
HAL Id: tel-04729860
https://pastel.hal.science/tel-04729860v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lagrangian Modelling of gas/particle pollutant
dispersion for atmospheric flows within stable, neutral

and unstable situations
Guilhem Balvet

To cite this version:
Guilhem Balvet. Lagrangian Modelling of gas/particle pollutant dispersion for atmospheric flows
within stable, neutral and unstable situations. Fluids mechanics [physics.class-ph]. École des Ponts
ParisTech, 2024. English. �NNT : 2024ENPC0011�. �tel-04729860�

https://pastel.hal.science/tel-04729860v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT
de l’École des Ponts ParisTech

Modélisation lagrangienne de la disper-
sion de polluants gazeux/particulaires
dans des écoulements atmosphériques
stables, neutres et instables
Lagrangian Modelling of gas/particle
pollutant dispersion for atmospheric
flows within stable, neutral and unstable
situations
Doctoral school N o531, - Sciences, Ingénierie et Environnement (SIE)

Speciality : Fluid dynamics

Thesis prepared in the CEREA laboratory, in "Mécanique des fluides,
Energie et Environnement" department of EDF R&D

Jury version for the thesis defense on 15th March 2023, by
Guilhem BALVET

Jury composition:
Anne Taniere Rapporteur
Professeure, LEMTA-Université de Lorraine
Jacek Pozorski Rapporteur
Professor, Polish Academy of Sciences, IMP Gdańsk
Mireille Bossy Examiner
Directrice de recherche, Inria d’Université Côte d’Azur
Meissam, Bahlali Examiner
Research Associate, Faculty of Engineering, Dpt of Earth
Science & Engineering- Imperial College London
Benjamin Loubet Examiner
Directeur de recherche, INRAE
Yelva Roustan Thesis Director
Chargé de recherche, CEREA-Ecole des Ponts et Chaussées
Martin Ferrand Surpervisor
Maître de conférences, CEREA-EDF R&D





Foreword

Acknowledgements
First of all, I would like to thank Anne Tannière and Jacek Pozorski for agreeing to be rapporteur
of this thesis and for their valuable discussions and detailed corrections. I also express my
gratitude to Benjamin Loubet for his kindness, willingness and advice as Chair of my thesis jury
and as member of my CSIT. I am also very grateful to Mireille Bossy and Meissam Bahlali for
their benevolence and their interesting questions as members of my jury.
I would like to mention the people I have worked with over the last few years and without
whom this thesis would not have been possible. First of all, I want to sincerely thank my thesis
director Yelva Roustan for the time he spent supervising my work, but also for his patience
and kindliness. His pedagogy and assistance were of great help in clarifying and redirecting
me whenever my reasoning and presentations became confused. I also want to thank him for
his useful overview on transport and atmospheric physics. I express my deep gratitude to my
EDF supervisor Martin Ferrand, for his dedication and for always making himself available
when necessary even with an overbooked agenda. The guidance and answers he provided in
the overall reasoning, scientific and technical background but also on simulation setups were of
paramount importance in the progress of this work. I also truly thank Jean-Pierre Minier, for
the many fruitful discussions we had. The latter enabled me to better understand Lagrangian
stochastic methods and related issues but also broader topics such as the work and world of
researchers. Finally I would like to thank Christophe Henry for his good will but also for always
being friendly and attentive as a member of my CSIT and in our work discussion. It has been
a real pleasure to work with each of you and I hope to have the opportunity to continue in the
future.
I also thank all the colleagues from the CEREA, MFEE and I8F/H whom I had the opportunity
to meet. These interactions were very pleasant and I learned a lot from them on scientific and
non-scientific matters. A special thanks is of order to the past and present PhD students of
0314, the second league CFD magician and the CEREA team in Chatou. I would also like to
thank Anne Peuré and Lydie Periac for their availability and help in all administrative matters,
but also to Youngseob Kim for always being kind and taking the time to solve any IT problem.
On a more personal level, I deeply thank my partner Hélène for her constant support throughout
this period of ups and downs. I would also like to thank my parents, without whom I would
not be here today and my brother for showing me the excitement that a scientific and technical
subject can bring. I would also like to thank my friends for being there and for the support
they gave without even noticing (with a special big up to Céliandre who pretty much noticed
the support she gave when correcting an earlier version of this work).
I would also like to sincerely thank all the teachers I met who have passed on the joy of learning,
analysing, studying and understanding.

i



Summary in English & Résumé en Français

Summary in English

Title: Lagrangian Modelling of gas/particle pollutant dispersion for atmospheric
flows within stable, neutral and unstable situations.

Key words: fluid dynamics; GLM stochastic approach; atmospheric flows; atmospheric
stability; atmospheric dispersion.

This thesis aims at studying the atmospheric dispersion of pollutants at the micro-scale. In this
context, we are focusing on the modelling of pollutant dispersion using stochastic Lagrangian
methods developed for high-Reynolds number flows. In these methods, the pollutants and/or
the carrier fluid are simulated by means of a large number of stochastic particles, enabling to
reproduce the statistic properties of the turbulence. A hybrid approach is used in which the
mean carrier fields (e.g. the mean velocity) are obtained on a mesh using external solutions
(analytical ones or finite volume ones). We are also interested in the influence of atmospheric
stability on the dispersion of pollutants, particularly in the lower layer of the atmosphere. The
aim of this thesis is threefold: firstly, to study the numerical errors inherent to such methods,
secondly, to improve the modelling of atmospheric surface-boundary-layer flows, and finally, to
observe the influence of these elements on the modelling of plumes obtained by simulating only
the particles originating from local pollutant sources. To this end, the simulations were carried
out using the open-source computational fluid dynamics (CFD) code developed by EDF R&D:
code_saturne.
Firstly, with a view to limiting numerical errors during integration over long time steps, a time
step splitting algorithm is presented. This is used to dynamically and optimally update the
mean carrier fields at each particle location as it enters a cell. In order to avoid anticipation
errors due to the stochastic nature of these particles, deterministic virtual particles are used to
obtain the travel times in each cell. In addition, a detailed study of the spatial errors that occur
when considering surface boundary layer flows is carried out, along with proposals for limiting
them. It is shown that these errors are caused by the interpolation of the mean carrier fields at
the position of the particles impacting the dynamics of the latter, but also by the estimation of
the statistics from these particles on a mesh.
In addition, with a view to improve the modelling of surface-boundary-layer flows, the necessity
to use an an-elastic rebound condition near wall for the instantaneous velocity and potential
temperature was verified. Without the latter, not only the gradients, but also the turbulent
fluxes close to the wall plummet, in opposition to the physics of parietal flows. Furthermore, a
description consistent with the choice of modelling was derived based on algebraic solutions
and numerical resolution of the turbulent kinetic energy dissipation rate. This description
is consistent with the asymptotic solutions associated to the Monin–Obukhov theory and is
coherent with the results of code_saturne in the stable case. For convective flows, a study of
the role of turbulent kinetic energy diffusion remains to be carried out.
Finally, the effects of this work on pollutant dispersion have been verified, in the neutral case,
using experimental results from a channel flow both in the absence of an obstacle and in the
presence of an obstacle. It is shown that the most important factors are the estimation of the
mean carrier fields and the choice of the model considered. Furthermore, in a thermally stratified
case, the influence of atmospheric stability and the modelling of thermal effects on the shape of
the plumes were verified by means of a qualitative study.
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Résumé en Français

Titre: Modélisation lagrangienne de la dispersion de polluants gazeux/particulaires
dans des écoulements atmosphériques stables, neutres et instables.

Mots clefs : dynamique des fluides, approche stochastique GLM, écoulement atmosphérique,
stabilité atmosphérique, dispersion atmosphérique.

Ce travail de thèse vise à étudier la dispersion atmosphérique de polluants à l’échelle locale.
Dans ce contexte, nous nous concentrons sur la modélisation de la dispersion de polluants en
utilisant des méthodes lagrangiennes stochastiques à haut Reynolds. Au sein de ces méthodes,
les polluants et/ou le fluide porteur sont simulés par le biais d’un grand nombre de particules
stochastiques permettant une représentation des propriétés statistiques de la turbulence. Une
approche hybride est utilisée au sein de laquelle les champs porteurs moyens (par exemple la
vitesse moyenne) sont obtenus sur un maillage par le biais de solutions externes (solutions
analytiques ou calcul volumes finis). Par ailleurs, nous nous intéressons à l’influence de la
stabilité atmosphérique sur la dispersion de polluants, en particulier dans la couche inférieure
de l’atmosphère. L’objectif de cette thèse est triple : premièrement, il vise à étudier les
erreurs numériques entachant de telles méthodes, deuxièmement, à améliorer la modélisation des
écoulements de couche limite de surfaces atmosphériques, et finalement, à observer l’influence
de ces éléments sur la modélisation de panaches obtenus en ne simulant que les particules issues
de sources locales de polluants. A cette fin, les simulations sont réalisées à l’aide du code CFD
open-source code_saturne qui est développé par EDF R&D.
Premièrement, dans l’optique de limiter les erreurs numériques durant l’intégration sur de longs
pas de temps, un algorithme de découpage en sous-pas de temps est présenté. Celui-ci permet de
mettre à jour de façon dynamique et optimale les champs porteurs associés à chaque particule,
lorsqu’elle rentre dans une cellule. Afin d’éviter des erreurs d’anticipation dues à la nature
stochastique de ces particules, des particules virtuelles déterministes sont utilisées pour obtenir
les temps de parcours dans chaque cellule. Par ailleurs, une étude poussée sur les erreurs spatiales
apparaissant lorsque l’on considère des écoulements de couche limite de surface est réalisée, et
des solutions pour limiter celles-ci sont proposées. Il est montré que ces dernières sont dues à
des erreurs lors de l’interpolation des champs porteurs à la position des particules impactant la
dynamique de celle-ci, mais aussi lors de l’estimation sur un maillage des statistiques issues de
ces particules.
Par ailleurs, dans l’optique d’améliorer la modélisation des écoulements de couche limites de
surface, la nécessité d’utiliser une condition de rebond anélastique en proche paroi pour la vitesse
et la température potentielle instantanée a été vérifiée. Sans celle-ci, les gradients, mais aussi
les flux turbulents en proche paroi s’effondrent, en opposition avec la physique des écoulements
pariétaux. Par ailleurs, une description cohérente avec le choix de modélisation sélectionnée a
été dérivée grâce à l’obtention de solutions algébriques et à la résolution numérique du taux
de dissipation d’énergie cinétique turbulente. Celle-ci permet de bien retrouver les solutions
asymptotiques associées à la théorie de Monin–Obukhov et est cohérente avec les résultats de
code_saturne dans le cas stable. Pour les cas instables, une étude sur le rôle de la diffusion
d’énergie cinétique turbulente reste à réaliser.
Finalement, l’effet de ce travail sur la dispersion de polluant a été vérifié en cas neutre grâce à
des essais expérimentaux en canal plan, à la fois en l’absence et en présence d’un obstacle. Il est
montré que les éléments ayant un poids majoritaire restent l’estimation des champs porteurs et
le choix du modèle considéré. Par ailleurs, dans un cas thermiquement stratifié, l’influence sur
la forme des panaches de la stabilité atmosphérique et de la modélisation des effets thermiques
a été vérifiée grâce à une étude qualitative.
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1.1 Context

Major accidents, such as encountered at Chernobyl or at Fukushima Daiichi in the nuclear
context; but also, in conventional situations the fire at the AZF factory near Toulouse; or more
recently the fire at Lubrizol factory or at Bolloré Logistics warehouse both near Rouen and more
iconically the Notre-Dame cathedral of Paris fire, have raised a major concern among the public
regarding the impacts of atmospheric release of pollutant. Such a concern is not limited to
accidental setups but also includes the emissions from industrial site in their normal operating
system. Indeed, their emission might have a repercussion on the health of the surrounding
populations, as recalled recently by the complaint addressed against Sanofi factory in Mourenx,
but also on the environment.
In the context of pollutant releases by local sources, the proper characterisation of the resulting
plumes is of paramount importance. From a safety perspective, it may be used as part of an
emergency response, enabling to create maps with exclusion zones on the path of the plumes.
Moreover, before any accident, the fine understanding of pollutant dynamics may be used to
predict such risks and enable to develop both technical and legal solutions accordingly. For these
reasons, such a subject is of major interest for EDF (Électricité de France), the most important
European electricity producer. Indeed, as all industrial companies, it has to ensure the surety of
its installation but also has to assess their potential impacts on the surroundings. This analysis
is necessary to be able to prepare risk scenarios in accidental situations but also to estimate the
repercussion of operating releases as illustrated recently by the Taishan power plant degassing
process. In this context, this work has been realised within a CIFRE contract in collaboration
between EDF R&D and the academic laboratory CEREA (Centre d’Étude et de Recherche en
Environnement Atmosphérique) whose main subject of research is centred around atmospheric
studies. The present work focuses on the numerical modelling of pollutant dispersion in the
so-called local scale. The latter, also referred as micro-scale, is characterised by a spatial range
from the metre to a few kilometres and a temporal scale from a few seconds to some dozens of
minutes. The description of plumes at this scale remains a complex consideration as it depends
on multiple factors such as the properties of the fluid released and of the pollutant source which
are often complex to estimate (see e.g. Hutchinson et al. [2016]), the topography (see e.g. Britter
and Hanna [2003], Bahlali et al. [2019]), but also the local meteorological situations (see e.g.
Stull [1988], Arya [1999]). In the latter case, two main elements should be tackled: first the
mean wind velocity characterising mostly the mean transport but also the atmospheric stability
having a great impact on the turbulent plume diffusion. A main concern of this study will be
to properly take into account this second aspect. Moreover, classical hypotheses assumed in
Gaussian methods, often used in long range dispersion, such as the local vertical uniformity of
the mean velocity and turbulence and the low effect of the topography are not valid at the micro-
scale ( see e.g. Stockie [2011], Leelóssy et al. [2018]). Due to these complexities, the estimation of
the local phenomena at stake is necessary and computational fluid dynamics (CFD) simulations
are considered. The latter are identified by the resolution of Navier–Stokes based equations on
very refined meshes. In this scope, and in the continuation of the thesis presented by Bahlali
[2018], this work focuses on the description of pollutant plumes in dry surface-boundary-layer
flows using Lagrangian stochastic methods developed for high Reynolds-number flows.
In Lagrangian stochastic methods, also referred to as Lagrangian probability density function
(PDF) methods (or simply as PDF methods in this work), the PDF associated to selected
variables of interest, which form the particle state vector, is estimated, in a weak sense, by Monte
Carlo methods from a large number of ‘stochastic particles’ as introduced in the fundamental
work of Pope [1985]. These approaches belong to the category of reduced statistical descriptions
(see Minier [2016]) in which a Lagrangian standpoint is adopted to model and simulate single-
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phase, as well as poly-disperse two-phase, turbulent flows and where the eliminated degrees
of freedom are replaced by stochastic models. As indicated by their name, one-particle PDF
models have an intrinsic Lagrangian nature from which one-point one-time Eulerian PDFs are
automatically derived, using a one-way-street procedure, to obtain mean fields. The theoretical
framework has been developed in the 1980s and 1990s, mostly by Pope and co-workers (see
Haworth and Pope [1986], Pope and Chen [1990], Pope [1991, 1994a,b]) and were later extended
to the disperse two-phase flow situation by Minier and co-workers (see Minier and Pozorski
[1997], Pozorski and Minier [1998], Minier and Peirano [2001], Minier et al. [2004], Minier
[2015, 2016, 2021]) and is now well-established. The ability of PDF methods to treat without
approximation convection as well as chemical source terms (and, more generally, the mean value
of any function, however complex or non-linear, of the variables entering the particle state vector)
makes them attractive candidates to simulate pollutant dispersion and/or reactive flows (see e.g.
Sabelfeld [2012]). This has long been recognised in the atmospheric ( see Rodean [1996], Wilson
and Sawford [1996], Thomson and Wilson [2013]) and combustion (see Pope [1979, 1981, 1983])
communities. Yet, historically, the formulation considered has been scarcely used in atmospheric
flows. In this context an approach proposed by Sawford [1986] and Thomson [1987], where flow
statistics are assumed known and injected directly in the model instead of being results of the
simulation are often used. These methods requiring more information about the carrier flow
compared to Pope’s approach, are not studied in this work. Furthermore, a grid-based hybrid
formulation is tackled, i.e., the mean quantities required to transport the particles are provided
by an external solver: either from (pseudo-)analytical solutions or finite volume simulations and
are estimated at first on a mesh.
The main goal of the work presented is threefold:

I First, we aim at presenting an in-depth analysis of numerical errors that may arise in the
context of grid-based Lagrangian stochastic methods and solutions developed to reduce
them.

II A second axis of study is to improve the modelling of neutral or stratified dry surface-
boundary-layer flows.

III Finally, the impacts of these numerical and modelling issues on the results obtained when
modelling only the pollutant plumes with Lagrangian stochastic methods are investigated.

This manuscript is constituted as follows:

• First, in the following of Chapter 1, an overview of the physical and modelling background
in which this work takes place is presented.

• In Chapter 2, the entanglement between spatial and temporal errors is discussed. A time-
splitting method enabling, for each particle, to dynamically update the mean carrier fields
when it enters a cell is implemented to lower numerical error. As we consider a stochastic
method based on an Itô formulation, a specific treatment to avoid anticipation error is
provided and a discussion on such error is proposed.

• In Chapter 3, the numerical study is continued for neutral flows. A focus is given to the
spatial errors that may impair interpolation of the mean fields at particle location and
the estimation of the ensemble statistics from the set of particles. A detailed analysis of
these issues is addressed as well as solutions to mitigate them. Moreover, in the spirit
of providing a proper modelling of wall-modelled flows, the necessity to use an an-elastic
rebound boundary condition to treat wall boundary condition is presented.
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• The modelling of linear source dispersion in the context of neutral flow is then presented in
Chapter 4, based on the experimental setup of Gamel [2015]. It is shown that, modelling
only the pollutant, it is possible using hybrid moment/PDF methods to estimate the mean
concentration but also the scalar turbulent fluxes and scalar variance. The different sources
of error impacting such simulations are then put forward.

• In Chapter 5, the treatment of stratified surface-boundary-layer flows is investigated. First,
a method to estimate the mean carrier fields in coherence with the modelling selected is
presented. This method is based on the solutions of the algebraic model considered and
on the iterative solution of the turbulent kinetic energy dissipation rate equation. It is
followed by an extension of the analysis provided in Chapter 3 to thermally stratified
flows. Afterward, the effects of the thermal stability and of its modelling on the pollutant
dispersion are qualitatively assessed.

• Finally, in Chapter 6 the conclusions of this work are drawn, and perspectives are
presented.

This work led to the publication of two scientific articles (see Balvet et al. [2023a] and Balvet
et al. [2023b]). Respectively Chapter 2 and Chapter 3 are based on these papers and elements
from both of them are used in Chapter 1.
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1.2.1 Introduction to the Fundamental Equations of Fluid Dynamics

The present subsection goal is to provide a short introduction to fluid dynamics. It does not
aim at being exhaustive. The interested reader may refer, e.g., to Tennekes and Lumley [1972],
Monin and Yaglom [1971, 1975], Landau and Lifshitz [1987], Pope [2000], for further information.

1.2.1.1 From Continuum Mechanics to Navier–Stokes Equations

1.2.1.1.1 Continuum Mechanics
First, we aim at presenting the fundamental equations of fluid dynamics, in the scope of the
continuum mechanics theory. This theory consists in a description of material bodies assumed
to be "continuously filled" with matter. In order to consider such bodies, a smoothing of the
intrinsically discrete microscopic interactions between very small elements (such as atoms or
molecules) is assumed. Thus, a description at molecular scales is outside the scope of continuum
mechanics and will not be treated in this work as it requires to consider a whole other field of
physics: the quantum theory. The smoothing of molecular-scale discrete interactions is achieved
by spatially averaging these interactions over elementary volumes whose dimensions greatly
exceed the molecular interaction length scales. These elementary volumes correspond then
to the lowest scale at which the continuum mechanics is valid. However, their size remains
sufficiently small for any macroscopic properties to be considered uniform within them and to
be able to apply differential calculus. The laws of continuum mechanics stem from conservation
of given quantities. These laws are applicable only in closed systems, i.e., systems containing a
given fixed mass.

Lagrangian and Eulerian Point of View
Two points of view can be employed to track the evolution of systems. The first one, referred as
Lagrangian point of view, consists in following the evolution of given mass over their displacement
knowing their state at an anterior time t0. In this case, for any elementary volume, the position
X(t,Z0) and any fluids property Ψ(X(Z0, t); t,Z0) are variables depending on the time t and
on their precedent state Z0 = (X0, Ψ0). In this notation, followed e.g., by Pope [2000], the
semicolon is used to separate the location at a given time which is a variable from the initial
state and time which are parameters. In the Lagrangian referential, i.e, the one following the
volume tracked, the temporal evolution characterised by a material derivative corresponds to the
temporal partial derivative along particle trajectories. The second point of view is the Eulerian
one within which we consider the evolution of properties Ψ(t,x) at given location x. In this case,
the location is no longer a time dependent variable but a fixed parameter. In this referential,
so as to consider the temporal evolution of a closed system, it is necessary to take into account
not only the local temporal derivative within the Eulerian control volume but also the spatial
variation caused by the mass advected by the velocity in this volume. Thus, in the fixed Eulerian
referential the material derivative is written dΨ

dt (X(t) = x; t) = ∂Ψ
∂t (t,x) + (U · grad)Ψ(t,x).

Let’s put emphasis that no point of view is intrinsically superior to the other, they are both
equivalent and provide similar pieces of information.
To better understand the differences between the two points of view let us use a small analogy.
Assuming one wants to describe the evolution of a procession of demonstrators in a road full
of anxious shopkeepers, two points of view could be followed. The first one, the Lagrangian
one, is the point of view of the demonstrators which are walking with the group and following
its displacement in time. For them, the evolution of the behaviour of the procession evolves
only on time as they go by. The second one, the Eulerian one, is the point of view of the
shopkeepers remaining in their store and monitoring the flow of protesters from their windows.
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The evolution of the protest in front of them will depend on the evolution of behaviour of the
protesters, which are currently in front of them, but also on the difference of behaviour with the
protesters to come. Once we have gathered at any time the information of each protester and
each shopkeeper it is possible to extract the same description of the flow of protesters (in this
analogy it is assumed that both protesters and shopkeepers remain objective and are not biased
regarding the evolution of the procession).

Remark 1.2.1. Before going any further, let us make a small remark on the notation and
operator used in this work. The Einstein notation is considered, i.e. there is a summation
on all spatial directions when we have repeated Roman subscripts such as i,j ,k,l for two side-
by-side elements. The latter will be kept as subscripts only to characterise spatial directions.
Except if otherwise stated we place ourselves in the Cartesian basis (e1, e2, e3) = (ex, ey, ez)
with x1 = x, x2 = y, x3 = z. Note that there is no implicit summation if the subscripts
considered are Greek letters. For example, considering a second-order tensor Υ, a vector Ψ
and a scalar Φ we have:

Ψi = Ψ · ei, (1.1a)

divΨ =
3∑

α=1

∂Ψα

∂xα
= ∂Ψi

∂xi
, (1.1b)

gradΦ =
3∑

α=1

∂Φ
∂xα

eα = ∂Φ
∂xi

ei, (1.1c)

(U · grad)Φ =
3∑

α=1
Uα

∂Φ
∂xα

= Ui
∂Φ
∂xi

, (1.1d)

div(Υ) =
3∑

α=1

3∑
β=1

∂Υαβ

∂xβ
eα = ∂Υij

∂xj
ei, (1.1e)

gradΨ =
3∑

α=1

3∑
β=1

∂Ψα

∂xβ
eα ⊗ eβ = ∂Ψi

∂xj
ei ⊗ ej , (1.1f)

dΨi

dt = ∂Ψi

∂t
+ Uj

∂Ψi

∂xj
= dΨα

dt = ∂Ψα

∂t
+

3∑
β=1

Uβ
∂Ψα

∂xβ
with i =α . (1.1g)

A last notation remark: except otherwise stated, the components of the velocity vector U are
U = Uex + V ey +Wez, with U1 = Ux = U,U2 = Uy = V and U3 = Uz = W .

Conservation Equations
In order to characterise the evolution of a continuous medium, we will consider the conservation
laws of the mass, the momentum and the energy first in a Lagrangian point of view. Let us
consider a mass δm contained in the elementary volume δΩ defined by the closed surface δΓ
oriented towards the exterior. The deformation of this material volume is characterised by its
dilatation rate 1

δΩ
dδΩ
dt following:

1
δΩ

dδΩ
dt = div(U). (1.2)
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The considered conservation laws per unit of volume can be written as:

1
δΩ

dδm
dt (X(t); t) = dρ

dt (X(t); t) + ρ

δΩ(X(t); t)dδΩ
dt (X(t); t) = 0, (1.3a)

1
δΩ

dδmUi
dt (X(t); t) = dρUi

dt (X(t); t) + ρUi
δΩ (X(t); t)dδΩ

dt (X(t); t)

= ∂σij
∂xj

(X(t); t) + ρbi(X(t); t), (1.3b)

1
δΩ

dδmet

dt (X(t); t) = dρet
dt (X(t); t) + ρet

δΩ (X(t); t)dδΩ
dt (X(t); t)

= ∂σijUi
∂xj

(X(t); t)− ∂qj
∂xj

(X(t); t) + Se(X(t); t). (1.3c)

where ρ is the density, U the velocity, σ the Cauchy tensor, b the gathering of the specific body
forces affecting the system, et the specific total energy, q the specific heat flux and Se a source
term of heat. In the atmospheric context, the latter may be caused for example by radiation
emissions and absorptions, by chemical reactions (either endothermic or exothermic) or due to
water change of state (e.g., exothermic condensation or endothermic evaporation). The first
equation, Eq. (1.5a) is the conservation of mass also referred as mass continuity equation or
simply as continuity equation. The second one, Eq. (1.5b) is the conservation of momentum
written using Cauchy’s first law of motion derived from Newton’s fundamental principle of
dynamics for deformable bodies. The third equation Eq. (1.5c) is the conservation of energy
described by the first law of thermodynamics. It is worth noticing that in the right-hand side
(RHS) of these equations two kinds of terms do appear. On the one hand, there is b gathering
all the body forces such as the gravity force, the Coriolis or electromagnetic forces that interact
within the volume of the elements. On the other hand, there are terms inside a divergence
such as the stress tensor σ or the heat flux q. They correspond to surface interactions with the
surroundings taking place on the surface δΓ of the volume considered. A fundamental theorem
used in continuum mechanics to replace the surface integrals by the corresponding volumetric
ones is the divergence theorem which states for any field Ψ:

˚
δΩ

div(Ψ)dV =
‹
δΓ

Ψ · ndS, (1.4)

where n is the local normal vector directed towards the exterior.
The equilibrium assumption being true in all point, we can pass from the Lagrangian standpoint
to the Eulerian one by estimating these equations in X(t) = x. Doing so, replacing the volume
dilatation rate by Eq. (1.2) and the other time derivative using Eq. (1.1g), we obtain in the
Eulerian standpoint:

∂ρ

∂t
(t,x) + Uj(t,x) ∂ρ

∂xj
(t,x) + ρ(t,x)∂Uj

∂xj
(t,x) = 0, (1.5a)

∂ρUi
∂t

(t,x) + Uj(t,x)∂ρUi
∂xj

(t,x) + ρUi(t,x)∂Uj
∂xj

(t,x) = ∂σij
∂xj

(t,x) + ρbi(t,x), (1.5b)

∂ρet

∂t
(t,x) + Uj(t,x)∂ρe

t

∂xj
(t,x) + ρet(t,x)∂Uj

∂xj
(t,x) = ∂σijUi

∂xj
(t,x)− ∂qj

∂xj
(t,x) + Se(t,x).

(1.5c)
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These equations can then be written as:

∂ρ

∂t
+ ∂ρUj

∂xj
= 0,

∂ρUi
∂t

+ ∂ρUiUj
∂xj

= ∂σij
∂xj

+ ρbi,

∂ρet

∂t
+ ∂ρUje

t

∂xj
= ∂σijUi

∂xj
− ∂qj
∂xj

+ Se.

(1.6a)

(1.6b)

(1.6c)

In the previous equation and in the following one the explicit dependence on (x; t) is not written
for the sake of clarity and to simplify the notation. Yet let us keep in mind these dependencies
and that for now on we have made the choice to consider a Eulerian description. This is the set
of conservation equations provided by the continuum mechanics written in a conservative form.

1.2.1.1.2 Navier–Stokes Equations and Thermal equations
Now that we have seen the conservation equations provided by the continuum mechanics, we will
see how they can be applied to model fluid dynamics and in particular ideal gas. The continuity
equation Eq. (1.6a), will be first considered as such and we will focus on the momentum and
energy equations in the context of compressible flows.

Compressible Flows

Momentum: The body forces considered will only be the weight and the Coriolis effects; (additional
forces such as long-range electromagnetic interactions could be considered). We have
then:

bi = gi − 2ΩkUjεijk, (1.7)

where g = −ge3 is the acceleration induced by the weight on Earth whose norm g is
assume uniform and equals to 9.81 m s−2, Ω is the Coriolis frequency at the latitude
considered. Assuming that e1 the west-east unitary vector, e2 is the south-north one
and e3 the vertical one, we have Ω = Ω

(
cos(φ)e2 + sin(φ)e3

)
with Ω = 2π

τEarth
'

7.210−5 s−1 where τEarth ' 86164 s is the period of rotation of the Earth and φ
the latitude. This choice of basis is a convention in the atmospheric study and will
be referred as reference atmospheric basis. Furthermore, ε is the third order Levi–
Civita tensor enabling to write the Coriolis pseudo-forces in the Cartesian basis as
ΩkUjεijkei = Ω ∧U with:

εijk =


1 if (i, j, k) = (1, 2, 3) or (i, j, k) = (2, 3, 1) or (i, j, k) = (3, 1, 2),
−1 if (i, j, k) = (1, 3, 2) or (i, j, k) = (2, 1, 3) or (i, j, k) = (3, 2, 1),
0 if i = j or i = k or j = k.

(1.8)
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Remark 1.2.2. Often only the term in Ω3 = Ω sin(φ) is considered in the momentum
equation as, at high altitude, where this pseudo-force becomes preponderant, it is
assumed that the flow is horizontal and the vertical velocity is neglected. It is
then common in the atmospheric community to consider a Coriolis parameter fC
depending on the latitude defined as: fC = 2Ω sin(φ).

Remark 1.2.3. The axifugal pseudo-force Ω (∧Ω ∧ x) has not been presented here. If
one wants to take it into account, it should be added to the gravitational acceleration
g which is defined by the plumb line experiment. In this case the gravitational
acceleration should be seen as a local quantity which does not necessary point toward
the centre of the Earth depending on the latitude. This pseudo-force will not be
considered later on in this work.

Furthermore, the Cauchy tensor can be split between a reversible part and viscous and
irreversible part such as:

σij = −Pδij + τij , (1.9)

where τ is the viscous shear tensor, P is the pressure, and δij the Kronecker symbol
equals to unity if i = j and zero otherwise. We will consider only Newtonian flows,
within which the viscous effects evolve linearly with the velocity gradient:

τij = 2µSij −
(2

3µ− κ
)
∂Uk
∂xk

δij , (1.10)

where µ is the dynamic viscosity, κ the second viscosity and S the deformation rate
tensor defined as:

Sij = 1
2

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
. (1.11)

Injecting Eqs. (1.6a), (1.7), (1.9) and (1.10) in Eq. (1.5c) we obtain the Navier–Stokes
equation:

ρ

(
∂Ui
∂t

+ Uj
∂Ui
∂xj

)
= − ∂P

∂xi
+ ∂

∂xj

(
2µSij −

(2
3µ− κ

)
∂Uj
∂xj

)
+ ρgi − 2ρΩkUjεijk.

(1.12)
An assumption commonly made in fluid dynamics and first proposed by Stokes [1845],
is to take κ = 0. This is rigorously true only for mono-atomic gases. However, the role
of this viscosity becomes predominant only when considering compressibility effects
such as wave dispersion or shock wave attenuation (interested reader may refer to
Landau and Lifshitz [1987]). Such effects are out of the scope of the presented work
and this assumption is conserved. Injecting the Stokes’ assumption in the Navier–
Stokes equation, it becomes:

ρ

(
∂Ui
∂t

+ Uj
∂Ui
∂xj

)
= − ∂P

∂xi
+ ∂

∂xk

(
2µSij −

2
3µ

∂Uk
∂xk

)
+ ρgi − 2ρΩkUjεijk. (1.13)

9



Energy: The specific total energy is the sum of the specific internal energy e, the specific kinetic
energy 1

2U · U and the specific potential energy gz. Multiplying the Navier–Stokes
equation Eq. (1.13) by U one can obtain the equation for the specific kinetic energy:

ρ
d1

2UiUi

dt = ∂σijUi
∂xj

− σij
∂Ui
∂xj

+ ρgiUi. (1.14)

Injecting this equation and the continuity equation Eq. (1.6a) in the first law of
thermodynamics Eq. (1.6c) we get:

ρ
∂e

∂t
+ ρUj

∂e

∂xj
= σij

∂Ui
∂xj
− ∂qj
∂xj

+ Se. (1.15)

One can model the specific heat flux transferred by conduction using the Fourier law
[Fourier et al., 1822]. This model is quite similar to the hypothesis made for the
viscous tensor assuming a linear relation between the temperature gradient and this
flux transferred by molecular conduction:

div(q) = div(−λgradT), (1.16)

with λ the thermal molecular conductivity of the flow, T its temperature. Finally, as
the main goal of this study is to consider atmospheric flows, we will consider that the
fluid treated is an ideal gas. Under this hypothesis, we consider that the gas molecules
do not interact except for elastic rebounds taking place during molecular collisions.
For ideal gas, the internal energy depends solely on the temperature as:

de = cvdT, (1.17)

with cv ' 717 J K−1 kg−1 the dry air heat capacity at constant volume. Thus, injecting
Eqs. (1.9), (1.10) and (1.16) the first principle of thermodynamics can be written as a
function of the temperature as:

ρ

(
∂cvT
∂t

+ Uj
∂cvT
∂xj

)
= −P ∂Ui

∂xi
+ τij

∂Ui
∂xj

+ ∂

∂xj

(
λ
∂T
∂xj

)
+ Se. (1.18)

The term τij
∂Ui
∂xj

represents the production of energy by Joule effects. It is a source

term as both components
(
2µSij − 2

3µ
∂Uj
∂xj
δij
)
∂Ui
∂xj

and κ
(
∂Uj
∂xj

)2
are positive, provided

that µ and κ are positive (the second term is here neglected). Using the continuity
equation, we can replace the velocity divergence next to the pressure by the material
derivative of density, after division by the density we obtain:

∂cvT
∂t

+ Uj
∂cvT
∂xj

= P

ρ2
dρ
dt + τij

ρ

∂Ui
∂xj

+ 1
ρ

∂

∂xj

(
λ
∂T
∂xj

)
+ Se

ρ
. (1.19)

Injecting the ideal gas law:

P = ρRairT, (1.20)

with Rair ' 287 J K−1 kg−1 the ideal gas constant of dry air, on the first RHS term of
Eq. (1.19) we have:
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P

ρ2
dρ
dt = −P

d1
ρ

dt = −P
dRairT

P

dt = −Rair dT
dt + RairT

P

dP
dt . (1.21)

As we can consider the heat capacity constant, we get injecting this relation in
Eq. (1.19)

(cv + Rair)dT
dt = RairT

P

dP
dt + τij

ρ

∂Ui
∂xj

+ 1
ρ

∂

∂xj

(
λ
∂T
∂xj

)
+ Se

ρ
. (1.22)

Using the Mayer’s relation, we have for ideal gas cp = cv + Rair with cp =
1004 J K−1 kg−1 the heat capacity at constant pressure of the dry air.
For an instant, let us consider the adiabatic atmosphere at rest. In such a situation
only the first term of the RHS part of the equation remains. We have then:

1
T

dT
dt = Rair

cpP
dP
dt . (1.23)

This equation can be simply integrated between the reference state at the ground
indexed with the subscript 0 and the value at a given height as:

T0 = T
(
P0
P

)Rair
cp = Θ, (1.24)

where Θ is the potential temperature which remains constant over adiabatic and
inviscid displacement in the atmosphere. As further detailed in Section 1.2.2.2, this
quantity is commonly used in atmospheric studies as it is useful to easily characterise
the thermal stability. Moreover, using the second law of thermodynamics for ideal gas,
the potential temperature can be related to the entropy s as:

Tds
dt = cp

dT
dt −

1
ρ

dP
dt , (1.25)

then:
ds
dt = cp

1
T

(
P

P0

)Rair
cp

︸ ︷︷ ︸
Θ−1

(
P0
P

)Rair
cp
(

dT
dt −

RairT
cpP

dP
dt

)
︸ ︷︷ ︸

dΘ
dt

. (1.26)

It results that:
ds
dt = cp

d ln(Θ)
dt . (1.27)

From the latter equation, it is clear that the potential temperature is a measure of
the entropy. The former is then the thermodynamic quantity that we will follow. Its
transport equation can be written as:

ρcp
dΘ
dt =

(
P0
P

)Rair
cp
(
τij
∂Ui
∂xj

+ ∂

∂xj

(
λ
∂T
∂xj

)
+ Se

)
(1.28a)

= Θ
T

(
τij
∂Ui
∂xj

+ ∂

∂xj

(
λ
∂T
∂xj

)
+ Se

)
(1.28b)
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Taking a closer look at the second RHS term we can notice that:

Θ
T

∂

∂xj

(
λ
∂T
∂xj

)
= ∂

∂xj

(
λ
∂Θ
∂xj

)
+ 1
T

∂

∂xj

(
λ

(
Θ ∂T
∂xj
− T ∂Θ

∂xj

))
(1.29a)

with:

1
T

∂

∂xj

(
λ

(
Θ ∂T
∂xj
− T ∂Θ

∂xj

))
= 1
T

∂

∂xj

λT2Rair
Pcp

(
P0
P

)Rair
cp ∂P

∂xj

 (1.30a)

= 1
T

∂

∂xj

(
λΘ
ρcp

∂P

∂xj

)
(1.30b)

Analysing the order of magnitude to quantify the relative effects of this contribution
compared to the Laplacian of the potential temperature, we see that their relative
weight scales approximately as:

δP

ρTcp
' P − P0

P0

Rair
cp

. (1.31)

Considering flows within the lowest part of the atmosphere, this quantity remains small,
thus one may neglect the second contribution in the diffusive term. The potential
temperature equation can be simplified into:

ρcp
dΘ
dt = Θ

T

(
τij
∂Ui
∂xj

+ Se
)

+ ∂

∂xj

(
λ
∂Θ
∂xj

)
. (1.32)

Remark 1.2.4. From now on, let us take the potential temperature to quantify the
energy evolution of the system, this choice will be further discussed in Section 1.2.2.2.
As we consider ideal gas, for smooth enough flow (i.e., in absence of shock) we would
obtain a similar description resolving the specific total energy et, the specific internal
energy e, the specific entropy s or the specific enthalpy h = e + P

ρ , which are in a
general case (i.e. not for ideal gas) better description of the energetic state of the
flow.

Incompressible Equation of Dynamics
Until now we have considered compressible flow, yet one may want to quantify the influence of
the compressibility effects. The proper parameter to quantify these effects is the Mach number
Ma = U

c
, where c is the sound celerity in the flow. The sound celerity defined as c =

√
∂P
∂ρ |s=cst,

with s the entropy, equals to
√

γP
ρ for ideal gas with γ = cp

cv the capacity ratio equal to 7
5 for

diatomic gas such as the air. In atmospheric flows, this celerity is in general large compared
to the flow velocity. Thus, the corresponding Mach number is sufficiently small to be able to
consider such flows incompressible. This means that the dilatation rate and then the velocity
divergence are null:

∂Ui
∂xi

= 0. (1.33)
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This incompressibility hypothesis may be used on our set of equations to simplify it as:

dρ
dt = ∂ρ

∂t
+ Uj

∂ρ

∂xj
= 0,

ρ

(
∂Ui
∂t

+ Uj
∂Ui
∂xj

)
= − ∂P

∂xi
+ ∂

∂xj

(
µ
∂Ui
∂xj

)
+ ρgi − 2ρΩkUjεijk,

∂Θ
∂t

+ Uj
∂Θ
∂xj

= Θ
T

(
νS2

cp
+ Se
ρcp

)
+ 1
ρcp

∂

∂xj

(
λ
∂Θ
∂xj

)
,

(1.34a)

(1.34b)

(1.34c)

with ν is the kinematic viscosity and S2 = 2SijSij .

Boussinesq Approximation
Finally, a further approximation will be considered to estimate the effects of thermal dilatation
on the flow density. Assuming that we remain sufficiently close to the reference stationary
adiabatic atmosphere, with a Mach number sufficiently small, and with vertical displacement
small compared to the height of the atmosphere, we can consider the Boussinesq approximation
(see e.g. Spiegel and Veronis [1960]) . The latter one states that the variation of density can
be neglected everywhere except in front of the gravitional term to be able to treat buoyancy
effects. Furthermore, in agreement with the thermodynamic variables considered, it states that
in this term the density is independent of the pressure and evolves linearly with the potential
temperature. Thus, one can replace ρ by its reference value ρ0 everywhere in Eqs 1.34, except in
the buoyant terms which can be written ρ0(1−β0(Θ−Θ0))g where Θ0 is the reference potential
temperature at ground and β0 = 1

ρ0
∂ρ
∂Θ the thermal dilatation coefficient. For ideal gas the latter

equals to Θ−1
0 .

Remark 1.2.5. Similar assumptions are also currently used to consider the influence of other
physical quantities on the density. For example, if one wants to take into account the effects
of the humidity in the air, it is current to introduce a similar dilation coefficient associated to
the humidity βhum

0 = 1
ρ0

∂ρ
∂Chum where Chum is the concentration of water. The density is then

treated as ρg = ρ0(1 + βhum
0 (Chum −Chum

0 )− β0(Θ−Θ0))g. In the scope of oceanic flows, to
treat thermohaline circulation one can consider the effect of the salinity instead of humidity
in a similar manner (see e.g.Vallis [2017]).

Considering the Boussinesq assumption and still that the heat capacity variation is negligible,
it is possible to rewrite the set of equations Eqs 1.34 as:

∂Ui
∂xi

= 0,

∂Ui
∂t︸︷︷︸
1.a

+Uj
∂Ui
∂xj︸ ︷︷ ︸

1.b

= −2ΩkUjεijk︸ ︷︷ ︸
2.a

+ gi(1− β0(Θ−Θ0))︸ ︷︷ ︸
2.b

− 1
ρ0

∂P

∂xi︸ ︷︷ ︸
3.a

+ ∂

∂xj

(
ν
∂Ui
∂xj

)
︸ ︷︷ ︸

3.b.i

,

Uj
∂Θ
∂t︸ ︷︷ ︸

1.a

+Uj
∂Θ
∂xj︸ ︷︷ ︸

1.b

= Θ
T
ν

cp
S2

︸ ︷︷ ︸
3.b.ii

+ ∂

∂xj

(
KΘ

∂Θ
∂xj

)
︸ ︷︷ ︸

4

+ Θ
T
Se
ρcp︸ ︷︷ ︸
5

,

(1.35a)

(1.35b)

(1.35c)

where KΘ = λ
ρcp is the molecular thermal diffusivity.
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Let us take an instant to summarise the physical phenomena at play and their effects in these
equations:

1. The left-hand side (LHS) terms are the material derivatives of the quantities. They
correspond to the temporal evolution of the flows and are composed of:

1.a A first term induced by the local temporal variation of the flow,
1.b A second one resulting from the advection by the velocity of the surrounding quantity

in the volume considered.

2. We also have body forces affecting the flow in the bulk such as:

2.a The Coriolis term even though rigorously speaking it is not a force. Indeed, it is an
inertial effect triggered by the choice of the frame od reference. The latter is attached
to the Earth and therefore is not an inertial frame of reference due to Earth rotation.
It results that this term does not derive from any potential energy as highlighted by
the fact it is written as a vector product of velocity. This is the reason why it does
not affect the total specific energy nor the kinetic energy. In the case of atmospheric
flows, this pseudo-force mainly yields to a rotation with the altitude of the horizontal
velocity inducing the so-called Ekman spiral.

2.b The buoyancy corresponding to the effects of the Earth gravitational attraction on
the flow. It depends on the density of the flow which may be modified by thermal
effects, resulting in the creation of a vertical displacement due to the Archimedes’
principle. This physical phenomenon plays a fundamental role in atmospheric flows
as further discussed in Section 1.2.2.2.

3. We also have surface effects arising from the divergence of the Cauchy stress tensor which
can be decomposed between:

3.a Its isotropic and reversible part which is the pressure gradient. This is a normal
stress which can be understood, using the statistical kinetic theory, as an averaged
description of the surface force resulting from molecular collisions at the microscopic
scale. It is worth noticing that in the case of incompressible flow it does no longer
appear in the temperature equation and then has no direct impact on this quantity.
Considering horizontally stratified flows, the pressure gradient is in equilibrium with
the buoyancy.

3.b The second part of the Cauchy stress tensor corresponds to the viscous effects, which
have two preponderant roles:

3.b.i First, it plays a diffusive role for the momentum, as we can see in the Navier–
Stokes equation Eq. (1.35b). In this equation it appears as a Laplacian term
smoothing possible fluctuations.

3.b.ii Second, it plays a dissipative role transforming kinetic energy into heat and then
temperature. This effect can be seen through the presence of the dissipation
function µS2 which appears with positive sign in the potential temperature
(and specific internal energy) equations and with a negative sign in the kinetic
energy equation (in the term −σij ∂Ui∂xj

of Eq. (1.14)). In the general case, the
energy produced by viscous dissipation is small compared by energy provided or
absorbed by the ground due to the daily radiative cycle; it is thus commonly
neglected. The physical ground of these assumptions will be further detailed in
Paragraph 1.2.2.1.2.
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4 As its name implies the thermal diffusivity plays a diffusive role for the temperature field.

