUPR ROC-AUC Accuracy AUPR ROC-AUC

LCIdb 0.990 0.990 0.966 0.970 0.971 0.917 0.967 0.970
Unseen_drugs 0.994 0.994 0.976 0.980 0.977 0.934 0.968 0.969
Unseen_targets 0.915 0.896 0.714 0.893 0.874 0.763 0.591 0.584
Orphan 0.896 0.879 0.682 0.845 0.834 0.689 0.552 0.536
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Figure 10: 2D representation of the molecular space, based on the t-SNE algorithm on
molecule features. In blue: large-sized LCIdb dataset, and in red: medium-scale DrugBank,
BIOSNAP, and BindingDB datasets.
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C Nyström approximation

In Komet, we encode molecules leveraging the Nyström approximation54,55 . In the following,

we present the mathematical details of Section 4.3.

Let us consider a set of landmark molecules {m̂1, . . . m̂mM
}, a new molecule m, and a kernel

kM over molecules. The kernel matrix K ∈ R(mM +1)×(mM +1) over these mM+1 molecules can

be written as K =



K̂M κ⊤

κ kM(m,m)


 with K̂M ∈ RmM ×mM being the kernel matrix over

the landmark molecules and κ = (kM(m, m̂1), . . . , kM(m, m̂mM
)) ∈ RmM the vector of kernel

values between m and the landmark molecules.

The Nyström’s approximation consists in approximatingK asK ≈ CK̂−1
M C⊤ =



K̂M κ⊤

κ κK̂−1
M κ⊤




with C =



K̂M

κ


 ∈ R(mM +1)×mM .

Writing the Single Value Decomposition of K̂M as K̂M = U diag(σ)U⊤, the approxi-

mation of K can be rewritten as K ≈ ΦΦ⊤ with Φ = CU diag(σ)−1/2 ≈ CE. When no

dimensionality reduction is performed (dM = mM), E = U diag(σ)−1/2 and Φ = CE.

The last line of matrix Φ is ΦmM +1 = (∑mM
l=1 CmM +1,lEls)mM

s=1 = ψM(m). Similarly, its

mM first lines are ψM(m̂1), . . . , ψM(m̂mM
). Hence kM(m, m̂i) ≈ ⟨ψM(m), ψM(m̂i)⟩ for any

molecule m (including one of the landmark molecules), which justifies our proposition of ψM .

Furthermore, if we do not use dimensionality reduction, because the Nyström approxi-

mation is an equality on the upper-left block K̂M , kM(m̂i, m̂j) = ⟨ψM(m̂i), ψM(m̂j)⟩ for any

pair of landmark molecules.

D Efficient computation

We explicit here the details for equality (a) of Eq (2) in paragraph 4.4.

(Zw)k = ⟨w, zk⟩RdZ

(a)= ⟨mik
,Wpjk

⟩RdM

(b)= ⟨mik
, qjk
⟩RdM .
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We use the matrix representation W ∈ RdM ×dP instead of w ∈ RdZ in a way that w is

the flattened representation of W .

∀k = 1..nZ , (Zw)k = ⟨w, zk⟩RdZ

= ⟨W,mik
p⊤

jk
⟩RdM ×dP

= tr
(
W (mik

p⊤
jk

)⊤
)

= tr
(
Wpjk

m⊤
ik

)
= ⟨Wpjk

,mik
⟩RdM
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Table B.1 displays the 69 proteins used to define the IFPP, spanning different super-
families of protein structures, according to the SCOP database [Murzin et al.(1995)].

PDB UniProt Protein Superfamily
2qn1 P00489 glycogen phosphorylase Type B glycosyltransferase-

like
3eq9 P23687 prolyl endopeptidase Peptidase/esterase ’gauge’

domain
4bqh Q386Q8 udp-n-acetylglucosamine py-

rophosphorylase
Nucleotide-diphospho-sugar
transferases

3el8 P00523 tyrosine-protein kinase src SH3-domain
6ibx Q16875 6-phosphofructo-2-

kinase/fructose-2,6-
bisphosphatase 3

Histidine phosphatase-like

6i17 Q16658 fascin Actin-crosslinking proteins
6d55 P01112 gtpase hras Ras-like P-loop GTPases
4w9q Q13451 peptidyl-prolyl cis-trans iso-

