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Résumé

La mucoviscidose est la maladie autosomale grave la plus fréquente dans la pop-
ulation caucasienne. Elle est causée par des mutations du gène codant pour la pro-
téine CFTR (Cystic Fibrosis Transmembrane Regulator), qui agit comme un canal de
chlorure (Cl≠) à la membrane des cellules épithéliales. La mucoviscidose est princi-
palement délétère pour les poumons, où l’infection chronique et les lésions tissulaires
provoquent progressivement une insu�sance respiratoire. Plus de 2000 mutations sont
connues pour le gène CFTR, mais 70% des patients sont homozygotes pour la délé-
tion du résidu F508 (F508del). Le traitement de la mucoviscidose est resté longtemps
symptomatique, mais des modulateurs pharmacologiques de CFTR sont disponibles
depuis peu. Cependant, ils ont un e�et limité chez les patients homozygotes F508del
et n’arrêtent pas l’évolution de la maladie. De plus, ils restent spécifiques à certaines
mutations, et environ 15% des patients ne peuvent pas en bénéficier. Enfin, leurs cibles
protéiques, leurs mécanismes d’action et leurs e�ets secondaires à long terme sont en-
core inconnus. Par ailleurs, la pathophysiologie globale de la mucoviscidose ne peut
être expliquée uniquement par la perte de la fonction du canal chlorure CFTR. Notre
hypothèse est que CFTR appartient à un réseau de protéines qui n’ont pas encore été
toutes identifiées et dont les fonctions sont perturbées par l’absence de CFTR, partici-
pant ainsi à certains des phénotypes cellulaires anormaux qui caractérisent la maladie.
En utilisant des approches de biologie des systèmes et des méthodes d’apprentissage
automatique chémogénomique, les objectifs du projet sont les suivants : (1) identifier
in-silico des cibles thérapeutiques candidates en construisant le réseau des dérégulations
moléculaires de la mucoviscidose causées par l’absence de CFTR à l’aide de données
transcriptomiques; (2) identifier les cibles protéiques des modulateurs de CFTR afin de
déchi�rer leurs mécanismes d’action. À terme, le projet devrait permettre d’identifier
de nouvelles stratégies thérapeutiques combinant des médicaments ciblant la restaura-
tion de la maturation et de la fonction de CFTR, à des médicaments ciblant le réseau
de dérégulations de la maladie. Cette approche systémique pourrait apporter des solu-
tions thérapeutiques aux patients présentant des mutations pour lesquelles il n’existe
actuellement aucune thérapie.

Mots clés : mucoviscidose, biologie des systèmes, chemogenomics, machine-learning,
cibles thérapeutiques, transcriptomics
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Abstract

Cystic Fibrosis (CF) is the most frequent life-limiting autosomal disease in the Cau-
casian population. It is caused by mutations in the gene coding the Cystic Fibrosis
Transmembrane Regulator (CFTR) protein, acting as a chloride (Cl≠) channel at the
membrane of epithelial cells. CF is mainly deleterious for the lung where chronic infec-
tion and tissue damage progressively cause respiratory insu�ciency. More than 2000
mutations are known in the CFTR gene, but 70% of the patients are homozygous for
the deletion of residue F508 (F508del). CF treatment remained symptomatic for a long
time, but pharmacologic CFTR modulators became recently available. However, they
have a limited e�ect in F508del homozygous patients, and do not stop disease evolu-
tion. They remain mutation specific, and around 15% of CF patients cannot benefit.
Moreover, their protein targets, mechanisms of action and long-term side e�ects are
still unknown. In addition, CF overall physiopathology cannot be solely explained by
the loss of the CFTR chloride channel function. Our hypothesis is that CFTR be-
longs to a yet not fully deciphered network of proteins, whose functions are disrupted
by the absence of CFTR, thus participating in some of the abnormal cellular pheno-
types that characterise CF. Using systems biology approaches and machine-learning
chemogenomics methods, the aims of the project are to: (1) identify in-silico candidate
therapeutic targets by building the network of CF molecular dysregulations caused
by the absence of CFTR based on transcriptomic data; (2) identify protein targets of
CFTR modulators to decipher their mechanisms of action. At term, the project should
help identify new therapeutic strategies combining drugs targeting restoration of CFTR
maturation and function, to drugs targeting the network of CF molecular dysregula-
tions. This systemic approach may provide therapeutic solutions for CF patients with
mutations for which there is currently no specific therapy.

Keywords : cystic fibrosis, systems biology, chemogenomics, machine-learning, ther-
apeutic targets, transcriptomics
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Chapter 1. Introduction

Abstract

Cystic fibrosis (CF) is the most common life-limiting autosomal disease in the
Caucasian population. It is caused by mutations in the gene encoding CFTR. However,
the overall physiopathology such as uncontrolled pro-inflammatory response, oxidative
stress, or impaired epithelial regeneration cannot be easily linked to the loss of the
CFTR chloride channel function alone. CF treatment has long been symptomatic, but
pharmacological CFTR modulators have recently become available. However, they have
a limited effect in F508del homozygous patients, and do not halt disease progression.
They remain mutation specific, and about 15% of CF patients do not benefit. In ad-
dition, their protein targets, mechanisms of action and long-term side effects are still
unknown. Our hypothesis is that CFTR belongs to a yet not fully deciphered network
of proteins, whose functions are disrupted in the absence of CFTR, thus contributing
to some of the abnormal cellular phenotypes that characterise CF. After addressing the
challenges posed by the molecular mechanisms of CF and its therapeutic solutions, I
develop in this introduction the specific questions that led to the formulation of our
research hypothesis. I then present the methods developed during the project and the
contributions of this thesis.

Résumé

La mucoviscidose est la maladie autosomale grave la plus fréquente dans la popu-
lation caucasienne. Elle est causée par des mutations du gène codant pour la protéine
CFTR. Cependant, la physiopathologie globale de la maladie, telle que la réponse pro-
inflammatoire incontrôlée, le stress oxydatif ou l’altération de la régénération épithé-
liale, ne peut être expliquée uniquement par la perte de la fonction du canal chlorure
CFTR. Le traitement de la mucoviscidose a longtemps été symptomatique, mais des
modulateurs pharmacologiques de CFTR sont disponibles depuis peu. Ils ont cependant
un effet limité chez les patients homozygotes F508del et n’arrêtent pas la progression
de la maladie. Ils restent spécifiques à certaines mutations et environ 15% des patients
ne peuvent pas en bénéficier. En outre, leurs cibles protéiques, leurs mécanismes d’ac-
tion et leurs effets secondaires à long terme sont encore inconnus. Notre hypothèse est
que CFTR appartient à un réseau de protéines qui n’ont pas encore été toutes iden-
tifiées et dont les fonctions sont perturbées en l’absence de CFTR, participant ainsi à
certains des phénotypes cellulaires anormaux qui caractérisent la maladie. Après avoir
abordé les défis posés par les mécanismes moléculaires de la mucoviscidose et ses solu-
tions thérapeutiques, je développe dans cette introduction les questions spécifiques qui
ont conduit à la formulation de notre hypothèse de recherche. Je présente ensuite les
méthodes développées au cours du projet et les contributions de cette thèse.
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1.1. Preface

1.1 Preface

In this thesis, I addressed the challenges posed by the molecular mechanisms of
cystic fibrosis (CF) by applying two areas of computational biology: systems biology
approaches and chemogenomics algorithms. This manuscript presents both method-
ological developments and their practical applications related to CF.

Although a proper introduction to both of these areas is necessary to understand
the work of this thesis, I have chosen to keep the primary focus in this introduction
on the biological question. For the sake of clarity, systems biology approaches and
chemogenomics algorithms are defined separately in two dedicated chapters prior to
their application. Indeed, the importance of the biological question has remained cen-
tral during the research journey. Of course, it had led us to address methodological
issues but these emerged while trying to solve the biological problem.

The section 1.2 of the introduction focuses on presenting the disease from a medical
and molecular perspective, emphasising its complex and heterogeneous nature. Then I
discuss in section 1.3 the current treatment landscape for CF and I develop, in section
1.4, the specific questions that have driven the formulation of our research hypothesis.
In section 1.5, I introduce the methods developed during the project which allowed
us to address the biological questions raised. Finally, in section 1.6, I highlight the
contributions of this work developed in the main body of this manuscript.

1.2 Cystic Fibrosis: a monogenic disease

1.2.1 The prevalence, the symptoms, and the diagnosis

Cystic Fibrosis is a inherited disorder caused by a mutation on the cystic fibrosis
transmembrane regulator (CFTR) gene. It is considered as a rare disease, that is a
disease which a�ects less than 1 person per 2000 in Europe. Although rare, CF is
the most common life limiting autosomal recessive genetic disease in the Caucasian
population, a�ecting approximately one in 3500 birth [Farrell, 2008]. In France, the
prevalence varies according to the regions, from 1/2500 in the North-West to 1/10000
in the South-East.

CF was first considered pediatric, but the life expectancy of CF patients has greatly
increased over the past decades, in particular thanks to patient care and development
of new therapies. It has gone from less than 5 years old in the 1950s to over 40 years
old today [Lopes-Pacheco, 2016].

CF a�ects the cells that express CFTR, and in particular cells involved in the
production of mucus, sweat and digestive juices. These fluids are thin and slippery but
CF makes them abnormally viscous and thick. These secretions plug up tubes and ducts
(Figure 1.1) and cause severe damage to the lungs, to the digestive systems and to other
organs in the body. In the lung, CF disease is characterised by altered airway surface
liquid pH, decreased host defenses at the airway surface, and chronic bacterial infections
[Tarran, 2005; Tang, 2016]. These contribute to chronic inflammation of the airways,
which gradually causes damage to lung tissue and leads to respiratory insu�ciency.
CF morbidity and mortality are mostly caused by the chronic and progressive lung
dysfunction.
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Chapter 1. Introduction

Figure 1.1 – Summary of CF symptoms.
(A) Organs a�ected by CF, (B) normal airway and (C) airways a�ected by CF.

Illustration from National Heart Lung and Blood Institute (NIH), 12 November 2013.
Public Domain.

France has introduced neonatal screening to diagnose CF, which involves measur-
ing the levels of Immunoreactive trypsin (IRT) in the blood of newborns. If the test
gives a positive result, further investigation searches for CFTR mutations and a final
diagnosis is confirmed by a sweat test [Cornet, 2022a]. The so-called sweat test consists
in measuring the Cl≠ ions concentration present in the sweat after sweat stimulation
because the sweat of CF patients is highly concentrated in chloride (Cl≠) ions [Di
Santagnese, 1953]).

1.2.2 The CFTR protein

The CFTR gene codes for the Cystic Fibrosis Transmembrane Regulator (CFTR)
protein [Rommens, 1989]. CFTR is a chloride channel situated at the apical membrane
of polarised epithelial cells, in particular those lining the airways [Trezise, 1991]. A
default in ion transport causes a reduction in liquid hydration of the airway surface.
This reduction then prevents e�cient mucociliary clearance, which is one of the basic
immune defense mechanisms of the respiratory tract [Stoltz, 2015].

CFTR belongs to the ATP Binding Cassette (ABC) superfamily of proteins which
carry out substrates inside and outside the cells by hydrolyzing Adenosine TriPhos-
phate (ATP). Like most ABC proteins, CFTR is composed of two trans-membrane
domains (TMD), TMD1 and TMD2, two Nucleotide Binding Domains (NBD), NBD1
and NBD2, and one Regulatory domain R situated between NBD1 and TMD2. The
role of the R domain of CFTR is to regulate opening and closing of the chloride chan-
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1.2. Cystic Fibrosis: a monogenic disease

nel. The activation of the channel depends on several elements represented in Figure
1.2. First, the R domain must be phosphorylated by protein kinase A or C (PKA and
PKC) [Picciotto, 1992]. As long as the R domain is not phosphorylated, steric e�ects
maintain the channel closed [Bozoky, 2013]. The phosphorylation induces structural
changes that displace R from it steric-interfering position and allows dimerisation of
the NBDs [Meng, 2017]. ATP binding at the NBDs triggers the opening of the channel,
whereas ATP hydrolysis and the subsequent release of ADP result in the closure of the
channel [Vergani, 2005]. See Figure 1.2 for a schematic view of CFTR chloride channel
opening.

Figure 1.2 – Schematic view of the chloride channel opening.
Illustration from [Della Sala, 2021] used under CC BY 4.0.

The maturation of CFTR involves several steps, including protein synthesis, folding,
and tra�cking to the plasma membrane (PM), which are collectively referred to as the
CFTR proteostatis pathway. CFTR RNA is first synthetized in the nucleus, then it
joins the cytosolic ribosomes for the translation and then the endoplasmic reticulum
(ER) for post-translational modifications, including folding.

In the ER, CFTR is also subject to the ER Quality Control System (ERQC). ERQC
ensures that CFTR is correctly folded and functional, and can migrate to the cell PM
[Farinha, 2017]. Conversely, misfolded CFTR is targeted for ER-associated degradation
(ERAD) [Jensen, 1995; Ward, 1995]. Once CFTR has passed the ERQC, the protein
migrates to the Golgi apparatus to be glycosylated and thus forming the mature protein.
The CFTR protein is finally transported to the PM, where it functions as a chloride
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channel. Misfolded proteins which are mostly retained in the ER and targeted for
ERAD can sometimes bypass the degradation pathway and reach the PM [Sermet-
Gaudelus, 2002]. Therefore, the transport of a mutated protein to the PM is possible,
it justifies improving the rescue of mutated CFTR as a therapeutic solution [Cornet,
2022a].

1.2.3 CFTR mutations

More than 2,000 unique mutations of CFTR have been identified. The most common
mutation is the deletion of a phenylalanine at position 508 (F508del). This mutation
represents about 70% of CF alleles worldwide [Gentzsch, 2018]. The mutations have
been grouped into six di�erent classes [Marson, 2016] based on their functional impact
on CFTR (See Figure 1.3):

— class I: CFTR nonsense or splicing mutations abrogate CFTR production.

— class II: Many missense mutations impair proper folding of CFTR and lead to its
retention in the ER and its degradation by the proteasome. It includes the most
common mutation, F508del.

— Some missense and splicing mutations produce CFTR chloride channels that reach
the cell surface but are not fully functional due to various defects [Gentzsch, 2018]:

— class IIII: gating blocking in the closed position even in presence of ATP.
— class IV: diminished ion conductance.
— class V: reduced amount of functional CFTR.
— class VI: decreased membrane residence time at the apical surface.

.
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1.3. CF treatments

Figure 1.3 – The classes of CFTR mutations and current pharmacologic approaches to
restore CFTR function.

Illustration from [Brodlie, 2015] used under CC BY 4.0.

1.3 CF treatments

There is no cure for cystic fibrosis. Treatments for CF have remained mainly symp-
tomatic but some small molecule compounds have recently been developed to improve
the processing and activity of mutated CFTR. Although this is not the main focus of
this section, we define below the term of biomarker, which is closely linked to treat-
ments, before discussing the latter and their e�ects.

Indeed, the term "biomarker" is derived from "biological marker" and refers to a
measurable and reproducible indicator of a patient’s medical state [Strimbu, 2010].
Biomarkers are useful to categorize disease severity and thus assess patients hetero-
geneity, to monitor disease progression and to measure therapeutic e�cacy. Biomarkers
that show evolution indicating a beneficial e�ect on patients are particularly valuable
and are commonly used to validate treatments.
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1.3.1 CF main biomarkers

The primary biological consequence of CFTR mutations is a defect in the chlo-
ride channel function of the CFTR protein. Therefore, the concentration of Cl≠ ions,
particularly in the sweat, is a biomarker frequently used to measure the e�cacy of a
treatment targeting CFTR channel function. Besides, both the American FDA (Food
and Drug Administration) and the European Medicines Agency (EMA) recommend
measuring the force expiratory volume in 1 second (FEV1) as a CF biomarker for pul-
monary function. FEV1 is the maximum amount of air a patient can exhale during
the first second following maximal inhalation [David, 2023]. FEV1 decline has been
associated with morbidity and mortality among CF patients [Corey, 1997; Liou, 2001].

Other parameters may be important for monitoring disease progression, in partic-
ular for assessing the heterogeneity of patient response to treatments. For example,
a study by Cornet et al, 2022 showed that the FEV1 measurement is not su�cient
to measure the response to Orkambi of patients aged six to twelve years but that the
combination of the FEV1 measurement and the Body Mass Index (BMI) measurement
could be more useful [Cornet, 2022b].

1.3.2 Symptomatic treatments and gene therapy

Historically, treatments have remained symptomatic for a long time, managing all
the symptoms. They include antibiotics to fight against chronic infection, or pancreatic
enzymes to fill pancreatic deficiencies (reviewed in [Davies, 2007]), and they are still
widely used today.

In 1989, the discovery of CFTR gene has enabled the development of therapy target-
ing this gene. However, gene therapy in CF involves challenges such as producing vector
in quantities su�cient for treating the entire human lung, developing accurate CF an-
imal models, and identifying airway cell types capable of reversing disease progression
once CFTR is expressed [Choi, 2021]. Although there have been some promising results
in preclinical studies, no gene therapy drugs for CF have been approved yet, and it is
still an area of active research and development.

1.3.3 CFTR modulators

In addition to advances in gene therapy, there have been recent successes in the de-
velopment of molecules restoring CFTR channel function. Indeed, understanding the
structure and function of CFTR has helped to develop and optimize small-molecule
compounds designed to restore the processing, maturation and activity of mutant
CFTR [Gentzsch, 2018]. These molecules are collectively designated as CFTR modu-
lators [Amaral, 2007]. We can categorize them into two classes (See Figure 1.3):

— CFTR potentiators increase the activity of mutant CFTR at the cell surface.
They have been typically developed for patients with class III mutations, such as
the G551D mutation.

— CFTR correctors improve defective protein folding and processing to the cell
surface, and can be combined with a potentiator.

Since 2012, the Vertex company has developed four of these modulators subse-
quently approved by the FDA (see [Cornet, 2022a] for a detailed review in French of
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these four modulators).
VX-770 (trade name: Ivacaftor) is the only potentiator marketed by Vertex. Clinical

trials showed significant decrease of Cl≠ concentration in sweat, and improvement in
lung function for CF patients with mutations of class III and superior [Ramsey, 2011].
It has been approved for adult patients in 2012 and it has been expanded to patients
aged 4 months and older since then.

VX-809 (trade name: Lumacaftor) was the first corrector developed by Vertex.
Although results on CFTR maturation and activity were encouraging in primary cul-
tures of patients, no improvement in lung function was reported from clinical trials
[Clancy, 2012]. Therefore, for mutations of class II, including F508del, research focused
on combotherapies with one or multiple correctors of CFTR folding/processing and one
potentiator of CFTR activity at the PM. A combination therapy of VX-770 and VX-809
(trade name: Orkambi) has been developed. A clinical trial on F508del-homozygous
patients showed a significant improvement [Wainwright, 2015] whereas conversely a
clinical trial on heterozygous patients did not. In 2015, this combotherapy has been
approved for 12 years and older F508del-homozygous patients and it has been expanded
to 2 years and older patients since 2019 [Konstan, 2017].

VX-661 (trade name: Tezacaftor) is a second-generation corrector developed from
VX-809 to stay active longer in the ER, thanks to a better metabolising profile [Don-
aldson, 2018]. A combination therapy of VX-661 and VX-770 (trade name: Symdeko)
has been developed to enhance the beneficial but limited e�ects of Orkambi. Clinical
trials conducted on F508del-homozygous patients did not show better outcomes than
those observed with Orkambi. Conversely, clinical trials on heterozygous patients, with
one F508del allele and one allele of a class III mutation or superior, showed beneficial
e�ects on both FEV1 and sweat Cl≠ concentration [Donaldson, 2018]. Treatment with
Symkevi was approved for these patients.

Finally, VX-445 (trade name: Elexacaftor) is a third-generation corrector. It was
developed to act synergistically with other correctors. The triple combination therapy
(VX-445/VX-661/VX-770, trade name: Trikafta) enabled significant decrease of sweat
Cl≠ concentration and significant improvement on FEV1, at a higher level than all
other therapies mentioned above, for patients carrying at least one F508del mutation
[Keating, 2018]. Nevertheless the clinical benefit remains heterogeneous, since about
30% of CF patients have less than 5% improvement in FEV1 [Heijerman, 2019]. In
February 2023, clinical benefits were however observed in a subset of CF patients with
advanced lung disease and CFTR variants not currently approved for CFTR modulators
[Burgel, 2023]. This study could expand treatment approval for patients that were not
eligible to these therapy until now.

1.3.4 Mechanism of action of CFTR modulators

CFTR modulators were identified by High Throughput phenotypic Screening (HTS)
based on improving the chloride channel transport in CF human bronchial cells. There-
fore, their molecular mechanisms are not fully understood and their overall mechanism
of action (MoA) is partially known.

On the one hand, the maturation of CFTR by VX-770 would be dependent on the
state of phosphorylation of the channel, but independent of ATP since it is e�ective
on proteins whose NBD1 site is mutated and in others where the NBD2 site is absent
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[Mutyam, 2017]. On the other hand, several studies on the mechanism of action of
VX-809 point to di�erent e�ects: it could stabilize the protein folding by acting on the
TMD1 site, on the NBD1 site, or on the TMD2-NBD1 interaction.

Besides, both in vitro and in vivo studies have suggested potential o�-target proteins
for CFTR modulators. The improvement in sweat chloride levels during Orkambi treat-
ment did not show a statistically significant association with progression of pulmonary
function [Sagel, 2021]. This indicates that the benefit brought by CFTR modulators
to pulmonary function would not depend only on improvement of the CFTR channel
function. In addition, a study conducted by Rehman [Rehman, 2021] showed a pos-
itive correlation between airway inflammation and Trikafata-induced improvement in
lung function. This suggests that the potential o�-targets are related to inflammatory
processes.

Lastly, the response to treatment varies among patients. Several clinical parameters,
including FEV1 expressed in percentage predicted (ppFEV1) and Body Mass Index
(BMI) can explain most of the heterogeneity in children’s response to Orkambi[Cornet,
2022b]. Specifically, patients with more severe respiratory dysfunction tend to show
less improvement.

Understanding the MoA of CFTR modulators is essential to optimize their e�cacy,
or to define new therapeutic strategies. For instance it has been shown that VX-809
limits the e�ect of VX-770 [Donaldson, 2018]. A deeper understanding of how each one
work could help to tackle this issue.

Among the modulators, Trikafta stands as the most promising treatment with no-
table outcomes. A deeper understanding of the MoA of elexacaftor seems worthwhile,
since its inclusion in the therapy appears to o�er the greatest benefits to patients.

1.4 Unravelling CF molecular mechanisms

CF therapeutic e�orts mainly focus on targeting the CFTR gene or the chloride
channel. However, as detailed below, some CF symptoms or CF phenotypes at the
cellular level do not seem to depend solely on CFTR function. It is therefore of great
interest to understand and unravel the molecular mechanisms of the disease beyond the
genetic mutation and the function of the CFTR chloride channel. This understanding
is necessary to grasp the variability in patient response and to improve new therapeutic
strategies, particularly for patients who are not eligible to CFTR modulators.

1.4.1 Unrelated CF symptoms

The link between the loss of CFTR chloride channel function and the overall CF
pathophysiology is not fully understood.

It has been established that CF is characterised by excessive inflammation prior to
infection [Bodas, 2010; Nichols, 2015]. This observation cannot be related to CFTR
channel function in a direct manner. This is one of the most debated topics related
to CF [Khan, 1995; Balough, 1995]: although infection worsen inflammation, the
initial causal relationship between infection and inflammation remains to be estab-
lished. Pig models of CF showed that there is no intrinsic inflammation in non-infected
lungs [Stoltz, 2010] although they show blunted early response to pro-inflammatory
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environment [Bartlett, 2016]. Conversely, CF ferret models demonstrated that muco-
inflammatory processes are present in absence of clinically apparent infections [Rosen,
2018]. Finally, studies on young children bronchioalveolar lavage fluid (BALF) [Esther,
2019] support the idea that inflammation is an intrinsic defect in the immune response,
rather than a response to airway infection.

Moreover, other abnormal cellular phenotypes observed in CF do not appear to be
related to a defect in Cl≠ conductance, such as unbalanced oxidative stress with in-
creased Reactive Oxygen Species (ROS) [Kelly-Aubert, 2011; Jeanson, 2012], impaired
epithelial regeneration [Hajj, 2007], proteostatis and autophagy [Bodas, 2019].

1.4.2 Is CFTR just a chloride channel ?

Moreover, recent studies on CF animal models fuel the idea that CFTR is involved
in other non-channel functions (see [Hanssens, 2021] for a review). Indeed studies on
CFTR -/- knockdown mice [Crites, 2015], CFTR -/- knockdown piglets [Fleurot, 2022]
and mutated cell lines in which CFTR is inactivated by the CRISPR/Cas9 technol-
ogy [Hao, 2020] have reported that the absence of CFTR a�ects cell signalling and
transcriptional regulation, and in particular inflammatory responses.

1.4.3 Patient heterogeneity

Lastly, these symptoms are also found to be very heterogeneous among patients,
even among those bearing the same CFTR mutations. The heterogeneity of CF symp-
toms cannot be explained by CFTR mutations, and thus by the defect in the channel
function alone. Indeed, several studies showed that CFTR genotypes do not solely
correlate with lung function [Wright, 2011; Consortium, 1993].

1.4.4 Main hypothesis of this thesis

The issues raised above suggest the following hypothesis: although CF is a mono-
genic disease, its symptoms and patients response to treatments are not only caused
by the dysfunction of CFTR, but by the dysfunction of a yet unknown network of pro-
teins that functionally interact with CFTR in the cell. This protein network involved
in various biological functions may explain how the absence of a functional CFTR
leads to perturbations of various biological pathways, leading to an array of CF cellular
phenotypes.

Previous research has already studied networks of proteins involved in the process-
ing and maturation of wild-type or mutated CFTR (such as chaperons HSP70 and
HSP90) [FARINHA, 2002]. However, our hypothesis goes beyond the processing and
proteostasis network of CFTR and relates to the functional protein network to which
CFTR belongs once it reaches the membrane, located near other ion channels, mem-
brane receptors and cytoskeleton proteins.
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1.5 Project description

The primary focus lies in deciphering the intricate molecular dysregulations of CF
caused by the absence of CFTR at the plasma membrane. The hypothesis of this thesis
may address the challenges presented in the previous sections. Specifically, it aims at
relating the absence of functional CFTR protein to well-known cellular CF phenotypes.

We combined two complementary fields of computational biology: first, we devel-
oped systems biology approaches for CF based transcriptomic data, and second, we
predicted o�-targets for CFTR modulators using machine-learning algorithms.

1.5.1 Systems biology approach to study CF

Systems biology is a modern interdisciplinary field that uses computational methods
and mathematical models to unravel the complexity of biological processes. It relies
in the premise that biological functions arise from the interaction of multiple cellular
components, rather than being attributed to a single one. This paradigm allows for a
holistic understanding of the biological processes that goes beyond the isolated study
of individual elements. To do this, systems biologists generally represent biological
systems as networks, and use tools derived from graph theory and network modelling
to analyse them (see chapter 2 for a more detailed introduction of systems biology
approaches and notions).

This field is particularly useful for describing complex biological processes. It is
therefore valuable for the study of complex diseases, such as cancer. Indeed, cancer is
described as a systemic disease involving multiple genetic and environmental factors.
It is then necessary to combine knowledge in molecular biology, chemistry, physics,
mathematics or/and informatics to understand the complexity of the disease, which
makes the systems biology paradigm appropriate for its study.

In this PhD project, we consider CF as a complex disease whose consequences are
not limited to the loss of CFTR function. We want to go beyond the CFTR-centric
vision that has been the main focus of CF research and study the links between CFTR
and the di�erent molecular dysregulations of the CF cell. In this context, it appeared
relevant to adopt a systems biology approach to tackle these questions.

Two directions have emerged in systems biology. The first is data-driven: the aim is
to collect and analyse large amounts of data to reconstruct a global view of systems in
the form of networks and extract biological information from these data. In particular,
the high-throughput measurement of transcript or protein data, known as omics data,
enables to highlight genes and biological processes that are disrupted in diseases across
the whole genome or proteome, without any a priori hypothesis. These data are now
being generated and analysed on a massive scale for deriving biological hypotheses.
Conversely, the second direction, the model-driven approach, consists of integrating
detailed knowledge of the systems’ subunits to understand the system as a whole, and
translating them into mathematical models. The aim of these models is to understand
why certain phenotypes occur in certain biological contexts.

In the context of this project, this second direction is not realistic, as it assumes that
all the cellular components and functions relevant for the problem at hand are known.
Most of the molecular mechanisms dysregulated in CF have not been extensively stud-
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ied, which makes it impossible to build a model exclusively from the literature. For
this reason, we have adopted a data-driven approach for this project.

The first step was to retrieve overall CF molecular dysregulations by analysing omics
data. We focused on modelling one particular system: the human airway epithelial cells
with the F508del mutation. This choice was made because the most severe symptoms of
CF are in the lungs, and because this mutation is the most prevalent. We have analysed
these omics data adopting a pathway-level approach rather than focusing on individual
genes, as interpretation at the gene level is often controversial and not always robust.
Finally, we have built a biological network comprising all the molecular dysregulations
obtained from a comparative analysis of CF omics data.

1.5.2 Predict CFTR modulators targets

Another original way to understand CF molecular dysregulations is to explore the
mechanisms of action of CF treatments and especially CFTR modulators. As presented
in section 1.3, these molecules were designed to target CFTR but their MoA have not
been yet elucidated. Their overall protein interaction profile in unknown, and therefore,
their MoA could involve potential o�-targets involved in biological processes that are
actually dysregulated in CF. Therefore, we propose to investigate the MoA of these
molecules to decipher molecular dysregulations in CF.

Unravelling their MoA means predicting their target profiles, i.e. the panel of
proteins with which they directly interact in the cell. We propose to identify these
targets using in silico approaches. These methods are an alternative to experimental
methods, and have been applied to many problems such as predicting physico-chemical
properties or biological information from computational models based on databases
built from in vivo and in vitro tests. Ideally, experimental validation of these predictions
are then performed. The goal of this approach is to reduce the number of experiments
to be performed to the most probable ones.

Identification of CFTR modulators targets can be formulated as a classification
problem in which all (CFTR modulator, protein) couples are predicted as "interacting"
or "not interacting". The problem of target identification can thus be tackled in the form
of Drug-Target Interaction (DTI) prediction. Several computational methods, such as
ligand-based, also known as QSAR, or docking, can be used to solve this problem. We
used a supervised machine-learning (ML) chemogenomic algorithms, because unlike
the methods cited above, chemogenomics is designed to formulate predictions over the
human proteome (see chapter 6 for a brief introduction of chemogenomics basics).

We have developed state-of-the-art ML methods for chemogenomics. These learn-
ing algorithms were trained on all drug-protein interactions available in specific DTI
databases, and then applied to predict CFTR modulators most probable targets. High
scoring predicted targets were finally tested in in vitro experiments, in collaboration
with the Eurofins company.

1.5.3 Long-term objectives

Beyond providing a deeper understanding of the disease, this project aims at helping
to find better therapeutic strategies for CF. First, by looking at the predicted targets of
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CF modulators in the biological network, we could improve our understanding of their
MoA and propose explanations for the heterogeneity of patient responses. Secondly, the
analysis of the network could help us to highlight proteins important for the propagation
of the dysregulations and maybe find new therapeutic targets for CF.

For some of these potential targets, inhibitors or drugs might already be available.
These drugs could be used in synergy with some CFTR modulators to improve the
recovery of patients symptoms. For proteins for which nothing is known for the moment,
we could used the chemogenomic algorithm to find available drugs that could target
these proteins and use them also in synergy with CFTR modulators.

The position of the project implies that the predicted therapeutic targets, or at least
the proteins of interest in the molecular dysregulations, are independent of CFTR.
These proteins could therefore be included in therapeutic strategies agnostic to the
CFTR mutation and be considered for patients bearing "unrescuable mutations".

Furthermore, CFTR is implicated in other diseases and biological processes than
CF: cancer [Zhang, 2013; Xia, 2017; Duan, 2021], COPD [Saint-Criq, 2017], cigarette
smoke exposure [Valdivieso, 2018]. Studying the biological network governed by the
absence of CFTR might suggest molecular targets beyond the field of CF.

1.6 Contributions

In this introduction, I have highlighted the complexity of the molecular mechanisms
of the CF disease. The contributions of this thesis are presented in this manuscript,
as separate chapters, each corresponding to an article that is submitted or already
published in international scientific journals with reviewing process.

As mentioned above, the fundamentals of systems biology and machine-learning
chemogenomics are necessary to understand these articles. These fields are thus intro-
duced in two dedicated chapters: an introduction of the field of computational systems
biology is presented in chapter 2 and the chemogenomics basics to predict DTI are pre-
sented in chapter 6. I also decided to review the studies on systems biology approaches
applied to CF, presented in chapter 4, before introducing our own work. Reading these
chapters may be propaedeutic to the comprehension of the articles.

As mentioned above, we started this project by the investigation of systems biology
approaches using CF transcriptomic data in part II. The analysis of omics data at the
gene level is often controversial and not always robust. There is a need to develop
more complex mathematical methods that are more robust statistically and more in-
terpretable. As the biological pathways level is much more interpretable in terms of
biological mechanisms, gene-set-based algorithms seem to meet this demand.

The manuscript is organised as follows:
In chapter 3, we present a new and extended version of the rROMA package, an algo-
rithm for fast and accurate computation of the activity of gene sets with coordinated
expression. Indeed, identification of gene sets that define biological pathways is an es-
sential step for CF systems biology study. This initial algorithm was developed in 2016
by Martignetti et al. [Martignetti, 2016], and rROMA is widely used in the community
of omics data analysis. The improved algorithm enabled the detection of gene sets that
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were not detected with the previous version, and provides a clearer classification of
the gene sets with a high variance in the data. This methodological work was done in
collaboration with Matthieu Cornet, and was supervised by Loredana Martignetti.
In chapter 5, we tackle the main issue of the thesis: how the absence of functional CFTR
leads to the overall dysregulations, thereby contributing to some of the deleterious CF
phenotypes. We applied pathway-based algorithms to publicly available CF transcrip-
tomic datasets to identify the most frequently dysregulated biological pathways. We
adopted a systems biology approach to connect these pathways and thereby defined a
CF signalling network. The biological pathways present in the network and their re-
sulting phenotypes were found consistent with today’s CF knowledge. The topological
analysis of the network highlighted a few proteins that may initiate dysregulations from
CFTR into the network, and may explain the observed CF phenotypes. This work was
submitted in October 2023.

This initial network model can be refined with other types of omics data such as
proteomics data. For instance, we could integrate data from proximity labeling mass
spectrometry approaches to provide a more comprehensive picture of CFTR protein
partners. In line with this idea, I performed statistical analysis of proximity labeling
data of wild type (WT) and mutated CFTR cells, that allows to identify proteins
in the proximity of CFTR in the cell (although not necessary in direct interaction).
This information could be used in the future to refine our current CF network. This
complementary work was published in International Journal of Molecular Sciences in
2022, and is provided in appendix B.

In part III, we investigated the potential o�-targets of CFTR modulators using
chemogenomics machine-learning algorithms, particularly for elexacaftor, the most re-
cently approved drug. This led us to propose a new algorithm to choose negative
examples for training these algorithms, which was published in International Journal
of Molecular Sciences in June 2021. Indeed, CFTR modulators were developed to re-
store the processing of CFTR, but their mechanisms of action are not fully deciphered
yet. Identification of potential o�-targets would allow a better understanding of the
molecular dysregulations of the cell, and propose better therapeutic strategies with
drugs designed specifically for these targets. Importantly, it would be very interesting
to identify whether these o�-targets belong to the proposed CF network, and whether
they are common to the list of target candidates proposed based on the systems biology
study presented in chapter 5.

This work on target identification is not completed yet, as these approaches need
to be further optimized, particularly to improve predictions for interaction with pro-
teins for which very few, or even no ligands are known. However, in collaboration
with Philippe Pinel and Gwenn Guichaoua, we showed that the proposed algorithm
displays state-of-the-art performances to solve sca�old-hopping problems. This led to
a publication in the journal Molecular Informatics in 2023, provided in Appendix D.

Overall, the results obtained in this thesis underline that CF is a complex disease
for which a systems biology can contribute to a better understanding while providing
suggestions for new experimental work and and therapeutic strategies. However, mod-
elling such a complex and heterogeneous disease in one single model appears somewhat
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reductive and simplistic. Therefore, in chapter 8, after summarising the results of this
thesis, I discuss evidence of the disease heterogeneity. I propose some perspectives to
extend the analyses performed for the F508del mutation to the study of other mu-
tations in CFTR, to investigate the heterogeneity between patients bearing the same
mutation, and to investigate the heterogeneity between the di�erent cell types of the
airway epithelial cells. Indeed, it is important to address these three topics, keeping in
mind the long-term aim of improving therapeutic solutions for CF.
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Computational systems biology
to study diseases

Contents

2.1 Introduction to systems biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 From protein interactions to intracellular biological networks . . . . . . . . 23
2.1.2 Other biological networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Network biology applied to complex diseases . . . . . . . . . . . . . . . . . . 25

2.2 Omics data for systems biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Omics data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Omics data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

21



Chapter 2. Computational systems biology to study diseases

Abstract

Systems biology approaches combine computational and mathematical methods with
biological data in order to construct biological models, and to decipher the complexity
of biological processes. Omics data refers to large-scale datasets that capture biological
information at various molecular levels. Therefore, they are commonly used in computa-
tional systems biology to understand biological mechanisms that determine phenotypes.
This chapter provides an overview of computational systems biology approaches and
explain how omics data analysis can be used to understand complex systems.

Résumé

Les approches de la biologie des systèmes combinent des méthodes informatiques et
mathématiques avec des données biologiques afin de construire des modèles biologiques
et de déchiffrer la complexité des processus biologiques. Les données omiques sont des
ensembles de données à grande échelle qui contiennent des informations biologiques à
différents niveaux moléculaires. Elles sont donc couramment utilisées en biologie systé-
mique computationnelle pour comprendre les mécanismes biologiques qui déterminent
les phénotypes. Ce chapitre donne un aperçu des approches de la biologie systémique
computationnelle et explique comment l’analyse des données omiques peut être utilisée
pour comprendre des systèmes complexes.
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2.1 Introduction to systems biology

Although molecular biology has revealed a multitude of information regarding genome
sequences and protein properties, it alone does not provide a complete understanding of
biological systems [Kitano, 2002]. Indeed biological functions can rarely be attributed
to a single cellular component, but rather to intricate interactions between multiple
components. As our understanding of biological systems becomes more complex, and
thus less intuitive, we need to adopt a systemic and integrative view that encompasses
the components involved in cellular processes. This is the main aim of systems biology
approaches, that combine computational and mathematical methods with biological
data to construct biological models, and to decipher the complexity of biological pro-
cesses. These models do not aim to replace biology or explain the biology better than
experiments, but rather they can accompany biologists in their understanding and in-
terpretations of their experimental results.

Computational systems biology approaches allow to build two types of models:
static models and dynamical models. The first ones aim at describing biological pro-
cesses in the form of maps or networks from knowledge or/and data mining. These
networks can be used as tools to hypothesise protein functions or discover mechanisms
in diseases. The second ones aim at reproducing experimental observations by simulat-
ing hypotheses dynamically. They allow to predict systems response to external factors
(cellular context, micro-environment, genetic alterations, etc.) such as side e�ects, and
suggest or optimize therapeutic solutions.

Static biological modelling comes first, before any dynamical modelling. Therefore,
we built a static biological network of the CF dysregulations. It could be late be used
to simulate CF cells response to treatments, whether they are CFTR modulators or
any inhibition of a newly discovered target. The study of CF dynamical models is
beyond the scope of this thesis. Therefore this section will be dedicated to the concepts
underlying static biological models, and the dynamical models will not be addressed.

2.1.1 From protein interactions to intracellular biological networks

Biological functions do not usually stem from a single cellular component, but rather
from interactions among multiple ones (genes, proteins, small molecules, enzymes, etc.).
Indeed, cells process information by physical interactions of molecules. Proteins inter-
act in intra- and inter-cellular signalling, in transcriptional and post-transcriptional
regulation, and sometimes in complexes. Databases have been collecting information
about protein and gene interactions: STRING DB [Szklarczyk, 2019], the Human Ref-
erence Interactome [Luck, 2020], BioGrid [Oughtred, 2021] , IntAct [Toro, 2022]. These
databases usually store undirected interactions, i.e. they compile protein-protein inter-
actions (PPI), without information on causality or consequence of this interaction.

Several knowledge bases have collected causal interactions by incorporating direc-
tionality information, called hereafter "directed interactions" [Csabai, 2022; Lo Surdo,
2022]. A "causal interaction" refers to an upstream component (also called as source)
exerting a regulatory e�ect on a downstream component (also called as target). These
causal interactions serve as fundamental building blocks for understanding the flow of
information in biological processes within cells.
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The Saez-Rodriguez team at Heidelberg combined more than 100 resources in the
OmniPath database [Türei, 2016] covering undirected and directed interactions, that
are accessible via a website and packages in R/Bioconcudctor and Python (https://omnipathdb.org/).

A sequence of directed interactions is known as a cascade of interactions: a target
node (a protein) of one causal interaction becomes the source node of a subsequent
causal interaction. When these cascades are associated with biological processes, they
are commonly referred to as biological pathways. Biologists sketch these biological
pathways as graphs or maps to illustrate the biological processes. Signal transduction
pathway, and metabolic pathway are the most common types of biological pathways.

Finally, proteins and genes often belong to multiple biological pathways. It is not
even rare to observe an interaction belonging to multiple pathways. For example the
activation of AKT by PI3KCA is the core interaction of the PI3K-AKT signalling
pathway but is also involved in the regulation of the actin cytoskeleton, according to
the KEGG pathway database [Kanehisa, 2012]. When we need to model a complex
cell phenotype from a particular disease, or a rare cell type di�erentiation, multiple
biological pathways are often involved. Biologist need to sketch a biological network,
where biological pathways are intertwined. Such a network can be called signalling
transduction network, if it consists of signalling transduction pathways, i.e. proteins
interact with biochemical reactions or metabolic network, if it consists of metabolic
pathways.

Figure 2.1 – The three major types of intracellular biological networks: signalling net-
works, metabolic networks, and gene regulatory networks.

Illustration from [Garrido-Rodriguez, 2022] used under CC BY 3.0.
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2.1.2 Other biological networks

Biological networks can be used to represent biological pathways, but also to rep-
resent any graphs whose nodes and edges carry biological information.

For example, biological networks can represent di�erent types of biological infor-
mation:

— Gene regulatory networks: nodes represent genes and edges denote functional
influences between genes.

— Genetic interaction networks: nodes correspond to genes and edges to functional
relationships between these genes, either through physical interactions, or to ac-
count for the synergic e�ects of combined alterations.

— Co-expression networks: is an undirected network, where nodes correspond to
genes, and edges account for significant co-expression relationship between them.

— Protein-protein interaction networks: is an undirected network, where nodes rep-
resent proteins and edges physical interactions between proteins.

— Disease networks: is an undirected network, where nodes account for diseases
or disease genes, and edges for an association between two genes, or between a
disease and a gene.

2.1.3 Network biology applied to complex diseases

Alberto-Lazlo Barabasi have inspired research on biological networks and their anal-
ysis, also known as network biology, demonstrating their potential for knowledge ex-
traction and identification of new candidate targets genes [Barabasi, 2004]. Indeed
network biology approaches have been applied since then to study complex diseases,
involving multiple genetic and environmental factors, such as cancer [Barillot, 2012].
Signalling networks have been particularly studied to decipher cancer cellular dysreg-
ulations, knowing that cancer cells hijack preexisting molecular processes observed in
normal tissues to achieve their phenotypes, for instance cell proliferation processes.

Today, systems biology focuses on using these networks to understand disease com-
plex mechanisms and optimize treatments. One of the great challenges in network
biology is currently to support decision in what we called personalized medicine or pre-
cision medicine. The latter is defined by the National Cancer Institute as a form of
medicine that uses information about a person’s genes, proteins, and environment to
prevent, diagnose, and treat disease. Genetic backgrounds are now commonly used in
clinical trials, but mathematical models on molecular profiles could also be included to
guide the choice of treatments.

Precision medicine have been applied so far to complex diseases where patient het-
erogeneity is evident. However, patient heterogeneity have also been observed in genetic
diseases where same causal genes can lead to di�erent phenotypes, which also motivates
our interest for systems biology and network biology to study the monogenic disease
CF.

There are two ways to build biological networks. The first strategy is to build the
network from the literature, gathering a list of proteins or biological pathways known to
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be involved in the disease, and their interactions, according to published experimental
results. The second type of models is to infer this list of proteins (or pathways) from
data related to the disease, in order to avoid potential bias in the literature, or in the
interpretation of published experimental results. Data-driven approaches are usually
based on omics studies, because the number of available omics studies is increasing
rapidly. In the next section, we present the types of omics experiments that can be
used in data-driven systems biology approaches.

2.2 Omics data for systems biology

Omics data refers to large-scale datasets that capture biological information at
various molecular levels: DNA, RNA, proteins or small molecules like metabolites.
Monitoring tens of thousands of cellular components provides a global vision of the bi-
ological systems. Therefore, they are commonly used in computational systems biology
to understand biological mechanisms that determine phenotypes.

In this section we will show how omics data analysis can be used to understand
complex systems.

2.2.1 Omics data

Omics techniques

Omics techniques refer generally to high throughput sequencing techniques or gene/protein
profiling techniques that generate omics data. They can be grouped into five categories:

— Genomics studies the genome of organisms, i.e. the complete DNA sequences
comprising genes, regulatory elements and non-coding regions. Genomics data
are analysed to study genetic variations, heredity and evolutionary relationships.

— Transcriptomics studies RNA molecules transcribed from the genome, also known
as the transcriptome. Types and abundances of RNA molecules are monitored
to identify which genes are expressed, and how they are regulated. Transcrip-
tomic data are analysed to examine gene expression patterns and infer biological
activities.

— Proteomics studies proteins detected in specific conditions, such as specific cell
type, tissue or organism. Proteomic data, generated by liquid chromatography
coupled to mass spectrometry (LC-MS), are analysed to provide insights about
protein functions, post-translational modifications and proteins interactions in
the cell. Phospho-proteomics is an increasingly studied branch of proteomics,
focusing on the phosphorylation status of proteins.

— Metabolomics focuses on small molecules, known as metabolites, that can be
viewed as specific fingerprints of cellular biochemistry. It quantifies a wide range
of low-molecular weight metabolites, such as amino acids, sugars, fatty acids,
lipids and steroids.

— Epigenomics studies the so-called epigenetic modifications, such as DNA methy-
lation or histone modification, which a�ect gene expression without altering the
DNA sequence. Epigenomic data are the most recent types of omics data, and
state as an emerging field in the recent years.

26



2.2. Omics data for systems biology

With the recent technological advances in the di�erent omics fields, the generated
data can be available at the level of individual cells. The study of biological systems at
the single-cell level is referred to as single-cell omics, as opposed to bulk omics. This
emerging field o�ers new biological insights, such as development, cellular heterogeneity
and gene expression dynamics, that could not be studied with bulk data. Additionally,
omics data can be overlayed onto tissue images using spatial omics technologies. These
approaches provide information on the spatial distribution of cellular populations within
the tissue of origin, their proximity to one another and with other tissue components.

Furthermore, it is becoming increasingly clear that addressing research questions
with a single type of omics data is incomplete. Scientists are now combining di�er-
ent omics types through integrative approaches, commonly known as multi-omics ap-
proaches [Hasin, 2017]. Single-cell multi-omics data are even starting to be published
and spatial multi-omics will surely soon follow.

2.2.2 Omics data analysis

Treating omics data is complex and requires a computational workflow includ-
ing quality-control, pre-processing, analysing and statistical steps. Recently machine-
learning techniques are even replacing the statistical methods, due to the growing size
of data generated by high-throughput technologies. One of the main challenges in
analysing omics data is to analyse the outputs of the statistical methods into a inter-
pretable, useful and last but not least, relevant mechanistic insights [Yamada, 2021].