5 This term is a source term of heat. In atmospheric flow, it is often associated to radiative
effects (such as played by aerosol, carbon dioxides), to chemical reactions such as the
exothermic production of ozone in the stratosphere, or to change of state of the water for
example the production of cloud by condensation of humidity. These effects are out of the
scope of the present work and will not be considered, so this term will be removed from
now on.

Remark 1.2.6. Using a similar derivation as the one proposed here, one can present the
incompressible transport equation for any passive scalar Ψ (e.g. a pollutant concentration)
as:

∂Ψ
∂t

+ Uj
∂Ψ
∂xj

= ∂

∂xi

(
ν

Sc

∂Ψ
∂xi

)
+ SΨ

ρ
, (1.36)

where Sc is the Schmidt number corresponding to the ratio between the kinematic molecular
viscosity and the scalar molecular diffusivity KΨ: Sc = ν

KΨ
. In addition, SΨ corresponds to

either sink or source term caused for example by chemical reactions or nuclear disintegration.
Furthermore, in this equation, the mass fluxes transported by molecular conduction have been
modelled in a similar manner than the heat flux using the law proposed by Fick [1855]:

div(qΨ) = −div(λΨgradΨ) + SΨ, (1.37)

with λΨ = ρKΨ the scalar molecular conductivity

Let us briefly recall the main hypotheses considered to obtain these equations. We have first
considered incompressible and expandable flows. The Boussinesq approximation is considered
to treat the buoyancy terms.

1.2.1.2 Background on the Notion of Turbulence

In practice, as soon as we consider scales at which the viscous term is not large compared to the
inertial one, instabilities and turbulence which is characterised by the presence of eddies and
structures of different scales, appear. They may have a great impact on the dynamics of the
flow as we can see in Figure 1.1. In order to quantify the relative importance of inertial and
viscous effects, and then the possible presence of turbulent effects, we use the Reynolds number
Re = UcLc

ν where U c is the characteristic scale of velocity and Lc a characteristic length of the
flow (see Reynolds [1895]).
When the latter is large, as it is the case in atmospheric flows turbulent eddies may appear. A
few examples are briefly exposed here.

• As we can see in Figure 1.1A, even with a stationary incoming flow (from the upper right-
hand corner) the perturbation caused by the presence of an obstacle (here the Canary
Island) may result in the creation of a succession of very stable and large eddies whose
rotating sense is inversed from one eddy to the following one. This succession of eddies
after an obstacle is referred as the Von Kármán vortex street. It originates from the
slowdown imposed by the obstacle creating instabilities in its wake. It is worth noting
that after a wing profile, the opposite effect may appear. The acceleration of velocity may
induce creation of eddies referred as anti Von Kármán vortex street.
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(A) Von Kármán vortex street. (B) Kelvin–Helmoltz instabilities.

(C) Wake in a wind turbine farm. (D) Alto-cumulus created by Rayleigh–Bénard
convection.

Figure 1.1: Examples of atmospheric flows within which instabilities and turbulent effects are
exhibited by their impacts on cloud formation and deformation.

• Furthermore, when the fluid velocity is not uniform in the vertical direction or at the
interface between two non-miscible fluids with different densities, one can notice the
creation of eddies due to Kelvin–Helmholtz instabilities as shown in Figure 1.1B. In this
image, the flow is going from the right to the left and is slower on the lower part. The strong
mean velocity gradients results in the creation of shear stress yielding to the production of
vertical eddies. These vertical fluctuations of velocity are the origin of the wave-like cloud
we can notice. Their formation is indeed a marker of the up-going eddies. The latter ones
transport water vapor from the lower layer to the upper one which will condensate as the
temperature diminishes with altitude.

• The situation in Figure 1.1C, results in a complex interplay of different phenomena. As we
can see from the slight haze layer near the ocean, the atmosphere is almost at saturation.
One can note that, behind the wind turbines, water condensation is triggered. Thanks to
this condensation, the turbine wakes and the turbulent structures in their midst become
visible. The processes governing the dynamics of clouds are complex (see e.g. Jacobson
[2005]) and their analysis from a mere picture is difficult. One may assume that the
turbulent eddies may play a mixing role in this process bringing humid air from the ocean
surface up where it cools down and condensates. The dynamical effects played by the flow
slow down and pressure variations may also play an important role. Yet, let us emphasise
that this interpretation should be considered with great caution and a precise study should
be considered if one wants to explain precisely the physics encountered in this situation.
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• The last example presents the creation of alto-cumulus due to turbulent thermal effects in
Figure 1.1D. In this case, the vertical eddies are created by buoyancy effects, induced by
the presence of a strong temperature gradient. Hot stream of air elevates in altitude where
it cools down increasing the air density until it dives anew. Here again, the presence of
up-going eddies is marked by the creation of spot of cloud where these eddies bring water
vapor which condensates.

Let us note that in these examples the presence of instabilities and turbulent eddies is highlighted
by the creation or deformation of clouds due to the transport of water by these eddies. However,
in the general case, the latter are not noticeable to the naked eye. The present subsection aims
at describing the behaviour of turbulent eddies. First the physics of the small scale turbulence is
briefly discussed considering the Kolmogorov theory in Paragraph 1.2.1.2.1. Then we will present
the processes impacting the turbulence at the macroscopic scale considering Reynolds averaged
equation in Paragraph 1.2.1.2.2. This presentation is not exhaustive and further information
may be found in books focusing on turbulence such as Tennekes and Lumley [1972], Monin and
Yaglom [1971, 1975], Pope [2000], Rodi [2000]

1.2.1.2.1 Kolmogorov Theory: a Description of the Small-Scale Turbulence
The goal of this paragraph is to provide background concerning the Kolmogorov theory of
turbulence mainly focusing on small scales compared to the scales of the flow. It aims at
putting emphasis on salient physical processes characteristic of turbulence and is therefore not
an exhaustive description of the turbulence (for more information on Kolmogorov theory see e.g.
Kolmogorov [1941, 1962], Monin and Yaglom [1971, Chapter 8] and Pope [2000, Chapter 6]).

Principle of the Energy Cascade
We will first discuss the process of transfer of energy within the different scales of turbulent
structures. The idea of an energy cascade was first presented by Richardson [1922]. The overall
idea is that turbulent kinetic energy (TKE) is produced at the larger scales, also referred as
energy containing scales, by exchange of energy from the mean flow to the large eddies. The
eddies created by this process being unstable, they tend to break creating smaller eddies which
are sufficiently big for the viscous effects to be neglected. The newly formed eddies will also
break creating even smaller eddies. This energy is then distributed from the larger eddies to
the lower scales by successive breaking of eddies into smaller and smaller ones. As the transfer
of energy continues, the size of the eddies diminishes until a scale where they are small enough
for the molecular viscosity to dissipate this energy. This transfer of energy from large eddies,
where it is produced, to the small ones where it is dissipated by a successive breaking of eddies is
referred as the energy cascade. Let us note that, here, the word "eddy" has no rigorous definition
and could be replaced by the words turbulent structure, turbulent motion, whirl or whorl. It
is however characterised by a spatial scale `, a velocity scale u` and a timescale τ̀ = `

u`
. This

phenomenon was emblematically summarised by Richardson in a quite succinct yet poetic way
as:

"Big whirls have little whirls
that feed on their velocity,

And little whirls have lesser whirls
and so on to viscosity ."
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Kolmogorov later on gave theoretical background and quantification of this phenomenon in
Kolmogorov [1941, 1962]. So as to simplify the description of the phenomenon, in this paragraph
we will consider statistically stationary high Reynolds number flows without any thermal nor
Coriolis effects. The first hypothesis of Kolmogorov states that at sufficiently high Reynolds
number, sufficiently small turbulent eddies can be considered statistically isotropic. The flow
anisotropy induced by the large scales is then lost by the successive exchange to smaller eddies
as we go down the energy cascade. The behaviour at these scales being independent of the large
scales, they are then universal for all high-Reynolds turbulent flows. In order to quantify such
a behaviour, Kolmogorov presents two similarity hypotheses.

Kolmogorov Scales
The first one concerns the smaller scale of turbulence. It states that for sufficiently high Reynolds
number, the statistics of the small-scale motions depend only on the viscosity ν and on the
dissipation rate ε (i.e. the specific power at which the TKE is transformed in heat by the
viscous effects). A scale depending on these parameters, referred as Kolmogorov scale and
indexed with the subscript η, can then be obtained by dimensional analysis as:

`η =
(
ν3

ε

) 1
4

, (1.38a)

uη = (νε)
1
4 , (1.38b)

τη =
(
ν

ε

)1/2
. (1.38c)

An important element is that this scale is the smallest turbulent scale and corresponds to a
dissipative scale. This is attested by the corresponding Reynolds number which equals to one:
Reη = uη`η

ν = 1.

Range of Turbulence
Now that we have a description of the diffusive processes at the lower scales, one may want
to compare it to the larger scales producing the turbulent kinetic energy. The kinetic energy
dissipated being in equilibrium with the production at the larger scales we have ε ' u3

L
L where uL

and L are respectively the characteristic velocity and length of the large eddies. Injecting this
equation in Eqs 1.38, we might have access to an estimation of the range of turbulent scales:

`η
L
' Re−3/4

L , (1.39a)
uη
uL
' Re−

1
4
L , (1.39b)

τη
τL
' Re−

1
2
L . (1.39c)

It is then clear that all the scale ranges of turbulence increase with the Reynolds number ReL.
The latter might be estimated based on the turbulent Reynolds number Ret = k2

εν based on the
velocity scale

√
k and the length scale k3/2

ε where k is the overall TKE. For atmospheric surface
boundary layer flows, the latter is typically ten times smaller than Re: the Reynolds number
based on the flow dimensions. Then the ReL based on the larger scales is commonly around
106 − 107 in such flows, triggering the existence of turbulence over a broad range of scales.
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Remark 1.2.7.
If one wants to take into account the thermal effects, it is still possible to consider that the
small eddy geometry is independent of the large scale and thus that their behaviour remains
universal. Moreover, in this case, we shall also consider the kinetic energy produced by thermal
effects in the dissipation rate ε ' u3

L
L + gβ0δΘuL, we have then:

`η
L
'
(
gβ0δΘuLL4

ν3 + u3
LL3

ν3

)− 1
4

=
((

1 + gβ0δΘL
u2
L

)
u3
LL3

ν3

)− 1
4

=
(
(1 +Ri)Re3

L

)− 1
4 ,

(1.40a)

uη
uL
'
(
gβ0δΘν

u3
L

+ ν

uLL

) 1
4

=
((

1 + gβ0δΘL
u2
L

)
ν

uLL

) 1
4

=
(1 +Ri

ReL

) 1
4
, (1.40b)

τη
τL
'
(
gβ0δΘL2

uLν
+ uLL

ν

)− 1
2

=
((

1 + gβ0δΘL
u2
L

)
uLL
ν

)− 1
2

= ((1 +Ri)ReL)−
1
2 . (1.40c)

Where gβ0δΘL
u2
L

is the Richardson number characterising the ratio between the buoyant and
inertial effects. The spatial and temporal ranges of turbulence increase with the Reynolds and
with the Richardson number when it is positive. This situation is then referred as thermally
unstable. At the opposite, for negative values of the Richardson number, the situation is
stable and the thermal effects damp the turbulent ones.

Inertial Sub-range
As the Reynolds number increases, so does the range of scales between the larger eddy L and
the smaller `η. It is clear that for sufficiently high Reynolds number flows, one may insert an
intermediate sub-range containing eddies of size ` such that L � ` � `η. On the one hand, as
these eddies are much smaller than the larger ones, they may be considered isotropic. On the
other hand, they are much larger than the Kolmogorov scale, then their motion is not impacted
by viscosity. The second hypothesis of similarity of Kolmogorov states that for sufficiently high
Reynolds-number flows, there are eddies of scale ` such that L � `� `η which have a universal
and isotropic form that are uniquely determined by their size and the dissipation rate ε. For
these eddies we can then construct velocity and timescales based on ε and ` such as:

u` = (ε`)1/3 ' uL

(
`

L

)1/3
' uη

(
`

`η

)1/3

, (1.41a)

τ̀ =
(
`2

ε

)1/3

' τL
(
`

L

)2/3
' τη

(
`

`η

)2/3

. (1.41b)

The effects taking place in these range being inertial, this range of eddies is referred as the
inertial sub-range. Its main role is the transport of the turbulent kinetic energy from the large
scales to the lower ones.
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Figure 1.2: Scheme of the energy spectrum for high Reynolds number turbulence after Pope
[2000].

Spectrum of Energy
Now that we have described the eddies at different scales, one may wonder how the turbulent
kinetic energy is distributed among them. To this end, we will study the energy spectrum
function E(k) which gives for each wavenumber k = 2π

` the corresponding energy density. It is
defined as follows:

kka,kb =
ˆ kb

ka

E(k)dk, (1.42)

where kka,kb is the kinetic energy contained in the eddies whose wavenumber is in the range
[ka,kb]. As stated by the second Kolmogorov hypothesis, in the inertial sub-range, the
turbulence is universally characterised by a function of ε and κ. By dimensional analysis we
have then

E(κ) = CSR
E ε2/3k−5/3, (1.43)

where CSR
E is a "universal" constant. This relation describing the evolution of the distribution

of energy within the inertial sub-range is often referred as the "five-third law". It shows that as
we go down the energy cascade the turbulent eddies tend to be less and less energetic. Thus,
even-though this rule cannot be applied directly to the larger scales, it still highlights that the
latter ones are the most energetic justifying the name of energy containing scales. A scheme of
the spectrum of energy is presented in Figure 1.2, to summarise the description of the energy
cascade.
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Eulerian Structure Functions
Now that we have studied the role of each scale of turbulence and the distribution of energy
within them, we will further investigate the corresponding spatial correlations. To do so,
Kolmogorov [1941] proposed to study the second-order structure function D

E
, which is the

covariance of the velocity between a point x and x+ δx using the Eulerian point of view:

DEij (x, δx) =
〈

(Ui(x+ δx)− Ui(x))(Uj(x+ δx)− Uj(x))
〉
, (1.44)

where the notation 〈(.)〉 is used for the ensemble average over a large number of samples. First,
considering δx = |δx| � L the first Kolmogorov theory imposes a local isotropy which can be
used to state that D does not depend on x but only on δx. Based on this property it can be
written:

DEij (δx) = DE⊥(δx)δij + (DE‖(δx)−DE⊥(δx))δxiδxj
δx2 , (1.45)

where DE⊥ and DE‖ are respectively the longitudinal and transverse structure functions.
Considering U(x) = U(x)e‖, we can write D = DE‖e‖ ⊗ e‖ + DE⊥(1 − e‖ ⊗ e‖). Thanks
to the continuity equation we can express DE⊥ as a function of DE‖ as:

DE⊥(δx) = DE‖(δx) + δxi
2
∂DE‖(δx)
∂δxi

. (1.46)

Then, considering small enough distance |δx| so that the first hypothesis of Kolmogorov is valid,
this structure function depends only on DE‖(δx). Moreover, according to the first similarity
hypothesis, for small enough distance δx, the latter one depends only on the distance δx, the
dissipation rate ε and the viscosity ν:

DE‖(δx, t) = DE‖(δx) = ε2/3(δx)2/3FD

(
δx

`η

)
, (1.47)

where FD( δx`η ) is a universal function. According to the second Kolmogorov similar hypothesis,
in the inertial sub-range where the viscosity should not have any effect, this universal function
should tend towards a constant CD. We can then determine a fundamental law describing the
spatial evolution of turbulence: the "two-third law" which is intrinsically bound to the "five-third
law" and which states that for L � δx� `η, we have:

DE‖(δx) = CDε
2/3(δx)2/3, (1.48a)

DE⊥(δx) = 4
3CDε

2/3(δx)2/3. (1.48b)

Lagrangian Auto-correlation Function and Characteristic Scale
Now that we have discussed how much a given eddy does evolve over a given distance, let us
introduce the scale over which the turbulent motion as a whole remains coherent. First attempts
to determine such integrated scales were proposed by Taylor [1922, 1935] and Von Karman and
Howarth [1938] and were further described by Kolmogorov [1941, 1962]. For this purpose, let us
consider a Lagrangian point of view and follow the eddies over time. Moreover, let us introduce
the auto-correlation function of velocity RL such as:

RL(δt) = 〈U(t0)U(t0 + δt)〉
〈U(t0)2〉

. (1.49)
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We have in the general case little information on this auto-correlation function. Its precise form
does not play a major role in the case of diffusive regime for δt � TL. However, for smaller
timescale, for example to characterise the dispersion 〈X2〉(δt) with δt ' TL, the form of RL

may have a significant impact. Some properties should be stated:

• The flow at the initial state is perfectly correlated with itself: RL(0) = 1.

• The auto-correlation cannot exceed its initial state where the flow is perfectly correlated:
|RL|(δt) < 1 for any δt > 0.

• Near the initial state the first-order derivative is null, and the function is concave:(
dRL

dt

)
δt=0

= 0,
(

d2RL
dt2

)
δt=0

< 0.

• After a time sufficiently long, the initial state will be forgotten RL(t∞) = 0.

We can then introduce an integral time TL, referred as Lagrangian integral timescale or simply
in this work as Lagrangian timescale, defined as:

TL =
ˆ ∞

0
RL(s)ds, (1.50)

which corresponds to the typical time scale over which the turbulence remains correlated to
a previous state. A form commonly used to characterise the auto-correlation function is an
exponential decrease exp

(
− δt
TL

)
. This function does not respect the condition to have a

quadratic decrease near origin. However, away from this zone it seems to be an acceptable
proposition as shown by Yeung and Pope [1989] and Squires and Eaton [1991].

Lagrangian Structure Functions
Finally, let us consider the evolution of the velocity differences using a Lagrangian point of
view. The latter will play an important role in the derivation of Lagrangian stochastic models
in Section 1.3.3. It can be written as:

δU(X0, t, δt) = U(X(X0, t+ δt), t)− U(X0, t) (1.51)

Considering an increment of time δt smaller than the Lagrangian timescale TL, U(X(X0, t +
δt), t) remains somewhat close to U(X0, t). Therefore, in locally isotropic turbulence, for small
enough increments of time δt � max(TL, L

uL
), the difference of velocity δU(X0, t, δt) can be

considered independent of the initial position X0 and of the initial time t. Similarly, to the
structure functions presented in a Eulerian scope, such a function can be introduced to estimate
the evolution of velocity difference associated to a given fluid particle which then evolves in time
as:

DLij (δt) =
〈
δUi(δt)δUj(δt)

〉
. (1.52)

Considering the first Kolmogorov and the first similarity condition hypotheses, for δt �
min(TL, LuL ), the second-order Lagrangian structure function can be written as a function of
δt, ε and ν as:

DLij (δt) = εδtFDL

(
δt

τη

)
δij, (1.53)

where FDL is a universal function. Similarly, to the corresponding Eulerian one, it should
tend towards a constant in the inertial sub-range where the viscous effects have no more
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impacts. Thus, using the second Kolmogorov similarity theory in the inertial range τη � δt �
min(TL, LuL ):

DLij (δt) = C0εδtδij , (1.54)

where C0 is a universal constant.

Acceleration Auto-correlation
Furthermore, using a similar reasoning based on similarity theory, it is possible to show for the
fluid particle acceleration A that in the inertial sub-range we have:

〈A(t+ δt)A(t)〉 ' ε

δt
, (1.55)

with at the origin:
〈A2〉 ' ε

τη
. (1.56)

Thus, the corresponding auto-correlation function evolves as:

RA
L (δt) = 〈A(t+ δt)A(t)〉

〈A2〉
' τη
δt
. (1.57)

It results from this, that the integral timescale associated to the relaxation time of fluid particle
acceleration is small compared to any timescale associated to the inertial sub-range. This
property will also play an important role in the choice of modelling for the Lagrangian stochastic
methods considered as presented in Section 1.3.3.

Remark 1.2.8. Let us note that when the Reynolds number is not sufficiently high the
Kolmogorov theory is less valid as it is not always possible to separate clearly the large
productive scales to the small dissipative ones. Furthermore, the presence of obstacles can
also be a source of deviation to the Kolmogorov theory as they perturb the development of
the energy cascade.

1.2.1.2.2 Characterisation of Large-Scale Turbulent Processes based on Reynolds
Averaged Equations
In the previous paragraph, we have focused on the universal characteristics of the turbulence
at small scales, in high Reynolds-number flows. However, Kolmogorov theory gives little
information on the behaviour of the large scales of turbulence. In these scales the turbulent
effects may be highly anisotropic depending on flow and geometric characteristics. These scales
are often the most interesting from an engineering point of view. Indeed, as they contain most
of the energy, they have a predominant impact on the mean flow but also of the mixing and
transport at the large scales. The goal of this paragraph is to present the effects of turbulence
on the flows and processes influencing the larger scales of turbulence.

Reynolds Averaging Operator
A first solution to extract more information on the large-scale behaviour is to consider a
statistical description of the turbulence and to focus on the behaviour of the averaged quantities.
To this end, Reynolds [1895] proposed to apply an averaging operator (.) referred as the Reynolds
average on the Navier–Stokes equation. This operator is an ensemble average, where the same
experiment is repeated a great number of times. Under ergodicity condition, it might be replaced
by other averaging methods (e.g. temporal average for statistically stationary flows or spatial
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average for statistically uniform flows). It verifies for any field Φ, Ψ and any constant λ1, λ2 the
following properties:

Linearity: λ1Φ + λ2Ψ = λ1Φ + λ2Ψ, (1.58a)

Commutativity with partial derivation: ∂Ψ
∂t

= ∂Ψ
∂t

and ∂Ψ
∂xα

= ∂Ψ
∂xα

, (1.58b)

Idempotence:
(
Ψ
)

= Ψ. (1.58c)

This operator is then associated with the Reynolds decomposition:

Ψ︸︷︷︸
Instantaneous field

= Ψ︸︷︷︸
Averaged field

+ ψ︸︷︷︸
Fluctuating field

. (1.59)

For any instantaneous uppercase fields Ψ or U , the lowercase fields respectively ψ or u will
correspond to the fluctuations around their mean value. Exception to this rule is made for
the fluctuation of temperature noted T′ to avoid confusion with time and for the fluctuation of
density noted ρ′. Because of the definition of the fluctuations and the properties of the operator,
for any fluctuating field ψ we have:

ψ = 0. (1.60)

Let us highlight an important property of such decomposition. In the general case, the average
of a product is not the product of the average:

ΦΨ = Φ Ψ + φψ 6= Φ Ψ. (1.61)

This relation plays a major role, since the advection term is not linear, it yields for incompressible
flows to the decomposition:

dΨ
dt = ∂Ψ

∂t
+ Ui

∂Ψ
∂xi︸ ︷︷ ︸

DΨ
Dt

Material derivative advected by mean velocity

+ ∂uiψ

∂xi︸ ︷︷ ︸
Higher order terms

, (1.62)

considering compressible flows, a similar equation would be obtained replacing the second RHS
term by ui ∂ψ∂xi .

Remark 1.2.9. Let us note that other decomposition can be considered, e.g. large eddies
simulation (LES) methods propose to use not an averaging operator but a spatial filtering
one. The fields are then decomposed into large-resolved scales and small sub-grid scales which
are modelled as further discussed in Section 1.3.1. In this case the set of equations obtained
has a similar structure and the discussion remains pertinent keeping in mind the differences
between averaged, resolved, fluctuating and sub-grid quantities. It is still worth saying that
the spatial filtering used in LES methods are the results of a convolution and not of an average
operator. Thus, in this case some of the properties stated in Eqs 1.58 may not be respected.
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Averaged Equations
Now that we have defined the averaging operator used, we can apply it to instantaneous transport
equations Eqs 1.35 to obtain the corresponding Reynolds averaged equations. As we only
consider incompressible flows in this work, for simplicity reasons we will still consider the density
uniform except in the buoyancy terms.

Continuity: It is straightforward to see that the zero divergence of velocity imposed by the
incompressibility condition Eq. (1.33) is also respected by both the mean and
fluctuating velocities

div(U) = 0, (1.63a)
div(u) = 0. (1.63b)

Momentum: Applying the Reynolds average to the Navier–Stokes equation, Eq. (1.35b), we
obtain the Reynolds averaged Navier–Stokes (RANS) equations. Under Boussinesq
approximation, it states:

DUi
Dt

= ∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+ gi(1− β0(Θ−Θ0))− 2ΩkUjεijk + ∂

∂xj

(
ν
∂Ui
∂xj
−Rij

)
.

(1.64)

We can see the presence of the term R = uiujei ⊗ ej caused by the averaging of the
non-linear inertial term. This tensor is called Reynolds tensor and corresponds to the
averaged turbulent effects of the fluctuating velocities onto the mean one.

Pot. Temp.: Applying the averaging operator on the potential temperature equation Eq. (1.35c) we
get:

DΘ
Dt

= ∂Θ
∂t

+ Uj
∂Θ
∂xj

= 2ν
cp

Θ
TSijSij + ∂

∂xj

(
KΘ

∂Θ
∂xj
− ujθ

)
+ 1

cp

(Θ
T
Se
ρ

)
, (1.65)

with SijSij = Sij Sij + sijsij , and uθ the turbulent heat fluxes. The latter correspond
to the averaged effects of fluctuating velocity and potential temperature onto the
mean potential temperature. As indicated previously, both the production of potential
temperature by viscosity and the source terms Se are neglected and will not be treated
hereafter.

Scalar: Similarly, for the transport of any passive scalar, averaging Eq. (1.36), we get:

DΨ
Dt

= ∂Ψ
∂t

+ Uj
∂Ψ
∂xj

= ∂

∂xj

(
ν

Sc

∂Ψ
∂xj
− ujψ

)
+ SΨ

ρ
, (1.66)

where the turbulent scalar fluxes uψ appear.

As we have detailed on equation Eq. (1.62), the averaging of advection by the mean velocity
term introduces the divergence of a new higher order moment terms which has either to be
modelled or transported. Thus, the averaging of a closed set of transport equations yields to
a new set of equations which is not closed. This is often referred as the closure issue which is
induced by turbulence. Before presenting methods to model these new second-order terms let
us focus on their transport equations to describe a bit further the physical processes responsible
of large-scale turbulence.
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Reynolds Tensor
Let us note NSi the equation of Navier–Stokes Eq. (1.35b) and NSi the Reynolds averaged
Navier–Stokes equation Eq. (1.64) in the direction i. It is possible to derive the equation for the
Reynolds tensor DR

Dt as:

DR
Dt

=
(
uj
(
NSi −NSi

)
+ ui

(
NSj −NSj

))
ei ⊗ ej . (1.67)

Doing so, and assuming we consider an incompressible flow with a constant density except in
the weight term, after rearrangement, the Reynolds tensor equation can be written:

DR
Dt︸ ︷︷ ︸

Temp. evol.

= P︸︷︷︸
Production

+ G‡︸︷︷︸
Buoyancy

− ε‡︸︷︷︸
Dissipation

+ C︸︷︷︸
Coriolis

+ Π‡︸︷︷︸
Pressure-strain cor.

+ D‡︸︷︷︸
Diffusion

, (1.68)

In this equation the terms have been regrouped in order to provide a description of the physical
processes involved. Note that the terms with a superscript ‡, depend on quantities which are
not transported. Thus, if one wants to transport the 2nd order moments, it would then be
necessary either to add extra transport equations or to find correlation between the large-scale
effects of this quantities and known quantities. The selection of such correlation corresponds to
a choice of modelling discussed in Section 1.3.2. For now, let us focus on the physical processes
whose imbalance is responsible for the temporal variation of the Reynolds tensor Duiuj

Dt
on LHS

of Eq. (1.68). The latter ones correspond to:

1. Production of turbulence by shear stress P. It stems from the transfer of momentum
between the mean flow and the turbulent fluctuations:

Pij = −
(
ukui

∂Uj
∂xk

+ ukuj
∂Ui
∂xk

)
. (1.69)

The interaction with the mean flow is characterised by the presence of the mean velocity
gradient. When the flow is varying slowly, the turbulent shear stress and velocity gradient
tend to align with one another, this term is then positive. It is still worth noticing that
in the case of fast variation of the flow, the shear stress and the velocity gradient can be
noticeably non-aligned. In such case, it is even possible for this term to be locally negative
playing then a sink role.

2. Source by buoyancy effects G‡. It represents the effect of the weight force on turbulence
expressed as:

G‡ij = 1
ρ

(
giujρ′ + gjuiρ′

)
, (1.70)

where ρ′ = ρ − ρ. The role played by this term depends on the stratification of the
flow. When the density tends to increase with the height, the corresponding correlation
ρ′w tends to be negative and this term behaves as a source term; we speak of thermally
unstable case. In the opposite case where the density tends to decrease with the height,
the correlation ρ′w tends to be positive resulting in a sink term. Let us note that in the
general case, we need a relation to specify this term because of the unknown behaviour of
ρ′ui. It is then necessary either to model this term or to transport it with an additional
equation. Using a Boussinesq approximation this term can be written:

Gij = −β
(
giujθ + gjuiθ

)
, (1.71)

where the superscript ‡ may be removed when transporting the turbulent heat fluxes.
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3. Dissipation rate ε‡. This is the dissipative part of the viscous effects which tends to
lower the turbulent fluctuations, as the diagonal terms are positive.

ε‡ij = 2ν ∂ui
∂xk

∂uj
∂xk

. (1.72)

This dissipation takes place at smaller scales of turbulence and its behaviour has been
further presented in Paragraph 1.2.1.2.1. A specific modelling of this quantity is also
required.

4. Redistribution of kinetic energy. These terms have a zero trace. Thus, they do not
have any impacts on the total TKE budget but only on its distribution in each direction.
Two redistribution terms do appear in the Reynolds stress transport equations:

(a) Source by Coriolis effects C.

Cij = −2Ωl (uiukεjkl + ujukεikl) . (1.73)

Considering the effects of the Coriolis pseudo-force on the turbulence, the vertical
fluctuations of velocity are of the same scale as the horizontal one. It is then necessary
to consider both the horizontal and vertical components of Ω. Let us specify each
component of this tensor to describe its influence. Assuming that we are in the
reference atmospheric basis (e1 is the west-east unitary vector, e2 the south-north
vector and e3 the local vertical direction), we have:

C11 = −4Ω(sin(φ)uv − cos(φ)uw), (1.74a)
C22 = 4Ω sin(φ)uv, (1.74b)
C33 = −4Ω cos(φ)uw, (1.74c)
C12 = −2Ω(sin(φ)(vv − uu)− cos(φ)vw), (1.74d)
C23 = −2Ω(− sin(φ)uw + cos(φ)uv), (1.74e)
C13 = −2Ω(sin(φ)uw + cos(φ)(uu− ww)). (1.74f)

Summing up the tree first equations Eqs. (1.74a) to (1.74c), it is clear that the trace
of this tensor is null. Let us note that this term is an isotropisation term. Let us
place ourselves in the northern hemisphere, such that sin(φ) and cos(φ) are positive
(similar results would occur in the southern one). Moreover, assuming vv > uu,
Eq. (1.74d) triggers a reduction of uv. This will induce a diminution of C22 through
Eq. (1.74b) and then of vv, whereas Eq. (1.74a) shows that C11 and then uu, will
tends to increase. Similarly, on Eq. (1.74f), assuming that uu > ww, we would have
a decrease of uw and resulting in a decrease of C11 and in an increase of C33.

(b) Pressure-strain correlation Π‡. The second redistribution term is caused by the
effects of the pressure fluctuation on the fluctuating velocity expressed as:

Π‡ij = p

ρ

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (1.75)

This is a large scale and averaged description of the process describing how the
eddies transfer energy from one direction to the others. The breaking of large
eddies into smaller ones results in fluctuations of pressure that tends to transfer
the energy towards the other directions. This process is the reason why going down
the Kolmogorov cascade the small eddies tend to forget the behaviour of the larger
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ones and become isotropic. In order to determine the behaviour of this term, let us
focus on the behaviour of the fluctuating pressure p. One can obtain the Laplacian
of the pressure fluctuation by taking the divergence of the difference between the
Navier–Stokes equation and the Reynolds averaged Navier–Stokes equation. After
rearrangement we get:

1
ρ

∂2p

∂x2
i

= −∂
2(uiuj − uiuj)
∂xi∂xj

+ ∂

∂xi
(ujΩkεijk)︸ ︷︷ ︸

1
ρ

div(grad(p))s,‡

−2∂Ui
∂xj

∂uj
∂xi︸ ︷︷ ︸

1
ρ

div(grad(p))r,‡

+ 1
ρ

∂giρ
′

∂xi︸ ︷︷ ︸
1
ρ

div(grad(p))G,‡

, (1.76)

where the Laplacian can be split into three terms that correspond respectively
to a slow term div(grad(p))s,‡, a rapid term div(grad(p))r,‡ and a buoyant one
div(grad(p))G,‡. The former one is a slow process as it does not depend directly on
the mean velocity but only on turbulent quantities whereas the second term depends
explicitly on the mean velocity gradient. The latter one stems from buoyant effects.
One can integrate the Laplacian of the pressure fluctuations to retrieve the pressure
fluctuations and then the pressure-strain-correlations which depend on four terms:

Π‡ij = Πs,‡
ij + Πr,‡

ij + ΠG,‡ij + Πw,‡
ij , (1.77)

where Πw,‡
ij is a wall echo term issued from this integration, caused be the presence

of a wall on which pressure fluctuations are reflected.

5. Diffusion D. This term corresponds to the transport of the Reynolds tensor without
dissipation and is due to three different processes:

D‡ = Du‡ +Dp‡ +Dν . (1.78)

(a) The transport of Reynolds tensor by the fluctuations of velocity Du‡ which
stems from the averaging of the advection terms:

Du‡ij = −∂uiujuk
∂xk

. (1.79)

(b) The transport of Reynolds tensor by the fluctuations of pressure Dp‡ :

Dp
‡

ij = − ∂

∂xk

(
p

ρ
(uiδjk + ujδik)

)
. (1.80)

(c) The transport of Reynolds tensor by the viscous transport Dν :

Dνij = ∂

∂xk

(
ν
∂uiuj
∂xk

)
(1.81)

Turbulent Kinetic Energy
One may also consider the turbulent kinetic energy (TKE) defined as k = 1

2tr(R), whose
equation is:

Dk

Dt︸︷︷︸
Temp. evol.

= P︸︷︷︸
Production

+ G‡︸︷︷︸
Buoyancy

− ε︸︷︷︸
Dissipation

+Du‡k +Dp
‡

k +Dν︸ ︷︷ ︸
D: Diffusion

, (1.82)

with:
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1. the production by shear P:

P = −ukui
∂Ui
∂xk

, (1.83)

2. the production or destruction by buoyancy effects G‡:

G‡ = 1
ρ
giuiρ′, (1.84)

Using a Boussinesq approximation this term can be written:

G = −2giβuiθ, (1.85)

where the superscript ‡ may be removed when transporting the turbulent heat fluxes.

3. the dissipation by viscous effects ε:

ε = ν
∂ui
∂xk

∂ui
∂xk

, (1.86)

no superscript ‡ is used as the transport equation for this quantity will be further discussed
here after.

4. the diffusion by transport due to fluctuations of velocity Du,‡:

Du,‡ = −1
2
∂uiuiuk
∂xk

, (1.87)

5. the diffusion by transport due to fluctuations of pressure Dp,‡:

Dp,‡ = − ∂

∂xk

(
p

ρ
uiδik

)
, (1.88)

6. the diffusion by viscous transport Dν:

Dν = ∂

∂xk

(
ν
∂k

∂xk

)
, (1.89)

whose terms arise directly from the stress tensor equation and correspond to similar processes.

Turbulent Kinetic Energy Dissipation Rate
Let us take an instant on the dissipation rate of kinetic energy, for which an "exact" transport
equation can also be derived from Navier–Stokes equation after tedious manipulations (see e.g.
Hanjalić and Launder [2022]). The transport equation of the TKE dissipation rate (often simply
referred as the dissipation rate) can be written:

Dε

Dt︸︷︷︸
Temp. evol.

= Pε‡︸︷︷︸
Production

+ Gε‡︸︷︷︸
Buoyancy

+ C‡ε︸︷︷︸
Coriolis

− ε‡ε︸︷︷︸
Dissipation

+ D‡ε︸︷︷︸
Diffusion

, (1.90)

with:

1. the production Pε. The latter can be decomposed into four terms:

P‡ε = −2ν
(
∂ui
∂xj

∂uk
∂xj

+ ∂uj
∂xi

∂uj
∂xk

)
∂Ui
∂xk︸ ︷︷ ︸

P‡ε1+P‡ε2

−2νuk
∂ui
∂xj

∂2Ui
∂xk∂xj︸ ︷︷ ︸

P‡ε3

−2ν ∂ui
∂xj

∂ui
∂xk

∂uk
∂xj︸ ︷︷ ︸

P‡ε4

(1.91)
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2. the buoyant effects G‡ε :

G‡ε = 2ν
ρ
gi
∂ρ′

∂xk

∂ui
∂xk

, (1.92)

which gives under Boussinesq assumption:

G‡ε = −2νβ0gi
∂θ

∂xk

∂ui
∂xk

, (1.93)

3. the Coriolis effects C‡ε :

C‡ε = −2ε‡ijΩkεijk, (1.94)

where the Levi–Civita tensor ε should not be confused with the dissipation rate tensor ε‡.

4. the dissipation by viscous effects ε‡ε:

ε‡ε = 2ν2 ∂2ui
∂xk∂xj

∂2ui
∂xk∂xj

, (1.95)

5. the diffusion D‡ε : it represents the transport due to three contributions:

D‡ε = Du,‡ε +Dp,‡ε +Dν,‡ε , (1.96)

with:

• the diffusion by transport due to fluctuations of velocity Du,‡ε :

Du,‡ε = − ∂

∂xk

(
νuk

∂ui
∂xj

∂ui
∂xj

)
, (1.97)

• the diffusion by transport due to fluctuations of pressure Dp,‡ε :

Dp,‡ε = − ∂

∂xk

(
−2ν

ρ

∂p

∂xi

∂uk
∂xi

)
, (1.98)

• the diffusion by viscous transport Dνε :

Dνε = ∂

∂xk

(
ν
∂ε

∂xk

)
, (1.99)

Due to the numerous double or triple correlations between gradients of instantaneous quantities,
whose behaviour is difficult to determine, the proper physical description of each term is complex
for the TKE dissipation rate. Yet, presenting the equation under this form, it has a similar
structure than the transport equation of the TKE. A crude assumption is to consider that the
physical processes involved are of similar nature. It is true that in this case, formally the effects
of the Coriolis pseudo-force do appear here, yet the physical influence of this term may be minor
in atmospheric flows. Indeed, the Coriolis effects mainly impacts the large scales structures as
presented in Paragraph 1.2.2.1.2 whereas the dissipation rate mainly takes place on the smaller
structures as discussed in Paragraph 1.2.1.2.1.
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Thermal Heat Fluxes
As we have done for the Reynolds tensor, it is possible to derive the equation for the turbulent
heat fluxes. Noting Eq.Θ the transport equation of the instantaneous temperature, Eq. (1.35c),
we have:

Duθ

Dt
= θ

(
NSi −NSi

)
+ ui

(
Eq.Θ− Eq.Θ

)
ei. (1.100)

This equation can be written as:

Duθ

Dt︸ ︷︷ ︸
Temp. evol.

= PUΘ +PΘ
Θ︸ ︷︷ ︸

Inertial Production

+ G‡Θ︸︷︷︸
Buoyant Production

+ CΘ︸︷︷︸
Coriolis

+ Π‡Θ︸︷︷︸
Scrambling

− ε‡Θ︸︷︷︸
Dissipation

+ D‡Θ︸︷︷︸
Diffusion

,

(1.101)
where similarly to the Reynolds tensor, the temporal evolution on the LHS is gouverned by the
imbalance of the RHS triggered by:

1. Production terms:

(a) Production by inertial terms PΘ. Similarly to the production of Reynolds tensor,
the latter ones come from the averaging of the inertial terms and are in general positive
except potentially in fast varying flows. This term can be split into two contributions:
i. Production of turbulent heat flux by the mean velocity gradient:

PUΘi = −ukθ
∂Ui
∂xk

, (1.102)

ii. Production of turbulent heat flux by the mean temperature gradient:

PΘ
Θi = −uiuk

∂Θ
∂xk

. (1.103)

(b) Production by buoyancy effects G‡Θ. As the density decreases with the
temperature, we have θρ′ < 0, thus for turbulent heat fluxes this quantity is always
a positive term. In unstable case, as wθ is positive, this is a production term of
normal fluxes. On the contrary for stable case, this term plays a damping role as wθ
is negative.

G‡Θi = gi
ρ
ρ′θ, (1.104)

Using a Boussinesq approximation this term can be written:

GΘi = −giβθ2, (1.105)

where the superscript ‡ may be removed when transporting the potential temperature
variance.

2. Redistribution terms which are based on two processes:

(a) Redistribution by Coriolis effects CΘ:

CΘi = −2Ωkujθεijk. (1.106)
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In the reference atmospheric basis each component of this term becomes:

CΘ1 = −2Ω
(
vθ sin(φ)− wθ cos(φ)

)
, (1.107a)

CΘ2 = 2Ωuθ sin(φ), (1.107b)
CΘ3 = −2Ωuθ cos(φ). (1.107c)

(1.107d)

Assuming that we are in the northern hemisphere (similar results are obtained in
the southern one), if wθ increases, it would result in an increase of uθ through
Eq. (1.107a), which would yield to a restoring effect on wθ through Eq. (1.107c)
and an increase on vT ′ through Eq. (1.107b). Thus, the Coriolis pseudo-forces tend
to create isotropy between the normal and horizontal turbulent temperature fluxes.
In the horizontal direction the behaviour is less straightforward, as the behaviour
of uθ and vθ is not symmetric. Assuming an increase of vθ, the reacting effects of
Coriolis pseudo-forces would be to increase wθ but a decrease on both horizontal
components. At the opposite, assuming an increase of uθ, the action of the Coriolis
pseudo-forces would damp this increase but would also decrease the normal flux and
increase uv.

(b) Redistribution through the scrambling term Π‡Θ:

Π‡Θi = p

ρ

∂θ

∂xi
. (1.108)

Similarly to the pressure-stress-correlation, this term plays a redistributive role. It
is induced by the pressure fluctuations and it can also be decomposed into four
contributions:

Π‡Θi = Πs,‡
Θi + Πr,‡

Θi + ΠG,‡Θi + Πw,‡
Θi . (1.109)

where Πs,‡
Θi corresponds to the slow scrambling terms induced solely by turbulent

quantities, whereas Πr,‡
Θi is a rapid scrambling term interacting directly through the

mean velocity and temperature gradients. In addition, ΠGΘi represents the scramble
induced by thermal effects and Πw,‡

Θi the scrambling due to wall echo effects resulting
from reflection of pressure fluctuations.

3. Dissipation through molecular viscosity and diffusivity εΘ‡:

ε‡Θi = (ν +KΘ)
(
∂ui
∂xj

∂θ

∂xj

)
. (1.110)

This term has a similar structure than the dissipation term in the Reynolds tensor equation
but is caused by both the viscosity and thermal diffusivity on the smaller scales of
turbulence. Assuming high-Reynolds number turbulence, the latter ones can be considered
isotropic. Yet, inverting the directions of our basis the sign of this term changes. However,
for isotropic interactions, such a change of basis should not affect the behaviour of this
term. Thus, one may assume that for high Reynolds number flows, this term is null.

4. Diffusion D‡Θ: This diffusion is due to the transport without dissipation nor production
by four different processes:

D‡Θ = Dp,‡
Θ +Du,‡

Θ +DKΘ,‡
Θ +Dν,‡

Θ , (1.111)

where the processes at stake are:
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(a) Diffusion by transport due to fluctuations of pressure Dp,‡
Θ

Dp,‡Θi = − ∂

∂xi

(
p

ρ
θ

)
, (1.112)

(b) Diffusion by transport due to fluctuations of velocity Du,‡
Θ

Du,‡Θi = −∂uiujθ
∂xj

, (1.113)

(c) Diffusion by transport due to thermal diffusion DKΘ,‡
Θ

DKΘ,‡
Θi = ∂

∂xj

(
KΘui

∂θ

∂xj

)
, (1.114)

(d) Diffusion by viscous transport Dν,‡
Θ

Dν,‡Θi = ∂

∂xj

(
νθ
∂ui
∂xj

)
. (1.115)

Temperature Variance
Finally, one may consider the evolution of the temperature variance whose equation can be
derived as:

Dθ2

Dt
= 2θ (Eq.Θ− Eq.Θ). (1.116)

We obtain:

Dθ2

Dt
= P

θ2︸︷︷︸
Production

− ε‡
θ2︸︷︷︸

Dissipation

+ D
θ2︸︷︷︸

Diffusion

. (1.117)

The temporal evolution of the temperature variance is due to the imbalance of:

1. Production by the mean temperature gradient P
θ2 :

P
θ2 = −2uiθ

∂Θ
∂xi

, (1.118)

2. Dissipation by molecular diffusion ε‡
θ2

ε‡
θ2 = 2KΘ

∂θ

∂xi

∂θ

∂xi
, (1.119)

3. Diffusion terms by transport without production nor dissipation D
θ2. It is

composed of two terms:
D‡
θ2 = Du,‡

θ2 +DKΘ
θ2 , (1.120)

(a) Diffusion by transport due to velocity fluctuations Du,‡
θ2

Du,‡
θ2 = −∂uiθ

2

∂xi
, (1.121)
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(b) Diffusion by transport due to thermal diffusion Dν
Θ

DKΘ
θ2 = ∂

∂xi

(
KΘ

∂θ2

∂xi

)
. (1.122)

Remark 1.2.10. Note that due to the similar structure of the equations of transport of
temperature, Eq. (1.35c), and of any scalar Ψ, Eq. (1.36), the scalar fluxes and variance would
have structures similar to Eq. (1.101) and Eq. (1.117). The only difference might come from
the absence of production of scalar by Joule effects (neglected here) and the slightly different
shape of the source terms which are not considered here. Moreover, if the scalar is passive
the buoyant effects are also absent. Furthermore, let us note that often the source terms
associated to chemical reactions are highly non-linear. In such case we have SΨ(Ψ) 6= SΨ(Ψ),
which can be stated as: the mean of the chemistry is not the chemistry of the mean. It
would then be necessary to use a proper treatment of such averaged terms to retrieve physical
behaviours (see Pope [1985, 2000] for more information).