merase fkbp5
TPR-like

5dsx Q8TEK3 histone-lysine n-
methyltransferase, h3 lysine-
79 specific

S-adenosyl-L-methionine-
dependent methyltransferases

3sff Q9BY41 histone deacetylase 8 Arginase/deacetylase-like
4p5z P29320 eph receptor a3 galactose-binding domain-like
1t48 P18031 protein-tyrosine phosphatase,

non-receptor type 1
(Phosphotyrosine protein)
phosphatases II

6duk P00533 epidermal growth factor re-
ceptor

L domain-like

6ccy P31749 rac-alpha serine/threonine-
protein kinase,piftide

PH domain-like

3sfc P00797 renin Acid proteases
6mob P10721 mast/stem cell growth factor

receptor kit
Protein kinase-like (PK-like)

5bns P0A6R0 3-oxoacyl-[acyl-carrier-
protein] synthase 3

Thiolase-like

4k9y Q05397 focal adhesion kinase 1 FAT domain of focal adhesion
kinase

6n0k O00625 pirin RmlC-like cupins
5u8c P35439 glutamate receptor

ionotropic, nmda 1
Type 2 solute binding protein-
like

5k13 P10276 retinoic acid receptor alpha Nuclear receptor ligand-
binding domain

2ovx P14780 matrix metalloproteinase-9
(mmp-9)

PGBD-like

5syn O95372 acyl-protein thioesterase 2 alpha/beta-Hydrolases
4k69 P23946 chymase Trypsin-like serine proteases
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5nr7 P9WKE1 thymidylate kinase P-loop nucleotide/nucleoside
kinase-like

6g2m Q9NPB1 5’(3’)-deoxyribonucleotidase HAD-like
2ica P20701 integrin alpha-l vWA-like
4pv5 Q9CPU0 lactoylglutathione lyase Glyoxalase/Bleomycin re-

sistance protein/Dihydroxy-
biphenyl dioxygenase

4gvm P12497 gag-pol polyprotein N-terminal Zn binding do-
main of HIV integrase-like

4ojr P03366 hiv-1 integrase DNA-binding domain of
retroviral integrase

6std P56221 scytalone dehydratase NTF2-like
6qz8 Q07820 induced myeloid leukemia cell

differentiation protein mcl
Bcl-2-like inhibitors of pro-
grammed cell death

3dpe P22894 neutrophil collagenase Metalloproteases (zincins),
catalytic domain

5mw2 P41182 b-cell lymphoma 6 protein POZ domain
4ibj Q05127 polymerase cofactor vp35 Ebola VP35 IID-like
5ufp Q99814 endothelial pas domain-

containing protein 1
PYP-like sensor domain (PAS
domain)

6q9w O15151 protein mdm4 SWIB/MDM2 domain-like
5t4b P27487 dipeptidyl peptidase 4 DPP6 N-terminal domain-like
4wp7 P00352 retinal dehydrogenase 1 ALDH-like
5ovg Q07889 son of sevenless homolog 1 ENTH/VHS domain-like
4yz9 O75460 serine/threonine-protein

kinase/endoribonuclease ir
Ire1-RNaseL RNase domain-
like

6te6 Q8TEK3 histone-lysine n-
methyltransferase, h3 lysine-
79 specific

S-adenosyl-L-methionine-
dependent methyltransferases

5ur1 P11362 fibroblast growth factor recep-
tor 1

Immunoglobulin (Ig) domain-
like

6qed P50579 methionine aminopeptidase 2 Creatinase/aminopeptidase
catalytic domain-like

5n9r Q93009 ubiquitin carboxyl-terminal
hydrolase 7

Cysteine proteinases

3vhe P35968 vascular endothelial growth
factor receptor 2

Immunoglobulin (Ig) domain-
like

4l7n Q9Y6F1 poly [adp-ribose] polymerase
3

WGR domain-like

5twl Q14680 maternal embryonic leucine
zipper kinase

UBA-like

3hb4 P14061 estradiol 17-beta-
dehydrogenase 1

SDR-like

6nss P04629 high affinity nerve growth fac-
tor receptor

Immunoglobulin (Ig) domain-
like
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6f3i Q9NWZ3 interleukin-1 receptor-
associated kinase 4