In this manuscript, we do not deal with the quality control and pre-processing steps,
but we are directly interested in the analysis of the already preprocessed omics data. We
focus also on proteomics data and transcriptomics data, as they are the natural choice
for describing protein activity [Szalai, 2020]. In this section, we use gene expression data
as example data to discuss the approaches, although the practical guidelines presented
below are equally applicable to any type of data generated by omics technologies.

Gene-level analysis

The vast majority of the biological and clinical applications compare samples from
di�erent conditions, such as disease and healthy (control) samples. The first approach
consists in comparing the conditions at the individual level: statistical tests are done
at the single gene or protein level. The output yields in a list of di�erentially expressed
genes (DEG) and the interpretation lies in the identification of biomarkers (gene or
protein indicating a particular disease state) or driver genes causally linked to a bio-
logical process [Barillot, 2012]. This level of analysis often fails to provide meaningful
biological understanding. Indeed, in various systemic diseases, the disruption of a sig-
nalling pathway can arise from di�erent genes within the same pathway, and these gene
alterations may vary from one patient to another.

Pathway-level analysis

In systemic diseases such as cancer, it has become apparent that the molecular
profiles of patient samples are more similar at the pathway level than at the individual
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gene level [Wang, 2010]. This observation led to the development of pathway-based
(PB) approaches in the analysis of omics data, to capture biological information un-
detectable by the analysis at the individual genes level. By PB approaches, we mean
computational methods that combine omics data and pathway knowledge from public
databases, in order to identify pathways altered in one condition compared to the other.
There are generally two outputs of these methods depending on the kind: it can be
the activities of the pathways for each sample of the dataset, or if the method does not
enable the analysis at the sample level, the output is a list of di�erentially expressed
pathways (DEPs). These approaches have two advantages: on the one hand, they make
it possible to reduce the dimension of the problem to the number of DEPs (rather than
the number of DEGs), and therefore the complexity of the system; on the other hand,
they have lead to more biologically interpretable results than a list of DEGs.

It is important to distinguish pathway ’mapping’-based methods and ’footprint’-
based methods [Szalai, 2020]. These latter do not infer pathway activity from the
omics measurement of the pathway members but from those of the genes regulated by
the pathway of interest. Both kinds of methods are used on gene expression data and
produced significant results. We will refer to both indiscriminately as PB approaches.
The aim of this part is not to do a review of all the PB methods but give an idea of
their evolution and the computational foundations.

The first generation of approaches are grouped under the name of over-representation
analysis (ORA). They all remain on the following principle: statistically evaluate the
fraction of genes belonging to a pathway that is found among the set of genes showing
changes in expression. All the methods follow the following steps: first, compute a
gene-level statistics using omics measurements, and then define a list of over-expressed
or under-expressed genes according to a given threshold on the statistic measure. Next,
for each pathway tested, genes belonging to the pathway are counted inside the list of
DEG. Finally, over-representation of the pathway is tested in the list of DEGs thanks
to a statistical test. ORA is the approach most widely used by the biologists to identify
DEPs, but this method has significant limitations: it only considers the di�erentially
expressed genes (DEGs), and does not take the other genes into account; it only con-
siders the number of genes belonging to the tested pathways that belong to the DEGs,
but does not use their level in expression change (e.g. the fold change); finally ORA
considers genes as being independent, and does not take into account the interactions
between these genes [Khatri, 2012].

Systems biologists developed the second generation of PB methods grouped under
the term of Functional Class Scoring (FCS) methods to avoid the use of the arbitrary
statistical thresholds. A pathway-level statistics is computed from the gene-level statis-
tic using all available molecular measurements of the omics data (e.g. sum, mean of
gene-level statistic). The last step is to assess the significance of the pathway-level
statistic. The most used FCS method is Gene Set Enrichment Analysis (GSEA) which
defines a metric based on the ranks of di�erential expression of the genes belonging to
the tested pathway [Subramanian, 2005]. FCS methods have a main limitation: many
of them use changes in gene expression to rank genes, but do not use the fold change.
Moreover, they do not address the third limitation of ORA related to potential gene
interactions [Khatri, 2012].

The third generation of PB methods overcome this limitation by including knowl-
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edge of gene interactions in the computation of the pathway-level statistics. The other
steps are identical to those used by the FCS methods. Nevertheless, these third gen-
eration methods are still less widely used than the second generation PB methods,
although various methods have been developed in recent years (for instance DEGgraph
[Jacob, 2012], CLIPPER [Martini, 2013] or the DEAP methods [Haynes, 2013]).

Towards building biological network

Despite their limitations, PB approaches are e�ective in detecting disrupted biolog-
ical processes, and are therefore often used to build network representing biological dys-
regulations. For example, DEGs can be connected together into one biological network
based on interactions databases, or DEPs can be merged thanks to their overlapping
elements.

In fact, these methods analyse gene sets/pathways independently but this paradigm
can be widely discussed. Indeed, many genes/proteins belong to several pathways, and
the latter are strongly intertwined. As a result, if one pathway is impacted, other
pathways may also be significantly dysregulated because they share common genes
[Szalai, 2020].

In the last five years, many computational methods have been developed to in-
fer directly biological networks to tackle this issue. They generally combine a high
throughput omics datasets and one large biological network, called prior-knowledge
network (PKN) or several layers of PKNs. This field is very recent and still less es-
tablished than ORA approaches and PB methods. One of the first review of these
methods was published in 2022 [Garrido-Rodriguez, 2022]. The review classified the
methods based on di�erent characteristics such as the omics data properties, the PKN
properties and the computational methods used to infer the subnetworks. The review
highlighted the fact that these methods do not use the same mathematical formalisms
or the same vocabulary, which makes di�cult to compare them. It is, however, a very
promising area of research that will improve our understanding of biological systems.

Prior knowledge collections

All the presented methods are highly dependent on a reference database that gathers
prior biological knowledge such as PPIs or pathways.

Gene set collections
Several public databases store and update the gene-set knowledge as gene signa-

tures: The Gene Ontology (GO) Resource [Ashburner, 2000; Garcia-Alonso, 2019], the
Hallmark gene sets of the Molecular Signatures Database (MSigDB) [Liberzon, 2015],
the Pathway Interaction Databse (PID) [Schaefer, 2009], or DoRothEA [Garcia-Alonso,
2019]. The gene sets can correspond to genes sharing the same functional annotations
or regulatory motifs, genes belonging to the same pathway or genes forming a group of
frequently co-expressed genes. Besides, these databases were built for various purposes:
for example GO database focus on molecular functions or cellular components, MSigDB
Hallmarks focus on cancer biological processes, and DoRothEA on transcription factors
(TF) and their transcriptional targets.
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Many studies combine ORA and FCS methods with these gene set databases. The
term gene set is used here instead of pathway because the links (interactions) connecting
the genes belonging to the same set are not known, at least for the majority of these col-
lections. These gene sets generally result from studies exploring gene expression data
or from various biological knowledge. The number of available gene sets is increas-
ing due to the increasing amounts of quantitative data produced by high throughput
techniques, providing researchers with a wider range of biological processes.

However, not all sets (or signatures) in these collections are equally informative:
a lot of signatures are redundant, and the number of gene sets representing the same
biological process is not balanced [Cantini, 2017]. Besides, in these collections, gene
or protein members of these sets have di�erent cellular functions and gene/protein
interactions are not mentioned (See figure 2.2 for the representation of the notion
of pathway, gene set and tf regulons). This leads to a lack of interpretability, and
sometimes prevents from comprehensive biological analysis.

Figure 2.2 – Concept of pathways, gene sets and TF regulons.
Illustration adapted from [Szalai, 2020] used under CC BY 4.0.

Pathways collections
KEGG [Kanehisa, 2012], Reactome [Gillespie, 2022] and WikiPathways [Martens,

2021] are well-known repositories that store biological pathways as graphs. These
databases are more informative than gene sets databases because they also store inter-
actions between the components. Although each database has its own representation
of interaction information, an important community e�ort has been done to standard-
ise the way these graphs are drawn (Systems Biology Graphical Notation, also known
as SBGN [Novère, 2009]). SBGN defines three languages for three types of diagram:
Process Description corresponding to biochemical reactions, Entity Relationship which
shows all the relationships (interactions, regulations etc...) in which a given entity is in-
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volved, and finally Activity Flow which describes influences of one entity (gene, protein
etc...) on another one.

These representations still present some limitations. First, they may present bias
towards specific proteins and diseases [Garrido-Rodriguez, 2022] that have been more
extensively studied than others. It is unclear whether this is a bias in knowledge, or
correspond to intrinsic characteristics of these proteins or diseases. Second, they are
used to infer biological properties in various contexts, whereas they gather information
that was collected from biological experiments carried out in very specific conditions
(tissue, cell type). Condition- or cell-type- specific pathways knowledge networks are
not yet available and are much needed. In addition to these two major limitations,
these databases are still under construction and lack important information. For in-
stance, they only indicate which genes/proteins are activated or inhibited but give no
information on the transcripts that are concerned. They are also incomplete regarding
pseudo-genes, i.e. non-coding genes which influence the mechanisms. These are impor-
tant limitations for their use to model biological processes, which reflects the fact that
most biological processes are far from been understood, and the scientific community
still needs to put in considerable e�ort to correctly represent them.
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Abstract

The efficiency of analyzing high-throughput data in systems biology has been demon-
strated in numerous studies, where molecular data, such as transcriptomics and pro-
teomics, offers great opportunities for understanding the complexity of biological pro-
cesses. One important aspect of data analysis in systems biology is the shift from a
reductionist approach that focuses on individual components to a more integrative per-
spective that considers the system as a whole, where the emphasis shifts from differential
expression of individual genes to determining the activity of gene sets. In this context,
identification of gene sets with coordinated expression and involved in the same bio-
logical pathway or function in the system under study play a key role for biological
interpretation of omics data. Here, we present the rROMA software package for fast
and accurate computation of the activity of gene sets with coordinated expression. The
rROMA package incorporates significant improvements with respect to the initial ver-
sion of the algorithm, along with the implementation of several functions for statistical
analysis and visualizing results. These improvements greatly expand the package’s capa-
bilities and offer valuable tools for data analysis and interpretation. It is an open-source
package available on github at: www.github.com/sysbio-curie/rRoma. Based on publicly
available transcriptomic datasets, we applied rROMA to cystic fibrosis, highlighting bi-
ological mechanisms potentially involved in the establishment and progression of the
disease and the associated genes. The results notably identified a significant mechanism
relevant to cystic fibrosis, raised awareness of a possible bias related to the medium used
for cell culture, and uncovered an intriguing gene that warrants further investigation.

Résumé

L’analyse de données à haut débit en biologie des systèmes a été démontrée comme
efficace dans de nombreuses études. En effet les données moléculaires, telles que les don-
nées transcriptomiques et protéomiques, offrent de grandes possibilités pour comprendre
la complexité des processus biologiques. Un aspect important de l’analyse de ces types de
données est le passage d’une approche réductionniste, qui se concentre sur les compo-
sants individuels, à une perspective plus intégrative considérant le système dans son en-
semble. L’accent n’est plus sur l’expression différentielles des gènes individuels mais sur
la mesure de l’activité d’ensemble de gènes. Nous présentons ici le package R rROMA
pour le calcul rapide et précis de l’activité des ensembles de gènes dont l’expression est
coordonnée. L’outil rROMA intègre des améliorations significatives dans l’algorithme de
calcul, ainsi que l’implémentation de plusieurs fonctions d’analyse statistique et de vi-
sualisation des résultats. Ces ajouts élargissent considérablement les capacités du logiciel
et offrent des outils précieux pour l’analyse et l’interprétation des données. Le package
est libre de droit, disponible sur github à l’adresse suivant : www.github.com/sysbio-
curie/rRoma. Nous avons appliqué rROMA à des données transcriptomiques publiques
sur la mucoviscidose et avons mis en évidence les mécanismes biologiques potentielle-
ment impliqués dans l’établissement et la progression de la maladie ainsi que les gènes
impliqués. Les résultats ont notamment permis d’identifier un mécanisme important lié
à la mucoviscidose, d’attirer l’attention sur un éventuel biais lié au milieu de culture
cellulaire, et de découvrir un gène intriguant qui mérite d’être étudié plus en détail.
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3.1 Preface

Research projects in CF have traditionally focused on improving CFTR processing
to the PM or its Cl≠ channel function. Nevertheless many other dysfunctional biological
functions have been identified in specific studies (compiled in the review of Ideozu et
al. [Ideozu, 2019]). They mainly belong to the signal transduction system, including
those related to the inflammatory system or to the immune system. By analysing the
molecular dysregulations at the pathway level, we can gain a better understanding of
the molecular basis of some of the CF disease phenotypes.

To address this issue, we have adopted a data-driven approach rather than relying
solely on a literature review of the pathways dysregulated in CF. We believe that this
methodology mitigates potential biases present in the scientific literature.

As outlined in chapter 2.2.2, omics technologies provide a comprehensive view of
protein and transcript levels across the entire genome (or proteome). They are therefore
interesting for inferring molecular dysregulations without focusing on a specific dysreg-
ulations or part of the cell. Hence, they allow a global view of the biological systems
by giving information of thousands of components in the cell. While gene-level analysis
is often not su�cient to provide comprehensive biological interpretation, pathway-level
analysis is a more informative approach. We therefore investigated the CF omics data
quantitatively at the pathway level.

As part of my PhD, I worked on a pathway-based algorithm, called ROMA (Rep-
resentation and quantification Of Module Activity). ROMA was designed to quantify
the activity of gene sets characterized by coordinated gene expression. Pathways activ-
ities are measured by computing the largest amount of one-dimensional variance across
samples explained by the genes in the gene set.

The research paper presented in this thesis introduces the R package rROMA, an
implementation of the algorithm in R programming language. It includes significant
improvements in the computational algorithm, along with several functions for statis-
tical analysis and graphical visualisation of the results. In particular, the new version
of the algorithm allows the detection of shifted sets of the genes.

The algorithm was first developed in Java by Loredana Martignetti in 2016 [Mar-
tignetti, 2016], and then translated into R by Luca Albergante in 2018. I implemented
the functionalities and improvements in the new version, in collaboration with Matthieu
Cornet and under the supervision of Loredana Martignetti. Loredana and I gave a tu-
torial on rROMA, internal to Curie, in June 2022 and I presented the new version of
the algorithm in a contributed talk in the "Logical modelling for quantitative data" ses-
sion of the workshop Statistical Methods for Post Genomic Data (SMPGD) in Ghent,
Belgium in February, 2023.

This work was made in collaboration with Matthieu Cornet, Luca Albergante,
Andrei Zinovyev, Isabelle Sermet-Gaudelus, Véronique Stoven, Laurence Calzone and
Loredana Martignetti. It was submitted to the scientific journal npj Systems Biology
and Application in May 2023 and is currently under review. In the following section, the
article is transcribed as currently under review, and followed by a broader discussion
in the context of the PhD project.
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3.2 Representation and quantification Of Module Activ-
ity from omics data with rROMA

3.2.1 Introduction

The use of high-throughput molecular techniques, such as transcriptomics and pro-
teomics, is becoming easier with the improvement of data acquisition tools, leading to
a drastic decrease in the costs associated with such analyses. This allows for precise
measurement of the molecular profiles of biological systems at several levels. However,
the amount of data produced during such experiments is very important, and requires
the use of dedicated software and algorithms to analyze them. Moreover, the ability to
interpret the data in terms of biological processes becomes a crucial issue. Dedicated
analyses are needed to synthesize and transform the data into comprehensive biological
information [Hawkins, 2010].

A commonly employed approach in genomics involves comparing measurements at
the individual gene or protein level, to identify distinctive markers indicative of specific
disease states (biomarkers), or genes that play a causal role in the studied disease
[Zinovyev, 2012].

Nonetheless, in numerous systemic diseases, the disruption of a signalling pathway
can arise from distinct genes within that pathway, and these gene alterations may vary
from one patient to another. For example, in cancer It has become apparent in recent
years that the same pathways are a�ected by defects in di�erent genes and that the
molecular profiles of patient samples are more similar at the pathway level than at the
individual gene level [Wang, 2010].

Therefore, quantification of gene set activity from transcriptomic or proteomic mea-
surements is now widely used to transform gene-level data into associated sets of genes
representing biological processes [Levine, 2006; Ramos-Rodriguez, 2012; Borisov, 2014].
By employing gene set-based approaches in the analysis of omics data, it becomes pos-
sible to capture valuable biological insights that would otherwise remain undetectable
when solely focusing on individual genes. In this study, we developed an algorithm, im-
plemented as an R package called rROMA, which was designed to quantify the activity
of sets of genes defined by their participation in a common functional role. These gene
sets can thus correspond to genes with the same functional activities, genes regulated
by the same motifs, genes belonging to the same signalling pathway, or genes forming a
group of frequently co-expressed genes. The underlying hypothesis of rROMA is to as-
sess the activity of a gene set by determining the maximum amount of one-dimensional
variance, which is represented by the first principal component (PC1) derived from the
genes within the set. This quantity is considered to be proportional to the influence
of a single latent factor on the gene expression within the gene set, and reflects the
variability of this factor’s activity across the studied samples. This setting corresponds
to the uni-factor linear model of gene expression regulation [Schreiber, 2007].

Naive quantification of the activity of a gene set often consists in calculating the
mean or median of the expression of the gene set in each sample. Alternatively, it
may rely on a single marker gene that represents the overall activity of the gene set.
In contrast, rROMA di�ers from these approaches by its ability to e�ectively model
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scenarii where individual genes within the set do not contribute equally to its activ-
ity. This is particularly relevant when some genes have a more significant impact than
others, such as transcription factors downstream of signalling pathways. Furthermore,
rROMA is well-suited to cases where some genes exhibit a correlation of opposite sign
with respect to the overall activity of the gene set. In such situations, the first com-
ponent of rROMA can capture this e�ect, whereas a simple averaging approach would
not provide e�ective results.

Other more complex gene set quantification methods have already been proposed
to compute the activity of a gene set, by calculating the first principal component of
the expression matrix restricted to the genes in the gene set [Tomfohr, 2005]. In the
study by Bild et al. [Bild, 2006], a similar strategy was exploited to define activity
of several cancer-related pathways on a large collection of human cancer transcrip-
tomes. In another study by Fan et al. [Fan, 2016], the authors suggested the notion of
an overdispersed pathway in the context of single-cell transcriptomic analysis. Other
methods have been developed to estimate the activity scores of gene sets in individual
samples, such as the extension to a single sample of GSEA (ssGSEA) [Barbie, 2009] or
OncoFinder [Borisov, 2014]. Our algorithm expands the repertoire of existing methods
by introducing unique functionalities that are increasingly relevant in various contexts
of systems biology. One distinguishing feature of the rROMA algorithm is that it com-
putes a p-value that denotes the significance of the gene set’s activity. This reflects the
probability of obtaining the observed activity for a specific gene set by chance. The
rROMA algorithm uses a random gene set procedure to generate a null distribution
for the L1 amount of variance explained by the PC1, and calculates the p-value by
comparing the observed L1 to the null distribution. Usually, a p-value threshold of
0.05 is employed to determine the significance of the gene set’s activity.

In addition, the algorithm estimates the statistical significance of the distribution of
samples along the first component for a gene set in two ways: it distinguishes between
shifted and over-dispersed gene sets. A shifted set of genes corresponds to the situation
where the median expression of all the genes in the gene set is significantly di�erent
from the one of all the genes studied, i.e. that the gene set shows a particularly
high expression in at least one sample (see Figure 3.1 A). Over-dispersion of a gene set
corresponds to the situation where the amount of variance explained by PC1 calculated
for only the genes in that gene set is significantly greater than the variance of a randomly
selected set of genes of the same size. Thus, overdispersion means greater variability in
a set of genes among the considered samples (see Figure 3.1 B). The fact that rROMA
distinguishes these two situations is particularly useful because, in many cases, the
activity of a gene set does not correspond to overdispersion of the module in the global
gene expression space, but to a shift of the genes in a particular direction. Therefore,
analysis of shifted gene sets can highlight findings that would not be identified with
overdispersion analysis alone.

Importantly, the algorithm provides the activity level of the gene set for each indi-
vidual sample, and does not require a predefined labeled classification of the samples
into various conditions or groups. These activity values can be subsequently compared,
bringing to light the heterogeneity present in the dataset in relation with the analyzed
gene sets. This may be useful to define groups of samples or patients, when such
stratification is unknown.
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Figure 3.1 – Representation of gene sets in the case of two samples.
Each dot represents one gene, its horizontal (resp. vertical) value corresponding to
its expression in sample 1 (resp. sample 2). Genes associated with latent Factor A
are plotted in blue, and the corresponding PC1 direction is plotted in red (A). This
example corresponds to a shifted pathway, as assessed by a median of gene projections
onto PC1 direction far from the origin of the distribution. Genes associated with latent
Factor B are plotted in green (B) and the corresponding PC1 direction is plotted in
red. This example corresponds to an overdispersed pathway, as the PC1 is well aligned
with the dots’ distribution. Genes in yellow are neither overdispersed nor shifted, as
PC1 explains a relatively small fraction of variance (not represented on the figure) and
the median of projections onto PC1 is close to the origin for this group of genes.
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The rROMA algorithm is specifically designed to handle situations where genes
within a gene set do not equally contribute to its activity. The unifactor model under-
lying rROMA presumes that an unobserved factor (i.e., a latent factor) acts on the gene
expression variables observed in the gene set, and that this action is characterized by
the calculated weights. The weights indicate the strength and direction of e�ect, and
can have opposite signs, as in the case in which a transcription factor has an activating
action on some genes of the set and a repressor action on others. In particular, identi-
fication of the genes displaying the stronger contribution to a gene set’s activity allows
data analysis in the context of network modeling. Indeed, the output of rROMA, in
particular the top weighted genes of significantly active gene sets, can be interpreted as
nodes comprising genes and proteins of importance in the system under investigation,
which can be used to construct mathematical models.

The package rROMA is an evolution of the algorithm ROMA, a program originally
developed in Java [Martignetti, 2016]. The new rROMA package incorporates signifi-
cant improvements in the calculation algorithm, along with several functions for statis-
tical analysis and graphical visualization of results. These additions greatly expand the
package’s capabilities and o�er valuable tools for data analysis and interpretation. It is
an open-source package available on github at: www.github.com/sysbio-curie/rROMA.

As an example of its interest to study complex diseases, we applied rROMA to
publicly available transcriptomic datasets in the context of cystic fibrosis (CF). CF
is a genetic disease caused by mutations in a single gene, the Cystic Fibrosis Trans-
membrane Conductance Regulator (CFTR) gene, coding for the CFTR protein that
functions as a chloride channel in various epithelial cells, including airways epithelial
cells. Absence of a functional CFTR protein causes further functional dysregulations
in various biological pathways, leading to various deleterious phenotypes observed in
CF patients that cannot be related to the chloride channel function in a direct manner.
Analysis of dysregulations at the pathways level may provide a better understanding
of the molecular basis of some of the CF disease phenotypes.

Therefore, we applied rROMA to investigate pathway activities in airway epithe-
lial cells from CF patients and from healthy donors [Saint-Criq, 2020]. The analysis
shows that rROMA can identify biological pathways associated with diseases from tran-
scriptomic data, allowing both a clearer interpretation of high-throughput data from
a biological point of view, and the interpretation of molecular changes in a functional
way. Results highlighted a relevant mechanism in the context of CF, a potential bias
due to cell culture, and an interesting gene that could be studied further. The analysis
workflow is schematized in Figure 3.2. A detailed vignette to reproduce all the anal-
ysis presented here is also available on the gitHub containing the source code of the
algorithm.

3.2.2 Methods

First Principal Component and the Simplest Uni-Factor Linear Model of
Gene Expression Regulation

The main idea of rROMA is based on the simplest uni-factor linear model of gene
regulation in which it is assumed that the expression of a gene G in sample S is pro-
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Figure 3.2 – Schematic diagram illustrating the workflow of the rROMA algorithm.
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portional to the activity of one latent biological factor F (which can be a transcription
factor or any other endogenous or exogenous factor a�ecting gene expression) in sample
S with positive or negative (response) coe�cient. Within this model, the expression
of a gene G in a sample S is proportional to the activity of a factor F , so that we can
write:

Expression(gene G, sample S) ≈ –F
G ActivityF

S

where –F
G is the response coe�cient of the gene G to the factor F and ActivityF

S is
the activity of factor F in the sample S. These two values can be easily determined by
considering the first component of the principal component analysis (PCA) of the genes
of the considered gene set in the space of the samples. In this case, the vector containing
the activities of the di�erent samples corresponds to the first eigenvector, i.e., the first
column of the weight matrix. The vector containing the response coe�cients of the
di�erent genes in the considered gene set corresponds to the projection of the genes
onto the first component.

As many other applications of PCA, rROMA uses singular value decomposition to
speed up the calculation. However, to be valid, the use of this method requires centering
the data beforehand. We define a dataset made up of n individuals, described by p
numerical variables, which we represent by a matrix X of n×p size. In this matrix, the
i th column corresponds to the vector xi of observations of the variable i. The PCA
consists in determining the eigenvalues and the eigenvectors of the covariance matrix
C of X. This can be written as:

C =
(X − Xmean) (X − Xmean)€

(n − 1)

Where Xmean contains the mean values of xi for each column. When data are
centred, this equation can be simplified as C = XX€

(n≠1) . Therefore, we have a symmetric
matrix that can be diagonalized. If we denote C as the covariance matrix of X, there
exists a diagonal matrix L and a matrix W such that C = WLW €. Following the single
value decomposition (SVD) theorem, any matrix X can be written as the product of a
diagonal matrix S and two matrices U and V such that: X = USV €. By analogy, the
eigenvectors of the X matrix are obtained from the V matrix, and its eigenvalues are
proportional to the diagonal of the S matrix. The computation of the SVD is therefore
equivalent to computing the covariance matrix of X. The former is also much faster,
and there are algorithms that allow it to accelerate even more by focusing only on the
first columns of V .

rROMA uses the R irlba package [Baglama, 2005], which allows to focus on the
first principal component, by computing only the first column of V and the first value
of S. However, if the data are not centred, the simplification is no longer valid, and we
must now consider the fact that the mean is not zero. The rROMA algorithm therefore
starts by centering the data of the global matrix.

Pre-processing of data for rROMA analysis

The input format for gene or protein expression for rROMA is a tab-delimited
text file with columns corresponding to biological samples, and rows corresponding to
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genes or proteins. The first row is assumed to contain the sample identifiers while the
first column is assumed to contain the non-redundant gene or protein names. If the
data table contains missing values, they can be imputed using an approximation of
the data matrix with missing values by a full matrix of lower rank. To do this, the
user must specify the rank of the approximate full matrix that he wants to use. Then,
the principal components are calculated up to the specified rank, using an algorithm
capable of working with missing data [Gorban, 2010]. This PCA decomposition is used
to construct the full approximate matrix of lower rank, from which the missing values
of the original data are imputed. In the rest of the algorithm, the full imputed matrix
is used.

Orientation of the PC1

In standard PCA, all components are calculated with an undefined sign of orienta-
tion: there is mirror symmetry, which makes it di�cult to determine whether a given
set of genes is over- or under-activated. In rROMA, several methods exist to solve
this ambiguity. If knowledge exists about the role of a gene in a given collection, we
recommend using it by associating a sign with the e�ect of the gene in the collection:
negative for an inhibitor, and positive for an activator, for example. rROMA then uses
the information about these signs to choose the orientation that maximizes the number
of genes associated with a positive sign whose projection in PC1 is positive, and the
number of genes associated with a negative sign whose projection in PC1 is negative.
Some a priori fixed weights can be associated to each gene in the gene set file (Figure
3.2) to fix their contribution.

Although less e�cient, other methods of orienting the first component exist in the
case where there is no a priori knowledge about the genes in the reference gene sets.
The most e�cient method consists in considering only the genes associated with the
most extreme weights according to the first component (according to a percentage
defined by a modifiable hyperparameter), and then summing these weights. If the
result is negative, then the orientation of the PC1 is reversed. The principal behind
this method is to orient the first component according to the most contributing genes
for the gene set studied.

Filtering of outlier samples

Measurements may have been performed incorrectly in some samples, and keeping
them may lead to erroneous results from rROMA. By default in the algorithm, no
sample filtering is performed, as the matrix used as input is assumed to contain only
correct samples. However, sample checking can be activated by a hyperparameter,
and two filtering steps are then performed. First, the algorithm ensures that a similar
number of genes is detected in all samples, and the allowed di�erence threshold is
defined manually. Then, the samples are projected in the gene space, and rROMA
ensures that no sample is too far from the others. The number of PCs used to perform
the filtering and the allowed di�erence threshold are defined by two hyperparameters.
It is also possible to perform only one of the two filtering steps.
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Filtering of outlier genes

The calculation of PC1 can be a�ected by the presence of an outlier gene in the
dataset. This outlier could indeed artificially a�ect the PC1. In order to increase
the robustness of the PC1 calculation, we use in rROMA the "leave-one-out" cross-
validation approach [Hastie, 2009]. This method works as follows: first, for each gene
in the considered gene set, we calculate the percentage of variance L1 explained by PC1
when the gene is removed from the dataset. Each gene is then associated with a L1
value. In a second step, the distribution of these L1 values is centred and reduced to
obtain z-scores. In a third step, all genes whose associated z-score above a threshold
value set in the algorithm are considered as outliers and removed from the analysis.
The idea behind this method is to identify genes that have too much impact on the PC1
on their own: if the percentage of variance explained by PC1 increases significantly in
the absence of a single gene, this means that this gene does not follow the alignment
of all the others. It is then considered as an outlier gene.

When a gene is considered an outlier for a given gene set, it is only removed from
that gene set. This default behavior can be modified by a hyperparameter, so that
genes are completely removed from all analyses, as soon as they are considered outliers
in at least one gene set. However, in some cases, these genes may still be of interest for
analysis. Additional analysis steps for these genes are therefore available in rROMA.

In particular, the greater the number of gene sets analyzed containing a given
gene, the more likely it is that the gene will be considered as an outlier in at least
one gene set, and therefore be removed from the analysis. In order to avoid such
abusive withdrawals, a Fisher test is performed. This consists of comparing the average
proportion of collections in which the genes in the analysis are considered as outliers
to this same proportion for a particular gene. If the proportion of outliers is close
to the average proportion for all the genes, then it is no longer considered an outlier.
Conversely, if the proportion of aberrations is significantly higher (threshold determined
by a modifiable hyperparameter), then it is still considered an outlier. Instead, a gene
present only in a small number of gene sets may be important for the understanding of
these gene sets. In such cases, it is not desirable to remove it, even if it is considered
an outlier. Thus, if a gene is present in less than a defined number of gene sets (set
by a modifiable hyperparameter), then it is not considered an outlier, regardless of the
results of the “leave-one-out” approach for it.

Finally, it is possible that a significant proportion of genes are considered outliers for
a given gene set. However, removing too many genes can totally distort the detectable
behavior for a collection. A final filter therefore exists to limit the maximum proportion
of genes that can be considered as aberrant for a given gene set and removed from the
analysis (the proportion is set by a modifiable hyperparameter). In this way, only genes
with the most extreme leave-one-out variations are e�ectively considered outliers for
this gene set.

Interpretation of results

The core of the rROMA algorithm starts once these pre-processing steps, involving
imputing missing values, removing outlier samples, centering the data at the global
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level, and then removing outlier genes from each gene set have been performed. Each
gene set is then analyzed separately. First, the algorithm computes the first principal
component of the genes in the gene set in the sample space. Two measures of interest
are then considered: the percentage of variance explained by the first component alone,
and the average expression value of the genes projected onto this first component.

The same measures are then performed for a hundred randomly generated gene sets
of the sam size, which will constitute the reference null distribution. As explained in
the previous section, the use of SVD is only justified if the data are centred. If this
condition is not met, the median projection on the first component will not be zero.
For this reason, the average value of the projection of the genes in the gene set under
study onto PC1 is compared to the values obtained for the random collections of genes
that constitute the null distribution and are therefore assumed to be centred. These
values can be positive or negative, but since we are interested in the deviation from the
center, the absolute values are considered. If less than 5% (value defined by a tunable
hyperparameter) of the values obtained in the null distribution are lower than the one
obtained for the gene set under study, the latter is said to be shifted (ppv Median
Exp <0.05). This means that the average expression of the genes in the gene set is
di�erent from the average expression of all genes for at least one sample. In such a
case, additional analyses are needed to determine precisely the origin of this shift. If
the collection is not shifted, then the centred data assumption is considered valid. We
are then interested in the percentage of variance explained by the first component. If
less than 5% (value defined by a modifiable hyperparameter) of the values obtained in
the null distribution are lower than the one obtained for the gene set under study, then
the latter is said to be overdispersed (ppv L1 < 0.05).

Analysis of a shifted gene set

For a shifted gene set, the measurement of sample activity is particularly important.
It determines which samples are responsible for the shift of the gene set. If the samples
were already separated into several conditions prior to the analysis, it is possible to
verify that this separation into groups is indeed responsible for the shift, by checking
that the activity scores are significantly di�erent between the conditions. Conversely,
if the conditions are not known a priori, it is possible to determine new groups by
performing a hierarchical clustering analysis on the gene sets that are shifted, and thus
determine potential new groups of interest from the analysis.

Analysis of an over-dispersed gene set

The analyses mentioned above for the case of shifted gene sets are also valid for
over-dispersed gene sets. But in the case of the latter, the analysis of gene weights
also becomes interesting. The genes associated with the highest weights are the driving
force in the activity scores of the gene sets. They summarize the information of the
gene sets, which can be particularly useful, especially for interpretations using systems
biology approaches.

The analysis of the sign of the genes’ weights is also particularly interesting. For
example, gene sets containing both activators and inhibitors can be highlighted by
rROMA by being overdispersed, and the associated genes highlighted. Such gene sets
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would not be detected as overdispersed by methods based on the average expression of
genes in the samples.

Optimization of the calculation of null distributions

In practice, it is often necessary to test many di�erent gene sets available in large
reference databases such as KEGG [Kanehisa, 2012] or MSigDB [Liberzon, 2015]. Es-
timating the null distribution for each set of genes can lead to very time consuming
calculations. rROMA does not compute the significance scores of overdispersion and
shift for all gene sets, but approximates them on a predefined grid of values, depending
on the size of the considered gene set. Indeed, since these two values are dependent on
the size of the gene set, it is not possible to use the same null distribution for all gene
sets. In order to rapidly estimate the importance of the over-dispersion and shifting
scores, rROMA constructs null distributions for a representative list of gene set sizes.
These are selected to be uniformly distributed in the logarithmic scale between the
minimum and maximum size of the reference database. For a given gene set, the null
distribution that is closest in size in the log scale is then chosen.

3.2.3 Case study

rROMA identifies active signalling pathways in CF tissues compared to
healthy donors

We applied rROMA to investigate the activity of pathways in airway epithelial cells
from CF patients and healthy donors. More precisely, we compared the transcriptomes
of primary cultures of airway epithelial cells from patients (N=6) with those of healthy
controls (N=6), based on RNAseq data publicly available in the NCBI’s GEO database,
under the accession ID GSE176121 [Rehman, 2021]. rROMA was run by specifying
the pathway database to use and the expression matrix to analyze, as shown in the
accompanying vignette.

Here, the Molecular Signature Database MsigDB hallmark gene set collection [Liber-
zon, 2015] was used, a gene set collection of 50 gene sets specifically curated to represent
core biological processes and pathways that are commonly dysregulated in cancer. How-
ever, to provide a more complete view of the biological processes involved in a study,
rROMA can be applied with di�erent reference databases.

The results of rROMA highlight pathways that are provided in the ModuleMatrix
output. Pathways with a ppv Median Exp lower than a given threshold were deemed as
shifted, while those with a ppv L1 lower than this threshold were overdispersed. The
Plot.Genesets.Samples function allows for the visualization of activity scores for signif-
icantly shifted and overdispersed pathways across samples, in the form of a heatmap
representation (see Figure 3.3). rROMA identified two shifted pathways, APICAL
SURFACE which is found to have higher activity scores in healthy controls than in CF
patients, and FATTY ACID METABOLISM which has higher scores in CF patients
than in controls, and an overdispersed pathway, COAGULATION, with higher activity
scores in healthy controls than in CF patients.
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Figure 3.3 – Heatmap of activity scores for gene sets identified as significantly shifted
(A) or significantly overdispersed (B) in GSE176121 dataset.
Samples are in columns, gene sets are in rows. Horizontal sidebar color encodes true
class labels.

When sample groups have been pre-defined, as the two CF or control groups in our
case, these groups can be compared based on the activity scores of the gene sets observed
in the samples belonging to the two groups. Boxplot of the activity scores based on
predefined groups can help di�erential analysis. In our study, shifted and overdispersed
pathways behaved significantly di�erently in CF patients versus healthy controls, as
shown in Figure 3.3. Alternatively, when the groups are not predefined, analyzing the
shifted and overdispersed pathways can reveal clusters of samples exhibiting similar
pathway activity.

The analysis of top contributing genes in each pathway also provides crucial infor-
mation. The weights assigned to each gene in the PC1 vector allow to identify the key
genes that most contribute to variations in pathway activities as those with the higher
weights. For each pathway, gene weights are provided by the PlotGeneWeight func-
tion. For example, plotting the gene weights for the COAGULATION pathway (see
Figure 3.4) highlighted the GSN gene, encoding the protein Gelsolin, as the highest
contributor to the activity score. Notably, Gelsolin has been previously reported to
play a role for CFTR activation [Vasconcellos, 1994; Cantiello, 1996], and to promote
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mucus fluidification in CF [Bucki, 2015].

Figure 3.4 – Plots illustrating the contribution of genes to the COAGULATION gene
set activity score.
The weights in panel A indicate the gene projections on PC1, limited to the genes that
have the greatest contribution to the observed variation in the COAGULATION gene
set. In panel B the genes of the COAGULATION gene set are represented in the PCA
space. Red dots are genes from the gene set, blue dots show randomly selected genes
used to generate a null distribution.

Finally, many hyperparameters can be specified and changed to modify rROMA
speed, precision, or behavior regarding outlier detection. Details about all available
hyperparameters are described in the vignette accompanying the software. The com-
putational time required to run the algorithm typically depends on the number of
considered pathways and their relative sizes. It also depends on whether parallelization
is enabled. In the present work, the algorithm ran in about 3 minutes and 15 seconds
on a MacBook Pro equipped with a 2,6 GHz Intel Core i7 6 cores processor. A single
60 genes pathway took roughly 5 seconds to be analyzed. Parallelization was not used,
but this would have increased the speed of the analysis.

rROMA estimates cell type abundances from bulk transcriptomic data

In addition, our case study also demonstrates the ability of rROMA to investigate
cell type abundance based on bulk transctiptomic data. Saint-Criq et al. investigated
the impact of two di�erentiation media on primary cultures of CF and non-CF airway
epithelial cells, as determined by transcriptomic data [Saint-Criq, 2020]. They built
a gene signature for each cell type using the 50 most expressed markers derived from
a single-cell RNA sequencing (scRNAseq) dataset [Plasschaert, 2018]. They observed
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a significant overexpression of genes belonging to the signature of the secretory cell
subtype in cultures grown in one of the media (referred to as UNC), compared to the
other medium (referred to as SC). Conversely, gene markers of the ciliated subtype
were overexpressed in primary cultures grown using the SC medium compared to UNC
medium.

We applied rROMA to the Saint-Criq RNA seq dataset to estimate cell type abun-
dance in CF and non-CF samples. More precisely, the Plasschaert signature for each
cell type was used and gene reference gene sets, and the activity scores of these gene sets
across the samples were represented in the form of a heat map. Samples were found
to be clustered according to the di�erentiation medium in which they were grown,
and our results confirmed the higher abundance of the ciliated cell subtype in UNC
medium and higher abundance of the secretory cell subtype in SC medium (Figure
3.5A). We repeated the rROMA analysis using an alternative signature [Okuda, 2021].
In contrast with the Plasschaert signature, the Okuda signature includes the most
di�erentially expressed genes in each cell type, encompassing both overexpressed and
underexpressed genes. As illustrated in figure 3.5B, rROMA’s analysis using a refer-
ence gene set corresponding to this alternative signature consistently revealed the same
relative abundances of secretory and ciliated subtypes between UNC and SC grow-
ing media, as observed with the initial signature. Thus rROMA allows us to clearly
highlight di�erences in cell-type abundances, facilitating the use of gene signatures that
contain both upregulated and downregulated genes and thus potentially more accurate.

Figure 3.5 – Heatmap of rROMA scores obtained for Plasschaert (A) and Okuda (B)
signatures of cell types in the Saint-Criq RNA seq dataset.
Samples are in columns, gene sets corresponding to cell types are in rows. Horizontal
sidebar color encodes true class labels.

3.2.4 Discussion

Quantifying the activity of biologically related gene sets is a commonly employed
approach to extract valuable biological insights from high-throughput data. The use
of gene sets as aggregated variables from molecular data enables the capture of bi-
ological information that may not be detectable when solely focusing on individual
genes. To address this challenge, we introduced the rROMA algorithm. Based on a
gene expression data matrix, this algorithm implements a linear model of gene regula-
tion and e�ciently and reliably quantifies the activity of gene sets by computing the
first principal component (PC1), while also evaluating the statistical significance of this
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approximation.

We applied rROMA to CF transcriptomic datasets, highlighting some biological
mechanisms potentially involved in the initiation or progression of the disease, and
their associated genes. In our study, out of the 50 hallmark pathways tested, 3 were
significantly active: FATTY ACID METABOLISM, APICAL SURFACE, and CO-
AGULATION. The FATTY ACID METABOLISM pathway has significantly di�erent
activity scores between CF patients and healthy donors. This pathway has been exten-
sively studied in CF, and essential fatty acid deficiency is a well known CF phenotype
(for a review, see Strandvik [Strandvik, 2010]). The APICAL SURFACE can be related
to another well known hallmark of CF, i.e. a perturbation of airway surface secretory
mucus content. Finally, the COAGULATION pathway, the only overdispersed path-
way in our study, seems to be highlighted due to one specific gene with a very high
associated weight, that is by far the most contributing gene to the activity score of
this pathway: Gelsolin (GSN). Gelsolin has been reported as playing a role for CFTR
activation [Vasconcellos, 1994; Cantiello, 1996], which suggests that the role of this
gene in CF disease may be interesting to study in more detail. The goal of this use
case was not to undertake a detailed systems biology approach of CF, which is beyond
the scope of the present paper. In particular, it would require us to include additional
transcriptional dataset to take more samples into account and increase the statistical
power of our analyses, and to test several reference databases of gene sets.

However, overall, this case study illustrates that rROMA is able to identify disease-
associated pathway dysregulations from transcriptomic data, allowing a more compre-
hensive and functional interpretation of the data. It is also a versatile tool that can
shed light on various biological questions such as highlight the key genes driving these
dysregulations, identify clusters of samples, study samples’ cell-type composition, or
other cellular changes in a broader biological perspective.

3.3 A broader discussion related to the PhD project

In this paper, we presented rROMA, an algorithm for the quantification of pathway
activity from bulk omics data. rROMA computes sample-wise gene set scores and does
not require a predefined label classification of samples into groups (e.g. "disease" or
"control" labels). Therefore it enables the clustering of samples with a greater biogical
interpretability than at the gene level. Other methods exist, but rROMA is unique
because it combines several functionalities that other methods do not o�er, or at least
not all in once:

— the detection of both overdispersed and shifted pathways.

— the estimation of the statistical significance of the distribution of sample activities.

— the ability to address scenarii where genes within a gene set do not equally con-
tribute to its activity, i.e. where certain genes hold more significance than others
in defining the activity of the module, or where specific genes are expected to
negatively correlate with the activity of the module.

— and finally, the detection of outlier genes in the dataset.

A comparison of the most used linear sample-wise methods of pathway quantification
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is presented in Table 3.1. All these functionnalities make rROMA very well suited for
broader applications and exploratory analyses with heterogeneous samples.

Table 3.1 – Feature-wise comparison of rROMA to existing tools.

Method z-score GSVA ssGSEA PLAGE rROMA

Type Aggregate expression Ranking based Ranking based SVD SVD

Gene-set score X X X X X

Overdispersed gene-sets X X

Shifted gene-sets X X X X

Stat significance X

Outlier detection X

A priori gene weights X

Code availability R R Java, R R R

Reference 18989396 23323831 19847166 16156896 NA

In the context of the PhD project, the aim was to build a biological network of CF
dysregulations.

rROMA can be useful to build biological networks. Except in the case of network-
based approaches are used, a list of genes or proteins is initially needed to build a
biological network. There are generally two ways to gather this list of genes: retrieve
them from a review of the literature, or extract them from data. rROMA can be
particularly appropriate for the latter. The algorithm is specifically designed for cases
where the genes in a gene set do not contribute equally to its activity. It computes the
weights of each gene in the gene set, which indicates the strength and the e�ect of the
"unseen" factor on each gene. Therefore, the genes associated with the highest weights
are the driving force in the activity scores of the gene sets.

It would be then very interesting to connect these "heavy" genes into one network, as
they are the most characteristic ones in the system under study. For instance, following
the pipeline proposed in figure 3.6, we could connect these genes by retrieving all direct
interactions between them, or interactions involving one or several intermediates from
PPI databases.
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Figure 3.6 – Pipeline using rROMA to build biological networks.

We applied rROMA to the CF public omics data in order to retrieve the "heavy"
genes of CF dysregulations. The challenge then was to ensure that the altered pathways
were related to CF.

Indeed, the algorithm enables to identify altered pathways among all the samples,
regardless of the samples conditions. This means that a pathway can be considered
as shifted even if the average expression of the genes is di�erent from the average
expression of all genes for just one sample. Thus, when applying rROMA to compare
"disease" and "control" samples, some pathways can be found significantly altered in
some samples, but their alteration may not be linked to the disease, but to other factors
such as the experimental conditions, sex, age etc.

In order to identify only the altered pathways related to CF, we proposed to perform
a Kolmogorov Smirnov (KS) test on the pathways activities computed by rROMA,
between the CF and the control samples. Indeed, the KS test enables to determine if
the distribution of pathway activities in the CF samples di�er significantly from the
control ones. The resulting p value of the statistical test corresponds to the probability
that the pathways activities in the disease samples follow the same distribution as the
pathways activities of the control samples.

Unfortunately, we faced some statistical problems. The number of samples per CF
dataset was very low: it varied from 5 to 10 (See Chapter 5 for more details about
data selection). Therefore, for each dataset, the statistical results obtained from the
KS test were not precise enough. The correction of the p values for multiple testing led
to no pathways significantly altered for many datasets, making it di�cult to compare
the results between the di�erent datasets.

This limitation is due more to the size of the CF datasets than to the methods
themselves. It would have occurred with any sample-wise method applied to these
datasets. Moreover, in our case, the labels were known. Therefore, we opted for Gene
Set Enrichment Analysis (GSEA) [Subramanian, 2005], one of the the most commonly

50



3.3. A broader discussion related to the PhD project

used pathway-based methods. This method evaluates enrichment between two condi-
tions, and requires a single statistical test, conversely to rROMA which requires two in
this context: the test to identify shifted and/or overdispersed pathways among all the
samples, and the KS test to compare the two conditions.

In fact, the greater the number of samples they are in the input expression matrix
of rROMA, the better the algorithm will detect dysregulated pathways between the
conditions. Indeed, as mentioned in the introduction of this chapter, the computation
of rROMA pathway activities is based on the variance across the samples explained
by the genes in the gene set. The greater the number of samples in the dataset, the
finest the variance and the pathway activities. Overall, this suggests that rROMA
is particularly interesting for analysis of large datasets. Such large datasets are now
common in diseases like cancer, but not in rare diseases like CF.

rROMA could be applied on larger CF cohorts, for example to help decipher CF
patients’ hetereogeneity at the biological pathway level. For example, one could inves-
tigate CF patients with di�erent mutations. Similar pattern of coordinated expression
may be found between group of samples with mutations of di�erent classes (See chap-
ter 1 for more details about mutation classes). Such results could highlight similar
molecular dysregulations even among patients bearing mutations of di�erent classes,
and indicating the use of similar therapeutic solutions for these patients. This could be
very helpful for patients with unrescuable mutations that are not eligible to the CFTR
modulators.