1.2.2 Background on Atmospheric Flows for Pollutant Dispersion

The present subsection aims at briefly presenting the physics of atmospheric flows. This has
been the subject of numerous books and interested reader may refer e.g. to Hanna et al. [1982],
Stull [1988], Arya [1998, 1999], Jacobson [2005] for further information. It will mainly focus
on the atmospheric boundary layer (ABL) which is the lowest part of the atmosphere directly
influenced by ground effects and within which most of the pollutant dispersion produced near
ground occurs. We can still note that pollutant dispersion above the ABL can be present, for
example in case of volcanic eruptions or of plane induced pollutant dispersion. These situations
will not be considered in this work.

1.2.2.1 Description of the Atmosphere

Let us first present an averaged description of the atmosphere using a characteristic timescale
of observation long enough for the daily and yearly fluctuations to be smoothed.

1.2.2.1.1 Characterisation of the Different Zones in the Standard Atmosphere
The atmosphere in a broad sense corresponds to the region surrounding a planet within which
a gas envelope exists. As we increase the altitude, the weight of the gas column above of
point decreases and so does the pressure. As schematised in Figure 1.3, using the standard
atmosphere described by the norm comity ISO/TC 20 [1975], the overall Earth atmosphere can
be decomposed based on its mean temperature evolution as follows:

Troposphere: First, on the lower part of the atmosphere one can find the troposphere characterised
by an averaged negative temperature gradient due to adiabatic dilatation of air with
the altitude. Its height is about 11 km although it may vary from around 8 km at
the poles to 18 km at the equator. Being the lowest zone of the atmosphere, it is
the region within which the pressure is maximal. Therefore, it includes most of the
air mass (around 90%). As it is the zone within which meteorological and dispersion
phenomenon mainly takes place, this zone is the most interesting in the context of this
work. The different layers composing it will be further discussed in Paragraph 1.2.2.1.2.
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Figure 1.3: Schematic description of the standard atmosphere using comity ISO/TC 20 [1975]
norm.

Tropopause: It corresponds to the buffer layer between the troposphere at 11 km and the
stratosphere at 20 km. It is marked by a modification of the temperature gradient
due to the apparition of exothermic reaction of dioxygen which is transformed into
ozone through ultraviolet (UV) radiation absorption. In this zone, the thermal effects
of adiabatic dilatation and ozone production somewhat compensate each other, and
the temperature gradient can be considered null.

Stratophere: Above the tropopause, one can find the stratosphere where most of the ozone
production takes place. Due to this exothermic reaction, the temperature gradient
is positive in this zone which includes the so-called ozone layer. The stratosphere goes
from 20 km up to 47 km.

Stratopause: This is a slight buffer zone between the stratosphere and the mesosphere going from
47 km to 51 km.

Mesosphere: It corresponds to the zone spanning from 51 to 86 km. In this zone the temperature
is decreasing with the altitude. It corresponds to the lower part of the ionosphere
characterised by the gas ionisation due to UV radiation.

Mesopause: It corresponds to the buffer layer from 86 to 95 km.

Thermosphere: This is the last layer of atmosphere before the exosphere and space; in this zone the
pressure is very limited, and the gas really rarefied. It is characterised by the ionisation
of the air and a positive gradient of temperature. Due to the scarce presence of atoms,
it is difficult to properly describe the height of this zone, but it goes up to 350-800km.

1.2.2.1.2 Focus on the Dynamics of the Troposphere
As the dispersion mainly takes place in the troposphere, we will focus on the physical processes
at stake in this zone. They are described by a multitude of phenomena whose spatial and
temporal scales depend greatly: from the Kolmogorov scales for isotropic turbulence up to the
planetary scale over decades or centuries for global warming. A scheme presenting example of
atmospheric processes at different scales can be found in Figure 1.4.
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Figure 1.4: Description of physical phenomena at stake in the atmosphere with the corresponding
spatial and temporal scale (after Stull [1988]). Note that on this scheme the spatial length scales
provided can correspond either a vertical or horizontal scales.

Determination of the Preponderant Physical Effects in the Troposphere
Our goal is to present the different physical effects at stake in troposphere flows. A common
method to compare the relative importance played by different physical effects at given scale
is to compare their order of magnitude using adimensionised equations. To do so, we separate
each quantity Ψ into a dimensionless varying part Ψ+ whose scale remains close to unity and
its characteristic order of magnitude Ψc. This operation should also be applied on the operator.
We can consider a scale of velocity U c, of length Lc typically the distance to the ground, of
potential temperature increment δΘc due to buoyant effects. For Coriolis effects, the Coriolis
parameter fC = 2Ω sinφ is used. The incompressible Navier–Stokes and potential temperature
can then be decomposed as:

ρ(U c)2

Lc
dU+

i

dt+ =− ρ(U c)2

Lc
∂P+

∂x+
i

+ µ
U c

(Lc)2
∂2U+

i

∂x+
j ∂x

+
j

+ ρgi − ρfCU c1kU+
j εijk, (1.123a)

δΘcU c

Lc
dΘ+

dt+ =2 ν(U c)2

cp(Lc)2
Θ+

T+ S
+
ij

∂U+
i

∂x+
j

+ KΘδΘc

(Lc)2
∂2Θ+

∂(x+
j )2 , (1.123b)

where it has been chosen to consider a single scale to adimensionise the material derivative.
Furthermore, we have considered for the order of magnitude of the pressure variation δP c '
ρ(U c)2 based on energetic grounds coherent with Bernoulli’s principle. Moreover, we will
consider δρ

ρ ' β0δΘc in agreement with Boussinesq approximation to obtain the order of
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magnitude of buoyant effects. Now that we have decomposed Eqs 1.123, we can consider the
corresponding dimensionless equations:

dU+
i

dt+ =− ∂P+

∂x+
i

+

Re−1︷ ︸︸ ︷
ν

LcU c
∂2U+

i

∂x+
j ∂x

+
j

−

Ri︷ ︸︸ ︷
gβδΘcLc

(U c)2 δiz −

Ro−1︷ ︸︸ ︷
fCLc

U c
1kU+

j εijk, (1.124a)

dΘ+

dt+ =2 ν

U cLc︸ ︷︷ ︸
Re−1

(U c)2

cpδΘc︸ ︷︷ ︸
Ec

Θ+

T+ S
+
ij

∂U+
i

∂x+
j

+ KΘ
ν︸︷︷︸
Pr

ν

U cLc︸ ︷︷ ︸
Re−1

∂2Θ+

∂(x+
j )2 . (1.124b)

Let us notice that some dimensionless numbers appear. Each one characterises the relative
influence of competitive processes. We can note the presence of the Reynolds number Re,
already presented, corresponding to the competition between inertial and viscous effects; the
Richardson number Ri being the ratio between buoyant and inertial effects; the Rossby number
Ro being the ratio between inertial and Coriolis effects; the Eckert number Ec being the ratio
between variation of enthalpy and variation of kinetic energy and finally the Prandtl number
which is the ratio between molecular viscosity and thermal diffusivity. Except for the latter
one which is mainly a fluid property with Pr ' 0.707 for air, the other dimensionless numbers
depend on the flow. Thus, one can compare them to determine which effects are preponderant
at different altitudes and which one can be neglected. So as to classify the relative impacts of
the physical effects on different scales, let us see the evolution of this quantities as we move in
the troposphere.

rough.
layer

Present
work
focus

SBL

Ekman
layer

Free
atmo.

ABL
Tropos.

z

scale

Lc U c δΘc
molecular dif. buoyancy Coriolis visc. therm. prod.

∝ Re−1 ∝ Ri ∝ Ro−1 ∝ Re−1Ec

0.01 m 0.1 - 1 m s−1 0.01 - 0.1 K 10−3 − 10−2 10−5 − 10−3 10−5 − 10−6 10−6 − 10−4

0.1 m 0.1 - 1 m s−1 0.01 - 0.1 K 10−4 − 10−3 10−3 − 10−2 10−4 − 10−5 10−7 − 10−5

1 m 1 m s−1 0.1 K 10−6 − 10−5 10−2 − 10−1 10−4 10−7

10 m 1 - 10 m s−1 0.1 - 1 K 10−7 − 10−6 10−2 − 10−1 10−4 10−8

100 m 10 m s−1 1 K 10−8 10−1 10−3 10−9

1000 m 10 m s−1 1-10 K 10−9 1 10−2 10−9 − 10−10

10000 m 10 m s−1 10-100 K 10−10 10− 100 10−1 1010 − 10−11

Table 1.1: Comparison of the order of magnitude of the different physical processes at different
heights in the troposphere. The layers and acronyms appearing on the left side are presented
hereafter.

Evolution of the Ground induced Shear Stress in the Troposphere
As we can see in the Table 1.1, in the troposphere the main physical effects at stake are the
inertia, the pressure, the buoyancy, and the Coriolis ones. In this table only the effects along the
vertical scale are presented. With a view to have a rough idea of the evolution of the turbulence,
let us also consider the typical phenomenon taking place in the horizontal direction. Let us
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assume that we have a stationary and uniform horizontal flow, with a long-range horizontal
pressure gradient. The horizontal Navier–Stokes equations become:

−1
ρ

∂P

∂x
+ΩkUjεxjk −

∂uw

∂z
= 0, (1.125a)

−1
ρ

∂P

∂y
+ΩkUjεyjk −

∂vw

∂z
= 0, (1.125b)

The horizontal pressure gradient scale is typically around ten Pascals per thousand kilometres
(i.e 10−5Pa m−1). Even though this value seems little, it should not be totally neglected as it is
the source of the long-range horizontal flow. Our goal is here to present a crude description of
the height over which the ground has a major role on the flow turbulence. As seen previously the
Coriolis effects have a redistributive role on the Reynolds tensor but do not modify the overall
TKE. In order to give a first crude description of the turbulent behaviour let us put these effects
aside for the moment. Doing so we can define a single mean flow direction aligned with e1.
Moreover, we will make the crude assumption to consider 1

ρ
∂P
∂x is roughly constant close to the

ground. Doing so, it is possible to exhibit a rough description of the ground induced turbulence
evolution. Under these assumptions the turbulent shear stress uw may be integrated as:

uw = −u2
∗

(
1− z

LABL

)
(1.126)

with u∗ =
√

σwall
ρ the friction velocity, σwall the shear stress at the wall (here the ground) and

LABL = σwall
∂P
∂x

the length scale over which the shear stress produced at wall plays a preponderant
effect.

Description of the Layers composing the Troposphere
The zone within which the ground effects play a primordial effect on the flow is the atmospheric
boundary layer (ABL). Stull [1988] also characterised this zone by a timescale of response of
the ground forcing of around one hour or less. Its characteristic height is roughly the kilometre
and can be estimated using proposition of Zilitinkevich [1972]. Moreover, it evolves with the
meteorological conditions. Indeed, it is lowered in the high-pressure anticyclonic zones due to
downward flow from the upper regions. Similarly, it is elevated in the depression zones of low
pressure where the flow tends to ascend. Let us emphasize that as the ABL is the most turbulent
part of the atmosphere, it is then the zone within which most of the dispersion takes place. For
this reason, we will give a special attention to this region which can be decomposed into multiple
sub-layers:

Roughness Layer The lower part of the atmosphere is the roughness layer, within which the specific
influence of given ground irregularities plays a preponderant role (see e.g., Stull
[1988]). Indeed, in atmospheric flows, the ground is characterised by the presence
of irregularities at different scales (grass, gravels, rocks, bushes, ears in fields, houses,
trees, forests, cities, etc.). Each of these ground irregularities induces a local variation
of the flow in a slight zone in its vicinity. In the case of atmospheric flows, it is
not possible nor useful to explicitly describe the influence of each of these roughness
elements. A part or the entire roughness layer is then modelled thank to averaged
quantities such as the dynamical and thermal roughness height (z0 and zΘ

0 ) which
aims at characterising the mean influence of the ground irregularities over the above

38



flow. This parameterised near ground zone is referred as the unresolved basal layer
(UBL) and always exists when describing atmospheric flows (see Rodean [1996]). The
roughness layer depends on the local topography, but the UBL also depends on the
choice of description followed. Indeed, its characteristic vertical size is a few times
bigger than the irregularities which are not explicitly treated. Modelling dispersion at
a continental scale the explicit description of buildings or cities will not be considered,
thus the UBL order of magnitude is roughly the hundred metres. At the contrary,
considering a lower scale description over tens of metres the explicit description of
buildings would be necessary to retrieve proper local results. The order of magnitude of
the UBL might then be lesser than the metre such as presented in Table 1.1. Let us note
that, even-though this zone is not explicitly treated in atmospheric flows, roughness
plays a major role on atmospheric flows. The modelling and parametrisation of these
effects at different scales remain an important subject of study (see e.g. Kadivar et al.
[2021]).

SBL The surface boundary layer (SBL) is defined as the zone near ground where the shear
stress and vertical turbulent heat fluxes can be considered constant. There is no
rigorous limit of this zone but commonly we consider that it corresponds to roughly
the lowest 10% of the ABL. Within this zone the Coriolis effects and the long-range
pressure gradient effects are commonly neglected. The present work focusses on this
highly turbulent zone which plays a primordial role in the earlier state of pollutant
dispersion. The flow within it will be further discussed in Section 1.2.2.3. Let us note
that the rough layer can be seen as a part of the SBL, even though it has been chosen
to introduce them separately.

Ekman Layer The region above the surface boundary layer is a buffer zone within which neither the
shear produced by the ground, nor the Coriolis effects can be neglected. This region is
called the Ekman layer or outer zone. Due to the Coriolis pseudo-force the direction
of the wind rotates from the near ground flow direction to the upper wind direction
over the height of this zone. This rotation of the mean flow with altitude is called the
Ekman spiral. When increasing in altitude, it is directed rightward in the northern
atmosphere and leftward in the southern one,. Moreover, the amplitude of this rotation
might be over 30◦ to 45◦ but depends greatly on the location on Earth as the Coriolis
effects are not uniform accross the globe.

Above the ABL, where the ground effects and the induced turbulence become negligible, the
upper part of the troposphere is called the free atmosphere within which the vertical profiles are
more uniform. In this region, the pressure gradient and Coriolis pseudo-force remain the only
two physical effects at stake, so they tend to be at equilibrium. This results in a flow which
tends to follow the isobars. The corresponding wind is called the geostrophic wind. Note that
this is not true in the vicinity of the equator where the Coriolis pseudo-forces tend to disappear.

1.2.2.2 Influence of the Stability on the Dynamics and Dispersion

The depiction of the atmosphere presented in Section 1.2.2.1 is based on an averaged description
of the mean flow over a period of time long enough to consider that the thermal fluctuations
caused by ground forcing roughly cancel out. For this reason, we have mainly focused on the
shear effects produced by the presence of the ground, yet a second primordial role played by
the ground is a thermal one. During daytime, as the ground receives energy from the sun by
radiation, it heats the lower parts of the atmosphere. At the opposite, at night, the ground cools
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down faster than the air and absorbs energy from the atmosphere. This thermal forcing, which
fluctuates over the day and over the year, plays an important role in the dynamics of the ABL.
Indeed, as the ground respectively heats or cools down the atmosphere, it modifies locally the
temperature and the air density triggering buoyancy effects.

1.2.2.2.1 Adiabatic Displacement
To quantify the effects of these buoyancy effects, let us first consider the reference adiabatic dry
atmosphere. It corresponds to an adiabatic flow of ideal gas in which the flow is purely horizontal
and homogeneous in this direction. Moreover, the viscous dissipation and Coriolis effects in the
vertical direction are neglected. The latter conditions are easily respected in the SBL. Finally,
the atmosphere is assumed dry so that the effects played by humidity are not considered. Such
effects are out of the scope of the present manuscript, even though it is expected that the
work proposed within it can be extended to these flows without arising new major issues. The
quantities associated to this reference state are referred with the subscript ad and are supposed
to vary only along the vertical direction. The momentum equation then gives:

dPad
dz = −ρadg. (1.127)

Using the first law of thermodynamics written with the temperature Eq. (1.19), we get:

1
Tad

dTad
dz = Rair

cpPad
dPad
dz . (1.128)

Injecting the first equation in the second and using the ideal gas law, we obtain the adiabatic
temperature gradient:

dTad
dz = − g

cp
. (1.129)

This corresponds to the evolution of temperature due solely to the dilatation effects, and then
the temperature evolution in adiabatic atmosphere is linear. Using the ideal gas law to replace
the density in the momentum equation and injecting the linear form of the temperature, we
can easily integrate the pressure. Finally knowing both temperature and pressure it is possible
to determine the evolution of the density in the adiabatic atmosphere. The thermodynamic
quantities associated to the reference atmospheres can then be determined as:

Tad(z) =T0

(
1− gz

cpT0

)
, (1.130a)

Pad(z) =P0

(
1− gz

cpT0

) cp
Rair

, (1.130b)

ρad(z) =ρ0

(
1− gz

cpT0

) cv
Rair

, (1.130c)

with P0, T0 and ρ0 the constant reference value at the ground.
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Remark 1.2.11. Note that, in this description, the state law used is the ideal gas law and
not the Boussinesq approximation on the potential temperature. Using the latter approach,
which is considered in this work, the potential temperature remaining constant over adiabatic
displacement, the density remains constant. The corresponding set of equations is then:

ρBousΘ
ad (z) =ρ0, (1.131a)

PBousΘ
ad (z) =P0

(
1− ρ0gz

P0

)
= P0

(
1− gz

RairT0

)
, (1.131b)

TBousΘ
ad (z) =T0

(
PBousΘ
ad (z)
P0

)Rair
cp

= T0

(
1− gz

RairT0

)Rair
cp

, (1.131c)

where the thermodynamic quantities at ground (indexed with 0) still verify the perfect gas
law. Considering that we limit ourselves to altitudes small compared to RairT0

g ' 8.4 km,
we can make a Taylor expansion at the first order of Eq. (1.130b) and Eq. (1.131c) and we
retrieve respectively Eq. (1.131b) and Eq. (1.130a). Thus, at the first order the Boussinesq
approximation on the potential temperature enables to retrieve the proper temperature and
pressure profiles describing the adiabatic atmosphere whereas the variation of density is not
taken into account.

1.2.2.2.2 Presentation of the Notion of Stability
So as to quantify if the thermal stratification fuels or inhibits the vertical fluctuations which
play a fundamental role in dispersion, one can compare the local temperature gradient with the
adiabatic one. Indeed, a fluid particle at thermal equilibrium undergoing a vertical fluctuation
of velocity would experience an adiabatic evolution of temperature over the corresponding
displacement. Three situations, summed up in Figure 1.5, can be encountered:

Stable: If the temperature gradient of the atmosphere is less steep than the reference adiabatic
atmosphere (∂T

∂z > ∂Tad
∂z ), after a slight increase of height the particle would have a

temperature lower than its surrounding yielding to downward buoyancy effects inhibiting
the displacement as shown in Figure 1.5A. The situation being anti-symmetric if the
particle goes downward the resulting buoyancy effects would be upward, also limiting
the vertical displacements. This situation is referred as thermally stable.

Neutral: In the case where the temperature gradient is equivalent to the adiabatic one (∂T
∂z = ∂Tad

∂z ),
after displacement the fluid particle would still have a similar temperature compared to
its surroundings. Thus, no reacting force would be triggered by the particle displacement.
This situation is referred as thermally neutral.

Unstable: Finally in the case where the temperature gradient is steeper than the adiabatic one
(∂T
∂z <

∂Tad
∂z ), after an upward displacement the particles would have a temperature superior

to its surrounding yielding to upward buoyancy effects fuelling the vertical displacement
as schematised in Figure 1.5C. Similarly in case of downward displacement the buoyancy
effects would increase the effects of the fluctuations, thus such cases are referred as
thermally unstable.

As it can be cumbersome to compare the temperature gradient with the reference adiabatic one,
it is common in the atmospheric community to consider not the temperature but the potential

temperature Θ = T
(
P0
P

)Rair
cp . This quantity presented in Paragraph 1.2.1.1.2 being directly

correlated to the entropy, it remains constant in neutral, i.e. adiabatic situation and can be

41



z

T

�

� �•δT > 0

�• δT < 0

• Initial State
Adiabatic evolution• Displaced fluid particles

� Surrounding fluid particles
Resulting buoyancy effects

•

(A) Stable case.

z

T

�δT = 0 •

� δT = 0•

• Initial State
Adiabatic evolution• Displaced fluid particles

� Surrounding fluid particles

•

(B) Neutral case.

z

T

�

��•
δT < 0

�•δT > 0

• Initial State
Adiabatic evolution• Displaced fluid particles

� Surrounding fluid particles
Resulting buoyancy effects

•

(C) Unstable case.

Figure 1.5: Evolution of the response of the atmosphere to a small displacement of a fluid
particle for different stability situations after Hanna et al. [1982].

used to define atmospheric stability with more ease. It corresponds to the temperature we would
have in absence of adiabatic dilation. One can then establish the local stability situation simply
by checking if the potential temperature increases or decreases as schematized in Figure 1.6.

neutral
unstable stable

Θ

z

Figure 1.6: Vertical potential temperature profile for different stability situations.

1.2.2.2.3 Daily Cycle
The evolution of the stability within the ABL is strongly driven by a daily cycle. This cycle
is illustrated in Figure 1.7 which corresponds to the energy scattered by the aerosol back to
the grounds using a LIDAR measurement. The latter was obtained on June 3rd 2010, using
a Leosphere ALS 450 LIDAR at the SIRTA atmospheric observatory which at the time was
in a rural to peri-urban area (see Haeffelin et al. [2005]). The corresponding data are freely
available on sirta.ipsl.polytechnique.fr. The evolution of energy scattered back to the ground is
representative of the distribution of aerosols in the atmosphere. Their dynamics may be used
to characterise the turbulent effects and the evolution of the ABL.
At sunset, the sun starts to heat the ground through radiative processes. This results in a
heating of the atmosphere by the lower part yielding to the development of a thermally unstable
zone named the convective boundary layer or mixing layer. As underlined by its name, in this
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zone, the flow is mixed by turbulent transport triggered by buoyant effects. This can be seen
in Figure 1.7, during daytime, where the particles are mixed in the ABL. As the convective
boundary layer develops itself, it entrains above it the existing stable boundary layer issued
from the previous night. This slight stable layer is referred as the entrainment zone which plays
a capping effect. This slight stable layer makes the transition with the free atmosphere which
also tends to be thermally stably stratified. This rupture of the potential temperature gradient is
referred as capping inversion. It plays a fundamental role as it spatially limits the development
of the turbulence by buoyancy in the convective boundary layer and maintains most of the
pollutants within the ABL as we can see through the clear diminution of scattered energy after
around 1.5 km.
Slightly before sunset, the radiative forcing on the ground is lowered and the convective boundary
layer becomes neutrally stratified in a zone referred as residual boundary layer. Let us note that
even though heavy aerosol tend to fall back due to their weight which is less compensated by the
turbulence transport, the height of the ABL remains quite constant over the day-span. The latter
one is spatially encapsulated between two stable layers. On the upper part the capping inversion
subsists over the night and on the lower part a stable boundary layer is creating by cooling from
the grounds. The destruction of the turbulence near ground can be observed noticing that the
particles tend to fall back and accumulate in this zone. Let us note that the near ground flows
within stable boundary layer are often quite calm, yet, during the night, it is common to see
the development in altitude of wind whose velocity is greater than the geostrophic wind. Such
effects, which will not be treated in this work, are referred as nocturnal jet. They are a source
of mechanical turbulence whereas the thermal effects, in this situation, tends to dissipate the
turbulence.

Surface Boundary Layer
Stable Layer

Residual Layer Convective
Layer

Free Atmosphere

Figure 1.7: Scheme of the daily cycle of the atmospheric boundary condition made after Stull
[1988] and based on apparent back scattered power measurement made at the SIRTA (see
Haeffelin et al. [2005]).
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1.2.2.2.4 Influence of the Stability on the Dispersion of Pollutants
Now that we have described the effects on the turbulence of the different stability situations
encountered in the atmosphere, we will focus on its impact on the dispersion of pollutants (see
e.g. Stull [1988], Arya [1999]). To this end, a few examples of characteristic type of dispersion
will be briefly presented using images of smoke plumes. Let us note that the presence of smoke
results from a fire and then a heat source triggering an initial rising of the plume which depends
greatly on the nature and on the size of the source. The initial rising may be roughly estimated
based on atmospheric and source characteristic (see e.g. Briggs [1965], Zonato et al. [1993],
Fisher et al. [2001].

Coning in Neutral Case
The reference situation is the dispersion in neutral or near neutral atmosphere. It is the situation
commonly encountered either in the residual layer, or in the case of strong winds. In such a case
the thermal effect plays little role in the dynamics of the atmosphere and the dispersion in the
horizontal and vertical direction are quite similar. Then assuming that we are far enough from
the ground and the source the resulting plume shape is close to a cone. This situation is then
sometimes referred as coning.

z

Θ

Figure 1.8: Example of coning dispersion on near neutral smoke plume.

Fanning in Stable Atmosphere
In the case of stable atmosphere, i.e. mainly during the end of the night and the start of the
morning but also sometimes during the day in winter the turbulent eddies are destroyed by the
buoyant effects. Thus, the turbulent dispersion is mitigated yielding to the creation of smaller
but more concentrated plumes. Although through redistribution processes the attenuation of
the vertical displacement also limits the horizontal fluctuations, the latter ones remain bigger,
and the pollutants plumes mainly fan out in the horizontal direction. Such dispersion is then
referred as fanning. Let us note in Figure 1.9, before this fanning out a first process is a rising
of the plume caused by the heat produced at the fire source. After rising at a point where the
potential temperature of the plume is at equilibrium with the local potential temperature of the
atmosphere it tends to fan out. In the case of non-buoyant plumes, the fanning situation may
be quite problematic as the pollutant would remain concentrated near ground in potentially
inhabited areas.

Looping in convective atmosphere
In the case of a dispersion in a convective atmosphere, situation mainly encountered during hot
afternoons, large eddies induced by the buoyancy effects are present. The latter ones play a
preponderant role in the transport and dispersion of pollutants. They may be strong enough to
explicitly impact the geometry of the plumes near its emission. Such a phenomenon referred as
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Figure 1.9: Example fanning dispersion on stable smoke plume.

looping may be seen in Figure 1.10. In convective layer the dispersion is promoted yielding to
the creation of broad plume within which the concentration is lowered.

z

Θ

Figure 1.10: Example of looping dispersion on unstable smoke plume.

Fumigation in Convective Atmosphere near Ground capped by a Stable Layer
This case can occur after sunset when the convective layer starts to build up and entrains the
stable layer above it. It corresponds to the fumigation situation, illustrated in Figure 1.11,
which is the worst-case scenario for safety issue in case of pollutant dispersion. Indeed, on the
one hand, the pollutant is retained near ground due to the capping effects of the superior stable
boundary layer. On the other hand, near ground the pollutants are well mixed by the convective
layer and impact a broad zone of potentially inhabited areas.

z

Θ
capping

inversion

Figure 1.11: Example of fumigation effects on a smoke plume in an atmosphere locally unstable
near ground and stable above.
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Lofting in Atmosphere Locally Stable near Ground overlooked by a Neutral Layer
Such as situation may be encountered at night, in early morning or in winter when the pollutants
are emitted sufficiently high or with sufficient heat to reach the neutral residual layer. Such a
case referred as lofting represents the counterpart of the fumigation situation as we can see
in Figure 1.12. Indeed, in this situation, the ground is protected by the stable layer and the
pollutant disperses only upward and horizontally with less local impacts on the population below.

z

Θ

Figure 1.12: Example of lofting dispersion on a smoke plume in an atmosphere locally stable
near ground and neutral above.

Remark 1.2.12. We have presented the behaviour of the dry atmosphere, note however that
the presence of humidity may play an important role in both the stability situation and in
the dispersion of pollutants. For example, regarding the stability effects, after sunset, the
elevation of the stable layer caused by the production of a convective layer may trigger the
creation of clouds. These clouds will promote the buoyancy effects as they will produce a
cooling effect from the upper zone of the convective layer. Moreover, the presence of clouds
may have a great impact on the radiative flux and on the thermal forcing. Regarding the
dispersion of pollutant, the presence of humidity may also have a preponderant role as water
droplet in suspension may absorb pollutant and rain may clean the atmosphere creating wet
scavenging (see e.g. Sportisse [2007]). Such effects are out of the scope of the present work.

1.2.2.3 Focus on Surface-Boundary-Layer Flows using Similarity Theory

1.2.2.3.1 Treatment of the Neutral Surface Boundary Layer
In the SBL the Coriolis, viscous, horizontal pressure gradient may be neglected. Moreover, let
us assume a stationary and horizontally homogeneous atmosphere. Under these hypotheses the
Navier–Stokes equation is simplified into div(uw) = ∂uw

∂z = 0 with e1 aligned with the wind
direction. Then shear stress uw = −u2

∗ imposed by the wind in the upper region is uniform
until the surface. Let us first consider the neutral situation in which the buoyancy terms do not
play any role. As suggested by Monin and Obukhov [1954], considering similarity theory, the
evolution of the mean velocity between two points z1 and z2 can be obtained as:

ˆ z2

z1

∂U

∂z
dz = U(z2)− U(z1) = FU (u∗, z1, z2) = u∗fU

(
z2
z1

)
, (1.132)
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where, FU and fU are universal functions. Let us consider a third altitude z3, we have:

U(z3)− U(z1) = U(z3)− U(z2) + U(z2)− U(z1), (1.133a)

u∗fU

(
z3
z1

)
= u∗

(
fU

(
z3
z2

)
+ fU

(
z2
z1

))
. (1.133b)

This is true no matter the choice of z1, z2 and z3 in the SBL. Thus, the universal function fU
must respect the properties fU (x) + fU (y) = fU (xy). Only a class of function respects this
condition which corresponds to the logarithmic functions. Then in the neutral SBL the mean
velocity is logarithmic, this is the reason why it is often referred as the logarithmic zone. The
coefficient in fU corresponds to the Von Kármán constant κ ' 0.42. We have then:

∂U

∂z
= u∗
κ(z + z0) , (1.134)

where z0 is the roughness length which is an integrated parameter representing the effects of the
ground roughness on the flow above the UBL. Considering rough surfaces, the mean velocity
may be written as:

U(z) = u∗
κ

ln
(
z + z0
z0

)
. (1.135)

1.2.2.3.2 Extension to Thermally Stratified Surface Boundary Layer using Monin–
Obukhov Theory

Universal Profiles
We still assume a stationary and horizontally periodic flow, with a shear stress uw = −u2

∗
uniform and imposed by the upper wind. We will now take into account the normal turbulent
heat fluxes wθ imposed by the ground forcing. For similar reasons than for the shear stress, the
turbulent heat fluxes are also uniform, and one can introduce the friction potential temperature
θ∗ such as wθ = −u∗θ∗ in the SBL. Thus, the flow quantities depend only on the altitude z, the
buoyant term −gwθ = gβ0u∗θ∗, the shear stress u2

∗ and the dissipation rate as we can see for
example in the TKE budget:

− uw∂U
∂z

+ gβwθ = ε. (1.136)

We have looking at the TKE budget:

∂U

∂z
= u∗
κz

f̃U

(
ε

gβwθ

)
. (1.137)

Moreover, the dissipation rate is a variable depending on the shear stress, the buoyancy but also
the altitude. It is thus possible to write:

ε = Fε (u∗, κz, gβ0u∗θ∗) = u3
∗
κz

fε

(
κgβ0θ∗
u2
∗

z

)
= u3

∗
κz

fε

(
z

LMO

)
= u3

∗
κz

fε (ζ) . (1.138)
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From this choice of parameters, a single dimensionless parameter ζ = 1
LMO

with LMO the
Monin–Obukhov length scale first presented by Obukhov in 1948 (see Obukhov [1971]) and
defined as:

LMO = u2
∗

κgβ0θ∗
, (1.139)

where the Von Kármán constant is kept by convention. This length scale is the ratio between
the shear effects and the buoyant ones. It predicts the scale of altitude at which the buoyant
effects become preponderant compared to the shear stress. Injecting Eq. (1.138) in Eq. (1.137),
we get:

∂U

∂z
= u∗
κz
ϕm(ζ), (1.140a)

U = u∗
κ
ψm(LMO, z, z0), (1.140b)

with ϕm the momentum universal function and ψm(LMO, z, z0) =
´ z
z0

ϕm(ζ)
z dz its integrated

form which are written as such by convention. Using these universal functions, the turbulent
viscosity νt may be written:

νt = −uw
∂U
∂z

= u∗κz

ϕm
. (1.141)

With a similar reasoning, one can determine that obtain a similar equation for the potential
temperature:

−∂Θ
∂z

= θ∗
κz
ϕh(ζ), (1.142a)

Θ = θ∗
κ
ψh(LMO, z, z0), (1.142b)

with ϕh the heat universal function and ψh the integrated formulation. The corresponding
turbulent thermal diffusivity evolves then as:

KΘt = −wθ
∂Θ
∂z

= u∗κz

ϕh
. (1.143)

The two universal functions ϕm and ϕh can then be bound together by the turbulent Prandtl
number as:

Prt = νt
KΘt

= uw
∂U
∂z

∂Θ
∂z

wθ
= ϕh
ϕm

. (1.144)

Note, that the knowledge of the first-order moments is not sufficient to properly characterise a
flow. As for the mean flow, it is possible using similarity theory to derive universal functions
for the second-order moments (see Monin and Yaglom [1971, Chapter 7.5]) depending only on
ζ. The latter will be referred respectively as ϕk, ϕ〈uu〉, ϕ〈vv〉, ϕ〈ww〉, ϕ〈uθ〉, ϕ〈θ2〉 and are defined
as corresponding second-order moment adimensionised by the proper combination of friction
velocity and friction potential temperature.
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Remark 1.2.13. Note that other dimensionless numbers are commonly encountered in atmo-
spheric study. A first one is the flux Richardson number Rif characterising the relative effect
of the buoyancy term and shear stress production in the TKE equation. It is defined as:

Rif = −G
P

= gβwθ

uw ∂U
∂z

= gβu∗θ∗
u3
∗
κzϕm

= z

LMOϕm
= ζ

ϕm
. (1.145)

The gradient Richardson number Rig, which is a slightly different version of the flux
Richardson number, is also commonly used to characterise the relative importance of the
thermal effects. As its name suggests this number is based on the ratio of the gradients and
is defined as:

Rig = gβ
∂Θ
∂z(
∂U
∂z

)2 = gβκθ∗
u2
∗︸ ︷︷ ︸

(LMo)−1

z

ϕm

ϕh
ϕm

= RifPrt. (1.146)

It corresponds to the product of the flux Richardson and the turbulent Prandtl numbers. In
the SBL, the knowledge of both the momentum and heat universal functions is then equivalent
to the knowledge of two dimensioneless number among the turbulent Prandtl number and the
two Richardson numbers presented here.

Universal Functions Theoretical Evolution
We will briefly present the theoretical behaviour of these universal functions (for more
information see Monin and Obukhov [1954], Monin and Yaglom [1971, Chapter 7]). As already
stated, in convective situations, the development of large eddies due to buoyancy effects triggers
mixing of both heat and momentum. Thus, velocity and temperature profiles are less steep than
the profiles encountered in neutral situations. Similarly, in stable situations, the destruction of
vertical eddies yields to a steeper temperature and velocity profiles. It is then clear that both
the universal functions and the flux Richardson number increase with ζ. Moreover, let us note
that we can write the stationary TKE budget at equilibrium as:

P + G = P(1−Rif ) = ε, (1.147)

where both the production of TKE by shear and the dissipation are positive. For stationary
flow at production-dissipation equilibrium the Richardson number is then upper bounded:

Rif < 1. (1.148)

There is then an upper steady state limit of the flux Richardson number named the critical
flux Richardson number Ricrf . This condition is restrictive only for stable flows as the flux
Richardson number is negative within unstable situations. In stable flows, the value of the Ricrf
is considered in the range [0.2, 0.25] as demonstrated for example by Zilitinkevich et al. [2008],
Zilitinkevich et al. [2010], Freire et al. [2019], and we will consider in this work Ricrf = 0.25.
Thus, in statistically stationary, horizontally uniform, stable SBL flows at production-dissipation
equilibrium, the mean velocity gradient tends to become constant as we have ϕm = ζ

Ricr
f
. The

mean velocity becomes then affine depending only on the Monin–Obukhov length scale. It
results that the turbulence evolution tends to become independent of the height. Thus, the
universal functions characterising the TKE, the Reynolds tensor diagonal terms but also the
potential-temperature-variance and the horizontal fluxes all tend towards constant values see
Monin and Yaglom [1971, Chapter 7.5].
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One may also consider the convective limit situation which is the limit case when ζ tends
negatively towards infinity. In this case, the asymptotic behaviour is a situation in which the
production by shear can be considered null. This case corresponds to the physical state of the
natural convection that can take place during a sunny day without any mean wind. First, a
legitimate question is whether the Monin–Obukhov theory is still valid for extremely unstable
situations. This raises the question whether the flow can be treated as statistically stationary
and perfectly stratified in the horizontal direction. Indeed, the energy furnished by the thermal
effects may stretch the turbulent eddies increasing their characteristic scale and the size of the
ABL. From this growth of the ABL, it results that the latter can never reach a stationary state
in convective situation. Yet, in the SBL, it is possible to consider that locally the situation is not
impacted by the evolution of the upper part of the ABL which is far away. For convective cases,
it is thus possible to consider that a stationary state can be reached not in the whole ABL but
only locally in the SBL. Furthermore, the stretching of the turbulent eddies might destabilise
the flow sufficiently to create convection cells in the inertial scale destroying the horizontal
uniformity and creating structures similar to the ones encountered in Rayleigh–Bénard flows.
Such structures may not be explicitly tackled using the Monin–Obukhov similarity theory and
would be incorporated in the energy spectrum as large turbulent eddies. In this case the flow
evolution does not depend explicitly on the shear stress but only on the thermal turbulence
triggered by the convective fluxes q

ρcp imposed on the ground. Using similarity theory, we get:

∂Θ
∂z

= F−∞Θ

(
κz, gβ,

q

ρcp

)
= 1
κz

 1
κzgβ

(
q

ρcp

)2
 1

3

C−∞Θ . (1.149)

Moreover, the heat being transported by turbulent heat fluxes, we have q
ρcp = −u∗θ∗ by definition

of θ∗. Thus, we have:

∂Θ
∂z

= C−∞Θ
θ∗
κz

(
−u2
∗

κgβθ∗z

) 1
3

= θ∗
κz

C−∞Θ (−ζ)−
1
3︸ ︷︷ ︸

ϕh(ζ)

. (1.150)

Moreover, assuming that in the convective limit the turbulent Prandtl number converges towards
a non-null constant Pr−∞t (this assumption will be further discussed in Section 5.1) we get:

ϕm(ζ) ∝
ζ→−∞

(−ζ)−
1
3 , (1.151)

where ∝
ζ→−∞

means "ζ tending towards minus infinity, the LHS term tends to become
proportional to". Thus, in the convective limits both the momentum and heat universal function
decay with a power −1/3. Monin and Yaglom [1971, Chapter 7.5] showed that the resulting
TKE will increase in all directions due to thermal forcing with a power 2/3:

ϕk ∝
ζ→−∞

ϕ〈uu〉 ∝
ζ→−∞

ϕ〈vv〉 ∝
ζ→−∞

ϕ〈ww〉 ∝
ζ→−∞

(−ζ)2/3, (1.152)

whereas the temperature fluctuations will decrease by mixing with a power −2/3:

ϕ〈θ2〉 ∝
ζ→−∞

(−ζ)2/3. (1.153)

Moreover, as the velocity tends to become uniform, the flow tends towards the true convection
limit in which all the horizontal fluctuations become equivalent, yielding to:

lim
ζ→−∞

ϕ〈uθ〉 = 0. (1.154)

50



In addition, due to the velocity gradient evolution, we have a turbulent viscosity introduced
in Eq. (1.141) which increases proportionally to (−ζ)4/3. Such an evolution of the turbulent
viscosity associated with the TKE evolution induced that the diffusion of TKE tends towards a
positive constant in the convective limit.

Literature Propositions of Universal Functions
Now that we have seen some theoretical features of the universal functions, one may want to
have an explicit definition of these functions. The determination of these two universal functions
has been subject to an intensive work (see e.g. Zilitinkevich and Chalikov [1968], Businger et al.
[1971], Carl et al. [1973], Dyer [1974], Högström [1988], Hartogensis and De Bruin [2005], Chenge
and Brutsaert [2005]) resulting in numerous propositions. Let us note that this list is far from
being exhaustive (different other propositions may be found in Monin and Yaglom [1971, Chapter
7.4]. Some of them defined from Eqs 1.156 to Eqs 1.159 are plotted in Figure 1.13.
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Figure 1.13: Example of literature universal functions: Businger et al. [1971] , Carl et al.
[1973] , Högström [1988] , Chenge and Brutsaert [2005] ,Hartogensis and De Bruin
[2005] . The light grey zone represents the area defined by Rif > Ricrf with Ricrf = 0.25,
and the dark grey one the area defined by Rif > 1, both these zones should be prohibited.

• Businger et al. [1971]:

ϕm(ζ) =


(1− 15ζ)−1/4 , ζ < 0,
1 + 4.7ζ, 0 ≤ ζ < 0.5,
7.85− 4.25

ζ + 1
ζ2 , 0.5 ≤ ζ < 10,

0.7485ζ, 10 ≤ ζ,

(1.155a)

ϕh(ζ) =
{

0.74 (1− 9ζ)−1/2 , ζ < 0,
0.74 + 4.7ζ, 0 ≤ ζ.

(1.155b)
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• Carl et al. [1973]:

ϕm(ζ) = (1− 16ζ)−1/3 , ζ < 0, (1.156a)
ϕh(ζ) = 0.74 (1− 16ζ)−1/2 , ζ < 0. (1.156b)

• Högström [1988] which is a revisited version of Businger et al. [1971]:

ϕm(ζ) =


(1− 19.3ζ)−1/4 , ζ < 0,
1 + 4.8ζ, 0 ≤ ζ < 0.5,
7.9− 4.25

ζ + 1
ζ2 , 0.5 ≤ ζ < 10,

0.7485ζ, 10 ≤ ζ,

(1.157a)

ϕh(ζ) =
{

0.95 (1− 11.6ζ)−1/2 , ζ < 0,
0.95 + 7.8ζ, 0 ≤ ζ.

(1.157b)

• Hartogensis and De Bruin [2005]:

ϕm(ζ) = 1 + ζ

(
a+ b exp(−dζ)− bd

(
ζ − c

d

)
exp(−dζ)

)
, 0 ≤ ζ, (1.158a)

ϕh(ζ) = 1 + ζ

(
a

(
1 + 2

3aζ
)1/2

+ b exp(−dζ)− bd
(
ζ − c

d

)
exp(−dζ)

)
, 0 ≤ ζ,

(1.158b)

with a = 1, b = 2/3, c = 5, d = 0.35.

• Chenge and Brutsaert [2005]:

ϕm(ζ) = 1 + a

(
ζ + ζb(1 + ζb)(1−b)/b

ζ + (1 + ζb)1/b

)
, 0 ≤ ζ, (1.159a)

ϕh(ζ) = 1 + c

(
ζ + ζd(1 + ζd)(1−d)/d

ζ + (1 + ζd)1/d

)
, 0 ≤ ζ, (1.159b)

with a = 1, b = 2/3, c = 5, d = 0.35.

These functions are quite useful as they often provide inlet boundary condition to set up micro-
scale numerical atmospheric simulations. Yet, these functions are not fully satisfactory for four
main issues:

1. It is difficult to determine which proposition should be considered. Indeed, there is a
multitude of propositions fitted on different experimental data and the selection of one
profile instead of another one may be a tricky issue.

2. There is a lack of coherency with asymptotic theoretical results. Indeed, only Carl et al.
[1973] proposes a function reaching the proper order of convergence in convective situation.
Moreover, in stable situations, neither Businger et al. [1971] nor Högström [1988] nor
Hartogensis and De Bruin [2005] nor Chenge and Brutsaert [2005] proposed universal
functions respecting the condition Rif < Ricrf for all value of ζ.
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3. There is a lack of information on the turbulent quantities. Indeed, only the information on
the mean fields is provided. Yet, turbulent information at inlet may play a preponderant
role over quite large distance in the flow.

4. Finally, there is lack of consistency with the turbulence model used. Indeed, these functions
being fitted on experiments, they may not agree with the solution of the modelling selected
on the SBL configuration. Thus, the profiles injected at inlet may not be maintained by
the numerical solver in steady, horizontally uniform situations.

A method to determine universal functions for mean and turbulent quantities consistent with
the modelling selected will be presented in Section 5.1.

1.2.2.3.3 Limitations of the Monin–Obukhov Theory
The present work will remain in the scope of Monin–Obukhov similarity theory. The present
paragraph aims at putting emphasis on different limits of this theory.

Limitations due to the Altitude.
A first limitation of the Monin–Obukhov similarity theory is the altitude at which it is used.
Indeed, the hypothesis considered are valid only in the SBL, where solely the grounds effects
influence the flow leading to uniform shear and turbulent heat fluxes. However, as we increase the
altitude Coriolis effects, large-scale horizontal pressure gradient and sink radiative terms should
be considered (see Deardorff [1972]). For the purpose of extending the validity of the hypothesis
made, it is thus necessary to take into account these effects and the resulting diminution of shear
stress and normal turbulent flux with altitude. Some generalised theories have been proposed
to tackle this issue and the interested reader may refer to Nieuwstadt [1984] or Gryning et al.
[2007]. This extension of the physics considered may have a great impact on the pollutant
dispersion, as we can see in Figure 1.14. In this case, the plume is first advected toward us and
then in altitude its direction rotates toward the right which is in line with the effects of the
Coriolis effects. Moreover, it is capped by a stable layer at an altitude zi. In absence of further
information, it is hard to assert if this capping corresponds to the upper part of the ABL or to
entrainment zone above a developing convective layer.