DEATH domain

2qcg P11172 uridine 5’-monophosphate
synthase (ump synthase)

Ribulose-phoshate binding
barrel

2vwz P54760 ephrin type-b receptor 4 SAM/Pointed domain
6g2r P08191 type 1 fimbrin d-mannose spe-

cific adhesin
Bacterial adhesin-like

4at4 Q16620 bdnf/nt-3 growth factors re-
ceptor

Immunoglobulin (Ig) domain-
like

3qrk P00519 tyrosine-protein kinase abl1 alpha-Catenin/Vinculin-like
4tsx F2WR39 integrase Ribonuclease H-like
4c9x P36639 7,8-dihydro-8-oxoguanine

triphosphatase
Nudix

6qlr P17931 galectin-3 Concanavalin A-like lectin-
s/glucanases

3tc5 Q13526 peptidyl-prolyl cis-trans iso-
merase nima-interactin

WW domain

6as8 Q1RBS0 fml fimbrial adhesin fmld Bacterial adhesin-like
6r8w P30405 peptidyl-prolyl cis-trans iso-

merase f
Cyclophilin-like

4kow Q9HV14 uncharacterized protein Acyl-CoA N-acyltransferases
(Nat)

5d47 P15090 fatty acid-binding protein,
adipocyte

Lipocalins

5m6m P98170 e3 ubiquitin-protein ligase
xiap

Inhibitor of apoptosis (IAP)
repeat

6q96 Q00987 e3 ubiquitin-protein ligase
mdm2

SWIB/MDM2 domain-like

4z6i Q9H8M2 bromodomain-containing pro-
tein 9

Bromodomain

4lwu P56273 e3 ubiquitin-protein ligase
mdm2

SWIB/MDM2 domain-like

1utr P17559 uteroglobin Uteroglobin-like

Table B.1: All 69 proteins used for the panel of proteins with the superfamily they
belong to. The first 37, also in bold, constitute the panel for the IFPP evaluated on
the whole LH Benchmark.
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Following Figures display the overlap in chemical spaces between decoys of the LH

benchmark and molecules from 13 datasets of LIT-PCBA: ADRB2, ALDH1, ESR1
agonist, FEN1, GBA, IDH1, KAT2A, MAPK1, MTORC1, PKM2, PPARG, TP53,
VDR.

Figure C.1: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from ADRB2 dataset.
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Figure C.2: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from ALDH1 dataset.

Figure C.3: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from ESR1 agonist dataset.
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Figure C.4: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from FEN1 dataset.

Figure C.5: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from GBA dataset.
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Figure C.6: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from IDH1 dataset.

Figure C.7: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from KAT2A dataset.
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Figure C.8: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from MTORC1 dataset.

Figure C.9: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from OPRK1 dataset.
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Figure C.10: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from PKM2 dataset.

Figure C.11: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from PPARG dataset.
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Figure C.12: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from TP53 dataset.

Figure C.13: 2D representation of the chemical space with the UMAP algorithm based
on Morgan fingerprints. In orange: decoys from the LH benchmark, in blue: molecules
from VDR dataset.
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MOTS CLÉS

Docking, Interactions moléculaires, Machine Learning, Représentation moléculaire, Scaffold hopping