A second application would be to investigate the hererogeneity of CF patients bear-
ing the same mutation. Indeed, symptoms of CF patients with the same mutation can
be heterogeneous [Cornet, 2022b]. Applying rROMA to a large dataset of CF patients
with the same mutation could identify subgroups of patients with similar molecular
dysregulations. Then, it could help to understand why some patients have more severe
symptoms than others, or are more responsive than others to the current treatments,
and find better treatments to the less responsive patients.
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Abstract

In this chapter, I provide an overview of the the different omics studies available in
CF. Transcriptomics techniques have been the most common omics techniques that have
been used in CF research. Additionnally, a significant portion of CF-related proteomic
studies have been focusing on the partners of CFTR in the cell (the so-called CFTR
interactome). Secondly, I review the studies that address molecular mechanisms in CF
through a systems biology approach. These studies have mainly focused on the molecular
mechanisms centered around CFTR, offering a valuable resource for understanding CF.

Résumé

Dans ce chapitre, je donne un aperçu des différentes études omiques disponibles
sur la mucoviscidose. Les techniques transcriptomiques ont été les techniques omiques
les plus couramment utilisées. En outre, une part importante des études protéomiques
liées à la mucoviscidose s’est concentrée sur les partenaires de CFTR dans la cellule (ce
que l’on appelle l’interactome de CFTR). Dans un second temps, je passe en revue les
études qui abordent les mécanismes moléculaires de la mucoviscidose par le biais d’une
approche de biologie des systèmes. Ces études se sont principalement concentrées sur
les mécanismes moléculaires centrés sur CFTR, offrant ainsi une ressource précieuse
pour la compréhension de la maladie.
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4.1 CF omics data

Studying monogenic diseases may appear easier than complex systemic diseases,
because it would mainly rely on studying the protein resulting from the mutated gene,
and focus on restoring its expression or function. However, proteins interact with
one another and with other cellular components, so that absence of a given functional
protein can lead to broader cell dysregulations, involving the dysfunction of its partners.
Systems biology approaches allow to provide a global vision of the biological processes
that characterize the disease, and thus facilitate the study of its complexity. These
approaches are therefore also useful for studying monogenic diseases such as CF.

One of the most important questions in a systems biology approach is what kind
of data are available, and how they can be used to build the model. High throughput
technologies are a good valuable to infer molecular dysregulations, and enable a global
vision of the biological system by giving information of thousands of components in
the cell (See chapter 2 for an introduction of systems biology approaches and omics
techniques). Since the last decade, the use of such technologies has grown for what
concerns the research on systemic diseases, but also on monogenic diseases, and CF is
no exception.

This chapter will present the state of the art of systems biology approaches to CF. In
a first part, I will first present the di�erent omics studies available in CF, because they
fuel systems biology approaches, and I will focus on how they helped to unravel some
CF molecular dysregulations. Then, I will present existing initiatives in the scientific
literature that employ systems biology to investigate CF.

4.1.1 Transcriptomic studies

Bulk transcriptomic studies

Transcriptomics techniques are the most common omics techniques that have been
used in CF research. More than 30 transcriptomics studies have been conducted so far
to answer questions related to CF. All the CF human transcriptome profiling studies
have been reviewed in 2019 [Ideozu, 2019]. An up-to-date list of studies is presented in
Table 4.1, including new studies which became available since then together with some
studies which had been overlooked.
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Chapter 4. State of the art in systems biology approaches to study CF

Microarrays have been the most used transcriptome profiling approach until 2015,
and since then, RNAseq technologies are the platform of choice because of sensitivity
and because of the greatly reduced cost of this technology.

Most of the studies have been done on models of human airway epithelial cells
(HAEC). This can be justified by the fact that the most severe symptoms of CF are in
the lungs, and as we previously mentioned that epithelial cells are a�ected by CFTR
dysfunction. Lung biopsies are the ideal sample source for these molecular character-
ization studies but they cannot be obtained from children with CF easily or without
considerable risk [Levy, 2018]. Bushing techniques are less invasive and are preferred
for CF transcriptomic studies on HAEC primary cultures.

Recently, blood cells have emerged as targets for transcriptome profiling, and espe-
cially pheripheral blood mononuclear cell (PBMC). These are round-nucleus blood cells
(e.g., lymphocytes, monocytes, or natural killer cells) in the circulatory system that are
present at sites of CF airway injury [Saavedra, 2008]. In particular, circulating leuko-
cyte RNA transcripts are systemic markers of inflammation, and are thus currently
investigated as assessment for pulmonary treatment response in CF [Levy, 2018].

Most studies focus on the F508del mutation and consider patients homozygous
for this mutation. Very few transcriptomic studies have considered rare mutations,
genotypes for which CFTR modulators are not currently available.

Finally, regarding cell culture models, transcriptomic studies were done on immor-
talized cell lines (mostly CFBE41o≠) and bronchial or nasal primary cultures. Com-
pared to primary cell cultures, cell lines are di�cult to compare to the actual HAEC
of patients. Conversely, primary cell cultures derived from patients better reflect the
CF physiopathology, and, specifically, the heterogeneity among patients.

These studies have explored a wide range of questions related to CF, mainly the
identification of specific genes that play a role in CF and its various phenotypes, as
well as the CF cells response to external stimuli at the transcriptional level (mostly
infection by Pseudomonas aeruginosa or response to treatments). The highlighted
genes are generally considered as candidates for further studies. Interestingly, the first
studies concluded that the level of CFTR mRNA was not significantly di�erent in cells
homozygous for the F508del mutation compared to cells from healthy patients.

More recently, with the approval of the CFTR modulators for the treatment of
CF patients with particular mutations, studies have evaluated global gene expression
before and after these treatments in order to develop gene expression signatures for
the prediction of treatment response [Sun, 2019; Kopp, 2020]. All these studies were
done on blood samples. To our knowledge, no study has yet focused on the e�ect of
modulators on the transcriptomic profile of airway epithelial cells from CF patients.

Omics data are usually publicly available in the NCBI’s GEO database. However,
some of the studies presented in Table 4.1 are not shared, and this is particularly
the case for the study including 124 CF samples [Polineni, 2018]. This is currently
the largest cohort of gene expression data of CF patients, but unfortunately, it is not
accessible, in a context where sample sizes of hundreds or thousands of individuals for
transcriptomic studies are very di�cult to obtain for rare disease and in particular for
CF.
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4.1. CF omics data

Single-cell transcriptomic studies

Single-cell RNA-seq (scRNA-seq) techniques have been developed over the last 10
years [Stark, 2019], and studies are gradually emerging for each disease. A first study
of single-cell gene expression on murine tracheal epithelial and primary human airway
cells was published in 2018 [Montoro, 2018]. They showed for the first time that CFTR
is predominantly expressed in a newly discovered cell type, the so-called pulmonary
ionocytes. The same year, another study investigated single-cell profiling of human
bronchial epithelial cells and mouse tracheal epithelial cells [Plasschaert, 2018]. Again,
they reported the identification of a novel, rare cell type called pulmonary ionocytes
as well as the the fact that this cell type is the major source of CFTR activity in the
conducting airway epithelium. Since then, three other scRNA-Seq studies have been
conducted to chart the cellular landscape of healthy upper and lower airways [Ruiz
García, 2019; Vieira Braga, 2019; Deprez, 2020].

In 2020, a study conducted by Okuda [Okuda, 2021] performed scRNA sequencing
to identify cell types that contribute to CFTR expression and function, within the
proximal-distal axis of the normal human lung. ScRNA-seq data analysis identified
secretory cells as dominating CFTR expression in human airway superficial epithelial
although ionocytes expressed the highest CFTR levels but were rare. The expression in
ciliated cells was infrequent and low. In conclusion, they suggest that CFTR therapies
should act on secretory cells. Finally, in May 2021, the first and only to date scRNA-
seq study on CF cells was published from a multi-institute consortium led by the team
of Gomperts in UCLA [Carraro, 2021]. Proximal airway of CF donors undergoing
transplantation for end-stage lung disease were compared with that of healthy lung
donors. This study confirmed that secretory cells, as well as basal cells, account for the
vast majority of CFTR expression in the proximal airway epithelium.

When we started the project, no scRNA-seq data on CF was published or available.
Due to time constraints, the analysis of these data has not been considered in this thesis,
but it is clear that it is necessary for a complete analysis of the complex system of CF
HAEC. Further studies of dysregulations in each major cell type (basal, secretory and
ciliated) would allow the search for cell type-specific therapies, as suggested in [Okuda,
2021], where I propose some avenues for such analyses in chapter 8.

4.1.2 Proteomics studies

Proteomic analysis which allows the detection of the presence of thousands of pro-
teins in the cell, is another promising approach to obtain a global picture of the cell
components and identify potential cell dysregulations.

CFTR-interactome profiling studies

Proteomic approaches have been first investigated to decipher the partners of CFTR
in the cell (the so-called CFTR interactome). These interactome profiling studies con-
sist in CFTR immunoprecipitation coupled to mass spectometry. Just like CF tran-
scriptomic studies, the majority of these studies focused on the most common mutation
in CF, F508del, and compared the interactome of WT-CFTR to that of F508del-CFTR
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Chapter 4. State of the art in systems biology approaches to study CF

[Wang, 2006; Pankow, 2015; Canato, 2018; Matos, 2018]. Only one study considered
another mutation, the G551D one [Teng, 2012]. All these studies highlighted protein
interactions potentially lost (or gained) when CFTR is mutated, and then studied the
link between one or several of them and CF phenotypes.

The studies showed that the interactome of WT-CFTR and of F508del-CFTR are
very similar, with more than 80% of the proteins interacting with both WT- and
F508del-CFTR [Pankow, 2015]. They showed that CFTR interacts with chaperone
and co-chaperone proteins whose function is to assist other proteins in their matura-
tion [Wang, 2006]. They also highlighted a group of proteins involved in the degradation
of misfolded proteins, and thus interacting with F508del-CFTR [Pankow, 2015].

All these studies focused on the CFTR life cycle, from its folding in the ER [Canato,
2018] to its stabilization at the PM [Matos, 2018] and through its processing in the cy-
toplasm. It should be interesting to compare WT and mutated CFTR interactomes and
their impact on the signalling of the cell. To date, only one study used high throughput
proteomics for this purpose [Reilly, 2017]. Their results linked CFTR defect to defi-
cient autophagy and the mTOR (mammalian target of Rapamycin) signalling pathway.
Finally, proteomic approaches have also been applied to investigate the interactome of
CFTR when the cell is treated: for instance with lumacaftor (VX-809) [Matos, 2018] or
when the CFTR processing to the PM is rescued with incubation of low-temperature
of 26-30°C [Pankow, 2015].

Note that yeast two-hybrid screens have also been used to identify CFTR partners.
Conversely to proteomic approaches, they do not comprise mass spectometry. Both
techniques are improving although they have their own limits: yeast-two-hybrid screens
cannot detect proteins located at the membrane, whereas immunoprecipitation requires
cell lysis which may modify the interactome [Lim, 2022].

Whole-cell proteomic studies

Proteomic studies carried out on the whole cell are still much less used than tran-
scriptomic studies as it is easier, cheaper and quicker to read the whole transcriptome
than the whole proteome. To our knowledge, three whole-cell proteomic approaches
have been performed on CF lung epithelial cell lines [Pollard, 2006; Ciavardelli, 2013;
Puglia, 2018] and four on primary culture of CF airway epithelial cells [Jeanson, 2014;
Rauniyar, 2014; Braccia, 2019; Veltman, 2021]. The observation is the same as for
the CFTR-interactome profiling studies, and the analyses compare WT-CFTR and
F508del-CFTR proteomes, the rescue of CFTR processing being the major issue con-
sidered in these studies. To date and to our knowledge, no phosphoproteomic studies
have been conducted in the study of CF systems, whether on cell lines or on primary
cultures.

The main limitation of proteomic studies is that a few thousand of proteins are
detected, when transcriptomic studies detect up to more than 20,000 RNAs.
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4.2 Systems biology approaches for CF in the literature

4.2.1 Pathway-based approaches

In-depth pathway-based analyses have never been the main purpose of CF omics
studies. They are usually conducted in studies whose purposes are to present transcrip-
tomic data in specific biological contexts, and the analysis at the biological pathway
level is limited. The possible mechanisms causing the dysregulated genes or pathways
are rarely detailed, and their links with CFTR loss of function even less.

Most CF transcriptomic studies conclude with the statistical analysis at the gene
level, with or without an ORA applied to the lists of DEG (see details in chap-
ter 2). In these studies, the pathways found enriched in DEGs belong generally to
three categories: CFTR proteostatis pathway, signal transduction and immune re-
sponse/inflammatory pathways (see [Ideozu, 2019] for a review of defective pathways
found from transcriptomic data). The inflammatory response is then rarely tackled as
a main defect in CF but very often associated with infection. It would be interesting
to study these data with FCS methods, using the whole gene expression data instead
of ORA approaches, because FCS methods do not rely on an arbitrary thresholds (e.g.,
expression fold change), conversely to ORA approaches.

To date, the only study specifically dedicated to the systemic analysis of CF tran-
scriptomic data with the intention of mechanistic understanding is the one conducted by
Hodos and colleagues in 2020 [Hodos, 2020]. They performed a meta-analysis of tran-
scriptomic data from both original microarray experiments and public sources. They
studied four categories of experiments: one that compared CF vs. non-CF expression
in human tissues, and three types of in vitro rescue strategies: low-temperature res-
cue, RNAi-based rescue, and chemical rescue via C18, an analog of the CFTR corrector
lumacaftor (VX-809). Systematic comparison of these datasets yielded a core signature
of the CF disease phenotype and two core signatures associated with F508del-CFTR
rescue. Additionally, 60 gene sets associated with CF or CFTR were compiled from 34
publications leading to the CFG (CFTR functional Genomics) Library, i.e. genes with
a functional e�ect on CFTR. Each core signature was then analyzed by GSEA and also
compared to the CFG genes.

This integrative analysis suggested altered activity of SGK1 and EGR1 in CF cells,
and also pointed at potential downstream e�ects on CFTR. The transcriptomic sig-
natures suggested that C18 and the other rescue interventions act via distinct mech-
anisms. Even if this study is the most integrative and in-depth on the study of CF
transcriptomic data, no network approach has been undertaken.

4.2.2 Network-based approaches

Network-based approaches for CF are quite diverse, although few in number. As
mentioned in chapter 2, biological networks are multiple and it is important to choose
the appropriate one that suits the most the question under study.

CF biological networks have been mainly created directly from data, and especially
from DEGs. Two types of networks have been preferred so far: co-expression networks
or PPI networks (see chapter 2 for their definition).
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PPI networks have been built from DEGs between CF and control cell lines induced
by viruses such as bacterial virulence factor [Mayer, 2012] or rhinovirus [Ling, 2020].
Both studies used the InnateDB which store undirected interactions to link the DEGs
[Breuer, 2013]. These studies identified modules in the PPI networks before applying
ORA approaches to the proteins of the module. Besides, two other PPI networks were
built respectively from a study on rectal epithelium and from a study on bronchial
epithelial with the STRING Database [Szklarczyk, 2019; Faria Poloni, 2021]. The
results suggested that the F508del-CFTR promoted tissue-specific pathways in CF
patients.

A study by Strub et al investigated strategies of in vitro rescue of CFTR with
gene co-expression networks [Strub, 2021]. Networks were built based on DE of genes
compared to baseline condition. The analysis of the networks enabled to identify several
pathways di�erentially activated and several genes, including CHRUC1, GZF1 and
RPL15, whose knockdown partially restored CFTR function. In the same spirit, a
study by Pineau et al focused on the construction of co-expression network from blood
samples data to identify genes and pathways that modulate the associated comorbidities
[Pineau, 2020].

The use of networks in these cases does not di�er much from the pathway-based
approaches presented in the previous section, as it does not lead to the proposal of a
mechanistic hypothesis to explain pathway dysregulations.

Network biology has also been applied to investigate CFTR interactors. To this
end, these approaches can sometimes go further in suggesting hypotheses on the links
between CFTR and molecular dysregulations.

A study by Loureiro et al was centred on some interactors of CFTR known to
be involved in the stabilization process of CFTR (called stability factors hereafter):
namely EPAC, NHERF1, EZRIN and SYK [Loureiro, 2019]. After defining 5 PPI
networks corresponding to the PPI networks for each CFTR interactor, they mapped
these individual networks on a full human PPI network, and explored how strongly the
identified PPI networks were connected within the complete PPI network (number of
overlapping proteins, number of direct interactions between set members and number
of common direct neighbours between these sets). They identified shared neighbours
for the CFTR interactor sets, and built a subnetwork including these specific neigh-
bours, CFTR itself and the stability factors. A total of 194 proteins were identified by
statistical analysis (bridge score) as candidates for experimental validation of CFTR
PM stability modulation.

Topological analysis was also used in a study by Mayer et al, to understand the
transcriptional changes induced by an Innate Defense Regulator (IDR) [Mayer, 2012].
They particularly analysed the links between CFTR interactors and TLR5 signalling
pathways, influenced by the IDR. They mapped the genes in these two gene sets on
human PPI network. The CFTR and TLR5 networks separated into two distinct en-
tities without any evident connections. When genes di�erentially expressed following
treatment with the IDR were merged into the network, CFTR and TLR5 networks be-
came connected via PRKAA1 (AMPK), HSPB1 (Hsp27), and AKT1. The functional
significance of these newly discovered interconnections was validated by wet labs exper-
iments, which showed that the treatment did not reduce inflammatory responses in CF
cells pre-treated with an AMPK activator or an AKT inhibitor. To date, and to our
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knowledge, this study is the only one in which the combination of quantitative analysis
of transcriptomic data and network approaches suggested mechanistic hypotheses to
link CFTR to CF phenotypes (in this case, inflammation via TLR signalling).

Finally, two very recent systems biology initiatives have led to the construction of
knowledge maps for CFTR interactomes. The first one from the Disease Map com-
munity [Mazein, 2018] integrated information from the literature and highlighted the
complexity of the mechanisms around CFTR at di�erent locations in the cell in WT
vs mutated conditions [Pereira, 2021]. The so-called "CyFi-MAP" was implemented
following the SBGN Activity Flow [Novère, 2009]. The second initiative called "CFTR
Lifecycle Map" [Vinhoven, 2021] is composed of two maps, a core map manually curated
from small-scale experiments in human cells, and a coarse map including direct and
indirect interactors identified in high-throughput (HT) e�orts (including [Wang, 2006;
Pankow, 2015; Matos, 2018]). These maps are also written in the SBGN format, adher-
ing to the Process Description language. The interactors retrieved from the literature
and integrated to the core map were also mapped on a human PPI network. Basic net-
work analysis was done on the obtained PPI subnetwork leading to the identification
of hubs (proteins with highest degrees) but no mechanistic interpretation has followed.
The same methodology (mapping CFTR interactors to a human PPI network) was also
undertaken by [Sahrawat, 2013].

This review of existing studies highlights the importance and the need for mecha-
nistic interpretation of the existing data. All these studies have mainly focused on the
molecular mechanisms centred around CFTR. We propose here to go a step further
and use the information extracted from studies on the CFTR interactome studies to
enrich the mechanistic knowledge behind CF dysregulations.
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Abstract

Cystic Fibrosis (CF) is a monogenic disease caused by mutations in the gene coding
the Cystic Fibrosis Transmembrane Regulator (CFTR) protein, but its overall physio-
pathology cannot be solely explained by the loss of the CFTR chloride channel function.
Indeed, CFTR belongs to a yet not fully deciphered network of proteins participating in
various signalling pathways. We propose a systems biology approach to study how the
absence of the CFTR protein at the membrane leads to perturbation of these pathways,
resulting in a panel of deleterious CF cellular phenotypes. Based on publicly avail-
able transcriptomic datasets, we built and analyzed a CF network that recapitulates
signalling dysregulations. The CF network topology and its resulting phenotype was
found to be consistent with CF pathology. Analysis of the network topology highlighted
a few proteins that may initiate the propagation of dysregulations, those that trigger CF
cellular phenotypes, and suggested several candidate therapeutic targets. Although our
research is focused on CF, the global approach proposed in the present paper could also
be followed to study other rare monogenic diseases.

Résumé

La mucoviscidose est une maladie monogénique causée par des mutations du gène
codant la protéine CFTR (Cystic Fibrosis Transmembrane Regulator), mais sa phy-
siopathologie globale ne peut pas être expliquée uniquement par la perte de la fonction
du canal chlorure CFTR. En effet, CFTR appartient à un réseau de protéines qui n’a
pas encore été entièrement déchiffré et qui participe à diverses voies de signalisation.
Nous proposons une approche de biologie des systèmes pour étudier comment l’absence
de la protéine CFTR à la membrane conduit à une perturbation de ces voies, résul-
tant en un panel de phénotypes cellulaires délétères de la mucoviscidose. Sur la base
d’ensembles de données transcriptomiques accessibles au public, nous avons construit
et analysé un réseau qui récapitule les dérégulations de la signalisation. La topologie du
réseau et le phénotype qui en résulte se sont avérés cohérents avec la pathologie de la
mucoviscidose. L’analyse de la topologie du réseau a mis en évidence quelques protéines
susceptibles d’initier la propagation des dérégulations qui déclenchent les phénotypes
cellulaires de la maladie, et a suggéré plusieurs cibles thérapeutiques candidates. Bien
que notre recherche soit axée sur la mucoviscidose, l’approche globale proposée dans
cet article pourrait être également suivie pour étudier d’autres maladies rares monogé-
niques.
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5.1 Preface

The previous chapter presented studies that address molecular mechanisms in CF
through the lens of systems biology. Although they constitute a rich resource for CF,
providing detailed knowledge of CFTR interactome, they have mainly focused on the
molecular mechanisms centred around CFTR. This thesis does not tackle the same
issue: we want to provide a global understanding of how the absence of functional
CFTR leads to the overall dysregulations. Therefore, we are not only interested in the
life cycle of CFTR, but in all the possible phenotypes observed in CF cells and their
links with CFTR.

The first idea was to build a network, in which all CF molecular dysregulations
are merged together into a single network. An essential step in the construction of
biological networks is the formulation of the biological question to which they respond.
The translation of the question into a network requires choices about what to include
and what not to include. The two main questions are what type of networks we want
to build and how we are going to build it.

5.1.1 What type of biological networks ?

Our goal is to provide a mechanistic understanding of some CF phenotypes, i.e.
understand the causal link of the absence of CFTR on the cellular phenotypes of the
disease. The dysregulations can then be modelled as cascades of directed interactions
between proteins, from CFTR as the starting point to the e�ector proteins of the CF
phenotypes as the end point. Each interaction to add should correspond to physical
interactions with a biological function. Various types of biological networks are encoun-
tered in systems biology studies, such as genetic interaction networks, gene regulatory
networks, co-expression networks, protein-protein interaction (PPI) networks. How-
ever, we chose to build a signalling network, because our goal was to relate CFTR to
overall signalling pathways dysregulations in CF [Ideozu, 2019].

5.1.2 How to build the CF network?

From a practical point of view, there are two di�erent ways to build biological
networks: the first one is based on results from the scientific literature, and the second
one is based on the direct analysis of HT sequencing data obtained from patients cells or
model CF cell-lines (See chapter 2). In fact, building a signalling network recapitulating
CF dysregulations exclusively from prior knowledge revealed itself to be a challenge.
Very little information is available in signalling knowledge databases with respect to
CF, and particularly to CFTR. Indeed, prior studies showed that signalling mechanisms
have been much more studied in specific contexts, such as cancer [Magalhães, 2022],
compared to others, leading to a small number of proteins more extensively studied
[Kustatscher, 2022]. This bias obviously does not favor CF, considered as a rare disease.

Conversely, adopting data-driven approaches in building models allowed us to over-
come over-abstraction and over-generalisation when building the CF network.
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What data to use ?

(Phospho-)proteomic data are the natural choice for describing pathway activity
[Szalai, 2020]. However, transcriptomics data are frequently used in PB methods due to
their much higher abundance, and their ability to detect transcripts at the genome scale,
whereas proteomic data detect a few thousands of proteins. Therefore, transcriptomic
data allow the detection of a larger spectrum of dysregulations than most other types
of omics modalities. Concerning CF, transcriptomics data have also been most widely
generated and analysed than other modalities (see chapter 4). Therefore, we focused
exclusively on this modality, although the resulting network could be refined in the
future based on other types of omics data.

We used publicly available bulk transcriptomic data on the most prevalent muta-
tion, F508del, for which the most data and prior knowledge are available. Including
studies on other mutations, although interesting in itself, would not have allowed us
to build a consistent model. We only retained samples from human airway epithelial
cells (HAEC). Indeed, the most severe symptoms of CF are in the lungs (see section
1.2.1) and epithelial cells are a�ected by CFTR dysfunction, and discarded studies on
tissues. Including these data in our analysis would require to investigate tissue-specific
pathways, which was beyond the scope of the present thesis.

We did not discard datasets generated from nasal samples. We acknowledge that
the transcriptomic datasets might be di�erent from the bronchial ones, but sampling
patients from nasal epithelial is less invasive which makes them the model of choice
for numerous studies. Besides, a previous meta-analysis study of CF transcriptomic
data showed an agreement between dysregulated genes in nasal and bronchial cells,
suggesting nasal epithelium as a good surrogate for the CF airway [Clarke, 2013]. Not
including them would have further reduced the number of studies to be analysed.

Finally, CF transcriptomics datasets are very heterogeneous in terms of tissue sam-
ples, cell culture and technology. Neither statistical methods based on samples variance,
such as rROMA (presented in chapter 3), nor integrative methods, which combine all
datasets, are suitable. We thus needed to find alternative approaches to take into
account data arising from di�erent technologies.

In the research paper presented in this chapter, we performed a meta-analysis of
CF transcriptomic datasets at the level of biological pathways to retrieve CF molecular
dysregulations. We proposed to take advantage of the knowledge gathered on the
CFTR interactome over the past ten years to link CFTR to the dysregulated signalling
pathways, and gathered these pathways into a single signalling network. Finally, the
topological analysis of the network highlighted a few proteins that may initiate or
propagate dysregulations from CFTR into the network, and explain the observed CF
phenotypes.

This work was made in collaboration with Loredana Martignetti, Matthieu Cor-
net, Mairead Kelly-Aubert, Isabelle Sermet-Gaudelus, Laurence Calzone and Véronique
Stoven. It was submitted to biorXiv in October 2023, and has been submitted to a
journal for peer review. In the following section, the article is transcribed as submitted.

The project was also presented as a talk at the Conférence des Jeunes Chercheurs
sur la mucoviscidose in February 2020, and preliminary results were presented as a talk
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in a panel session at the European Young Investigators Meeting in Cystic Fibrosis in
Paris, France, in March 2022, and as a poster at the European Conference on Compu-
tational Biology (ECCB) in Barcelona, Spain in September 2022. Finally, the network
construction and its topological analysis were presented as a poster in the International
signalling Workshop (ISW) in Visegrad, Hungary in July 2023, where I won an award
for best poster in the "Disease Modelling" panel.
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5.2 From CFTR to a CF signalling network: A systems
biology approach to study CF

5.2.1 Introduction

Cystic fibrosis (CF) is the most common life-limiting autosomal disease in the Cau-
casian population, a�ecting about 162.000 patients worldwide, of which 105.000 are
diagnosed [Guo, 2022]. It is caused by mutations in the CFTR gene encoding for the
cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride ion
channel expressed at the apical membrane of polarized epithelial cells [Seibert, 1997].
More than 2000 mutations in CFTR have been reported, but the deletion of the F508
amino-acid (F508del) is present in 70% of the mutated alleles in the Caucasian popula-
tion, and most of the mutations lead to compromised transepithelial anion conductance
[Veit, 2016]. Various organs are a�ected in CF, but the most severe symptoms are in
the lungs, where the defective chloride transport leads to the dehydration of surface
mucus, chronic bacterial infection, and inflammation, causing lung tissue damage and
ultimately, respiratory insu�ciency.

However, CF symptoms not only result from the loss of CFTR-mediated anion con-
ductance, but also from perturbations of other CFTR-dependent biological functions
[Hanssens, 2021]. Indeed, CFTR belongs to a protein-protein interactions (PPI) net-
work [Pereira, 2021; Farinha, 2021], and the absence of CFTR may perturb its direct or
indirect interactors, and propagate dysregulations towards various biological pathways
in which these interactors play a role. In agreement with this idea, studies on tex-
titCFTR -/- knockout mice [Crites, 2015], CFTR -/- knockout piglets [Fleurot, 2022],
and cell lines in which CFTR is inactivated by the CRISPR/Cas9 technology [Hao,
2020] have reported that the absence of CFTR a�ects cell signalling and transcrip-
tional regulation. These dysregulations may explain various and apparently unrelated
cellular phenotypes, including uncontrolled pro-inflammatory response [Jacquot, 2008],
unbalanced oxidative stress with increased reactive oxygen species [Jeanson, 2012],
impaired epithelial regeneration [Conese, 2021], or perturbation of cell junctions and
cytoskeleton [Pankonien, 2022].

To explain these seamlessly unrelated phenotypes, we propose to use a systems bi-
ology approach for CF, where the two aims are (1) to explore how the absence of CFTR
can be functionally related to the signalling dysregulations that ultimately lead to CF
cellular phenotypes; and (2) to suggest new therapeutic targets that may modulate
these phenotypes.

Indeed, systems biology approaches provide tools for building network models to
reason on complex systems. Subsequent topological analysis or dynamic mathematical
models performed on these networks allow to study how di�erent biological components
of the networks interact to produce phenotypic properties, which is relevant to the
questions at hand.

Systems biology approaches have seldom been implemented in monogenic diseases,
but have been widely used in cancer, often referred to as a network disease [Hornberg,
2006], where intricate processes contribute to the emergence of unexpected and often
non-intuitive phenotypes. Very few contributions have been devoted to systems biology
approaches of CF. Previous studies have focused on the construction of the CFTR in-
teractome that distinguishes PPI networks involving wt-CFTR and those involving the
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most frequent mutant F508del-CFTR [Pankow, 2015; Pereira, 2021]. The latter led to
the construction of a navigable knowledge map, the CyFi-MAP, that integrates all pro-
teins known to be involved in the processing, maturation, retention and degradation of
wt-CFTR and F508del-CFTR. Although the CyFi-MAP represents a key contribution
for the problem of rescuing F508del-CFTR, this map does not tackle the questions of
interest in the present paper. Other studies highlighted links between CFTR and sig-
nalling pathways involved in the disease (see [Pankonien, 2022] for a review), but they
did not provide a global view of how CFTR is linked to dysregulated molecular mech-
anisms and to CF phenotypes. Recently, transcriptomic data have been produced to
identify di�erentially expressed genes in CF. These genes were connected within a PPI
network, based on information available in PPI databases [Trivedi, 2023]. Although
this network comprises genes that are consistent with current knowledge in CF, it does
not contain CFTR, which prevents understanding the functional link between CFTR
and the di�erentially expressed genes, or with CF cellular phenotypes.

To overcome the limitation of previous studies, in the systems biology approach
proposed here, we build a comprehensive signalling network, called the CF network in
the following, that recapitulates CF pathway dysregulations, using transcriptomic data
available for CF and control patients and information available in biological pathway
databases. As detailed below, we connected CFTR to this network based on PPI in-
formation. Analysis of the CF network topology allows to formulate hypotheses on key
proteins and molecular mechanisms that functionally link CFTR to major CF cellular
phenotypes, and to highlight potential targets that may counteract these phenotypes.

5.2.2 Results

Global approach to building the CF network

In systems biology, various networks can be built to represent di�erent types of
biological information, such as gene regulatory networks, genetic interaction networks,
signal transduction networks, metabolic networks, PPI networks, or disease networks.
There is no universal technique that can be followed to construct networks, and the
choice of their representation needs to be adapted to the question of interest. In the
present study, we wish to establish a link between the absence of CFTR and the over-
all signalling dysregulations leading to the cellular phenotypes that characterize CF.
Therefore, we chose to build a CF network focusing on the signalling pathways that
are perturbed in the disease, and where dysregulations in one pathway may a�ect
other pathways. In order to avoid potential bias in the CF literature, we adopted a
data-driven approach based on publicly available transcriptomic studies. We are aware
that some CF phenotypes might arise from biological events that are not detectable
in the transcriptome of CF cells, but we considered that gene expression data had the
potential to capture some of the major molecular dysregulations present in CF cells.
Our study relies on a meta-analysis of public transcriptomic datasets for CF respira-
tory epithelial cells and their Non-Cystic Fibrosis (NCF) control counterparts, allowing
the identification of the signalling pathways dysregulated in CF. Based on information
available in pathway databases, these dysregulated pathways share many common pro-
teins, which allowed to connect them into a network. As detailed below, CFTR was
absent from this network, because it did not belong to any of the di�erentially expressed
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signalling pathways. However, we observed that several proteins of the network were
also present in the CFTR PPI interactome, either as direct interactors of CFTR, or as
indirect interactors of CFTR via a single intermediate protein. This important result
was consistent with the assumption that CFTR direct interactors may be perturbed in
CF, and initiate the propagation of dysregulations within the CF network.

The figure 5.1 summarizes the global approach followed in the present study.
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Figure 5.1 – Global approach followed to build the CF network.
A meta-analysis of CF transcriptomic data allowed the identification of dysregulated

pathways and the construction of the corresponding CF network. This network
comprises known CFTR interactors that can be viewed as source nodes initiating the

propagation of dysregulations.
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Selection of publicly available transcriptomics data

Many transcriptomic studies have been performed in CF over the last 15 years
[Ideozu, 2019]. However, these data su�er from a few limitations that are obstacles
to improve our understanding of CF. First, they consider a wide range of cell types,
including native nasal or bronchial cells, primary cultures of these cells, whole blood,
peripheral mononuclear cells, leukocytes, or immortalized cell lines. Therefore, com-
parison between studies to identify common key molecular determinants can lead to
inconsistent results. Then, compared to studies on more common diseases such as can-
cer, most of CF transcriptomic studies have very few samples per condition (disease
and control), decreasing the statistical power of these datasets when analyzed alone.
Finally, these studies rely on various experimental biological models and transcriptomic
technologies which rarely lead to consistent results between studies [Clarke, 2013], par-
ticularly when the analyses are performed at the gene level.

Study Tissue sample Cell culture Technology nb CF,NCF Dataset References

Verhaeghe Tracheal Cell line Microarray 3, 3 E-MEXP-980 [Verhaeghe, 2007]
Ogilvie (Nasal) Nasal Primary culture Microarray 27, 18 E-MEXP-436 [Ogilvie, 2011]
Ogilvie (Bronchial) Bronchial Primary culture Microarray 8, 17 E-MEXP-436 [Ogilvie, 2011]
Voisin Nasal Primary culture Microarray 5, 5 GSE40445 [Clarke, 2013]
Clarke Bronchial Cell line Microarray 3, 3 GSE39843 [Voisin, 2014]
Balloy Bronchial Primary culture RNA-Seq 4, 3 ERP010372 [Balloy, 2015]
Zoso Bronchial Primary culture RNA-Seq 7, 6 GSE127696 [Zoso, 2019]
Ling Bronchial Primary culture RNA-Seq 7, 5 GSE138167 [Ling, 2020]
Saint-Criq (UNC) Bronchial Primary culture RNA-Seq 3, 2 GSE154905 [Saint-Criq, 2020]
Saint-Criq (SC) Bronchial Primary culture RNA-Seq 3, 3 GSE154905 [Saint-Criq, 2020]

Table 5.1 – List of the 10 datasets considered in the meta-analysis, indicating the
number of CF and NCF samples in each study.

To try and overcome these limitations, we focused on studies considering only sam-
ples from human Airway Epithelial Cells (hAEC hereafter), i.e., bronchial, tracheal, or
nasal cells. Indeed, functional modifications in these cells are expected to reflect some
of the most severe symptoms in the lung. We included studies of cell lines or primary
cultures, in order to gather a statistically significant number of samples, because as
shown in Table 5.1, each dataset comprises a very limited number of samples. We
also focused on studies on the F508del mutation, for which most data are available.
We discarded two studies ([Virella-Lowell, 2004] and [Rehman, 2021]) that provide
transcriptomic data for other mutations, because the corresponding cells could display
disparities with respect to F508del cells. We retrieved from the literature all the CF
transcriptomic studies with publicly available data that matched these criteria (see
Methods subsection), which led to 10 CF transcriptomic datasets shown in Table 5.1.

The studies are still heterogeneous in terms of tissue sample (bronchial, tracheal
or nasal), cell culture type (cell-line or primary culture) and transcriptomic technol-
ogy (micro-array or RNA-Seq). However, we kept the 10 studies in order to improve
statistical significance, because the numbers of samples per condition are very small in
all studies: the median number of samples was 5 for disease (CF) and control (NCF)
conditions.
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Meta-analysis of transcriptomic studies at the level of biological pathways

The most straightforward way to analyse transcriptomic data is to identify Di�er-
entially Expressed Genes (DEGs), and to search for biological pathways enriched in
these DEGs. This approach failed in the present meta-analysis, because the number of
DEGs common to at least 3 out of 7 studies was too small to be enriched in any path-
way, even though many reference pathway databases were considered (the Hallmark
gene sets from the the MSigDB Database [Liberzon, 2015], the Pathway Interaction
Database (PID) [Schaefer, 2009], the KEGG database [Kanehisa, 2021]). In fact, it has
become clear that, in complex diseases, identification of pathway dysregulations based
on DEGs is not optimal and does not provide robust results [Wang, 2010].

Therefore, the meta-analysis was conducted at the pathway level. Many methods
have been proposed to capture pathway dysregulations when they do not appear clearly
based on enrichment from lists of DEGs [Martignetti, 2016; Landais, 2023; Schubert,
2018; Vaske, 2010]. In the present study, we used the Gene Set Enrichment Analy-
sis (GSEA) [Subramanian, 2005] approach. GSEA was performed separately on each
dataset identified as over-activated or under-activated signalling pathways in hAEC CF
cells, based on the complete expression matrix of CF and NCF samples, and taking into
account the expression level of all genes belonging to the same pathway. We used path-
way definitions provided by the KEGG pathway database [Kanehisa, 2021], because
this database provides graphical pathway representations that also include phenotypes,
which helped the analysis of the CF network, as detailed in Section 5.2.2. We tested
131 KEGG biological pathways, and Di�erentially Expressed Pathways (DEPs, here-
after) were identified according to a adjusted p-value lower or equal to 0.25, as detailed
in Section 5.2.4. The number of up- and down-regulated pathways for each dataset is
provided in Table 5.2

Study nb detected genes nb CF,NCF
nb up-regulated

pathways
nb down-regulated

pathways

Verhaeghe 22880 3, 3 11 2
Ogilvie (Nasal) 19880 27, 18 0 0
Ogilvie (Bronchial) 19880 8, 17 33 0
Voisin 13144 3, 3 10 0
Clarke 14118 5, 5 40 2
Balloy 39430 4, 3 24 2
Zoso 18846 7, 6 2 0
Ling 28138 7, 5 1 6
Saint-Criq (UNC) 39434 3, 2 11 0
Saint-Criq (SC) 39432 3, 3 1 9

Table 5.2 – Number of detected genes, CF and NCF samples, tested pathways and
dysregulated pathways per study with a corrected p-value < 0.25 and a |log2FC| > 1
thresholds at the gene scale.
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The analysis of DEPs showed that 15 of the 134 biological pathways tested were
di�erentially expressed in at least 3 studies. However, a closer analysis highlighted dis-
crepancies between studies. As shown in the heatmap presenting the GSEA Normalised
Enrichment Score (NES) (Figure 5.2), for these 15 common DEPs, the 10 datasets can
be gathered into 2 subgroups: subgroup 1 comprising 7 datasets in which common
DEPs tend to be up-regulated, while they tend to be down-regulated in subgroup 2
comprising the 3 other datasets. This appeared somewhat puzzling. Our hypothesis
is that datasets belonging to subgroups 1 or 2 arise from studies in which the di�er-
entiation media used for the primary cultures did not favor the same cell type, and
therefore, should not be analyzed together.

This was confirmed by the Saint-Criq (UNC) and Saint-Criq (SC) datasets (see
Table 5.1), belonging respectively to subgroups 1 and 2, where it was shown that
the UNC and SC di�erentiation media (two common di�erentiation media used on
CF and non-CF epithelia) significantly impact cell lineage in primary cultures of CF
hAEC, and consequently, the resulting transcriptomic profiles [Saint-Criq, 2020]. In
this study, it was shown that the UNC medium promoted di�erentiation into club and
goblet cells, while the SC medium favored the growth of ionocytes and ciliated cells.
Consistent with this result, the Ling transcriptomic dataset, which belongs to subgroup
2, was also obtained from primary cultures of CF and NCF airway epithelia that were
di�erentiated into ciliated pseudo-stratified airway cells [Ling, 2020]. Datasets from
subgroup 2 appeared in contradiction with the main CF phenotypes. In particular,
the TNF-– signalling pathway or NF-ŸB signalling pathway are down-regulated in this
subgroup, although the over-activation of these pathways is a well-known feature of
CF disease. Therefore, we only considered the 7 datasets belonging to subgroup 1 for
further analysis.

In this subgroup, the transcriptomic analysis appears to be highly consistent, since
among the 15 DEPs common to at least 3 studies, 5 are up-regulated in CF vs NCF
samples in 4 studies (NOD-like receptor signalling pathway, Cytosolic DNA-sensing
pathway, Cytokine-cytokine receptor signalling pathway, and Regulation of actin cy-
toskeleton), 2 are up-regulated in CF vs NCF samples in 5 studies (Osteoclast differen-
tiation and Toll-like receptor signalling pathway), and the IL-17 signalling pathway is
up-regulated in CF vs NCF in 6 studies.

Overall, the 15 DEPs common to at least 3 studies are in agreement with various
known aspects of CF disease, which confirms that our analysis did capture relevant
information about CF. In particular, besides the TNF-– and NF-ŸB signalling pathways
well known to be up-regulated in CF, the IL-17 pathway contributes to CF lung disease
[Hsu, 2016], the di�erentiation of osteoclast is perturbed in CF [Dumortier, 2021], the
Toll-like receptor signalling pathway modulates function, inflammation and infection
of lung in CF [Kosamo, 2020; Curutiu, 2018; Fleurot, 2022], and CFTR plays a role in
cell junction and actin cytoskeleton organization [Pankonien, 2022].

Building the CF network

The 15 individual DEPs of the KEGG database provide interesting information
about what is dysregulated in CF, but a lot of these pathways are partially redundant
and show a high overlap of genes and interactions, indicating that they are highly
intertwined. A dysregulation in one of these pathways will have a consequence in
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another pathway. To study the connection between them, we propose to merge them
into a single network called the CF network.

The DEPs were extracted with the OmniPathR package [Türei, 2016] and curated,
as described in Section 5.2.4. The rules that were used to build and clean this network
are detailed in Section 5.2.4. The network, comprising 330 nodes and 529 interac-
tions, is not fully connected: it contains one main component including 317 nodes
connected by 515 interactions, and two small additional components that are non con-
nected to the main component, and called unconnected components hereafter (See
Figure 5.3). The overall network can be accessed as a Cytoscape session, in the sysbio-
curie/CFnetwork_cystoscape repository for further analysis.
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Figure 5.3 – The CF network.
(A): The main component comprises 317 nodes connected by 517 interactions and two

small unconnected components shown in (B): the two unconnected components
correspond to the TGF— and the JAK-STAT signalling pathways. The cellular

phenotypes triggered by the sink nodes of the two components are surrounded by
black contours.

Identification of CFTR interactors in the CF network
It is striking to note that CFTR does not belong to any of the 15 DEPs, and therefore,
is not part of the network. In fact, CFTR is present in only 7 biological pathways of
the KEGG database (ABC Transporters, cAMP signalling pathway, AMPK signalling
pathway, tight junction, Gastric and acid secretion, pancreatic secretion and bile secre-
tion), but these pathways did not belong to the DEPs.

Therefore, we searched for the presence of CF network proteins in the network of
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proteins reported to be involved in protein-protein interactions (PPI) with wt-CFTR or
F508del-CFTR [Pereira, 2021]. Indeed, according to the CyFi-MAP, 4 direct interactors
of wt-CFTR but not of F508del-CFTR (CSNK2A1, PRKACA, SYK and TRADD)
belong to the CF network. Furthermore, 4 additional proteins (EZR, SRC, PLCB1/3)
present in the network interact with wt-CFTR (but not with F508del-CFTR) through
a single intermediate protein. Figure 5.4 shows these 8 proteins, their intermediates
and their interactions with CFTR. The presence in the CF network of 8 first or second
neighbours in the CFTR interactome is an interesting result in favour of our assumption
that CFTR interactors may propagate functional dysregulations into the network.

Figure 5.4 – CFTR interactors in the CF network: Known protein-protein interactions
involving CFTR interactors in CFTR PPI.

Analysis of the CF network

Extensive interpretation of this large network, which contains rich but complex
information, is beyond the scope of the present paper. However, we will investigate
how analysis of its topology can help tackle the two questions of interest: how the
absence of the CFTR protein at the membrane leads to CF cellular phenotypes, and
how therapeutic targets can be suggested from this network.

Topological description of the CF network The final CF network comprises
330 proteins and 529 interactions. Interestingly, CFTR interactors are present only
in the main component, because according to the CyFi-MAP, it would not have been
possible to link CFTR to proteins of the two small unconnected components without
adding a large number of intermediate nodes. One of the two unconnected components
contains 10 proteins and 9 interactions, and corresponds to cascades of the JAK/STAT
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signalling pathway. The other contains 3 proteins and 3 interactions, and corresponds
to a cascade of the Transforming Growth Factor Beta (TGF—) signalling pathway. In
the present section, we will focus on the main component of the CF network, and the
two unconnected components will be discussed in Section 5.2.2.

The topological description of the main component will be organized around three
types of remarkable nodes: (1) the source nodes, i.e., CFTR first or second neighbours
that were used to connect CFTR to the network, as described in Section 5.2.2; (2) the
sink nodes, i.e., the nodes from which no edge leaves in the network, and whose acti-
vation finally triggers their associated phenotypes (for example, transcription factors
are typical sink nodes); (3) the hubs, i.e. the nodes with high betweenness centrality,
through which the flow of information that passes is high. Figure 5.5 illustrates where
these remarkable nodes stand within the network’s topology.

Figure 5.5 – Illustration of propagation of dysregulation and remarkable nodes in the
CF network.

The source nodes (orange disks) are CFTR interactors or connected to CFTR
interactors via a single intermediate protein (magenta circles). Nodes with high

betweenness centrality (purple disks) are proteins through which much information
flows within the network. Sink nodes (blue triangles) modulate their corresponding

phenotypes.

Source nodes and initiation of dysregulations
According to the CyFi-MAP, 8 first or second neighbours of wt-CFTR interactors whose
interactions are lost with F508del-CFTR are present in the CF network: CSNK2A1,
EZR, PLCB1, PLCB3,PRKACA, SRC, SYK and TRADD. In the absence of
CFTR, these 8 proteins can be viewed as source nodes that may initiate dysregulations
that subsequently propagate within the network and finally reach the sink nodes (see
Figure 5.4).

Perturbations of some of these source nodes in CF cells, or their role in CF cellular
phenotypes, are sustained by various studies:

— CSNK2A1, also known as CK2 (casein kinase 2), is strongly overactivated in
CF vs wild-type cells [Venerando, 2011].
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— Cellular levels of TRADD are controlled by its lysosomal degradation in a wt-
CFTR-dependant manner, and this regulation is lost with F508del-CFTR and
G551D-CFTR [Wang, 2016].

— SRC was shown to be overexpressed and overactivated in CF cells [Massip Copiz,
2016].

— PLCB3 is a known CF modifier gene, for which the loss of function S845L variant
is associated with a mild progression of the pulmonary disease and a reduction of
Pseudomonas aeroginosa-induced IL8 release. This indicates that PLCB3 plays
a role in the inflammation phenotype in CF [Rimessi, 2018].

— The active form of ezrin (EZR) is mainly located in the apical region of wild type
airway epithelial cells, while in their CF counterparts, it is di�usely expressed in
its inactive state in the cytosol [Favia, 2010; Wu, 2019].