Figure 1.14: Smoke plume capped by a stable layer (at the altitude zi) and rotating rightward
due to Coriolis effects in the Ekman layer.
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Limitation due to a Lack Stationarity

A second pitfall that may arise is the difficulty to have a stationary situation. Indeed, the Monin–
Obukhov cannot represent the vertical variation of stability appearing in the atmosphere due
to the transient effects resulting from a temporal variation of thermal forcing. Such effects are
encountered for example in the fumigation and lofting presented respectively in Figure 1.11 and
Figure 1.12. In this case, it is thus limited near wall where the stability may be assumed uniform.
Moreover, in general compared to experimental laboratory results obtained in channel flows,
atmospheric flows present low-frequency fluctuations which would modify the wind development.
In the scope of atmospheric flow, these low-frequency fluctuations have been encapsulated as
a part of the turbulent energy spectrum. It results that the model constant may have to be
modified to take into account these effects as discussed further in Section 1.3.2. Moreover, the
length scale over which the wind direction may be considered stationary limits the use of such
assumption to local treatment over hundreds of meters. This issue is particularly present in the
case of slow winds in which meanders, characterised by the fluctuations of the mean velocity
direction, may occur, see (e.g. Anfossi et al. [2005] and Mortarini et al. [2013]).

Limitations due to Topography Effects
A final commonly encountered issue is the validity of the horizontal homogeneity. Indeed,
multiple local effects may deviate the flow behaviour from the one predicted by Monin–Obukhov
theory:

• The presence of obstacles may impact the behaviour of the flow. The effect of plants
and forest canopies remains a complex and largely studied issue (see e.g. Brunet
[2020], Finnigan [2021]). In urban context the presence of individual building and their
accumulation also plays a fundamental role on the dynamics (see e.g. Rotach [1999],
Barlow and Coceal [2009], Bahlali et al. [2019]).

• Near coast, the transition from water to the ground may induce a daily circulation
referred as sea or land breeze depending on its provenance. Indeed, submitted to a given
thermal forcing the evolution of water temperature is slower than the evolution of ground
temperature due to the higher heat capacity of water. During daytime, the air is more
heated above ground and tends to ascend more in this zone triggering a wind from the sea
to compensate the local depression stemming from this upward air movement. This is the
sea breeze. At the opposite, at night, the air is more cooled down on the ground yielding
a to wind from the land towards the see: the land breeze.

• Similarly, convective effects may occur in presence of slope or mountains. During the
day the slope being heated, an upward wind from the valley to the tops can arise. This
convection driven wind is referred as anabatic. The opposite situation may append at night
due to the cooling by the ground. It might result in a downward wind named katabatic
wind.
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1.3 Modelling Overview
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Theoretically speaking, all the information describing the dynamics of a flow is contained within
the instantaneous Navier–Stokes and potential temperature equations. However, the exact
resolution of such a set of equations is in general impossible to reach due particularly but
not only to the presence of turbulent effects. The goal of this section is to present Navier–
Stokes based modelling approaches used to characterise flows in the context of high-Reynolds
incompressible flows. This presentation will remain superficial to exhibit only the salient point
of these approaches. It does not aim at being an exhaustive overview of the existing turbulent
modelling which are object of multiple valuable books (see e.g. Launder and Spalding [1974],
Pope [2000], Hanjalić and Launder [2022]). First, a classification of these methods is proposed in
Section 1.3.1 and the level of description they can provide is briefly discussed. Then a particular
attention is given to RANS and Lagrangian stochastic methods respectively in Section 1.3.2 and
in Section 1.3.3, as these are the methods considered in the present work.
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1.3.1 Classification of Navier–Stokes based Turbulence Modelling

A multitude of Navier–Stokes based turbulence modellings have been developed, with different
levels of description. They can be regrouped into great classes of methods introduced here.

DNS: A first solution enabling to conserve all the information characterising a flow is to
resolve directly the Navier–Stokes equation on all the scales of turbulence from the
Kolmogorov scale to the larger ones. This provides information at a microscopic level.
This method, referred as direct numerical simulation (DNS), is of major interest to
provide strong information on theoretical case and a better understanding of the precise
physical phenomena taking place within the turbulence. Indeed, it enables to explicitly
describe all the turbulent structures and eddies in the flow and their interactions with
one another. Even though difficulties to properly initialise all the scales of turbulence and
to treat boundary condition (such as the walls which are often consider perfectly smooth
until the lower scale) do exist, these methods can be regarded as reference numerical
characterisation of the flow. However, as the range of turbulent scales resolved increases
greatly with both the Reynolds Re (and potentially also the Richardson number Ri),
their cost remains prohibitive for classical use and specially to treat atmospheric flows.
For example, considering only inertial effects, to consider all the spatial scales, the mesh
should at least contain L

`η
cells in each direction. As shown in Paragraph 1.2.1.2.1, a

mesh containing Re9/4
L cells would be needed. Moreover, to characterise all the turbulent

timescales, the simulation should at least be made on τLτη ' Re
1/2
L iterations. This results

in an increase of the computation time in Re
11/4
L , which remains prohibitive even today

for many engineering uses and especially in atmospheric flows.

LES: A first method to limit this numerical cost, named large eddies simulation (LES), is to
resolve explicitly only the greatest scales which are commonly the one of most interest.
This approach was first proposed for atmospheric simulation (see Smagorinsky [1963], Lilly
[1966]) and then completed (see Deardorff [1971], Germano et al. [1991], Lilly [1992]) to
provide a mesoscopic description of the flow. It is based on the fact that at large scales
the anisotropy of turbulence is important, however, as we go down the energy cascade, the
turbulence becomes more and more isotropic, and its behaviour is more and more universal.
Thus, it proposes to resolve explicitly the large and very energetic eddies on a mesh
whereas a statistical modelling of the smaller ones is provided. Classically the modelled
turbulence referred as sub-grid turbulence aims at taking into account the transfers of
energy and momentum towards the unresolved scales to provide an appropriate rate of
TKE dissipation. To this end, a spatial filtering is considered to separate the resolved and
the sub-grid turbulence. As the large structures play a preponderant role compared to the
small ones in pollutant dispersions, their resolution enables to explicitly take into account
this phenomenon. This approach although far more tractable than DNS, remains quite
expensive numerically speaking. Indeed, so as to have a physical behaviour the simulation
must be carried out along the three directions of space. Moreover, to have a physical
behaviour, after inlet the resolved turbulence need a distance typically of the scale of a
few auto-correlation lengths to develop itself properly. In order to tackle this constraint
an intensive work has been done to recreate at best turbulent fluctuations at inlet (see
e.g. Klein et al. [2003], Poletto et al. [2013]). Finally, it might be costly to select a spatial
discretisation enabling to resolve a sufficient fraction of the total TKE, especially near
obstacles where the sizes of the turbulent structures are restrained. A further discussion
can be found e.g. in Pope [2000][Chapter 13].
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RANS: A less time-consuming approach presented more in detail in Section 1.3.2, consists in
modelling all scales of turbulence by separating the flow into an averaged and a fluctuating
part. These approaches are referred as Reynolds averaged Navier–Stokes (RANS) and
provide a macroscopic description of the flow. As introduced in Paragraph 1.2.1.2.2,
this method relies on an application of an ensemble average operator on the Navier–
Stokes equation as first presented by Reynolds [1895]. The modelling consists then in
determining correlations between unknown averaged variables and the available ones to
properly retrieve the large-scale statistical behaviour. As only information based on some
transported statistical moments are computed the description of turbulence is coarser than
the previous methods and depends on the choice of these averaged quantities. It is worth
noticing that this macroscopic level of description is often sufficient from an engineering
point of view. For this reason and because of its more attractive computation cost, this
method remains the most commonly used for industrial context.

PDF: Stochastic methods, also referred to as probability density function (PDF) methods, are a
class of methods in which the PDF associated to a given state vector, characterising the
physical properties followed, is estimated in a weak sense through Monte Carlo averaging
on a large number of stochastic particles as presented in the fundamental work of Pope
[1985]. Such methods enable a mesoscale statistical description of the turbulence (see
Minier [2016]) which is finer than RANS and coarser than LES. Commonly, a Lagrangian
standpoint is considered as the latter enables to treat explicitly particle transport. These
methods are then referred as Lagrangian stochastic methods or Lagrangian PDF methods
(in this work, by simplicity we will also speak of PDF methods for these methods). They
may be used to model single-phase flows as well as poly-disperse ones, as discussed at
length in the important studies of Pope [2000] and Minier and Peirano [2001]. Stochastic
processes are used to model the fast-varying processes which are not explicitly followed.
In this work only one-particle methods are considered, from which one-point one-time
Eulerian PDFs are derived, to estimate mean fields. The modelling of such approach
has been mainly developed in the 1980s and 1990s, mostly by Pope and co-workers (see
e.g. Haworth and Pope [1986], Pope and Chen [1990], Pope [1991, 1994a,b]) for single
phase flow and later on by Minier and co-workers for poly-disperse one (see e.g. Minier
and Pozorski [1997], Pozorski and Minier [1998], Minier and Peirano [2001], Minier et al.
[2004], Minier [2015, 2016, 2021]). A main advantage of these methods is their capacity to
treat without further modelling local source terms no matter how complex and non-linear
they are. Such a property is of major interest to model reactive and/or poly-disperse
flows. Indeed, due to non-linearity the averaged source terms might vary quite noticeably
compared to the sources terms based on the averaged quantities. Let us note that, in
one-point PDF methods, the information associated to the particles are local, it is thus
not possible to derive spatial correlation such as the integral length scale or Eulerian
structure functions. In order to do so, it is necessary to have non-local information using
for example two points PDF methods (see Sabelfeld [2012]). The latter may be used on
simple theoretical flows but are for now not tractable on industrial cases.
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SPH: A second Lagrangian methods used to resolve the Navier–Stokes equation is the smoothed
particle hydrodynamics (SPH). As stated in their name, these methods rely on a fully
particular and grid free description of the flow. Each particle represents a given unit of
fluid mass and interacts with the surrounding ones through the use of a spatial smoothing
kernel. Each particle interacting only with the other particles in its kernel, the interaction
forces between particles depend on the relative distance between the particles and on
the shape selected for this kernel. For more information interested reader may refer e.g.
to Violeau [2012]. The SPH methods are in their majority deterministic methods even
though stochastic methods based on this approach have been proposed for example by
Minier [2016].
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Figure 1.15: Comparison of the different turbulent methods related to the modelling of the
turbulent energy spectrum.

Remark 1.3.1.

Gaus.: Although, strictly speaking, Gaussian methods do not provide any dynamical or
thermal information on the flow itself, they are broadly used in the atmospheric
community for dispersion of pollutants because of their relatively small computa-
tion cost especially when modelling the dispersion from few local sources. They
are based on the analytical solution proposed by Roberts [1923] for stationary and
uniform carrier flows. In this case the corresponding advection-diffusion equation
reads:

∂〈C〉
∂t

+ 〈U〉∂〈C〉
∂x

= Kt〈C〉,j
∂2〈C〉
∂xi∂xi

δij , (1.160)

where an injection rate Q is ensured imposed either by a scalar inlet or by
a local source term. Furthermore, the molecular diffusivity is neglected, the
mean advection-velocity 〈U〉 and the turbulent diffusivity Kt〈C〉,α = − 〈uαc〉∂〈C〉

∂xα

are
considered uniform. Assuming that the advection is great compared to the
diffusion terms the stationary solution is:

〈C〉(x, y, z) = Q

4πx
√
Kt〈C〉,yKt〈C〉,z

exp
(
−〈U〉4x

(
y2

Kt〈C〉,y
+ z2

Kt〈C〉,z

))
(1.161)

where the standard deviation of characterising the width of the plume σ̃〈C〉,α
can identify as σ̃〈C〉,α =

√
2Kt〈C〉,αt =

√
2Kt〈C〉,α

x
〈U〉 . As we will see later

in Section 2.3.1.1 such a relation is valid only in the diffusive regime far from
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the source. Moreover, specific correlations should be furnished to obtain proper
formulations for these standard deviations. A currently used solution to relax
the condition of uniformity in the mean wind direction is to to use Gaussian
puff methods. In these methods, the position of the centre of the plume is
tracked using a deterministic Lagrangian description and at each iteration a
Gaussian puff is released to represent the dispersion around this mean location.
Even though it is possible to take into account the presence of a flat ground
using a second Gaussian dispersion symmetric compared to the grounds, these
methods are misfitted to treat near source dispersion where the topography and
presence of obstacles may have a primordial impact. Finally, all the turbulence
being parameterised it corresponds clearly to a coarser description than the other
methods presented. For more information the interested reader may refer e.g. to
Stockie [2011] or to Leelóssy et al. [2018].

1.3.2 Introduction to Reynolds-Averaged Navier–Stokes Modelling

The goal of the present section is to discuss the methods used to model the turbulent effects in
the context of RANS approaches. For this purpose, it is necessary to prescribe the behaviour
of the Reynolds tensor R = uiujei ⊗ ej , and the turbulent heat fluxes uθ = uiθei appearing
respectively on the mean velocity and mean potential temperature equations. Two main classes
of modelling can be considered: either to model directly these terms based on known variables or
to transport them explicitly. The first approach is presented in Section 1.3.2.1 and corresponds
to the eddy viscosity models (EVM) hypothesis in which the Reynolds tensor and turbulent heat
fluxes are considered to have viscous-like effects. The second category presented in Section 1.3.2.2
corresponds to the second-order moment transport class of turbulent modelling.

1.3.2.1 Eddy Viscosity Models

Let us first focus only on the dynamics without considering thermal effects. A first description
of the turbulence would be to consider that it plays a role similar to the viscosity i.e. diffusive
and dissipative. Indeed, as briefly discussed in the examples presented in Section 1.2.1.2, the
main effect of the large-scale turbulent fluctuations on the mean flow is to induce mixing and
shear stress. Furthermore, in the RANS equation for the velocity Eq. (1.64) the Reynolds tensor
appears indeed, in the divergence side-by-side with the viscosity. Such a description was first
introduced by Boussinesq who proposed to write:

uiuj = 2
3k − νtSij , (1.162)

where νt is called a turbulent viscosity. This hypothesis is referred as the Boussinesq hypothesis
which is at the basis of the eddy viscosity model (EVM). Such models assume that the velocity
gradient and the shear stress are aligned. Furthermore, it is worth noticing that unlike the
molecular viscosity, which is mainly a fluid property, the turbulent viscosity is a flow property
which can highly vary within it. The main question is then to determine how to model this
turbulent viscosity. To this end, one may consider that the turbulent viscosity should be
characterised by a length scale `t and velocity scale ut, characteristics of the large-scale mean
behaviour of turbulence and depending only on known or transported properties of the flow.
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Remark 1.3.2. Note that the Boussinesq hypothesis presented here should not be confused
with the Boussinesq approximation presented in Paragraph 1.2.1.1.2. The latter one does not
concern the treatment of the Reynolds tensor but the treatment of buoyancy by providing a
modelling of the thermal effects on density.

Algebraic Closures
A first proposition made was to consider algebraic solutions for these scales. Based on parietal
flows, Prandtl [1925] proposed to take ut = `t|Sij | and `t = κz in the vicinity of the wall with
z the wall distance and κ = 0.42 a constant referred as Von Kármán constant. Such a model
has the main benefit to be simple and computationally cheap as no additional equation has to
be considered. It provides moreover a quite accurate behaviour for simple wall bounded flows.
However, a first drawback of this closure is that it is not universal as the constant characterising
turbulent length scale is geometry and case dependent. Moreover, such models fail to characterise
more complex flows (e.g. not simply sheared or complex geometries). For both these reasons
algebraic closure is scarcely used.

First-Order Closures
A more currently used method consists in adding transported parameters characteristic of the
flow. The natural choice to consider an averaged velocity scale of turbulence is ut =

√
k. A

transport equation is then considered for the kinetic energy; however, a length scale is still
necessary. For this purpose, the reference choice is to take `t = Cµ k

3/2

ε . This results in the
Prandtl-Kolmogorov formula νt = Cµ k

2

ε where the two variables k and ε have to be transported.
Without considering thermal effects, following Jones and Launder [1972], the corresponding high
Reynolds incompressible transport equations are:

Dk

Dt
= ∂

∂xj

(
νt
σk

∂k

∂xj

)
︸ ︷︷ ︸

Dk

+ νtS
2︸ ︷︷ ︸

P

−ε, (1.163a)

Dε

Dt
= ∂

∂xj

(
νt
σε

∂ε

∂xj

)
︸ ︷︷ ︸

Dk

+ ε

k
Cε1νtS

2︸ ︷︷ ︸
Pε

−Cε2
ε2

k︸ ︷︷ ︸
εε

, (1.163b)

with the different constants appearing in this equation summed up in Table 1.2.

Cµ Cε1 Cε2 σk σε

0.09 1.442 1.92 1.0 1.3

Table 1.2: Standard k − ε constants from Launder and Spalding [1974].

Let us note that in the modelled TKE equation, Eq. (1.163a), the transport by fluctuations
of pressure Eq. (1.88) and the viscous diffusion Eq. (1.89) are neglected. Moreover, the
diffusion induced by velocity fluctuations Eq. (1.87) is modelled using a simple gradient diffusion
hypothesis (SGDH) which states for any fields Ψ:
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ukψ = − νt
σΨ

∂Ψ
∂xk

. (1.164)

Furthermore, let us notice that the dissipation rate equation is written in a way to mimic the
structure of the TKE equation with the turbulent frequency ω̂ = ε

k as a pre-factor in front of
the production and dissipation terms. Such an assumption remains relatively crude given the
complexity of the exact equation presented from Eq. (1.90) to Eq. (1.99). Yet, the modelling
of each correlation appearing in this equation would be too complex, cumbersome and costly to
parameterise. In addition, for the thermal effects, a SGDH hypothesis is made. Doing so we
obtain:

Dk

Dt
= ∂

∂xj

(
νt
σk

∂k

∂xj

)
︸ ︷︷ ︸

Dk

+ νtS
2︸ ︷︷ ︸

P

− gi
νt
σρ

∂ρ

∂xi︸ ︷︷ ︸
G

−ε, (1.165a)

Dε

Dt
= ∂

∂xj

(
νt
σε

∂ε

∂xj

)
︸ ︷︷ ︸

Dk

+Cε1
ε

k
νtS

2︸ ︷︷ ︸
Pε

−Cε3gi
ε

k

νt
σρ

∂ρ

∂xi︸ ︷︷ ︸
Gε

−Cε2
ε2

k︸ ︷︷ ︸
εε

, (1.165b)

which can be rewritten using the Boussinesq approximation as:

Dk

Dt
= ∂

∂xj

(
νt
σk

∂k

∂xj

)
︸ ︷︷ ︸

Dk

+ νtS
2︸ ︷︷ ︸

P

+gi
νt
Pr0

t

β0
∂Θ
∂xi︸ ︷︷ ︸

G

−ε, (1.166a)

Dε

Dt
= ∂

∂xj

(
νt
σε

∂ε

∂xj

)
︸ ︷︷ ︸

Dk

+Cε1
ε

k
νtS

2︸ ︷︷ ︸
Pε

+ Cε3gi
ε

k

νt
Pr0

t

β0
∂Θ
∂xi︸ ︷︷ ︸

Gε

−Cε2
ε2

k︸ ︷︷ ︸
εε

, (1.166b)

with Cε3 = Cε1, according to Lumley and Khajeh-Nouri [1975] and Pr0
t the turbulent Prandtl

number considered constant. The value of the latter varies with buoyant effects and its near
neutral value is in the range [0.6-0.9] (see Gibson and Launder [1978], Zilitinkevich et al. [2008],
Srinivasan and Papavassiliou [2011], Kitamura et al. [2013]). Yet this value depends on the
thermal evolution and even its near neutral value is still in debate and its determination is
an active field of research (see e.g. Li [2019]). The value of the set of constants in Table 1.2
was fitted on channel flows. Other sets of constants taking into account the low frequency
fluctuations of velocity occurring in atmospheric flow have been proposed e.g. by Panofsky
et al. [1977], Detering and Etling [1985], Duynkerke [1988]. These alternative sets of constants
are broadly used in the scope of atmospheric flows. Furthermore, numerous variants of the
k − ε model exist such as the model developed by Spalart and Allmaras [1992] with only one
transport equation for νt, the k−ω̂ model presented by Wilcox [1988] where the second variable
transported is the turbulent frequency ω̂ = ε

k , or the turbulent timescale k − τk model with
τk = k

ε proposed by Speziale et al. [1992]. EVM tends to propose a quite good description of first-
order moment when the fields are varying slowly enough but provide a quite poor description
of the second-order moments. Furthermore, they tend to fail to predict proper results in the
case of fast-varying flows where the assumption that the mean gradient and shear stress have
sufficient time to align with one another is not valid (see Lumley and Khajeh-Nouri [1975]).
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1.3.2.2 Second-Order Closures

A solution to improve the results especially in fast-varying fields is to transport explicitly the
second-order moment instead of considering them only as diffusive terms. This idea is put
forward by the fundamental work of Lumley and Khajeh-Nouri [1975] which states: "There
is thus an article of faith involved: if a crude assumption for second moments predicts first
moments adequately, perhaps a crude assumption for third moments will predict second moments
adequately". Even though these methods give a richer physical description and were often used
in theoretical atmospheric studies since the 70’s (see e.g. Wyngaard and Coté [1974], Wyngaard
et al. [1975], Wyngaard [1975], Launder [1975], Gibson and Launder [1978]); they are less used
from an engineering point of view. This relatively little use of second-order models is mainly
caused by two drawbacks. First the transport of 6 equations for the Reynolds tensor components
instead of one for the TKE plus potentially the transport of 3 equations for turbulent heat fluxes
instead of none trigger a significant increase of computation time. Furthermore, as the turbulence
is not treated as a diffusive term but as a transport one, these methods induce realisability issues
(i.e. the respect of the symmetric positive half-definite nature of the Reynolds tensor which is a
physical constraint for this covariance matrix highlighted by Schumann [1977], Lumley [1979]).
Moreover, for this reason, numerical stability and convergence issues should be tackled with even
greater attention (see e.g. Norddine et al. [2023], Ferrand et al. [2023]). The goal of the present
section is to describe the models used to close the transport equation of these second-order
moments presented in Paragraph 1.2.1.2.2.

1.3.2.2.1 Direct Reynolds Stress Modelling
First, let us focus on the dynamics; the approaches consisting in transporting explicitly the
Reynolds tensor are referred as Direct Reynolds Stress Modelling (DRSM). The terms indexed
with the superscript ‡ in Paragraph 1.2.1.2.2 have to be modelled. The modelling of diffusion
by fluctuation of pressure and velocity, but also the pressure-strain correlation, the dissipation
rate and the buoyancy, are discussed in this section.

Diffusion by Fluctuation of Pressure and Velocity
Often the diffusion by fluctuation of pressure is neglected compared to the diffusion by velocity
fluctuations. One can also consider that the modelling of the diffusion by pressure fluctuation
is encompassed in the modelling of the diffusion by velocity fluctuation which is numerically
speaking equivalent. The two most commonly used proposals will be presented here.

Shir: The first one is the Shir model (see Shir [1973]) which consists in applying a SGDH on
the term of diffusion by velocity gradient as:

Duij = −∂uiujuk
∂xk

' ∂

∂xk

(
CS
k2

ε

∂uiuj
∂xk

)
, (1.167)

with CS = 0.11. Note that this closure assumes an alignment between the gradient
of second-order gradient on the corresponding diffusion due to the SGDH hypothesis
made.

Daly-Harlow: The second one is the Daly-Harlow model (see Daly and Harlow [1970]) which consists
in applying a generalised gradient diffusion hypothesis (GGDH). It allows the gradient
and the higher order term to be non-aligned corresponding then to physically richer
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description. It is written as:

Duij = −∂uiujuk
∂xk

' ∂

∂xk

(
CDHuluk

k

ε

∂uiuj
∂xl

)
, (1.168)

with CDH ' 0.22

Let us note that both these models do not respect the symmetric nature of the third order
moment uiujuk. Other models are build to respect this constraint e.g. by Hanjalić and Launder
[1972] or Mellor and Herring [1973] in their analysis of DRSM methods, but are not considered
in this work. Indeed, as we are interested in the divergence of this third order tensor this issue
is of lesser importance. In this work, focusing mainly on simple sheared flows the Shir model
will be kept as it is numerically easier to treat and introduces less numerical errors.

Buoyancy Terms
Three kinds of closure can be easily used to close the buoyancy terms. We will assume that we
place ourselves in the scope of Boussinesq approximation using the potential temperature.

SGDH: The first closure is the simplest one. It is similar to the treatment done in k − ε and
consists in using a SGDH assumption on the turbulent heat fluxes.

Gij = 1
ρ

(
giujρ′ + gjuiρ′

)
' Cµ
Pr0

t

k2

ε
β0

(
gi
∂Θ
∂xj

+ gj
∂Θ
∂xi

)
(1.169)

GGDH: Similarly to the Daly-Harlow treatment for the diffusion, we can consider a generalised
gradient diffusion hypothesis as here the Reynolds tensor is transported:

Gij = 1
ρ

(
giujρ′ + gjuiρ′

)
' β0

3
2
Cµ
Pr0

t

k

ε

(
giujuk

∂Θ
∂xk

+ gjuiuk
∂Θ
∂xk

)
(1.170)

DFM: The third solution is to keep this term without modelling adding a transport equation
for the corresponding fluxes, this solution is referred as direct flux modelling (DFM).
Using the Boussinesq approximation on the potential temperature and transporting
explicitly the turbulent heat flux uθ, we have:

Gij = 1
ρ

(
giujρ′ + gjuiρ′

)
' −giβ0ujθ − gjβ0uiθ (1.171)

The transport equation of uθ having the same structure as Eq. (1.101), it is not closed.
Its closure is discussed later in Paragraph 1.3.2.2.2.

Pressure-Strain Correlation
A main issue in the treatment of DRSM approach is the modelling of the pressure-strain
correlation which plays a fundamental role in the redistribution of the kinetic energy among
the spatial direction. The modelling of the slow, rapid and buoyant terms in the pressure-strain
correlation will be presented. Limiting ourselves to the treatment of high Reynolds number
flows, we will consider that we are sufficiently far from the wall so that the effects of pressure
reflections on the latter are absorbed. The wall echo terms are then considered out of scope
of the present work (for more information see e.g. Gibson and Launder [1978], Dehoux et al.
[2011], Hanjalić and Launder [2022]).
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Rotta: The first proposition made by Rotta [1951] was to consider only the slow term in the
pressure-strain correlation as:

Πij = p

ρ

(
∂ui
∂xj

+ ∂uj
∂xi

)
' Πs

ij ' −CR
ε

k

(
uiuj −

2
3kδij

)
(1.172)

with CR = 4.15.

LRR-IP: A second broadly used method is the LRR-IP model (Launder-Reece-Rodi isotropisa-
tion of production) derived by Launder et al. [1975] by adding a modelling term for
the rapid pressure-strain correlation as an isotropisation of production term:

Πij = p

ρ

(
∂ui
∂xj

+ ∂uj
∂xi

)
' −CR

ε

k

(
uiuj −

2
3kδij

)
− CP

(
Pij −

2
3Pδij

)
(1.173)

with CR = 1.8 and CP = 0.6. As a part of the redistribution process is carried out by
the rapid term, the contribution of the slow one is diminished.

SSG: Finally, a more complex, non-linear and more commonly used model is the one
developed by Speziale, Sarkar and Gatski (see Speziale et al. [1991]). The latter one
is referred as SSG after the author names and is written as:

Πs ' −C1
ε

k
a+ C ′1

ε

k2 (a · a− 1
3tr(a2)I), (1.174)

where a is the dimensionless anisotropy tensor defined as:

aij = uiuj
k
− 2

3δij , (1.175)

and Πr is given by:

Πr '− C′2
1
k
Pa+ (C3 − C′3

√
tr(a2))kS

+C4(a · S + S · a− 2
3tr(a · S)I) + C5k(a · ω − ω · a),

(1.176)

where ω = grad(u) − S is the rotation tensor corresponding to the anti-symmetric
part of the velocity gradient. The standard constants of this model are represented in
Table 1.3.

C1 C′1 C′2 C3 C′3 C4 C5

1.7 -1.05 0.9 0.8 0.65 0.625 0.2

Table 1.3: SSG constants after Speziale et al. [1991].

Remark 1.3.3. Note that the effect of the Coriolis pseudo-force on the pressure-strain
correlation is not presented here as it will not be considered in this study. Yet it
is possible to take it into account by adding specific additional term in the slow
pressure-strain component (see e.g. [Hanjalić and Launder, 2022, Chapter 4.5]).

64



ΠG, : Quite similarly to the isotropisation by shear production of the LRR-IP model, Launder
[1975] proposed to write the thermal contribution of the pressure-strain correlation as
a term of isotropisation of the buoyancy:

ΠG,ij ' CG(Gij −
2
3G), (1.177)

where we consider CG = 0.55.

Dissipation
As discussed in Paragraph 1.2.1.2.1, the dissipation takes place in the lower scale of turbulence
where the turbulence may be considered isotropic without memory of the large-scale turbulence.
It is thus currently assumed that the dissipation term is isotropic:

εij = 2ν ∂ui
∂xk

∂uj
∂xk

' 2
3εδij (1.178)

where the dissipation rate has to be transported. Let us note that models with non-isotropic
dissipation do exist (see e.g.Rotta [1951]). This anisotropy is caused by the perturbation of the
energy cascade. Its effects are noticeable mostly in the close vicinity of obstacles in a region
where the Reynolds number can no longer be considered high enough for the viscous effects to be
neglected. Such situations are out of the scope of the present work and will not be considered.
The transport equation of the dissipation rate remains similar to the one used in the k−ε model.
However, as the production is explicitly described, νtS2 is replaced by P = 1

2tr(P) and gi νtσρ
∂ρ
∂xi

by G = 1
2tr(G) in coherence with the choice of closure made for G.

Potential Temperature Variance
In this equation, there is no redistribution term stemming from the pressure fluctuations as
pressure does not appear in the potential temperature equation. Only the diffusion term and
the dissipation term should be modelled. As previously, the former one can be modelled
either using a SGDH methods or a GGDH one using the same constant as for the Reynolds
tensor. Theoretically speaking, more physical information are provided by considering a
transport equation on the dissipation of potential temperature variance ε‡

θ2 as advised by for
example by Newman et al. [1981] or by Elghobashi and Launder [1983]. Yet, a commonly
used assumption coherent with Kolmogorov theory is to consider the thermal and dynamical
timescales proportional:

τk
τ
θ2
'
ε
θ2

θ2
k

ε
' 2CΘ, (1.179)

where CΘ is a constant which may vary from one scalar to another and may also be flow dependent
(see Rodi [2000], Hanjalić and Launder [2022]). The presence of a factor two will be justified
in Paragraph 1.3.3.2.3. The value considered for this constant will be further discussed in
Section 5.1.

1.3.2.2.2 Direct Flux Modelling
Similarly to the Reynolds tensor, some terms such as the diffusion, the scrambling and the
buoyancy terms have to be modelled. However, let us notice that for symmetry reason it is
possible to assume that the dissipation of this quantity is null, for high Reynolds number flows
(see discussion in Paragraph 1.2.1.2.2).
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Diffusion
As we consider only high Reynolds flows the diffusion by thermal diffusivity and viscosity will
be neglected. Here again, the diffusion by fluctuations of pressure can be neglected or modelled
with the diffusion by fluctuating velocity which is equivalent from a numerical point of view.
The latter one can be model either using a Shir model or a Daly-Harlow one:

Shir: It consists in using a SGDH of the diffusion as:

DΘi = −∂uiujθ
∂xj

' ∂

∂xj

(
CDθ

k2

ε

∂uiθ

∂xj

)
. (1.180)

with CDθ = 0.31.

Daly-Harlow: It consists in using a GGDH of the diffusion as:

DΘi = −∂uiujθ
∂xj

' ∂

∂xj

(
CDθ ujuk

k

ε

∂uiθ

∂xk

)
. (1.181)

with CDθ = 0.31.

As for the Reynolds tensor, in this work, the Shir model will be considered to limit numerical
error.

Production by Buoyancy
Using DFM models, it is current to transport also the variance of thermal quantities in our
case the variance of potential temperature. Thus, the production of turbulent heat fluxes by
buoyancy can simply be written under Boussinesq approximation as:

GΘi = gi
ρ
ρ′T′ ' gβ0θ2δiz, (1.182)

Scrambling
This term is quite similar to the pressure-correlation term and different models have been
developed:

Monin Similarly to the assumption made by Rotta for the Reynolds tensor, Monin proposed to
model the scrambling term considering only the slow term as:

ΠΘi = p

ρ

∂θ

∂xi
' Πs

Θi ' −Cθ1
ε

k
uiθ, (1.183)

with Cθ1 = 4.15. This value will be discussed in Paragraph 5.1.1.3.3 when considering a
Rotta-Monin modelling redistribution terms induced by the fluctuations of pressure.

Lin. model Launder [1975] proposed a modelling of the scrambling linear in the term appearing in the
turbulent flux equations. It can be written as term such as:

ΠΘi '− Cθ1
ε

k
uiθ − Cθ2PUΘi − C

′
θ2PΘ

Θi − Cθ3GΘi (1.184a)

'− Cθ1
ε

k
uiθ + Cθ2ujθ

∂Ui
∂xj

+ C′θ2uiuj
∂Θ
∂xj

+ Cθ3giβ0θ2. (1.184b)
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This approach is coherent with the LRR-IP modelling also linear in the terms appearing in
the Reynolds tensor equation. It results that together they correspond to a linear modelling
of the pressure induced redistributive terms referred in this work as LRR-L model whose
considered set of constants is provided in Table 1.4. Note that a priori C′θ2 should be null
as the pressure term does not appear explicitly in the temperature equation.

CR CP CG Cθ1 Cθ2 C′θ2 C′θ3 CΘ

1.8 0.6 0.55 4.15 0.55 0. 0.5 0.625

Table 1.4: LRR-L (LRR-IP/isotropisation of the scrambling terms) constants considered see
Saturne [2023].

Let us note that other models, for example non-linear ones, exist (see e.g. Kenjereš et al.
[2005]) but will not be considered in this study.

Remark 1.3.4. If one wants to go closer to the wall, it is necessary to use model valid for low
Reynolds number flows. In such models, it is necessary to take explicitly into account viscous
and wall echo effects. To treat the latter ones, it is then necessary to use elliptic blending
near the wall. The corresponding second-order methods are then referred as elliptic-blending
Reynolds-stress model (EB-RSM) for the Reynolds tensor and elliptic-blending direct fluxes
model (EB-DFM) which are out of the scope of the present work, interested reader may refer
to Pope [2000], Dehoux [2012], Hanjalić and Launder [2022].

1.3.3 Presentation of the PDF Approach

This section presents a brief background on Lagrangian stochastic methods or PDF methods
used to model turbulent flows. There is now a rather wide literature dedicated to presenting
the PDF approach both for single-phase (see Pope [1985, 2000], Haworth [2010]) as well as for
disperse two-phase flows (see Minier and Peirano [2001], Minier [2015, 2016]), so that only key
points are recalled below.
As indicated by their name, these methods correspond to a statistical description which aims
at modelling the PDF of a number of selected variables of interest for a given turbulent flow.
The philosophy of Lagrangian stochastic methods is to transport explicitly the slow varying
terms while considering a statistical treatment for the fast-varying processes treated as stochastic
terms. To determine which process are fast-varying ones, one can assert if the value of their auto-
correlation functions over the observation timescale is negligible. Using a Lagrangian formulation
to model and simulate such flows means that we are tracking the evolution of a large number
of numerical or notional stochastic particles in the computational domain. The instantaneous
variables attached to these particles make up the particle state vector and each particle can
then be seen as an independent realisation, or sample, of the corresponding PDF. We will first
briefly introduce some mathematical features associated to these methods in Section 1.3.3.1. The
modelling of turbulent flows using such methods is then presented in Section 1.3.3.2. Finally,
an overview of their numerical implementation is put forward in Section 1.3.3.3.
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1.3.3.1 Lagrangian Stochastic Mathematical Context

The present work aims at presenting salient mathematical elements necessary to understand
the notions raised when considering Lagrangian stochastic methods. So as to avoid being
mathematically too involved and to remain as brief as possible, no proof will be given to
the point presented and some definitions will not be rigorously given using a mathematical
formulation. The interested reader may refer to Arnold [1974] and to Øksendal [1995] for a
precise mathematical description or to Gardiner [1985], Öttinger [1996], Sabelfeld [2012] for a
more physics-oriented approach. Note that the points presented are present in the fundamental
work of Pope [1985].

Diffusion Process
We aim at modelling the evolution of particles which will depend partly on deterministic terms
and partly on stochastic terms stemming from the statistical treatment of fast-varying processes.
Such differential equations composed of a deterministic part and stochastic process, i.e., a
random variable evolving in time, are referred as stochastic differential equations (SDE). For
reasons discussed at length in several works such as Pope [1985, 2000], Minier and Peirano
[2001], Minier [2016], there are strong physical arguments, based on the Kolmogorov theory, to
suggest to model the time evolution of the particle state vector by a general stochastic diffusion.
As further addressed by Gardiner [1985] and Öttinger [1996], this means that the increments
of the state vector Z(t) composed of all the transported instantaneous quantities, over a small
time increments dt have the form:

dZ = A (Z(t), 〈F(Z(t))〉; t) dt︸ ︷︷ ︸
Deterministic Part

+B (Z(t), 〈G(Z(t))〉; t) dW︸ ︷︷ ︸
Stochastic Part

. (1.185)

The RHS of Eq. (1.185) involves two terms having different physical meanings. On the one hand,
the deterministic term in factor of the time increments is specified through the drift vector A
which governs the linear-in-dt evolution of the conditional mean increments of dZ. On the
other hand, the stochastic term in front of the independent Wiener process increments dW ,
which are presented hereafter, is specified through the diffusion matrix B which characterises
the linear-in-dt evolution of the conditional variances around these mean increments. In the
drift vector and the diffusion matrix, a possible dependence on mean fields extracted from the
PDF, manifested by the terms 〈F(Z(t))〉 and 〈G(Z(t))〉, is included, where 〈(.)〉 stands for the
averaging operator. This dependence makes Eq. (1.185) a stochastic diffusion process of the
McKean type (see Minier [2015, 2016]).

Remark 1.3.5. Note that although it is possible to develop methods in which instantaneous
quantities associated to a particle interact explicitly with instantaneous properties associated
to the surrounding particles, such methods are not considered here (see Minier [2016]). Indeed,
it would require a Kernel function to determine how each particle is interacting with one
another and would yield to a computation time in O(N2) where N is the number of particles.
In order to lower this numerical cost, it is assumed that the particles are "weakly interacting"
assuming a mean-field approximation. Particles do not interact directly with each other but
only through mean fields or ’potential’. In the conceptual limit where an infinite number
of particles is tackled or in the more numerically tractable limit where a large number of
particles is simulated, one can consider that the particle-to-particle interactions tend towards
zero. Thus, each particle is independent from one another. For more information on particle-
method implementations and their interactions with a mesh see e.g. Hockney [1966].

68



Wiener Process
In Eq. (1.185), independent Wiener processes increments are present to model the evolution
of the fast variable terms, which by definition are uncorrelated over the observation timescale
considered. We will present briefly such processes; more information may be found in Gardiner
[1985] or in Öttinger [1996]. The Wiener process belongs to the class of Markov processes which
are memoryless random variables often compared to the drunkard march processes. Indeed, the
next step or increment is independent of previous ones. Mathematically speaking this property
is defined for any Markov processM by:

P
(
Mn = Mn|Mn−1=Mn−1,...,M1=M1,M0=M0

)
= P (Mn = Mn|Mn−1=Mn−1) , (1.186)

with Mi the sample space value of the Markov process Mi at the time t = ti, P (Mn = Mn)
the probability for the Markov process M to have the value Mn at the time t = tn and
P
(
Mn = Mn|Mn−1=Mn−1,...,M1=M1,M0=M0

)
, the conditioned probability of M to have the

value Mn at the time t = tn knowing the previous values of M at any previous time ti. It
results from this property that the increments of Markov process δMn = Mn − Mn−1 are
independent of the previous states:

P
(
δMn = δMn|Mn−1=Mn−1,...,M1=M1,M0=M0

)
= P (δMn = δMn) . (1.187)

The Wiener process W is a Markov process with continuous trajectories and whose increments
dW over a small-time increment dt follow independent Gaussian centred distributions of variance
dt. It is selected to account for white-noise effects, as it is the only stochastic process with
independent Gaussian increments and continuous trajectories. Yet, although continuous, Wiener
process trajectories are highly erratic and even of infinite total variance in any interval (see
the illustration in Figure 1.16), implying that they are nowhere differentiable so the classical
integration rules cannot be applied. Yet, some useful properties may be considered:

1. Each increment is a Gaussian random variable: ∀p > 0 〈dWj(t)2p+1〉 = 0 for the odd
moments, 〈dWj(t)2〉 = dt and 〈dWj(t)2(p+1)〉 = o(dt), for the even moments.

2. Increments over small time steps are stationary and independent, 〈dWj(t)〉 = 0, ∀t, and
〈dWj(t)dWj(t′)〉 = 0, with t 6= t′,

3. Trajectories are of unbounded variation in every finite interval.
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Figure 1.16: Some realisations of a conditional Wiener process, starting from 0 at time t = 0.

69



Duality of Lagrangian Stochastic Methods and PDF Methods
Note that the Lagrangian stochastic methods are often also referred as probability density
functions (PDF) methods. For a stochastic process Z(t) the PDF p is defined as:

p(Z; t)dZ = P(Z ≤ Z(t) ≤Z + dZ), (1.188)

where Z is the sample space value of the stochastic process Z. There is a duality between the
resolution of Lagrangian stochastic methods and the resolution of the corresponding PDF. It
is, indeed, equivalent to resolve the diffusion processes associated to a large number of particles
and to resolve the differential equation for the corresponding probability density function pL:

∂pL
∂t

= − ∂

∂Zi

(
Ai(Z(t), 〈F(Z(t))〉; t) pL

)
+ 1

2
∂2

∂Zi∂Zj

(
D̃ij (Z(t), 〈G(Z(t))〉; t) pL

)
(1.189)

with D̃ij = BilBjl. In the case of the "trajectory point of view" where the particle trajectory is
followed, each one of these trajectories represents an independent realisation of the stochastic
process Eq. (1.185). Let us note that although the whole turbulence might be statistically
described and modelled, Lagrangian stochastic methods enable to have access to the whole PDF
and not only to some averaged moments. These methods are therefore physically richer than a
RANS point of view.
Using Lagrangian stochastic methods, and considering a weak convergence, i.e. we do not
consider single specific trajectories but only the statistics extracted from the set of particles, it
is in general useful to consider the fine-grained pdf p̃L:

p̃L(Z; t) =
NZ∏
i=0
δ̃(Zi(t)−Zi), (1.190)

with NZ the size of Z and δ̃(Zi(t)−Zi) the Dirac delta function which is non-null only on the
interval [0, dZi] and whose integral equals to one. The estimation of the PDF referred p

Np
L is

often obtained using a Monte-Carlo methods through an ensemble averaged on Np particles:

pL(Z; t) ' p
Np
L (Z; t) = 1

Np

Np∑
i=1

p̃
(i)
L (Z; t) = 1

Np

Np∑
i=1

NZ∏
j=1

δ̃
(
Z(i)
j (t)−Zj

) , (1.191)

with Np the number of particles used and Z(i)
j (t) the of the jth component of the stochastic

process associated to the particle number i. This result would be exact using an infinite number
of particles to estimate this PDF .

Relation between Eulerian and Lagrangian PDF
In the present PDF framework, we are basically handling a two-time one-particle Lagrangian
PDF (each particle is treated independently, and its next step depends only on the previous
one), from which a one-time one-point Eulerian PDF is derived, allowing moment equations to
be extracted in a straightforward manner (see Pope [2000], Minier and Peirano [2001], Minier
[2016]). This means that once a stochastic model is written, we obtain directly the corresponding
expressions of the discrete Lagrangian FNpL and resulting Eulerian FNpE mass density functions
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(MDF) through:

F
Np
L (Z ; t) =

Np∑
i=1

δm(i)p
(i)
L (Z; t) =

Np∑
i=1

δm(i)

NZ∏
j=0

δ̃(Z(i)
j (t)−Zj)

 , (1.192)

F
Np
E (Z ; t,x) = F

Np
L (t ; Y = x,Z \Y) , (1.193)

where δm are the particle mass, Yp is the sample space values corresponding to the random
variablesXp(t) andZ\Y is the sample space values corresponding to the random variables Z(t)
excluding Xp(t). It is then straightforward to derive the field values for the average 〈Ψ〉(t,x) of
any particle variable Ψ(t;Z),

α̃(t,x) ρ〈Ψ〉(t,x) =
ˆ

Ψ(Z; t)FNpE (Z \Y ; t,x) d (Z \Y) , (1.194)

where α̃(t,x) is the mean particle volumetric fraction defined through a proper probabilistic
normalisation constraint discussed in Minier and Peirano [2001] or in Peirano and Minier [2002].
In a numerical simulation, these theoretical expressions imply that, in a small volume around
a given location x, mean values are estimated as the ensemble averages over the Nx

p particles
present in that volume, or as Favre averages (or mass-weighted averages)

〈Ψ〉(t,x) '

N
x
p∑

i=1
δm(i)Ψ(Z(i)(t); t)

N
x
p∑

i=1
δm(i)

. (1.195)

Stochastic Integral Definition
Let us note that although using a "PDF point of view" it is possible to write the temporal
derivative, it should not be done using the "trajectory point of view". As we have seen the
stochastic process Z(t) is not differentiable as the Wiener process is nowhere differentiable. It
is true that sometimes the white noise function is defined as the time derivative of the Wiener
process, yet this definition is not rigorous and should be avoided. It results that the stochastic
equation should be written using an integrated formulation. A few words are in order to properly
define the nature of the integrals considered when resolving such SDEs. To that effect, we
consider a stochastic diffusion process for a particle state vector Z = (Zi) with the most general
form Eq. (1.185). This formulation of the SDE is actually a short-hand notation for the proper
mathematical expression, which is its integrated version:

Zi(t) = Zi(t0) +
ˆ t

t0
Ai
(
Z(s),F(s,Z(s)); s

)
ds︸ ︷︷ ︸

Deterministic integral

+
ˆ t

t0
Bij
(
Z(s),G(s,Z(s)); s

)
dWj(s)︸ ︷︷ ︸

Stochastic integral

.