RÉSUMÉ

La découverte de médicaments, de l’identification de candidats jusqu’au développement clinique, implique parfois de
résoudre des problèmes de ’scaffold hopping’, dans le but d’optimiser l’activité biologique, la sélectivité, les propriétés
ADME, ou de réduire les préoccupations toxicologiques des molécules. Ils consistent à identifier des molécules actives
dont les modes de liaison sont similaires mais dont les structures chimiques sont différentes de celles des actifs connus.
Le ’large-step scaffold hopping’, qui correspond au degré le plus élevé de différence structurelle avec la molécule initiale,
nécessite l’aide de méthodes calculatoires. Le docking est considéré comme la méthode de choix pour l’identification de
telles molécules isofonctionnelles. Cependant, la structure de la protéine peut ne pas être adaptée au docking en rai-
son d’une faible résolution, voire être inconnue. Dans de tels cas, les approches ’ligand-based’ sont prometteuses mais
souvent insuffisantes car basées sur des descripteurs moléculaires n’ayant pas été spécifiquement développés pour le
’large-step scaffold hopping’. La résolution de ces problèmes se résume à l’identification de descripteurs correspondant
à une représentation de l’espace chimique dans laquelle deux molécules qui sont des cas de ’scaffold hopping’ sont
similaires, bien qu’elles soient dissemblables dans l’espace représenté par les descripteurs basés principalement sur la
structure chimique. Afin d’évaluer la capacité des descripteurs à les résoudre, nous avons constitué un ensemble de
cas de ’scaffold hopping’ de haute qualité comprenant des paires de molécules actives pour une variété de protéines.
Nous avons ensuite proposé une stratégie pour évaluer la pertinence des descripteurs pour résoudre ces problèmes,
correspondant à des cas réels où une molécule active est connue, et la seconde active est recherchée parmi un en-
semble de molécules leurres choisies de manière à éviter les biais statistiques. Nous avons ainsi illustré les limites des
descripteurs classiques 2D et 3D. Par conséquent, nous proposons l’Interaction Fingerprints Profile (IFPP), une représen-
tation moléculaire qui capture les modes de liaison des molécules via des dockings sur un panel de protéines diverses.
L’évaluation de cette représentation sur le benchmark démontre son intérêt pour l’identification de molécules isofonction-
nelles. Cependant, son calcul coûteux limite sa mise à l’échelle pour le criblage de bibliothèques moléculaires très larges.
Nous avons remedié à cela en tirant parti du Metric Learning, qui permet une estimation rapide des similarités des IFPP
des molécules, fournissant ainsi une stratégie de pré-criblage efficace applicable à de larges bibliothèques. Nos résultats
suggèrent que l’IFPP est un outil intéressant et complémentaire aux méthodes existantes afin de résoudre le ’scaffold
hopping’.

ABSTRACT

The challenges of drug discovery from hit identification to clinical development sometimes involves addressing scaffold
hopping issues, in order to optimise molecular biological activity or ADME properties, improve selectivity or mitigate
toxicology concerns of a drug candidate. They consist in identifying active molecules of similar binding modes but of
different chemical structures to that of known active molecules. Large-step scaffold hopping, which corresponds to the
highest degree of structural dissimilarity with the original hit, cannot be easily solved without the aid of computational
methods. Docking is usually viewed as the method of choice for identification of such isofunctional molecules. However,
the structure of the protein may not be suitable for docking because of a low resolution, or may even be unknown. In such
cases, ligand-based approaches offer promise but are often inadequate to handle large-step scaffold hopping, because
they are based on molecular descriptors that were not specifically developed for it. Solving those problems boils down to
the identification of molecular descriptors corresponding to an embedding of the chemical space in which two molecules
that are examples of large-step scaffold hopping cases are similar (i.e. close), although they are dissimilar (i.e. far) in the
space embedded by molecular descriptors based principally on the chemical structure. To evaluate molecular descriptors
to solve this particular challenging task, we built a high quality dataset of scaffold hopping examples comprising pairs
of active molecules and including a variety of protein targets. We then proposed a strategy to evaluate the relevance of
molecular descriptors to that problem, corresponding to real-life applications where one active molecule is known, and
the second active is searched among a set of decoys chosen in a way to avoid statistical bias. We assessed how limited
classical 2D and 3D descriptors are at solving these problems. Therefore, we introduced the Interaction Fingerprints
Profile (IFPP), a molecular representation that captures molecules’ binding modes based on docking experiments against
a panel of diverse high-quality protein structures. Evaluation on the benchmark demonstrated its interest for identifying
isofunctional molecules. Nevertheless, its computation is expensive, which limits its scalability for screening very large
molecular libraries. We proposed to overcome this limitation by leveraging Metric Learning approaches, allowing fast
estimation of molecules IFPP similarities, thus providing an efficient pre-screening strategy that is applicable to very large
molecular libraries. Overall, our results suggest that IFPP provides an interesting and complementary tool alongside
existing methods, in order to address challenging scaffold hopping problems effectively in drug discovery.
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