— The SYK and PRKACA kinases play key roles with respect to CFTR, since
the former negatively regulates the amount of CFTR at the membrane through
phosphorylation at Y512 [Mendes, 2011], while the latter is a well-known regulator
of the CFTR chloride channel conductance [Egan, 1992], but their implication as
propagators of dysregulations has not been investigated yet.

Sink nodes and CF phenotypes
There are 35 sink nodes in the main component of the CF network that are reached

from each of the 8 source nodes. The full list of sink nodes and their associated
phenotypes are given in the Supplementary file 2. Among them, we can cite:

— NFKB1, NFKB2, RELA and RELB are part of the NF-ŸB complex, a tran-
scription factor that can be activated by various stimuli such as cytokines, ox-
idant radicals, bacterial or viral products. It controls the expression of pro-
inflammatory genes, and is related to various phenotypes including inflammation
and cell survival/proliferation.

— FOS and JUN are two sub-units of the AP-1 transcription factor activated by
the MAPK signalling pathways, and are associated with inflammation and pro-
liferation phenotypes.

— CASP3 and CASP7 caspases are the e�ectors of apoptosis.

— CASP1 is a caspase known to be the e�ector of pyroptosis, a highly pro-inflammatory
cell death mechanism.

— 10 sink nodes belong to the regulation of actin cytoskeleton pathway, including
ACTN4, ARPC5, PFN, MYL12B and VCL. These nodes are associated to
various phenotypes related to cytoskeleton, including focal adhesion, adherens
junction, and actin polymerisation.

— IRF1, IRF3, IRF5, and IRF7, that are members of the IRF family of transcrip-
tion factors involved in the innate immune response phenotype, and controlling
expression of Type-1 interferons upon viral infection.

Importantly, the phenotypes associated to these sink nodes have already been de-
scribed in the CF context. In particular: (1) The NFŸB and AP-1 transcription factors
are complexes of sink nodes that mediate inflammation, the most studied phenotype
of CF disease. In addition to the well-known activation of NFŸB in CF, AP-1 is one
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of the downstream transcription factors of the MAPK pathway that was shown to
be activated in CF [Bérubé, 2010; Wellmerling, 2022], as shown in Figure 5.6. (2)
Controversial results were reported about apoptosis in CF epithelial cells. Some stud-
ies showed defective susceptibility of CF cells to pro-apoptotic stimuli [Cannon, 2003;
Gottlieb, 1996], while others observed increased apoptosis [Chen, 2018; Voisin, 2014;
Yalçin, 2009; Rottner, 2007]. All agree that apoptosis is dysregulated in CF. (3) The
dysregulation of actin cytoskeleton in CF is well documented, with a disorganized actin
cytoskeleton, absence of actin stress fibres [Favia, 2010; Lasalvia, 2016; Burat, 2022],
and disrupted tight junctions [De Lisle, 2014; Castellani, 2012]. (4) Finally, various
works indicate a dysfunction in the innate immune response of CF patients [Kosamo,
2020; Gillan, 2023; Dugger, 2020].
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Figure 5.6 – Extract from the CF network showing the TRADD protein connected to
the TNF-– signalling pathway, and to 5 other sink nodes, including FOS and JUN
which form the AP-1 transcription factor, downstream of the MAPK cascade.

The cellular phenotypes triggered by the sink nodes are surrounded by black
contours. Note that TRADD is connected to the 35 sink nodes, but only part of the

nodes downstream of TRADD in the network are represented.

Betweenness centrality and flow of information
In a network, the betweeness centrality (BC) of a node is the number of shortest
paths that pass through that node. This measure is a way of detecting the amount
of influence a node has over the flow of information in a network. Nodes with high
BC, referred to as hubs, may provide interesting therapeutic targets, because their
inhibition may e�ciently reduce the propagation of information within the network
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[Durón, 2019]. Therefore, we calculated the BC for all nodes of the CF network, as
detailed in the Methods section. All nodes were then ranked according to this measure,
and Figure 5.7A displays the histogram of the BC score. Interestingly, most proteins
have a BC score below 3000, and only a very limited number of proteins have a BC
score above 6000 (ARHGEF12, IKBKE, LSP1, PIK3KC1, PYCARD, RAC1, TRAF2,
TRAF3, TRAF6). The list of the top 30 proteins is provided in the Supplementary File
2. Among them, PI3KCA could be an interesting therapeutic target candidate and is
discussed in the next section.

Figure 5.7 – (A) Histogram of the betweenness centrality measures for all nodes in the
CF signalling network; (B) Number of sink nodes to which each of the 8 source nodes
are connected.
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Biological insights from the topological analysis A simple path analysis of the
network shows that several source nodes may contribute collectively to the emergence
of the CF phenotypes, which illustrates the complexity of the disease. Indeed, while
the source nodes PRKACA, EZR and CSNK2A1 are upstream of a limited number
of sink nodes, PLCB1/3, SRC, SYK and TRADD are upstream of the 35 sink nodes,
i.e., there exists a path from each of these 6 source nodes to each of the 35 sink nodes
(Figure 5.7B).

For example, TRADD is known to be up-regulated in CF [Ferenc Karpati, 2000]
and to participate in the uncontrolled inflammation (See Figure 5.6). Interaction be-
tween wt-CFTR and TRADD enhances the degradation of TRADD, which controls
the activity of this pathway, as demonstrated by Wang and colleagues [Wang, 2016].
This direct interaction is lost with F508del-CFTR, which may contribute to the dys-
regulation of TNF-– and NF-ŸB signalling pathways in CF. However, up-regulation of
TRADD could also contribute to the inflammation phenotype through another route,
by inducing over-activation of the MAPK pathway, and in particular of AP-1, one of its
output transcription factors. In addition, as shown in Figure 5.8, our network suggests
that other source nodes than TRADD could also initiate dysregulation of the inflam-
mation phenotype because they are also connected to the NF-ŸB sink node. Among
these sources, we can cite: (1) SYK, which would be consistent with its role in inflam-
mation processes shown in other diseases [Riccaboni, 2010; Wong, 2004]; (2) PLCB1/3,
which are consistent with previous studies reporting PLCB3 as a key modulator of IL8
expression in CF bronchial epithelial cells [Bezzerri, 2011]; (3) CSNK2A1, whose hy-
peractivity could contribute to activation of NF-ŸB by enhancing the phosphorylation
and degradation of IKBKA.
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Figure 5.8 – Subnetworks of the CF network illustrating the connections between the
source nodes TRADD, SYK, PLCB1/3, and CSNK2A1 and the sink node NFKB1.
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Overall, the number of source nodes and routes that may contribute to inflammation
in CF illustrates the challenge posed by its modulation, in order to reduce the related
clinical symptoms. Various anti-inflammatory drugs have been recently evaluated in
clinical trials [Bell, 2020], but none of them target the source nodes of the present study.
Our hypothesis is that these source nodes could be interesting candidate targets in CF.
In particular, SYK has emerged as a potential target for the treatment of numerous
diseases. Many inhibitors are known for this kinase, which would allow to evaluate their
potential anti-inflammatory e�ect in CF cells. These inhibitors include one marketed
drug (Fostamatinib), but other inhibitors are currently under investigation in clinical
trials for a range of indications [Cooper, 2023]. Interestingly, since SYK is connected
to the 35 sink nodes, its inhibition may also contribute to the modulation of other
CF phenotypes than inflammation. In particular, it could modulate CF phenotypes
associated to the 35 sink nodes and mentioned in Section 5.2.2, such as dysregulations
in apoptosis, cytoskeleton or innate immune response. Similarly, our network suggests
that PLCB3 could be an interesting target for inflammation in CF. This is consistent
with the fact that PLCB3 silencing in CF bronchial epithelial cells exposed to Pseu-
domonas aeroginosa, reduces the expression of IL-8 chemokine [Bezzerri, 2011]. The
U73122 PLC inhibitor could be an interesting pharmacological tool to further evaluate
this strategy. As in the case of SYK, PLCB3 is connected to the 35 sink nodes, which
means that its inhibition may also improve other CF cellular phenotypes. Consistent
with this idea, it was shown that treatment with a SRC inhibitor, another of the 6
source nodes upstream of the 35 sink nodes, decreased the inflammatory changes and
improved cytoskeletal defects in F508del human cholangiocytes [Fiorotto, 2018].

Besides source nodes, candidate therapeutic targets can be searched among hubs in
the network, i.e. among the best ranked proteins according to the BC score. Besides
this score, additional arguments can be invoked to highlight the best candidates. In
particular, the fact that a protein is known in the literature to play a role in the disease,
and that pharmacological modulators (or even better, marketed drugs) are available to
allow experimental validation, are important criteria. In line with these ideas, PI3KCA
appears as an interesting candidate target. Indeed, several inhibitors are known for this
kinase, including the marketed drug Alpelisib, which would allow experimental tests
in CF models. It has been suggested as a candidate target in CF based on its role in
many signalling pathways implicated in CF lung pathogenesis [Natarajan, 2020]. The
fact that PI3KCA belongs to best ranked proteins with respect to the BC score (See
Figure 5.7A) o�ers a quantitative argument in favor of this idea. In addition, PI3KCA
is connected through the network to the 35 sink nodes, which means that its inhibition
may modulate inflammation, but also other CF cellular phenotypes related to the sink
nodes.

Analysis of the unconnected components in the CF network As mentioned in
Section 5.2.2, Figure 5.3 shows that the CF network comprises two small unconnected
components that are part of the TGF— and JAK/STAT signalling pathways. Contrary
to source nodes of the main component, dysregulation of the source nodes of these
unconnected components (namely the 4 interleukins IL2, IL21, IL4 and IL6 for one
component, and TGF— for the other) cannot be explained by the absence of CFTR in a
direct manner, because they are not linked to CFTR within a single network. However,
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activation of a sink node of the main component may modulate the expression of a
source node in an unconnected component, a�ecting the activity of this unconnected
component. For example, activation of the AP-1 transcription factor (a sink node of
the main component) due to activation of the MAPK pathway in the main component,
regulates the expression of TGF—. This example shows how dysregulations in one
pathway may have consequences in other pathways of the CF network, even if they
are not connected, again illustrating to the complexity of the disease. We propose
that phenotypes arising from the two unconnected components could be defined as
secondary phenotypes, as opposite to primary phenotypes arising from dysregulations
of the main component (discussed in Section 5.2.2).

The JAK-STAT component mediates various cellular processes, including cell growth
and apoptosis, but the role of these cascades has not been widely studied in CF. The
TGF— component leads to the activation of SMAD2, a transcriptional modulator that
regulates multiple cellular phenotypes, including cell proliferation, apoptosis, and dif-
ferentiation. High levels of TGF— have been associated with the severity of lung disease
[Dorfman, 2008; Sagwal, 2020], and this protein was proposed as a therapeutic target
for CF [Kramer, 2018]. Our study suggests that therapeutic targets should be chosen
among proteins closer to CFTR in the network, in particular among the source nodes
of the main component (as discussed above), because they may more successfully limit
the global propagation of molecular dysregulations within the overall network.

5.2.3 Discussion

Using a pathway-based meta-analysis of publicly available transcriptomic data, we
built the CF network that provides a more global understanding of the molecular dys-
regulations in CF than the view of a CFTR-related channelopathy disease. Indeed, an
important outcome of this work was to integrate data analyses to network reconstruc-
tion, while proposing a strategy to relate CFTR to proteins of the network, based on
CFTR interactome. The CF network comprises a restricted number of source nodes
that connect the absence of CFTR to the downstream sink nodes triggering CF cellu-
lar phenotypes. Another important contribution was to propose candidate therapeutic
targets, based on the topological analysis of this network (namely, SYK, PI3KCA and
PLCB1/3). The network provides a comprehensive view of how pathway interactions
contribute to a given disease phenotype. It reveals unintuitive e�ects of targeting can-
didate proteins because of the complex interactions of the biological pathways in the
network. Overall, the CF network can be seen as a tool to formulate hypotheses and
interpret experimental observations.

Although several transcriptomic datasets were gathered, the total number of sam-
ples globally included remains modest (57 CF and 46 control samples). Additional
data may refine the list of dysregulated pathways, and help to improve the proposed
CF network.

To cope with the low number of samples per study, we opted for a meta-analysis
combining various CF transcriptomic datasets, which highlighted that distinct di�er-
entiation media used for the primary cultures may favor di�erent cell types, leading
to inconsistent transcriptomic profiles and potential erroneous interpretations. This
may explain why previous transcriptomic comparative studies reported incoherent signs
of gene dysregulation (up- versus down-) between di�erent datasets for many genes
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[Clarke, 2013]. We observed the same phenomenon at the pathway level for datasets
belonging to subgroup 1 or 2 (see Section 5.2.2). Clustering studies based on the
heatmap of common DEPs appears to be a good tool to select consistent data in future
meta-analysis.

Other types of dysregulations such as aberrant phosphorylations are not detectable
in transcriptomic data. Including information from other types of omics data such as
proteomic, phosphoproteomic, metabolomic,or volatilomic may help to refine the CF
network. In particular, in the past three years, CF airway epithelial single-cell RNAseq
(sc-RNAseq) datasets have been reported [Carraro, 2021; Thurman, 2022]. Such data
allow the study of dysregulations at the cell type level, and could facilitate building of
the CF networks for specific epithelial cell types. Furthermore, CFTR is expressed in
cell types beyond airway epithelial cells. Thus, refining this network within the context
of these cell types could enhance our understanding of the role of CFTR in these specific
cells such as macrophages, where CFTR seems to have non-channel functions [Duan,
2021].

Prior knowledge gathered in the KEGG pathway database was used to identify and
connect DEPs, but the proposed methodology can be followed using other pathways
databases. Pathway names and definitions vary between databases, and therefore,
the resulting network may slightly depend on the reference database that was used.
Nevertheless, it would comprise globally the same interactions and proteins. Similarly,
CFTR interactors present in the network were identified according to PPI information
in the CyFi-MAP. If new CFTR interactors are identified, this information may help
improve the content of the network, highlighting new source nodes or routes for the
propagation of dysregulations. In particular, missing interactions, because they are
not present in pathway databases, or have not been discovered yet, may explain the
presence of unconnected components. If they exist, their discovery in the future may
allow to link the two unconnected small components to the main component of the
network. However, the proposed notion of targeting proteins as upstream as possible
in the network, or among key hubs of the network, are still an interesting concept in
order to prioritize candidate therapeutic targets.

An important issue of the present paper was to explore the link between absence
of the CFTR protein, and more global pathway dysregulations that lead to CF cellular
phenotypes. However, the precise definition of a diseased cellular phenotype is not
clearly defined yet, and we used key words provided in the KEGG database or in
the Gene Cards database [Stelzer, 2016]. The present work proposes an answer this
question in the context of systems biology studies. Associating phenotypes to the
activity of outputs of the signalling cascades, referred to here as sink nodes, could be a
first step towards the definition of the disease read-outs. This is of particular interest
for in vitro evaluation of drug candidates, because we expect that drugs active in CF
would reduce the activity of these sink nodes.

The methodological approach proposed in our study was settled based on transcrip-
tomic data from hAEC cells homozyguous for F508del, because publicly available data
are more abundant for this most frequent mutation. Therefore, our CF network char-
acterizes the disease caused by this mutation. It would be interesting to study to which
extent the CF network would di�er for other mutations. A recent paper indicates that
DEGs in human bronchial epithelial cell lines bearing mutations from di�erent classes
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share about 30% DEGs, while 70% of the DEGs are class specific [Santos, 2023]. It
would be interesting to study if this still holds at the level of biological pathways, as
they are defined in the present work, and to study whether the resulting network is
strongly modified, or not. The methodology proposed in the present paper and based
on network topology could still be applied in order to search for new, and potentially
class-specific, therapeutic targets.

The candidate therapeutic targets proposed based on our CF network could also
be tested on CF cellular models for other mutations, because these targets may belong
to biological pathways that are also dysregulated with other mutations. If this was the
case, it would help to extend the therapeutic arsenal available for CF patients who are
not eligible for CFTR modulators.

In the same line, it is now clear that CF patients bearing the same mutation may
present diseases of di�erent severity. Although many factors can modulate disease
severity, including environmental factors, it would be interesting to explore the con-
tribution of patients molecular profiles. In particular, building a "personalized" CF
network based on patients’ transcriptomic profiles would be an interesting tool to an-
swer this question.

Beyond CF, reduced amounts of functional CFTR have also been observed in other
diseases like chronic obstructive pulmonary disease (COPD) [Saint-Criq, 2017; Simões,
2021], cigarette smoke [Valdivieso, 2018] , or cancer [Duan, 2021; Wang, 2022]. The
network could provide a basis to explore the consequences of reduced CFTR activity
in these diseases.

Finally, an important contribution of the present work is that the adopted global
methodology of the CFTR context, although perfectible, did provide interesting results
for CF, and can be used as a common framework for other monogenic diseases.

5.2.4 Methods

Datasets selection

Based on the search engines of the National Center for Biotechnology Information
(NCBI) and the European Nucleotide Archive (ENA), we selected 10 datasets from 8
studies published between 2007 and 2021. The selection criteria to include CF tran-
scriptomic datasets were the following: (1) they should correspond to human Airway
Epithelial Cells (hAEC); (2) the cells should be homozygous for the most common
mutation F508del; (3) the transcriptomic data should be publicly available. Therefore,
studies including samples heterozygous for the F508del mutation ([Virella-Lowell, 2004]
and [Rehman, 2021]), studies with no data available [Zabner, 2005] and [Wright, 2006])
were not included. In addition, studies with less than two samples were excluded
([Bampi, 2020] and [Veltman, 2021]), as the subsequent statistical analyses require sev-
eral samples per condition. The list of selected transcriptomic studies is provided in
Table 5.1.

Biological pathways databases

We initially considered a total of 380 gene sets corresponding to 380 biological path-
ways: 50 Hallmark gene sets from the the Molecular Signatures Database (MSigDB)
[Liberzon, 2015], 196 from the Pathway Interaction Database (PID) [Schaefer, 2009] and
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134 from the KEGG database, restricted to the Genetic Information Processing, En-
vironmental Information Processing; Cellular Processes and Organismal systems sub-
division. However, most of the analyses were performed using only KEGG database.
Indeed, in the Hallmark and the PID databases, gene sets are defined as gene signatures
rather than as biological pathways. Thus, the genes are not necessarily connected to
each other through functional interactions. Conversely, gene sets retrieved from the
KEGG database correspond to biological pathways defined as genes corresponding to
proteins that participate in oriented molecular cascades. They are available in the form
of maps on the KEGG website. In addition, the structure of the KEGG database al-
lows to build a network that provides mechanistic interpretation. Therefore, gene set
enrichment algorithms required to build the signalling network was performed based
on the KEGG database. All interactions and nodes from each biological pathway of
the KEGG database were retrieved thanks to the OmnipathR R package [Türei, 2016].

Preprocessing of RNA-Seq data

Limma was originally developed for di�erential expression analysis of microarray
data, which values are assumed to be normally distributed, and the variance indepen-
dent of the mean. This is not the case for log2-counts per million (log-CPM) val-
ues in RNA-Seq data: expression distributions may vary across samples and methods
modelling counts assume a quadratic mean-variance relationship. Therefore, for the
RNA-Seq data, 3 steps of pre-processing are necessary before applying the statistical
tests [Law, 2018]: (1) low expressed genes are filtered (i.e. genes with less than 10
read counts in at least one sample in the condition with the minimum sample size);
(2) normalisation using the method of trimmed mean of M-values (TMM) is performed
[Robinson, 2010b]; (3) raw counts are converted to log-CPM and the mean-variance
relationship is estimated with the voom method.

Identification of Differentially Expressed Pathways (DEPs)

For each of the 10 transcriptomic datasets, identification of DEPs was performed
using the fgseaSimple function of the Bioconductor package fgsea [Korotkevich, 2021],
for fast preranked Gene Set Enrichment Analsyis (GSEA) [Subramanian, 2005].

The fgseaSimple method takes two inputs: a gene-level signed statistics and a de-
fined list of genes known as gene set. The method ranks the genes in descending order
based on the chosen statistics, and then computes the Enrichment Score (ES) for the
gene set. The ES reflects how often members of that gene set occur at the top (e.g.,
upregulated) or the bottom (e.g., downregulated) of the ranked gene list. To account
for di�erences in gene sets size, a normalisation step is performed to obtain the Nor-
malised Enrichment Score (NES). Besides, random gene sets are generated and their
NES computed. These NES are then used to create a null distribution from which the
significance of the NES of the tested gene set is estimated. In our study, we used the
t-statistics from the di�erential expression analysis comparing gene expression levels
of CF sample to NCF samples as the control condition. In order to compare all the
studies together, all the microarray and RNA-Seq datasets were processed using the
same pipeline, involving the limma [Ritchie, 2015] and edgeR [Robinson, 2010a] pack-
ages. After removing technical outlier samples and retrieving gene symbols using the
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biomaRt package [Durinck, 2009], di�erential expression analysis at the gene level was
performed by fitting a linear model using weighted least squares for each gene.

Gene sets with size larger than 500 were excluded for statistical testing. The p-
values of the gene sets were adjusted for multiple testing error with Benjamini-Hochberg
(BH) procedure. Di�erentially Expressed Pathways (DEP)s were considered with a
corrected p-value lower or equal to 0.25. If the NES is positive, the DEP is categorized
as up-regulated, and if it is negative, the DEP is categorized as down-regulated.

Up-dating Omnipath DEPs pathways

The CF network was built from DEPs among pathways in the KEGG database, as
extracted with the OmniPathR package. We observed a few inconsistencies between
the corresponding list of genes and interactions downloaded with OmnipathR R pack-
age, and those in the ’up to date’ pathways maps, as they are displayed on KEGG
website. Therefore, we updated the OmnipathR version of the KEGG pathways by
adding (or removing) a few nodes or interactions, in order to map the OmnipathR
pathways with their corresponding pathways in KEGG. For each modification, biblio-
graphic references were manually checked into other databases stored in Omnipath, in
particular in the high confident databases SignorDB [Lo Surdo, 2022], and the Human
Reference Interactome [Drew, 2021]. In addition, in a few pathways, some interactions
are labelled as "indirect" in KEGG database. They involve part of signalling cascades
belonging to other biological pathways, and they are not detailed in the considered
pathway. For example, part of the PI3K-AKT pathway belongs to the Toll-like recep-
tor signalling pathway but is not detailed in this pathway (See KEGG map for Toll-like
receptor signalling pathway). In such cases, in order to build the network based on
complete cascades involving only direct interactions, we added the missing nodes and
interactions.

All the pathways modifications and the corresponding codes used to perform these
modifications are available in the following repository: sysbio-curie/CFnetwork.

Network building and pruning

In the KEGG database, most of the 15 common DEPs display the same overall
topology: some cell-surface receptor proteins activate one or more intra-cellular sig-
nalling cascades that in turn activate downstream transcription factors, thus triggering
corresponding phenotypes. For example, the NF-ŸB pathway leads to the "inflamma-
tion" or "cell survival" phenotypes. However, 2 of the common DEPs, Cytokine-cytokine
receptor interaction and Viral protein interaction with cytokine and cytokine receptor,
are pathways that do not consist in such functional cascades. The Cytokine-cytokine
receptor interaction pathway consists in a list of interactions between extra-cellular
signal molecules and cell-surface receptors (see KEGG database to visualise this path-
way’s topology). These interactions are also part of larger biological pathways that
comprise their corresponding downstream cascades. This means that KEGG pathways
are partially redundant (i.e. small pathways are part of larger pathways), which is also
found in all commonly used pathway databases. In the case of the Cytokine-cytokine
receptor interaction pathway, this DEP is dysregulated in the meta-analysis because
some of the interactions between extracellular molecules and cell surface receptors are
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dysregulated, but not necessarily all of them. For example, interactions between TNF-
– and its receptors, or IL17 and its receptors are dysregulated, but this information
is also present in the DEPs containing the complete corresponding cascades, i.e. the
TNF-– signalling pathway and the IL-17 signalling pathway. The same type of analysis
also holds for the Viral protein interaction with cytokine and cytokine receptor DEP.
Overall, from these 2 DEPs, we only retained the cell-surface receptors that are sources
of downstream dysregulated cascades in our network. Overall, 25 cell surface receptors
without downstream dysregulations in our CF transcriptomic data were removed from
the network.

Finally, we also removed from the pathways all the interactions corresponding to
genes targeted by transcription factors, downstream of the pathways’ cascades, because
these target genes do not define the pathways themselves.

Network building and pruning were performed using the R packages tidyr v.1.2.1,
and dplyr v.1.0.10. Transcription factors were identified using the R packages dorothea
v.1.4.2 and hgnc v.0.1.2, which give access to the Dorothea [Garcia-Alonso, 2019] and
HUGO collections [Seal, 2023], respectively.

Betweenness centrality score

The betweenness centrality (BC) score of node n is defined by
ÿ

i”=j,i”=n,j ”=n

pinj/pij

where pij is the total number of shortest paths between nodes i and j while pinj is the
number of those shortest paths which pass though vertex n.

BC scores were computed using the betweenness function of the R package igraph
v.1.3.4 [Csardi, 2005]. This pacakge was also used for the other network topology
analyses.

Network Visualization and Figure Generation

The networks, generated as dataframes in R, were imported into Cytoscape v.3.9.0
[Shannon, 2003] for visualization. We designed a custom style for nodes and edges,
which is available in the Cytoscape session and also saved as an independent XML
file, available in the sysbio-curie/CFnetwork_cystoscape repository. The hierarchical
layout was used to emphasize the information flow from the source nodes to the sink
nodes.

Barplots were generated using the R package ggplot2 v.3.3.6, and didactic figures
were created using the open-source platform diagrams.net.

Data Availability

The codes and datasets supporting the conclusions of this article are available in
the folowing repository: sysbio-curie/CFnetwork.
The Cytoscape session of the CF network, the TSV files of the nodes and the edges
of the CF network and the XML file of the custom style of the Cytoscape session
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required to reproduce the Cytoscape session are available in the following repository:
sysbio-curie/CFnetwork_cystoscape.

Supplementary Material

Table 1. The 35 sink nodes of the CF network and their corresponding
cellular phenotypes.

HGNC Cellular phenotypes

CASP1 pyroptosis, cell death, inflammation
CASP3 apoptosis
CASP7 apoptosis
CYBA ROS/oxidative stess
CYBB ROS/oxidative stess
DNM1L Necroptosis/Cell Death
GABARAP Autophagy
ACTN4 Regulation of actin polymerisation
ARPC5 Regulation of actin polymerisation
CFL1 Regulation of actin polymerisation
ENAH Regulation of actin polymerisation
GSN Regulation of actin polymerisation
IQGAP1 Regulation of actin polymerisation
MYL12B Regulation of actin polymerisation
PFN Regulation of actin polymerisation
PXN Regulation of actin polymerisation
VCL Regulation of actin polymerisation
CEBPB inflammation
CREB1 cell cycle, apoptosis, inflammation
CREB3 proliferation, migration, differentiation, inflammation
ESR1 Regulation of cell cycle, apoptosis, cell adhesion
ESR2 Regulation of cell cycle, apoptosis, cell adhesion
FOS innflammation, proliferation
IRF1 innate immune response
IRF3 innate immune response
IRF5 innate immune response
IRF7 innate immune response
IRF9 innate immune response
JUN inflammation, proliferation
NFATC1 cellular differentiation, immune response
NFKB1 inflammation, cell survival/proliferation
NFKB2 inflammation, cell survival/proliferation
RELA inflammation, cell survival/proliferation
RELB inflammation, cell survival/proliferation
STAT1 innate immune response

Table 5.3 – The 35 sink nodes of the CF network and their corresponding cellular
phenotypes.

Cellular phenotypes were retrieved from the KEGG database or from the Gene
Cards database when no phenotype was associated with the sink node in any of the
KEGG pathways.

Table 2. The top 30 proteins in the CF network according to their between-
ness centrality score
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HGNC BC score

TRAF2 9541.17
LSP1 7987.59
PYCARD 7845.23
PIK3CA 7710.44
IKBKE 6734.15
TRAF3 6691.04
TRAF6 6365.37
ARHGEF12 6268.20
RAC1 6018.87
MAVS 5527.33
STING1 5000.21
IFI16 4890.92
PAK3 4813.73
TBK1 4456.73
MAP3K7 4345.00
SYK 3622.03
VAV1 3347.09
ZAP70 3309.76
PLCG2 3295.18
TRAF3IP2 3086.74
LCP2 2974.65
CLEC7A 2944.23
RHOA 2830.65
NLRP3 2814.41
AKT3 2784.62
CASP8 2748.34
IKBKG 2723.52
HSP90AA1 2705.86
MAPK1 2657.41
CYLD 2628.59

Table 5.4 – The top 30 proteins in the CF network according to their betweenness
centrality score
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5.3 Discussion of the methodological choices made when
building the CF network

In this paper, we presented building of the CF network, a signalling network
gathering the molecular dysregulations caused by the absence of CFTR. This network
allowed us to propose relevant mechanistic hypotheses with respect to various CF cellu-
lar phenotypes. This work is unique both in the object of study and the methodological
choices in the field of CF research. Indeed, we used a data-driven approach to study
dysregulated signalling pathways of the CF HAEC, without any a priori hypothesis.
It is to our knowledge the first study of this type applied to CF. This network can
be used as a basis to tackle disease heterogeneity and to model other systems such as
other cell types of the respiratory tract or cell types of other organs, to study signalling
dysregulations in other CF mutations.

The adopted methodology is based on three pillars: the omics data, the compu-
tational method, and the prior knowledge database (i.e. biological database). In the
present discussion, I detail each of these components and discuss how the network
could be improved. In addition, I discuss possible approaches to validate candidate
therapeutic targets proposed in the paper.

5.3.1 The omics data

The first criticism could obviously be the use of gene expression data to infer path-
way activities. This assumes a strong correlation between gene expression, protein
abundance, and protein activity. This assumption is clearly limited and remains an
area of investigation [Buccitelli, 2020]. Whole-cell proteomics (or whole-cell phospho-
proteomics) is the type of choice for describing pathway activity [Szalai, 2020], and
integrating them in the analysis would have been ideal. The combined analysis of
paired proteomic and transcriptomic data would have been the most relevant in our
opinion, but this kind of study on the same samples are not yet available in CF studies.

5.3.2 The computational method

As mentioned in the discussion of the article, we believe that adopting a di�erent
method to analyse omics data at the scale of the biological pathways would have led to
a very similar network. Indeed, the pathways identified as dysregulated, using other PB
methods, would have overlapped those we found, potentially only with a few exceptions.

Nonetheless, it is also possible to explore alternative approaches besides PB methods
for extracting dysregulated signalling cascades. These alternatives include network-
based approaches and inference of TF activities. In this section, we explore these two
potential avenues.

Network-based approaches

We used PB approaches rather than network-based approaches to extract dysreg-
ulated protein cascades. These recent network-based approaches, reviewed in 2022
[Garrido-Rodriguez, 2022], appear promising. However, using them to build a network
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with functional interactions would have faced several limitations in the context of the
present project.

First, when we started this project in 2019, very few studies had applied network-
based methods to study biological systems of diseases, conversely to PB methods. In
addition, there was a lack of benchmarks to compare and validate these methods, and
this limitation is still valid today [Garrido-Rodriguez, 2022].

Besides this pragmatic reason, it is important to highlight that these methods rely
on the choice of Prior Knowledge Network (PKN) as input in the algorithm, while PB
approaches rely on prior knowledge of biological pathways. As presented in chapter 2,
biological databases store signed interactions in two di�erent ways: resources such as
SIGNOR [Lo Surdo, 2022] or STRING [Szklarczyk, 2019] store interactions, whereas
KEGG [Kanehisa, 2012] or REACTOME [Gillespie, 2022] store biological pathways
maps as separate graphs, in which interactions are directed and signed. Adopting a
network-based approach to extract a CF network of signalling dysregulations would
first require to combine these resources into a single and large signalling network that
is used as the PKN input. However, the information gathered in pathway databases
arise from studies undertaken in di�erent biological contexts, so that the resulting
merged PKN would not correspond to a consistent biological system. This limitation
also applies to the method chosen in the article, as we have also combined di�erent
pathways from di�erent pathway graphs. Nevertheless, in our case, it is mitigated by
the fact that we combine far fewer pathways (fifteen compared to hundreds), so that we
can supervise beforehand which pathways are relevant to our study. As an example, we
excluded disease pathways from the KEGG database, because they did not correspond
to pathways that are relevant to the building of a the CF signalling network.

MOGAMUN

We investigated this type of approaches with the MOGAMUN algorithm, which
stands for A Multi-Objective Genetic Algorithm to find active modules in MUltiplex bi-
ological Networks [Novoa-del-Toro, 2021]. Multiplex networks are networks composed
of di�erent layers, where each node is present in the di�erent layers and each layer
describes all the edges of a specific type, such as physical interactions, functional in-
teraction or co-expression [Battiston, 2014]. MOGAMUN identifies subnetworks of
interest by optimizing a score based both on the density of interactions and on a score
of the nodes (e.g. the genes t-test in their di�erential expression). The output of the
algorithm is a list of subnetworks with the highest scores.

We applied MOGAMUN on three transcriptomic datasets considered in the meta-
analysis [Clarke, 2013; Ogilvie, 2011; Zoso, 2019]. We tested the algorithm with a single
layer of PKN, using the PPI network of the reference article. This PPI network was
established by merging interactions from various databases from the PSICQUIC portal
[del-Toro, 2013], and from the Center for Cancer Systems Biology (CCSB) Interactome
database [Rolland, 2014]. The resulting PPI network comprises 12621 nodes and 66971
interactions. For the dataset from Ogilvie et al. [Ogilvie, 2011], we obtained 17 subnet-
works comprising 110 unique proteins, for the dataset from Clarke et al. [Clarke, 2013],
we obtained 20 subnetworks comprising 110 unique proteins and for the dataset from
Zoso et al. [Zoso, 2019], we obtained 21 subnetworks comprising 107 unique proteins.
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For each study, we merged all the subnetworks into a single network, and compared
the three resulting networks: they shared 25 proteins, i.e. almost the fifth of the size
of each subnetwork. Some of these proteins, such as JUN, ESR1, EP300, MDM2,
UBE21, STAT3 also belong to our CF network based on the PB approach, and are
consistent with CF pathophysiology. Among the 25 proteins, 11 proteins belong to the
Keratin Associated Protein Family (Gene code beginning with KRTAP), which may
be explained by the fact that some keratin proteins control the surface expression of
CFTR, such as the Keratin 18 (K18) protein [Stanke, 2011]. However, the enrichment
of this family may be a statistical artefact and may be caused by the density of the
interactions of these proteins in the PPI network.

Now that the meta-analysis with PB methods is completed, I plan on re-running
MOGAMUN, but also trying other network-based approaches, such as CARNIVAL
[Liu, 2019] or CausalR [Bradley, 2017], on the 10 datasets of the meta-analysis, and
compare the networks obtained with each approach.

Inference of TF activity

Using the same omics data, other types of information about CF molecular dys-
regulations could have also been extracted. For instance, we could have retrieved a
list of over-activated or under-activated transcription factors (TF) in CF HAEC cells.
The principle is the same as to retrieve dysregulated biological pathways: we need a
database of TFs and their targets (also called regulon), and a computational method
called in this case footprint method (See chapter 2 for the distinction between pathway-
based methods and footprint-based methods). Expression levels of TF regulons can be
viewed as footprints of TF activity [Szalai, 2020].

We explored this direction applying fgsea [Korotkevich, 2021] with the DoroThea
database [Garcia-Alonso, 2019] on the 10 transcriptomic datasets (see Table 5.1). The
heatmap of GSEA Normalized Enrichment Scores (NES) for each dataset of the TF
significantly dysregulated in at least 3 studies is presented in Figure 5.9. Most of the
significantly over-activated TF in at least 3 studies belong to the CF network: HIF1A,
IRF2, IRF9, JUN, NFKB1, RELA, SP1, SPI1 and STAT1.

In principle, we could have then subtracted from the network the signalling cascades
upstream to the TFs that are not found over-activated (or under-activated). I decided
not to include these steps to the construction of the network, because I would have
liked to try other algorithms, such as viper [Alvarez, 2016], specially developed for the
inference of TF activity, as well as other databases, such as the new one CollecTRI
meta-resource [Müller-Dott, 2023] which outperforms all the other public collections of
regulatory interactions. I would consider these steps as a way to refine the network.
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Figure 5.9 – Heatmap of TF activity scores for each dataset.

5.3.3 The prior knowledge database

PB approaches on other pathway databases

Results of analyses of transcriptomics studies are much more sensitive to the ref-
erence pathway database used rather than to the computational method applied to
extract di�erentially expressed pathway [Garcia-Alonso, 2019]. In this project, we also
apply fGSEA algorithm with three other pathway databases: the Molecular Signatures
Database (MSigDB) Hallmark gene set collection [Liberzon, 2015], the PID (Path-
way Interaction Database) [Schaefer, 2009] and the Ingenuity Pathway (IPA) database.
Overall, we tested 831 gene sets from these databases, and 16 gene sets were found sig-
nificantly over-expressed, among which many overlap with the results obtained with the
KEGG database (e.g. the PID AP-1 Pathway, the Hallmark Inflammatory Response,
the Hallmark IL6 JAK STAT6, the Hallmark Interferron Gamma Response and the
Hallmark TNF – via NFŸB pathway). The heatmap of the GSEA Normalized Enrich-
ment Scores (NES) of the pathways significantly dysregulated in at least 3 studies for
each dataset is presented in Figure 5.10.
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Figure 5.10 – Heatmap of the di�erentially expressed pathways (DEP) for 3 gene set
databases and for each dataset.
A green tile indicates an over-expressed pathway in the study and a red tile indicates

an under-expressed pathway in the study.

These results show that the molecular mechanisms identified as dysregulated do
not actually depend on the prior knowledge database. Nonetheless, the choice of the
database is crucial to the methodology, as it is used for biological interpretation of the
results. The aim of the project is to connect CFTR to the CF cellular phenotypes
via functional interactions, and model the molecular dysregulations at the scale of
the signalling cascades. KEGG pathway maps detail molecular interactions implicated
in various signalling pathways and are a good resource for interpreting our data. In
contrast, the three databases mentioned above (the MsigDB, the PID and the IPA
databases) define pathways as gene signatures, but the information about how these
genes are connected and cooperate in the pathway is not provided.

Additional interactions between proteins of different pathway graphs

We used KEGG to retrieve the dysregulated pathways, and merge them to have one
single network. However, some proteins of the network may also interact by functional
interactions but would not appear because of the content of KEGG pathway maps. It
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would therefore be interesting to explore functional databases, such as Signor database
[Lo Surdo, 2022], to search for all possible additional interactions between the proteins
of the network. A method has recently been developed in Curie’s systems biology group
to extract functional interactions from a list of proteins. It could be used to search for
additional interactions of the CF network proteins.

CFTR interactome databases

In this study, the use of prior knowledge was also essential to connect CFTR to
the molecular dysregulations. We used the CyFi-MAP, a disease map repository com-
prising proteins interacting with CFTR during all its life cycle [Pereira, 2021]. CFTR
interactors are included in the disease map if they are confirmed in a minimum of
two published references that considered airway epithelial cells, and if the interactions
between the components are physical.

However, CFTR interactors may not still be all elucidated. Datasets from HT
technologies depicting protein interactomes (also called interactomics) can also be very
useful in this case. For instance, a very recent study focusing on CFTR and rescued
F508del-CFTR interactomes at the PM [Matos, 2019] could be used to search for po-
tential newly detected CFTR interactors that could bridge CFTR and the dysregulated
pathways, o�ering new routes for the propagation of dysregulations.

The technologies of these experimental approaches are evolving fast. Recently, new
approaches have been developed based on the proximity tagging of protein partners
or nearby proteins and their subsequent identification by mass spectrometry. During
my PhD, I took part in the statistical analyses for a study exploring two proximity
labeling techniques for WT-CFTR and two CFTR mutants (G551D and W1282X).
The study identified additional CFTR protein partners, which do not appear in the
CyFi-MAP. These partners were identified in kidney cell lines (HEK293). We wanted
a consistent model focusing on HAEC so we decided not to include them. The research
paper, published in International Journal of Molecular Sciences (IJMS) is presented in
appendix B.

5.3.4 Potential therapeutic targets?

Finally, an important contribution of this work is the proposal of candidate thera-
peutic targets, in particular SYK, PLCB1/3 and PIK3CA. Although only experimental
approaches could validate or invalidate these candidates, while waiting for such exper-
iments, an interesting question is how computational methods could further evaluate
these candidates.

First, one could simulate the dynamic behavior of the network upon inhibition of
these candidates using logic modelling. Such approach would be possible with MaBoSS,
a software developed by the systems biology group of Institut Curie [Stoll, 2017]. The
simulation with MaBoSS enables to show how biological information flows through the
network towards the output nodes that trigger the phenotypes. It is possible to simulate
the pharmacologic inhibition of a candidate therapeutic target by maintaining its value
at 0 over the whole simulations, and explore how this in silico intervention modulates
the flow of information through the network, possibly moderating some of the cellular
phenotypes.
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The actual network of dysregulations is too big for logic modelling (330 proteins
and 529 interactions), but this could be performed on a subnetwork centred on a subset
of cellular phenotypes. For instance, studying the link between the phenotypes related
to cytoskeleton, such as focal adhesion or actin polymerisation, and the phenotype
of inflammation, would be of particular interest as there is increasing evidence of the
entanglement of these signalling pathways [Di Pietro, 2017; Ding, 2022; Papa, 2021].

Finally, these candidates should be validated experimentally by conducting in vitro
and in vivo experiments of inhibition/activation of these proteins. As mentioned in the
discussion of the article, we could monitor the evolution of the cellular phenotypes after
these perturbations by checking the activity of the corresponding network sink nodes.
This would require to identify relevant experimental readouts that could be followed
upon inhibition of the candidate targets.
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Abstract

This chapter provides a short introduction to in silico approaches to target identifi-
cation, and especially to machine-learning (ML) chemogenomics approaches. The aim
of this chapter is not to present exhaustively all the current methods and algorithms
to predict drug target interactions. It is rather to define the vocabulary and the tools
to the non familiar reader, and to set the stage to the third contribution of this thesis
presented in the next chapter.

Résumé

Ce chapitre présente brièvement les approches in silico de l’identification des cibles,
et en particulier les approches de chémogénomiques basées sur l’apprentissage automa-
tique. L’objectif de ce chapitre n’est pas de présenter de manière exhaustive toutes les
méthodes et tous les algorithmes actuels pour prédire les interactions molécules-cibles
mais de définir le vocabulaire et les outils pour le lecteur non familier afin de préparer le
terrain pour la troisième contribution de cette thèse présentée dans le chapitre suivant.
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6.1 Purpose

We presented in the first part of this thesis a systems biology approach to study
CF. This approach allowed a better understanding of the molecular dysregulations of
CF and enabled the identification of proteins which inhibition could potentially reverse
some CF cellular phenotypes.

Another original way to explore CF molecular dysregulations is to understand the
MoA of CFTR modulators. These molecules seem very e�cient, improving the lung
function and quality of life for the majority of the CF patients. Particularly, the the
new combination that includes elexacaftor appears to o�er the greatest benefits to pa-
tients. These molecules discovered based on phenotypic screens aiming at improving
the processing, maturation and function of mutated CFTR. However the heterogeneity
of patients’ response and the evolution of some biomarkers indicate that they could
involve o�-target proteins (see chapter 1 for a more detailed description). Understand-
ing the MoA of CFTR modulators is necessary to better understand the heterogeneity
in patients’ response, or suggest other therapeutic strategies. More precisely, identi-
fication of potential o�-targets could point at key biological pathways involved in the
disease and modulated by these treatments, and could help to better understand CF
molecular basis. Some ligands or even drugs might have been specifically designed for
these unknown o�-targets, and might be more e�cient for these o�-targets than CFTR
modulators because they have not been optimised for this purpose. This could suggest
new therapeutic solutions in CF, on their own or in synergy with other drugs, such
as the CFTR modulators. Besides, the identification of o�-targets could also highlight
proteins which are not dysregulated due to the disease, but whose modulation by CFTR
modulators could lead to adverse drug reaction (ADR), also called side-e�ects. The
quality of life of patients can then be further improved by finding molecules that do
not target these proteins.

Understand the MoA of the CFTR modulators boils down to the search for "un-
expected" o�-target proteins for the four CFTR modulators, i.e. targets that are not
CFTR. We do not make any assumption about the potential o�-targets that will be
searched at the scale of the entire "druggable" proteome, i.e. the proteins against which
at least one drug is known.

We searched for CFTR modulators o�-targets with computational approaches, be-
cause identification of drug targets at the druggable proteome level is not feasible based
on experiments alone. The idea was to search for the most probable targets based on
computational methods, in order to reduce the number of experiments to be performed
by focusing on a limited number of high-probability protein targets. These methods
use Drug Target Interaction (DTI) databases or/and physico-chemical properties to
predict new DTIs.

In this chapter 6, we will give a short introduction to in silico approaches to target
identification. We will focus on machine-learning (ML) chemogenomics approaches,
that we applied to predict o�-targets for CFTR modulators. The aim of this chapter
is not to present exhaustively all the current methods and algorithms to predict DTI.
It is rather to define the vocabulary and the tools to the non familiar reader, and to
set the stage to the third contribution of this thesis presented in the next chapter.

106



6.2. In silico approaches to DTI prediction

One can see this as prerequisites to understand a short, well-defined chemogenomic
machine-learning (ML) problem.

6.2 In silico approaches to DTI prediction

6.2.1 Drug-Target Interaction (DTI)

The problem of target identification can be addressed computationally in the form
of the prediction of Drug-Target Interaction (DTI) for the drug of interest, and for all
the proteins in the space of the human proteome. Proteins are then ranked according to
their binding probability scores, and the top ranked proteins are considered as potential
targets.

By DTI, we mean direct binding between a small molecule and a protein whose
3D structure presents a pocket into which the molecule can bind. The binding trigger
a modulation of the protein activity: an inhibition or an activation. In the general
case, the small molecule is called a ligand.

6.2.2 Various approaches

There are three main categories of approaches for predicting DTIs:

— Ligand-based methods, such as Quantitative Structure Activity Relationship (QSAR),
create a model to predict if a molecule will bind to a given target, based on the
binding a�nities of known ligands for this target. They are e�cient for the pre-
diction of new ligands for a given protein. However, for the reverse problem of
predicting all targets for a given molecule, using QSAR would require training a
model for each protein. This is out of reach at the proteome level, because many
proteins have only few, or even no, known ligand to train such predictor.

— Docking is a molecular modeling technique that predicts the binding a�nity be-
tween a molecule and a protein by estimating their interaction energy. Docking
methods rely on the 3D structures of proteins, which restricts their application
for large-scale predictions, because many proteins have unknown 3D structures.

— Chemogenomic approaches are mathematical and computational frameworks that
are suitable to predict DTI at large scales both in the protein and in chemical
spaces. These approaches are based on the assumption that the prediction of a
given DTI may benefit from all interactions known between other proteins and
other molecules, even if they do not involve the protein or the molecule under
study. This is in contrast to ligand-based methods which predict whether a
protein p interacts with a molecule m, based on all ligands known for protein p.
They can be viewed as an attempt to fill a binary interaction matrix where rows
are molecules and columns are proteins, partially filled with known protein-ligand
interactions. (Read [Playe, 2018] for a review of the three approaches).

Chemogenomic algorithms are the most appropriate for predicting DTI on a large
scale. They seem best suited to our problem since we are looking for CFTR modulators
o�-targets in the entire proteome space.
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6.2.3 Regression or classification problem

Depending on the models, DTI prediction can be formulated in two ways: one
can predict the strength of the interaction, which would correspond to a regression
problem, or just distinguish the pairs of molecules and proteins that bind from those
that do not. It is then formulated as a classification problem.

The first problem requires the measurement of a�nities of pairs or the 3D struc-
tures of the two partners, in order to measure quantitatively the interaction energies.
Binding a�nities are accessible for a few families of proteins, but not for all of them,
which prevents us from formulating DTI prediction as a regression problem on a large
scale. Therefore, we will consider DTI prediction as a classification problem in the next
chapters.