(1.196)
On the first hand, the deterministic integral is defined in a classic Riemann sense, i.e using a
partition with sub-intervals [tk ; tk+1], for k = 1, . . . , N , of the interval [t0 ; t], it is defined as:

ˆ t

t0
Ai
(
Z(s),F(s,Z(s); s)

)
ds = lim

N→+∞

N∑
k=0
Ai
(
Z(τk),F(τk,Z(τk)); τk

)(
tk+1 − tk

)
(1.197)

whose results is independent of the value of τk ∈ [tk, tk+1].
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On the other hand, the second integration is performed with the stochastic variable and requires
a strict mathematical treatment. Indeed, the previous definition can no longer be applied for
the stochastic integrals due to the unbounded variation on all intervals. Thus, for the stochastic
integral, the result obtained depends on the value considered for τk. We will consider Itô
definition yielding to non-anticipating process taking τk = tk. Keeping the same partition as
previously, the integral is defined by:

ˆ t

t0
Bij
(
Z(s),G(s,Z(s)); s

)
dWs,j = ms- lim

N→∞

N∑
k=1
Bij

(
Z(tk),G(tk,Z(tk)); tk

) (
dWj(tk+1)− dWj(tk)

)
,

(1.198)
where the limit must be understood as a limit in the mean-square sense (since a convergence
trajectory by trajectory is not possible). The choice of this definition implies that the ordinary
rules of differential calculus are no longer respected. Indeed, due to the presence of a stochastic
term dW scaling as

√
t, using Itô calculus, it is necessary to expand the differential to the second-

order term. We have then for any smooth function Ψ(Z(t); t) (vector indexes and functional
dependencies are left out here, for the sake of keeping simple notations)

dΨ(Z(t); t) = ∂Ψ
∂t

(Z(t); t)dt+ ∂Ψ
∂Zi

(Z(t); t)dZi + 1
2

∂2Ψ
∂Zi∂Zj

(Z(t); t)D̃ij(Z(t); t)dt (1.199)

This necessity to introduce new differential rules is offset by the respect of two fundamental
properties. For any smooth-enough functions Φ and Ψ, zero mean property and the isometry
properties states that:
〈ˆ t

t0
Φ(Z(s))dW(s)

〉
= 0 ,〈(ˆ t2

t0
Φ(Z(u))dW(u)

)(ˆ t3

t1
Ψ(Z(v))dW(v)

)〉
=
´ t2
t1 〈Φ(Z(s))Ψ(Z(s))〉ds , t0 ≤ t1 ≤ t2 ≤ t3 .

(1.200)

A key consequence of the non-anticipation nature of the definition of the stochastic integrals is
that the mean conditional increment of the stochastic process Z in Eq. (1.185) over a small
time increment ∆t is governed only by the drift term, which means that we have

〈∆Zi |Z(t0) = Z0〉 ' Ai(Z0,F(t0,Z0), t0) ∆t . (1.201)

These relations play a central role in the development of the new algorithm in Chapter 2.
Remark 1.3.6. It is worth noticing that a second definition of the stochastic integral can be
found in the literature. It corresponds to the Stratonovich interpretation denoted by ◦ in
which the value τk corresponds to the middle point 0.5(tk + tk+1).

ˆ t

t0

Bij(Z(s); s)◦dWj(s) lim
N→+∞

n∑
i=0

1
2
(
Bij(Z(tk); tk) + Bij(Z(tk+1); tk+1)

)
(W(tk+1)−W(tk)).

(1.202)
The main advantage of this definition is that the ordinary differential rules hold, however, the
zero mean and isometry properties of Itô calculus Section 1.3.3.1 don’t. It is important to
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keep in mind that the behaviour of stochastic integrals depending on the definition considered,
the consistency of the model and the derivation of the numerical scheme used also depend on
this definition. As presented for example by Arnold [1974] and Øksendal [1995]), there is an
equivalence between the equation Eq. (1.203) written in the Stratonovich’s sense:

dZi = Aidt+ Bij ◦ dWj . (1.203)

and the following equation written in Itô’s sense:

dZi =
(
Ai +Bkj

∂Bij
∂zk

)
dt+ BijdWj . (1.204)

1.3.3.2 Turbulent Flow Modelling using Lagrangian Stochastic Methods

Now that we have briefly described mathematical properties associated to Lagrangian stochastic
methods, let us see how they can be applied on turbulent flows.

1.3.3.2.1 Presentation with Inertial Particles
Disperse turbulent two-phase flows involve discrete elements, or ‘particles’, transported by
turbulent fluid flows. For the sake of simplicity, we first focus on particle dynamics while
leaving out thermal effects, changes in the particle radius or mass, and particle collision effects.
We consider the particle-attached variables making up the particle state-vector Zp. Here, the
state vector is taken equal to Zp = (Xp,Up,U s), with Xp the particle position, Up its velocity
and U s the velocity of the fluid seen. The system of SDEs is

dXp,i = Up,i dt , (1.205a)

dUp,i =

Us,i − Up,iτp︸ ︷︷ ︸
Drag

+ ρp − ρ
ρp

gi︸ ︷︷ ︸
Gravity

+ ρ

2ρp
(dUs,i − dUp,i)︸ ︷︷ ︸
Added mass

+ ρ

ρp
dUs,i︸ ︷︷ ︸

Pressure

+ Fp,i︸︷︷︸
Other forces

 dt , (1.205b)

dUs,i = (stochastic model) . (1.205c)

In Eqs 1.205, the velocity of the fluid seen U s is defined as the instantaneous fluid velocity
sampled at the particle location, U s(t) = U(t,Xp(t)) where U(t,X) is the fluid velocity field.
Note that, for discrete particles in non-fully resolved turbulent flows, the velocity of the fluid seen
cannot be obtained from the reduced information available on the fluid velocity field (typically,
its first and second moments). This means that U s needs to be introduced as a separate
particle-attached variable (see comprehensive discussions in Minier and Peirano [2001], Minier
[2015, 2016]). On the right-hand side (RHS) of Eq. (1.205b) we have ρ and ρp respectively the
fluid and particle densities. It is seen that U s enters the expression of different forces while the
term Fp contains possible additional forces acting on discrete particles (such as electromagnetic
or Basset forces). The drag force is expressed in terms of the particle relaxation timescale τp,
defined as:

τp = ρp
ρ

4 dp
3CD|U s −Up |

, (1.206)

with dp the particle diameter and cD the drag coefficient. This timescale represents the typical
time over which particle velocities adjust to the local fluid velocity seen and is a measure of
particle inertia. In the Stokes regime, valid when Rep ≤ 1 (with Rep the particle Reynolds
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number defined by Rep = |U r | dp/ν, with U r = U s−Up ), the drag coefficient is cD = 24/Rep.
In that case, the particle relaxation timescale is given by the Stokes formula:

τp = ρp
ρ

d2
p

18νf
. (1.207)

For general values of Rep, the drag coefficient is obtained through empirical correlations such
as proposed by Clift et al. [2005] or by Brennen [2005]

cD =


24
Rep

[
1 + 0.15Re0.687

p

]
if Rep ≤ 1000,

0.44 if Rep ≥ 1000.
(1.208)

In the general case, two limit situations are often encountered when dealing with flows containing
physical particles. The first limit is the dense particle limit ρp � ρ which enables to consider
that the only forces acting on the particles are the drag and the gravity force. The second limit
case encountered is the fluid particle limit encountered when the inertial relaxation times τp
tends towards zero. In this case, the equation Eq. (1.205b) imposes U s = Up and one may
consider only one velocity associated to the particles. We will place ourselves in this limit case
for the following of this work.

Remark 1.3.7. Let us note that in the general case the external forces induce a mean drift
between the discrete particles and the fluid around them. This results in separation of
trajectories between fluid particles and discrete particles originally at the same location. This
trajectory splitting triggers a decorrelation between the velocity seen at the new position
of particles and the velocity of the fluid particles originated from the same point. This
phenomenon is referred as crossing-trajectory effects. Because of this effect, when considering
discrete particles, the modelling of the velocity seen differs from the modelling of fluid particles
and requires a specific extension. Such effects and the corresponding extension of modelling
are out of the scope of the present work, but the interested reader may refer to Pozorski and
Minier [1998], Minier and Peirano [2001], Minier et al. [2004, 2014], Minier [2015].

1.3.3.2.2 Modelling of the Instantaneous Quantities Associated to the Particles

Choice of the State Vector
From now on, we will focus on the treatment of fluid particles. Moreover, the scope selected in
this work is limited to high Reynolds number flows with an observation timescale δt which rely in
the inertial sub-range (τη � δt / TL). Such a choice enables to have a proper description of local
effects with a tractable cost for atmospheric flows. Because of the selected observation timescale,
the acceleration can be treated as being a fast-varying variable according to Kolmogorov theory.
Indeed, as discussed in Paragraph 1.2.1.2.1, the corresponding autocorrelation timescale is of
the order of the Kolmogorov timescale. Moreover, as the observation timescale is smaller or
of the same order than the velocity integral time, the latter will be treated as a stochastic
process. This choice of description where the velocity is explicitly considered and modelled
with a SDE corresponds to the Langevin point of view, first presented in the fundamental work
on dispersion of Langevin [1908]. As we consider Lagrangian methods with a Langevin point
of view, the particle state vector does include particle location and velocity as well as extra
variables Z ′ such as we have Z = (X,U ,Z ′). Note that the statistical weight of a particle
evolves with its mass and so the particle mass should be an explicit property associated to the
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state vector. However, in our case we will consider that all particles represent the same mass
and that the latter one remains constant over particles trajectories. It is then not necessary
to explicitly transport the particle mass and one can remove it from the particle state vector.
For now, we will add the potential temperature in the state vector (Z ′ = Θ) to present its
modelling. Note that Chapter 2 and Chapter 3 focusing on the dynamics, only the position and
velocity will be treated (Z ′ = ∅). In Chapter 4 a fictitious concentration is added in the state
vector Z ′ = C̃ to treat concentration variance. It will be modelled similarly to the potential
temperature considered in Chapter 5 to treat stability effects.

Remark 1.3.8. The selection of an observation timescale is a choice of the modeler. Methods
where it is close to Kolmogorov scale do exist (see e.g. Reynolds [2003, 2004], Innocenti et al.
[2020]). In this case the acceleration is not modelled as a fast-varying term but explicitly
treated as a stochastic process. At the contrary, in the case where we consider an observation
timescale great compared to the velocity timescale, it would be possible to treat the velocity
as a fast-varying term and the position would be treated explicitly using a diffusion process.
This corresponds to Einstein point of view named after its work on Brownian movement (see
Einstein [1905]) where he first proposed a random-walk model.

Modelling of the Langevin Process
Once the state vector is defined, a diffusion process is fully characterised by the selection of the
corresponding drift vector A and diffusion matrix B.

GLM For reasons exhaustively presented in numerous works (see Pope [1985], Haworth and
Pope [1986], Pope [1994b, 2000], Minier and Pozorski [1997], Minier and Peirano [2001]),
the instantaneous fluid velocity may be modelled using a Generalised Langevin Model
(GLM) as:

dUi = −1
ρ

∂〈P 〉
∂xi

dt+ (1− β0(Θ−Θ0))gidt+Gij (Uj − 〈Uj〉) dt+
√
C̃0εδij dWj , (1.209)

The RHS of Eq. (1.209) involves several mean field values, including the turbulent
dissipation rate ε, the GLM relaxation tensor G the diffusion function C̃0. Even though
the explicit dependency on the location has been removed for clarity issue, all these mean
fields are to be evaluated locally in the vicinity of the particle. Note that this model
is not closed as it requires to have a specification of the dissipation rate. Stand-alone
methods within which the dissipation rate or turbulent frequency is added to the state
vector and modelled with a stochastic process exist as studied by Pope [1985, 2000] but
are not considered here. From now on, let us assume that the dissipation rate is provided
by an external source. The first two RHS terms correspond respectively to the mean
pressure gradient effects and buoyant effects treated with a Boussinesq approximation and
are treated without further modelling. The two following terms encapsulate the choice of
a specific GLM model which is entirely defined by the selection of a given value for the
tensor G and the function C̃0. The latter may a priori depend on the Reynolds tensor, on
the dissipation rate and on the mean velocity gradient but not on the mean velocity itself.
Furthermore, C̃0 is a function which tends towards a constant C0 named the Kolmogorov
constant for isotropic and uniform flows. Indeed, the shape of the diffusion matrix is
derived in agreement with Kolmogorov [1941, 1962] theory, in order to retrieve the proper
Lagrangian structure functions Eq. (1.52) for isotropic uniform turbulence:

Dij(dt) = 〈(dUidUj〉 ' D̃ijdt = BikBjkdt = C0εδijdt (1.210)
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which is similar to the theoretical result presented in Eq. (1.54). The two modelled terms
of Eq. (1.209) have a zero average and aim at modelling the redistribution and dissipation
terms. As the trace of the redistribution term is null, we have:

Gik〈uiuk〉+ 3
2 C̃0ε = −ε. (1.211)

This equation stems from of transport equation of the second-order moments Eqs 1.221
associated to this model and presented hereafter. Decomposing the GLM tensor into its
isotropic relaxation time and its anisotropic part as G = −T−1

L 1 +G∗, we get:

− 2 k

TL
+G∗ik〈uiuk〉+ (1 + 3

2 C̃0)ε = 0. (1.212)

The respect of this relation enables to associate each GLM model to a consistent DRSM
model as explained by Pope [1994b].

SLM In the present work, the evolution of the particle velocity is modelled with the simplified
Langevin model (SLM) which, as indicated by its name, is the simplest formulation for
a model belonging in the GLM class. It consists of taking the anisotropic part of the
GLM tensor G∗ null and C̃0 constant. The value of the latter is taken to 3.5 to obtain
a proper production of TKE near the wall as proposed by Minier and Pozorski [1999].
In this model, it is assumed that the Lagrangian autocorrelation function RL evolves
exponentially as RL(s) = exp

(
− s
TL

)
, where the Lagrangian timescale modelling can be

derived from Eq. (1.212) as:

TL =
(

1
1
2 + 3

4C0

)
k

ε
= 1
CL

k

ε
, (1.213)

The instantaneous velocity equation is then expressed as:

dUi = −1
ρ

∂〈P 〉
∂xi

dt+ (1− β0(Θ−Θ0))gidt−
Ui − 〈Ui〉

TL
dt+

√
C0εδij dWj . (1.214)

The equation is the reference equation used throughout this work.

Remark 1.3.9. Note that a second approach is often used in atmospheric flow. The first
one presented here was mainly developed by Pope and its co-workers. In this approach,
the dynamics of the flow is explicitly resolved and simulated, based on physical modelling
of its evolution. The second approach is derived from the work of Sawford [1986] and
Thomson [1987]. It consists of transporting fluid particles on a flow whose statistics
are known a priori. The assumed behaviour of the carrier flow is directly implemented
in the drift vector and diffusion matrix. This second approach will not be used in the
present work.

IEM Similarly to the SLM description followed for the dynamics, the interaction between the
instantaneous properties will be treated using an interaction by exchange with the mean
(IEM) model, also referred as linear mean square estimation (LMSE) model, written as:

dΘ = −(Θ− 〈Θ〉)
τΘ

dt, (1.215)

with a thermal relaxation timescale τΘ = k
CΘε = CL

CΘTL. The latter is then modelled to be
proportional to the dynamical timescale in agreement with Kolmogorov theory and the
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treatment presented in the RANS approach (see Section 1.3.2). Moreover, in agreement
with Taylor [1922]’s proposal for the velocity, we consider that the turbulent diffusion is
high compared to the molecular one thus K

UL = 1
PrRe � 1 and then Pr � 1

Re which is
respected for high Reynolds number flows. The IEM model can be seen as a subclass
of the Langevin models proposed by Pope [1985] where a diffusion term may be present.
Numerous variants of these models have been proposed, e.g. by Cassiani et al. [2005] in the
context of pollutant dispersion, or by Van Dop [1993], Bisignano and Devenish [2015] in
the context of buoyant plumes. In the continuation of the work of Pope [1994b], Das and
Durbin [2005] presented a modelling of this quantity as well as the instantaneous velocity
which is consistent with a broader class of linear DRSM-DFM models. Let us note, that,
in order to fulfil the necessity for the scalar to remain bounded, Valiño and Dopazo [1991]
proposed a binomial Langevin model later on extended to the bounded Langevin model by
Pozorski et al. [2003a]. Further proposals and comparisons between models can be found in
the review article of Pozorski and Wacławczyk [2020]. For incompressible flows, methods
taking into account explicit modelling of instantaneous pressure and internal energy have
also been proposed (see Delarue and Pope [1997]).

Remark 1.3.10. Let us remark that the viscous effects are not explicitly present in the equations
presented which are valid uniquely for high-Reynolds number flows. Lagrangian stochastic
models developed for low-Reynolds number flows exist (see, e.g., Dreeben and Pope [1997a,
1998], Wacławczyk et al. [2004]) but will not be considered in this work. However, as models
valid only for high-Reynolds number flows are used on wall-bounded flows, a specific treatment
of the wall-boundary condition, presented in Paragraph 1.3.3.2.4, should be considered.

1.3.3.2.3 Averaged Equations derived from the Lagrangian Stochastic Modelling
It is common to observe first and second-order moments to characterise a flow. This description
although being physically less rich than the knowledge of the whole PDF, can easily be obtained
as a post-treatment of the particle trajectory using a Lagrangian stochastic approach. Now that
we have described the class of PDF model selected let us put forward the transport equations for
the moment deriving from this choice. We will consider, for this paragraph only, a general case
using the GLM model for the dynamics and the IEM model for the temperature. The system
of equations considered for the instantaneous quantities is:

dXi =Uidt, (1.216a)

dUi =
(
− 1
ρr

∂〈P 〉
∂xi

+ (1− β0(Θ−Θ0))gi +Gij(Uj − 〈Uj〉)
)

dt+
√
C̃0εdWi, (1.216b)

dΘ =− Θ− 〈Θ〉
τΘ

dt. (1.216c)

Remark 1.3.11. Let us keep in mind that in this work only the SLM-IEM model is used. The
corresponding set of equations is then:

dXi =Uidt, (1.217a)

dUi =
(
− 1
ρr

∂〈P 〉
∂xi

+ (1− β0(Θ−Θ0))gi −
Ui − 〈Ui〉

TL

)
dt+

√
C0εdWi, (1.217b)

dΘ =− Θ− 〈Θ〉
τΘ

dt. (1.217c)
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Deriving the corresponding averaged equations from the GLM ones is straightforward simply
by replacing Gij by −(TL)−1δij with TL defined in Eq. (1.213) and C̃0 by C0.

Remark 1.3.12. A great advantage of Lagrangian stochastic methods is that it is straight-
forward to add instantaneous local source terms SΨ in Eqs 1.216. The corresponding
instantaneous terms can be treated explicitly for each particle no matter how complex and
how non-linear they are. The estimation of the statistics being a post processing step we
can then easily derive the mean behaviour or this term 〈SΨ〉, which can be different from the
source term associated to the mean quantity S〈Ψ〉. The latter property is of great interest to
model non-linear source terms as commonly encountered in poly-dispersed flows (see Minier
and Peirano [2001], Minier et al. [2014]) or in reactive flows (see Pope [1985]). Indeed, the
mean chemistry may differ quite noticeably from the chemistry of the mean.

Mean Moment Equation
Let us first focus on the mean dynamics by averaging the instantaneous-velocity transport
equation Eq. (1.216b) as:

〈dUi〉 =
(
∂〈Ui〉
∂t

+ 〈Uk〉
∂〈Ui〉
∂xk

+ ∂〈ukui〉
∂xk

)
dt, (1.218a)

=
(
− 1
ρr

∂〈P 〉
∂xi

+ (1− β0(〈Θ〉 −Θ0))gi
)

dt. (1.218b)

Although this method differs from the RANS methods, it is clear that this equation is a high
Reynolds number averaged Navier–Stokes equations with a similar structure than Eq. (1.64).
Let us put emphasis on the fact that the instantaneous velocity being directly modelled, no
further model is required for all the transport terms such as the Reynolds tensor. Indeed, the
advection is treated exactly without further approximation.

Reynolds Tensor
Let us determine the transport equation for the Reynolds tensor. To this end, we need to
estimate the transport equation of the fluctuating velocity. To that effect, let us first estimate
the evolution of the averaged velocity:

d〈Ui〉 =
(
∂〈Ui〉
∂t

+ Uk
∂〈Ui〉
∂xk

)
dt, (1.219a)

= 〈dUi〉+
(
uk
∂〈Ui〉
∂xk

− ∂〈ukui〉
∂xk

)
dt, (1.219b)

=
(
− 1
ρr

∂〈P 〉
∂xi

+ (1− β0(〈Θ〉 −Θ0))gi + uk
∂〈Ui〉
∂xk

− ∂〈ukui〉
∂xk

)
dt. (1.219c)

Knowing the transport equation of instantaneous and averaged velocity, we can exhibit the
equation for the fluctuating velocity:

dui = dUi − d〈Ui〉, (1.220a)

=
(
−uk

∂〈Ui〉
∂xk

+ ∂〈ukui〉
∂xk

− β0θgi +Gik(Uk − 〈Uk〉)
)

dt+
√
C̃0εdWi. (1.220b)
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We can then obtain the equation governing the second-order moments of the velocity using Itô
calculus as:

〈duiuj〉 =
(
∂〈uiuj〉
∂t

+ 〈Uk〉
∂〈uiuj〉
∂xk

+ ∂〈ukuiuj〉
∂xk

)
dt, (1.221a)

= 〈uiduj〉+ 〈ujdui〉+ C̃0εδijdt, (1.221b)

=

−〈ujuk〉∂〈Ui〉∂xk
− 〈uiuk〉

∂〈Uj〉
∂xk︸ ︷︷ ︸

Production

−β(〈ujθ〉gi + 〈uiθ〉gj)︸ ︷︷ ︸
Buoyancy

+Gik〈ujuk〉+Gjk〈uiuk〉+ C̃0εδij︸ ︷︷ ︸
Dissipation and Redistribution

dt.

(1.221c)

Note that the transport term being treated explicitly, the diffusion of the second-order moment
by the fluctuations of velocity −∂〈ukuiuj〉

∂xk
does not require any further modelling. On the contrary

in the RANS approach a specific modelling is necessary for this term (e.g. a Shir or Daly-Harlow
model). This is a first slight lack of consistency between RANS and PDF approach. Yet, apart
from this issue each Lagrangian stochastic model is consistent with a given DRSM model which
respects the condition:

Gik〈ujuk〉+Gjk〈uiuk〉+ C̃0εδij = Πij − εij . (1.222)

Taking the trace of this relation the redistribution term disappears and the relation Eq. (1.211)
arises. This relation may be used to assert consistency with RANS models, e.g. it shows that
the SLM model is consistent with the Rotta model presented Eq. (1.172) only if their respective
constants satisfy:

CR = 1 + 3
2C0 = 2CL. (1.223)

Potential Temperature
In a similar manner, let us focus on the evolution of the potential temperature. First, averaging
the instantaneous potential temperature equation 1.216c we obtain:

〈dΘ〉 =
(
∂〈Θ〉
∂t

+ 〈Uk〉
∂〈Θ〉
∂xk

+ ∂〈ukθ〉
∂xk

)
dt = 0. (1.224)

We can then determine the equation followed by the average temperature as:

d〈Θ〉 =
(
∂〈Θ〉
∂t

+ Uk
∂〈Θ〉
∂xk

)
dt, (1.225a)

= 〈dΘ〉+
(
uk
∂〈Θ〉
∂xk

− ∂〈ukθ〉
∂xk

)
dt, (1.225b)

=
(
uk
∂〈Θ〉
∂xk

− ∂〈ukθ〉
∂xk

)
dt. (1.225c)

From these two equations, we can exhibit the transport equation for the fluctuations of potential
temperature:

dθ = −
(
θ

τΘ
+ uk

∂〈Θ〉
∂xk

− ∂〈ukθ〉
∂xk

)
dt. (1.226)
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Potential Temperature Variance
Based on the transport equation for the fluctuating potential temperature, it is possible to derive
the equation for the corresponding variance as:

〈dθ2〉 =
(
∂〈θ2〉
∂t

+ 〈Uk〉
∂〈θ2〉
∂xk

+ ∂〈uk θ2〉
∂xk

)
dt, (1.227a)

= 2〈θdθ〉, (1.227b)

=

−2〈ukθ〉
∂〈Θ〉
∂xk︸ ︷︷ ︸

Production

− 2〈θ
2〉
τΘ︸ ︷︷ ︸

Dissipation

dt. (1.227c)

The IEM model being based on the assumption of proportionality between dynamic and thermal
turbulent timescale, the form of the dissipation rate for the potential temperature variance is
coherent with the assumption presented in Paragraph 1.3.2.2.2 for RANS models. Furthermore,
the time scale appearing in the dissipation term of Eqs 1.227 being τ〈θ2〉 = τΘ

2 , it justifies the
presence of a factor 2 in Eq. (1.179).

Turbulent Heat Fluxes
Finally, having access to both fluctuating potential temperature and velocity equations, the
turbulent heat flux equation can be derived as:

〈duiθ〉 =
(
∂〈uiθ〉
∂t

+ 〈Uk〉
∂〈uiθ〉
∂xk

+ ∂〈ukuiθ〉
∂xk

)
dt, (1.228a)

= 〈uidθ〉+ 〈θdui〉, (1.228b)

=

−〈ukθ〉∂〈Ui〉∂xk
− 〈uiuk〉

∂〈Θ〉
∂xk︸ ︷︷ ︸

Production

−β0〈θ2〉gi︸ ︷︷ ︸
Buoyancy

+ 〈ukθ〉(Gik −
δik
τΘ

)︸ ︷︷ ︸
Scrambling and Dissipation

dt. (1.228c)

It is worth noticing that the physical process at stake in the transport of turbulent flux being
the same as the one impacting the Reynolds tensor and the thermal variance, the modelling of
these three equations should not be independent. In the case of Lagrangian stochastic model,
this dependency is straightforward as both the models on the dynamics and on the potential
temperature appear through respectively the presence of Gik and τΘ. Considering only the slow
redistribution term as assumed in the rest of this work, i.e. considering SLM/IEM modelling or
equivalently Rotta/Monin modelling a new timescale τuθ = 1

1
τL+ 1

τΘ
= 1
Cuθ

k
ε with Cuθ = CΘ + CL

arises. Different propositions have been made for CΘ or Cuθ (see e.g. Pope [1994b], Rodi [2000],
Dehoux et al. [2011]), and the value considered will be further discussed in Section 5.1. Thus,
the SLM-IEM model is coherent with the Rotta-Monin model provided that:

Cθ1 = CΘ + CL. (1.229)
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1.3.3.2.4 Wall-Boundary Conditions for Lagrangian Stochastic Methods
As the explicit treatment of molecular viscosity and diffusivity but also the wall echo terms
are neglected, we have described a modelling valid only for high-Reynolds-number flows.
Furthermore, we are interested in the description of parietal flows, the ground playing a major
role in atmospheric flows. Yet, in the close vicinity of the wall the high Reynolds number
assumption is not valid, and a specific treatment of this zone is necessary. Let us then take
a moment to put emphasis on the treatment of the wall-boundary condition (WBC) (further
information may be found in Dreeben and Pope [1997b] and Minier and Pozorski [1999].
To treat high-Reynolds-number parietal flows, the development of WBC in the spirit of the
wall-function approach is important. Indeed, even though some Lagrangian stochastic models
can simulate low-Reynolds-number flows (see e.g. Dreeben and Pope [1997a, 1998], Wacławczyk
et al. [2004]), the highly inhomogeneous and anisotropic variations occurring in the viscous sub-
layer require a costly refinement in this area and remain a challenging and time-consuming issue.
Therefore, similarly to the wall-function treatment used in moment approaches, the WBC for
particles aims at reproducing the behaviour of the turbulent SBL without considering explicitly
the presence of this viscous sub-layer.
In classical FV formulations, wall functions are applied for the different mean fields at the centre
of the first cell. The latter one must then be located within the fully turbulent SBL. In particle
methods, the information is made up by instantaneous variables (e.g. instantaneous velocities)
carried along particle trajectories whose location can be arbitrary close to the boundary of the
domain. Thus, the boundary surface considered for particles should also be in a zone where the
viscous effects can be neglected (i.e. above the UBL for atmospheric flows and in the logarithmic
zone for thermally neutral one). To fulfil this condition, the boundary condition is then applied
at a plane locally parallel to the physical wall but slightly shifted to a distance zpl, as shown
in Figure 1.17. The issue is to express what condition should be imposed on instantaneous
particle-attached variables to obtain the correct resulting statistics which are representative of
the physics of the high Reynolds number SBL.

ez

ex Wall z=0

Rebound
plane z=zpl

Uout U in

Figure 1.17: Illustration of the Lagrangian wall-boundary condition. The boundary condition is
applied at a rebound plane shifted from the wall by a distance zpl. For each particle crossing the
rebound plane and leaving the domain a particle is reflected with properties estimated to respect
statistical condition at the rebound plane (zero mean normal velocity, proper shear stress, ...).

Only fluid particles inside the domain, i.e. above the rebound plane on the scheme Figure 1.17,
are simulated. Thus, for each fluid particle leaving the domain with instantaneous properties
Zout, a reflected mirror particle is injected with the instantaneous properties Z in as represented
in Figure 1.17. In order to impose conditions on the statistics at the rebound plane 〈f(Z)〉pl (for
example non permeability of the wall, shear stress, scalar fluxes, ...), the instantaneous properties
of the particles injected are chosen based on the corresponding values for the outgoing particles
by considering requirements for the resulting fluxes at the rebound plane:
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〈f(Z)〉pl = 1
2
(
〈f(Z)〉in + 〈f(Z)〉out

)
. (1.230)

Wall-Boundary Condition Applied for the Dynamics
First, in the SBL near the wall, the mean velocity normal to the wall is null: 〈W 〉pl = 0.
This condition is necessary to ensure the non-permeability of the wall, thus avoiding spurious
accumulation or depletion of fluid particles and then fluid mass in its vicinity. This can
easily be respected by imposing this condition on each pair of leaving/entering particles. The
normal velocity of the injected particle W in is then the opposite of the normal velocity of the
corresponding outgoing particle W out:

W in = −W out , (1.231)

from which it follows that specular reflection is applied to the particle distance to the wall (here
the vertical coordinate Z):

Zin = 2Zpl − Zout . (1.232)

The condition on the streamwise velocity is less straightforward. Too often, a specular rebound
is imposed with no specific condition for this variable. If this choice respects the necessity to keep
the particles within the domain, it does not respect the physics considered. Indeed, this amounts
to imposing a zero-gradient condition in the streamwise direction. This is clearly at variance
with having a constant shear stress and with the physical exchange of momentum characteristic
of the SBL. With the purpose of conserving this exchange of momentum and the gaussianity of
the stochastic increments, Dreeben and Pope [1997b] and Minier and Pozorski [1999] proposed
to estimate the injected streamwise velocity U in as a linear function of Uout and W out:

U in = Uout + αW out. (1.233)

The value α is then determined so that the correct shear stress at the plane is retrieved. This
yields to:

α = −2〈uw〉(z
pl)

〈w2〉(zpl) . (1.234)

It is worth noting that a similar formulation is correct in the three directions replacing 〈uw〉
by R · n where n is the vector normal to the face. Thus, the general form of the boundary
condition imposed on the velocity is given in Eq. (1.235):

U in = U out − 2
R · n
Rnn

U out · n. (1.235)

This an-elastic rebound condition is considered as the reference one. It will be compared to the
elastic or specular rebound and validated on both smooth and coarse walls in Section 3.1.2.
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Remark 1.3.13. Let us highlight that rigorously speaking the statistics encountered in this
paragraph are surface statistics 〈(.)〉surf . The latter being conditioned on the crossing of a
given surface, they differ from the volumetric ones considered until now are conditioned only
by their location. Indeed, the particles crossing a surface are admittedly mainly particles in
the vicinity of this surface but also preferentially particles with a greater displacement in the
surface normal direction. As a result, the turbulent movements associated to the particles
crossing the surface are greater than the ones associated to the particle in the vicinity of
this surface and we have 〈w2〉surf (zpl) > 〈w2〉(zpl). Yet as proven by Minier and Pozorski
[1999], in the case of near Gaussian distribution of W we have 〈w2〉surf (zpl) = 2〈w2〉(zpl) and
〈uw〉surf (zpl) = 2〈uw〉(zpl) so that the results derived in this paragraph are valid considering
either surface or volumetric statistics. This remark is also valid for the scalar WBC presented
hereafter as for near Gaussian distribution of W we also have〈wψ〉surf (zpl) = 2〈wψ〉(zpl).

Wall-Boundary Condition Applied for the Transport of Scalar
Transporting other instantaneous physical quantities such as the potential temperature or a
pollutant concentration, it is also important to implement a proper boundary condition at the
wall to properly treat the fluxes near the wall. Indeed, in non-neutral situations, the heat fluxes
at the wall play a major role in the physics of the atmospheric surface boundary as further
discussed in Section 5.2.1. Furthermore, for a pollutant whose near ground flux is known (e.g.
due to known emissions or deposition rate) their proper representation is primordial to represent
the pollutant transport and dispersion. Let us take a quantity Φ and assume a known value of
the normal fluxes 〈wφ〉, Similarly to the velocity one can write:

Ψin = Ψout + αΨW
out. (1.236)

We have then:

〈wψ〉pl =1
2(〈wψ〉pl,in + 〈wφ〉pl,out),

=1
2〈(Ψ

out −Ψinwout)〉pl,out,

=− 1
2αΨ〈woutwout〉pl,out.

(1.237)

We can then determine αΨ as:

αΨ = −2〈wψ〉(z
pl)

〈w2〉(zpl) . (1.238)

Reinjecting the result Eq. (1.238) in Eq. (1.236) we get:

Φin = Φout − 2〈wφ〉(z
pl)

〈w2〉(zpl)W
out. (1.239)

This formulation was proposed for the real temperature by Pozorski et al. [2003b].

Remark 1.3.14. The an-elastic rebounds presented here are not necessarily limited to the
treatment of the WBC. Indeed, it should be used in the general case where a homogeneous
Neumann condition should be imposed on the normal fluxes. This is the case e.g. on the top
of the domain when simulating SBL flows to maintain these fluxes in the whole domain.
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1.3.3.3 Numerical Implementation of Particle Mesh Methods

Let us now focus on the numerical implementation of Lagrangian stochastic methods. To obtain
numerical solutions of the SDEs considered, three issues need to be addressed:

1) How do we calculate the mean fields at particle positions?

2) How do we integrate in time the SDEs?

3) How do we extract statistics from the ensemble of particles?

These three points are related to three sources of error: the first one corresponds to the spatial
discretisation error either due to an approximate expression of mean fields at particle locations
or to estimation of ensemble statistics on too coarse averaging bins; the second one corresponds
to the time error due to the integration scheme selected to update particle variables at discrete
times; while the third one to the statistical error which is inherent in Monte Carlo methods. In
a complete numerical formulation, these errors can impact each other and can even induce a
fourth one referred to as the bias error. However, for reasons set forth below, this bias error is
not present in the present context, and we can safely concentrate on the three ones mentioned
above. Although relatively few studies have been devoted to their numerical analysis, these
questions have been analysed in depth in at least two detailed investigations from Xu and Pope
[1999] and Peirano et al. [2006], to which readers are referred to for further details.
Different mesh-less methods have been proposed to extract the mean fields entering Eqs 1.217
directly from the particle dynamics by resorting to a local kernel estimation centred around
each particle position (see e.g. Hockney [1966]). However, particle-mesh methods also referred
as grid-based methods, using an auxiliary grid to compute such statistics, have been broadly used
for the great computational gain they enable. Note that, although not addressed in the present
work, the introduction of an underlying mesh in the particle solver is also useful to simulate
particle collision effects (see e.g. Schmidt and Rutland [2000], Sigurgeirsson et al. [2001]) when
considering inertial particles. In particle-mesh methods, an additional step is necessary to resolve
the first issue presented 1), as we first need to estimate the mean fields on the auxiliary grid.
The algorithm followed can then be decomposed into four numerical steps: the estimation of
the mean carrier fields on a mesh; the interpolation of these mean carrier fields from the mesh
to the particle locations; the temporal integration of the instantaneous quantities associated to
the particles; the estimation of the statistics extracted from the set of particles. The goal of
the present section is to present the operator followed for each step and the associated error. A
sketch of the overall formulation of the present hybrid method is shown in Figure 1.18 and is
used to introduce the key aspects of the numerical steps to be addressed in later sections.

1.3.3.3.1 Estimation of the Mean Moments of the Carrier Flow on a Mesh
When dealing with fluid particles, a first possibility is to extract the mean fields directly from
particle simulation. Such numerical formulations whether they are based on a mesh or not
are called PDF stand-alone formulations. One of their interests is that they are consistent by
construction while, on the other hand, the inherent statistical noise due to the use of a finite
number of particles can induce a deterministic bias error highlighted by Xu and Pope [1999]
and Peirano et al. [2006]. In the case where a stand-alone method is used with a particle-mesh
formulation this step corresponds to the same as the estimation of the statistics from the particle
set further discussed in Paragraph 1.3.3.3.4.
In the present work, we have chosen to adopt a hybrid formulation in which the fluid mean
carrier fields are computed by a classical Navier–Stokes code with a turbulence model (typically
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a mesh-based solver using finite-volume techniques, referred to as the FV solver). They are
then provided to the Lagrangian code (referred to as the particle solver) to be used in the
particle evolution equations, cf. Eqs 1.217. A first advantage for doing so is that these mean
fields are free from statistical noise (as they would be, should we use a stand-alone formulation),
thereby avoiding a potential source of numerical bias. Another interest is that, since such hybrid
formulations can be used to simulate disperse two-phase flows, we are resorting to a numerical
formulation whose range of application encompasses also inertial particles. In that sense, the
case of fluid particles considered in this work can still be regarded as the limit one (when
particle inertia goes to zero) of a more general situation. On the other hand, since Lagrangian
PDF models for fluid particles represent a turbulence model, we are dealing with a double
description of a given turbulent flow raising immediately a consistency issue. At the numerical
level, this implies that we have duplicate fields, where for example the mean velocity field is
predicted by the FV solver but also by the particle one when first-order statistics are extracted
from particle velocities. To prevent different predictions for the same physical quantity, it is
necessary to ensure that these duplicate fields are identical when they correspond to the same
physical variable. This consistency issue constitutes an important criterion to assess the validity
of the overall formulation and, more specifically, to evaluate the numerical errors related to how
particle statistics are simulated. In hybrid formulations, consistency at the discrete FV/particle
level can only be achieved if the continuous moment/PDF description of a turbulent flow is also
consistent. This point has been addressed in several works (see Pope [1994b, 2000], Chibbaro
and Minier [2011]) but is worth repeating. It is also important to recall that, once particle
velocities and potential temperatures are explicitly retained in the particle state vector as is the
case here, then the turbulence model corresponding to such a PDF description is a DRSM-DFM
type of model (for more details, see a specific discussion on this issue in Minier et al. [2014] or
in [Minier, 2016, section 10.3]). Building on the well-established relations between generalised
Langevin models and resulting second-order closures (interested reader are invited to refer to
Pope [1994b, 2000], Haworth [2010]), this means that, if we retain the SLM-IEM in Eqs 1.217,
a consistent hybrid formulation consists then in selecting a Rotta-Monin model in the moment
description with constants respecting Eq. (1.223) and Eq. (1.229).

Remark 1.3.15. Note that in this case the FV methods can be treated has an external solver
decoupled from the dynamics of the particles. Indeed, the latter one furnishes averaged
quantities necessary to the particle solver, but the dynamics of the particles has no effects
on the carrier fields. Such approaches are referred as one-way coupling. Considering inertial
particles, they are valid only in the limit of dilute regime. In the general case, they require
that the physics treated by the particle solver do not impact too much the carrier flow. Thus,
for example thermal source terms created by chemical reaction treated within the particle
solver should remain low. If the particle physics impacts noticeably the mean carrier flow, we
should consider a two-way coupling within which particle solver also furnishes source terms
representing the particle effects on the carrier flow to the FV solver (see e.g. Minier and
Peirano [2001], Minier [2015], Innocenti et al. [2021]).

1.3.3.3.2 Interpolation of the Averaged Carrier Fields at the Position of the
Particles
Since particles are distributed in the whole domain, they are generally not located at the positions
where the mean carrier fields are estimated. It results that an interpolation step is necessary to
determine the value of these mean fields at the particle locations. This introduces a deterministic
spatial discretisation error E∆x which depends on the mesh and on the specific interpolation
scheme used. This numerical error has been recognised very early in particle simulations and has
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been the object of many studies over the years (see e.g. Xu and Pope [1999], Jenny et al. [2001],
McDermott and Pope [2008], Viswanathan et al. [2011]). Note that this step requires to identify
(at least) the cells in which particles are located so that there is a close connection between the
interpolation step and particle tracking. When high-order interpolation schemes are developed,
they are usually based on the mean fields in the cell where each particle is contained but also the
mean fields in the neighbouring cells. However, for complex geometries or unstructured meshes,
estimating the position of a particle in a mesh and the relative distance to neighbouring cells is
a tedious and time-consuming task as highlighted by Löhner and Ambrosiano [1990]. For this
reason, the interpolation scheme used is local, i.e., based only on the mean fields associated to
the cell containing the particle. It is then possible to estimate the mean fields at the position
of the particle using a Taylor expansion around the centre of this cell. Let us write [Ψ]m(X)
the Pm (i.e. piece-wise polynomial) interpolation at the order m of a given quantity Ψ at the
location of the particle X based on the value at the centre of the corresponding cell Xc(X).
This Pm interpolation is defined as:

[Ψ]m(X) =
∑
|α|≤m

(∂αΨ)(Xc)(X −Xc)α
α! . (1.240)

In this equation the multi-index notation is used starting at α = 0. (X −Xc)m is the tensor
of position at the order m. Similarly, ∂mΨ is the tensor of derivation at the order m. It
corresponds to the value at the centre of the cell at the order 0, the gradient at the first order
and the Hessian matrix at the second order, etc. For quantities varying in the three directions
of space the number of derivative functions to compute increases quickly with the order of
interpolation. For this reason, the interpolation first retained is the simplest possibility: the P0
(i.e. piece-wise constant) interpolation. In the latter we assign the same cell-centred mean values
to all particles located within a cell. Such interpolation is coherent with the spirit of FV method
where we consider the mean fields uniform within each cell. Based on the hybrid formulation
followed, using this interpolation assumption and a SLM-IEM modelling, the particle equations
Eqs 1.217, can be expressed as:

dXi =Ui dt, (1.241a)

dUi =

−1
ρ

[
∂P

∂xi

]
0

(X(t); t) + (1− β0(Θ−Θ0))gi −
Ui −

[
Ui
]

0
(X(t); t)

[TL]0 (X(t); t)

 dt (1.241b)

+
√
C0 [ε]0 (X(t); t)dWi ,

dΘ =− Θ− [Θ]0(X(t); t)
[τΘ]0(X(t); t) dt. (1.241c)

where [.]0 stands for the P0 interpolation and will be omitted in the following for the sake of
clarity. While this implies discontinuous profiles of mean quantities when a particle moves across
an interface between two adjacent cells, this drawback is offset by the simplicity of the numerical
implementation and, in particular, by the fact that it remains valid and easy to apply even in
the case of unstructured meshes (sometimes made up by several overlapping meshes) in complex
geometries. The effects and errors introduced by such an interpolation on the dynamics of the
particles will be further studied in Section 3.2 for neutral flows and in Section 5.2.2 for thermally
stratified flows. Furthermore, considering finer interpolations methods would essentially be
beneficial if they can be applied in the different cells crossed by particles during one time step.
In that sense, the interpolation issue appears as complementary to the development of cell-to-cell
integration schemes which will be developed in Chapter 2.
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1.3.3.3.3 Temporal Integration of the Instantaneous Quantities Associated to the
Particles
Once the mean fields at the position of the particles are estimated, the variables entering the
particle state vector are updated by integrating their SDEs. In the present situation where
Z = (X,U ,Θ), this amounts to integrate Eqs 1.217 over the selected time step ∆t with a suitable
numerical scheme. This time-integration step introduces a deterministic temporal discretisation
error E∆t which depends on the details of the integration scheme as well as on the time step ∆t.
The time integration scheme used in this study is the exponential scheme proposed by Minier
et al. [2003b] and by Peirano et al. [2006]. Such a scheme is unconditionally stable, explicit, and
exact for uniform fields. Note that the latter condition enables to avoid introducing a temporal
error for the integration of a particle which remains within a cell when using a P0 interpolation.
Let us emphasise, that it enables to properly retrieve all asymptotic behaviours from fluid
particles (∆t� τp) to inertial ones in diffusive to inertial regime. However, an exception should
be highlighted. In the case where fluid particles are simulated in the diffusive regime (∆t ' TL)
with a spatially varying Lagrangian timescale, a deterministic error appears as pointed out by
Minier [2016]. Moreover, when the time step is large enough, particles can cross several cells
leading to an interplay between spatial and time discretisation errors as studied in Chapter 2.
This chapter focuses on the temporal integration scheme and the particle tracking algorithm
and a more in length description of the numerical scheme used for both these aspects is given
in Section 2.1.1.

1.3.3.3.4 Estimation of the Statistics Extracted from the Set of Particles
Once the particle-attached variables are updated, statistics can be extracted from the particle set
using local Monte Carlo estimations or, in other words, locally-applied ensemble averaging. As
mentioned above, in a hybrid formulation, particle statistics are not fed back into the governing
SDEs and have, therefore, no direct influence on particle dynamics. Thus, the interpolation
and averaging operators are here decoupled, and no further constraint appears. At the contrary
using stand-alone PDF models based on a particle-mesh formulations, the interpolation scheme
and how particle statistics are extracted appear as two adjoint operators (see Xu and Pope
[1999], Peirano et al. [2006]). This results in the necessity to have a scheme to estimate the
statistics of the same order or finer than the one used for the interpolation methods as presented
by Hockney and Eastwood [1988].
In the context of hybrid formulation, the statistics derived from the set of particles constitute,
nevertheless, the observables used to assess PDF models, since we are dealing with weak
approaches (whereby only statistics obtained on a representative number of particles are relevant
rather than individual particle properties). To extract these statistics, we consider a volumetric
partition of the computational domain and treat each small volume as an averaging bin. This
means that, once a number of particles are located in a given bin, these particles are regarded
as equivalent samples of the same PDF (somewhat loosely associated to the barycentre of this
small volume). Then, statistics of interest are derived by typical Monte Carlo estimations (or
ensemble averaging over the particles in this bin). In the more general case of inertial particles
or for specific applications, different statistical weights can be attached to particles, for example
their mass when simulating poly-disperse two-phase flows. In the present study, we are dealing
with fluid particles representing the same fixed amount of mass and all particles have therefore
the same statistical weight, by which we simply apply ensemble averaging for the Monte Carlo
estimations. It is important to be aware that this amounts to making a locally homogeneity
hypothesis since we assume that, in each averaging bin, we can replace the true probabilistic
expectation by spatial averaging over locally-present particles (see [Minier and Peirano, 2001,
sections 6.4.4 and 8.2.8]). The limits of these hypotheses will be further discussed in Section 3.3
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and in Section 5.2.3 respectively for neutral and thermally stratified flows. This averaging process
corresponds to the nearest-grid-point (NGP) method also referred as particle-in-cell (PIC), which
has the advantage of remaining local and robust even in complex partitions. This formulation
is coherent with the aforementioned interpolation scheme which is also local. Similarly to the
interpolation issue, higher-order methods, such as the cloud-in-cell methods which are linear
or piece-wise quadratic, exist but cannot be easily applied for complex geometries or meshes
(see Hockney [1966], Peirano et al. [2006]).
Also note that, for the definition of the volumetric partition used to extract statistics from
particles, it is not mandatory to use the mesh considered in the FV approach. This is however
a commonly made choice for three main practical reasons. First, it is more convenient to
handle only one mesh, which makes the numerical implementation simpler since particles have
to be tracked only in this mesh, thus limiting the computational cost. Second, a hypothesis
made in the estimation of FV statistics of the mean fields is that the flow within each cell is
statistically uniform. Then, when using P0 interpolation of these fields to obtain mean field
values at particle locations, it seems relevant to use the same volume elements in which these
mean fields are regarded as constant (though, this point will be revisited in Section 3.2). Third,
it is also practical to use same local volumes to monitor discrepancies between duplicated fields
and to furnish source-terms to the FV solver when two-way coupling is used. Unless otherwise
stated, only one division of the space is therefore considered in this study and the terms used
to refer to the division of the domain are mesh and cells. Furthermore, the term “ensemble
average” will refer in this study to the statistics derived from the particle set.
A few words on associated numerical errors are now in order. Since the number of particles
used to calculate statistics is finite, Monte Carlo methods introduce a zero mean statistical
error EN which depends on the number of particles in each bin. For statistically stationary
cases, we can then apply a time averaging method to reduce this statistical error (see Xu and
Pope [1999], Muradoglu et al. [1999]). This means that, after a given time necessary to reach a
statistically stationary state, the set of particles on which the statistics are extracted is increased
at each iteration by accumulating the samples. Thus, after accumulating the particles during
N it iterations, the total number of samples used for the estimation of statistics is Np×N it with
Np the number of particles. This source of error is well known and will not be treated in this
work. Finally, a non-zero averaged spatial error E∆̃x

can appear when computing the statistics
on coarse bins in which mean quantities are not uniform as discussed by Viswanathan et al.
[2011]. In our case, no smoothing step is applied, and the error is caused only by the spatial
variation of these mean fields in a cell, as highlighted in Section 3.3.
The different steps involved in a hybrid formulation are indicated in Figure 1.18. In this sketch,
two different types of averaging operators are used. On the left part, in the moment method,
the RANS averaged values are obtained on the cells making up the mesh and are noted (.). On
the right part, in the PDF method, the statistics are estimated using ensemble averaging noted
〈(.)〉 on averaging bins. If the cells and bins are identical, the duplicated fields corresponding
to the same physical quantities (mean velocity, Reynolds tensor) that are computed twice with
two different operators are then provided at the same points.
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Figure 1.18: Summary of different steps followed by the hybrid FV/PDF methods and numerical
methods considered at first (the interpolation scheme and the averaging methods are further
discussed respectively in Section 3.2 and in Section 3.3).

Remark 1.3.16. Note that although they are not considered in the present work, methods in
which stochastic particles are transported using LES fields exist. In this case, the stochastic
modelling does not aim at modelling the whole turbulence but only the sub-grid turbulence
and they provide access to the filtered-density-function (FDF). Such methods are referred as
hybrid LES/FDF methods and have a structure close to the RANS/PDF methods. Therefore,
a preponderant part of the information provided in this section remains somewhat pertinent
keeping in mind the difference between FDF and PDF. The interested reader may refer to
Minier [2015, 2016], Innocenti et al. [2016], Yang et al. [2021].
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This section is based on the published article of Balvet et al. [2023a] written in collaboration
with J.P. Minier, C. Henry, Y. Roustan and M. Ferrand. Its purpose is to improve the temporal
and the spatial accuracy of grid-based Lagrangian stochastic methods which is a major concern
should such methods be used in a safety context. To do so, a time-step-robust cell-to-cell
integration of particle trajectories in 3-D unstructured meshes is developed. The main idea is to
dynamically update the mean fields used in the time integration of the set of SDEs considered by
splitting, for each particle, the time step into sub-time steps, such that each of these sub-steps
corresponds to particle cell residence times. This reduces the spatial discretisation error as a loss
of accuracy can be observed when the mean fields, associated to a mesh, vary noticeably along the
trajectory of the particle over a time step. Given the stochastic nature of the models, a key aspect
is to derive estimations of the residence times that do not anticipate on the future of the Wiener
process. To that effect, the new algorithm relies on a virtual particle, attached to each stochastic
one, whose mean conditional behaviour provides free-of-statistical-bias predictions of residence
times in each cell. This new method is consistently incorporated in a hybrid moment/PDF
approach using an exponential integration scheme presented in Section 2.1.1.
This section is constructed as follows. First, the particle current integration-tracking algorithm,
enabling to determine the cell associated to the particle along its trajectory in a 3-D unstructured
mesh, is presented in Section 2.1. Then the new algorithm is presented in Section 2.2 and the
drawings used for the estimations of the stochastic integrals are studied in Section 2.2.2. A
particular attention is paid to ensure that the decomposition of each integration into multiple
sub-integrations using adaptive time steps does not induce any statistical bias in Section 2.2.2.2.
After this consistency checks, this new algorithm is validated on two representative test cases
in Section 2.3. The first test aims at asserting that no statistical bias is introduced in the
estimation of the stochastic integrals. To that effect, a point source dispersion in a statistically
uniform flow is carried out in Section 2.3.1. Then, in order to ensure that the mean carrier fields
at the particle locations are indeed properly dynamically updated, the particle dynamics in a
non-uniform rotating flow is studied in Section 2.3.2.2.

2.1 Current Numerical Scheme for Particle Transport

Contents
2.1.1 Time-Integration Scheme to Predict the Particle State Vector . . . . . . . 93
2.1.2 Trajectory Algorithm for Spatial Location . . . . . . . . . . . . . . . . . . 95

Let us first present the method used to predict the evolution of the fluid particle properties.
As the purpose of this work is to develop a time-splitting methods independently dividing the
integration time based on each particle trajectory, we will focus on the particle dynamics. The
state vector taken into account in this chapter is then simply constituted by the mean position
and velocity: Z = (X,U) and the corresponding set of SDEs is:

dXi =Ui dt, (2.1a)

dUi =
(
− Ui

[TL]0 (X(t); t) +

[Fi]0(X(t);t)︷ ︸︸ ︷[
Ui
]

0
(X(t); t)

[TL]0 (X(t); t) −
1
ρ

[
∂P

∂xi

]
0

(X(t); t)
)

dt (2.1b)

+
√
C0 [ε]0 (X(t); t)dWi ,
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where the specific deterministic forces are split between the relaxation term − Ui
TL

playing a
fundamental role in the development of the exponential temporal scheme used and the other
terms gathered in Fi which could include additional forces. The extension to additional
instantaneous quantities is straightforward and is set aside for the sake of clarity. Furthermore,
also for clarity reason, the explicit notation of the interpolation method considered and the
spatial and temporal dependencies will be set aside in the rest of the chapter. The presence of a
numerical temporal scheme typically introduces the notion of a time step ∆t for the integration
of the particle equations of motion and discrete approximations of Z at times tn = n∆t, noted
Zn. These discrete approximations Zn are obtained by successive updates (i.e., computing
Zn+1 from Zn), using an integrated form of the RHS of Eqs 2.1. In the frame of present hybrid
methods, the current algorithm involves a two-step process:

• A time-integration scheme, which allows to obtain Zn+1 from Zn using known values of
the mean fields at particle location entering the SDEs in Eqs 2.1;

• A trajectory algorithm, which determines the location of each particle in the spatial
domain. This second step is needed in hybrid FV/PDF approaches since we must know
in which cell each particle is with respect to the mesh defined for the computation of the
fluid phase. This information is necessary in order to update the values of the mean fields
at each particle location for the next step of the time-integration process.

In the following, we briefly recall the details of the current algorithm used for each step.

2.1.1 Time-Integration Scheme to Predict the Particle State Vector

The numerical scheme used to integrate the SDEs, cf. Eqs 2.1, has been described in Peirano
et al. [2006] and in Minier et al. [2003b], which provide comprehensive information on its
derivation and main characteristics (see, in particular, the complete description of the different
steps leading to its construction in Peirano et al. [2006]). Therefore, only the salient aspects are
recalled here along with the resulting formulation.

Requirements
The time-integration scheme has been developed according to the following guidelines (more
details can be found in Peirano et al. [2006] and in Minier et al. [2003b]):

• The numerical scheme is explicit (for simplicity reasons);

• The numerical scheme is unconditionally stable (this is of key interest when the time step
cannot be reduced, as in hybrid methods, to respect potential stability criteria);

• The numerical scheme corresponds to the exact solution when the mean fields and
timescales entering the modelled equations are constant;

• The numerical scheme should capture the correct physical behaviours in the limit cases
when the time step becomes much larger than the physical timescales Peirano et al. [2006].

The main reason behind these requirements is that the time step used in hybrid FV-PDF
formulations is generally the same for the fluid solver and for the particle solver. This is
mandatory for unsteady flows, where fluid and particle properties must be obtained at the
same time. Consequently, since the time step is usually imposed by the fluid solver (to properly
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compute the flow field on a given mesh), it cannot always be reduced/adapted for the particle
solver (as could be done in PDF stand-alone approaches). In complex flows in which mean fluid
velocities can drastically vary from one area to another one, this means that we do not control
the number of cells that are crossed by particles during a time step. Furthermore, when the
fluid timescales are also widely different, it is important to properly capture the diffusive limit
rather than limiting the time step for the whole particle set as further studied by Peirano et al.
[2006].

Chosen Scheme
The guiding principle underlying the present time-integration scheme is to express first the
integrated form of the SDEs (using an assumption of constant properties) which leads directly
to an exponential analytical form. In the general case, when mean fields and timescales are
not constant but vary in space and time, the idea is to use Euler-like schemes by freezing their
values at the beginning of the time step in the integrated form rather than in the SDEs (see a
detailed description in Peirano et al. [2006]). Thanks to the formulation with exponential factors,
unconditional stability is then automatically guaranteed. Although second-order schemes are
quite possible using the same approach (see Peirano et al. [2006]), we limit ourselves to a first-
order formulation in the following since our main concern is about the prediction of relevant
mean fields in such schemes. Consequently, the resulting discrete numerical scheme for fluid
particles writes:

Xn+1
i = Xn

i + Uni T
n
L

(
1− exp

(
−∆t
TnL

))
+ Fni TnL

(
∆t− TnL

(
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(
−∆t
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)))

+

√
C0εn(TnL )3

2

(
1− exp

(
−∆t
TnL

))2

√
1− exp

(
−2 ∆t

TnL

) ξUi +

√√√√√C0εn(TnL )2

(
∆t− 2TnL

1− exp
(
−∆t
TnL

)
1 + exp

(
−∆t
TnL
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︸ ︷︷ ︸
IXi (∆t)

,

(2.2a)

Un+1
i = Uni exp

(
−∆t
TnL

)
+ Fni TnL

(
1− exp

(
−∆t
TnL

))
+

√√√√C0εn
TnL
2

(
1− exp

(
−2∆t

TnL

))
ξUi︸ ︷︷ ︸

IUi (∆t)

.

(2.2b)

The two terms ξXi and ξUi correspond to independent random numbers sampled in a normalised
Gaussian distribution N (0, 1). As indicated in Eqs 2.2, these random numbers intervene in the
Choleski decomposition of the two correlated stochastic integrals, namely IUi (∆t) and IXi (∆t)
(see descriptions in Peirano et al. [2006]).
As displayed in Figure 2.1, the time-integration scheme predicts the particle state vector at the
next time step (Xn+1,Un+1) using information on its values at the beginning of the time step
(Xn,Un) and local fluid characteristics at the position Xn.
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•
{Xn, Un}

• {Xn+1, Un+1}

+ Knowledge of (TnL , εn, 〈P 〉
n, 〈U〉n)

Figure 2.1: Sketch illustrating the time-integration with the current numerical scheme: the
particle position Xn+1

i and velocity Un+1
i at the next iteration are computed using information

on the particle position and velocity at the previous iteration n as well as values of the fluid
characteristics at the position Xn

i .

Remark 2.1.1. Let us note that no additional scalar Ψ is considered here. Yet in coherence
with the exponential scheme developed for the dynamics, considering an IEM model for fluid
particles the resulting numerical scheme would write:

Ψn+1 = Ψn exp
(
−∆t
τ nΨ

)
+ Ψn

(
1− exp

(
−∆t
τ nΨ

))
. (2.3)

As no stochastic terms appear in the IEM model no stochastic draw appear in the previous
equation. However due to the transport of the particles by stochastic velocity leading to a
stochastic position this quantity Ψ would still be a random variable.

2.1.2 Trajectory Algorithm for Spatial Location

The time-integration scheme requires knowledge on the fluid mean fields at the particle position
at a given time (e.g., fluid velocity, turbulent dissipation rate), which are known on a given mesh.
As a result, the time-integration scheme has to be supplemented by a trajectory algorithm to
locate each particle and assign the corresponding cell.

Assumptions
The trajectory algorithm has to satisfy the following requirements:

• First, since we resort to a NGP approach, the trajectory algorithm is expected to provide
the cell in which each particle is located.

• Second, the trajectory algorithm has to be applicable in the case of generic 3-D
unstructured meshes, with cells being star-shaped around their centre. This choice is
motivated by the typical meshes used in the computation of the average flow-field.

• Third, the trajectory algorithm assumes a free-flight motion of particles during each time
step. This means that, during each time step, particles are moving in a straight line from
their initial position Xn

i to their final position Xn+1
i .

Chosen Algorithm
With respect to the previous requirements, we resort to an algorithm based on the successive
neighbour searches. Such tracking algorithms determine the new cell inside which a particle is
by using information only on its initial and final positions (see also Figure 2.2). The new cell
is then determined by searching intersections between the trajectory vector (joining the initial
and final position) and faces of the current cell. To do so, we rely on the algorithm proposed by
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Möller and Trumbore [1997] which has been developed to determine the intersections between
a vector and triangular sub-faces. This process is then repeated to check if the final position is
in the new cell or if another face is crossed by the trajectory vector. The details and validation
of this tracking algorithm are provided in Appendix 2.B.
Such tracking algorithms have been retained since they have been shown to be efficient for
unstructured meshes (e.g., for Finite Difference approaches in Löhner and Ambrosiano [1990] or
for Finite Volume approaches in Muradoglu and Pope [2002], Subramaniam and Haworth [2000]).
Moreover, in the case of unstructured meshes, these tracking algorithms are more adequate than
simple locating algorithms (which determine the location only using the information on the final
position).
At this point, it is worth mentioning that additional conditions can be taken into account for each
of the faces that are crossed during the tracking algorithm. In particular, when the crossed face
corresponds to a physical boundary, specific boundary conditions can be added: for instance,
particles can be removed from the simulation when reaching outlet boundaries while boundary
conditions can be applied to wall surfaces (interested readers are referred to Dreeben and Pope
[1997b], Minier and Pozorski [1999], Bahlali et al. [2020]). Similarly, specific conditions can be
added to properly treat periodicity by translation and/or periodicity by rotation.

•{Xn, Un}
•

{Xn+1, Un+1}

Cell i→

 Tn
L , εn

〈P 〉n, 〈U〉n


Cell j

for time interval n to n+ 1 do
Integrate Xn+1

Draw vector δX = Xn+1 −Xn

do
Determine if δX leaves the cell

through a face
Update the current cell

while A face is crossed
Track the final integrated position

end for

Figure 2.2: Current trajectory algorithm used after a single integration for the whole time step:
the cell in which the particle resides at the end of the time step is tracked using a successive
neighbour search algorithm.

2.2 A new Algorithm based on Cell-to-Cell Integration

Contents
2.2.1 Leading Principle: a Cell-to-Cell Integration for Large Time Steps . . . . 97
2.2.2 Non-Anticipating Estimations of Intermediate Time Steps Using Virtual

Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.2.2.1 Overview of the New Algorithm . . . . . . . . . . . . . . . . . . 99
2.2.2.2 Consistency Analysis of the Time Step Decomposition . . . . . . 103

In the context of present hybrid FV/PDF approaches, the P0-interpolation (or piece-wise uniform
interpolation) assumption for mean-field values means that the exponential scheme described in
Section 2.1 is not only stable but provides an exact solution for the particle state vector as long
as particles remain in the same cell they started from during the whole time step. However, in
such hybrid formulations, the time step is often imposed by the mean fluid flow computation
and cannot always be reduced so as to respect this criterion. This is especially encountered in
disperse two-phase flow simulations with discrete particles having inertia that can range over
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several orders of magnitude, as indicated above. In the present work, we limit ourselves to fluid
particles, but this general picture is an indication that we are faced with a situation where,
during a given time step, a particle can cross several cells. The inherent assumption made in
Euler schemes, and therefore also in the present exponential one, retains only mean-field values
and timescales evaluated at the beginning of the time step, that is at the initial particle location.
In non-uniform flows, with potential variations of mean flow field quantities, this implies that a
spatial discretisation error is introduced, as illustrated in Figure 2.3.

+
〈U〉Cell i

+
〈U〉Cell j

+
〈U〉Cell k•{Xn, Un}

•{Xn+1, Un+1}

Cell i Cell j Cell k

Figure 2.3: Sketch illustrating the issue with the current numerical scheme over large time steps
in non-uniform flows: the particle can cross many cells in a single time step, meaning that the
fluid characteristics (including velocities) in the intermediate cells are not taken into account in
its trajectory.

Objectives
The aim of this chapter is to develop a new algorithm that remains accurate even for non-
uniform flows in the case of large time steps when particles can cross several cells. For
that purpose, we extend the numerical scheme described in Section 2.1 while keeping similar
assumptions/requirements:

a) it should be explicit;

b) it should be unconditionally stable with respect to the time step;

c) it should be exact for constant flow mean fields (and thus within a given cell in line with
the P0 interpolation);

d) it should take into account spatial variations of flow mean fields encountered over large
time steps.

2.2.1 Leading Principle: a Cell-to-Cell Integration for Large Time Steps

Principle
To improve the numerical accuracy in non-uniform flows and in the case of large time steps, the
idea is to extend the present exponential scheme with a cell-to-cell integration. As illustrated in
Figure 2.4, the leading principle consists in splitting the time step in several sub-iterations: the
integration is stopped every time the particle exits a cell, such that each sub-iteration indexed
by the superscript [m] corresponds to the motion of the particle within one cell. By doing so, it
is straightforward to account for the change of flow characteristics every time a particle enters a
new cell. Since we need to detect whenever a particle crosses an interface between two adjacent
cells, the following two steps are applied for each sub-iteration: (1) a time-integration scheme
and (2) a trajectory algorithm. When the time step is small enough for a particle to remain
inside the same cell during a whole time step, the new scheme is the same as the one previously
described.
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•
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for time interval n to n+ 1 do
do

Get relative intersection time
η[m+1]

Integrate until the face
Update cell and remaining time
Increment sub-iteration m

while A face is crossed
end for

Figure 2.4: Sketch illustrating the principle of a cell-to-cell integration for large time steps and
the corresponding algorithm.

Additional Points
Compared to the two-step process described in Section 2.1, the new cell-to-cell integration brings
out two additional questions:

• When does a particle exit a cell?

• Where does a particle exit a cell?

This means that the trajectory algorithm has to be modified since it only provides information
on the new cell (simple tracking). The new trajectory algorithm should provide information on
the exit time tout and exit location Xout. These two additional pieces of information are indeed
required to compute the motion of the particle during the remaining part of the time step. In
fact, as displayed in Figure 2.4, the motion of the particle after crossing the face is given by
a time-integration scheme starting at Xout over the remaining time ∆t − tout. In that sense,
the present algorithm draws on the cell-to-cell integration proposed by Popov et al. [2008] while
extending it to respect the non-anticipating requirement for stochastic integrals in the Itô sense
(this is discussed in the next paragraph).

The Key Issue of Non-Anticipating Estimations
Implementing the principle of the cell-to-cell algorithm may seem straightforward. A naive
formulation would indeed consider that, starting from a particle positionXn at time tn, we apply
the exponential scheme, cf. Eqs 2.2, to predict Xn+1 at time tn+1 and, then, use the trajectory
algorithm to determine Xout and the exit time of that cell tout (see the top figure in Figure 2.4).
However, whatever the geometrical method used to determine these quantities, it is clear that
the resulting time tout will depend on the random numbers ξ which, in Eqs 2.2, represent the
normalised increments of the Wiener process in the stochastic model, cf. Eqs 1.217. When
combining the different diffusion coefficients obtained from each sub-iteration (for instance,
the three sub-iterations depicted in Figure 2.4), the resulting diffusion coefficient will then be a
function of the future of the Wiener process since the random numbers ξ stand for the normalised
values of Wn+1 −Wn. In other words, the misleadingly simple approach will yield diffusion
coefficients that anticipate on the future of the Wiener process. This is in direct violation of
the very definition of the stochastic integrals in the Itô sense, thereby inducing spurious overall
drift and diffusion numerical values (see a similar analysis in Minier et al. [2003a]).
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Assumptions
Drawing on the aforementioned analysis, the new numerical scheme is designed so as to respect
the following additional assumptions/constraints:

i) It should respect the non-anticipation rule with respect to the Wiener process;

ii) The trajectory algorithm is based on a neighbour search;

iii) The trajectory algorithm considers free-flight motion of particles within each sub-iteration.

2.2.2 Non-Anticipating Estimations of Intermediate Time Steps Using Vir-
tual Partners

To obtain an estimate of the fraction of time spent by a particle in a given cell that remains
independent of the future of the Wiener process entering the stochastic terms, a virtual partner
is associated to each particle within each time step of the computation. This means that at the
beginning of each time step t = tn, this virtual partner starts from the same location as the
real particle which is considered but moves in a deterministic manner (to be precised below)
based only on the particle variables at time tn and local mean-field values. The fraction of
time spent by this virtual partner in the corresponding cell is therefore, by construction, free of
any statistical dependence with the Wiener process driving the random terms and provides an
estimate for the time spent by the real particle within that cell.
In the following, details about the algorithm are first provided in Section 2.2.2.1. The consistence
of this algorithm with the current integration scheme is then demonstrated in Section 2.2.2.2.

2.2.2.1 Overview of the New Algorithm

As indicated, the new algorithm is based on a cell-to-cell integration for large time steps. This
implies that each time iteration is split in a series of sub-iterations, each one corresponding
to the motion of a particle in a given cell. As a result, the algorithm combines a number of
successive time-integration and trajectory steps. During each time step, the virtual partners are
used in the trajectory steps to determine the cell in which the particle is as well as to estimate
the exit time and location.
In practice, the algorithm is composed of the following steps, which are depicted in Figure 2.5:

step-1 Based on the particle initial location X [0] and the knowledge of the fluid mean fields in
that cell, a deterministic estimation of the particle position at the end of the time step
∆t, noted X̂ [1], is made. Note that the superscript [m] means that it corresponds to the
sub-iteration number m within the cell-to-cell integration. This is achieved by forcing the
stochastic integrals to zero in the exponential time-integration scheme, which gives the
following equation for X̂ [1]:

X̂
[1] = X [0] +U [0]T

[0]
L

(
1− exp

(
− ∆t
T

[0]
L

))
+ F [0]

i T
[0]
L

(
∆t− T [0]

L

(
1− exp

(
− ∆t
T

[0]
L

)))
.

(2.4)
It is important to note that X̂ [1] corresponds to the mean conditional particle location
at time ∆t conditioned on the fact that its initial location is X [0], that is X̂ [1] =
〈X(∆t) |X(0) = X [0]〉. Therefore, if we release a number of particles at X [0] at time
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t = 0, X̂ [1] represents the position of the centre of mass of the released cloud at time
t = ∆t.

step-2 Then, the trajectory algorithm based on a free-flight assumption is applied to determine
if the particle leaves/remains in the cell. To avoid any anticipation issue, the trajectory
algorithm is applied on the virtual partner and not on the real particle. The motion of
the virtual partner is assumed to follow a straight line between the first location of the
virtual partner (initialised at the particle position X̃ [0] = X [0]) and X̂ [1]. The trajectory
algorithm is detailed in Appendix 2.B. Its outcome allows to distinguish between two cases:

step-2a The virtual partner leaves the cell. In that case, the trajectory algorithm provides
information on the face through which the virtual particle exits the cell but also on
the exit time η[1]∆t (see the extension of the trajectory algorithm in Appendix 2.B).
Thanks to the free-flight assumption, the exit location of this virtual partner, X̃1,
is derived directly from the exit time. This case will activate a next sub-iteration to
compute the motion of the particle during the remaining time (see Step-3a).

step-2b The virtual partner remains in the cell. In that case, η[1] = 1, and the position of
the virtual partner at the end of the time step is equal to the first estimated position
X̃

[1] = X̂
[1]. This case will not activate a new sub-iteration and the cell-to-cell

integration will be stopped (see Step-3b).

step-3 The position X [1] and velocity U [1] of the particle at the end of this sub-iteration are then
computed using the full time-integration scheme, i.e., including the stochastic integrals
(see Eqs 2.2). The only issue is to determine the amount of time that the particle has
spent in the cell. From step-2, there are two possibilities:

step-3a If the virtual partner exits the cell (step-2a), the elapsed time retained for the
prediction of (X [1], U [1]) is taken as being equal to the fraction of time computed for
the virtual partner η[1]∆t.
Then, we have to pursue the computation of the particle motion during the remaining
time ∆t[1] = (1 − η[1])∆t. In the spirit of this cell-to-cell algorithm, this is achieved
by repeating the previous three steps and updating the information required at each
step (see sub-iterations 2 and 3 in Figure 2.5). In step-1 of the second sub-iteration,
the mean conditional particle position X̂ [2] at the end of the new time step ∆t[1]

is estimated starting from the particle position X [1] and particle velocity U [1]. The
mean fields required to estimate X̂ [2] are now (TL(t, X̃ [1]), Fi(t, X̃

[1])) taken in the
cell in which the virtual partner is. Afterward, step-2 is applied to compute the
trajectory of the virtual partner, assuming that it starts at the last exit location X̃ [1]

and moves towards the estimated mean conditional position X̂ [2]. It is worth noting
that the starting position is taken as the last exit location so that the trajectory of
the virtual partner remains continuous. Subsequently, from the estimation of η[2]

obtained in step-2, the position X [2] and velocity U [2] are computed in step-3 of this
second sub-iteration.
This three-step process is actually repeated until the virtual partner reaches a cell in
which it remains for the whole remaining time step ∆t[m] (recall that the superscript
[m] corresponds to the sub-iteration number m).

step-3b If the virtual particle remains in the cell (step-2b), the elapsed time is actually equal
to the remaining time step ∆t[m] (i.e. η[m] = 1). The position of the virtual partner
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is equal to the last estimated position made in step-1 X̃ [m] = X̂
[m]. In that case, the

cell-to-cell iterative integration is stopped.
Final step When the virtual partner finally reaches a cell in which it remains for the remaining

time, we obtain the particle position at the end of the whole time step X(t + ∆t).
Yet, as can be seen in Figure 2.5, the particle might end up in a different cell than the
virtual partner due to the stochastic terms. For that reason, we apply a last trajectory
algorithm: we track the change of cell from the virtual partner last position X̃ [m] to
the particle position X(t+ ∆t). This last trajectory step ensures that the particle is
associated to the correct cell inside which it resides at the end of the time step. This
ensures that no error on the location is introduced for the next time step.

A few comments are in order. At first sight, it could be argued that the difference between
the position of the virtual partner X̃ [m] and the position of the particle X(t + ∆t) at the
last sub-iteration points to an error in the algorithm. However, it should be recalled that
this difference is due to the stochastic terms that are taken into account when computing the
particle position but not in the position of the virtual partner (which is fully deterministic).
At this stage, it is worth emphasising that, within each time step of the computation, the
role of the virtual partner is essentially to provide information on the time spent in each cell
and to determine the neighbouring cells that a particle can cross during the time step, while
ensuring that the anticipation issue is avoided. This further supports the choice of a tracking
algorithm based on successive neighbour searches (see Section 2.1.2), since it naturally provides
information on the successive cells crossed by a particle during a time step (contrary to simple
localisation algorithms). At each sub-iteration of the algorithm, the increments of this virtual
partner represent the mean conditional displacement and, in that sense, remain coherent with
the underlying physical process modelled. Each virtual partner is therefore an auxiliary in the
calculation of the (true) particle motion. Furthermore, we are basically interested in developing
weak approximations, which means capturing particle dynamics in a statistical sense. As a
result, what really matters is to obtain accurate estimations of statistics extracted from particle
dynamics through Monte Carlo methods (e.g., average concentration, mean velocity), that is
from an ensemble of particles. In other words, improvements in the prediction of individual
particle variables (location as well as velocity) should always be assessed in a statistical sense.
For that purpose, we now turn our attention to the resulting behaviour of such particle statistics
in the rest of this work.
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(c) Integrate X [m+1] from X [m] using the exit time η[m+1]∆t[m] and random numbers
(ξZ)[m+1]

(d) Update cell, flow fields and remaining time ∆t[m+1] = (1− η[m+1])∆t[m]

Increment the sub-iteration m
while (A face is crossed)
Track the final integrated position

end for

Figure 2.5: Summary of the proposed algorithm.
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2.2.2.2 Consistency Analysis of the Time Step Decomposition

Before considering proper validation test cases in Section 2.3, it is important to check that the
new algorithm meets the criterion (c) set forth at the beginning of Section 2.2.

Verification Procedure
To that effect, we consider a situation where all mean fields and timescales are constant. In that
case, we already know that the current numerical scheme, cf. Eqs 2.2 in which TL, Fi and ε are
now constant, provides the exact solution in the weak sense. We then consider the new algorithm
and assume that one sub-iteration has taken place (the extension to several sub-iterations being
immediate) at a time η∆t, implying that the particle state vector Zn+1 is now obtained from
Zn as the sum of two iterations (one over η∆t and one over (1 − η)∆t). The issue is then to
check that, still in the weak sense, both predictions are identical.
In the following, we leave out the direction index i since this is basically a 1D formulation.
Starting from a given particle state vector value Zn at time tn, predictions obtained in one
iteration (i.e., the current algorithm) are indicated by the index {1}, while those obtained with
two sub-iterations (i.e., the new algorithm) are indicated by the index {2}.
Predictions in one iteration are expressed directly by Eqs 2.2, which are rewritten here as:

(Xn+1){1} = Xn + UnTL

(
1− exp

(
−∆t
TL

))
+ FTL

(
∆t− TL

(
1− exp

(
−∆t
TL

)))
+ (IX){1}(∆t) ,

(2.5a)

(Un+1){1} = Un exp
(
−∆t
TL

)
+ FTL

(
1− exp

(
−∆t
TL

))
+ (IU ){1}(∆t). (2.5b)

The two stochastic integrals are represented by the two correlated centred Gaussian random
variables (IX){1}(∆t) and (IU ){1}(∆t) which are fully determined by the matrix of their second-
order moments Peirano et al. [2006]:

〈(
(IU ){1}(∆t)

)2
〉

= C0ε
TL
2
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−2∆t
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, (2.6a)〈

(IU ){1}(∆t) (IX){1}(∆t)
〉
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2

(
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(
−∆t
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))(
3− exp

(
−∆t
TL

)))
.

(2.6c)

In the case of two iterations, a first estimation of Z(η∆t) is made with Eqs 2.5 using the
two correlated Gaussian random variables noted (IU ){2}(η∆t) and (IX){2}(η∆t) and a second
iteration is performed over the remaining time interval (1 − η)∆t to obtain the prediction of
Zn+1 using two other correlated Gaussian random variables noted (IU ){2}((1 − η)∆t) and
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(IX){2}((1 − η)∆t). Note that
(
(IU ){2}((1− η)∆t), (IX){2}((1− η)∆t)

)
are independent of(

(IU ){2}(η∆t), (IX){2}(η∆t)
)
. Combining the two gives:
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(2.7b)

+ (IU ){2}(η∆t) exp
(
−(1− η)∆t

TL

)
+ (IU ){2}((1− η)∆t)︸ ︷︷ ︸

(ĨU ){2}(η,∆t)

.

The variance of (ĨU ){2}(η,∆t) is easily calculated and is:〈(
(ĨU ){2}(η,∆t)

)2
〉

=
〈(

(IU ){2}(η∆t)
)2
〉

exp
(
−2(1− η)∆t

TL

)
+
〈(

(IU ){2}((1− η)∆t)
)2
〉

(2.8a)

= C0ε
TL
2

((
1− exp

(
−2η∆t

TL

))
exp

(
−2(1− η)∆t

TL

)
+ 1− exp

(
−2(1− η)∆t

TL

))
(2.8b)

= C0ε
TL
2

(
1− exp

(
−2∆t
TL

))
(2.8c)

=
〈(

(IU ){1}(∆t)
)2
〉
, (2.8d)

where the last equality comes from. Eq. (2.6a). Similarly, the variance of (ĨX){2}(η,∆t) is
obtained as:

〈(
(ĨX){2}(η,∆t)

)2
〉

= T 2
L

(
1− exp

(
−(1− η)∆t

TL

))2〈(
(IU ){2}(η∆t)

)2
〉

+2TL

(
1− exp

(
−(1− η)∆t

TL

))〈(
(IX){2}(η∆t)(IU ){2}(η∆t)

)〉
(2.9)

+
〈(

(IX){2}(η∆t)
)2
〉

+
〈(

(IX){2}((1− η)∆t)
)2
〉
,

while the covariance is:
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〈(
(ĨX){2}(η,∆t)(ĨU ){2}(η,∆t)

)〉
= (2.10)

TL

(
1− exp

(
−(1− η)∆t

TL

))
exp

(
−(1− η)∆t

TL

)〈(
(IU ){2}(η∆t)

)2
〉

+ exp
(
−(1− η)∆t

TL

)〈(
(IX){2}(η∆t)(IU ){2}(η∆t)

)〉
+
〈(

(IX){2}((1− η)∆t)(IU ){2}((1− η)∆t)
)〉

.

The formulas in Eqs 2.6 can then be applied, using either η∆t or (1− η)∆t as the proper time
interval, and injected in Section 2.2.2.2 and Eq. (2.10). Tedious but straightforward calculations
show: 〈(

(ĨX){2}(η,∆t)
)2
〉

=
〈(

(IX){1}(∆t)
)2
〉

(2.11a)〈(
(ĨX){2}(η,∆t)(ĨU ){2}(η,∆t)

)〉
=
〈

(IU ){1}(∆t)(IX){1}(∆t)
〉
, (2.11b)

which, with Eq. (2.8d), proves that
(
(ĨX){2}(η,∆t), (ĨU ){2}(η,∆t)

)
is statistically equivalent to(

(IX){1}(∆t), (IU ){1}(∆t)
)
and, consequently, that Eqs 2.7 are identical to Eqs 2.5.

An Important Remark
These calculations remain valid even when η is a function of Zn and of the mean fields and
timescale (here F and TL). However, it is worth emphasising that the fact that η is independent
of the random variables representing the stochastic integrals is a crucial point in the above
verification and that these properties would break down otherwise. Indeed, in this spurious case
we would have:〈

exp
(
−(1− η)∆t

TL

)
(IZ1){2}(η∆t)(IZ2){2}(η∆t)

〉
(2.12)

6=
〈

exp
(
−(1− η)∆t

TL

)〉〈
(IZ1){2}(η∆t)(IZ2){2}(η∆t)

〉
,

with Z1 and Z2 either X or U and:〈
exp

(
−(1− η)∆t

TL

)〉
6= exp

(
−(1− η)∆t

TL

)
. (2.13)

This reflects the non-anticipation issue brought out repeatedly throughout this section. Having
carried out this verification test case, we can now consider validation test cases.

Remark 2.2.1. In fact, it is specifically required for the estimation of the time step to be non-
estimating. Nevertheless, respecting this constraint, it is possible to introduce an anticipating
aspect in the stochastic drawings. Such a situation might be useful if the knowledge of
final state of the stochastic processes is necessary a priori. It is however worth stating that
any anticipation of the stochastic draw should be handled with great care and requires to
introduce the notion of Brownian bridges. An extension of the algorithm presented here for
these situations and based on Brownian bridges is proposed in Appendix 2.A.
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Having checked that all the criteria set forth at the beginning of Section 2.2 are met, the new
algorithm is now validated. For that purpose, it has been implemented in the open source
CFD solver code_saturne (see Archambeau et al. [2004]) and numerical results are compared
to analytical ones in two situations:

• The first case consists in checking that statistics obtained from particle-attached variables
by Monte-Carlo methods are in line with analytical expressions when all mean fields and
timescales are constant (i.e. a uniform mean flow). This is done in Section 2.3.1 using a
point source particle dispersion in a stationary homogeneous isotropic turbulent flow.

• The second case corresponds to a simple but challenging non-uniform flow involving curved
streamlines, which allows to assess the accuracy of the new algorithm in complex situations
where classical particle-tracking algorithms often encounter limitations (see Section 2.3.2).

2.3.1 Validation in a Uniform Flow

Drawing on the verification test case carried out in Section 2.2.2.2, the aim is twofold: first,
to check that, with the new proposed time-splitting method, numerical results are exact when
flow properties are constant in time and space; second, to bring out discrepancies induced when
using an anticipation method even in such a simple case. To that end, the dispersion of particles
released from a point source is analysed in a stationary homogeneous isotropic turbulent flow.
This choice is motivated by the fact that, in such a context, analytical formulas can be derived
as made e.g. by Minier et al. [2003b].
In the following, we start by describing the system considered, including physical aspects
(e.g., flow characteristics), as well as numerical ones (e.g., spatial discretisation, time step)
and theoretical results. Then, numerical results are validated with respect to these theoretical
expressions.

2.3.1.1 System Considered: Point Source Dispersion in Homogeneous Isotropic
Turbulence

Physical Aspects
The case studied consists of a point-source (fluid) particle dispersion in a stationary homogeneous
isotropic turbulent flow. This means that the flow is uniform and stationary within the domain
considered and that it is periodic in all directions. Here, we have imposed a velocity based on
the turbulent dispersion Uα =

√
〈u2
α〉 = 1 m s−1 and a Lagrangian timescale TL = 1 s.
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Numerical Aspects
Simulations were carried out using the CFD software code_saturne. The mean flow field is
imposed taking into account an extra artificial forcing to maintain a constant level of energy
within the system (see Pope [2000]). This leads to a flow field with a constant dissipation
rate equal to ε = 2

C0
U2
α
TL

where the proper closure of TL for homogeneous stationary flow is
TL = 4k/(3C0ε) (see Pope [2000], Minier and Peirano [2001]) with k = 3/2U2

α, and C0 the
Kolomogorov constant in the diffusion coefficient of the Langevin model. Once fluid mean fields
are obtained, 100 000 fluid particles are injected at the centre of the box. Their trajectories are
computed using the new algorithm described in Section 2.2. The total size of the domain (box)
is taken large enough so that the particles do not reach boundaries during each simulation.

Theoretical Aspects
As shown in Section 2.2.2.2, the algorithm is exact when all mean fields and timescales are
constant. By resorting to Itô’s calculus, it is then straightforward to derive analytical formulas
for the variances 〈X2〉 and 〈U2〉 as well as for the covariance 〈XU〉 as a function of time, taking
t0 = 0 as the initial time when particles are released. From these analytical solutions, we can
extract two limit cases: the ballistic (i.e., when t� TL) and the diffusive one (i.e., when t� TL).
This was done in Minier et al. [2003b], yielding to the following limit expressions:

Ballistic limit case (t� TL)

〈X2〉 ∼ C0
εt2TL

2 = U2
α t

2, (2.14a)

〈XU〉 ∼ C0ε t
2 = 2U2

α

t2

TL
, (2.14b)

〈U2〉 ∼ C0ε t = 2U2
α

t

TL
. (2.14c)

Diffusive limit case (t� TL)

〈X2〉 ∼ C0εT
2
Lt = 2U2

αTLt, (2.15a)

〈XU〉 ∼ C0εT
2
L

2 = U2
αTL, (2.15b)

〈U2〉 ∼ C0εTL
2 = U2

α. (2.15c)

The asymptotic behaviour first presented by Taylor [1922] in its fundamental work on dispersion
is well retrieved. It is worth mentioning that, in the diffusive regime, the only physically-relevant
statistic is 〈X2〉 since the instantaneous particle velocity does not play a role anymore in the
particle position evolution equation. This corresponds to the notion of fast-variable elimination
(here U becomes a fast variable that can be eliminated), which is addressed extensively in
standard textbook of Gardiner [1985] as well as in previous works both from the theoretical
standpoint (see Minier and Peirano [2001], Minier [2016]) and the numerical one (see Peirano
et al. [2006]). The constant value of the velocity second-order moment still retains its typical
kinetic energy meaning (showing that we are actually dealing with particles in contact with
a kind of thermostat) but the correlation 〈XU〉, which is less physically-meaningful, is also
considered since both results are useful to discuss statistical noise in Monte Carlo estimations.

2.3.1.2 Validation

In the following, we check that numerical results are in agreement with analytical formulas
regardless of the number of occurrences the time-splitting algorithm is called in two cases:

• A first set of simulations was performed with a focus on the ballistic regime. For that
purpose, the time step was taken equal to ∆t = 0.05TL. Two spatial discretisations were
considered: ∆x = Uα∆t/50 and ∆x = 10Uα∆t. These two grid sizes were carefully chosen
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so that first one (resp. the second one) corresponds to the case where the average particle
displacement during one time step is much smaller (resp. much larger) than the grid size
∆x. The simulations were run for a total time equal to 6TL.
Figures 2.6A-2.6C display the second-order moments as a function of the dimensionless
time t∗ = t/TL, comparing results obtained with the new algorithm to analytical formulas.
It can be seen that the outcomes of the new algorithm remain exact for both cases. This
validates the new algorithm (which has been activated on average 50 times every time
step in the case where ∆x = Uα∆t/50). Small differences between results obtained with
the cell-to-cell algorithm and analytical values are simply related to statistical errors using
Monte Carlo methods (due to a finite number of fluid particles), as discussed below.
As can be seen in Figs. 2.6D-2.6F, completely different results are obtained when using
an anticipation method, such as the naive formulation outlined in Section 2.2.1. This is
especially revealed by the strong dependence on the cell size, which indeed governs how
often the time-splitting algorithm is applied. Whereas results remain roughly acceptable
in the case of a large-enough cell size (meaning that the new algorithm is seldom called),
numerical predictions quickly deteriorate when smaller cell sizes are considered (i.e. using
∆x = Uα∆t/50), therefore inducing severe errors.