6.2.4 Rule-based vs supervised ML algorithms

Regardless of the algorithm, we can summarize the prediction of DTI as to predict
whether a pair of a molecule m and a protein p, interacts or not. The input is the pair,
referred to as (molecule m, protein p) or (m, p), and the output a Boolean value: True,
or 1, if the pair (m, p) interacts, and False, or 0, if the pair (m, p) does not interact.
Finally, we have an algorithm, also called classifier, that takes the pair as input and
provides the prediction as output.

These classifiers can be categorised into two broad classes: rule-based algorithms
and supervised machine-learning (ML) algorithms.

Rule-based algorithms make decisions based on a set of predefined knowledge
and rules, trying to resemble the decisions made by a human expert in the field. This is
typically the case for QSAR methods, which define rules based on the physico-chemical
and/or structural properties of the protein and molecule. This is also the case for
docking approaches, whose prediction is based on calculating the binding energy from
the 3D structures of the protein and the molecule.

Conversely, supervised ML algorithms do not know the rules underlying decision
making. The algorithms learn mathematical models from available data, i.e. from
known interactions in our case, to separate pairs that interact and from pairs that do
not. Known interactions are generally compiled in DTI databases, like the PubChem
database at NCBI [Bolton, 2008] or chEMBL [Gaulton, 2012].

Finally, the classifier is used to predict interactions on unknown data.
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Figure 6.1 – Rule-based vs supervised ML algorithms in DTI prediction.

Knowing the interaction rules for all possible pairs (molecule m, protein p) is no
easy task. ML algorithms enable large-scale predictions by overcoming this limitation.

6.3 Brief formalisation of DTI prediction

Let us briefly formalise the problem of DTI prediction using a ML algorithm.
The known (m, p) interactions represent the samples of study from which the al-

gorithm will learn. This requires an encoding of the (m, p) pairs based on molecular
and protein characteristics, which are called features (or descriptors). We can de-
scribe the pairs based on features that describe the molecules on the one side and on
the proteins on the other side, and concatenate these features into one single vector
describing the pairs.

This corresponds to a matrix X ∈ R
n◊p describing n interactions xi = (m, p) in

the form of p features. Thus, Xij = xi
j corresponds to the j-th feature of the i-th

interaction. For each interaction xi, we also know the label yi, i.e. the value to be
predicted. As we consider a classification problem, all the labels {y1, y2, ..., yn} belong
to {0, 1}: 1 if the corresponding pair interacts, and 0 otherwise. Finally, the set of
interactions and their associated labels D =

)!

x̨i, yi
"*

i=1,...,n
forms the training set.

The goal of supervised learning is to find a function f̂ such that f̂(x̨) ≈ y, not only
for the n observed interactions in the training set, but more generally for all possible
pairs (m, p). Let’s assume there exists a function f that assigns the labels to every
interaction (m, p). The aim of the learning algorithm is to approximate the unknown
function f with f̂ , referred to as the predictive model. The learning algorithm uses
the training set D to determine (or "learn") f̂ , which is why it is also called supervised
learning. Training the prediction model is therefore akin to an optimisation problem.

Once the predictive model is learned, i.e. once the function f̂ is found such that the
predictions f̂(x) are closest to the labels y, the prediction of a new interaction ˛xnew is
done by evaluating f( ˛xnew), in the same way as a "rule-based" algorithm.

It’s important to note that in our case, the predictive model f̂ does not directly
outputs values in 0, 1. Instead, it assigns an output in the interval of [0, 1], representing
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the probability of binding between the molecule and the protein. The higher the prob-
ability, the more likely the interaction exists. To determine whether the interaction is
predicted positive, we need to set a threshold value, typically 0.5. If the probability
score is above this threshold, the prediction is considered positive, if less, it is considered
negative.

6.4 Chemogenomic ML algorithms

Various chemogenomics ML methods have been proposed in the last decade. They
di�er mainly by :

— the features used to encode the pairs of molecules and proteins.

— the learning algorithm used to learn the predictive model.

The methods can be categorized into two broad classes depending on the input data
of the learning algorithm: the feature-based approaches and the similarity-based
approaches.

In feature-based methods, samples (i.e. pairs of (molecule m, protein p)) are rep-
resented as feature vectors. The features reflect non exhaustively various types of
physio-chemical, structural, topological or geometrical properties. Molecules are gen-
erally described with fingerprint vectors that encode the presence and absence of struc-
tural properties and proteins by their sequences or their physical or chemical properties
[Playe, 2019]. The learning algorithm learns on these vectors of features to find the
predictive model. For these approaches, one can use as learning algorithm, a Ran-
dom Forest (RF) algorithm or a Feed-Forward Neural Network (FNN) algorithm,
among others.

Similarity-based methods consider the similarity between samples as input data
for the learning algorithm. They rely on the assumption that similar molecules, re-
garding structure, topology or physical properties etc., have similar functions and bio-
activities and, therefore, have similar targets and vice-versa [Playe, 2019]. In fact, the
similarities between pairs are calculated on the features calculated for each pair. There
is therefore an additional step compared to feature-based methods: the matrix Xij of
features of all pairs is transformed into a similarity matrix S between each pair xi using
a predefined similarity measure. The learning model then learns to find a hyperplane
that separates interacting pairs from non-interacting pairs in the pairwise similarity
space. In this case, the learning algorithm are often Multi-task Support Vector
Machine (SVM) or Matrix Factorization algorithms.

6.5 Performance criteria

The last step before using a classifier, learned using a learning algorithm, on new
unknown data, is to evaluate the performance of this classifier. This evaluation is gen-
erally carried out on a test set Dte =

Ó1

x̨te
i, yi

te

2Ô

i=1,...,m
, never seen by the classifier,

i.e. a group of interactions x which have not been used to build the classifier and whose
labels are known.
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Once the predictions have been made for all the pairs of the test set x̨i
te, the pre-

dictions f̂(x̨i
te) are compared to their labels yi

te. In the case of a binary classifier, as in
our case, a prediction is classified into 4 categories:

— True Positive (TP): predicted as a positive example when the actual label is
indeed positive.

— False Positive (FP): predicted as a positive example when the actual label is
indeed negative.

— True Negative (TN): predicted as a negative example when the actual label is
indeed negative.

— False Negative (FN): predicted as a negative example when the actual label is
indeed positive.

Performance scores are generally computed based on the number of TPs, FPs, TNs
and FNs for the test set. But it is important to choose the score to optimise that is
the most appropriate to the project, in order to select the best model.

If we return to our initial problem of target identification, our aim is to find new
possible interactions, i.e. to predict new positive interactions. We are not interested
in predicting negative interactions. In addition, the aim of in silico DTI prediction is
to reduce the number of experimental tests to conduct. Therefore, we want to have as
few false positives as possible among the top predictions.

In the article presented in the next chapter, we show that the scores generally used
to evaluate the performance of ML algorithms in chemogenomics, such as the AUC-
ROC or the AUPR, do not reflect the fact that there can be many false positives among
the top predictions, due to the biases in DTI databases. We therefore propose to look
at another score, the False Positive Rate (FPR), representing the fraction of negative
among predicted positives. We show that this score is more adapted to the problem of
target identification.
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Abstract

Identification of the protein targets of hit molecules is essential in the drug dis-
covery process. Target prediction with machine learning algorithms can help accelerate
this search, limiting the number of required experiments. However, Drug-Target Inter-
actions databases used for training present high statistical bias, leading to a high number
of false positives, thus increasing time and cost of experimental validation campaigns.
To minimize the number of false positives among predicted targets, we propose a new
scheme for choosing negative examples, so that each protein and each drug appears an
equal number of times in positive and negative examples. We artificially reproduce the
process of target identification for three specific drugs, and more globally for 200 ap-
proved drugs. For the detailed three drug examples, and for the larger set of 200 drugs,
training with the proposed scheme for the choice of negative examples improved target
prediction results: The average number of false positives among the top ranked predicted
targets decreased and overall, the rank of the true targets was improved. Our method
corrects databases’ statistical bias and reduces the number of false positive predictions,
and therefore the number of useless experiments potentially undertaken.

Résumé

L’identification des cibles protéiques des molécules à succès est essentielle dans le
processus de découverte de médicaments. La prédiction des cibles à l’aide d’algorithmes
d’apprentissage automatique peut contribuer à accélérer cette recherche, en limitant le
nombre d’expériences nécessaires. Cependant, les bases de données d’interactions entre
médicaments et cibles utilisées pour l’apprentissage présentent un biais statistique im-
portant, ce qui conduit à un nombre élevé de faux positifs, augmentant ainsi le temps
et le coût des campagnes de validation expérimentale. Afin de minimiser le nombre de
faux positifs parmi les cibles prédites, nous proposons un nouveau schéma de sélection
des exemples négatifs, de sorte que chaque protéine et chaque médicament apparaissent
un nombre égal de fois dans les exemples positifs et négatifs. Nous reproduisons artifi-
ciellement le processus d’identification des cibles pour trois médicaments spécifiques, et
plus globalement pour 200 médicaments approuvés. Pour les trois exemples détaillés de
médicaments, et pour l’ensemble plus large de 200 médicaments, l’entraînement avec le
schéma proposé pour le choix des exemples négatifs a amélioré les résultats de la pré-
diction des cibles : Le nombre moyen de faux positifs parmi les cibles prédites les mieux
classées a diminué et, dans l’ensemble, le classement des vraies cibles a été amélioré.
Notre méthode corrige les biais statistiques des bases de données et réduit le nombre de
prédictions faussement positives, et donc le nombre d’expériences inutiles potentielle-
ment entreprises.
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7.1 Preface

The aim of this second part of the project is to predict the "unexpected" o�-targets of
CFTR modulators from DTI databases. This problem can be formulated as a classifica-
tion problem in which for each modulator, all (m, p) pairs are predicted as "interacting"
or "not interacting". To solve this problem, we used a chemogenomics ML algorithm
developed in the CBIO team.

For most chemogenomics methods, both positive examples of (m, p) pairs known
to interact and negative examples of (m, p) known not to interact are required in the
training set. However DTI databases store only positive examples and do not record
negative ones. Training a chemogenomics algorithm is then considered as a Positive-
Unlabelled (PU) learning problem. Nevertheless, molecules are expected to interact
with a restricted number of proteins compared to the overall protein diversity. Thus,
the majority of unknown interactions are usually considered as negative examples. In
this context, it is then classical to randomly sample negative examples among the un-
known interactions [Playe, 2018] to recover a balanced Positive-Negative (PN) learning
problem. This strategy assumes that the ratio of "interacting" to "non-interacting"
(m, p) pairs is so low that random selection would yield a high quality set of negative
examples, that is to say, very few negative examples used for training would in fact be
unknown positive ones.

Unfortunately, just like pathway databases discussed in the first part of this thesis,
DTI databases present high bias towards a few proteins that have been more extensively
studied than others. A small number of proteins have a large number of known ligands,
while the majority of proteins have very few, if any, known interactions. This bias is
undoubtedly due to drug discovery studies, which have focused on certain diseases
rather than others, and on certain mechanisms rather than others. With a random
sampling of negative interactions, we observed that all the top ranked predictions were
enriched in "frequent hitters", i.e. proteins for which the highest number of ligands
were recorded in the training dataset. The good ranking of these frequent hitters is
due to the database bias, so that the top of the ranking is enriched with false positive
predictions. There is thus a need to develop new training schemes that take database
bias into account, in order to reduce the number of frequent hitters among the top
predictions, thus reducing the number of false positives.

In this chapter we investigate how to best choose negative examples to minimize the
number of false positives in DTI predictions. This work was made in collaboration with
Chloé-Agathe Azencott, Benoit Playe and Véronique Stoven. Our research resulted in
a publication in the International Journal of Molecular Sciences in June 2021. In the
following section, the article is reproduced as published in the scientific journal.

Finally, in the last section of this chapter, we apply the chemogenomic algorithm
with the newly developed negative examples selection scheme to predict the o�-targets
of the CFTR modulators. We also discuss the predictions with respect to the CF
network, and to the CF scientific literature.
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7.2 Drug target identification with Machine Learning: How
to choose negative examples.

7.2.1 Introduction

Drug discovery often relies on the identification of a therapeutic target, usually a
protein playing a role in a disease. Then, small molecular drugs that interact with
the protein target to alter disease development are designed or searched for among
large molecular databases. However, there has been a renewed interest in recent years
for phenotypic drug discovery, which does not rely on prior knowledge of the target.
In particular, the pharmaceutical industry has invested more e�orts in poorly under-
stood rare diseases, and for which therapeutic targets have not been discovered yet.
While phenotypic drug discovery has made possible the identification of a few first-in
class drugs [Swinney, 2011], once a phenotypic hit is identified, not knowing its mech-
anism of action is a strong limitation to fill the gap between the hit and a drug that
can reach the market [Mo�at, 2017]. More fundamentally, the target points at key
biological pathways involved in the disease, helping to better understand its molecular
basis.

Our work aims at helping determination of the protein targets for hit molecules
discovered in phenotypic screens. Identification of a drug target based solely on ex-
periments is out of reach because it would require to design biological assays for all
possible proteins. In that context, in silico approaches can reduce number of experi-
mental tests by focusing on a limited number of high probable protein targets. Among
them, Quantitative Structure-Activity Relationship (QSAR) methods were developed
for that purpose [Martinez-Lopez, 2017]. They are e�cient methods for the inverse
problem of finding new molecules against a given target, when ligands are already
known for this target. However, using them to identify the targets of a given molecule
would require training a model for each protein across the protein space, which is not
possible because many proteins have only few, or even no, known ligand.

Docking approaches can address this question [Xu, 2018], but they are restricted to
proteins with known 3D structures, which is far from covering the human proteome.

In the present paper, we tackle target identification in the form of Drug-Target
Interaction (DTI) prediction based on machine learning (ML) chemogenomic algo-
rithms [Vert, 2008]. These approaches can be viewed as an attempt to complete a ma-
trix of binary interactions relating molecules to proteins (1 if the protein and molecule
interact, 0 otherwise). This matrix is partially filled with known interactions reported
in the literature and gathered in large databases such as the PubChem database at
NCBI [Bolton, 2008]. They can be used to train ML chemogenomic algorithms by
formulating the problem of DTIs prediction as a binary classification task, where the
goal is predict the probability for pairs (m, p) of molecules and proteins to interact.
They can be used both to predict drugs against protein targets, or protein targets for
a drug, the latter being relevant to our topic.

Various ML algorithms have been proposed for DTI predictions. They include
similarity-based (or kernel-based) methods such as kernel ridge linear regression, Sup-
port Vector Machines (SVM) [Jacob, 2008], or Neighborhood Regularized Logistic
Matrix Factorization (NRLMF) that decompose the interaction matrix into the prod-
uct of two matrices of lower ranks that operate in two latent spaces of proteins and
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molecules [Liu, 2016]. Other ML algorithms are featured-based, which means that
they rely on explicit descriptors for molecules and proteins, such as Random Forests
(RF) [Svetnik, 2003], or Sparse Canonical Correspondence Analysis (SCCA) [Yaman-
ishi, 2011]. Their prediction performances are usually very high when the training data
are not too far from the (m, p) pairs in the test set [Playe, 2018]. Deep learning ap-
proaches relying on protein and molecule descriptors have also been proposed, but their
prediction performances outperforms those of shallow learning methods only when the
training data are very abundant, or when various heterogeneous sources of information
are used in the context of transfer learning [Playe, 2020].

However, whatever the algorithm used, training a good ML chemogenomic model
is hindered by biases in the DTI databases, such as whether the molecule for which one
wishes to make predictions has known interactions or not [Pahikkala, 2015]. An ad-
ditional issue arises when the databases only contain positive examples of (m, p) pairs
known to interact, but no negative examples of (m, p) known not to interact. In this
context, it is classical to assume that most unlabeled interactions are negatives, and to
randomly sample negative examples among them [Playe, 2018]. In this work, we ex-
plore how to best choose negative examples to correct the statistical bias of databases,
and reduce the number of false positive predictions, which is essential to reduce the
number of biological experiments required for validation of the true protein targets.
While the goal of the present paper was not to compare the prediction performances of
various ML algorithms, we first compared the performances of two algorithms, namely
SVM and RF, on the DrugBank dataset considered in the present study. We found
that overall, SVM displayed the best results, and therefore, this algorithm was further
kept to study how to correct learning bias.

7.2.2 Materials and Methods

Datasets

ML algorithms for DTI predictions need to be trained on datasets of known DTIs
in which proteins and molecules are similar to those for which predictions will be per-
formed. Hit molecules in phenotypic screens for drug discovery are mostly drug-like
molecules [Lipinski, 2001], and proteins will be human proteins. We used the DrugBank
database (version 5.1.5) [Law, 2014] to build our training dataset, because although
much smaller than other databases like PubChem or ChEMBL, it provides high qual-
ity bio-activity information regarding approved and experimental drugs, including their
targets, and contains around 17,000 curated Drug-Target Interactions (DTIs). There-
fore, we built a dataset called DB-Database hereafter, that comprises all (m, p) DTIs
reported in DrugBank involving a human protein and a small molecular drug. Over-
all, the DB-Database comprises 14,637 interactions between 2670 human proteins and
5070 drug-like molecules, which make up our positive DTIs. Because training a ML
algorithm also requires negative examples, we added an equal number of negative DTIs
to the DB-Database following two strategies:

— Random sampling: Negative examples were randomly chosen among the pairs
(m, p) that are not labeled as a DTI but such that both m and p are in the
DB-Database, under the assumption that most of the unlabeled interactions are
expected to be negative. This process was repeated 5 times, leading to 5 training
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datasets called RN-datasets (for Random Negatives-datasets) hereafter, di�ering
only by their negative examples.

— Balanced sampling: To avoid biasing our algorithms towards proteins with many
interactions, negative examples were randomly chosen among unlabeled DTIs, al-
though in such a way that each protein and each drug appeared an equal number
of times in positive and negative interactions. This process was also repeated 5
times, leading to 5 training datasets again di�ering only by their negative ex-
amples called hereafter BN-datasets (for Balanced Negatives-datasets). Building
this set of negative DTIs is not trivial, and we propose the following algorithm:

1. Each protein and molecule in the DB-Database has a counter corresponding
initially to its number of known ligands or targets, respectively;

2. For each protein, starting from those with the highest counter to those with
a counter equal to 1, molecules are randomly chosen among those not known
to interact with this protein and whose counter is greater or equal to 1;

3. Each time a negative DTI is chosen, the counter of the corresponding protein
and of the molecule is decreased by one unit;

4. The process is repeated until all proteins and molecules counters are equal
to 0.

Overall, the RN-datasets and the BN-datasets share the same set of positive DTIs,
which are those in the DB-Database, and their total number of negative DTIs are the
same and equal to that of positive DTIs. The construction of one RN-dataset (or one
BN-dataset) is summarized in Figure 7.1.

Figure 7.1 – Method for building one RN-dataset (or one BN-dataset).

Finally, to compare the performance of the algorithm trained on the RN-datasets
or the BN-datasets when predicting targets for “di�cult” molecules (hit molecules
will generally be “di�cult” molecules, in the sense that they will have no or few known
targets), we considered a small dataset of DTIs involving 200 drugs that have few known
targets. We built this dataset as follows: from the 5070 molecules in the DB-Database,
we kept approved drugs that do not have more than 4 targets. This leads to 560 drugs
involved in 851 interactions, among which we randomly selected 200 of these positive
DTIs, involving 200 di�erent drugs, defining the so-called 200-positive-dataset. 200
negative DTIs were also randomly chosen among all unlabeled DTIs involving theses
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drugs and not belonging to the training RN- or BN-datasets, defining the so-called
200-negative-dataset.

All datasets are provided in the github repository mentioned under “Data Avail-
ability Statement”.

Machine Learning Algorithms

Throughout the paper, the main algorithm we use to address target identification
through a chemogenomics approach for DTI prediction is based on the Support Vec-
tor Machines (SVM) ML algorithm [Cortes, 1995]. Briefly, the SVM is trained on a
dataset of known DTIs and learns the optimal hyperplane that separates the (m, p)
pairs that interact from those that do not. While SVM can use vector representations
of the data (i.e., descriptors for proteins and molecules), thanks to the so-called “kernel
trick” [Schölkopf, 2004], they can also find this hyperplane based on particular similar-
ity measures between (m, p) pairs of training dataset, and called kernel functions K,
without requiring explicit representation of the data.

A general method to build a kernel on (m, p) pairs is to use the Kronecker product
of molecule and protein kernels [Erhan, 2006]. Given a molecule kernel Kmolecule and
a protein kernel Kprotein, the Kronecker kernel Kpair is defined by:

Kpair((m, p), (mÕ, pÕ)) = Kmolecule(m, mÕ) × Kprotein(p, pÕ) (7.1)

For proteins, we used a centred and normalized Local Alignment kernel (LAker-
nel), which mimics the Smith–Waterman alignment score between two proteins [Smith,
1981]. For the molecules, we used a centred and Tanimoto kernel, that uses molecu-
lar descriptors based on the number of fragments of a given length on the molecular
graph [Swamidass, 2005].

The LAkernel has three hyperparameters: the penalties for opening (o) and ex-
tending (e) a gap, and the — parameter which controls the contribution of non-optimal
local alignments to the final score. The Tanimoto kernel has one hyperparameter: the
length d of the paths up to which paths on the molecule structure are considered.
According to [Playe, 2018], we used the following values for these hyperparameters:
o = 20, e = 1, and — = 1 for the LAkernel, and d = 14 for the Tanimoto kernel. The
SVM also requires a regularisation parameter classically called C, which controls the
trade-o� between maximising the margin (i.e., the distance separating the hyperplane
and the two classes distributions) and minimizing classification error on the training
points. This parameter was set to C = 10 for both RN- and BN-datasets, based on the
nested cross-validation (CV) scheme, as described in Subsection 7.2.2.

SVM is a kernel-based ML algorithm. In the context of chemogenomics, it re-
lies on similarity (or kernel) matrices between (m, p) pairs. Other algorithms, such
as RF, are feature-based, and rely on explicit descriptors of proteins and ligands. To
compare the performance of the kernel-based SVM to a feature-based approach, we
compared our SVM to a RF on the RN-datasets. For the RF algorithm, we considered
Extended-Connectivity Fingerprints (ECFP) [Rogers, 2010] as molecular descriptors,
and 1920-dimensional feature vectors summarizing physicochemical properties as pro-
tein descriptors, as in [Ong, 2007]. We considered four hyperparameters for RF: the
number of trees; the minimum number of samples required at a leaf node; the mini-

118



7.2. Drug target identification with Machine Learning: How to choose negative
examples.

mum number of samples required to split an internal node; and the maximum depth
of a tree. These hyperparameters were optimized based on a nested cross-validation
scheme, as described in Subsection 7.2.2.

Performance Evaluation and Hyperparameters Optimisation

We used a nested cross-validation (CV), which allows to combine model selection
and model evaluation without overfitting the dataset, as classically observed with a
simple CV scheme ([Hastie, 2009; Cawley, 2010]). In the nested CV scheme, the CV
procedure for hyperparameter optimization (called “the inner CV”) is nested inside the
CV procedure for performance evaluation (called “the outer CV”). The dataset is split
into N folds: in each outer split, one fold is separated to form a test set. The N-1
remaining folds define an inner split. The hyperparameters are optimized on this inner
split, based on a simple CV scheme. The set of hyperparameters providing the best
inner CV prediction performance is then used on the test set of the corresponding
outer split to evaluate the prediction scores. Thus, the model is tuned on the inner
split, and performance of the model is evaluated on the test set of the outer split that
was never used for model tuning. This procedure is repeated N times for each of the
N outer splits, providing a mean and a variance for the performance scores. Figure S1
in Supplementary file presents a workflow chart describing a 5-fold nested CV used in
the present study.

We used the following scores to quantify prediction performance of the classifiers:

— the Area Under the Receiver Operating Characteristic curve (ROC-AUC) [Hanley,
1982]. The ROC curve represents true positive rate as a function of false positive
rate, for all thresholds on the prediction score. Intuitively, the ROC-AUC score
can be interpreted as the probability that the classifier assigns a higher score to
a positive interaction than to a negative interaction.

— fthe Area Under the Precision-Recall curve (AUPR) [Raghavan, 1989], which
indicates how far the scores of true positives are from those of true negatives,
on average;

— the Recall, representing the fraction of positive examples that are retrieved;

— the Precision, representing the fraction of true positives retrieved among predicted
positives;

— the False Positive Rate (FPR), representing the fraction of true negatives among
predicted positives.

More precisely, we used a N = 5 fold nested CV scheme to select the hyperparameter
C of the SVM algorithm: RN-datasets (or BN-datasets) are split into N = 5 folds. Each
fold comprises the same number of positive and negative DTIs. For the BN datasets,
all molecules and all proteins appear in the same number of positive and negative
DTIs, in each fold, as described in Subsection 7.2.2. Among the values {0.1, 1, 10, 100,
1000}, C = 10 consistently leads to the best performance across folds, both in terms
of ROC-AUC and AUPR, and both on the RN- and BN-datasets.

We used the same nested CV scheme to optimize the hyperparameters of the RF
algorithm (listed in Subsection 7.2.2) and to evaluate its performance on the RN-
datasets. The number of trees was selected to be 600, chosen from {200, 400, 600};
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the minimum number of samples required to be at a leaf node was selected to be 1,
chosen from {1, 2, 5, 10}; the minimum number of samples required to split an internal
node was selected to be 5, chosen from {2, 5}; and the maximum depth of the tree was
selected to be 20, chosen from {10, 20}. The prediction scores were determined as for
the SVM algorithm.

Flowcharts of DTI Prediction and Target Identification

In the present paper, we discuss two types of problems that we solve using ML al-
gorithms: first, the prediction of new pairs (m, p) of interacting molecules and proteins,
which we call DTI (Drug-Target Interaction) prediction, and second, the identification
of new targets for a given drug. The former is only discussed in Subsection 7.2.3, where
DTI prediction is used to evaluate the overall prediction capabilities of ML algorithms,
and to determine the distribution of the prediction scores of positive and negative DTI,
respectively. We used these distributions to determine thresholds for the latter prob-
lem, i.e., target identification for a given drug, which is the central topic of the paper.
Figure 7.2 illustrates the pipeline for DTI prediction: 5 ML models are trained on
5 RN-datasets (or 5 BN-datasets), providing 5 interaction scores for each new (m, p)
pair. These 5 scores are averaged to provide a final score. Figure 7.3 illustrates the
pipeline for target identification: for each new drug d, 2670 (d, p) pairs are formed
between this drug and each of the 2670 proteins p present in the DB-Database. DTI
prediction is performed for each pair, as described above and illustrated on Figure 7.2.
This provides a mean score of interaction with this drug for each of the 2670 proteins,
which are then ranked accordingly. The candidate targets for this drug are the top
ranked proteins with a score above a given threshold.

Figure 7.2 – Flowchart of the Drug-Target Interaction (DTI) prediction pipeline.
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Figure 7.3 – Flowchart of the target identification pipeline.

7.2.3 Results

Performance of the SVM and RF Algorithms on the RN-Datasets

In the present paper, we focus on using ML chemogenomics approaches to identify
target candidates for phenotypic hit molecules. The first step is to train the ML al-
gorithms. More precisely, training a ML chemogenomics algorithm from a large DTIs
database is an example of Positive-Unlabelled (PU) learning problem. Indeed, in prac-
tice, most databases only contain positive examples (that is to say, known DTIs), while
all other possible interactions between molecules and proteins present in the data are
unlabeled, whether because they have never been tested, or because they are negative
interactions that have not been published or included in the database. Most of the
unlabeled interactions are usually considered as true negatives. Therefore, in chemoge-
nomics, the classical approach is to label as negatives a randomly chosen subset of the
unlabeled interactions. This allows to convert a PU learning problem a into Positive-
Negative (PN) learning problem for which many e�cient ML algorithms are available.

We considered a ML algorithm based on SVM, with the LAkernel [Saigo, 2004]
and the Tanimoto kernel [Swamidass, 2005] for proteins and molecules, respectively,
because these methods displayed good prediction performances in previous chemoge-
nomic studies, on average ([Wang, 2011; Meslamani, 2011; Playe, 2018]). The LAkernel
is related to the Smith–Waterman score [Smith, 1981], but while the latter only keeps
the contribution of the best local alignment between two sequences to quantify their
similarity, the LAkernel sums up the contributions of all possible local alignments,
which proved to be e�cient for detecting remote homology.

While the purpose of this paper is not to discuss the choice of the ML algorithm,
but rather to study how best to train it for the particular task of target identification, we
also include a comparison of the SVM with a feature-based ML algorithm, i.e., Random
Forests (RF) [Cao, 2014; Breiman, 2001].

The two algorithms were trained on the 5 RN-datasets described in Subsection 7.2.2,
using a 5-fold nested cross-validation scheme, as detailed in Subsections 7.2.2 and 7.2.2.
A threshold of 0.5 on the output score was chosen to discriminate between positive and
negative predictions.

Table 7.1 shows the mean performance scores of the SVM and RF algorithms,
when cross-validated on the RN-datasets. In the context of target identification, it is
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important to limit the FPR, to avoid unnecessary experimental validation. However,
a threshold of 0.5 over the probability scores was used to separate predicted positive
interactions from predicted negative interactions, as classically, although in practical
cases, a higher threshold would be chosen to select target candidates, in order to reduce
the number of experimental tests to the predictions with the highest confidence. The
results in Table 7.1 show that the SVM clearly outperforms RF across all performance
scores, including FPR. We therefore retained the SVM for the rest of the paper.

Table 7.1 – Performance of the SVM and RF algorithms for DTI predictions on the
RN-datasets.

Algorithm AUPR ROC-AUC Recall Precision FPR

SVM 85.5 ± 0.2 88.0 ± 0.1 82.0 ± 0.4 93.3 ± 0.4 5.9 ± 0.4
RF 73.5 ± 0.8 79.1 ± 0.7 76.8 ± 1.0 80.6 ± 0.8 18.5 ± 1.0

We studied the distributions of the probability scores for positive and unlabeled
(presumably, mainly negative) interactions for the SVM algorithm, according to the
nested CV scheme. Figure 7.4 shows that these two distributions are well separated,
and also suggests that on the RN-dataset, a threshold of 0.7 over the prediction score
can be used to predict positive interactions with high confidence. In addition, the rank
of a predicted interaction is also an important criterion to consider, because the goal
of virtual screens is to drastically reduce the number of experiments to perform. When
the goal is to identify hit molecules against a given therapeutic target, typically, the top
5% percent of the best-ranked molecules are screened [Adeshina, 2020]. Usually, an ex-
perimental assay with a simple readout has been set up for the target of interest, which
allows to evaluate relatively high numbers of candidate molecules selected in the virtual
screen. The inverse problem of target identification is more di�cult because validation
requires to test the phenotypic hit molecule in a di�erent biological assay for each
predicted target considered for experimental evaluation. This obviously requires much
more time and e�ort, because these assays may not all be available, and therefore, may
have to be designed. This can be a real challenge if the function of a candidate target
is not suitable to design a simple biological test. Therefore, we added the stringent but
realistic threshold of top 1% in rank. In other words, in the following, we will consider
as candidate targets proteins with a predicted score above 0.7 and ranked among the
top 1% of the tested proteins, to simulate a realistic experimental setting. We discuss
how to best train the algorithm in order to minimize the number of useless biological
experiments that would be undertaken for false positive targets satisfying these two
criteria, because this represents a real bottleneck for real-case studies. Consequently,
in what follows, since the DB-Database comprises 2 670 proteins, we will consider as
candidate targets only proteins with a probability score above 0.7 and rank smaller
than or equal to 27.

Statistical Analysis of the DrugBank Database

The DrugBank database [Law, 2014] is a widely used bio-activity database. While much
smaller than PubChem or ChEMBL, it provides high-quality information for approved
and experimental drugs along with their targets. It contains around 15,000 curated
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DTIs involving 2670 human proteins (this set of proteins can be viewed as the “drug-
gable” human proteome), and 5070 druglike molecules, corresponding to the DB-
Database described in Subsection 7.2.2. This database is relevant for training of ML
models for DTI predictions involving human proteins and drug-like molecules. How-
ever, Figure 7.6 shows that there is a strong discrepancy between the number of known
ligands per protein, or known protein targets per molecule.

Figure 7.4 – Distribution of the probability scores predicted for known positive DTIs
and randomly chosen negative DTIs among unlabeled DTIs.

(a) (b)

Figure 7.5 – Statistical bias in the DB-Database.
(a) Distribution of the molecules according to their number of targets in the

DB-Database. (b) Distribution of the proteins according to their number of ligands in
the DB-Database.
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Indeed, the majority of proteins have 4 or fewer known ligands, while around
140 proteins have more than 21 ligands. We defined categories of proteins, depend-
ing on their number of known ligands (1, 2 to 4, 5 to 10, 11 to 20, 21 to 30, more than
30), and calculated the number of DTIs in the DB-Database in each category. Overall,
according to Table 7.2, 5.2% of the proteins are involved in 44% of DB-Database DTIs.

This bias arises from the fact that a few diseases like cancer or inflammatory diseases
have attracted most research e�orts, and many ligands have been identified against
related therapeutic targets, compared to other less studied human proteins. For ex-
ample, Prostaglandin G/H synthase 2, a well-known protein involved in inflammation,
has 109 drugs reported at DrugBank. This statistical bias a�ects training of the SVM
and is expected to perturb identification of targets for hit molecules, potentially by
enriching top ranked proteins in false positive targets that have many known ligands.

Table 7.2 – Distribution in the DB-Database of the number of DTIs involving proteins
from various categories, according to their number on known ligands.

Protein nb of Ligands nb of Interactions

1 1106
2 to 4 2527
5 to 10 2404
11 to 20 1920
21 to 30 1238

> 30 5442

Examples Illustrating the Impact of Learning Bias for Target Identification

Once trained, a ML algorithm identifies targets for a hit molecule by providing a list
of proteins ranked by decreasing order of the estimated probability score of all (protein,
hit) pairs. Candidate targets are chosen based on their probability score, their rank,
and on potential prior biological knowledge that would highlight their relation to the
considered disease. For example, a top ranked protein involved in cell cycle would be
considered as a realistic candidate target for a hit identified in a cell proliferation screen
in cancer research. The presence of many false positive targets among the top ranked
proteins will not only lead to undertake useless experiments, but also potentially to
discard true predicted targets pushed further down the list. Let us illustrate this prob-
lem in the case of 3 molecules, randomly chosen among marketed drugs with only one
known target in DrugBank. Assuming that their targets have been well characterized
because they are marketed molecules, most of the other top ranked predicted targets
will be false positive predictions. The 3 considered molecules are: alectinib (DrugBank
ID DB11363, target: ALK), lasmiditan (DrugBank ID DB11732, target: HTR1F),
and doxapram also known as angiotensin II (DrugBank ID DB11842, target: AGTR1).
We orphanized these 3 molecules (i.e., we suppressed their single known target from the
train set), as if they were hits from phenotypic screens, and used the SVM algorithm
presented in Subsection 7.2.2 on the RN-datasets to predict their targets. For each
molecule, the results consist in a list of the 2670 proteins in the DB-Database, ranked
by decreasing order of score.

As shown in the RN-datasets columns of Table 7.3, none of the known targets for
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those drugs are among the candidate targets as defined in Subsection 7.2.3. More
precisely, for DB11363 and DB11842, although the probability scores of their known
targets are above 0.7 (values of 0.8 and 0.76 respectively), their rank is 31 in both cases,
above the threshold of 27. For DB11732, the probability score of HTR1F is 0.67, with a
rank of 107, and HTR1F would not either have been classified among the candidate
targets for testing.

Analysis of the results highlighted that some of the best ranked candidate targets are
frequent targets. For example, prothrombin F2 (120 ligands), cyclin dependant kisase
CDK2 (137 ligands), and dopamine receptor 2 DRD2 (109 ligands) are top ranked
predicted targets respectively for DB11842 (score of 0.97, rank 2), DB11732 (score
0.98, rank 1) and DB11363 (score 0.94, rank 5). The three ranked lists are provided in
full in the github repository mentioned under “Data Availability Statement”.

Table 7.3 – DTI prediction results for 3 marketed drugs, when the algorithm is trained
on the RN-datasets or the BN-datasets: number of False Positive predicted targets,
score and rank of the true target.

RN-Datasets BN-Datasets

Drug FP Target Score Target Rank FP Target Score Target Rank

DB11363 27 0.8 31 16 0.8 3
DB11842 27 0.76 31 26 0.85 18
DB11732 27 0.67 107 26 0.83 17

These examples illustrate the impact of false positive predictions for target identifi-
cation, because they can lead to discard even high-scoring true targets as for DB11363
and DB11842.

Choice of Negative Examples to Correct Statistical Bias

Our observation that high-scoring false positives tend to have a large number of
known ligands led us to make the assumption that the model trained using randomly
sampled negative interactions is biased towards proteins with many known ligands,
as well as possibly drugs with many known targets. This suggested us to choose negative
DTIs in such a way that the training dataset contains, for each molecule and for each
protein, as many positive than negative DTIs. The corresponding so-called BN-datasets
(for Balanced Negatives-datasets) are detailed in Subsection 7.2.2. Note that what we
mean by “balanced” in the BN-dataset is that negative examples present the same bias
as the positive examples: all molecules and all proteins appear in the same number
of positive and negative DTIs. As shown in Figure 7.6: (1) in the positive examples,
the distribution of known protein targets per molecule is similar to that of proteins
known (chosen, in fact) not to interact per molecule in the negative examples; (2) in
the positive examples, the distribution of known ligands per protein is similar to that of
molecules known (chosen, in fact) not to interact per protein in the negative examples.
This prevents proteins with many known ligands to be viewed by the algorithm as
statistically much more probable targets, leading to many false positive predictions
among this category of proteins. We recall that the BN-datasets contains the same
positive DTIs as the RN-datasets, the former di�ering from the latter only by the
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negative DTIs.
The SVM algorithm presented in Subsection 7.2.2 was trained on the BN-datasets.

As discussed above, for the problem of target identification, reducing the number of false
positives among the top-ranked proteins is critical. Table 7.4 reports, for prediction
score thresholds of 0.5 (usually considered) and 0.7 (considered in the present paper),
the cross-validated FPR scores on these two training sets. It shows a strong statistical
bias in FPR for the RN-datasets between proteins with few or with many known ligands,
and it illustrates that training on the BN-datasets greatly reduced this bias.

(a)

(b)

Figure 7.6 – Balancing the BN-datasets.
(a) Distribution of the proteins according to the number of positive examples or
negative examples in which they are involved. (b) Distribution of the molecules

according to the number of positive examples or negative examples in which they are
involved.
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Table 7.4 – Rate of false positives for proteins with various numbers of known ligands.

FPR (Threshold = 0.5 ) FPR (Threshold = 0.7)
Prot in Category RN-Datasets BN-Datasets RN-Datasets BN-Datasets

0 2.2 ± 0.4 3.1 ± 0.5 0.5 ± 0.4 0.7 ± 0.5
1 3.7 ± 0.5 3.1 ± 0.8 1.5 ± 0.1 1.1 ± 0.7

2 to 4 5.1 ± 0.9 6.4 ± 0.8 2.4 ± 0.8 2.2 ± 0.8
5 to 10 9.9 ± 0.9 8.3 ± 0.6 4.4 ± 0.9 3.3 ± 0.5
11 to 20 13.8 ± 1.7 10.6 ± 0.5 7.3 ± 1.9 3.9 ± 1.1
21 to 30 23.0 ± 4.9 12.0 ± 3.0 11.4 ± 2.7 5.6 ± 2.0

> 30 18.6 ± 2.8 9.0 ± 0.4 11.0 ± 2.1 4.5 ± 0.3

To highlight the impact of this bias correction in terms of target prediction, we show
in Table 7.3 the prediction results for the 3 molecules discussed in Subsection 7.2.3,
when the algorithm is trained with the RN-datasets or with the BN-datasets. When
trained on the RN-datasets, none of the true targets would have been considered as a
positive candidate target for testing, because of a score below 0.7 or a rank above 27,
as discussed above. Training on the BN-datasets greatly improved the ranks and scores
of the three true targets, and reduced the number of false positives, allowing the 3 cor-
responding true targets to fulfill the rank and score criteria defined in Subsection 7.2.3
to become candidate target for testing.

To better illustrate the interest of the proposed scheme for the choice of negative
DTIs on a larger number of drugs we considered the 200-positive-dataset consisting of
200 DTIs involving 200 marketed drugs with 4 of less known targets, as described in
Subsection 7.2.2. This “di�cult” test set was chosen because the aim was to mimic
newly identified phenotypic hits, for which known targets are expected to be scarce.
For each drug, we artificially reproduced the process of target identification: the cor-
responding DTI was removed from the train set, a new SVM classifier was trained and
used to score 2670 DTIs involving this drug and all proteins of the DB-Database. We
compared the top-ranked predicted targets obtained when the algorithm is trained on
the RN-datasets versus on the BN-datasets, as well as the number of removed false
positive DTIs that would have been retrieved as candidates for testing (i.e., with a
score above 0.7 and a rank lower or equal to 27).

Overall, training with the BN-datasets improved the predictions: the number of
false positive DTIs decreased for 106 drugs, remained unchanged in 85 drugs, and in-
creased in 9 drugs, as compared to training with the RN-datasets. In particular, this
improvement allowed one additional true positive interaction to reach a score above 0.7
and a rank below 27: 104 true targets were retrieved as candidates when training with
BN-datasets, compared to 103 when training with RN-datasets. For the corresponding
104 drugs, the number of false positives decreased by 2.9 in average, and the rank of
the true interactions decreased by 1.8 in average, bringing them even closer to the top
ranked predicted proteins, and more likely to be chosen for experimental validation.
Consistent with the results in Subsection 7.2.3 for the 3 example molecules, on aver-
age over the 200 considered molecules, the number of useless experiments potentially
undertaken would have decreased when training with the BN-datasets.

We also made predictions for the 200 negative DTIs of the corresponding 200-
negative-dataset, involving the same molecules as the 200-positive-dataset. Predictions
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were made by the classifier trained on the RN- or BN- datasets. Overall the distri-
butions of the prediction scores were very similar in both cases, centred around 0.2,
and similar to that shown for the RN-dataset in Figure 7.4. Among the 200 negative
pairs, only 2 pairs were predicted as positives, for the two RN- and BN- datasets. This
can be viewed as a sanity check indicating that the proposed method did not introduce
bias in the prediction of negative DTIs, while it globally improved the predictions of
positive DTIs.

7.2.4 Discussion

The goal of the present paper was to tackle the question of protein target iden-
tification for new drug candidates, using ML-based chemogenomics. Indeed, these
approaches can be run at a large scale in the protein space, including in their scope
proteins with no known 3D structures, or proteins for which few, or even no ligands
are known. Another key asset is that they can be applied to drugs with few, or even
no known targets, as illustrated on the 200-positive-dataset. This is of particular im-
portance because new phenotypic drugs are often orphan (i.e. have no known protein
target) when they are identified. No other computational method presents these ad-
vantages. However, before making predictions, ML chemogenomic algorithms need to
be trained on a database of known DTIs, which raises a few issues.

First, these databases are biased in terms of the number of protein targets per
molecule, or of ligand molecules per protein, as shown for the DrugBank database used
in our study. While we are aware that other and larger DTIs databases could have been
used, the purpose of our study was not to discuss the choice of training set, in particular
because other databases will also present the same type of bias as the DrugBank, for the
same reasons. This point is rarely discussed in ML chemogenomic studies.

Second, the performance of ML algorithms in chemogenomics are usually evalu-
ated based on AUPR and ROC-AUC scores in cross-validation procedures. However,
the identification of true protein targets for phenotypic hit molecules in real case studies
may become a challenge when the algorithm is trained on a biased dataset. Indeed, de-
spite very high AUPR and ROC-AUC scores, false positive targets can be found among
top-ranked proteins, and correspond to proteins with many known ligands. In target
identification studies, biological experiments are guided by the predicted scores and
ranks of candidate proteins. Training on a biased dataset may lead not only to conduct
useless experiments, but also to discard true positive targets because their scores are
below the considered threshold, or because their rank is too high due to the presence
of false positives among the top-ranked proteins. This point is also rarely discussed in
ML chemogenomic studies, usually focusing on cross-validation schemes that does not
correspond to real case applications.

Third, training databases such as the DrugBank only contain positive examples,
and therefore, negative examples are usually randomly chosen among unlabeled DTIs
in order to train the ML algorithms. It is however unclear that this is an optimal choice
for target identification.

The key result of the present paper was to show that choosing an equal number of
positive and negative DTIs per molecule and per protein helps decrease the FPR in
biased datasets, and improves the identification of true targets for a given drug. Three
striking examples are given for the case study of three drugs (DB11363, DB11842,

128



7.2. Drug target identification with Machine Learning: How to choose negative
examples.

and DB11732) that were “orphanized” (all their known DTIs were removed from the
training set) to illustrate the most di�cult situation encountered in the case of new
phenotypic drugs: training with the BN-datasets allowed to recover the true target in
all cases, while none of them would have been retrieved when training with the RN-
datasets. To illustrate the advantage of the proposed scheme for the choice of negative
interactions, we used a threshold of 0.7 over the probability scores to identify candidate
targets for experimental testing, although proteins with scores above 0.5 are classified
as positives. This threshold of 0.7 was guided by the results in Figure 7.4, in order
to select highly probable positive targets. It can be adjusted to a di�erent value if
the algorithm is trained with other databases, whether through the same kind of plot,
or through a ROC-curve in order to correspond to a predefined false positive rate.

We added the stringent threshold of 1% on the ranks of proteins to define which
targets would be tested. This threshold could also be adjusted depending on available
resources for experimental validation. The issue we identified and addressed in this
paper does not depend on the scores and rank thresholds used, and choosing equal
numbers of positive and negative DTIs per molecule and per protein for the training
set will limit the number of false positives independently of the choice of thresholds,
as shown in Table 7.4 in the case of the threshold on the prediction score. Finally,
while the proposed scheme for the choice of negative examples was presented here in
the context of target identification for hit molecules, it is of general interest and should
be applicable to other types of PU learning problems when bias is present in the training
set, which is a very common situation, in particular in many biological databases.

Data availabity Datasets and results, presented in this study, are available at https:

//github.com/njmmatthieu/dti_negative_examples_data.git, included a README.md
file describing them.

Supplementary Materials Flowchart of Nested Cross Validation

129

https://github.com/njmmatthieu/dti_negative_examples_data.git
https://github.com/njmmatthieu/dti_negative_examples_data.git


Chapter 7. Drug target identification with Machine Learning: How to choose
negative examples.

Figure 7.7 – Nested Cross Validation Workflow with N=5 outer splits.
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7.3 Application to the DTI predictions on the CFTR mod-
ulators

7.3.1 General comments

The major contribution of this article lies in the discussion of two points rarely
discussed in ML chemogenomic studies:

— Bias of DTI interaction databases, which leads to a high number of false positives
among top ranked predicted interactions.

— Validation of DTI algorithms based on AUPR and ROC-AUC, which does not
correspond to real applications of target identification. We propose to look at the
False Positive Rate (FPR) instead.

To overcome these two challenges, we propose to choose an equal number of positive
and negative DTIs per molecule and per protein for the training dataset. We tested
this new scheme on a small dataset of DTIs involving 200 drugs that have few known
targets and we observed a decrease of the FPR among the top targets compared to a
random selection of negative DTIs for the training dataset.

This project highlightled the importance of including true, i.e. tested, negative
examples of (m, p) interactions in public databases, particularly in the evolving land-
scape of AI approaches. ML algorithms require both positive and negative examples
for e�ective predictions. Developing schemes in which negative examples are selected
primarily from published "non-interacting" pairs, and subsequently from the pool of
"unknown" pairs, could significantly improve predictions.

The aim of this paper was to address the challenge of identifying protein targets for
new drug candidates. The pipeline can also be used reciprocally, i.e. identifying po-
tential drugs ligand for proteins. Indeed, once a protein target is identified, one might
want to find drugs that bind to the protein and that alter the disease progression.
Even if a ligand is known for a protein target, a lot of work remains to be done to opti-
mize the molecule in order to meet the ADME (Absorption, Distribution, Metabolism,
Elimination), toxicity, and industrial synthesis requirements. Besides, some drugs are
known for a small number of proteins. We could leverage this information to predict
which drugs, already meeting the various prerequisites of ADME, would be most likely
to bind the protein target.