• A second set of simulations was carried out in the diffusive limit case. For that purpose, the
time step was taken equal to ∆t = 200TL. To assess that numerical results are independent
of the number of times the new algorithm is applied, two spatial discretisations were also
considered: ∆x = Uα∆t/20 and ∆x = 2.5 Uα∆t. The simulations were run for a total
time equal to 24 000 TL.
Figures 2.7A-2.7C display the evolution of the second-order moments as a function of time,
indicating that the new algorithm provides accurate results regardless of the number of
occurrences the time-splitting algorithm is used within a time step. In Figure 2.7A, it
is seen that 〈X2〉 follows a linear evolution right from the outset, as it should be in the
diffusive regime, and that the slope is properly reproduced when using non anticipating
methods. This demonstrates that the particle dispersion coefficient is well captured. As
mentioned above, it is interesting to consider the numerical predictions of 〈U2〉 in Fig. 2.7B
and 〈XU〉 in Fig. 2.7C to bring out the statistical noise inherent to Monte Carlo methods.
When considering 〈U2〉, the variance of the Monte Carlo estimator is constant in time since
Var(U2) = 2 〈U2〉2 and the 99% confidence interval is indicated by the two horizontal lines
shown in Figs. 2.7B and 2.7E. However, for the correlation 〈XU〉, the variance of the
estimator is a function of time since Var(XU)(t) = (C0ε)2T 4

L/2 (1+ t/TL) and the envelope
lines limiting the 99% confidence interval are now increasing with time, as displayed in
Figs. 2.7C and 2.7F. Note again that the resulting increasing level of noise for 〈XU〉 is a
mere observable and has no feedback effect on the particle simulation.
On the other hand, as can be seen in Fig. 2.7D, an anticipating method, such as the
naive formulation outlined in Section 2.2.1, is unable to reproduce the correct dispersion
coefficient, especially when the time-splitting algorithm is often called (in Fig. 2.7D, this
corresponds to the case ∆x = Uα∆t/20 where 20 cells are crossed per iteration on average).
For the sake of completeness, we also display 〈U2〉 in Fig. 2.7E and the correlation 〈UX〉 in
Fig. 2.7F, which further confirms that an anticipation method yields results that fluctuate
but around incorrect averages.
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Figure 2.6: Evolution of 〈XX〉, 〈UU〉, 〈UX〉 as a function of the dimensionless time in the
ballistic limit case with a time step ∆t = 0.05TL. Two spatial refinements are considered: ×
(resp. •) corresponds to simulations with a cell size ∆x = Uα∆t/50 (resp. 10 Uα∆t). On the
left part, comparisons between the analytical solution ( ) and numerical results obtained with
the new algorithm are presented. On the right part, the results with a spurious anticipating
method are plotted.
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Figure 2.7: Evolution of 〈XX〉, 〈UU〉, 〈UX〉 as a function of the dimensionless time in the
diffusive limit case with a time step ∆t = 200TL. Two spatial refinements are considered: ×
(resp. •) corresponds to simulations with a cell size ∆x = Uα∆t/20 (resp. 2.5 Uα∆t). On the
left part, comparisons between the analytical solution ( ) and numerical results obtained with
the new algorithm are presented. On the right part, the results with a spurious anticipating
method are plotted. The dashed lines ( ) correspond to the envelop for the 99% confidence
interval (analytical formula).
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At this stage, it is worth emphasising that present results were obtained in a 1-D dispersion
case. However, these results are directly generalised to 3-D dispersion cases since each direction
is treated independently. Furthermore, similar behaviours were obtained using 3-D unstructured
meshes instead of regular 1-D Cartesian meshes (details are provided in 2.B).

2.3.2 Validation in a Non-Uniform Flow

Having validated the new algorithm in a uniform flow, the idea is to validate the algorithm in
the case of non-uniform flows. To that end, a laminar flow is considered so that the stochastic
terms in the time-integration part of the algorithm are equal to zero. This ensures that the
time-integration part is deterministic, hence allowing to check that the computed trajectory in
non-uniform flows is exact. In addition, a cylindrical Couette flow has been chosen since it is
one of the simplest non-uniform flows. In that case, each fluid particle is indeed expected to
follow a purely circular motion around the centre of rotation of the cylinder.
In the following, we start by describing the system considered, including both physical aspects
(e.g., geometry of the rotating cylinders, flow characteristics) and numerical aspects (e.g., spatial
discretisation, time step). Then, the accuracy of the new trajectory algorithm is assessed. This
validation is performed in two steps: first, we verify that the motion of a single particle actually
follows a purely circular motion and, second, that statistics on particle concentration remain
constant throughout the simulation time regardless of the time step used.

2.3.2.1 System Considered: a Laminar Cylindrical Couette Flow

Physical Parameters
The case studied here is a laminar cylindrical Couette flow. It consists of a fluid flow between
two cylinders: the inner cylinder has a radius rin = 1 m, rotating at a given angular velocity
equal to ωθ(rin) = 1 s−1, while the outer cylinder has a radius rout = 2 m and remains at rest.
This means that the fluid is contained within the annulus of thickness δr = 1 m that separates
the two cylinders. The kinematic viscosity of the fluid is set to 1 m2s−1 so that the Reynolds
number based on those quantities is equal to 1 (i.e., well within the laminar regime).
In this configuration, the fluid is flowing in a cylindrical motion. As a result, the velocity field is
unidirectional and, written with the cylindrical coordinate eη, is given by the analytical solution:

U = Uθ(r) = 〈Uθ〉(r) = rinωθ(rin)
rin
rout
− rout
rin

(
r

rout
− rout

r

)
(2.16)

where r is the distance from the rotating centre.

Numerical Parameters
The simulations are carried out using the CFD software code_saturne to solve the Navier–Stokes
equation on a 360° polyhedral mesh: it comprises 360 cells in the azimuthal direction (i.e. the
azimuthal discretisation angle is ∆θ = 1°) and 21 in the radial one. The simulations are run
using a constant time step, whose value is taken between 0.055 s and 200 s. This range of values
has been chosen to assess the accuracy of the algorithm with respect to the time step, especially
at large time steps where the average particle displacement is much greater than the grid size.
The tracking of fluid particles within this laminar cylindrical Couette flow is obtained by applying
the algorithm described in Section 2.2. The Lagrangian integral time TL has been set to 0 s to
force a laminar flow (i.e., all stochastic integrals are equal to zero).
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2.3.2.2 Accuracy of Numerical Results

The new algorithm is here validated by checking that, first, the trajectory of a single particle
follows a purely cylindrical motion and, second, that the initial particle concentration along the
radial direction is conserved in time. In the following, all results are plotted using a dimensionless
time defined as t+ = tωθ(rin)/(∆θ). This means that the dimensionless time step ∆t+ measures
the ratio between the average particle displacement and the grid size (in the azimuthal direction)
near the inner wall.

Results on a Single Particle Trajectory
The motion of a fluid particle in a laminar cylindrical Couette flow is expected to follow a
purely circular trajectory. This means that each particle remains at a constant distance r from
the rotating centre throughout the simulation. A simulation has been run for 400 iterations
using a time step of 1.024 s. This means that the average particle displacement is equal to 55
times the grid size ∆θ× rin near the inner cylinder and to 0.5 times the grid size ∆θ× rout near
the outer one.
Figure 2.8 displays the trajectory of two particles: one is initially located very close to the inner
cylinder while the second one is initially located in the bulk. The trajectory (left-hand plot)
clearly shows that the new algorithm does lead to a circular motion. These results confirm the
accuracy of the new algorithm even for large values of the time step. This is further supported by
the time-evolution of the radius r (right-hand plot). In fact, the results are not distinguishable
from the theoretical expectations, even for the particle initially close to the inner cylinder (which
has circled the cylinder close to 60 times by the end of the simulation).
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Figure 2.8: Trajectory of particles (left) and corresponding evolution of the radius r as a function
of the time t (right) for a constant time step corresponding to ∆t+ = 55. Two particles are
followed: one located initially in the vicinity of the wall (•) and one in the centre of the domain
(H). For each particle, the results obtained with the new algorithm (green) are in agreement
with the expected trajectory ( ) , while the results obtained with the reference scheme (blue)
are flawed by integration error (leading to accumulation in the region near the outer cylinder).

Figure 2.8 also displays the results obtained with the reference algorithm, which does not account
for cell-to-cell integration. It can be seen that the radius increases with time all the more when
the time step increases. This is due to the error made when no cell-to-cell integration is made
while using large time steps. The origin of the error is illustrated in Figure 2.9: the spatial
discretisation and P0 interpolation mean that each particle experiences a constant velocity within
a cell. As a particle crosses a face, if the velocity is not updated immediately, the particle will
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move for the remainder of the time step with the velocity encountered in the previous cell. Since
this previous fluid velocity is slightly shifted with respect to the radial direction in the current
new cell, it induces an error without cell-to-cell integration which is directly proportional to the
time step.

+
+

+

+

+

+〈U〉Cell i

〈U〉Cell j

•

X [0]

×X̃
[0]•X [1]

Error

Figure 2.9: Scheme highlighting the origin of the numerical error in the algorithm without cell-
to-cell integration. This error induces an accumulation of particles near the outer cylinder as
time increases without cell-to-cell integration (see Figure 2.10).

Results on Particle Concentration
We focus now our attention on simulations in which a large number of fluid particles is tracked. In
that case, the statistics of interest is the particle concentration along the radial direction. In fact,
since each fluid particle follows a circular orbit, the particle concentration should remain constant
throughout time. With this result in mind, we verify here that the particle concentration
is homogeneous in space provided that fluid particles are homogeneously distributed in space
initially.
Numerical simulations have been carried out with 200,000 fluid particles initially homogeneously
distributed in space. The concentration is then analysed by computing the particle number
concentration in each of the 21 cells along the radial direction. Figure 2.10 displays the evolution
of the concentration, which has been normalised with the initial concentration, as a function
of the distance r. It can be seen that, for a dimensionless time step equal to ∆t+ ' 5.5,
the concentration obtained remains constant in all the domain throughout the whole simulated
time. Meanwhile, the results obtained with the reference algorithm (i.e., without cell-to-cell
integration) show that particles tend to accumulate in the outer region, leading to an increasing
concentration in the outer region with time (the stationary state at longer times will consist in
having all particles located at the outer cylinder).
To further assess the accuracy of the new algorithm, the error between the numerical value and
the theoretical value of the number concentration has been computed within each of the 21
regions. The average error over the whole domain and simulation time (here 41 s) is displayed
in Figure 2.11 as a function of the dimensionless time step ∆t+. It confirms that the new
algorithm provides accurate results regardless of the time step used, i.e., both when the average
displacement is smaller or greater than the grid size. The small (constant) error with the new
algorithm comes from the statistical noise due to Monte Carlo methods at initialisation. Indeed,
due to the finite number of particles, the initial number of particle in each cell does not ensure
exactly c+ = 1. Meanwhile, the results obtained without cell-to-cell integration clearly show an
increasing numerical error with increasing time steps.
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Figure 2.10: Evolution of the dimensionless concentration c+ (concentration normalised by the
initial concentration) as a function of the radius r. Results are displayed for various simulation
times: t+=275 ( ), t+=1100 (H) and t+=2200 (•). The time step is constant such that
∆t+ ' 5.5. The results obtained with the new algorithm (green) are in agreement with the
analytical results ( ) while the results obtained with the reference trajectory (blue) lead to an
accumulation towards the outer cylinder which increases with time (arrow).
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Figure 2.11: Convergence of the mean error on particle concentration computed at time t =41 s as
a function of the time step, using the reference algorithm (blue) and the new cell-to-cell algorithm
(green). Each pair of symbols corresponds to simulation carried out with the same given time
step. These results confirm that the reference algorithm are impaired by integration error
triggering an outward spurious drift (the error increases with increasing time steps) contrary to
the new algorithm which remains accurate regardless of the time step (the constant non-zero
error εM−C ( ) is due to the statistical noise inherent to Monte Carlo methods).
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Discussion on the computation cost
A short consideration regarding the processing cost induced by this algorithm is now in order.
To support this discussion the averaged mean error is plotted against the computation time
spent using one processor in Figure 2.12. It is evident that the sub-iterating process proposed
increases the computation time for a given number of iteration (put forward by the use of a same
symbol). Considering a very large number of iterations (points on the right of the plot), the
splitting of the time step is seldom called. Therefore, the relative increase of computation time
corresponding to a factor around 1.5 represents the computation cost related to the integration
and trajectory steps associated to the auxiliary deterministic virtual partner. However, this
increase can be offset by the necessity to run fewer iterations to obtain more accurate results. In
fact, in the situation encountered here, where no particle is injected nor removed from the flow
with stationary mean carrier fields, a single overall iteration is necessary. The new time-splitting
method enables to reach the optimal time splitting with regard to the local CFL condition
attached to each particle. While the particles in the vicinity of the inner ring are integrated over
numerous small time steps, a large gain of processing time is achieved for the outer particles for
which few integrations over large time steps are required due to their slow displacement on broad
cells. In this sense, this algorithm enables to have a spatially adaptive time step depending on
the dynamics of each particle. Furthermore, for large time steps as the number of sub-iteration
tends to become proportional to the time steps, the overall computation time tends to stagnate.
This can be seen on the points furthest to the left of Figure 2.12 where a limit computation time
topimalcomput schematically represented arises. The latter is the minimum processing time necessary
to properly treat the flow with respect to the local particle-attached CFL. In this example the
time splitting algorithm proposed enables to gain both multiple scales of magnitude in accuracy
and in processing times. This puts emphasis on the cell-to-cell integration efficiency and the
gain it can provide for flows where the time step is limited by a CFL condition.
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Figure 2.12: Convergence of the mean error on particle concentration computed at time t =41 s as
a function of the computation time, using the reference algorithm (blue) and the new cell-to-cell
algorithm (green). The different symbols correspond to different time steps used and correspond
to the symbols used in Figure 2.11. Using the new algorithm, the error is independent of the
time step and the computation time decreases with the increasing time step until a limit value
topimalcomput reached when using a single integration optimally split for each particles.
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2.4 Local Conclusions and Perspectives

In this chapter, we have developed a new cell-to-cell algorithm for particle tracking in the
context of hybrid approaches that couple Lagrangian stochastic methods with mean-field ones.
The cell-to-cell integration consists in dividing the time step into a number of sub-iterations,
each one corresponding to the motion of a particle within one cell. This means that the motion
of a particle is stopped each time it crosses a face and leaves a cell, at which point the mean
fields are updated to compute particle displacement over the remainder of the time step. This
decomposition allows naturally to account for changes in the mean fields every time a particle
enters a new cell. Given the stochastic nature of the model, an additional constraint has to be
satisfied: no anticipation should be made when estimating the residence time in each cell. Indeed,
a naive formulation would consist in first predicting particle displacements over a time step and
then try to deduce the residence times in the cells that have been crossed. Yet, this would yield
estimations of these residence times that become functions of the future of the Wiener process
driving the diffusion term, in direct violation of the very definition of the stochastic integral
in the Itô sense. To avoid this pitfall, and the resulting spurious numerical drift and diffusion
values it would entail, careful estimations based only on values at the beginning of each sub-time
steps must be made. In the present algorithm, this is achieved by introducing the notion of a
virtual partner whose motion is governed by mean conditional increments and which is used
to provide free-of-statistical-bias estimation of the residence times in the different cells being
crossed during one time step.
Drawing on these two notions (cell-to-cell integration and non-anticipation), the new algorithm
is built on a three-step process. The first step consists in computing the deterministic estimation
of the particle position at the end of the time step. Then, the trajectory algorithm based on
a free-flight assumption is applied to determine if the particle leaves/remains in the cell. If it
remains in the cell, the position and velocity of the particle at the end of the time step are
computed. Otherwise, the trajectory algorithm provides information on the exit time and exit
location. The whole three-step process is repeated again but starting from the last known exit
location and for the remainder of the time step. This process is repeated until the particle
reaches its final destination at the end of the time step ∆t (i.e. it does remain in the cell).
A first analysis consists in checking that the new algorithm remains exact for constant mean
fields. In the more general case of non-uniform flows, since the residence times are now only
approximated, the time integration scheme cannot be regarded as exact but the overall scheme
is guaranteed to respect the non-anticipating constraint and is shown to provide considerable
improvements over the current algorithm for particle tracking in non-homogeneous flows. This is
further demonstrated by considering numerical predictions in two test cases: particle dispersion
in a uniform mean flow and particle dynamics in a non-uniform flow. These two cases have
confirmed the improved accuracy of the new algorithm, even when large time steps are used.
At this point, it is worth emphasising that, although we have considered fluid particles and a
simple Langevin model, the same method can be directly applied to dispersed turbulent two-
phase flows, particles with additional quantities in the state vector, and, more generally, to
similar stochastic dynamical models which require to track particles in complex geometries and
meshes. Note that in the examples presented in Section 2.3 one concerns a laminar flow and
the second one a high-Reynolds-number turbulent flow. However, the present methodology
(i.e. the time-splitting algorithm) is not limited to these situations and can be applied to
any flows regardless of the Reynolds number, provided that an adequate dynamical model and
its corresponding numerical scheme are applied. Furthermore, this new algorithm paves the
way towards the development of refined algorithms for such hybrid approaches that couple
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Lagrangian methods with mean-field approaches. In this work, we have applied a cell-to-cell
integration every time a particle enters a new cell. On the other hand, this time-splitting scheme
could be applied only when mean fields differ significantly from one cell to another. Hence, a
refined algorithm could be devised using test functions to quantify variations in the mean-field
quantities along particle trajectories and apply this time-splitting method only when variations
are larger than a given threshold.
Let us note that although this method improves the numerical robustness and accuracy
associated to the temporal integration, in the context of dispersion of fluid particles in
atmospheric flows a second issue associated to the integration scheme should still be tackled.
Indeed, near wall the necessity to have a time step much lower than the Lagrangian timescale to
avoid spurious downward effects is in general a condition harder to fulfil than the necessity for
the particle to cross not too many cells over a time step. In order to be fully functional in such
flows, the time splitting method developed here should be used with the extended integration
scheme proposed by Minier [2016]. The development of the latter would enable to fully get rid
of the constraint based on the value of the Lagrangian timescale. To that effect, a further study
and validation on this extended scheme should be carried out.
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Local Appendices

2.A An Anticipating Extension of the Methods using Brownian
Bridges

In some methods, interactions such as collision between particles in diffusive regime are estimated
using a stochastic approach knowing their initial and final positions (see e.g. Henry et al.
[2014] Mohaupt et al. [2011]). An anticipated estimation of their positions before the cell-to-cell
integration could be useful to determine if the particles interact during the whole time step and
improve the treatment of those interactions. Such estimations might require anticipations of the
draws for the Wiener process at the end of the time step and must be properly tackled to avoid
spurious drifts.
In order to circumvent the drifts caused by mismanaged anticipations, a second idea is to make a
first draw for the global time step and take it into account, in the draws used for the intermediate
sub-iterations. A naive proposition could be to keep the value drawn for the global time step for
each sub-iteration. However, this solution also implies statistical biases because by definition
of Wiener processes, new increments of Wiener process have to be independent of the previous
ones. It is thus necessary to be able to generate an intermediate path of the Wiener process
knowing its value at the end of the time step. The goal of this section is to determine how to
obtain such draws and their link with draws made for the global time step.

2.A.1 Presentation of Brownian Bridges

The case considered is a situation where the value of the Wiener process is fixed at both ends
W(tn) and W(tn+1) with tn+1 = tn + ∆t. Estimating an intermediate Gaussian trajectory
between two known positions of a Wiener process, corresponds exactly to the situation of a
Brownian bridge Glasserman [2013]. We can see some realisations of such Brownian bridges in
Figure 2.A.1.
These Brownian bridges will then be used in this version of the algorithm. The corresponding
drawings are briefly presented here. Let us take an intermediate time η fully independent of all
drawings, the Brownian bridge Br is a random variable given by:

Br(η) =W(tn+η∆t)|(W(tn),W(tn+∆t)) ∼ N (W(tn)+η(W(tn+∆t)−W(tn)), η(1−η)∆t) (2.17)
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Figure 2.A.1: Some realisations of Gaussian trajectories using a Brownian Bridge.

It is worth noticing that its average value at a given time is the corresponding value on the
segment between W(tn + ∆t) and W(tn). The variance is defined as a quadratic function which
is null at each intersection where the values are fixed. It is maximal at half the time step where
we are the furthest from the restraining conditions. Thanks to this variable it is possible to have
an estimation of the location of the Wiener process at any time between the two limits of the
time step where the values are fixed.

2.A.2 Brownian Bridges based Draws used to Decompose the Time Step

First, we want to consider a decomposition of the time step into two sub-steps. The Wiener
increment dWZi (∆t) is then decomposed into two increments dWZ1,i(η∆t) and dWZ2,i((1− η)∆t)
using an intermediate time η∆t. The sum of these two increments corresponds to the increment
during the global time step.

dWZi (∆t) =WZi (tn + ∆t)−WZi (tn) =

dWZ2,i((1−η)∆t)︷ ︸︸ ︷
WZi (tn + ∆t)−B(η) +

dWZ1,i(η∆t)︷ ︸︸ ︷
B(η)−WZi (tn) . (2.18)

We want to estimate the normalised draws corresponding to these two intermediate increments
knowing that we have dWZ(∆t)i = ζZi

√
∆t. Using the previous relation the two intermediate

normalised draws ζZ1,i and ζZ2,i corresponding to dWZ1,i and dWZ2,i have to satisfy:

ζZi
√

∆t = ζZ1,i
√
η∆t+ ζZ2,i

√
(1− η)∆t. (2.19)

Dividing by the square root of the time step, we get:

ζZi = ζZ1,i
√
η + ζZ2,i

√
(1− η). (2.20)

Moreover, using the law proposed Eq. (2.17), we can determine an estimation of dWZ1,i(η∆t)
using a new set of random variables χZi which follow independent standard centred Gaussian
distributions such as:

dWZ1,i(η∆t) = ζZi η
√

∆t+
√
η(1− η)∆tχZi . (2.21)

We can then compute the drawing to use for the first sub iteration.

ζZ1,i = ζZi
√
η +

√
1− ηχZi . (2.22)
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Knowing the value for the first draw, we can then determine, thanks to the relation described
in Eq. (2.20), the corresponding draw for the remaining time which is:

ζZ2,i =
√

1− ηζZi −
√
ηχZi . (2.23)

Once ζZi and χZi are drawn, the position of the intermediate value of the Wiener process
W(η∆t) can be determined. It is worth noticing thatEq. (2.22) and Eq. (2.23) follow Gaussian
distribution as a sum of similar Gaussian distributions. Moreover, ζZi and χZi following two
independent standard centred Gaussian distributions, we have:

〈ζZ1,i〉 = 〈ζZ2,i〉 = 0, (2.24a)〈(
ζZ1,i

)2
〉

=
〈(
ζZ2,i

)2
〉

= 1, (2.24b)

〈ζZ1,iζZ2,i〉 = 0. (2.24c)

The intermediate drawings respect well the condition imposed by their definition as dimen-
sionless increments of Wiener processes Eq. (2.20) and follow independent standard centred
Gaussian distributions. For a given sub-iteration [m] (ζZ1,i)[m] corresponds to the draw used
for the integration until η[m], whereas (ζZ2,i)[m] corresponds to the remaining increment until
W(tn+1). We have then ζZ2,i)[m] = (ζZi )[m+1].

2.A.3 Consistency Analysis of the Time Step Decomposition using Brownian
Bridges

It is also important to ensure that this decomposition of the time step and the use of the two
corresponding sub-time steps do not imply any statistical bias using the exponential scheme. Let
us assume that we split an integration into two sub-integration as made in Section 2.2.2.2. The
estimation of (IZi ){2}(η∆t) and (IZi ){2}((1−η)∆t) can be obtained similarly as previously simply
by replacing the independent draws (ζZi )[1] and (ζZi )[2] by (ζZ1,i)[1] and (ζZ2,i)[1]. The results found
in Section 2.2.2.2 remain unchanged. The absence of statistical bias for a decomposition into
two sub-iterations, remains correct providing that η is independent of the different stochastic
draws. The latter ones being determined thanks to the independent draws (ζZi )[m] and (χZi )[m]

the intersection time shall also be independent of any of these draws. The determination of the
intersection time proposed in Section 2.2.2.2 remains valid. As previously, using a mathematical
induction, it is possible to generalise this decomposition into any number of sub-steps without
bias on the statistics.
A drawing method has been proposed to tackle without bias the anticipation of the value of the
Wiener process thanks to the use of Brownian bridges. The sole modification, compared to the
previous algorithm, is the necessity to initialise the global draw (ζZi )[0] before the loop on the
sub-iterations (.)[m], and to estimate not simply ζZ[m],i but ζZ[m],1,i as presented in Eq. (2.22). The
draw (ζZ2,i)[m] corresponds to the new remaining draw for the rest of time step (ζZi )[m]. It will
be used to determine the following draw (ζZ1,i)[m+1] used in the next iteration.
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2.A.4 Verification using a Point Source Dispersion in a Maintained Uniform
Isotropic Turbulent flow

The difference between this anticipating method using Brownian bridges and the standard non-
anticipating time-splitting methods presented in Section 2.2 relies in the method to draw the
Wiener processes appearing in the stochastic integrals. As in the non-uniform laminar test
case studied in Section 2.3.2 the stochastic integrals are null, there is no difference between the
reference time-splitting methods and the one presented in this appendix. In order to verify that
the splitting of the time step using Brownian bridges does not induce bias in the estimation of
the stochastic integral, a point source dispersion in a maintained uniform isotropic turbulent
flow is considered. The same setup than in Section 2.3.1 is taken into account in Figure 2.A.2
and Figure 2.A.3. From these figures, it is clear that the Brownian bridges based anticipating
methods presented here does not induce statistical bias on the estimation of the statistics. The
interpretation of the results and the discussion on the statistical error provided in Section 2.3.1
given for the non-anticipating standard time splitting method are still valid and unchanged.
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(D) 〈XX〉 using the proper Brownian
bridges based time-splitting method.
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Figure 2.A.2: Evolution of 〈XX〉, 〈UU〉, 〈UX〉 as a function of the dimensionless time in the
ballistic limit case with a time step ∆t = 0.05TL. Two spatial refinements are considered: ×
(resp. •) corresponds to simulations with a cell size ∆x = Uα∆t/50 (resp. 10 Uα∆t). On the
left part, comparison between the analytical solution ( ) and numerical results obtained with
the standard time-splitting algorithm are presented. On the right part, the results obtained
with the properly estimated anticipating methods based on Brownian bridges are plotted.
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Figure 2.A.3: Evolution of 〈XX〉, 〈UU〉, 〈UX〉 as a function of the dimensionless time in the
diffusive limit case with a time step ∆t = 200TL. Two spatial refinements are considered: ×
(resp. •) corresponds to simulations with a cell size ∆x = Uα∆t/20 (resp. 2.5 Uα∆t). On the
left part, comparison between the analytical solution (black line) and numerical results obtained
with the standard time-splitting algorithm are presented. On the right part, the results obtained
with the properly estimated anticipating methods based on Brownian bridges are plotted. The
dashed lines correspond to the envelope for the 99% confidence interval (analytical formula).
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2.B Details of the Particle Tracking Algorithm for 3-D Unstruc-
tured Meshes

This appendix presents the trajectory algorithm that is used in the present study. This algorithm
is able to track the motion of particles even in 3-D fully unstructured meshes with warped
faces. The tracking algorithm is first described, including the description of the original tracking
algorithm with the detection of face-crossing events. Then, the algorithm is extended to compute
the location and exit time when a particle crosses a face. Last, the algorithm is validated by
comparing the numerical results obtained using various 3-D unstructured meshes in a simple
non-uniform flow.

2.B.1 Principle of the neighbour search algorithm

The algorithm is based on a successive neighbour search. This means that the cell inside which
a particle currently resides is determined by browsing through the neighbouring cells. Such
algorithms require three pieces of information:

(a) The origin particle location XO = Xn;

(b) The corresponding cell inside which it was initially;

(c) The destination particle location XD = Xn+1 (as depicted in Figure 2.2).

The principle is then to determine if the particle leaves the current cell assuming a free-flight
motion between point XO and XD. This is performed by:

1. computing which faces of the current cell are intersected by the line (XOXD);

2. checking if the intersection is on the straight-line vector XOXD = XD −XO.

The key issue is then to have a robust method to detect the intersection between a displacement
vector and any face. It is of prime importance to prevent any particle from being permanently
lost in the computational domain. For that reason, the method uses Boolean elementary tests
which are reproducible from one cell to another so that it can handle pathological cases such as
when the vector XOXD crosses a face through one of its edges (to the machine precision).

2.B.1.1 Method to detect face-crossing events through warped-faces

The method to detect face-crossing events is based on the decomposition of each face into a set
of triangular sub-faces (see also Figure 2.B.4). Each triangular sub-face is built using one of
the oriented edges of the face (formed by two consecutive vertices Xi and Xj) and the centre
of gravity of the face Xf . This decomposition of faces ensures that each triangular sub-face
treated is planar, hence making the method tractable even for warped meshes (i.e. with faces
whose vertices do not belong to the same plane).
Once a face is decomposed into a set of triangular sub-faces, the intersection between a vector
and each planar sub-face is detected using a kind of algorithm proposed by Möller and Trumbore
[1997]. The principle is to project the vertices of each sub-face in the oriented plane orthogonal to
the displacement vectorXOXD passing throughXO noted (XO, XOX

⊥
D). Then, to compute if

line (XOXD) crosses a sub-face, we simply need to check if the pointXO belongs to the triangle
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formed by the projection of the sub-face on this plane (as displayed in Figure 2.B.3, where the
superscript (.)† corresponds to the projection in the plane perpendicular to the displacement).
For that purpose, we resort here to a series of three elementary Boolean tests, each one allowing
to verify if the point XO is located on the "proper side" of a projected edge.

Elementary Boolean tests
For each of the three edges forming a projected sub-face (namely X†fX

†
i , X

†
fX
†
j and X†iX

†
j),

we have to verify whether the point XO is on the proper side of the projected edge. To that
extent, we resort here to simple logical tests. For the sake of clarity, let’s consider the case of
an oriented edge connecting two points XαXβ (where α and β are the indexes of two vertexes
of a sub-face) on the projection plane. In that case, the logical test Ledge

α,β reads:

L
edge
α,β =

{
true if (XαXβ ∧XαXO) ·XOXD > 0.
false otherwise.

(2.25)

As displayed in Figure 2.B.1, this elementary Boolean test provides information on whether a
point XO is in the half plane on the left (true) or on the right (false) of the projected line
(X†αX

†
β). It is worth noticing that the inequality in this test being strict, the behavior on the

oriented line is asymmetric. Indeed, if point XO belongs to this line at the machine precision,
test Ledge

α,β returns false. In other words, we arbitrarily consider that the line (X†αX
†
β) belongs

to the closed right half plane and not to the open left one. As a result, the Boolean test
L

edge
α,β

⋃ not(Ledge
α,β ) is a partition of the domain. This means that the computation of Ledge

α,β

is reproducible for a given displacement vector XOXD for two faces sharing the same edge1
provided that the ordering of the vertices α and β is fixed. In the present work, we have imposed
to sort the vertices in the following order: first Xf , then Xi and finally Xj (with i < j).

�
XO

•X†α

X†β•

L
edge
α,β = true L

edge
α,β = false

Figure 2.B.1: Sketch illustrating how the elementary boolean test Ledge
α,β works: the point (X0

can either be located on the left-hand side or on the right-hand side of the oriented line (X†αX
†
β).

Here, the figure is seen from above the plane (X0, XOX
⊥
D), meaning that the elementary

Boolean test is true on the left-hand side of the figure. Note that the line belongs to the closed
half-plane (i.e., false in red color).

Figure 2.B.1 also shows that this elementary Boolean test is not enough to determine if a point
XO belongs to the projected triangle sub-face. In fact, a point can be located either on the right
side or on the left side of the line depending on the orientation of the vector X†iX

†
j but also on

whether the point is above or below the plane. While the orientation of the vector is now fixed
thanks to the sorted vertices introduced in the previous paragraph, we must introduce the notion
of plane orientation to deal with the second issue. For that purpose, we rely on the orientation

1This is the case for instance for a sub-face seen from one cell or from the neighbouring one.
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of the sub-face, and we introduce an additional logical test to know if the displacement vector
XOXD is aligned with the oriented sub-face. It returns true if they are aligned and false if they
are not. This condition reads:

Aface
f, i, j =

{
true if (XfXi ∧XfXj) ·XOXD > 0.
false otherwise.

(2.26)

By combining both logical tests
(
L

edge
i, j ≡ Aface

f, i, j

)
(where ≡ means that both Boolean tests have

the same value), we are able to determine on which side of the line X†iX
†
j the particle lies with

respect to the face orientation.

Combined elementary Boolean tests
To determine if the intersection point Xi is within the projected face, we have then to combine
these elementary logical tests together. As displayed in Figure 2.B.2, the intersection point
belongs to the projected face if three conditions are met. These conditions depend on the
orientation of the sub-face with respect to the displacement vector:

• When the displacement vector is aligned with the sub-face orientation (i.e., Aface
f, i, j = true),

the point is located to the left of each of the projected edges provided that we follow the
sorted vertices (namely X†fX

†
i , X

†
iX
†
j and X

†
jX
†
f ). This means that the following three

conditions have to be met: first, Ledge
f, i = true; second, Ledge

f, j = false (due to its reverse
orientation); third, Ledge

i, j = true. This case is displayed in the LHS of Figure 2.B.2.

• When the displacement vector is not aligned with the sub-face orientation (i.e., Aface
f, i, j =

false), the point is located to the right of each of the projected edges provided that
we follow the sorted vertices (namely X†fX

†
i , X

†
iX
†
j and X†jX

†
f ). This means that the

following three conditions have to be met: first, Ledge
f, i = false; second, Ledge

f, j = true

(due to its reverse orientation); third, Ledge
i, j = false. This case is displayed in the RHS

of Figure 2.B.2.

To sum it up, the intersection point is inside a given sub-face if the following condition is
respected: (

L
edge
i, j ≡ Aface

f, i, j

)
and

(
L

edge
f, i ≡ Aface

f, i, j

)
and

(
not(Ledge

f, j ) ≡ Aface
f, i, j

)
= true,

(2.27)

where the symbol ≡ corresponds to the operator “equivalent” (i.e., it is true if the two Boolean
variables have the same value). This test is made for each sub-face. The algorithm is illustrated
in Figure 2.B.3 (where the intersection point is on the right hand face).
In the case of warped faces, it is possible for a line (XOXD) to cross the same face several times.
This is depicted in Figure 2.B.4. In that case, the algorithm monitors the number of times that
the line (XOXD) crossed the face. If this number is even, it means that the particle remains
in the current cell (it has left and reentered the cell). If this number is odd, it means that the
particle leaves the cell through this face.
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�
XO

•X†f

X†i•

X†j•

Aface
f, i, j = true

�
XO

•X†f

X†i•

X†j•

Aface
f, i, j = false

L
edge
α, β = true

L
edge
α, β = false

Figure 2.B.2: Sketch of the Boolean test for alignment Aface
f, i, j . It determines if the displacement

vector XOXD is aligned with the oriented sub-face XfXiXj (and returns true in that case).
The sketch shows the two possible cases: on the left-hand side, the displacement vector is aligned
with the sub-face orientation; on the right-hand side, they are not aligned. In each case, the
pointXO lies within the projected sub-face if it is located on the proper side of all oriented edges
(namely XfXi, XfXj and XiXj , with i < j). The logical tests L

edge
α, β = true are displayed

according to their result (green = true and red=false).

2.B.1.2 Method to estimate the intersection time and position

As mentioned in Section 2.2.2.1, the new algorithm not only requires information on the cell
containing the particle but also on the intersection time and location. This means that the
trajectory algorithm described previously must be extended to provide this information.
Having determined that the line (XOXD) does cross a sub-face, the relative time η = tcross/∆t
necessary to reach this sub-face can be estimated using the free-flight assumption. It gives:

η =
XOXf · (XfXi ∧XfXj)
XOXD · (XfXi ∧XfXj)

. (2.28)

This equation is well-posed since we apply it only when we have previously determined that the
line actually crosses the face. In fact, the value of η actually provides additional information.
When η is negative, it means that the intersection point is an entrance point for the oriented
axis (XOXD). When η is positive, it means that the intersection point is an exit point. The
number of sub-faces through which the oriented axis (XOXD) enters (nin) and leaves (nout) is
then counted. We then check if the particle is indeed in the correct cell thanks to these numbers.
The particle is in the correct cell if the number of sub-faces through which the line (XOXD)
enters in the cell equals to the number of sub-faces through which it exits the cell and if both
of these numbers are not zero (i.e., nin = nout > 0).
If the value of η defined in Eq. (2.28) is in the interval η ∈ [0, 1[, the particle does actually cross
a face during the time step. The position of the particle at the intersection is then simply given
using a simple linear interpolation (this linear interpolation is coherent with the assumption of
free-flight motion):

XI = XO + η ×XOXD. (2.29)

When a particle leaves a cell after crossing one face several times (as in wrapped faces), the exit
time is considered equal to the largest value in the range [0, 1[ (i.e., the last exit time).
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•
X†v1

•
X†v2

•X†v4

•
X†v3

×
X†f

×
XO

×
XD

�

L
edge
α, β = false

L
edge
α, β = true

Aface
f, i, j = false

Aface
f, i, j = true

face not crossed

face crossed

Figure 2.B.3: Sketch illustrating how the tracking algorithm determines if a particle displacement
from XO to XD crosses a face. Here, the particle exits the cell through the face on the right.
As a result, when the edges of this face are projected on the plane normal to the displacement
vector (here with superscripts †), the various logical tests Ledge

α, β and Aface
f, i, j confirm that one of

the triangular sub-faces is detected as an exit face (green color) while the three other sub-faces
are not (red color).

2.B.2 Validation on 3-D unstructured meshes

The trajectory algorithm has been tested using various meshes obtained from the FVCA6
benchmark test cases Eymard et al. [2011]. These meshes were selected to be representative
of a range of different meshes, going from a regular Cartesian mesh to a highly distorted mesh
with different refinements. The four meshes used here are displayed in Figure 2.B.5.
The case considered for validation actually corresponds to the uniform flow described in
Section 2.3.1.1. It consists in a point source dispersion within homogeneous isotropic turbulence.
To ensure that no particle is lost, the distance between the particles and the cell centre (point
source) is tracked. In order to have a representative quantity independent of the mesh, the
quantity followed is the dimensionless distance d∗. It is defined as d∗ = ‖Xc−Xp‖

max
X∈Ωc
‖Xc−X‖

with Xc

the centre of gravity of the cell, Xp the position of the particle and Ωc the domain defined by
the cell c. When particles are properly tracked, this distance is always smaller than 1. However,
if one of the faces crossed by a particle were to be missed, the particle would be permanently
lost since it could continue its motion without bound. 2 In such cases, the distance from the
cell centre could diverge and become much greater than 1.
Results obtained with various meshes are compared using a timescale made dimensionless using
the Lagrangian timescale t∗ = t/TL (which is constant for all meshes considered). The results
are displayed in Figure 2.B.6: we can see that, with 100 000 particles dispersed initially from the
point source, the maximum distance to the cell centre converges towards 1 but remains always
smaller than unity. This proves that the current algorithm is tractable even for 3-D unstructured
meshes.
As in Section 2.3.1, we can also analyse the results obtained for the different second-order
moments. We focus here on verifying that the results are consistent regardless of the mesh used
using a given time step (the role of the time step has been detailed in Section 2.3.1). The results

2If the current cell associated to a particle is not correct, the algorithm would not detect other face-crossing
events.
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(Xv1Xv2Xv3) •
Xv1

•
Xv2

•Xv3

•Xv4
•

•
Xv5

•

×
Xf

×XO

×XD

×
XI1

×
XI2

Figure 2.B.4: Sketch showing a particle displacement from XO to XD going through a warped
face: it can be seen that the particle exits the cell through XI1 (which belongs to the sub-face
(Xf , Xv1 , Xv4) and re-enters the cell through XI2 (which belongs to the sub-face (Xf , Xv2 ,
Xv3). This is naturally handled by the present algorithm which browses through all sub-faces
and then counts the number of times a sub-face is crossed: a pair number means that it stays
in the current cell while an odd number means that it exits the current cell.

(A) Hexa mesh. (B) Tetra mesh. (C) PrT mesh. (D) PrG mesh.

Figure 2.B.5: Type of mesh used in the present case, which span a range of possible configurations
(from simple Cartesian mesh without wrapped faces to highly distorted meshes with wrapped
faces.

are displayed in Figure 2.B.7: it can be seen that all numerical results match the analytical
values regardless of the mesh used in such cases. This confirms the accuracy of the algorithm
even when 3-D unstructured meshes are used. At this stage, it is also worth noting that 1-D
simulation provide the same results as 3-D ones since each of the three directions can be treated
independently of the other ones (this is actually a typical characteristic of homogeneous isotropic
turbulence).
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Figure 2.B.7: Evolution of 〈XX〉, 〈UU〉,〈XU〉 for the point source dispersion in the ballistic limit
case. Comparison between the analytical solution (black line) and numerical results obtained
with the new algorithm for the various meshes. The numerical results are all in agreement with
the analytical solution regardless of the mesh used.
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In the course of the development of Lagrangian stochastic models, two concerns have often
surfaced. The first concern is related to the respect to the well-mixed condition which states
that, for an incompressible flow, a uniform distribution of particles should remain so (interested
reader may refer to Sawford [1986], Thomson [1987]). Indeed, since fluid particles represent
the same fixed amount of mass, preserving a uniform concentration is equivalent to stating that
the mass conservation equation should be satisfied. Actually, this issue was clarified very early
by Pope [1985, 1987] and McInnes and Bracco [1992] and has been repeated in several works
(see Minier and Peirano [2001], Minier et al. [2014]), where it was demonstrated that, as long
as the mean pressure gradient is properly introduced in the particle velocity equation, the well-
mixed criterion is automatically satisfied. This was revisited recently in the analysis of Bahlali
et al. [2020] with a view towards atmospheric applications which confirmed previous conclusions.
The second concern is related to the wall-boundary condition we should apply to ensure that
the ‘law of the wall’ discussed in Pope [2000] is correctly reproduced by Lagrangian simulations.
Contrary to the first concern, this point has received less attention (see an overview of existing
attempts in Haworth [2010]) and is still the subject of some confusion as to the form and the
physical meaning of the wall-boundary condition for fluid particles. In many applications, a
simple elastic condition is applied at the wall boundary. Such a condition is clearly wrong for
particle streamwise velocity components as it cancels the exchange of momentum occurring in
the near-wall region, which is a key characteristic of the physics of wall boundary layers. On
the other hand, an an-elastic wall boundary condition was proposed in earlier works by Dreeben
and Pope [1997a] and Minier and Pozorski [1999], though its significance may not have yet been
perceived for stochastic-particle-based simulations. The issue of what wall-boundary condition
should be enforced in turbulent wall-bounded flows was addressed by Bahlali et al. [2020] who
revealed that an elastic rebound condition leads to serious errors in the near-wall region and
brought further validation for the an-elastic boundary condition. Yet, the analysis remained
incomplete as to whether the correct profiles of the logarithmic region were really retrieved but
was helpful to bring out a number of numerical issues concerning the interpolation of mean
fields at particle positions and how particle statistics are to be calculated. In that sense, the
present work is a follow-up of this first study and aims at clarifying the issues associated to
the wall-boundary conditions needed in the spirit of the wall-function treatment of turbulent
boundary layers, as well as bringing insights into the physical and numerical issues involved.
To address the above-mentioned issues, we analyse numerical outcomes in a neutral surface-
boundary layer (SBL) flow. Since this configuration is the most classical way to describe
near-ground atmospheric flows in the absence of thermal effects, it is of first importance for
atmospheric applications. This is also a situation where the wall-boundary condition plays a
key role. Furthermore, analytical solutions are available which allows to monitor numerical
errors. Finally, this situation remains simple enough to allow in-depth numerical investigations
to be performed, while conclusions remain applicable in more complex geometries since it is
applied to describe locally a turbulent flow in the immediate vicinity of small wall-surface
elements. In contrast to the first studies on the an-elastic wall-boundary condition of Dreeben
and Pope [1997a] and Minier and Pozorski [1999] which were carried out using stand-alone
simulations, present results were obtained using a hybrid finite-volume/particle (FV/particle)
numerical method, corresponding to a hybrid Moments/PDF description of turbulent flows,
and are therefore interesting to assess since they complement these first studies and provide
additional support.
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In short, the present work realised in collaboration with J.-P. Minier, Y. Roustan, M. Ferrand
and published in Balvet et al. [2023b], has a three-fold objective:

(i) to present new numerical results to validate the an-elastic boundary condition and point
out the shortcomings of the often applied elastic condition;

(ii) to investigate the numerical errors induced when interpolating mean fields at particle
locations and propose local schemes to simulate particle dynamics;

(iii) to bring out statistical artefacts when extracting particle statistics in volumes where the
local homogeneity assumption fails and to propose correction terms.

This chapter is organised as follows. First, detailed numerical results are presented in Section 3.1
to validate the an-elastic wall-boundary condition. The issues related to the interpolation of
mean fields at particle locations are addressed in Section 3.2, while a careful investigation of
potential artefacts in the statistical treatment of particle dynamics is carried out in Section 3.3.
Conclusions are then given in Section 3.4.

3.1 Verification of the Wall-boundary Condition

Contents
3.1.1 Surface-Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.1.2 Verification for Both Smooth and Rough Walls . . . . . . . . . . . . . . . 135

3.1.2.1 Verification on Smooth Walls . . . . . . . . . . . . . . . . . . . . 136
3.1.2.2 Verification on Rough Walls . . . . . . . . . . . . . . . . . . . . 138

3.1.3 Independence with Respect to zpl+ . . . . . . . . . . . . . . . . . . . . . . 138
The purpose of the present section is to revisit the reference wall-boundary condition
(cf Paragraph 1.3.3.2.4) proposed by Dreeben and Pope [1998] and Minier and Pozorski [1999]
to assess whether it properly represents the physics of the logarithmic zone and also to provide
further numerical validation. To that effect, a turbulent 1-D infinite neutral SBL flow, which is
characteristic of such situations, is considered. In Section 3.1.1, we first present the analytical
results obtained using the SLM model, which serves as a reference in the verification process.
We then highlight that the reference wall-boundary condition enables to simulate correctly the
logarithmic zone, without any modification, for both smooth and rough walls. Finally, we
show that the results obtained are independent of the position of the rebound plane within the
logarithmic zone, which brings in new validation results compared to previous studies.

3.1.1 Surface-Boundary Layer

Leaving out thermal stratification and stability effects, the neutral SBL flow is the classical
situation to model neutral near ground atmospheric flows. Furthermore, at high Reynolds-
numbers and even in more complex situations, the flow in the vicinity of a small wall surface
element can be described locally by such boundary layers. The situation considered here consists
therefore in a 1-D incompressible and turbulent flow with a wall at the bottom, a constant shear
stress condition at the top and periodicity in the two other directions. The flow is driven by the
shear stress imposed at the top. We impose then uw = −u2

∗ where u∗ is the friction velocity
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defined as u∗ =
√
σwall/ρ, with σwall the shear stress at the wall. In the Lagrangian scope, this

is done by providing adequate mean carrier fields and by implementing an an-elastic boundary
condition satisfying Eq. (1.235) on the top of the domain.
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Figure 3.1: Scheme of the surface-boundary layer studied.