7.3.2 Predictions of the CFTR modualtors targets

A key asset of chemogenomic algorithms is that they can be applied to drugs with
few, or even no known targets. It is of particular interest in the CF project because
CFTR modulators have been discovered thanks to HT phenotypic screens and their
MoA has not yet been fully deciphered (see chapter 1). According to the DrugBank
database, the four molecules (ivacaftor - VX-770, lumacaftor - VX-809, tezacaftor -
VX-661, elexacaftor - VX-445) interact only with CFTR, although the corresponding
interactions were removed from the train set.

131



Chapter 7. Drug target identification with Machine Learning: How to choose
negative examples.

We used the SVM algorithm presented in section 7.2.2, to predict the targets of the
4 modulators, using the same learning scheme as for the three examples of marketed
drugs discussed in the article.

For each modulator, the pipeline provides a list of proteins ranked by decreasing
order of the estimated probability score for all (modulator, protein) pairs. This score is
in fact the average of the prediction scores of the five classifiers used in the pipeline. We
considered interactions with an average predicted score above 0.7 as predicted positive,
as recommended in the article. The frequency plots of the average predicted scores for
each modulator are presented in figure 7.8.

Figure 7.8 – Frequency plot of CFTR modulators prediction scores.
The inset shows a zoom of prediction score frequencies between 0.5 and 1.

The figure 7.9 shows the top 20 predicted targets for each of the 4 modulators.
The rank is shown in Figure A and the prediction scores in Figure B. The list of these
proteins and their associated scores are given in the appendix C.
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Figure 7.9 – Heatmap of the top 20 predicted proteins of the 4 CFTR modulators.
Their ranks of prediction are given in A. and their predicted scores in B.

For tezacaftor and elexacaftor, only one protein is predicted positive: respectively
ADRB1 for tezacaftor and HSD11B1 for elexacaftor. Conversely, for ivacaftor and
lumacaftor, more than 50 proteins have an average predicted score above 0.7, including
many kinases. The mitogen-activated protein kinases (MAPK or MAP kinases) and
tyrosine kinases, are among the highest predicted targets (See Figure 7.9).

The kinase family attracted our attention for several reasons: (1) various kinases
have been reported to play a role in CF. In particular MAPKs, are over-expressed or
over-activated in CF cells. Verhaeghe et al. [Verhaeghe, 2007] showed over-phosphorylation
(i.e. over-activation) of the ERK1/2 MAPKs in CF cells. Bérubé et al. [Bérubé, 2010]
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also found increased immunoreactivity for the p38 MAPKs activity markers in CF lung
biopsies. Finally, it has been shown that kinase inhibitors could improve the correction
of F508del-CFTR function [TrzciÒska-Daneluti, 2012]; (2) many kinases belong to the
CF network, including the MAPKs; (3) Importantly, this family of proteins has been
widely studied, and commercial tests are available as services to assay molecules. In
particular, the Eurofins company o�er such services. Therefore, based on commercial
services at Eurofins, we tested the CFTR modulators against a panel of 50 kinases,
among kinases with high probability scores in our predictions or known to play a role
in CF, according to the literature. Lumacator, Ivacaftor and Tezacaftor did not present
any inhibition property against the tested kinases. However, Elexacaftor was found to
be a low, but significant, inhibitor for SYK, GSK3B, CSNK1A1, and MAPK1/ERK2,
with a Ki value in the micro-molar range. These results will be discussed in the Con-
clusion section of the manuscript, in the more global context of the project.

With respect to the prediction of the algorithm, these results suggest two directions
to improve the performances, by improving the training dataset, or by improving the
algorithm itself.

7.3.3 Improving the prediction performances of the algorithm

Improving the training set

In the project, we trained the algorithm on a Drug-Bank-derived dataset, which
contains around only 15.000 (m, p) pairs for 2.670 proteins. In addition, DrugBank
dataset, which contains many indirect interactions stored as direct ones, which impacts
the predictions.

Other larger training sets can be used, for example derived from larger databases
such as PubChem [Bolton, 2011] or the Binding Database [Liu, 2007]. This database
stores the Half maximal inhibitory concentration (IC50) for each (m, p) pair tested.
We can therefore consider interactions with IC50 of less than 10≠4 Mol as negative
interactions. A larger training dataset has been recently built in our laboratory, and it
will be used to make new predictions for CFTR modulators.

We opted to predict across the entire druggable proteome, i.e. accross proteins
belonging to many protein families. As a result, the classifier is less accurate than a
classifier trained on a specific protein family. However, our classifier lacks the precision
required for high confident predictions at the protein level within a given family of
proteins (such as kinases, CPGRs etc...). It could be interesting to develop a dedicated
classifier trained exclusively on the kinase family, using databases that contain a larger
number of DTI, in order to improve the predictions in this family of proteins. In
particular, this new training set could be modified to include the results from the
Eurofins tests.

Improving the algorithm

Another way to improve the predictions is to refine the model. Playe et al. [Playe,
2018] showed that the type of the model chosen for the classifier (e.g. SVM, Matrix
Factorisation, Random Forest, etc) does not have so much influence on the score of
the prediction. However, one could play on the descriptors to improve the predictions.
In the model presented in this chapter, we used the 2D structure of the molecules to
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compute the molecules similarities and the nucleotide sequences to compute the proteins
similarities. However, the binding of a ligand in a protein is a phenomenon occurring in
the 3D space so 3D descriptors are expected to be more relevant. Many 3D descriptors
have already been developed for the molecules but this is not the case for all the
proteins. Indeed, access the 3D structure of all the proteins of the human proteome is
not feasible. However, in recent years, more high-quality 3D crystallographic structures
became available, and thanks to projects such as AlfaFold [Jumper, 2021], more 3D
protein structures could be predicted for proteins with unknown structures. This could
help the development of similarity measures based on the predicted 3D structures of
the proteins.

Although 3D descriptors are more refined, they still have some limitations. For
molecules, this would require to know the active conformation of the molecule, i.e.
the conformation into which it binds to the protein. For proteins, it would require to
consider the protein as a rigid structure, thus neglecting the induced fit often observed
upon ligand binding. Despite these limitations, it would be interesting to explore to
which extent 3D descriptors would improve DTI predictions.

In relation with this topic, during my PhD, I took part in a project where the 3D
structures were used in ligand-based approaches. More precisely, this project was part
of a study aimed at evaluating the performance of computational methods for solving
sca�old hopping problems. In drug discovery, a scaffold hopping problem corresponds to
the identification of novel chemotypes with biological activity similar to a known active
molecule. In this study, we compared a few classical 2D and 3D ligand-based methods
to the chemogenomic pipeline we developed, for the specific problem of sca�old hopping.
The results showed that the similarities computed with 3D approaches performed better
than the ones with 2D approaches. Moreover, the chemogenomic algorithm outperforms
the ligand-based methods thanks to the information coming from the additional (m, p)
pairs provided to the algorithm. The article was published in Molecular Informatics in
January 2023 and is transcribed as published in appendix D.
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8.1. Results of the thesis

One objective of my PhD thesis is to better understand CF overall molecular dysreg-
ulations, by relating the absence of the CFTR protein to the CF cellular phenotypes. At
a more applied level, this was expected to help identification of new therapeutic strate-
gies in CF, particularly for patients who are not eligible to CFTR modulators, or who
do not respond to these therapies. We propose to combine two fields of computational
biology to approach these questions: systems biology methods and chemogenomics
algorithms.

Both approaches provide insights into the molecular complexity of the disease. We
built a single network of the signalling dysregulations of the CF cell, homozygous for
the F508del mutation. However, it is essential to admit that a unique network is
not su�cient to model the disease, as the precise molecular mechanisms may di�er
depending on the patient genetic background, the mutation, or the cell type. The
proposed approaches provide opportunities to go one step further and to study these
di�erences.

8.1 Results of the thesis

In this thesis, I first investigate systems biology approaches using CF transcriptomic
data (part II).

This study required the development of tools that allow the detection of di�eren-
tially expressed pathways. Therefore, in chapter 3, I present the R package, rROMA,
for the representation and quantification of Module activity from omics data. rROMA
is a sample-wise method dedicated to the analysis of bulk omics data at the level of the
biological pathways. It assigns pathways activities to each sample, without requiring
prior labels (such as "disease" or "control" labels). In the new version of the algorithm,
I introduced the detection of shifted pathways, i.e pathways genes that are significantly
di�erentially expressed in one direction, in addition to the detection of overdispersed
pathways. rROMA stands out from the other methods because it detects both types of
dysregulated pathways while providing a statistical assessment of the dysregulations.
Furthermore, the numerous visualisation functions, and fine analysis of outlier genes
inside the pathways make rROMA a user-friendly tool to the exploratory analysis of
bulk omics data, without a priori hypotheses.

In chapter 4, I review the studies on systems biology approaches applied to cys-
tic fibrosis. These studies have mainly focused on molecular mechanisms involved in
CFTR processing, stability, and recycling. In chapter 5, I adopted a systems biology
approach with a di�erent goal, aiming at understanding how the absence of CFTR can
be functionally linked to CF cellular phenotypes. I carried out a meta-analysis of 10
CF airway transcriptomic studies, focusing on the F508del mutation, at the level of
the biological pathways. This allowed me to retrieve a list of 15 di�erentially expressed
pathways. I used these pathways to build a signalling network, called the CF net-
work, recapitulating the dysregulated signalling cascades that flow from the source
nodes (proteins directly connected to CFTR) to the sink nodes (proteins that trigger
CF cellular phenotypes). These phenotypes are consistent with those described in the
CF literature, which indicates that our global approach did capture relevant biological
information about CF. Five of the source nodes are upstream of all the sink nodes in
the CF network: PLCB1/3, TRADD, SRC,and SYK . These proteins may collectively
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initiate the emergence of CF phenotypes (together with the 3 other source nodes EZR,
CSNK2A1, and PRKCA), illustrating the complexity of the disease. The topological
analysis of the network also highlighted nodes with a high degree of betweenness cen-
trality, which are other important players in the propagation of the dysregulations,
including PI3KCA. Among these key source nodes and nodes with high degree central-
ity, SYK, SRC, PLCB1/3 and PIK3CA appeared as interesting candidate therapeutic
targets. These proteins have already been discussed in the CF context. Interestingly,
specific inhibitors are known for these proteins, and even marketed drugs in the case
of SYK and PI3KCA. They stand out as potential therapeutic candidates for drug
repositioning, potentially allowing the modulation of various CF phenotypes.

The methodology adopted for the F508del mutation, although perfectible, provided
relevant and biologically interpretable results. However, we believe that the approach
could be used for the study of other CFTR mutations. More generally, it could also
apply to other monogenic diseases, particularly to rare diseases, in order to help un-
derstanding their biological determinants.

In parallel, I undertook a machine-learning study to explore the mechanisms of
action of CFTR modulators. More precisely, in part III, I used machine-learning
chemogenomics algorithms to search for potential o�-targets. Because these drugs are
active in CF, these targets give an indication of which proteins may belong to dysreg-
ulated pathways in CF cells. In practice, ML algorithms need to be trained on pairs
of (molecule, protein) known to interact and pairs known not to interact. However,
"non interacting" pairs are not recorded in drug-target interaction (DTI) databases,
so that "negative" interactions need to be chosen randomly among the unknown in-
teractions. In addition, the DTI databases usually present a high bias towards a few
proteins that have been extensively studied, and for which many ligands are known.
In this context, random selection of negative interactions among unknown interactions
in these databases lead to over-representation of false positive targets among the top
ranked predicted proteins. I proposed a new scheme to select negative interactions in
order to take into account bias observed in DTI databases, which allowed to reduce the
number of the false positive rate in the predictions. The ML chemogenomic algorithm
was trained with this new scheme, to predict the potential o�-targets of the CFTR
modulators.

The chemogenomic approach still needs to be improved because: (1) predicting
targets for CFTR modulators, considered here as orphan molecules, is a di�cult task,
and (2) the DrugBank database used to train the algorithm is of modest size, com-
pared to other databases such as BindingBD. In addition, it stores numerous indirect
interactions, resulting in bias in predictions. Despite these challenges, the predictions
provided valuable insights into the family of proteins of interest, namely, the kinase
family. Experimental tests showed that elexacaftor was a modest inhibitor of SYK,
MAPK1/ERK2, CSNK1A1, GSK3B. These four proteins belong to the CF network,
and therefore, although elexacaftor is only a modest inhibitor of these proteins, one
could hypothesize that part of its mechanism of action could involve these proteins. In
such case, one could distinguish two possible mechanisms:

— elexacaftor targets CFTR and the kinases independently: it will improve CFTR
processing and function, but also target these kinases. Both targets (i.e. CFTR
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and the kinases) would contribute to reduce CF cellular phenotypes, leading to
the clinical benefits observed in patients.

— the kinases targeted by elexacaftor may improve (directly or indirectly) CFTR
processing, and targeting these kinases would participate to CFTR rescue at the
PM.

Several experimental results support this second hypothesis. In particular, inhi-
bition of kinases was shown to improve F508del-CFTR function [TrzciÒska-Daneluti,
2012]. Similarly, the inhibition of MAPKs were shown to improve CFTR expression
and has mainly been mentioned in contexts other than CF. Only very recently, it was
acknowledged in the CF context. In particular, Xu et al. [Xu, 2015] revealed that the
ERK pathway contributes to the degradation of CFTR in cells exposed to cigarette
smoke, and reported that pharmacological inhibition of the MEK/ERK1/2 MAPK
pathway prevented the loss of PM CFTR. Chang et al. [Chang, 2018] described that
THC exposure downregulates the expression and function of CFTR in airway epithe-
lial cells, resulting in the activation of the Epidemial Growth Factor Receptor (EGFR)
protein and the ERK MAPK pathway. The inhibition of EGFR or the MEK/ERK
pathway prevented the THC-induced regulation of CFTR. Very recently, Wellmerling
et al. [Wellmerling, 2022] showed that ERK phosphorylation was increased in CF HBE
cells compared to controls. The decrease of ERK phosphorylation by ectoine in com-
bination with tezacaftor (VX-661) increased CFTR processing and function.

However, the analysis of the CF network showed that direct modulation of CF cel-
lular phenotypes by inhibition of kinases should also be considered. This hypothesis is
consistent with a recent paper underlying clinical benefits observed for CF patients re-
ceiving CFTR modulators, although bearing "unrescuable" mutations and in principle,
not eligible to these therapies [Burgel, 2023].

8.2 Perspectives: Cystic fibrosis, a heterogeneous disease

In the discussions following each contribution, I mentioned how the project could
be improved using newly developed methods or new data. I would like to suggest some
broader perspectives on the di�erences in the molecular mechanisms of the disease on
several scales.

In section II, I presented the construction of a CF signalling network caused by
the absence of CFTR at the PM. We chose to build the CF network for the F508del
mutation, but we are aware that reducing the CF dysregulations with only data cor-
responding to this mutation is simplistic. Indeed, the heterogeneity of CF patients’
symptoms and the heterogeneity of CF patients’ response to treatment demonstrate
that molecular mechanisms caused by CFTR mutations may di�er. Patients with dif-
ferent mutations may not have the same symptoms, and some patients with the same
mutation sometimes exhibit various disease severity. Besides, the development of single-
cell RNA sequencing technologies showed that di�erent airway cell types do not express
the same level of CFTR, which may trigger di�erent cellular phenotypes depending on
the cell type. Even if they relate to di�erent scales of biology, we will refer to these
di�erences as heterogeneity: patient heterogeneity or cellular heterogeneity. Systems

141



Chapter 8. Conclusion and perspectives

biology approaches o�er computational frameworks to gain a deeper understanding of
the complexity and the heterogeneity of CF biology.

8.2.1 CF patients bearing different mutations

Classes of CFTR mutations have been defined based on their primary biological
defect on the CFTR protein, i.e. a default in mRNA expression, protein synthesis,
maturation, or function. However, these classes have not been described in terms of
cellular phenotypes, namely disturbed biological processes observed at the cellular level,
as defined in this thesis. Therefore, it would be very interesting to apply the method-
ology used in the present thesis to datasets with patients with di�erent mutations to
characterise the mutation-specific cellular phenotypes.

Recent studies enabled to generate these data but they have been including very few
samples, such as in the Bampi et al. [Bampi, 2020] study, or they have not provided the
exact mutation for each sample, such as in Rehman et al. [Rehman, 2021]. A very recent
paper analyses the di�erentially expressed genes (DEG) of human bronchial epithelial
cells bearing di�erent mutations [Santos, 2023]. These data were generated from cell
line samples. Data from primary culture samples bearing di�erent mutations should
be published soon, and would be the most suitable datasets for this kind of analysis.

8.2.2 CF patients bearing the same mutation

CF patients bearing the same mutation exhibit various degrees of symptoms’ sever-
ity and response to treatments [Cornet, 2022b]. As already discussed, it is di�cult to
find studies with many samples, in order to explore such heterogeneity. There is only
one dataset with 124 CF patients, homozygous for the F508del mutation, but the data
is not publicly available. In addition, in such dataset, each sample would need to be
associated with severity of symptoms or response to treatment, but this type of data
is not yet available.

Despite these limitations, it would be interesting to study large datasets and cluster
samples according to their dysregulated pathways, thus exploring whether the obtained
clusters correspond to disease severity. A network could be built for each cluster, or
even a network for each patient, as it is increasingly being done for other diseases in
the context of personalised medicine [Béal, 2021; Montagud, 2022]. Analysis of these
networks would allow to study, in terms of molecular mechanisms, why patients present
di�erent symptoms’ severity. The presence or absence of potential o�-targets of CFTR
modulators in the networks could help to understand why some patients respond well,
and others poorly. This more detailed analysis would make it possible to optimise the
therapeutic strategy at patient level.

8.2.3 Cellular heterogeneity of dysregulations

Finally, with the increasing development of single-cell RNA-Sequencing and Fluorescence-
activated cell sorting (FACS) studies, the di�erences in signal transduction between
di�erent cell types could be studied in the context of the disease.
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The study at the level of biological pathways (see chapter 5) enabled to classify
the datasets considered in the meta-analysis into two subgroups according to their
DEP: a subgroup comprising studies with dysregulated pathways in agreement with
the pathophysiology of CF, and a second subgroup comprising studies with very few
dysregulated pathways or even some in opposition to the pathophysiology of CF (see
figure 5.2). We hypothesized that the datasets of the first subgroup would come from
studies in which the cell di�erentiation media favoured secretory cells, whereas the
datasets in the second subgroup would come from studies in which the media favoured
ciliated cells over secretory cells. This hypothesis would lead to the conclusion that CF
secretory cells would better account for signalling dysregulation than ciliated cells.

This would also be in agreement with a recent single-cell RNA sequencing study
on airway epithelial cells [Okuda, 2021]. The analysis showed that CFTR expression is
higher in secretory cells than in ciliated cells, where it is infrequent and low. Building
CF network specific to secretory cells may provide a refined network that better models
CF molecular dysregulations that could then be used to identify therapeutic targets
specifically designed for this cell type.

These studies have also highlighted a new rare type of epithelial cells, called iono-
cytes, which expresses the highest level of CFTR. However, the proportion of ionocytes
is around 0.3% while the proportion of secretory cells is around 20%. Hence, secretory
cells dominate CFTR expression and function in human airway epithelia. Building a
specific network for this cell type would facilitate the search for new therapeutic targets.

These hypotheses are very preliminary and deserve further investigation. A new
study used single-cell RNA sequencing to compare CF to healthy samples [Carraro,
2021]. These data would help build cell-type-specific networks following the approach
presented in this manuscript. One would expect from such studies that networks of
the secretory cell type would be similar to our CF network, and that a much smaller
network would be obtained for the ciliated cell type.
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Abstract: Proteins interacting with CFTR and its mutants have been intensively studied using differ-

ent experimental approaches. These studies provided information on the cellular processes leading

to proper protein folding, routing to the plasma membrane, recycling, activation and degradation.

Recently, new approaches have been developed based on the proximity labeling of protein partners or

proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we

evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained

data to those reported in databases. The CFTR-WT interactome was then compared to that of two

CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The

two proximity labeling approaches identified both known and additional CFTR protein partners,

including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive

picture of the CFTR interactome and improved our knowledge of the CFTR environment.

Keywords: proximity labeling; cystic fibrosis; CFTR; SLC transporters; KCNK3; interactome

1. Introduction

Cystic fibrosis (CF), the most common monogenic life-threatening disease, is caused
by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene [1],
which encodes for a chloride channel located at the apical membrane of respiratory epithe-
lial cells [2].

CFTR protein partners have been intensively studied, enabling a better understanding
of the cellular processes leading to proper protein folding, its transport to the plasma
membrane, recycling and degradation. Numerous protein partners implicated in these
different steps have been identified (reviewed in this special edition [3]). They have of-
ten been identified based on the comparison between WT-CFTR and the CFTR-F508del
mutant [4,5], the most frequent CF-causing mutation, or other misfolded mutants [6,7].
These interactions occur in different cellular compartments, which correspond to different
steps in the CFTR biogenesis route. The first set of protein partners locates within the
endoplasmic reticulum and is mainly implicated in CFTR synthesis and folding (reviewed
in Refs. [8,9]). Some of them are implicated in the ER quality control (ERQC) of CFTR,
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recognizing misfolded channels and targeting them to proteasomal degradation. ERQC
includes different checkpoints involving both chaperones, e.g., calnexin, calreticulin, Hsp70
and their co-chaperones, and specific motifs located on CFTR, such as RXR motifs impli-
cated in ER retention and a diacidic exit code (DAD), which is involved in the recruitment
of CFTR cargo into vesicles budding form ER exit sites [10]. It has been proposed that
proper folding of CFTR reduces the accessibility to RXR motifs, favoring the ER exit of
correctly folded channels [10–12]. After complex glycosylation in the Golgi apparatus,
CFTR is exported to the plasma membrane where it associates with different types of
proteins, such as membrane anchoring proteins, which link the channel to the cytoskeleton,
or endosomal proteins implicated in the vesicular recycling of CFTR [3,13]. As in the ER,
a peripheral quality control system monitors protein quality and targets altered channels
to lysosomal degradation [14,15]. Finally, once at the cell surface, CFTR channel activity
is mainly regulated by phosphorylation of its regulatory domain [16]. Several kinases
participate in this regulation, mainly PKA [17,18] and, to a lesser extent, PKC [19,20] and
tyrosine kinases [21]. Recently, Mihalyi et al. showed that CFTR association with PKA
initiated conformational changes leading to channel activation, the phosphorylation of
specific residues being necessary to maintain the effect over time [22]. Similarly, a specific
protein–protein interaction between CFTR and WNK1 was recently shown to modulate
channel selectivity toward bicarbonate versus chloride ions [23], an effect independent of
the kinase activity of WNK1.

CFTR has also been shown to modulate the cell surface activity of other channels and
transporters, such as ENaC [24], ORCC [25], SLC26A9 [26–28], SLC26A3 [29] or SLC26A6 [30].
Co-activation of CFTR and SLC26 transporters was associated with direct interactions between
the STAS domain of SLC26 transporters and the R domain of CFTR [27,29]. The CFTR C-
terminal PDZ domain also plays a key role in protein–protein interactions at the plasma
membrane, anchoring CFTR to the cytoskeleton and enabling interactions with other PDZ
containing proteins via PDZ-binding proteins, such as NHERF1 [9].

The CFTR interactome appears to be location specific and highly dynamic, affecting
several steps in CFTR biogenesis, turnover and activity. Several approaches have been
used to identify CFTR partners, such as yeast two-hybrid screens and CFTR immunopre-
cipitation coupled to mass spectrometry. These strategies have provided detailed CFTR
interactome maps and are constantly improving. While yeast two-hybrid screens remain
challenging for transmembrane proteins. These strategies have provided detailed CFTR
interactome maps and are constantly improving. While, yeast two-hybrid screens remain
challenging for transmembrane proteins leading to the use of CFTR fragments as baits,
technological advances now enable to screen full-length CFTR in mammalian cells [31]
Immunoprecipitation approaches require cell lysis with detergents that may modify the
interactome compared to interactions taking place in a living cell [32–35]. Furthermore,
the specificity of the obtained interactomes depends on the availability and specificity of
antibodies as well as the experimental conditions.

To address these limiting aspects, new techniques have recently been developed
to label protein partners in a native environment. These include, among others, BioID,
TurboID and APEX2 proximity labeling enzymes [32–35], which are fused to the protein
of interest. BioID is an Escherichia coli biotin ligase, which biotinylates proteins on lysine
residues in a radius of approximately 10 nm. While the low activity of BioID usually
requires between 18 h to 24 h of labeling, the sequence optimization of the enzyme resulted
in a mutant ligase, called TurboID, characterized by enhanced enzymatic activity, reducing
the labeling time to 10 min [33]. Another strategy is based on APEX2, a peroxidase allowing
the labeling of protein partner electron-rich amino acid residues with a biotin derivative
(Biotin-Phenol) at a spatial resolution of approximately 20 nm [33,35]. The labeling reaction
is induced by adding H2O2 for a short period of time in living cells (1 min), providing a
snapshot of the proximal interactome.

In this study, we explored and compared CFTR interactomes using three proximity
labeling approaches, i.e., APEX2, BioID and TurboID. Experiments were performed in
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transiently transfected HEK293 cells to achieve high expression levels of fusion proteins
and facilitate mass spectrometry identification.

2. Results

2.1. Proximity Labeling Approaches

The coding sequences of BioID, TurboID and APEX2 were subcloned upstream of that
coding for CFTR to generate fusion proteins containing the enzymes at the N-terminus of
CFTR. A linker region consisting of five glycine-serine repeats (GS5) motifs was introduced
between BioID/APEX2/TurboID and CFTR to improve flexibility and to decrease CFTR
near-end crowding. The activity of these fusion proteins enabled the labeling of proteins
interacting with CFTR or proximal proteins within a radius of 10–20 nm, while distal
proteins or proteins separated by a membrane were not labeled (Figure 1A). The covalent
labeling of interacting and proximal proteins with biotin was not affected by cell lysis
procedures under denaturing conditions, such as with a RIPA buffer. Biotinylated proteins
were purified using streptavidin-coated beads, washed and eluted in denaturing Laemmli
buffer [35]. Samples were then digested and analyzed by mass spectrometry for protein
identification (Figure 1A). While the overall procedure was similar for the three fusion
proteins, some specificities exist, such as the length of labeling times (from 1 min to 18 h)
and the targeted amino acids (Lys versus Tyr/Trp/Cys, His) (Figure 1B). The peroxidase
activity of APEX2 requires biotin-phenol as a substrate and H2O2 addition to activate the
enzyme, while BioID and TurboID require a biotin pulse for labeling (Figure 1B).

Figure 1. Characterization of fusion proteins. (A) Schematic representation of the proximity labeling

strategy. Labeling enzymes were fused to the N-terminus of CFTR to biotin tag interacting and

proximal proteins, while distal proteins and proteins separated by a membrane were not tagged.

Labeled proteins were purified with streptavidin-coated beads and identified with mass spectrometry.

(B) Characteristics of the fused enzymes used in the study, indicating the type of activity, the size, the

recommended labeling time, the substrate used and the targeted amino acid.

2.2. Characterization of Fusion Proteins

N-terminal fusions of BioID, TurboID and APEX2 with CFTR WT were first analyzed
by Western blot. Untagged CFTR expressed in HEK293 cells was detected under the form
of two bands, one corresponding to core-glycosylated CFTR (band B), the second, more
diffuse band corresponding to fully glycosylated CFTR (band C). Fusion proteins showed
the same pattern and intensity, with a size shift increase of approximately 30 kDa compared
to WT CFTR due to the fusion of BioID, TurboID or APEX2 (Figure 2A). In addition to
their conserved maturation pattern, fusion proteins were active, as shown by a halide
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sensitive fluorescent assay following cAMP stimulation, in the presence of the VX-770
potentiator (Figure 2B). These results are consistent with previous studies, indicating that
the fusion of a GFP tag to the N-terminus of CFTR preserves the functional CFTR chloride
channels [36]. As BioID labeling requires a much longer incubation period (18–24 h), the
activity of BioID-CFTR fusion protein was measured after this longer biotin labeling. The
results revealed enhanced channel activity (Figure 2C), concomitant with greater amounts
of fully glycosylated BioID-CFTR in the Western blot analysis (Figure 2A). These results
indicate that biotinylation of CFTR or CFTR partners enhanced channel stability at this
prolonged time point.

−

Figure 2. Characterization of CFTR fusion proteins. (A) HEK293 cells are transfected with either

an empty vector (Mock), CFTR without fusion (CFTR) or CFTR fused with proximity labeling

enzymes (APEX2-CFTR, BioID-CFTR and TurboID-CFTR). For CFTR fusions with proximity labeling

enzymes, cells are either untreated (indicated as �) or treated under biotinylation-inducing conditions

(indicated as +) (see Materials and Methods). The upper panel corresponds to the detection of CFTR

with band B (white arrow head) and band C (gray arrow head). In the bottom panel, Tubulin was used

to assess equal loading. (B,C) Halide-sensitive YFP assay of fusion proteins measured in HEK293

transfected cells. The arrow indicates the time point of PBS NaI injection. Measures were performed

in control conditions (Control, black) after a 30 min incubation with cpt-AMPc/IBMX to activate

CFTR (AMPc, gray) or with cpt-AMPC/IBMX and 1 µM VX-770 (AMPc + VX-770, red). Cells were

also incubated with 10 mM biotin for 18 h (C) prior to measurements (Biotin, black and AMPc +

Biotin, green).
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2.3. Mass Spectrometry Identification

The labeling capacity of the fusion proteins was assessed in Western blots using
fluorescent streptavidin. Biotinylation by APEX2 was initiated in living cells pre-incubated
with Biotin-Phenol by the addition of H2O2 in the cell media for 1 min, while BioID
and TurboID labeling required a biotin pulse of 18–24 h and 10 min, respectively. Upon
the activation of APEX2, BioID or TurboID, a smear was visible, corresponding to CFTR
partners that were biotin labeled in transiently transfected HEK293 cells (Figure 3A). The
overall biotinylation intensity was similar between the different conditions, with notably
higher labeling of CFTR with BioID and TurboID compared to APEX2 and some differences
observed in the patterns (Figure 3A). Immunohistochemistry showed that the fusion
protein was enriched at the cell surface, where the highest level of biotinylation was visible
(Figure 3B). The diffusion of some biotinylated proteins within the cytoplasm reflected
most probably the mobility of the proteins within the cell.

Figure 3. MS identification of CFTR partners. (A) Western blot analysis of CFTR fusion proteins and

biotinylated proteins. The upper inlay was probed with CFTR antibody, while the lower was probed
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with streptavidin. Each labeling procedure was performed on both untagged and tagged CFTR, in

the same order. (B) Localization of APEX2-CFTR transfected CFBE cells. CFTR was identified using

CFTR antibody 24.1, biotinylated proteins using streptavidin-Alexa488 and nuclei using Hoechst

dye. (C,D) Volcano plots of APEX2-CFTR (C, n = 3 replicates) and TurboID-CFTR (D, n = 4 replicates)

versus matched non-transfected HEK293 cells (n = 3 and n = 4 replicates). APEX2-CFTR identified a

total of 3088 proteins and TurboID-CFTR a total of 3054 proteins, of which 1002 and 965, respectively,

are enriched compared to non-transfected controls. Blue dots indicate 433 proteins identified in both

sets (Student’s t-test; p-value < 0.01). (E) Fragmentation mass spectrum of CFTR peptide 1184–1199

aa with biotinylation located on K1189 (one example of the 14 biotinylated peptides found for CFTR).

(F) Position of the 14 biotinylated CFTR lysines identified in the TurboID-CFTR samples.

CFTR protein partners were identified using both APEX2 and TurboID labeling proce-
dures (see Materials and Methods). After labeling, cells were lysed and the biotinylated
proteins purified using streptavidin-coated beads. Mass spectrometry analysis of purified
biotinylated preys identified more than one peptide in 3088 proteins for the APEX2 and in
3054 proteins for the TurboID procedure (Supplementary Table). Among them, 1002 and
965, respectively, were enriched in positive samples as compared to the non-transfected
negative control (Student’s t-test, p-value < 0.01), and 433 proteins were found enriched
with both procedures (Figure 3C,D, blue dots).

Moreover, CFTR was found to be biotinylated as well, and multiple peptides carried
the modification (Figure 3E), confirming the specificity of the procedure and validating the
approach. Specifically, biotinylated lysine residues were located in the different cytoplasmic
regions of CFTR: N-terminus, NBD1, R-domain and NBD2 (Figure 3F), without any labeling
within or across the membranes.

2.4. Analysis of Proximal Datasets and Comparison to Biogrid

The two total datasets were then analyzed using the Significance Analysis of INTerac-
tome (SAINT) probabilistic scoring tool [37] to identify the high confident proximal partners
(FDR < 1%) for APEX2 (n = 1091) and TurboID (n = 939) (Figure 4A,B). The comparison of
these groups of high confident CFTR proximal partners identified 435 common proteins,
representing 39.7% of the APEX2 group and 46.3% of the TurboID group (Figure 4C).
We then compared the datasets to the Biogrid database (Figure 4D,E), which categorizes
interactants reported in the literature from low-throughput studies (LTPs, in green) on
specific CFTR interactants and from high-throughput experiments (HTPs, in dark gray)
corresponding to immunoprecipitation studies followed by mass spectrometry [4,38]. The
APEX2 and TurboID procedures identified a similar proportion of CFTR interactants found
by LTPs and HTPs. Interestingly, some interactants from LTPs that were not identified
previously by HTPs were detected by proximity labeling—10/48 proteins for APEX2 and
7/48 proteins for TurboID (Figure 4D,E). Of note, a large number of partners reported in
the LTPs (Figure 4A,B, in green) and LTP + HTP (Figure 4A,B, in orange) datasets were
part of the high confident proximal partners (FDR < 1%), while proteins in the HTP dataset
showed more dispersion (Figure 4A,B, in dark gray).

We then performed a gene ontology (GO) enrichment analysis of the 435 proteins
identified in both the APEX2 and TurboID datasets to delineate the cellular functions and
biological processes involved in CFTR biogenesis function or regulation. We observed
enrichments with terms associated with protein localization and intracellular vesicular
transport of CFTR (Figure 4F and Supplementary Figure S1A,B). One of the strongest
enrichments corresponded to SNAP receptor activity (Supplementary Figure S1B,C), which
is involved in membrane fusion during vesicular transport. Some of these SNAREs were
reported to interact with CFTR and to impact CFTR biogenesis [39]. Proteins associated
with small GTPases were also highly enriched, including regulators of the Rab small
GTPases (RAB11FIP1 and RAB3GAP2) involved in vesicular transport and effectors of
the RhoA signaling pathway (ROCK1/2) (Supplementary Figure S1B,C). This finding is
in agreement with previous studies reporting cross talks between the CFTR function or
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processing and the RhoA/ROCK pathway, including Refs. [40–42]. APEX2 and TurboID
proximity labeling also enabled the identification of interaction partners of CFTR folding,
including chaperones and proteins involved in the ubiquitination process (Supplementary
Figure S1B,C).

Figure 4. Analysis of proximal datasets and comparison to Biogrid. (A,B). The computational tool
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SAINT assigns confidence scores to protein–protein interaction. Analysis using SAINT of the datasets

obtained with the APEX2 ((A), n = 3 replicates, 4490 total proteins) or the TurboID ((B), n = 4, 3356 total

proteins) procedure. The X axis indicates the fold change of intensities for each individual interaction

compared to control purifications. CFTR partners also referenced in Biogrid database, either from

low-throughput (LTP, in green), high-throughput (HTP, in dark gray) or both (LTP + HTP, in orange)

studies are also indicated. (C) Venn diagram performed between APEX2 and TurboID datasets. A

FDR < 1% was used to identify high confident proximal partners (n = 1091 for APEX2 and n = 939

TurboID). (D,E) Venn diagram performed between APEX2 (D) and TurboID (E) datasets and CFTR

partners referenced in Biogrid database, either from low-throughput (LTP) or high-throughput (HTP)

studies. (F,G) Reactome enrichment analysis of the 435 proteins identified with both APEX2 and

TurboID procedures as high confident proximal partners (FDR < 1%) (F) or 335 specifically detected

using both APEX2 and TurboID but not referenced in Biogrid with, in green, terms associated with

solute transport (G).

We finally evaluated whether these approaches could reveal novel biological signaling
pathways or CFTR functions. We therefore searched for enrichments within a set of proteins
common to both APEX2 and TurboID but not yet described as interacting with CFTR in
the Biogrid database (N = 335 proteins). The Reactome database identified enrichment
for biological pathways associated with CFTR trafficking, as described with the previous
set (Figure 4F,G). Multiple terms associated with solute transport were also found to be
enriched, each of them containing SLC transporters (Figure 4G, in green). Detection of SLC
transporters was more efficient using APEX2 (n = 18) and especially TurboID (n = 34) as
compared to methods referenced in Biogrid (n = 11) (Supplementary Figure S1D). This is
also true for the global detection of transmembrane proteins, as TurboID detected almost
twice as many (30.6%) transmembrane proteins compared to APEX2 (16.2%) and the Biogrid
set (16.7%) (Supplementary Figure S1E).

2.5. Comparison of CFTR-WT Versus Mutant CFTR-G551D and -W1282X

In order to evaluate the impact of mutations on the dynamics of the CFTR network,
we compared the interactome of CFTR-WT with mutant CFTR-G551D and CFTR-W1282X.
These two mutations induce distinct functional defects. CFTR-G551D alters channel gat-
ing by affecting ATP binding and/or NBD dimerization while preserving the global ar-
chitecture and localization of the channel. Proximity labeling of CFTR-G551D showed
important similarities with CFTR-WT. A comparison of proteins identified in each repli-
cate showed few changes in the proximal interactome obtained with both APEX2 (22
out of 1966 proteins) and TurboID (9 out of 1654 proteins) (Student’s t-test, p-value < 0.1,
Supplementary Figure S2A,B). However, the gene set enrichment analysis (GSEA) indi-
cated an enrichment for some GO terms, indicative of enhanced proximity of CFTR to the
endoplasmic reticulum membrane (APEX2 dataset) or other GO terms associated with the
plasma membrane as well as the actin cytoskeleton (TurboID dataset). Nonetheless, among
the identified interacting proteins, no proximal partners appeared lost or gained for G551D
(Supplementary Figure S2C,D), which suggests that the CFTR interactome is minimally
perturbed for this mutant.

The W1282X mutation truncates part of NBD2 and the end C-terminus, which contains
the PDZ domain of the protein, leading to both protein instability and abrogation of channel
function. The differential interactome between WT and W1282X showed several differences
between the APEX2 and TurboID assays, with 101 and 280 proteins enriched (Student’s
t-test, p-value < 0.1) (Supplementary Figures S2E and Figure 5A). The gene enrichment
analysis for APEX2 indicated an enrichment of W1282X with mitochondria-associated terms
(Supplementary Figure S2F). For TurboID, the analysis indicated enrichment of proteins
related to the misfolding protein response (Supplementary Figure S3A,B) in addition to the
expected significant loss of terms related to the plasma membrane (Figure 5B). Additionally,
the Interprot domain enrichment analysis showed the expected drastic drop in the number
of proteins with a PDZ domain (Figure 5C). Among these proximal CFTR interacting
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partners, scaffolding proteins, such as SLC9A3R1 and SLC9A3R2 (NHERF1 and NHERF2),
were strongly reduced or lost with W1282X (Figure 5D). This loss of interaction was
particularly observed with the TurboID approach and, to a lesser extent, with the APEX2
approach (Figure 5D).

Figure 5. Analysis of TurboID-CFTR-W1282X proximal dataset. (A) Volcano plot of TurboID-CFTR-
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W1282X versus TurboID-CFTR-WT transfected HEK293 cells (n = 4 replicates, 1654 total proteins).

Blue dots indicate proteins identified as enriched in the W1282X sample (Student’s t-test, p-value < 0.1,

n = 120) and red dots in the WT sample (Student’s t-test, p-value < 0.1, n = 160). (B) GO enrichment

terms identified in TurboID-CFTR-W1282X. (C) Enrichment analysis of Pfam domain in proteins

enriched in TurboID-CFTR-WT compared to TurboID-CFTR-W1282X. (D) PDZ domain proteins

enriched in TurboID-CFTR high confident proximal partners (FDR < 1%), shown as dot plots with

ProHits-viz [43]. The color of each circle represents the intensity; the circle size indicates the relative

value of the intensity across APEX2 and TurboID and confidence in the measurement via colored edge.

2.6. Comparison of TurboID-CFTR and KCNK3-TurboID Interactomes

In order to highlight the protein partners, which specifically and selectively bind
to CFTR, we next compared the CFTR interactome with that of KCNK3. KCNK3 is a
pH-dependent, voltage-insensitive, background outward potassium channel, structurally
unrelated to CFTR but with similar biogenesis and final cell localization. It is formed by
protomers of four transmembrane domains, which dimerize to form the pore (Figure 6A).
A C-terminal KCNK3-TurboID fusion protein was generated, which maintained the same
activity as the untagged channel in whole-cell patch-clamp recordings performed in tran-
siently transfected HEK293 cells (data not shown). Proximity labeling was performed
with KCNK3-TurboID in HEK293 cells, and, as observed for TurboID-CFTR, a biotiny-
lated peptide was identified, corresponding to the modification of the amino acid residue
K320 (Figure 6A). Comparison with the TurboID-CFTR dataset (Figure 6B,C) showed the
presence of both common protein partners and proteins more specific to either CFTR
or KCNK3 (Student’s t-test, p-value < 0.01). Pathway enrichment analysis showed that
common partners were mainly involved in protein biogenesis with enriched terms asso-
ciated with Golgi vesicle transport and intracellular protein transport (Supplementary
Figure S4A). The analysis of proteins interacting specifically with CFTR indicated a strong
enrichment in terms associated with the plasma membrane and proteins containing a
PDZ binding domain (Figure 6B,D, orange, and Supplementary Figure S4B). However, the
strongest enrichments corresponded with terms associated with the activity of transporters
(Figure 6B,D, green), among which we found proteins belonging to three large families of
transporters: SLC transporters (Figure 6E), ATP transporters (Supplementary Figure S4B)
and ABC transporters (Supplementary Figure S4B). The 53 SLC proteins detected with
CFTR were completely absent in the KCNK3 interactome and partially lost with CFTR-
W1282X (Figure 6E). However, the effect was much smaller on ATP and ABC transporters
(Supplementary Figure S4B), suggesting a close proximity of CFTR with multiple SLCs.
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Figure 6. Comparison of TurboID-CFTR and KCNK3-TurboID proximity labeling. (A) Schematic

representation of KCNK3-TurboID topology. (B) Volcano of proteins identified in TurboID-CFTR and

KCNK3-TurboID conditions (n = 4 and n = 5 replicates, 3041 total proteins). Proteins enriched in the

CFTR sample (Student’s t-test, p-value < 0.01, n = 414) are in top right panel, and proteins enriched



Int. J. Mol. Sci. 2022, 23, 8937 12 of 19

in KCNK3 sample (Student’s t-test, p-value < 0.1, n = 137) are in top left panel. Green dots indicate

proteins identified as enriched in TurboID-CFTR samples associated with SLC transporters in the

GO: Molecular Function (D) and in orange enriched in PDZ/PDZ binding domain in the Interpro

domain analysis (Supplementary Figure S4B). (C) Venn diagram performed on TurboID-CFTR and

KCNK3-TurboID partners. (D) GO enrichment terms identified in TurboID-CFTR Molecular Function

(GO: MF). (E) SLC members detected in at least one condition as high confident partners (FDR < 1%)

are shown as dot plots with ProHits-viz [43]. The color of each circle represents the intensity; the

circle size indicates the relative value of the intensity across APEX2 and TurboID and confidence in

the measurement via colored edge.

3. Discussion

Novel techniques based on proximity biotin labeling provide a snapshot of the CFTR
environment with both direct binding partners and proximal non-interacting proteins.

Covalent biotin binding to specific amino acid residues can affect their post-
transcriptional modification and/or their conformation. This could explain the results
obtained with BioID-CFTR, where 18 h labeling led to the increase in both CFTR activity
and concentration (Figure 2C). It is possible that biotinylation on specific lysine residues
prevents their ubiquitination and, consequently, CFTR trafficking and degradation. CFTR
ubiquitination on multiple lysine residues was reported by several teams [44,45]. Some
ubiquitinated lysines were identified by mass spectrometry after TurboID assays (e.g., K536,
K698, K710, K716, K793, K1250). The stabilization of both the bait and interacting partners
upon biotinylation has been reported in other contexts [46]. This probably also occurs
during the 10 min labeling with TurboID, possibly affecting CFTR behavior but to a lesser
extent. CFTR biotinylation and/or stabilization could alter the interactome, preventing
some interactions or inducing interactions that do not normally occur.

Both TurboID and APEX2 approaches identified multiple proteins associated with
CFTR. In our study, APEX2 and TurboID identified a similar total number of proteins, and
around 50% of the proteins were identified by the two methods. Label-free quantifications
(LFQ) of proteins identified with both procedures were comparable and the CFTR protein
intensity similar (Supplementary Figure S5A). Principal component analysis (PCA) of the
APEX2 datasets showed experiment-dependent clustering, a feature not observed with the
TurboID dataset (Supplementary Figure S5B) or when performing analysis between the
CFTR mutants (Supplementary Figure S5C). Differences between the two approaches could
be related to the reactivity of the Biotin-phenol, its diffusion radius or the usage of H2O2

(Figure 1B). It has been reported that different organelles with distinct pH, redox environ-
ments and endogenous nucleophile concentrations may influence the proximity ligation
activity [34]. The subcellular distribution of the different datasets was explored using Sub-
cellulaRVis, which calculates enrichment for 14 subcellular compartments (Supplementary
Figure S6). Differences between APEX2 and TurboID showed that APEX2 had a stronger
enrichment for proteins associated with the cytoplasm and the cytoskeleton, while TurboID
showed higher enrichments for proteins associated with the endoplasmic reticulum and
the Golgi apparatus. Few differences were observed between the two methods for plasma
membrane proteins or intracellular vesicles. However, these observations cannot explain
the totality of the differences between the two methods. Additionally, labeling is based on
the covalent binding of biotin to specific amino acid residues, which may be more or less
accessible under native conditions. Of note, the 10 min biotinylation pulse in the TurboID
procedure can be prolonged to increase the number of proteins identified but can possibly
affect protein synthesis or degradation and enhance non-specific background.

The CFTR interactome has been extensively studied by co-immunoprecipitation (co-IP)
coupled with mass spectrometry [4]. Differences between biotin labeling approaches and
co-IPs include the necessity to fuse the biotin ligase (or peroxidase) to the protein of interest.
The fusion procedure can alter protein expression, folding and function, parameters that
need to be evaluated. Even if tagged and untagged CFTR showed similar maturation and
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function (Figure 2A), the accessibility to the N-terminal region could be affected due to
steric hindrances caused by the fused protein. In CFTR, the N-terminal region was shown
to be engaged in interactions with Filamin A [47], syntaxins [39,48–50] and WNK1 [23].
Only around half of the partners identified by co-IP were also identified with TurboID
or APEX2 approaches. A major difference between the two approaches is the labeling
of both transient partners and non-interacting but proximal proteins, which might not
be co-immunoprecipitated. Of note, around half of the identified proteins were unique
to each method (547 out of 1095 for APEX2, 446 out of 941 for TurboID and 466 out of
729 for coIP). In the same line, the recently developed MaMTH-HTS method, which used
full-length CFTR-WT as a bait to screen a library of around 10,000 ORF [31], only marginally
overlapped with proximity labeling or co-IP. Another important issue is the cell type used.
In this study, transiently transfected HEK293 cells were used to achieve high expression
levels. It has to be kept in mind that overexpression can affect CFTR interactome and that
partners specific to lung epithelial cells or pancreatic duct cells where CFTR is endogenously
expressed may be absent in HEK293 cells. It appears that combining different approaches
and cell types is necessary to obtain a full picture of CFTR interactome, to feed the databases
and provide a better understanding of the CFTR environment.

Compared to co-IP (HTS dataset), proximity labeling (especially with TurboID) iden-
tified a greater proportion of transmembrane proteins, such as transporters, and more
specifically, SLC transporters (Supplementary Figure S1D,E). This probably reflects both
the difficulty in preserving membrane protein complexes using detergents in the co-IP
procedure and the labeling of non-interacting but proximal proteins, which might not
be co-immunoprecipitated. Functional co-regulation between CFTR and members of the
SLC26 subfamily was found to involve a direct protein–protein interaction between the
STAS domain of SLC26 transporters and the R domain of CFTR [27,29]. In this “special
issue”, CFTR biogenesis and stability were shown to be affected by SLC26A9 expression
levels [26]. As many of the SLC transporters identified (Figure 6E) do not contain a STAS
domain, it can be speculated that other domains could be involved, which still need to
be identified. Alternatively, proximity could be driven by localization in particular sub-
cellular compartments or the sharing of common pathways during protein biogenesis.
While structurally unrelated, it is plausible that these large transmembrane transporters
require specific protein complexes for their proper folding and expression at the cell surface.
Finally, both CFTR [51,52] and some SLCs [53,54] have been identified within and outside
sphingolipid- and cholesterol-rich lipid nanodomains (or lipid rafts), raising the possibility
of defining specific regions where these transporters are in close proximity. Taken together,
the close proximity between CFTR and SLC transporters should be further explored.

Finally, the comparisons between WT and mutant CFTR showed that multiple interact-
ing partners were nevertheless preserved. CFTR-G551D showed very few differences with
CFTR-WT, consistent with a global preservation of the channel structure and localization.
As reported in a previous study [55], some GO enrichments were identified, suggesting
a higher affinity of G551D for the actin network compared to CFTR WT. Another report
showed multiple differences between WT and G551D [7] not found here. These discrep-
ancies will need further studies and could be linked, in part, to different cell types used,
CFBE41o- [7] versus HEK293 in our study, or HeLa cells [55]. CFTR-W1282X, which lacks
part of NBD2 and the C-terminus of the protein, showed more differences, including,
as expected, the PDZ binding proteins and proteins associated with protein misfolding.
Protein misfolding is consistent with the stabilizing effect of the corrector VX-445 observed
on CFTR-W1282X upon inhibition of nonsense-mediated decay [56].

The importance of the identified proximal proteins to CFTR biogenesis and function
needs to be functionally evaluated, as their labeling could only reflect common cellular
processes and localization within the same cellular subdomain. When comparing CFTR
and KCNK3 interactomes, many proteins were identified in both sets, revealing common
biogenesis pathways and localization. Nonetheless, clear differences were observed for sets
of proteins that were enriched in CFTR samples, such as PDZ containing proteins (KCNK3
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lacks a PDZ binding domain) and SLC transporters. For the latter, CFTR was found to
be in the vicinity of multiple SLC transporters, some of which have been found to be
functionally co-regulated with CFTR [27,29] or influence CFTR biogenesis [26]. This result
indicates that while undergoing the same biogenesis pathways and localizing in the same
compartments, these two channels are associated preferentially with distinct protein sets.
The comparison of interactomes from specific channels or channel families could enable
identifying signatures associated with their localization, function or regulatory pathways.

In conclusion, our study provides evidence that the various approaches developed for
interactomic studies can each identify unique proteins and therefore should be combined
to obtain a more complete picture of the CFTR interactome.

4. Materials and Methods

4.1. Plasmid Constructs

CFTR fusion constructs were obtained by PCR assembly (NEBuilder HiFi DNA Assem-
bly, NEB, Évry-Courcouronnes, France) in the expression vector pLenti-III digested with
NheI and XbaI. The assembly was performed for each construct to the digested pLIII plas-
mid with 3 fragments: a fragment obtained by PCR amplification (Q5® High-Fidelity, NEB,
Évry-Courcouronnes, France) of proximity labeling enzymes (APEX2, BioID or TurboID),
a synthetic fragment corresponding to the GS5 linker and the N-terminal part of CFTR
(Eurofins Genomics, Les Ulis, France), a second fragment obtained by PCR amplification of
CFTR-WT or its mutants (amplification of the BlpI site up to the CFTR stop codon). The
template BioID plasmid was obtained from Morgan Gallazzini, (Institut Necker Enfants
Malades Paris France), APEX2 from Jacques Camonis, (Institut Curie Paris France); V5-
TurboID-NES_pcDNA3 and C1(1-29)-TurboID-V5_pCDNA3 were a gift from Alice Ting
(Addgene plasmid #107173 and #107173).

All plasmids obtained were entirely sequenced (Eurofins Genomic, Les Ulis, France).
KCNK3 were obtained by PCR assembly using as template C1(1-29)-TurboID-V5_pCDNA3.

4.2. Cell Culture and Transfection

HEK293 cells were purchased from ATCC and cultivated in DMEM medium supple-
mented with 10% fetal calf serum (Thermo Fisher Scientific, Illkirch-Graffenstaden, France).
Cells were maintained at 37 �C, 5% CO2. For the functional assay, cells were co-transfected
with equal amount of halide-sensitive YFP and CFTR plasmids using Turbofect (Thermo
Fisher Scientific, Illkirch-Graffenstaden, France). For Western blot analysis and mass spec-
trometry analysis, cells were transfected with CFTR plasmids using Lipofectamine 3000,
following instructions (Thermo Fisher Scientific, Illkirch-Graffenstaden, France).

4.3. Western Blot Analysis

The transfected cells were lysed in RIPA buffer containing protease inhibitors (Roche
Life Science, Basel, Switzerland), and protein concentration was assessed using RcDc
assay (BioRad, Marnes-la-Coquette, France). Western blot analysis was performed using
60 µg of protein from each sample separated on a 7% acrylamide gel. After transfer
onto nitrocellulose membranes, CFTR was probed using antibody 660 (Cystic Fibrosis
Foundation, Chapel Hill, NC, USA), and equal loading was assessed using anti-tubulin
(SantaCruz, Dallas, TX, USA).

4.4. Halide-Sensitive Functional Assay

CFTR activity was measured in transiently transfected HEK293 cells using the halide-
sensitive yellow fluorescent protein YFP-H148Q/I152L [57]. The day after transfection,
cells were transferred to poly-L-lysine-coated 96-well black/clear bottom microplates. After
24 h, plates were washed with PBS, and each well was incubated for 30 min with 100 µL of
PBS containing cpt-AMPc (100 µM) and IBMX (100 µM) (Sigma-Aldrich, Saint-Quentin-
Fallavier, France). Plates were then transferred to a ClarioStar plate reader (BMG Labtech,
Ortenberg, Germany) equipped with an injector, which enabled the continuous recording
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of fluorescence during the injection. After 5 s, 200 µL of PBS-NaI (PBS solution where NaCl
is replaced with NaI) was injected.

4.5. Proximity Labeling

HEK293 cells were transiently transfected for 48 h in 10 cm diameter poly-L-lysine-
coated dishes. Biotinylation was induced by adding biotin (Thermo Fisher Scientific,
Illkirch-Graffenstaden, France) to the medium at 37 �C for 10 min (TurboID, 500 µM
biotin) or 18 h (BioID, 50 µM biotin). For APEX2, the cells were pre-incubated for 30 min
at 37 �C with Biotin-Phenol (500 µM, Iris Biotech, Marktredwitz, Germany), and the
peroxidase activity was activated by the addition of H2O2 at a final concentration of 1 mM.
The reaction was then quenched by the addition of quenching buffer (10 mM sodium
azide, 10 mM sodium ascorbate and 5 mM Trolox, Sigma-Aldrich, Saint-Quentin-Fallavier,
France). Cells were washed several times with PBS+ at 4 �C before being harvested
and centrifuged. Lysis and streptavidin pull-down steps were performed, as previously
described by Hung et al. [35].

4.6. NanoLC-MS/MS Protein Identification and Quantification

S-TrapTM micro spin column (Protifi, Farmingdale, NY, USA) digestion was performed
on streptavidin eluates in 4⇥ Laemmli buffer according to the manufacturer’s protocol
but with 2 extra washing steps for thorough SDS elimination. Samples were digested
with 2 µg of trypsin (Promega, Charbonnières-les-Bains, France) at 47 �C for 1 h 30 min.
After elution, peptides were finally vacuum dried down and resuspended in 35 µL of 10%
ACN and 0.1% TFA in HPLC-grade water prior to MS analysis. For each run, 5 µL was
injected in a nanoRSLC-Q Exactive PLUS (RSLC Ultimate 3000) (Thermo Scientific, Illkirch-
Graffenstaden, France). Peptides were loaded onto a µ-precolumn (Acclaim PepMap 100
C18, cartridge, 300 µm i.d. ⇥ 5 mm, 5 µm) (Thermo Scientific, Illkirch-Graffenstaden,
France) and were separated on a 50 cm reversed-phase liquid chromatographic column
(0.075 mm ID, Acclaim PepMap 100, C18, 2 µm) (Thermo Scientific, Illkirch-Graffenstaden,
France). The chromatography solvents were (A) 0.1% formic acid in water and (B) 80%
acetonitrile, 0.08% formic acid. Peptides were eluted from the column with the following
gradients: 5% to 40% B (120 min), 40% to 80% (1 min). At 121 min, the gradient stayed at 80%
for 5 min, and at 127 min, it returned to 5% to re-equilibrate the column for 20 min before
the next injection. One blank was run between each series to prevent sample carryover.
Peptides eluting from the column were analyzed by data-dependent MS/MS, using the
top-10 acquisition method. Peptides were fragmented using higher-energy collisional
dissociation (HCD). Briefly, the instrument settings were as follows: the resolution was set
to 70,000 for MS scans and 17,500 for the data-dependent MS/MS scans in order to increase
speed. The MS AGC target was set to 3.106 counts with a maximum injection time set to
200 ms, while the MS/MS AGC target was set to 1.105 with a maximum injection time set
to 120 ms. The MS scan range was from 400 to 2000 m/z.

4.7. Data Processing Following LC-MS/MS Acquisition

The MS files were processed with the MaxQuant software version 2.0.1.0 and searched
with the Andromeda search engine against the database of Homo sapiens from Swiss-Prot
04/2020. To search for parent mass and fragment ions, we set an initial mass deviation of
4.5 ppm and 20 ppm, respectively. The minimum peptide length was set to 7 amino acids,
and strict specificity for trypsin cleavage was required, allowing up to two missed cleav-
age sites. Carbamidomethylation (Cys) was set as fixed modification, whereas oxidation
(Met) and N-term acetylation were set as variable modifications. For APEX2, biotinylation
(H23C18N3O3S) was set as variable modification on any tyrosine, tryptophane and his-
tidine, and for TurboID, biotinylation (H14C10N2O2S) was set as variable modification
on any lysine. A match between the runs was allowed. LFQ minimum ratio count was
set to 2. The false discovery rates (FDRs) at the protein and peptide levels were set to
1%. Scores were calculated in MaxQuant, as described previously [58]. The reverse and
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common contaminants hits were removed from the MaxQuant output. Proteins were
quantified according to the MaxQuant label-free algorithm using LFQ intensities [58,59].
Fragmentation visualization spectra were also extracted using the MQviewer integrated in
the Maxquant software.

4.8. Data Processing and Statistical Analysis

Three to five independent experiments of HEK293 cells transfected with untagged
CFTR, APEX2-CFTR-WT, TurboID-CFTR-WT, TurboID-CFTR-G551D, TurboID-CFTR-
W1282X and KCNK3-TurboID were analyzed with Perseus software (version 1.6.15.0)
freely available at www.perseus-framework.org [59]. The label-free quantification (LFQ)
data were transformed in log2, and the Significance Analysis of INTeractome (SAINT [37];
https://reprint-apms.org/) was used for the identification of the proximal partners of
CFTR on the raw MS files. Comparisons between CFTR mutants and the WT condition
were performed with R software (version 4.1.0) based on the label-free quantification
(LFQ) log2-transformed data. All proteins identified in all replicates of all conditions were
subjected to Student’s t-test without correction for multiple testing. Where applicable,
LogFC were shown as means, and p-values of less than 0.01 or 0.1 were considered. For
CFTR comparison with KCNK3, the p-value was set at <0.01, since large differences were
expected. For mutant comparison, since the differences were smaller, we lowered the strin-
gency to a p-value of <0.1. The gene ontology enrichment calculations and lollipop graphs
were generated with the ShinyGO v0.741 tool (http://bioinformatics.sdstate.edu/go74/
(accessed on February 2022)) [60].

Supplementary Materials: The following supporting information can be downloaded at: https://

www.mdpi.com/article/10.3390/ijms23168937/s1.

Author Contributions: Conceptualization, B.C., A.E. and A.H.; Data curation, B.C., M.N., V.J., F.A.

and I.C.G.; Formal analysis, B.C., M.N., V.J., I.P., I.C.G. and A.H.; Funding acquisition, V.S., S.M., I.S.-G.

and A.H.; Investigation, B.C., N.B., S.C., V.J., I.P., A.G. and F.A.; Methodology, B.C., N.B., S.C., V.J.,

A.G., I.C.G. and A.H.; Project administration, A.H.; Software, M.N.; Supervision, V.S., I.C.G., I.S.-G.,

A.E. and A.H.; Validation, B.C., F.A. and A.H.; Visualization, B.C., I.C.G. and A.H.; Writing—original

draft, B.C. and A.H.; Writing—Review and editing, B.C., M.N., I.P., V.S., S.M., F.A., I.C.G., I.S.-G., A.E.

and A.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by institutional grants from the INSERM, the CNRS and the

Université de Paris, by the ANR ANR-18-CE14-0004-02 grant to S.M. and A.H., the “Vaincre la

Mucoviscidose” RF20190502488 to M.N., RF20180502264 and RF20210502867 to A.H., Fondation

Dassault Systèmes to B.C., the “Association pour l’Aide à la Recherche contre la Mucoviscidose

(AARM)” and the “Mucoviscidose: ABCF2” to I.S.-G.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The mass spectrometry proteomics data were deposited to the Pro-

teomeXchange Consortium via the PRIDE [61] partner repository with the dataset identifier PXD035184,

and the protein interactions were submitted to the IMEx (http://www.imexconsortium.org) consor-

tium through IntAct [62] and assigned the identifier IM-29540.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Riordan, J.R.; Rommens, J.M.; Kerem, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.L.

Identification of the Cystic Fibrosis Gene: Cloning and Characterization of Complementary DNA. Science 1989, 245, 1066–1073.

[CrossRef]

2. Kreda, S.M.; Mall, M.; Mengos, A.; Rochelle, L.; Yankaskas, J.; Riordan, J.R.; Boucher, R.C. Characterization of Wild-Type

and DeltaF508 Cystic Fibrosis Transmembrane Regulator in Human Respiratory Epithelia. Mol. Biol. Cell 2005, 16, 2154–2167.

[CrossRef] [PubMed]



Int. J. Mol. Sci. 2022, 23, 8937 17 of 19

3. Farinha, C.M.; Gentzsch, M. Revisiting CFTR Interactions: Old Partners and New Players. Int. J. Mol. Sci. 2021, 22, 13196.

[CrossRef] [PubMed]

4. Pankow, S.; Bamberger, C.; Calzolari, D.; Martínez-Bartolomé, S.; Lavallée-Adam, M.; Balch, W.E.; Yates, J.R. ∆F508 CFTR

Interactome Remodelling Promotes Rescue of Cystic Fibrosis. Nature 2015, 528, 510–516. [CrossRef]

5. Davezac, N.; Tondelier, D.; Lipecka, J.; Fanen, P.; Demaugre, F.; Debski, J.; Dadlez, M.; Schrattenholz, A.; Cahill, M.A.; Edelman,

A. Global Proteomic Approach Unmasks Involvement of Keratins 8 and 18 in the Delivery of Cystic Fibrosis Transmembrane

Conductance Regulator (CFTR)/DeltaF508-CFTR to the Plasma Membrane. Proteomics 2004, 4, 3833–3844. [CrossRef] [PubMed]

6. Ramalho, S.S.; Silva, I.A.L.; Amaral, M.D.; Farinha, C.M. Rare Trafficking CFTR Mutations Involve Distinct Cellular Retention

Machineries and Require Different Rescuing Strategies. Int. J. Mol. Sci. 2021, 23, 24. [CrossRef] [PubMed]

7. Hutt, D.M.; Loguercio, S.; Campos, A.R.; Balch, W.E. A Proteomic Variant Approach (ProVarA) for Personalized Medicine of

Inherited and Somatic Disease. J. Mol. Biol. 2018, 430, 2951–2973. [CrossRef]

8. Estabrooks, S.; Brodsky, J.L. Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int. J.

Mol. Sci. 2020, 21, 452. [CrossRef]

9. Farinha, C.M.; Canato, S. From the Endoplasmic Reticulum to the Plasma Membrane: Mechanisms of CFTR Folding and

Trafficking. Cell. Mol. Life Sci. 2017, 74, 39–55. [CrossRef]

10. Wang, X.; Matteson, J.; An, Y.; Moyer, B.; Yoo, J.-S.; Bannykh, S.; Wilson, I.A.; Riordan, J.R.; Balch, W.E. COPII-Dependent Export

of Cystic Fibrosis Transmembrane Conductance Regulator from the ER Uses a Di-Acidic Exit Code. J. Cell Biol. 2004, 167, 65–74.

[CrossRef]

11. Roxo-Rosa, M.; Xu, Z.; Schmidt, A.; Neto, M.; Cai, Z.; Soares, C.M.; Sheppard, D.N.; Amaral, M.D. Revertant Mutants G550E and

4RK Rescue Cystic Fibrosis Mutants in the First Nucleotide-Binding Domain of CFTR by Different Mechanisms. Proc. Natl. Acad.

Sci. USA 2006, 103, 17891–17896. [CrossRef] [PubMed]

12. Hegedus, T.; Aleksandrov, A.; Cui, L.; Gentzsch, M.; Chang, X.-B.; Riordan, J.R. F508del CFTR with Two Altered RXR Motifs

Escapes from ER Quality Control but Its Channel Activity Is Thermally Sensitive. Biochim. Biophys. Acta 2006, 1758, 565–572.

[CrossRef] [PubMed]

13. Fukuda, R.; Okiyoneda, T. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitylation as a Novel Pharmaceu-

tical Target for Cystic Fibrosis. Pharmaceuticals 2020, 13, 75. [CrossRef]

14. Okiyoneda, T.; Barrière, H.; Bagdány, M.; Rabeh, W.M.; Du, K.; Höhfeld, J.; Young, J.C.; Lukacs, G.L. Peripheral Protein Quality

Control Removes Unfolded CFTR from the Plasma Membrane. Science 2010, 329, 805–810. [CrossRef]

15. Apaja, P.M.; Xu, H.; Lukacs, G.L. Quality Control for Unfolded Proteins at the Plasma Membrane. J. Cell Biol. 2010, 191, 553–570.

[CrossRef] [PubMed]

16. Csanády, L.; Vergani, P.; Gadsby, D.C. Structure, Gating, and Regulation of the CFTR Anion Channel. Physiol. Rev. 2019, 99,

707–738. [CrossRef]

17. Della Sala, A.; Prono, G.; Hirsch, E.; Ghigo, A. Role of Protein Kinase A-Mediated Phosphorylation in CFTR Channel Activity

Regulation. Front. Physiol. 2021, 12, 690247. [CrossRef]

18. Chin, S.; Hung, M.; Bear, C.E. Current Insights into the Role of PKA Phosphorylation in CFTR Channel Activity and the

Pharmacological Rescue of Cystic Fibrosis Disease-Causing Mutants. Cell. Mol. Life Sci. 2017, 74, 57–66. [CrossRef]

19. Seavilleklein, G.; Amer, N.; Evagelidis, A.; Chappe, F.; Irvine, T.; Hanrahan, J.W.; Chappe, V. PKC Phosphorylation Modulates

PKA-Dependent Binding of the R Domain to Other Domains of CFTR. Am. J. Physiol. Cell Physiol. 2008, 295, C1366–C1375.

[CrossRef]

20. Chappe, V.; Hinkson, D.A.; Howell, L.D.; Evagelidis, A.; Liao, J.; Chang, X.-B.; Riordan, J.R.; Hanrahan, J.W. Stimulatory and

Inhibitory Protein Kinase C Consensus Sequences Regulate the Cystic Fibrosis Transmembrane Conductance Regulator. Proc.

Natl. Acad. Sci. USA 2004, 101, 390–395. [CrossRef]

21. Billet, A.; Luo, Y.; Balghi, H.; Hanrahan, J.W. Role of Tyrosine Phosphorylation in the Muscarinic Activation of the Cystic Fibrosis

Transmembrane Conductance Regulator (CFTR). J. Biol. Chem. 2013, 288, 21815–21823. [CrossRef] [PubMed]

22. Mihályi, C.; Iordanov, I.; Töröcsik, B.; Csanády, L. Simple Binding of Protein Kinase A Prior to Phosphorylation Allows CFTR

Anion Channels to Be Opened by Nucleotides. Proc. Natl. Acad. Sci. USA 2020, 117, 21740–21746. [CrossRef] [PubMed]

23. Kim, Y.; Jun, I.; Shin, D.H.; Yoon, J.G.; Piao, H.; Jung, J.; Park, H.W.; Cheng, M.H.; Bahar, I.; Whitcomb, D.C.; et al. Regulation of

CFTR Bicarbonate Channel Activity by WNK1: Implications for Pancreatitis and CFTR-Related Disorders. Cell. Mol. Gastroenterol.

Hepatol. 2020, 9, 79–103. [CrossRef] [PubMed]

24. Reddy, M.M.; Quinton, P.M. Functional Interaction of CFTR and ENaC in Sweat Glands. Pflug. Arch. 2003, 445, 499–503.

[CrossRef]

25. Schwiebert, E.M.; Benos, D.J.; Egan, M.E.; Stutts, M.J.; Guggino, W.B. CFTR Is a Conductance Regulator as Well as a Chloride

Channel. Physiol. Rev. 1999, 79, S145–S166. [CrossRef]

26. Pinto, M.C.; Quaresma, M.C.; Silva, I.A.L.; Railean, V.; Ramalho, S.S.; Amaral, M.D. Synergy in Cystic Fibrosis Therapies:

Targeting SLC26A9. Int. J. Mol. Sci. 2021, 22, 13064. [CrossRef]

27. Bakouh, N.; Bienvenu, T.; Thomas, A.; Ehrenfeld, J.; Liote, H.; Roussel, D.; Duquesnoy, P.; Farman, N.; Viel, M.; Cherif-Zahar, B.;

et al. Characterization of SLC26A9 in Patients with CF-like Lung Disease. Hum. Mutat. 2013, 34, 1404–1414. [CrossRef]



Int. J. Mol. Sci. 2022, 23, 8937 18 of 19

28. Bertrand, C.A.; Mitra, S.; Mishra, S.K.; Wang, X.; Zhao, Y.; Pilewski, J.M.; Madden, D.R.; Frizzell, R.A. The CFTR Trafficking

Mutation F508del Inhibits the Constitutive Activity of SLC26A9. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 312, L912–L925.

[CrossRef]

29. Ko, S.B.H.; Zeng, W.; Dorwart, M.R.; Luo, X.; Kim, K.H.; Millen, L.; Goto, H.; Naruse, S.; Soyombo, A.; Thomas, P.J.; et al. Gating

of CFTR by the STAS Domain of SLC26 Transporters. Nat. Cell Biol. 2004, 6, 343–350. [CrossRef]

30. Wang, Y.; Soyombo, A.A.; Shcheynikov, N.; Zeng, W.; Dorwart, M.; Marino, C.R.; Thomas, P.J.; Muallem, S. Slc26a6 Regulates

CFTR Activity in Vivo to Determine Pancreatic Duct HCO3� Secretion: Relevance to Cystic Fibrosis. EMBO J. 2006, 25, 5049–5057.

[CrossRef]

31. Lim, S.H.; Snider, J.; Birimberg-Schwartz, L.; Ip, W.; Serralha, J.C.; Botelho, H.M.; Lopes-Pacheco, M.; Pinto, M.C.; Moutaoufik,

M.T.; Zilocchi, M.; et al. CFTR Interactome Mapping Using the Mammalian Membrane Two-Hybrid High-Throughput Screening

System. Mol. Syst. Biol. 2022, 18, e10629. [CrossRef] [PubMed]

32. Roux, K.J.; Kim, D.I.; Raida, M.; Burke, B. A Promiscuous Biotin Ligase Fusion Protein Identifies Proximal and Interacting Proteins

in Mammalian Cells. J. Cell Biol. 2012, 196, 801–810. [CrossRef] [PubMed]

33. Hung, V.; Zou, P.; Rhee, H.-W.; Udeshi, N.D.; Cracan, V.; Svinkina, T.; Carr, S.A.; Mootha, V.K.; Ting, A.Y. Proteomic Mapping

of the Human Mitochondrial Intermembrane Space in Live Cells via Ratiometric APEX Tagging. Mol. Cell 2014, 55, 332–341.

[CrossRef] [PubMed]

34. Branon, T.C.; Bosch, J.A.; Sanchez, A.D.; Udeshi, N.D.; Svinkina, T.; Carr, S.A.; Feldman, J.L.; Perrimon, N.; Ting, A.Y. Efficient

Proximity Labeling in Living Cells and Organisms with TurboID. Nat. Biotechnol. 2018, 36, 880–887. [CrossRef] [PubMed]

35. Hung, V.; Udeshi, N.D.; Lam, S.S.; Loh, K.H.; Cox, K.J.; Pedram, K.; Carr, S.A.; Ting, A.Y. Spatially Resolved Proteomic Mapping

in Living Cells with the Engineered Peroxidase APEX2. Nat. Protoc. 2016, 11, 456–475. [CrossRef]

36. Moyer, B.D.; Loffing, J.; Schwiebert, E.M.; Loffing-Cueni, D.; Halpin, P.A.; Karlson, K.H.; Ismailov, I.I.; Guggino, W.B.; Lang-

ford, G.M.; Stanton, B.A. Membrane Trafficking of the Cystic Fibrosis Gene Product, Cystic Fibrosis Transmembrane Conductance

Regulator, Tagged with Green Fluorescent Protein in Madin-Darby Canine Kidney Cells. J. Biol. Chem. 1998, 273, 21759–21768.

[CrossRef]

37. Choi, H.; Larsen, B.; Lin, Z.-Y.; Breitkreutz, A.; Mellacheruvu, D.; Fermin, D.; Qin, Z.S.; Tyers, M.; Gingras, A.-C.; Nesvizhskii, A.I.

SAINT: Probabilistic Scoring of Affinity Purification-Mass Spectrometry Data. Nat. Methods 2011, 8, 70–73. [CrossRef]

38. Wang, X.; Venable, J.; LaPointe, P.; Hutt, D.M.; Koulov, A.V.; Coppinger, J.; Gurkan, C.; Kellner, W.; Matteson, J.; Plutner, H.; et al.

Hsp90 Cochaperone Aha1 Downregulation Rescues Misfolding of CFTR in Cystic Fibrosis. Cell 2006, 127, 803–815. [CrossRef]

39. Tang, B.L.; Gee, H.Y.; Lee, M.G. The Cystic Fibrosis Transmembrane Conductance Regulator’s Expanding SNARE Interactome.

Traffic 2011, 12, 364–371. [CrossRef]

40. Zhao, L.; Yuan, F.; Pan, N.; Yu, Y.; Yang, H.; Liu, Y.; Wang, R.; Zhang, B.; Wang, G. CFTR Deficiency Aggravates Ang II Induced

Vasoconstriction and Hypertension by Regulating Ca2+ Influx and RhoA/Rock Pathway in VSMCs. Front. Biosci. 2021, 26,

1396–1410. [CrossRef]

41. Huang, W.; Tan, M.; Wang, Y.; Liu, L.; Pan, Y.; Li, J.; Ouyang, M.; Long, C.; Qu, X.; Liu, H.; et al. Increased Intracellular Cl-

Concentration Improves Airway Epithelial Migration by Activating the RhoA/ROCK Pathway. Theranostics 2020, 10, 8528–8540.

[CrossRef] [PubMed]

42. Castellani, S.; Guerra, L.; Favia, M.; Di Gioia, S.; Casavola, V.; Conese, M. NHERF1 and CFTR Restore Tight Junction Organisation

and Function in Cystic Fibrosis Airway Epithelial Cells: Role of Ezrin and the RhoA/ROCK Pathway. Lab. Investig. 2012, 92,

1527–1540. [CrossRef] [PubMed]

43. Knight, J.D.R.; Choi, H.; Gupta, G.D.; Pelletier, L.; Raught, B.; Nesvizhskii, A.I.; Gingras, A.-C. ProHits-Viz: A Suite of Web Tools

for Visualizing Interaction Proteomics Data. Nat. Methods 2017, 14, 645–646. [CrossRef] [PubMed]

44. Pankow, S.; Bamberger, C.; Yates, J.R. A Posttranslational Modification Code for CFTR Maturation Is Altered in Cystic Fibrosis.

Sci. Signal 2019, 12, eaan7984. [CrossRef]

45. Lee, S.; Henderson, M.J.; Schiffhauer, E.; Despanie, J.; Henry, K.; Kang, P.W.; Walker, D.; McClure, M.L.; Wilson, L.;

Sorscher, E.J.; et al. Interference with Ubiquitination in CFTR Modifies Stability of Core Glycosylated and Cell Surface Pools. Mol.

Cell. Biol. 2014, 34, 2554–2565. [CrossRef]

46. Freitas, F.C.; Maldonado, M.; Oliveira Junior, A.B.; Onuchic, J.N.; de Oliveira, R.J. Biotin-Painted Proteins Have Thermodynamic

Stability Switched by Kinetic Folding Routes. J. Chem. Phys. 2022, 156, 195101. [CrossRef]

47. Thelin, W.R.; Chen, Y.; Gentzsch, M.; Kreda, S.M.; Sallee, J.L.; Scarlett, C.O.; Borchers, C.H.; Jacobson, K.; Stutts, M.J.; Milgram, S.L.

Direct Interaction with Filamins Modulates the Stability and Plasma Membrane Expression of CFTR. J. Clin. Investig. 2007, 117,

364–374. [CrossRef]

48. Cormet-Boyaka, E.; Di, A.; Chang, S.Y.; Naren, A.P.; Tousson, A.; Nelson, D.J.; Kirk, K.L. CFTR Chloride Channels Are Regulated

by a SNAP-23/Syntaxin 1A Complex. Proc. Natl. Acad. Sci. USA 2002, 99, 12477–12482. [CrossRef]

49. Sabirzhanova, I.; Boinot, C.; Guggino, W.B.; Cebotaru, L. Syntaxin 8 and the Endoplasmic Reticulum Processing of ∆F508-CFTR.

Cell. Physiol. Biochem. 2018, 51, 1489–1499. [CrossRef]

50. Arora, K.; Liyanage, P.; Zhong, Q.; Naren, A.P. A SNARE Protein Syntaxin 17 Captures CFTR to Potentiate Autophagosomal

Clearance under Stress. FASEB J. 2021, 35, e21185. [CrossRef]
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Appendix C

Predictions of CFTR modulators
targets

Ivacaftor

Table C.1 – Top 20 predictions of proteins interacting with ivacaftor (VX-770)

Rank UniProt ID Gene Name Name Prediction Score

1 Q16539 MAPK14 Mitogen-activated protein kinase 14 0.909813527
2 Q15759 MAPK11 Mitogen-activated protein kinase 11 0.892286204
3 O15264 MAPK13 Mitogen-activated protein kinase 13 0.847776496
4 P53778 MAPK12 Mitogen-activated protein kinase 12 0.825312485
5 O14757 CHEK1 Serine/threonine-protein kinase Chk1 0.821140137
6 P06493 CDK1 Cyclin-dependent kinase 1 0.821038156
7 P45984 MAPK9 Mitogen-activated protein kinase 9 0.810185387
8 P11362 FGFR1 Fibroblast growth factor receptor 1 0.804103458
9 P53779 MAPK10 Mitogen-activated protein kinase 10 0.798419301
10 P28482 MAPK1 Mitogen-activated protein kinase 1 0.793260891
11 O14965 AURKA Aurora kinase A 0.789339875
12 Q9UQB9 AURKC Aurora kinase C 0.78480879
13 Q14012 CAMK1 Calcium/calmodulin-dependent protein kinase type 1 0.776144628
14 P45983 MAPK8 Mitogen-activated protein kinase 8 0.768880996
15 Q59EB3 METPO Met proto-oncogene variant 0.766007475
16 Q9Y6E0 STK24 Serine/threonine-protein kinase 24 0.761798072
17 P35916 FLT4 Vascular endothelial growth factor receptor 3 0.760975174
18 Q8IU85 CAMK1D Calcium/calmodulin-dependent protein kinase type 1D 0.755742446
19 Q9P289 STK26 Serine/threonine-protein kinase 26 0.754947055
20 P21802 FGFR2 Fibroblast growth factor receptor 2 0.753457753

xxiii



Appendix C. Predictions of CFTR modulators targets

Lumacaftor

Table C.2 – Top 20 predictions of proteins interacting with lumacaftor (VX-809)

Rank UniProt ID Gene Name Name Prediction score

1 P35968 KDR Vascular endothelial growth factor receptor 2 0.8819896
2 Q16539 MAPK14 Mitogen-activated protein kinase 14 0.86577077
3 Q15759 MAPK11 Mitogen-activated protein kinase 11 0.85832436
4 P35916 FLT4 Vascular endothelial growth factor receptor 3 0.85433318
5 P10721 KIT Mast/stem cell growth factor receptor Kit 0.85395575
6 Q59EB3 METPO Met proto-oncogene variant 0.85044356
7 P28702 RXRB Retinoic acid receptor RXR-beta 0.8406796
8 Q02127 DHODH Dihydroorotate dehydrogenase (quinone), mitochondrial 0.83880829
9 P37231 PPARG Peroxisome proliferator-activated receptor gamma 0.83142857
10 P16234 PDGFRA Platelet-derived growth factor receptor alpha 0.82972663
11 P08581 MET Hepatocyte growth factor receptor 0.82233972
12 P17948 FLT1 Vascular endothelial growth factor receptor 1 0.81758213
13 P19793 RXRA Retinoic acid receptor RXR-alpha 0.81251173
14 P36888 FLT3 Receptor-type tyrosine-protein kinase FLT3 0.81027904
15 P10826 RARB Retinoic acid receptor beta 0.8072451
16 P11362 FGFR1 Fibroblast growth factor receptor 1 0.80376057
17 Q07869 PPARA Peroxisome proliferator-activated receptor alpha 0.80218581
18 P10276 RARA Retinoic acid receptor alpha 0.80139136
19 P13631 RARG Retinoic acid receptor gamma 0.80061832
20 P48443 RXRG Retinoic acid receptor RXR-gamma 0.79760288

xxiv



Tezacaftor

Table C.3 – Top 20 predictions of proteins interacting with tezacaftor (VX-661)

Rank UniProt ID Gene Name Name Prediction Score

1 P08588 ADRB1 Beta-1 adrenergic receptor 0.74769924
2 P01375 TNF Tumor necrosis factor 0.657412
3 P13945 ADRB3 Beta-3 adrenergic receptor 0.65625447
4 P07550 ADRB2 Beta-2 adrenergic receptor 0.64676234
5 P09917 ALOX5 Arachidonate 5-lipoxygenase 0.63307618
6 P36507 MAP2K2 Dual specificity mitogen-activated protein kinase kinase 2 0.59480746
7 Q02750 MAP2K1 Dual specificity mitogen-activated protein kinase kinase 1 0.54321257

8 P48736 PIK3CG
Phosphatidylinositol 4,5-bisphosphate

3-kinase catalytic subunit gamma isoform
0.53157856

9 P11387 TOP1 DNA topoisomerase 1 0.50231082
10 P28223 HTR2A 5-hydroxytryptamine receptor 2A 0.50031088
11 P08908 HTR1A 5-hydroxytryptamine receptor 1A 0.49273511
12 P25103 TACR1 Substance-P receptor 0.49108715
13 P35348 ADRA1A Alpha-1A adrenergic receptor 0.4799034
14 Q15759 MAPK11 Mitogen-activated protein kinase 11 0.47887549
15 P35372 OPRM1 Mu-type opioid receptor 0.47691449
16 Q13233 MAP3K1 Mitogen-activated protein kinase kinase kinase 1 0.47611187
17 P43405 SYK Tyrosine-protein kinase SYK 0.47569695
18 P41595 HTR2B 5-hydroxytryptamine receptor 2B 0.47489231
19 P07949 RET Proto-oncogene tyrosine-protein kinase receptor Ret 0.47262364
20 P10721 KIT Mast/stem cell growth factor receptor Kit 0.46576152

xxv



Appendix C. Predictions of CFTR modulators targets

Elexacftor

Table C.4 – Top 20 predictions of proteins interacting with elexacaftor (VX-445)

Rank UniProt ID Gene Name Name Prediction Score

1 P28845 HSD11B1 Corticosteroid 11-beta-dehydrogenase isozyme 1 0.74085683
2 Q59EB3 Met proto-oncogene variant 0.67139369
3 P08581 MET Hepatocyte growth factor receptor 0.66692742
4 P36888 FLT3 Receptor-type tyrosine-protein kinase FLT3 0.63152203
5 P34903 GABRA3 Gamma-aminobutyric acid receptor subunit alpha-3 0.63020414
6 P15056 BRAF Serine/threonine-protein kinase B-raf 0.62695787
7 O60674 JAK2 Tyrosine-protein kinase JAK2 0.6150386
8 P14867 GABRA1 Gamma-aminobutyric acid receptor subunit alpha-1 0.60464625
9 P21802 FGFR2 Fibroblast growth factor receptor 2 0.60233647
10 P22607 FGFR3 Fibroblast growth factor receptor 3 0.60061471
11 P07949 RET Proto-oncogene tyrosine-protein kinase receptor Ret 0.59901981
12 P42685 FRK Tyrosine-protein kinase FRK 0.5952845
13 P10721 KIT Mast/stem cell growth factor receptor Kit 0.59286403
14 P22455 FGFR4 Fibroblast growth factor receptor 4 0.58879764
15 P41240 CSK Tyrosine-protein kinase CSK 0.58677948
16 P11362 FGFR1 Fibroblast growth factor receptor 1 0.5825777
17 P48169 GABRA4 Gamma-aminobutyric acid receptor subunit alpha-4 0.57733962
18 P47869 GABRA2 Gamma-aminobutyric acid receptor subunit alpha-2 0.57535979
19 Q14289 PTK2B Protein-tyrosine kinase 2-beta 0.57522896
20 P16234 PDGFRA Platelet-derived growth factor receptor alpha 0.57464986
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Abstract

Identification of novel chemotypes with biological activity similar to a known

active molecule is an important challenge in drug discovery called ‘scaffold

hopping’. Small-, medium-, and large-step scaffold hopping efforts may lead

to increasing degrees of chemical structure novelty with respect to the parent

compound. In the present paper, we focus on the problem of large-step scaf-

fold hopping. We assembled a high quality and well characterized dataset of

scaffold hopping examples comprising pairs of active molecules and including

a variety of protein targets. This dataset was used to build a benchmark corre-

sponding to the setting of real-life applications: one active molecule is known,

and the second active is searched among a set of decoys chosen in a way to

avoid statistical bias. This allowed us to evaluate the performance of computa-

tional methods for solving large-step scaffold hopping problems. In particular,

we assessed how difficult these problems are, particularly for classical 2D and

3D ligand-based methods. We also showed that a machine-learning chemo-

genomic algorithm outperforms classical methods and we provided some use-

ful hints for future improvements.

KEYWORD S
benchmark, chemogenomics, ligand-based, molecular interactions, scaffold hopping

1 | INTRODUCTION

Identification of novel chemotypes with biological activ-
ity similar to a known active molecule is a critical and
recurrent challenge in drug discovery called ‘scaffold
hopping’ [1]. Indeed, once a hit molecule has been iden-
tified against a therapeutic target, it may not be a proper
drug candidate because of poor selectivity or ADME

profile, unacceptable toxicity, or complex, inefficient, or
expensive synthesis routes. The hit compound’s chemo-
type may also be protected by patents, which restrains
the downstream development process. Various strategies
are available to solve scaffold hopping problems.

The “scaffold hopping” term has been used in differ-
ent ways in the literature and remains ambiguous [2].
One definition relies on keeping substituents (R-groups)
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that form interactions with the protein pocket while
changing the core of the molecule. This usually means
substitution of ring systems and linker fragments be-
tween rings by other molecular moieties. Medicinal
chemists have designed different strategies to identify
such new scaffolds from a parent molecule: swapping of
carbons and heteroatoms in heterocycles, heterocycles
ring opening or closure. They lead to new compounds
that retain some degree of similarity with the parent
compound and have been classified as small- to me-
dium-scaffold hopping strategies [3]. Small- to medium-
step hopping problems are tractable by a trained medici-
nal chemist, but a variety of efficient ligand-based meth-
ods have also been proposed to help solve these cases
[3,4]. These methods are usually referred to as QSAR
methods. Other contributions to the field include identi-
fication of completely different molecules that are un-
related to the parent compound and with which no
common R-group or core structures can be defined. In-
domethacin and Etoricoxib are two examples of such
structurally unrelated COX2 inhibitors [5]. Such exam-
ples usually arise from topology-based (or 3D) ap-
proaches. New molecules identified by such methods
can display greater chemical novelty with respect to the
parent compound (i. e. the two molecules have very dis-
similar chemical structures), sharing no common R-
groups, while still forming the same key interactions
with a protein pocket. Such pairs of molecules can be
seen as “isofunctional” molecules, and have been

referred to as large-step scaffold-hopping cases [3], and
this term will be used throughout the paper. Table 1
shows examples of small-, medium- and large-step scaf-
fold hopping examples, and their associated Murcko-
based or molecular Morgan similarities.

In the present paper, we focus on the problem of large-
step scaffold hopping, involving pairs of active molecules
with very low structure similarity, because this corresponds
to the most difficult problems in scaffold-hopping that typi-
cally require computational approaches [2].

When a high-quality 3D crystallographic structure is
available for the protein target, or when a reliable pro-
tein structure model can be built, docking methods can
help identify ligands with new scaffolds [6]. However,
docking is not applicable when the structure of the tar-
geted protein is unknown. This is often the case for
transmembrane proteins, a category of protein targets for
many marketed drugs [7]. Hence, in this paper, we focus
on computational methods that do not require knowl-
edge of the target‘s 3D structure, so that the methods are
applicable to all cases.

In this context, most studies reporting success cases
using 2D and 3D approaches considered a single protein
or a very small number of proteins [8–11]. Their per-
formance in the general cases is essentially un-
predictable [2], and there is a crucial need to design
benchmarks that span a variety of proteins, to evaluate
the performances of computational methods for solving
large-step scaffold hopping problems.

T A B L E 1 Examples for the three degrees of scaffold hopping: from the small-step scaffold hopping cases, to the large-step scaffold
hopping cases, characterized by their respective Morgan and Generic Murcko similarities, as described in section 2.2.3. For each pair, the
molecules bind similarly to the same protein.

Scaffold

hopping

degree Description Molecules

Murcko-based

Morgan

similarity

Molecular

Morgan

similarity

Small-step

Change of
atoms in
hetero-
cycles

1.0 0.31

Medium-
step

Ring opening
and closure

0.36 0.43

Large-step
Novel core

structure
0.21 0.15
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As a matter of fact, a few large-scale benchmark stud-
ies have been reported, comparing the performances of
various topology-based (or other ligand-based) methods
[12,13]. However, they only considered proteins with a
relatively large number of known ligands, so that these
ligands can be used to train prediction models. In addi-
tion, they evaluated the performances based on the
chemical diversity of known ligands retrieved among the
top ranked molecules. This does not clearly specify to
which extent the structures of retrieved ligands were dis-
tant from those of molecules in the training set. In other
words, it does not characterize the sizes of the corre-
sponding hops and prevents from drawing conclusions
about the ability of these methods to specifically solve
large-step scaffold hopping problems. Finally, because of
their design, these benchmarks do not mimic real-life
applications, where an active compound is known, and a
new active with very different chemical structure is
searched. Therefore, it is difficult to anticipate the per-
formances of the proposed methods in a real-life setting.

In addition to the degree of chemical novelty
searched, one must distinguish ‘easy’ targets with many
known ligands, and ‘hard’ targets with only one known
ligand. Most available computational methods may fail
on the latter [14].

Overall, one of the main challenges in the field of
computational methods for scaffold hopping is the lack
of appropriate benchmarks to evaluate those methods on
’hard’ targets and large-step hops, because these settings
are typically encountered in the design of new drugs and
correspond to the most difficult cases. In this paper, we
precisely address this challenge. Our main contribution
is to provide a flowchart to build a high-quality and well
characterized large-step scaffold hopping benchmark for
‘hard’ targets, which is a prerequisite to develop and test
new methods dedicated to these problems. We also illus-
trate how to use this benchmark to compare the per-
formance of a few classical 2D and 3D ligand-based
methods and of an alternative approach that relies on a
machine-learning chemogenomic algorithm. This proc-
ess allows us to evaluate the difficulty of large-step scaf-
fold hopping problems in a setting that corresponds to
real-case studies.

2 | RESULTS

In the following sections, we present the global approach
adopted to build the Large-Hops benchmark (LH), de-
signed for problems of large-step scaffold hopping for
‘hard’ targets, and propose criteria to evaluate computa-
tional methods using the benchmark. Then, we detail

how this benchmark is built by gathering a dataset of
well characterized large-step scaffold hopping cases with
their corresponding decoy molecules. Finally, we com-
pare the performance of different computational meth-
ods on this benchmark.

2.1 | Overall design of the Large-Hops
benchmark and criteria for performance
evaluation of computational methods

In order to go beyond previous benchmark studies, we
build the Large-Hops benchmark LH of well charac-
terized large-step scaffold hopping cases, as detailed in
the next section. It comprises pairs of active molecules
illustrating large-step scaffold hopping cases, and their
corresponding 499 decoy molecules, to reach meaningful
active/inactive ratio of 1/500, which is well below the
frequently used ratio of 1/50 [15].

To evaluate computational methods on this bench-
mark, we follow a scheme that mimics real-world settings
for ‘hard’ targets: for each pair (molecule1, molecule2) of
known active molecules against a given target, one mole-
cule is set apart as the only known active (for example
molecule1), while the other (query molecule molecule2,
called the unknown active) is added to the 499 decoys.
Then, given the known active molecule, computational
methods are used to rank the unknown active and the
499 decoys. The higher the rank of the unknown active,
the more efficient is the method to solve this particular
scaffold hopping case (best rank being 1, worst being
500). Note that for each pair of actives, one molecule or
the other can be used as the known active, which leads to
twice more scaffold hopping problems as pairs of active
molecules in the benchmark. We propose to compare the
methods based on three criteria: (1) We draw Cumulative
Histogram Curves (CHC), representing the number of
cases for which the considered method ranked the un-
known active below a given rank, as detailed in Materials
and Methods. The curves of the best performing methods
will stand above those of the other methods. (2) This will
be quantitatively assessed by the Area Under the Curve
(AUC) of the CHC curves, to provide a global comparison
of the methods. (3) In real-life screening campaigns, only
the best ranked molecules are usually considered as can-
didate molecules for experimental tests. Thus, we also
compare the relative positions of the CHC curves at high
ranks and determine the proportion of cases where the
unknown active is retrieved in the top 5% best ranked
molecules [12], which can be seen as the success rate of
the methods. The global principle of the benchmark de-
sign is illustrated in Figure 1.
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2.2 | Building a dataset of large-step
scaffold hopping cases

Our goal is to build a benchmark of large-step scaffold
hopping cases that can be used by ligand-based compu-
tational methods. This allows to compare the perform-
ances of methods to solve scaffold hopping problems in
the general case where the 3D structure of the consid-
ered protein is unknown. Nevertheless, we built this
benchmark from examples extracted from the PDBbind
database to ensure that the selected pairs of molecules
are ‘true’ large-step scaffold hopping cases, i. e., highly
dissimilar compounds that share similar binding modes
with the same protein, as identified by the same UNI-
PROT ID. Indeed, for example, there would not be any
rationale to relate two inhibitors of an enzyme binding
to two distinct and distant binding sites, and such ‘false’
cases must not be present in the benchmark. Note that
the molecules binding modes are only used to select
‘true’ scaffold hopping cases when building the bench-
mark. They are not further used or provided to the con-
sidered computational methods, in order to remain in a
ligand-based framework.

Identification of such examples is not straightfor-
ward: some examples presented below show that it is not
possible to use only one criterion based on a single mo-
lecular similarity measure, in order to build a reliable
dataset where ‘false’ large-step cases and ‘false’ scaffold
hopping cases are not present. The next subsections
present the subsequent steps that are used, and more de-
tails are given in Materials and Methods.

2.2.1 | Filtering the PDBbind database

To identify scaffold hopping cases, we need to search for
pairs of highly different molecules that bind to the same
protein pocket with similar binding modes, because mol-
ecules that would present totally different binding modes
in the same pocket, or bind to different pockets of the

protein, do not meet the definition of scaffold hopping.
To enable the selection of such pairs, we use the
PDBbind database [16] that contains 17.652 PDB files
(2019) of 3D crystallographic structures of protein-ligand
complexes. We only keep structures with a resolution be-
low 2:8 Å, to ensure that the binding modes of the li-
gands can be analysed with confidence. Second, as some
compounds can be crystallized by soaking experiments
even with unspecific affinities in the millimolar range,
we remove all complexes with affinity above 10 µM. This
allows to only select ‘successful’ scaffold hops, for which
both molecules present specific activities against the
same target. Finally, we discard proteins for which only
one ligand is available in PDBbind, since scaffold hop-
ping examples cannot be searched for these proteins.
This leads to 181.635 pairs of ligands. Examples of large-
step scaffold hopping cases are further searched among
these pairs.

2.2.2 | Selecting pairs of drug-like molecules

Because our study stands in the context of drug design,
the selected molecules need to represent molecular char-
acteristics encountered in drug-like molecules. Other-
wise, the performances of computational methods on
our benchmark may not be representative of those ex-
pected in drug design applications. We only keep pairs
involving ligands of molecular weight between 200 and
900 g/mol, to discard salts, solvent or other molecules
present in crystallisation buffers, and large interacting
partners like peptides. This leads to 6.494 PDB files, cor-
responding to 148.002 pairs of ligands and involving 856
different proteins. Among the 148.002 pairs, we select
those in which both molecules have a quantitative esti-
mate of drug-likeness (QED) above 0.5 [17], which al-
lows to remove molecules with unwanted physical-
chemical properties, leading to 49.686 pairs involving
449 proteins.

2.2.3 | Selecting pairs of large-step hops
ligands

Among the 49.686 pairs of molecules, we use several cri-
teria to exclude those corresponding to small- or me-
dium-step hops cases. First, we determine the generic
Murcko scaffolds of molecules because they characterize
the core structure of molecules [18]. These scaffolds are
obtained by removal of all substituents while retaining
ring systems and linker moieties between rings, and con-
verting all bonds to single bonds. To remove small-step
hops, we exclude pairs of ligands whose generic Murcko

F I G U R E 1 Principle of performance evaluation on the Large-
Hops benchmark. For instance i, one molecule of the pair is set as
the known active, and the other as the unknown active. The
known active is provided to the computational method that ranks
the unknown active and the decoys. The rank j of the unknown
active is used to evaluate the considered computational method.
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scaffolds have Morgan fingerprints [19] Tanimoto
similarities above 0.6 (in the following, this similarity is
called Murcko-based Morgan similarity), which selects
45.534 pairs. This single criterion does not always guar-
antee that the two molecules are highly dissimilar: in a
few cases, they still display significant similarities, as il-
lustrated in Figure 2 for one pair. To discard these cases,
pairs of molecules with an overall Morgan fingerprints
Tanimoto similarity above 0.3 are removed (in the fol-
lowing, this similarity is called molecular Morgan sim-
ilarity), as they may represent medium-step hops rather
than large-step hops. This leads to 44.386 pairs of mole-
cules.

2.2.4 | Selecting pairs with similar binding
modes

Among the 44.386 pairs of highly dissimilar molecules,
we need to identify those that correspond to a scaffold
hopping case, i. e., to select those in which two mole-
cules have similar binding modes within the same pro-
tein pocket. As explained in section 2.2.1, this step is
necessary to ensure that all the cases retrieved share the
same rationale and thus could be identified either by a
chemist or a computational method in the benchmark.
Various binary target-focused protein-ligand interaction
fingerprints (IFP) have been proposed to perform such
tasks, because they are an easily interpretable way to en-
code binding modes [20–23]. As detailed in Materials
and Methods, we develop our own IFPs that include
usual interactions and a few types of additional inter-
actions that are missed by classical IFPs [24–28].

A Tanimoto similarity between IFPs is used to com-
pare the binding modes of ligands and remove ‘false’
scaffold hopping cases, as illustrated in Figure 3. Ligands
forming only few interactions with the protein (less than
five) are removed, as the computation of Tanimoto sim-
ilarities would not be reliable. We keep pairs of ligands
with IFPs similarities above 0.6. This leads to 821 pairs
of molecules with highly dissimilar chemical structures,
but similar binding modes.

2.2.5 | Discarding pairs based on Maximum
Common Substructures

Among the 821 pairs, visual analysis allows us to observe
cases where the two molecules share a common sub-
structure forming most of the interactions with the pro-
tein. These cases cannot be considered as scaffold hops if
the common substructure is responsible for most of their
interactions with the protein pocket since these sub-
structures can then be viewed as a common scaffold that
drives binding to the protein. To remove these instances,
we use the Maximum Common Substructure (MCS) con-
cept, because it has been shown to help identify scaffold
hopping cases [29]. For each pair of molecules, we
search for their MCS and compute the ratio between the
number of common interactions arising from chemical
groups in the MCS, and the total number of common in-
teractions to the two molecules. A high ratio means that
the MCS is responsible for most of the common inter-
actions, and the corresponding pair should not be con-
sidered as a large-step scaffold hopping case, as
described in Figure 4.

Concretely, the MCS between two molecules is
searched based on three different types of MCS, as de-
fined in RDKit [30]: MCS with matching of complete

F I G U R E 2 Example of a pair of molecules with low Murcko-
based Morgan similarity but similar structures, leading to a higher
molecular Morgan similarity. On the left the pair of molecules
(PDBs: ‘2fl2’ and ‘2fl6’) is displayed and, on the right, their
corresponding generic Murcko scaffolds are shown. This pair
should not be present in the LH benchmark. It is excluded based
on the molecular Morgan similarity between the molecules greater
than the chosen threshold.

F I G U R E 3 Example of a pair of dissimilar ligands for Beta-
Secretase 1 (PDBs: ‘3udm’ and ‘4zsq’) occupying different areas of
the binding site of the protein. The molecules are shown in a). The
crystallographic conformations are displayed in b). Table c)
compares the two molecules: they share little common binding
modes and cannot be considered as a scaffold hopping case.
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rings, MCS with partial matching of rings and MCS with
allowed ring breaking. In particular, the first MCS
searches for complete ring matches, allowing to discard
pairs of molecules that would correspond to small-step
scaffold hops.

The maximum ratio of the number of common inter-
actions formed by MCSs and the total of common inter-
actions between the two molecules of a pair is computed
as detailed in Materials and Methods. Pairs with a max-
imum ratio above 0.8 were discarded, resulting in 531
pairs for 79 proteins.

Overall, the three types of substructure search are
complementary, and the maximum ratio of common in-
teractions formed by the MCSs over the total number of
common interactions ensures to retrieve only large-step
scaffold hopping cases. An example of MCS search be-
tween two molecules is given in Figure 5.

2.2.6 | Discarding redundant pairs

We observe that for some of the 79 proteins, the selected
pairs are strongly redundant and represent only slightly
different examples of scaffold hopping cases: they in-
volve two molecules that belong to the same chemical
series (for instance, they differ by the addition of a small
group not involved in the binding). A compelling exam-
ple is given in Figure 6.

To avoid redundancy in our dataset, which may lead
to bias for performance evaluation of computational

methods, we remove pairs in which both ligands are
similar to both ligands of another pair, using a threshold
of 0.5 on both their molecular Morgan similarities as de-
tailed in Material and Methods, which finally leads to
178 pairs.

2.2.7 | Resulting large-step scaffold hopping
dataset

The global selection flowchart is shown in Figure 7. Over-
all, 178 large-step scaffold hopping cases of drug-like pairs
binding to 79 different proteins are selected. On average,
each protein is involved in 2.3 large-step scaffold hopping
cases in the dataset. For the most represented protein, cell
division protein kinase 2, 10 cases are selected. The most
represented family of proteins is the kinases family, with
61 pairs involving 21 different kinases. This can be

F I G U R E 4 Example for Polycomb protein EED of molecules
(PDBs: ‘5u6d’ and ‘5u8 f’) with similar binding modes explained by
a common substructure. The two ligands are displayed in a) with
their common substructure highlighted in light red. Their
crystallographic conformations are shown in b) along with their
interactions with the protein. The red interactions corresponds to
common interactions arising from the common substructure
(colored in light red in the molecules), while the light grey
interaction is the only common interaction arising from dissimilar
parts of the molecules. Table c) compares the two molecules. As 5
out of the 6 common interactions are explained by the MCS, such
a case cannot be considered as a scaffold hopping example.

F I G U R E 5 Illustration of the three different MCS searched.
A pair of molecules (PDBs: ‘4hvb’ and ‘4 ps7’) is displayed in a),
and the table describing the three different MCS searched on this
pair along with their ratios of common interactions is shown in b).

F I G U R E 6 Example of redundant scaffold hopping cases for
the cell division protein kinase 2: the two pairs are highly similar,
since the second pair (PDBs: (‘2vto’, ‘4eok’)) can be obtained from
the first pair (PDBs: (‘2vto’, ‘1oiy’)) by replacing the amide group
on one of the molecule by a sulfonamide. In such cases, one of the
two pairs was discarded.
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explained by the fact that kinases belong to a highly
studied family of proteins, with many therapeutic targets
against which many drug design projects have been de-
voted [31]. However, the dataset still contains significant
protein diversity, since the 79 proteins belong to 35 differ-
ent super-families of the SCOP protein family’s hierarchy
database [32]. On average, each super-family is involved
in 5.1 scaffold hops. Pairwise sequence identities between
proteins have been computed using the Needleman-
Wunsch algorithm, which shows that they share modest
similarity: on average, proteins have pairwise sequence

identities of 8%, and only 12 pairs (over a total of 3081
pairs of proteins) display identities above 30%.

Each selection step involves selection criteria with
threshold values. The above sections show that one must
be careful to avoid ‘false’ large-step hops, or ‘false’ scaf-
fold hopping cases, which has scarcely been discussed in
previous benchmark studies. In the present work, the
thresholds are chosen arbitrarily and somewhat strin-
gently, to build a highly reliable dataset, as judged by
visual analysis of the selected pairs. Of course, these
thresholds can be changed, as detailed in the Discussion

F I G U R E 7 Flowchart describing the successive filters applied to identify large-step scaffold hopping cases. Starting from PDBbind
crystal structures with good resolutions of proteins in complex with at least two ligands (181.635 pairs), we keep those involving drug-like
molecules of dissimilar structures but similar binding modes. We removed pairs containing a common substructure responsible for most
common interactions. We then discarded redundant pairs, leading to 178 large-step scaffold hopping cases. Among these cases, we keep
those for which 499 decoy molecules could be found (see below). The chosen thresholds are arbitrary but ensured us to retrieve only
confident large-step scaffold hopping cases, as detailed in the Results section.
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section. Examples of selected large-step scaffold hopping
are provided in Figure 8.

2.3 | Choice of decoy molecules

As illustrated in Figure 9, our benchmark consists in a
dataset of pairs of molecules representing large-step scaf-
fold hopping cases for the associated protein, and their
corresponding decoy molecules. Hence, for each of the
178 selected pairs, a set of decoys needs to be defined. In

fact, all studies devoted to benchmarking virtual
screening methods require the selection of decoy com-
pounds, which is not an easy problem as we want to
avoid statistical bias with respect to the active molecules
[33]. In particular, when decoys stand in regions of
chemical space that are very distant from the two active
molecules, the resulting benchmark may suffer from
‘analogous bias’ [34], and the success rate may be artifi-
cially overestimated. In addition, since we also want to
mimic real-life applications, the decoys must be realistic
scaffold hopping candidates that, in practice, would be
searched among molecules sharing some phys-
icochemical characteristics with the known active.

It has been shown that random selection of decoys
from large chemical databases does not prevent the oc-
currence of statistical bias [33]. Therefore, as detailed in
Materials and Methods, decoys are picked in the ZINC
database [35], among molecules that have similar phys-
icochemical and complexity properties [36] with respect
to the two molecules of their corresponding pair of ac-
tives. More precisely, for each pair, the decoys are se-
lected in such a way that they are as distant to both
molecules of the pair, as these two molecules are distant
from each other, according to the Murcko-based and
molecular Morgan similarities. For 144 pairs out of the
178 pairs selected in the previous sections, we are able to
find 499 decoy molecules that satisfy these criteria. Note
that we cannot rule out the possibility of a few false neg-
atives [37,38], because we may have accidentally picked

F I G U R E 8 Examples of selected large-step scaffold hopping for a) Tyrosine-protein kinase SYK, b) Poly (ADP-ribose) polymerase, c)
Creb-binding protein and d) Dipeptidyl peptidase 4.

F I G U R E 9 The Large-Hops benchmark was built from a
dataset of large-step scaffold hopping cases extracted from
PDBbind for which 499 decoy molecules were gathered. Overall, it
comprises 144 cases defined by a pair of active molecules against
the same protein target, and their corresponding decoys.
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decoys that bind to the same protein as the molecules in
the pair. However, we assume that such cases are rare
and that their potential presence does not change the
overall conclusions of the paper.

2.4 | The final Large-Hops benchmark

The resulting LH benchmark finally consists in 144
pairs of molecules associated with their corresponding
proteins and their 499 decoys (the 499 decoys are differ-
ent for each of the 144 pairs). These 144 pairs of active
molecules involve 69 different proteins, belonging to 31
different super-families of the SCOP [32]. This bench-
mark contains scaffold hops cased within protein fami-
lies that have been more extensively studied than others.
Nevertheless this panel of proteins is wide enough to set
apart from a case study, and to get a broader glance at
how well a computational method performs to solve
large-step scaffold hopping problems. Taken together,
the rules used to select the active pairs and their decoys
are stringent, but this ensures to build a realistic, high-
quality, and well characterized benchmark dedicated to
the problem of large-step scaffold hopping.

2.5 | Performance evaluation of classical
2D and 3D ligand-based methods on the
Large-Hops benchmark

As introduced in section 2.1 and displayed in Figure 9,
the goal of our benchmark is to evaluate ligand-based
methods’ ability to solve large-step scaffold hopping
problems. For each pair of active molecules in the
benchmark, each method is given one active, called the
known active, while the other, called the unknown ac-
tive, is joined to 499 decoys. Each method ranks the un-
known active and the decoys. As either of the two active
molecules can be set as the known active, this leads to
twice as many experiments as scaffold hopping cases. No
other ligand information for the corresponding protein is
provided to the computation methods.

Ligand-based methods usually rely on molecular de-
scriptors to encode molecules. This encoding is used to
train QSAR models that predict a property for molecules,
based on prior knowledge of molecules that present this
property, or not. This principle was applied in previous li-
gand-based scaffold hopping benchmark studies [12,13].
Such QSAR models cannot be trained on the LH bench-
mark, because a single active molecule is provided to the
algorithm, i.e., one molecule from each active pair. How-
ever, encoding of molecules with descriptors can also be
viewed as the representation of a chemical space in which

similarity measures between molecules can be defined.
This can be used to rank the unknown active and the de-
coys according to their similarity with respect to the
known active.

Many types of 2D descriptors have been proposed in
the literature, and perform very well for the prediction of
various molecular properties [39]. Since scaffold hopping
relates to ligand binding to a protein, a phenomenon oc-
curring in the 3D space, 3D descriptors are expected to
be more relevant in this context. We first explore the
performance of classical 2D similarity measures (usually
employed for small- to medium- scaffold hops), and then
study classical 3D similarity measures. Finally, we also
consider a more original chemogenomic algorithm, to
show how the benchmark could be used for the develop-
ment of new methods dedicated to large-step scaffold
hops.

2.6 | 2D similarity-based methods

Because they neither require the 3D structure of the tar-
get, nor the 3D conformations of the molecules, we first
consider 2D structure descriptors. Although they are not
meant to best encode ligand binding properties, it is in-
teresting to see whether these simple methods capture
some valuable information to solve scaffold hopping
problems.

We consider three types of 2D representations: (1)
Morgan fingerprints that encode 2D molecular struc-
tures. These descriptors are not expected to perform well
on our benchmark, because solving large-step scaffold
hopping problems requires to search for molecules with
highly dissimilar chemical structures. In addition, the
molecular Morgan Tanimoto similarity was used to se-
lect pairs of dissimilar active molecules, so that ranking
the unknown active and the decoys according to this
similarity is doomed to fail. Testing 2D Morgan finger-
prints encoding is a kind of internal control to confirm
that our benchmark is an interesting tool for the devel-
opment of original methods dedicated to large-step scaf-
fold hopping. (2) MACCS keys fingerprints [40], that in
principle should suffer from the same limitations as the
Morgan fingerprints. In fact, since the former encodes
the presence or absence of particular chemical groups
rather than the molecular graph itself, it is interesting to
test if this can be beneficial to the current problem. (3)
2D pharmacophore fingerprints, that encode for the
presence and relative positions in the 2D graph of the
molecular structure of chemical groups able to drive dif-
ferent types of interactions with the protein, as defined
in RDKit [30]. Although these descriptors implement a
notion of 2D (but not 3D) topology, they may improve
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over MACCS keys fingerprints. These three types of 2D
representations lead to a binary vector encoding for the
molecules, allowing the definition of corresponding sim-
ilarity measures based on Tanimoto coefficients. Thus,
for each pair of active molecules in the benchmark, the
unknown active and the decoys are ranked according to
their molecular Morgan, MACCS keys and 2D pharma-
cophore Tanimoto similarity with respect to the known
active, as detailed in Materials and Methods.

As shown in Figure 11, the molecular Morgan sim-
ilarity displays overall very poor performances in terms
of AUC (random ranking corresponds to an AUC of 0.5).
At high ranks, its CHC curve stands only slightly above
those random rankings, and the unknown active is re-
trieved in the top 5% in only 11.5% of the cases. Global
failure of the Morgan similarity confirms that our bench-
mark mainly comprises large-step scaffold hopping cas-
es. The MACCS keys and 2D pharmacophore similarities
both improve over the molecular Morgan similarity. The
2D pharmacophore similarity was expected to perform
better than the MACCS keys similarity, but their AUC
score, relative positions of CHC curves at high ranks,
and success rates in the top 5% best ranked molecules
are comparable. In fact, in our benchmark, since the two
active molecules have very dissimilar chemical struc-
tures, the inter-distances between pharmacophoric
groups measured on a planar representation of the mole-
cule and encoded in the 2D pharmacophore descriptors
may not bring additional information for the problem at
hand than the simple presence or absence of specific
chemical groups encoded in the MACCS keys descrip-
tors. Overall, the performances of these two methods re-
main modest since their success rate in the top 5% is
below 15%.

2.7 | 3D similarity-based methods

We also tested 3D approaches, since they capture molec-
ular features that can be better related to ligand binding.
We consider two types of representations: 3D molecular
shape, and 3D pharmacophores, because both ap-
proaches have been described as useful tools to help
solving scaffold hopping problems [41,42]. We study the
general case where the 3D structure of the protein is un-
known, so that the ‘active’ conformations (i. e. the ligand
conformation when bound to the protein pocket) of the
active molecules are unknown. For each pair of active
molecules and their 499 decoys in the LH benchmark,
we consider up to ten conformers of low energy, and the
unknown active is ranked among the decoys based on
their 3D shape or pharmacophore similarity with respect
to the known active. All details about conformers

calculation, and 3D similarities are given in Materials
and Methods.

The performance of the 3D pharmacophore and
shape methods are presented in Figure 11. 3D pharma-
cophore similarity performs better than shape similarity
on all criteria: AUC score, relative positions of the CHC
curves, and success rate at 5%. This may be explained by
the fact that 3D pharmacophore descriptors encode key
information about chemical groups able to form inter-
actions with a protein that are not present in the solely
molecular shape. This result is in agreement with pre-
vious studies where 3D pharmacophore is depicted as a
reference method for scaffold hopping [42]. The per-
formances of 3D pharmacophore remain above those of
the shape similarity, or those of 2D methods. This is an
interesting result, because some studies have reported
that when the active conformations are unknown, per-
formances of 2D methods might outperform those of 3D
methods with calculated conformers, in the context of li-
gand binding prediction [43].

According to the results observed on the Large-Hops
benchmark, a classical 3D pharmacophore appears as a
good default similarity measure to solve large-step scaf-
fold hopping problems. Note however that the achieved
success rate at 5% lies around 20%. This allows to quan-
tify the range in performance that can be expected, in
general, with classical approaches on these types of
problems, thus answering to the question raised by Ba-
jorath [14]. This leaves much room for the development
of approaches more specifically designed to solve large-
step scaffold hopping problems.

2.8 | Performance evaluation of a
machine-learning chemogenomic
algorithm on the Large-Hops benchmark

With the LH benchmark, we tackle large-step scaffold
hopping cases with ‘hard’ targets, for which only one ac-
tive ligand is known. This setting prevents from training
ligand-based prediction models, and the associated com-
putational methods are restricted to similarity measures,
as above. Chemogenomics can overcome this limitation
if bindings involving other molecules and other proteins
are known (these molecule-protein pairs are noted (m, p)
pairs in the following). Such (m, p) pairs can be collected
from many public databases, such as the PubChem at
NCBI [44]. Basically, the main difference between li-
gand-based and chemogenomic methods is that the for-
mer predict ligands for a query protein given its known
ligands (one known active in our case), while the latter
predict ligands for a query protein given its known li-
gands and those known for other proteins. In the case of
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the LH benchmark, chemogenomic algorithms can be
trained with the (known active, query protein) binding
pair and additional (ligand, protein) pairs known to bind,
or not, gathered from an external database. Once
trained, the prediction model provides a binding proba-
bility for the (decoys, query protein) and (unknown active,
query protein) pairs, and the unknown active can be
ranked among the 499 decoys according to these proba-
bilities.

We use a training set derived from the DrugBank da-
tabase [45] to provide the additional (m, p) pairs. Indeed,
DrugBank provides high quality bio-activity information
regarding approved and experimental drugs, including
their targets. It contains around 15.000 curated drug-tar-
get (m, p) pairs for 2.670 proteins. Although much

smaller than other databases like PubChem or ChEMBL,
DrugBank appears relevant to the LH benchmark be-
cause it contains drug-like ligands. More precisely, for
each pair of active ligands in the LH benchmark, the
ML chemogenomic algorithm is trained with the same
information regarding the query protein as the ligand-
based methods tested above: a single known pair be-
tween the query protein and the known active. This pair
is added to the DrugBank dataset, if not already present.
All other pairs involving the query protein and any other
molecule, if present in the DrugBank dataset, are re-
moved. This allows to avoid redundancies between the
training set and the tested pairs, and to compare the pre-
diction performances of the chemogenomic method with
those of the ligand-based methods tested in the previous
sections because both types of algorithms are provided
the same ligand information for the query protein.
Figure 10 summarizes the difference between the ligand-
based and the chemogenomic setups. All details about
the training scheme and the ML algorithm are given in
Materials and Methods.

The performances of the chemogenomic algorithm
are shown in Figure 11. It outperforms all tested ligand-
based methods on all considered criteria: its CHC curve
stands above all curves, at all ranks, leading to the high-
est AUC score, and to the best success rate at 5%. These
performance improvements arise from the additional (li-
gand, protein) pair provided to the chemogenomic algo-
rithm, besides the (known active, query protein) pair.
Ligand-based methods cannot process this additional

F I G U R E 1 0 Illustration of the schemes followed by ligand-
based methods and by the chemogenomics approach to solve a
scaffold hopping case.

F I G U R E 1 1 Results of the Large-Hops benchmark. The cumulative histogram curves of each method are plotted in a). A zoom of
the same graph is provided in b). Table c) displays the Area Under the Curve (normalized i. e., divided by 500 to be between 0 and 1), and
the percentage of scaffold hopping problems for which the unknown active was ranked in the top 5%.
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information (nor would a medicinal chemist), and the
ML chemogenomic algorithm provides a computational
method to consider and profit from such otherwise ac-
cessible prior knowledge. Note that the performances in-
side families of proteins are heterogeneous: on average,
the families’ success rate is about 37.8%, and for the
most represented one, the kinases, the success rate is
35.1%. This means that the method depends little on the
family of the proteins. However, the general success rate
of 34.4% still leaves space for improvements. In partic-
ular, the kernel Support Vector Machine (SVM) algo-
rithm used in the present study should be better adjusted
to the scaffold hopping problem. Indeed, as detailed in
Materials and Methods, the SVM use a Tanimoto kernel
for molecules that is calculated based on the molecular
Morgan similarity [46]. Considering the results of the li-
gand-based methods in Figure 11c, a straightforward im-
provement would be to build a new topology-based
kernel calculated from a 3D pharmacophore similarity
measure.

3 | DISCUSSION

The scope of the present paper is essentially: (1) to pro-
pose a flowchart to cover the need for a publicly avail-
able and well-characterized large-step scaffold hopping
benchmark for the community; (2) to provide a general
assessment of the relative performances of classical 2D
and 3D ligand-based methods for solving large-step scaf-
fold hopping problems with ‘hard’ targets, in a setting
that mimics real-life drug discovery applications [14].

To our knowledge, the LH benchmark is the first
public high-quality benchmark dataset for large-step
scaffold hopping. Starting from PDBbind, the proposed
flowchart requires threshold values for various criteria.
These thresholds were chosen in an expert-based man-
ner to exclude irrelevant scaffold hopping cases. Some
criteria enable the selection of pairs of highly different
molecules, while others ensure that molecules in the
same pair share similar binding modes, i. e., correspond
to ‘true’ scaffold hopping cases. We use stringent thresh-
olds for both types of criteria, because our goal is to
build a high quality large-step scaffold hopping dataset.
The resulting size for the LH benchmark is smaller than
that reported for other less characterized benchmarks
[12,13], but this illustrates that the number of large-step
scaffold hopping cases reported is much smaller than
that of small- to medium-step scaffold hops. Note how-
ever that available benchmarks are not comparable to
the LH benchmark, because they were not conceived in
a comparable setting. Should a large-step scaffold hop-
ping benchmark of larger size be desired, the same

flowchart could be followed with a lower drug-likeliness
threshold, a larger range in molecular weights, or a high-
er threshold for redundancy between the pairs of mole-
cules. Should an easier benchmark be designed,
including medium-step hops, the thresholds in Murcko-
based and molecular Morgan similarities could be in-
creased. However, we advise not to relax the IFPs and
MCS thresholds, to avoid selecting pairs of molecules
that could correspond to ‘false’ scaffold hopping cases.
An important contribution of the present study is to un-
derline that building a reliable scaffold hopping bench-
mark must be a well-controlled multi-step process and
cannot be achieved with the blind use of a few criteria.
This important point, illustrated by the ‘false’ scaffold
hopping examples shown in Figure 2, Figure 3 and
Figure 4, has not been discussed in previous work re-
porting the construction of scaffold hopping bench-
marks.

Based on the LH benchmark, all computational
methods tested display modest performances, which
confirms that solving large-step scaffold hopping for
‘hard’ targets is a difficult problem. This was expected,
but our study allows to quantify how difficult these prob-
lems are, in general. Among the classical ligand-based
methods that are tested, the 3D pharmacophore sim-
ilarity performs best, on average, even when the active
conformations are unknown, which is an interesting re-
sult. We are aware that many other 2D and 3D descrip-
tors are available in the literature [47]. However, our
goal was not to test all encoding methods, but to provide
an overview of expected performances, and to globally
rank the 2D, 3D, and chemogenomic approaches when
they are run with classical and widely available descrip-
tors, i. e., in settings that can be easily implemented by
people in the community. Other promising topology-
based descriptors have been recently proposed [11–13],
and future work could be to evaluate their performance
on the Large-Hops benchmark.

The chemogenomic algorithm leads to the best per-
formances, although the kernel SVM algorithm can be
improved. Because our benchmark contained drug-like
molecules for proteins belonging to diverse families, we
trained the chemogenomic algorithm based on a Drug-
Bank-derived dataset. However, other larger training sets
can be used, for example derived from larger databases
such as PubChem. For more focused problems like scaf-
fold hopping problems involving a protein belonging to a
specific well studied family, such as kinases or GPCRs,
one can also use other training databases that gather (li-
gand, protein) molecular interactions known within
these families of proteins [48,49]. As an illustration, al-
though chemogenomics has been hardly explored in the
field of large-step scaffold hopping, this approach was
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used in one study within the GPCR family, reporting
identification of a new scaffold for an antagonist of Vaso-
pressin 1 A [50]. This underlines the interest to further
explore these strategies in the field of scaffold hopping.

Strategies based on descriptors that encode the bio-
activity profiles of molecules have also been proposed
[2,51–53]. This is an interesting idea, because it allows to
abstract from the chemical structure and address scaf-
fold hopping issues. However, some of these profiles are
not publicly available, but descriptors based on public
domain HTS studies [52] are interesting starting points
to test their implementation in computational methods.
In this context, we hope that the Large-Hops benchmark
will be a convenient tool provided to the community, in
order to test new strategies for the difficult but important
problem of large-step scaffold hopping.

4 | MATERIALS AND METHODS

4.1 | Performance evaluation of
computational methods

For all the considered computational methods, Cumu-
lative Histogram Curves corresponding (CHC) to the
rank of the unknown active molecules are plotted. The
CHC curves of the most efficient methods stand above
the others. The x-axis represents the rank, and the y-
axis represents the proportion of cases (i. e., the pro-
portion of scaffold hopping cases, among the
144⇥ 2 à 288 scaffold hopping problems in the Large-
Hops benchmark) where the method recovers the un-
known active at a rank below the x-axis value. For in-
stance, for the chemogenomic approach, the unknown
active was ranked in top 50 molecules for 45% of cases,
as seen in Figure 11. Methods are also compared to ran-
dom ranking: we perform one thousand random rank-
ings for the unknown active for the 438 scaffold
hopping problems. This leads to 1000 CHC curves plot-
ted in grey in Figure 11.

The Area Under the Curve (AUC) score of the CHC
curves quantifies the global performances of methods: the
higher the better. It ranges from 0 (unknown actives are
ranked 500 in all scaffold hopping problems) to 500 (un-
known actives are ranked 1 in all scaffold hopping prob-
lems). In the Results section, normalized AUC are
provided: dividing the AUC by 500 leads to values be-
tween 0 and 1. A random ranking corresponds to an AUC
of 0.5, as illustrated with the grey curves in Figure 11.

For each method, we also compute the percentage of
cases where the unknown active is ranked in the top 5%,
i. e., in the first 25 molecules. This metric is comple-
mentary to the AUC, since it can be viewed as the per-
centage of successful cases.

4.2 | Building a dataset of large-step
scaffold hops cases

4.2.1 | Selecting pairs of drug-like molecules

The molecules quantitative estimation of drug-likeness
(QED) score [17] is calculated with RDKit [30]: all pairs
with a QED below 0.5 are discarded. To discard re-
dundant pairs, which differ by only slight molecular
modifications, the Tanimoto similarities based on the
Morgan fingerprints of the generic Murcko scaffolds and
of the whole molecules are calculated. When two pairs
of ligands have one of these Tanimoto coefficient above
0.5, only one pair is kept in the dataset.

4.2.2 | Selecting pairs of large-scale hops
ligands

The RDKit package [30] was used to provide generic
Murcko scaffold of molecules, where all atoms are re-
placed by carbons, all bonds are switched to single bonds
and only the linkers between the rings are conserved.
RDKit [30] is also used to compute Morgan fingerprints
for the Murcko scaffolds and for the whole structures of
molecules, and to calculate the resulting Tanimoto sim-
ilarities. Pairs with Murcko and Morgan Tanimoto sim-
ilarities respectively below 0.6 and 0.3 are selected.

4.2.3 | Selecting pairs with similar binding
modes

Interaction fingerprints (IFPs) are used to encode the
binding modes of ligands. These fingerprints are target-
focused binary vectors that incorporate, for each protein
residue in the binding site, its interactions with the li-
gand. Bits are allocated for each residue, each encoding
for the presence of one type of interaction with the li-
gand. To construct those IFPs, we need to detect the pro-
tein-ligand interactions. Starting from PLIP [54], a freely
available algorithm that detects such interactions,
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including hydrogen bond, weak hydrogen bond, halogen
bond, salt bridge, hydrophobic, pi-cation, and pi-stack-
ing, we built an extended version adding several inter-
actions [24–28] that are missed by classical IFPs: Pi-
hydrophobic, Pi-amide and Multipolar. The detection
criteria are described in Table 2. The thresholds used
here are less restrictive than those of the original pack-
age as we want to avoid missing the detection because of
lower resolution of some PDB structures.

Then, the similarity in binding mode between pairs
of ligands for the same protein is calculated based on the
Tanimoto similarities between the ligands IFPs. Pairs of
ligands with IFPs similarities above 0.6 were selected.

We observe that, in a few cases, even though the two
molecules of the pair bind similarly to the protein, the
IFP similarity is 0, because in the corresponding PDB
files, the residues have different numberings. In these
cases, comparison of interacting residues between the
two molecules is doomed to fail. We do not correct the
numbering, because those cases are rare and case-specif-
ic, and automatic rectification of residues IDs may lead
to mistakes.

4.2.4 | Discarding pairs based on Maximum
Common Substructures

Each MCS type is matched on both ligands, and the ratio
of the number of common interactions formed by the
considered MCS and the total of common interactions is
computed as following:

ratioMCS interaction à

InteractionsCommon \ InteractionsMCSj j

InteractionsCommonj j

When several MCS matches are possible on a mole-
cule, the match with the highest ratio is kept. The final
ratio is defined as the highest of the ratios for all MCS
types. Pairs with a final ratio above 0.8 are discarded.

4.3 | Choice of decoy molecules

To avoid statistical bias between molecules in the active
pairs and their corresponding decoys, decoys are selected

T A B L E 2 Table summarizing the criteria to detect protein-ligand interactions.

Interaction Ligand Protein Distance Angle

Hydrophobic C, S, F, Cl C, S d 3.5 Å –

Pi-stacking Aromatic ring Aromatic ring d 5.5 Å
offset 2.5 Å

0�θ 30� -> parallel
60�θ 90� -> T-shaped
30�<θ <60� -> face-to-face,
face-to-edge

Pi-amide Aromatic ring
Polar C sp2

Polar C sp2
Aromatic ring

d 4.5 Å
offset 2.5 Å

0�θ 30�

Pi-cation Aromatic ring
Cation

Cation
Aromatic ring

d 4.5 Å
offset 2.5 Å

–

Pi-hydrophobic Aromatic ring
C sp3, S sp3, F, Cl

C sp3, S sp3
Aromatic ring

d 4.5 Å
offset 2.0 Å

–

Multipolar X-bond donor
Polar C sp2

Polar C sp2
X-bond donor

dX…Csp2 4.5 Å θ �70�where θ: angle between
C�X and X…Csp2
θ 60�where θ: angle between
X…Csp2 and normal to amide plan

H-bond H-bond donor
H-bond acceptor

H-bond acceptor
H-bond donor

dD…A 4.2 Å θA…H-D �130�

θR-A…D �90�where R =A’s
neighbours

Weak H-bond Weak H-bond
donor
Weak H-bond
acceptor

Weak H-bond acceptor
Weak H-bond donor

dD…A 4.0 Å θA…H-D �140�

θR-A…D �90�where R =A’s
neighbours

Salt bridge Anion
Cation

Cation
Anion

dcation…anion 5.5 Å –

Halogen bond X-bond donor
Polar C sp2

Polar C sp2
X-bond donor

dX…A 4.5 Å θAXD �120�

θRAX �90�where R =A’s
neighbours
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from the ZINC database, among molecules with physical
and chemical properties similar to those of the active
molecules, as detailed below. The considered physical
and chemical descriptors are:

– Number of hydrogen bond donor and acceptor
– Number of aromatic and aliphatic rings
– Number of consecutive rotatable bonds
– Molecular weight
– Lipophilicity
– Topological polar surface area

More precisely, molecules are selected if their phys-
ical and chemical descriptors fulfil the following criteria:

descriptormolecule 2 âmin descriptorligands
� �

� c,max descriptorligands
� �

á cä

where c à 1 for integer descriptors, and

c à
10
100

descriptorligand 1 � descriptorligand 2

�

�

�

�

for continuous descriptors.
As the decoys need to be realistic large-step scaffold

hopping candidates, they are chosen at a Murcko-based
Morgan similarity from the molecules in the active pairs
below 0.6, since this threshold is used to select pairs of
active molecules.

In addition, the decoys should not either be too dis-
tant from the ligands, in order to avoid analogous bias,
and to mimic real-life screens for the search of scaffold
hop candidates. Thus, the decoys selected from the ZINC
also have to be as similar to the ligands as the ligands
are similar to each other, according to their overall struc-
ture Morgan fingerprints:

similaritymolecule;ligands 2

similarityligand 1;ligand 2 � c
0

; similarityligand 1;ligand 2 á c
0⇥ ⇤

where c
0

à 0:15 to have an interval of size 0.3 and cap-
ture enough decoy molecules (i. e., a number of 499 de-
coys), not too distant nor too close, with respect to the
molecules in the active pair.

These criteria were successively applied to molecules
in the ZINC database, and 499 decoys satisfying these
criteria could be found for 144 pairs of active molecules.

4.4 | 2D Similarity-based methods

Three different 2D molecular representations are calcu-
lated with the RDKit package [30]:

– The classical Morgan fingerprints, that implements
the ECFP extended connectivity fingerprint [19] with
radius 4 as a 4096-bit binary vector.

– MACCS keys fingerprints, a binary 166-bit vector that
encodes the presence of SMARTS-based strings in the
molecular structure.

– 2D pharmacophore fingerprints calculated using the
distance separating 2- and 3-point pharmacophores
defined as SMARTS strings, in a planar representation
of molecules.

For these three types of binary fingerprints, the sim-
ilarity measure between two molecules is calculated
based on their Tanimoto coefficient.

4.5 | 3D Similarity-based methods

We used two types of 3D similarity methods, based on
shape or 3D pharmacophore representations of the mole-
cules. In both cases, this first requires generating 3D mo-
lecular conformers. For all pairs of active molecules and
their 499 decoys, a pool of 500 conformers is calculated,
from which we keep up to ten conformers of local mini-
mal energy that differ from a RMSD value of at least
1.5 Å, under MMFF94 force field using RDKit [55].
Then, all conformers of the known active are aligned
pairwise with those of the unknown active or those of
the decoy molecules, to maximize their overlap. For the
3D-pharmacophore similarity, for each pair of active
molecules and their decoys, the freely available Pharao
software [56] is used to detect the pharmacophore
groups for conformers. The Tanimoto coefficient quanti-
fying the overlap between aligned conformers of the
known active and those of the unknown active or of the
decoys is calculated pairwise. The largest Tanimoto 3D
pharmacophore coefficient observed is used to define the
3D-pharmacophore similarity between the correspond-
ing known active and the unknown active or the decoys.
The same method is used for the shape similarity [56],
where the largest Tanimoto shape coefficient observed
between conformers is used to define the shape sim-
ilarity between the known active and the unknown ac-
tive or the decoys. Finally, for each pair of active
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molecules, the unknown active and the decoys are
ranked according to their Tanimoto 3D pharmacophore,
or shape similarity.

4.6 | ML chemogenomic algorithm

4.6.1 | Kernel SVM

The chemogenomic approach used in the present study
recasts the problem as a supervised learning binary clas-
sification over the space of pairs m;pÖ Ü of molecules and
proteins, to separate binding pairs from a carefully se-
lected set of non-binding pairs. We rely on a kernelized
Support Vector Machines (SVM) classifier [57] to per-
form this classification. Briefly, the SVM is trained on a
dataset of m;pÖ Ü pairs and learns the optimal hyperplane
that separates pairs that bind from those that do not. The
kernel SVM leverages a kernel K encoding similarities
between m;pÖ Ü pairs [58]. A general method to build a
kernel on m;pÖ Ü pairs is to use the Kronecker product of
molecule and protein kernels as done in [58] and [59].
Given a molecule kernel Kmolecule and a protein kernel
Kprotein, the Kronecker kernel Kpair is defined by:

KpairÖ m;pÖ Ü; m
0

;p
0� �

Ü à

Kmolecule m;m
0� �

⇥KproteinÖp;p
0

Ü

where m and m0 are molecules and p and p0 are pro-
teins. We choose the Local Alignment kernel for pro-
teins [60] and the Tanimoto kernel with Morgan
fingerprints for molecules [46], whose hyperparameters
are validated by cross validation in [61]. The Local
Alignment kernel for proteins sums up the contributions
of all possible local alignments with gaps of the se-
quences which is efficient for detecting remote homol-
ogy [60]. The Tanimoto kernel between two molecules is
calculated as the Tanimoto similarity of their Morgan
fingerprints [46]. Protein and molecular kernels are cen-
tered and normalized.

The SVM algorithm also requires a regularisation
parameter classically called C, which controls the
trade-off between maximising the margin (the distance
separating the hyperplane and the two classes’ dis-
tributions) and minimizing classification error on the
training points. To implement this algorithm, we use
the sklearn [62] function SVC with the parameter
C à 10 validated by cross validation in [45]. Once the
SVM is trained, it can be applied to any pair m;pÖ Ü to
give a binding probability. This probability is com-
puted by applying a sigmoid function to the SVM out-
puts, where the parameters are trained by cross

validation as explained in [63]. It is implemented in
the predict proba method of SVC.

4.6.2 | Training dataset

To build our training set, we use the DrugBank v1.5.1
[64] which defines a set of Öm;pÜ pairs which bind to-
gether (i. e. m targets p). We choose this dataset because
it is well curated and composed of FDA-approved drugs.
We kept molecules with molecular weights between 100
and 800 g/mol which is in the range of drug-like mole-
cules [65]. Among these molecules, we select those
which target at least one human protein. Thus, the train
dataset comprises 5.071 molecules, 2.670 proteins and
14.638 positive bindings. To complete the dataset, we
need to select negative pairs. This selection should be de-
signed with care to correct potential statistical bias in the
database and reduce the number of false positive pre-
dictions. We use the greedy algorithm in [45], which
randomly chooses the same number (14.638) of negative
pairs so that each molecule and each protein have the
same number of positive and negative pairs in the train-
ing dataset.

4.6.3 | Training scheme

The ML chemogenomic algorithm is trained for each of
the 288 scaffold hopping cases in the LH benchmark as
follows: one molecule of the pair is considered as the
only known active for the query protein. If this pair is
not already present in the DrugBank database, it is add-
ed to the training set. All other pairs involving the query
protein that are present in DrugBank are removed from
the training set. This allows us to exclude the m;pÖ Ü pair
between the unknown active of the pair with the query
protein if this pair is in DrugBank. Hence, for each pair
of ligands in the LH benchmark, the chemogenomic al-
gorithm is trained with the same information about li-
gands of the query protein than the ligand-based
algorithms: a single known active ligand. Once trained,
the algorithm predicts the binding probabilities of (mole-
cule, query protein) pairs involving the 499 decoys and
the unknown active molecule. In order to have a more
robust score, this scheme is repeated 5 times for different
sets of negative examples in the training set and the
binding probabilities are averaged over these 5 versions.
We observe that the variance across these repetitions is
low (below 10�2) which highlights the stability of the
method. Finally, the unknown active molecule and the
499 decoys are ranked according to their averaged bind-
ing probabilities.
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MOTS CLÉS

mucoviscidose, biologie des systèmes, chemogenomics, machine-learning, cibles thérapeutiques, transcrip-

tomics

RÉSUMÉ

La mucoviscidose est la maladie autosomale grave la plus fréquente dans la population caucasienne. Elle est causée

par des mutations du gène codant pour la protéine CFTR (Cystic Fibrosis Transmembrane Regulator), qui agit comme

un canal de chlorure (Cl
≠) à la membrane des cellules épithéliales. La mucoviscidose est principalement délétère pour

les poumons, où l’infection chronique et les lésions tissulaires provoquent progressivement une insuffisance respiratoire.

Plus de 2000 mutations sont connues pour le gène CFTR, mais 70% des patients sont homozygotes pour la délétion du

résidu F508 (F508del). Le traitement de la mucoviscidose est resté longtemps symptomatique, mais des modulateurs

pharmacologiques de CFTR sont disponibles depuis peu. Cependant, ils ont un effet limité chez les patients homozy-

gotes F508del et n’arrêtent pas l’évolution de la maladie. De plus, ils restent spécifiques à certaines mutations, et environ

15% des patients ne peuvent pas en bénéficier. Enfin, leurs cibles protéiques, leurs mécanismes d’action et leurs effets

secondaires à long terme sont encore inconnus. Par ailleurs, la pathophysiologie globale de la mucoviscidose ne peut

être expliquée uniquement par la perte de la fonction du canal chlorure CFTR. Notre hypothèse est que CFTR appartient

à un réseau de protéines qui n’ont pas encore été toutes identifiées et dont les fonctions sont perturbées par l’absence

de CFTR, participant ainsi à certains des phénotypes cellulaires anormaux qui caractérisent la maladie. En utilisant

des approches de biologie des systèmes et des méthodes d’apprentissage automatique chémogénomique, les objectifs

du projet sont les suivants : (1) identifier in-silico des cibles thérapeutiques candidates en construisant le réseau des

dérégulations moléculaires de la mucoviscidose causées par l’absence de CFTR à l’aide de données transcriptomiques;

(2) identifier les cibles protéiques des modulateurs de CFTR afin de déchiffrer leurs mécanismes d’action. À terme, le

projet devrait permettre d’identifier de nouvelles stratégies thérapeutiques combinant des médicaments ciblant la restau-

ration de la maturation et de la fonction de CFTR, à des médicaments ciblant le réseau de dérégulations de la maladie.

Cette approche systémique pourrait apporter des solutions thérapeutiques aux patients présentant des mutations pour

lesquelles il n’existe actuellement aucune thérapie.

ABSTRACT

Cystic Fibrosis (CF) is the most frequent life-limiting autosomal disease in the Caucasian population. It is caused by

mutations in the gene coding the Cystic Fibrosis Transmembrane Regulator (CFTR) protein, acting as a chloride (Cl
≠)

channel at the membrane of epithelial cells. CF is mainly deleterious for the lung where chronic infection and tissue

damage progressively cause respiratory insufficiency. More than 2000 mutations are known in the CFTR gene, but 70%

of the patients are homozygous for the deletion of residue F508 (F508del). CF treatment remained symptomatic for a

long time, but pharmacologic CFTR modulators became recently available. However, they have a limited effect in F508del

homozygous patients, and do not stop disease evolution. They remain mutation specific, and around 15% of CF patients

cannot benefit. Moreover, their protein targets, mechanisms of action and long-term side effects are still unknown. In

addition, CF overall physiopathology cannot be solely explained by the loss of the CFTR chloride channel function.

Our hypothesis is that CFTR belongs to a yet not fully deciphered network of proteins, whose functions are disrupted

by the absence of CFTR, thus participating in some of the abnormal cellular phenotypes that characterise CF. Using

systems biology approaches and machine-learning chemogenomics methods, the aims of the project are to: (1) identify

in-silico candidate therapeutic targets by building the network of CF molecular dysregulations caused by the absence of

CFTR based on transcriptomic data; (2) identify protein targets of CFTR modulators to decipher their mechanisms of

action. At term, the project should help identify new therapeutic strategies combining drugs targeting restoration of CFTR

maturation and function, to drugs targeting the network of CF molecular dysregulations. This systemic approach may

provide therapeutic solutions for CF patients with mutations for which there is currently no specific therapy.

KEYWORDS

cystic fibrosis, systems biology, chemogenomics, machine-learning, therapeutic targets, transcriptomics
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