The high-Reynolds Navier-Stokes equation Eq. (3.1) governing the mean velocity can be
extracted from Eq. (1.217b) as:

〈dU〉
dt = ∂〈U〉

∂t
+ grad(〈U〉) · 〈U〉+ div(〈u⊗ u〉) = −1

ρ
grad〈P 〉+ g. (3.1)

We consider a simple shear flow parallel to the wall, which depends only on the height: 〈U〉 =
〈U〉(z)ex . Moreover, the diffusion terms for the second-order moments are considered negligible.
This results in a logarithmic boundary zone within which analytical solutions can be derived.
The mean velocity profile is logarithmic and its value depends on the nature of the wall-boundary
condition applied at the bottom and whose formulation for smooth or rough walls is:

〈U〉 =


u∗

(1
κ

ln(zu∗
ν

) + Clog

)
for smooth walls,

u∗
κ

ln(z + z0
z0

) for rough walls.

(3.2a)

(3.2b)

In these equations, κ is the Von Kármán constant equal to 0.42, ν is the kinematic viscosity, and
Clog a constant equal to 5.2. Two characteristic heights appear. The first one is δν = ν/u∗ the
viscous length scale, with respect to which we define the dimensionless height z+ = z/δν = z u∗/ν
which characterises the flow within the logarithmic boundary condition. The second one is the
roughness height z0 characterising the effect of the wall roughness on the flow.
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Using the SLM model and neglecting the effects of the third order terms, the equations governing
the Reynolds tensor are simplified into Eqs 3.3:

〈uu〉 : 2〈uw〉∂〈U〉
∂z

=− 2ε
CL

〈uu〉
k

+ C0ε, (3.3a)

〈uw〉 : 〈ww〉∂〈U〉
∂z

=− 2ε
CL

〈uw〉
k

, (3.3b)

〈vv〉 : 0 =− 2ε
CL

〈vv〉
k

+ C0ε, (3.3c)

〈ww〉 : 0 =− 2ε
CL

〈ww〉
k

+ C0ε. (3.3d)

Resolving these equations shows that the second-order moments are constant in the domain
with analytical values given by Eqs 3.4:

k =
1 + 3

2C0√
C0

u2
∗ ' 3.34u2

∗ (3.4a)

〈uu〉 =C0 + 2√
C0

u2
∗ ' 2.94u2

∗, (3.4b)

〈uw〉 =− u2
∗, (3.4c)

〈vv〉 =〈ww〉 =
√
C0u

2
∗ ' 1.87u2

∗, (3.4d)
〈uv〉 =〈vw〉 = 0. (3.4e)

3.1.2 Verification for Both Smooth and Rough Walls

We now verify that the physics of the SBL is well respected using the reference wall-boundary
condition presented in Paragraph 1.3.3.2.4 for smooth as well as rough walls. Similar verification
of the effects of the wall-boundary condition on smooth walls were proposed by Dreeben and
Pope [1998] and Minier and Pozorski [1999] using a stand-alone approach, and by Bahlali et al.
[2020] using a hybrid method. However, the case of rough walls, which is of major importance
for atmospheric flows, was not considered. It is therefore interesting to extend the analysis to
assess if the reference wall-boundary condition can also be applied for rough walls.
The simulations presented here were obtained with the numerical hybrid formulation introduced
in Section 1.3.3.3. In this chapter, to focus on the analysis of the error introduced in the
Lagrangian methods, analytic solutions described in Section 3.1.1 are used for the estimation
of the mean carrier fields at the centre of the cells. The computations were carried out with
the open-source CFD solver code_saturne (see Archambeau et al. [2004]) and a uniform mesh
was used with H/∆z = 100, H and ∆z being respectively the domain and the cell heights.
The natural way to shift the rebound plane away of the physical location of the wall is to
extract the Lagrangian domain from the FV one. This means that the FV mesh is also used
for the Lagrangian method, but the boundary condition is set at a height zpl. The particles are
injected only above this plane as schematised in Figure 3.1. We consider the flow of air in a
domain of height H= 50 m, with u∗ = 1 m s−1, thus with a Reynolds number Re∗ = H.u∗/ν '
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3.35 106. As indicated, the Lagrangian boundary condition is applied at a dimensionless height
zpl

+ = zpl.u∗/ν = 1.67.105 in the logarithmic zone. The simulations were carried out with a
time step sufficiently small compared to the lowest Lagrangian timescale seen by the particles
and compared to the condition imposed by the CFL to neglect the temporal error discussed
by Peirano et al. [2006]. Similarly, the number of particles is sufficiently high to consider that
the statistical error is small compared to the spatial one. The main source of numerical error is
the spatial discretisation, discussed in Sects. 3.2 and 3.3.
In the following, dimensionless quantities denoted with the superscript + are plotted as a function
of the dimensionless height z/H (based on the height of the domain simulated). The mean
velocity and Reynolds tensor are scaled with the friction velocity u∗, so that 〈U〉+ = 〈U〉/u∗
and 〈uiuj〉+ = 〈uiuj〉/u2

∗, while the mean concentration is normalised using the concentration
〈C〉H averaged all over the domain, giving 〈C〉+ = 〈C〉/〈C〉H .
Two main criteria are considered: first, the respect of the well-mixed criterion and, second, the
respect of the theoretical values of the first and second-order velocity moments, as prescribed
in Section 3.1.1. The first condition states that, since particles represent a fixed unit of mass,
their concentration must remain constant so as to ensure mass conservation and the validity of
a Lagrangian stochastic approach (see Pope [1985]). In the present case, this means that we
should conserve 〈C〉+ = 1 everywhere across the domain. As will be seen below, this criterion is
always respected here since the mean pressure gradient is properly introduced in the Langevin
formulation. This point has been repeatedly addressed (e.g. by Minier et al. [2014] and Bahlali
et al. [2020]) and is now well established. We therefore concentrate mostly on discussing the
second criterion.

3.1.2.1 Verification on Smooth Walls

Results obtained using the reference wall-boundary condition and the specular one with a
smooth wall are presented in Figure 3.2. As shown in Figure 3.2A, the concentration within the
domain remains constant and the well-mixed criterion is respected, for both rebound conditions
(the slight fluctuations are due to the inherent statistical noise of the Monte Carlo approach).
This confirms that, once the mean pressure gradient is properly accounted for in the Langevin
equation for particle velocities, there is no accumulation or depletion of particles even near the
wall. This behaviour is not influenced by the details of the wall boundary condition applied to
the particle streamwise velocity component and essentially reflects the specular reflection used
for the particle vertical position. However, when we consider first- and second-order velocity
moments, marked differences can be observed between the two boundary conditions. When
the elastic rebound condition is used, a zero-gradient condition on the velocity is actually
imposed, thus not respecting the shear stress which is the driving force in SBL flows. As
the gradient of velocity tends towards zero, the velocity is overstated near the rebound plane as
seen in Figure 3.2B. Without this gradient of velocity, the production terms in Eqs 3.3 tend to
become null and this results in a tendency to have isotropic turbulence near the rebound plane.
Such trends are clearly apparent in Figure 3.2C where the shear stress (on the left) goes to zero
and the streamwise component of the Reynolds tensor (on the right) tends towards the normal
component of the Reynolds tensor (on the middle). On the contrary, the reference an-elastic
wall-boundary condition enables to properly maintain the shear stress across the whole SBL.
This is evident in Figure 3.2C, where the components of the Reynolds tensor are effectively
constant and in line with the values expected from Eqs 3.4. Note that we have also a proper
profile of velocity in Figure 3.2B, i.e. linear on a semi-logarithmic scale.
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Figure 3.2: Vertical profiles in the surface-boundary layer for smooth walls: the normalised
concentration (A); the dimensionless mean streamwise velocity (B); and the four non null
components of the dimensionless Reynolds tensor (C), (note that, since in the spanwise and
normal direction the Reynolds tensor components are equal, only the latter one is plotted).
Considering a smooth wall, two results corresponding to two distinct Lagrangian boundary
conditions are compared: the reference an-elastic wall-boundary condition (�) and the elastic
wall-boundary condition ( ). Both respect the well-mixed criterion but only the reference
wall-boundary condition enables to obtain correct mean velocity and Reynolds tensor profiles
compared to the analytical solutions ( ).
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3.1.2.2 Verification on Rough Walls

A similar analysis was performed with a rough wall instead of a smooth one. The roughness
height considered is z0 = 0.1 m. In the flow studied here, such a wall can indeed be considered
as rough since z+

0 = z0u∗/ν ∼ 6.7 103 � 1. It is important to realise that the dimensionless
roughness height enters only the wall-function treatment of the moment approach (thus only
in the FV solver) to obtain the correct mean velocity law according to Eq. (3.2b). Although
this roughness height impacts the value of the mean velocity, it does not modify the shear
stress which depends solely on the friction velocity u∗ imposed by the upper flow. Therefore,
since the boundary condition applied on the particles, cf. Eq. (1.235), is built to respect a
condition not directly on the mean velocity but on the shear stress, it is unchanged regardless of
whether we consider smooth or rough walls. This is demonstrated by the numerical results shown
in Figure 3.3, which confirm that the boundary condition used in the Lagrangian stochastic
method is still valid for rough walls. Given that the fully turbulent shear-stress evolution is
alike with both smooth and rough walls, these results are quite similar to the ones obtained for
smooth walls and the same interpretations can be made.
At this stage, it is worth repeating a word of caveat: too often, as recalled by Haworth [2010], a
specular rebound is implemented to represent the effects of the wall for high-Reynolds-number
flows. As demonstrated here, this condition does not respect the physics of the logarithmic zone
and, in particular, the characteristic constant shear-stress profile. For this reason, it should be
avoided and replaced by the reference an-elastic wall-boundary condition which, furthermore, is
valid for both smooth and rough walls. The latter rebound condition is kept for the rest of this
work.

3.1.3 Independence with Respect to zpl
+

From now on, we mainly focus on the velocity second-order moments which are the most
sensitive to potential sources of error. In the previous section, the height at which the boundary
condition was implemented in the logarithmic zone was chosen somewhat arbitrarily. We now
demonstrate that numerical outcomes are independent of the location at which the reference
an-elastic wall-boundary condition is applied, as long as it is set in the logarithmic zone.
To this end, we consider that the rebound plane is implemented at different dimensionless heights
zpl

+ . There are two ways to modify this value: either by modifying the nature of the flow through
its Reynolds number, or by changing the geometrical height of the rebound plane. The results
presented in Figure 3.4 are based on this second method but similar results would have been
obtained by modifying the Reynolds number. For these simulations only, the Reynolds number
characterising the flow is lowered to Re∗ = u∗H

ν = 3348. The plane is set on different height
corresponding to zpl

+ = 335, zpl+ = 167, zpl+ = 100, and zpl
+ = 67. Then, as we can see

in Figure 3.4, the results are independent of the choice made for the height of the rebound plane
as long as it remains within the logarithmic zone. The only difference is that by lowering the
physical position of the rebound plane we can have access to information closer to the wall.
To conclude, the numerical results presented in this section demonstrate the validity of
the particle an-elastic wall boundary condition, Eq. (1.235), and provide additional support
compared to previous studies. Two important results complete this validation process: first,
this wall boundary condition can be used, without any modification, for smooth and rough
walls; and second, the resulting profiles across the SBL are insensitive to the location of the
rebound plane at which the an-elastic condition is applied provided that this rebound plane
remains within the logarithmic region. Note that wall functions in the FV formulation usually
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Figure 3.3: Vertical profiles in the surface-boundary layer for rough walls: the normalised
concentration (A); the dimensionless mean streamwise velocity (B); and the four non null
components of the dimensionless Reynolds tensor (C) (note that in the spanwise and normal
direction the Reynolds tensor components are equal, only the latter one is plotted). Considering
a rough wall, two results corresponding to two distinct Lagrangian boundary conditions are
compared: the reference an-elastic wall-boundary condition (�) and the elastic wall-boundary
condition ( ). Both respect the well-mixed criterion but only the reference wall-boundary
condition enables to obtain correct mean velocity and Reynolds tensor profiles compared to the
analytical solutions ( ).
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Figure 3.4: Vertical profiles of the four non null components of the dimensionless Reynolds
tensor for different boundary condition implementation heights zpl+ (note that in the spanwise
and normal direction the Reynolds tensor components are equal, only the latter one is plotted).
First the vertical profiles for all components are plotted all over the domain (A). Then for each
component respectively 〈uw〉 (B), 〈ww〉 (C) and 〈uu〉 (D), a focus is set on the few cells near the
wall and for each simulation the profiles are plotted side-by-side. The implementation height
considered are: zpl+ = 335 (�); zpl+ = 167 (•); zpl+ = 100 ) and zpl+ = 67 (+). The grey
dashed box in the sub-figure (A) represents the zoomed zone near the wall. On the other sub-
figures the grey dotted lines represent the FV cells and the coloured dotted lines the different
boundary condition implemented. Note that the results are independent of the implementation
height zpl+ .
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consider that the lower limit of the domain is shifted from the physical position of the wall by a
distance, referred as z0 for rough walls. One can then apply the PDF rebound plane directly on
the boundary face of the FV mesh. This situation is considered from now on. Given the physical
soundness of the present one-particle PDF model, we can turn our attention to the analysis of
spatial numerical errors.

3.2 Interpolation of Mean Fields at Particle Positions

Contents
3.2.1 Limitation of the Piece-wise Constant Interpolation Scheme . . . . . . . . 141
3.2.2 Improved Interpolation Methods . . . . . . . . . . . . . . . . . . . . . . . 143

3.2.2.1 Selection of the Mean Fields to Interpolate . . . . . . . . . . . . 143
3.2.2.2 Interpolation Methods . . . . . . . . . . . . . . . . . . . . . . . . 144
3.2.2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 145

The purpose of this section is to introduce the issues related to the interpolation step. From
now on, the fine FV mesh is made coarser to highlight the spatial numerical errors, we have
then H/∆z = 20. The limit of the local uniformity hypothesis is first discussed in Section 3.2.1.
In Section 3.2.2, we present improved interpolation methods as well as numerical results, after
selecting which mean fields are best to interpolate.

3.2.1 Limitation of the Piece-wise Constant Interpolation Scheme

We start by bringing out the source of error that appears when using the local uniformity
hypothesis for the interpolation of mean fields at particle locations in the vicinity of the wall.
To evaluate the local uniformity hypothesis, we can compare the first-order term in the Taylor
expansion to the value at the centre of the cell Xc. For a variable Ψ, this local uniformity
hypothesis requires that, everywhere in the local volume where the hypothesis is applied, we
have:

|gradΨ(Xc)||(Xi −Xc
i )| � Ψ(Xc). (3.5)

In our case, given that the mesh is uniform, and that all the non-zero gradients increase as we
get closer to the wall, the condition has just to be fulfilled at the rebound plane. For example,
this condition for the Lagrangian timescale at the rebound plane implies that:

2κ√
C0u∗

0.5∆z � 2κ√
C0u∗

(0.5∆z + zpl). (3.6)

If we want to implement the rebound plane at the same location as the FV parietal law, i.e by
setting zpl = z0, the latter condition cannot be respected. Indeed, a hypothesis underlying the
use of such parietal laws is to observe spatial scales larger than the shift implied by this parietal
law. Therefore, we should have 2z0/∆z� 1. This means that the condition Eq. (3.6) and the
uniformity hypothesis are not respected.
Furthermore, when considering uniform mean fields within a cell, the local variations of statistics
and their mean gradients result from the presence of particles coming from nearby cells. The
latter ones "keep in memory" the mean field encountered previously during a time which is of the
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order of the Lagrangian timescale defined in Eq. (1.213). Therefore, if the particle residence time
in a given cell is larger than the local value of the Lagrangian timescale, the dynamics is mostly
governed by the uniform fields within this cell, regardless of what happens in the surrounding
ones and without any noticeable effects of the mean gradients. Since the mean velocity gradient
is the source of the production terms in Eqs 3.3, under these conditions, the estimated kinetic
energy of the particles would then tend towards the case of a uniform isotropic maintained
turbulence (this issue is further discussed in Appendix 3.A). At the opposite, when Lagrangian
timescales are small, near the interfaces between two cells, the step in the mean fields has to
be bridged quickly, thus over a small distance. This yields locally to an overstatement of the
estimated mean velocity gradient and of the estimated shear stress and streamwise component
of the Reynolds tensor. Such spurious effects are illustrated in Figure 3.5.

+𝑧𝑐𝛿𝑧

𝛿𝑡𝑜𝑝𝐿

𝛿𝑏𝑜𝑡𝐿

Locally uniform

Overproduction
of the gradient

Overproduction
of the gradient

𝑐𝑒𝑙𝑙𝑗

𝑐𝑒𝑙𝑙𝑗−1

𝑐𝑒𝑙𝑙𝑗+1

Figure 3.5: Illustration of the spurious evolution of the statistics within a cell when a piece-wise
constant interpolation is used in a zone where the turbulent length scale δL is small compared
to the cell size ∆z. This situation occurs near the wall. In this case the turbulent mixing is not
sufficient leading to an overestimation of the gradient and production term at the faces and an
underestimation of these quantities at the centre of the cells.

Using a P0 interpolation method, for this ‘mixing effect’ to properly take place, it is thus
necessary to ensure that there is no zone where particle dynamics is governed only by the
uniform fields assumed in the current cell in which they are located. In order to do so, one may
assert that the characteristic vertical turbulence length scale δL =

√
〈ww〉TL (the distance over

which a particle "keeps memory" of carrier fields from other cells) must be large compared to
the size of the cells. In this situation the evolution of δL is governed by:

δL(z) '
√
〈ww〉TL = C

1
4
0 u∗

2κ√
C0u∗

z ' 0.61z. (3.7)

The respect of the condition Eq. (3.8) can give us a criterion to consider if a mesh is sufficiently
fine. In SBL flows, it is sufficient to respect this condition at the rebound plane:

δL ' 0.61(0.5∆z + zpl) > ∆z. (3.8)

Once again, if we impose zpl = z0, this condition is not satisfied. Thus, using a P0 interpolation
scheme, at the centre of the cells in the immediate vicinity of the wall-boundary condition, we
expect to find a zone in which particles see only the uniform properties associated to this cell.
The corresponding errors are further highlighted in Appendix 3.A and solutions to limit them
are discussed in Section 3.2.2.
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3.2.2 Improved Interpolation Methods

We have seen in Section 3.2.1 that, near the wall and especially if we set the rebound plane
at the FV wall boundary, the P0 interpolation is not valid anymore and does not enable to
properly recreate the particle-based mean velocity gradient and the production terms. Improved
interpolation methods are thus needed. It is however useful to select first which mean fields are
to be interpolated before addressing how this can be achieved.

3.2.2.1 Selection of the Mean Fields to Interpolate

To select the fields to be interpolated, we can think of the mean fields appearing in the evolution
of the moment of interest, cf. Eq. (3.1) and Eqs 3.3. This corresponds to the mean velocity and its
gradient, the mean pressure gradient, the Reynolds tensor and the dissipation rate. On the one
hand the variations of density, pressure gradient, and Reynolds tensor must be small compared
to their value at the centre of the cells. This is especially true in the case of neutral SBLs where
these quantities should be constant. On the other hand, near the wall, the dissipation rate and
the mean velocity gradient become very large. Thus, for these fields, we can no longer estimate
that only the first term in the Taylor expansion is dominant. For the mean velocity, this would
result in a poor estimation of the production term and the Reynolds tensor as the ensemble-
averaged velocity gradient is not handled very well near the wall with a P0 interpolation. In
consequence, a finer reconstruction method is needed for the mean velocity, which is to be
retained as a mean field to interpolate. For similar reasons, a finer description should also be
considered for the evolution of a turbulent quantity associated to the dissipation rate. The issue
is then to select which turbulent scales is best to consider from a numerical standpoint. In that
sense, the turbulent dissipation rate is not the best candidate due to its hyperbolic variation.
Near the wall, it is more convenient to consider the turbulent timescale τk = k/ε which is far
smoother than the turbulent dissipation rate and does not have any singular point as discussed
by Speziale et al. [1992]. In particular, within the logarithmic zone, τk evolves linearly with
the distance to the wall whereas ε evolves with the inverse of this distance. Numerically, the
Lagrangian timescale appears therefore as the relevant turbulent variable to interpolate. In the
spirit of k−τk models, τk is then chosen to reconstruct the Lagrangian timescale and to use this
quantity instead of the dissipation rate. Note that this amounts to using a Rij −TL formulation
instead of a Rij − ε one. Other quantities such as the turbulent Reynolds number Ret = k2

ε as
proposed by Zhang et al. [2020] may be promising candidate for similar reasons than τk but are
not considered in this work. It is also worth noticing that the selection of the fields to interpolate
more precisely depends on the physics considered and the variables retained in the state vector.
For example, when considering the transport of a scalar Ψ, if we are interested in its variance
or in its turbulent fluxes, the treatment of the scalar gradient in the corresponding production
term requires a precise interpolation of the mean field 〈Ψ〉.
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3.2.2.2 Interpolation Methods

To select interpolation methods, we first require that they respect three conditions. More
precisely, a proper interpolation method should:

Cond. i be local, so as to be easily implemented in complex geometries and within non-
homogeneous meshes (this is in line with the NGP interpolation considered);

Cond. ii provide an improved description of the mean velocity and Lagrangian timescale fields
compared to the case of a uniform interpolation near the wall, so as to avoid the pitfalls
presented previously;

Cond. iii respect key physical equilibrium near the wall, in particular to ensure that the
production-dissipation balance is still satisfied.

To highlight the relative importance of the two last conditions, four interpolation methods of
the mean fields at the position of the particles are now introduced. They are:

Interp. 1 P0 interpolation on the mean velocity and Lagrangian timescale fields.
This first interpolation is the one used previously. It does not respect the condi-
tions Cond. ii and Cond. iii. It should yield to the spurious effects specified
in Section 3.2.1, illustrated in Figure 3.5 and plotted in Appendix 3.A in Figure 3.A.1.

Interp. 2 P1 interpolation on the mean velocity and Lagrangian timescale.
This interpolation is the simplest and most natural one when accounting for the
necessity to improve the interpolation for these two fields (see Cond. ii). This is
especially true for the Lagrangian timescale for which such an interpolation method
enables to retrieve the analytical profile near the wall. However, within a cell, this
method is not consistent with the condition Cond. iii for the production-dissipation
balance governing the dynamics of the SBL. Indeed, as the mean velocity field is linearly
interpolated, its gradient is considered constant within a cell which means that the
production term and the Lagrangian timescale should also be piece-wise constant.

Interp. 3 P1 interpolation on the mean velocity field and P0 interpolation on the Lagrangian
timescale field.
Although less accurate than the previous one, this interpolation respects the condi-
tion Cond. iii and the production-dissipation balance. However, it does not respect
the condition Cond. ii; as seen with Eq. (3.6), the local uniformity hypothesis for the
Lagrangian timescale does not hold at the wall.

Interp. 4 A logarithmic interpolation of the mean velocity field with a linear interpolation of the
Lagrangian timescale field within wall cells and the interpolation Interp. 3 everywhere
else.
This interpolation is proposed in the spirit of the wall-function treatment to retrieve
both conditions Cond. ii and Cond. iii. Indeed, to respect the condition Cond. ii and
especially the analytical profile near the wall, a linear interpolation should be used
for the Lagrangian timescale. Then, to respect the production-dissipation balance
condition Cond. iii, this choice of interpolation for the Lagrangian timescale requires
to select a logarithmic interpolation for the mean velocity. Such an interpolation
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hypothesis is less justified in the whole domain and, moreover, it requires to have
access to the relative position between a particle and the wall everywhere. Thus, to
remain local and respect the condition Cond. i, this interpolation is applied only in
the cell in which the wall boundary condition is applied. In these near-wall cells, the
assumption of a locally developed logarithmic layer is indeed consistent with the wall-
function treatment used for the carrier flow. In the case where a cell is in contact
with several wall-boundary conditions, we can consider only the interactions with the
closest one to the particle. To do so, only the normal distance to the corresponding
face and the shear stress associated to this face are necessary. Outside the immediate
near-wall cells, it is necessary to consider another interpolation scheme. The one kept
is the third one (i.e. Interp. 3) as it respects all the three conditions outside the close
vicinity of the wall.

In the present work, we restrict ourselves to these simple and local interpolation schemes
even though more advanced and accurate interpolation methods exist (see Subramaniam and
Haworth [2000], Jenny et al. [2001], McDermott and Pope [2008], Viswanathan et al. [2011]).
If one wishes to use such extended schemes, three main issues should however be carefully
addressed:

• The consistency between the reconstruction of the production and dissipation terms (Cond.
iii) should be assessed. Indeed, the error induced by inconsistent reconstructions can offset
the gain of accuracy in the interpolation of mean fields, as shown in Figure 3.6;

• The implementation of such methods on 3-D unstructured meshes can turn into a daunting
task;

• Within the scope of self-contained or stand-alone methods, the modification of the
interpolation scheme is not as straightforward and cannot be applied as such. Indeed,
in this context, the averaging scheme used to obtain the statistics issued from the particles
must be of same or higher order than the interpolation scheme used to interpolate the
mean moments at the position of the particles (see Hockney [1966]). An analysis on the
averaging scheme considered would then be a prerequisite and the local NGP method used
should certainly be modified.

For these reasons, such more complex schemes are not considered in the present work.

3.2.2.3 Numerical Results

In order to compare the interpolations proposed above, a SBL is simulated as previously. The
simulations were carried out considering a 20 cells mesh for the finite volume calculation. A
rough wall-boundary condition is implemented with a roughness height of 0.1 m. The rebound
plane is set on the same level than the FV wall-boundary condition, i.e. at a dimensionless
height of z+

0 = 6.7 104. Since the zone of interest is near the rebound plane, we focus on the
flow obtained within the first few cells of the FV mesh. To access the spatial evolution of the
extracted statistics within each FV cell in order to assess the errors induced by the different
interpolation schemes, a specific treatment is applied to the statistics plotted in Figure 3.6.
The ensemble statistics are first estimated on a spatial partition of the domain 100 times finer
than the FV mesh. They are then spatially averaged over ten bins, which means that in each
FV cell 10 points are plotted. By doing so, we remove the spatial error introduced by the
estimation of the statistics on statistically non-uniform averaging bins. This error is discussed
later in Section 3.3.
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Figure 3.6: Vertical profiles of the dimensionless mean streamwise velocity (A), the four non null
components of the dimensionless Reynolds tensor (B) in the few cells near the wall (note that
in the spanwise and normal direction the Reynolds tensor components are equal, only the latter
one is plotted). The results obtained with four interpolation methods are compared: Interp.
1, which is a piece-wise constant interpolation for all mean fields(�); Interp. 2, which is a
piece-wise linear interpolation for both mean velocity and mean Lagrangian timescale fields
(N); Interp. 3, which is a piece-wise linear interpolation for the mean velocity field and piece-
wise constant interpolation for the mean Lagrangian timescale field (H); Interp. 4, which is
a logarithmic interpolation for the mean velocity field and piece-wise linear interpolation for
the mean Lagrangian timescale field in the cell at wall and similar to the previous interpolation
otherwise (•). These statistics are compared to the analytical solution ( ). Note that a specific
statistical treatment has been made to avoid the statistical error discussed on Section 3.3.

When using the P0 interpolation on all mean fields, we observe, as expected, a spurious
behaviour near the wall with a uniform flow tending to appear at the centre of the first cell and
overestimated fluctuations near the cell interfaces. This can be noticed by the erroneous S-shaped
profile of the mean velocity within the first cell in Figure 3.6A. This is also quite noticeable
in Figure 3.6B for the estimations of the second-order moments. Indeed, the streamwise
components tend towards the values corresponding to a uniform maintained isotropic turbulence
in the centre of the first cell while they are overpredicted at the interfaces due to overestimated
gradient of the mean velocity in these areas. Those effects are well diminished by using a P1
interpolation on the velocity.
However, since such P1 reconstructions are in general discontinuous, we can see an error on the
second-order moments between the first and second cells due to the step of the mean velocity
field at the cell interface. Having a more continuous profile for the Lagrangian timescale,
the numerical discontinuity for the mean moments is better handled with Interp. 2 than
with Interp. 3, as we can see at the interface between the two first cells. Yet, near the rebound
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plane, an underestimation of the shear stress is noticeable at the wall using Interp. 2 but not
using Interp. 3. Interp. 2 does not respect Cond. iii for the production-dissipation balance, due
to the P1 interpolation of the Lagrangian timescales. Indeed, since the velocity gradient and
the production term are considered as uniform, the linear decrease of the Lagrangian timescale
characterising the turbulent structures lifetimes is not compensated. Near the wall, this results in
a spurious decrease of the shear stress and streamwise component of the Reynolds tensor. Across
the first cell, the consistency in the production-dissipation equilibrium, cf. Cond. iii, seems to
play a key role compared to the accuracy in the description of the Lagrangian timescale Cond.
ii. Then, Interp. 3 yields almost perfect predictions for the second-order moment. However,
near the rebound plane, there is still a noticeable discrepancy between the results obtained
respectively with a linear and with a logarithmic interpolation. Finally, Interp. 4, relying on
an analytical interpolation in the first cell, seems to reproduce the exact solution for both mean
velocity and Reynolds tensor. It is thus the one proposed when we can ensure that, everywhere
in each point of the wall cells, the linearly interpolated Lagrangian timescale field is sufficiently
large to use the SLM model developed for high Reynolds number flows.
To conclude, in the vicinity of the wall a description finer than P0 is necessary to properly recreate
the mean velocity gradient and the production terms. It is emphasised that the consistency
between the interpolation of the mean velocity and the Lagrangian timescale plays an essential
role. To fulfil these conditions, the mixed interpolation method, namely Interp. 4, is proposed.
In the spirit of a wall-function treatment, analytic interpolations of the mean velocity and
Lagrangian timescale at particle positions are used in the cells in the immediate vicinity of the
wall. Further from the wall, the simpler interpolation method, Interp. 3, which consists in a
piece-wise linear interpolation of mean velocity field and piece-wise constant interpolation of
the Lagrangian timescale is used to respect the production-dissipation equilibrium. In order to
obtain these results, a spatial average has been applied to remove spurious statistical artefacts
that are studied in Section 3.3.

3.3 Analysis of Statistical Bias Induced by Local Spatial Aver-
aging

Contents
3.3.1 Effect of the Non-Uniformity in the Averaging Bins on the Statistics . . . 148
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Estimator of the Moments . . . . . . . . . . . . . . . . . . . . . 148

3.3.1.2 Convergence of the Spatial Error on the Estimator of the
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3.3.2 Proposition of Correction of the Statistics on the Finite-volume Mesh
Assuming Profile of the First-Order Statistics within the Averaging Bins . 152
3.3.2.1 Proposition of Correction terms . . . . . . . . . . . . . . . . . . 152
3.3.2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 154

As described in Section 1.3.3.3, either at the end of each iteration or in a post-treatment step,
statistics extracted from a set of particles are estimated on a given partition of the space. For
fluid particle simulations based on hybrid methods, it is worth recalling that statistics derived
from the set of particles do not enter the particle evolution equations. These statistics are,
however, observables used to assess particle dynamics. It is therefore of key importance to ensure
that they are not biased by statistical artefacts that would result in misleading interpretations.
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In that sense, the main purpose of this section is to focus on the potential numerical errors
appearing when estimating statistics by local averaging.
As specified in Paragraph 1.3.3.3.4, these errors are of two kinds. On the one hand, there is
the inherent zero-average statistical noise due to Monte Carlo estimations using a finite number
of particles. This well-known error converges with the square root of the number of particles
and is not further discussed in the following. On the other hand, a second source of error is
caused by spatial discretisation when statistics are obtained over particles within small averaging
bins. If the hypothesis of local homogeneity is not respected within these averaging bins, spatial
errors can appear in the estimations of the covariances as demonstrated in Section 3.3.1. To
limit this source of error, the straightforward solution is to estimate statistics on finer bins.
If the same statistics are needed on coarser bins, one may simply spatially average them in
the spirit of multi-grid methods. However, this refinement process introduces multiple spatial
divisions of the domain which are inconvenient for particle tracking and more time consuming.
To avoid such statistical artefacts while keeping the original coarse bins, a new approach is
developed in Section 3.3.2 which consists in correcting statistics. These new correction terms
are based on an assumption about the profiles of the first-order statistics within the averaging
bins. Unless otherwise stated, from now on, the mean moments of the carrier flow are analytically
interpolated at the position of the particles in the whole domain. This is done to focus on the
error impacting the statistics without interference from issues associated to the determination
of the mean moments of the carrier flow or their interpolations.

3.3.1 Effect of the Non-Uniformity in the Averaging Bins on the Statistics

The goal in this section is to identify and quantify the source of spatial numerical error which
can affect the estimation of statistics in averaging bins when the hypothesis of homogeneity,
upon which probabilistic averages are replaced by spatial ones, breaks down.

3.3.1.1 Effect of the Non-Uniformity within the Averaging bins on the Estimator
of the Moments

For any quantity Ψ, its averaged value at a position X noted 〈Ψ〉(X) is approximated by the
estimator of the mean noted 〈Ψ〉Ω. This estimator corresponds to the ensemble average over all
the particles located within a given averaging volume Ω around the position X. It converges
towards the true statistic, which is the element of interest, when the averaging volume tends
towards zero and the number of samples tends towards infinity, i.e. 〈Ψ〉(X) = lim

Ω→0
nΩ→∞

〈Ψ〉Ω

We might wonder if 〈Ψ〉Ω effectively represents the spatial average of the mean ( 1
Ω
´

Ω 〈Ψ〉(X)dΩ)
even when 〈Ψ〉(X) is not uniform in this volume Ω. For this purpose, let us consider a coarse
averaging bin Ω containing particles uniformly distributed but in which mean moments vary
(which means that the hypothesis of local homogeneity is not satisfied). Let us split this coarse
volume Ω in a sufficiently high number of smaller sub-volumes ω so that statistics can be regarded
as uniform within each of these sub-volumes. A scheme of such a splitting in the vertical direction
is represented in Figure 3.7. Note that for the sake of simplicity and clarity we consider that
the mean flow varies only in one direction where the refinement is applied. Indeed, the present
methodology does not depend on the number of dimensions of the problem and can easily be
generalised in 3-D so that it is sufficient to discuss the 1-D situation.
We assume that the number of particles nω within each sub-volume ω is sufficiently large to
consider that the ensemble average does not suffer from statistical error. After obtaining the
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statistics issued from the set of particles on each of the sub-volumes, we can take the spatial
average of those statistics over all the sub-volumes composing Ω as shown in Figure 3.7. Under
the hypothesis considered we have 〈Ψ〉ω = 〈Ψ〉(X) and thus 1

Ω
´

Ω 〈Ψ〉(X)dΩ = ∑
ω∈Ω

nω
nΩ
〈Ψ〉ω.

For the estimator of the mean on the coarsest volume we have:

〈Ψ〉Ω = 1
nΩ

∑
p∈Ω

Ψp =
∑
ω∈Ω

nω
nΩ

 1
nω

∑
p∈ω

Ψp


︸ ︷︷ ︸

〈Ψ〉ω

= 1
Ω

ˆ
Ω
〈Ψ〉(X)dΩ (3.9)

Thus, there is no spatial artefact on the estimation of the mean quantities even if the flow is not
uniform inside a given averaging bin.
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Figure 3.7: Illustration of the error appearing during the statistic estimation step due to the lack
of uniformity of the mean fields within the averaging bins. In the upper part, the covariances
are estimated directly on the coarse bin Ω and are affected by numerical error. In the lower
part, the refinement method used to limit this error is depicted. First, statistics are estimated
on more refined bins ω and are then spatially averaged to obtain the results on the coarser bin
Ω. The refinement is made only in one direction as we consider a 1-D validation case. Note that
only the estimation of the covariances are affected by this deterministic spatial errors .

We also want to check if the covariance estimator is unbiased, i.e. if the estimation of the
covariance obtained on the whole volume is the same as the spatial average of the true covariance.
We have then for two quantities Ψ and Φ:

〈ΨΦ〉Ω − 〈Ψ〉Ω〈Φ〉Ω︸ ︷︷ ︸
Estimator of the covariance

=
∑
ω∈Ω

nω
nΩ

 1
nω

∑
p∈ω

ΨpΦp


︸ ︷︷ ︸

〈ΨΦ〉ω

−〈Ψ〉Ω〈Φ〉Ω

= 1
Ω

ˆ
Ω
〈ΨΦ〉 − 〈Ψ〉〈Φ〉dΩ︸ ︷︷ ︸

True covariance of interest

+ 1
Ω

ˆ
Ω
〈Ψ〉〈Φ〉dΩ− 〈Ψ〉Ω〈Φ〉Ω︸ ︷︷ ︸

Bias: Spatial covariance of the mean fields

(3.10)

It follows that, when the first-order moments vary across the coarse averaging bin Ω, the
estimator of the covariances extracted directly from the whole set of particles (on the LHS
of Eq. (3.10)) differs from the spatial average of the true covariances (the first term in the RHS
term). This is emphasised by the presence of the spatial covariance of the first-order moments
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within the coarse volume (the second RHS term) which is a spatial artefact caused by the non-
respect of the local homogeneity hypothesis within the averaging bins. It is clear that similar
issues would occur for higher order moments. Yet, in this study, we limit ourselves to the
estimation of covariance as higher order statistics are less used as observable.
To conclude, even for correct particle dynamics, an error can impact some covariance estimators.
The estimators which are biased are the ones whose corresponding first-order moments vary
within the averaging bins.

3.3.1.2 Convergence of the Spatial Error on the Estimator of the Covariance

In this subsection, we estimate the magnitude of the deterministic bias introduced in Eq. (3.10).
Since it is due to the spatial variation of mean velocity within the averaging bins, it is clear
that this error depends on both the profiles of mean statistics (〈Ψ〉, 〈Φ〉) as well as on the size
of these averaging bins. In the situation studied, as the flow is uni-axial, taking Ψ and Φ as
the components of velocity, an error appears only if Ψ = Φ = U . Since the spatial variance of
the mean streamwise velocity is positive, if the averaging bins are too coarse, the streamwise
component of the Reynolds tensor is overestimated. Far from the wall, the velocity gradient
is small and thus the spatial averaging bias remains low. However, as we go closer to the wall
where the velocity gradient increases drastically this error becomes more important. For given
particle dynamics with an analytical interpolation of the mean carrier fields at the position of the
particles, this effect is demonstrated in Figure 3.8. This source of error can be preponderant,
for example in this case without refinement, when the bias is of the same magnitude as the
covariance itself and when the estimated covariance is twice higher than expected. It is also
clear that this error converges to zero when the averaging bins are refined. Note that, since we
consider a 1-D problem the refinement is made uniformly only in the direction of interest as
schematised Figure 3.7.
To circumvent the overestimation of covariances seen in Section 3.3.1, we can first estimate
statistics on a sufficiently fine partition of the domain. Once statistics are estimated on this
refined partition, we can spatially average them on the coarser partition of the domain as
illustrated in Figure 3.7 in one dimension. With this method, the evolution of the relative error
on the streamwise component of the Reynolds tensor within the first coarse FV cell (Ω) near the
wall is plotted in Figure 3.9 using different refinement for the intermediate finer averaging bins
(ω). The coloured points correspond to the errors after averaging the profiles Figure 3.8 in the
first cell. Two zones can be identified: a first one below a refinement factor (ratio between the
cell size Ω and the bin size ω) of 30 where the error converges with an order 3/2; and a second
one above the refinement factor of 30 which appears as a plateau region where the other sources
of numerical errors presented in Section 1.3.3.3 become preponderant (in this second zone, we
can then consider the averaging bins to be small enough).
Such a method is applicable even for highly 3-D unstructured meshes. Indeed, each volume can
always be split into sub-pyramidal volumes based on one of the faces of the original volume and
on its centre of gravity. This step can be repeated to have a mesh as refined as wanted. However,
tracking particles into such a finer mesh could be time consuming. Yet, in the scope of hybrid
methods, the statistics issued from the set of particles do not impact their dynamics. Thus, this
could be done only once as a post-processing step, so as to limit the increase of computation
time. Even so, an important issue at stake is to be able to determine a criterion to ensure
that the averaging bin is small enough. This criterion should provide the relative importance of
this source of error compared to the other ones stated in Section 1.3.3.3. However, criteria to
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Figure 3.8: Vertical profiles of the statistical estimator of the streamwise component of the
Reynolds tensor in the vicinity of the wall using different spatial bins for the local averaging.
Compared to the FV cells (indicated by the grey dotted lines), the bins are respectively: of the
same size (�); 5 times finer ( ); 10 times finer (•); 20 times finer (H); 50 times finer (N). Note
that these observed statistical estimators are extracted from the same particle set, i.e. they
correspond to identical particle dynamics.
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Figure 3.9: Evolution of the error on the estimator of the streamwise component of the Reynolds
tensor in the first FV cell with the refinement factor. The refinement factor corresponds to the
ratio between the size of the FV cell Ω and the size of the averaging bins ω used to estimate the
intermediate statistics at first. These statistics are then spatially averaged on the FV cell. It
is observed that the error first converges with a rate x−3/2 ( ) as long as the spatial error on
the statistics is the main source of error (until a refinement factor around 30). Then the level
of error due to the statistical noise of the Monte Carlo methods on a finite number of particles
is reached and this error stagnates on a plateau ( ). Each coloured dot represents the error
obtained after a spatial average of the corresponding profile in Figure 3.8 within the first cell.
Note that these observed statistical estimators are extracted from the same particle set, i.e. they
correspond to the identical particle dynamics.
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quantify a priori these other sources of error do not exist in the general case. It is still possible
to resort to an iterative process to determine if the averaging bins are small enough. At each
iteration, the previous averaging partition of the domain is refined and the results on the new
averaging partitions are compared with the results on the previous one. Once these results are
similar the averaging bins can be considered small enough.

3.3.2 Proposition of Correction of the Statistics on the Finite-volume Mesh
Assuming Profile of the First-Order Statistics within the Averaging
Bins

To avoid iterative refinement processes and having to deal with multiple space divisions, a second
idea is to directly estimate the covariance of mean moments on the coarse averaging bins Ω (e.g.
the FV cells) and propose correction terms to compensate the bias appearing in Eq. (3.10). To
do so, we need to reconstruct the fields corresponding to the mean quantities 〈Ψ〉 and 〈Φ〉 in the
domain based on the knowledge of their values at the cell centres. These reconstructed profiles
are noted R〈Ψ〉(X) and R〈Φ〉(X), respectively, and depend on the position as well as on statistics
estimated within the corresponding averaging bin Ω. We can then write the corrective term of
the covariance estimator CorΩ

(
R〈Ψ〉,R〈Φ〉

)
as the spatial covariance of the reconstructed mean

fields:

CorΩ

(
R〈Ψ〉,R〈Φ〉

)
= 1

Ω

ˆ
Ω
R〈Ψ〉(〈X〉)R〈Φ〉 (〈X〉) dΩ

− 1
Ω

ˆ
Ω
R〈Φ〉 (〈X〉) dΩ 1

Ω

ˆ
Ω
R〈Φ〉 (〈X〉) dΩ.

This value is expected to be close to the spatial bias which is the true spatial covariance of
the mean fields. Assuming that particles are uniformly distributed within the averaging bins,
one may use an ensemble average over the particles located in each bin (〈(.)〉Ω) to estimate the
spatial statistics. We have then:

CorΩ

(
R〈Ψ〉,R〈Φ〉

)
' 〈R〈Ψ〉(〈X〉)R〈Φ〉 (〈X〉)〉Ω − 〈R〈Φ〉 (〈X〉)〉Ω〈R〈Φ〉 (〈X〉)〉Ω. (3.11)

At this stage, the issue is then to come up with proposals on how to reconstruct the fields
corresponding to the mean moments (i.e. R〈Ψ〉(X)) within the averaging bins.

3.3.2.1 Proposition of Correction terms

In the following, three reconstruction methods are proposed. They correspond to:

Reconst. unif Runif
〈Ψ〉 (X) = 〈Ψ〉Ω∀X ∈ Ω : no variation of the first-order statistics within the

averaging bins.
The simplest idea is to consider the mean moment constant within the averaging bin
and thus the correction CorΩ

(
Runif
〈Ψ〉 ,R〈Φ〉

)
is null. This is not coherent with the

necessity to use finer interpolation, as discussed in Section 3.2.2. Moreover, as we can
derive from Figure 3.6A, even a P0 interpolation of the mean carrier flow does not
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result in a homogeneous evolution for the corresponding moment within a bin due to
the mixing process discussed in Section 3.2.1. Finer descriptions for this evolution
should then be considered.

Reconst. lin Rlin
〈Ψ〉: linear variation of the first-order statistics within the averaging bins.

In the general case, one could use a Taylor expansion to estimate the evolution of the
flow within a bin. The estimation of the profile for a quantity 〈Ψ〉 would then require
to know the value of its gradient: gradΩ〈Ψ〉. We have to extract the corresponding
mean gradient from the set of particles. Assuming a local uniformity of the spatial
distribution of the particles in the bin, it is here proposed to estimate this quantity
using the covariance of Ψ and the position X and the covariance of the position as:

gradΩ〈Ψ〉 ' g̃radΩ〈Ψ〉 = (〈ΨX〉Ω − 〈Ψ〉Ω〈X〉Ω)︸ ︷︷ ︸
〈ψx〉Ω

· (〈X ⊗X〉Ω − 〈X〉Ω ⊗ 〈X〉Ω)−1︸ ︷︷ ︸
(〈x⊗x〉Ω)−1

,

(3.12)
with x the distance to the local barycentre associated to the particle, i.e. x = (X −
〈X〉). The covariance of the position can be reversed since it is a symmetric definite
positive tensor provided that the variance of the diagonal term is non zero. The
latter condition is respected as long as there are at least 3 non coplanar particles
within the averaging bin. With this estimated mean gradient g̃radΩ〈Ψ〉, an estimated
reconstruction of the mean profiles of 〈Ψ〉 within the bin can be built as:

Rlin
〈Ψ〉(X) = 〈Ψ〉Ω + g̃radΩ〈Ψ〉 · x. (3.13)

It is then possible to estimate the correction CorΩ

(
Rlin
〈Ψ〉,R

lin
〈Φ〉

)
as:

CorΩ

(
Rlin
〈Ψ〉,R

lin
〈Φ〉

)
=
(
g̃radΩ〈Ψ〉 ⊗ g̃radΩ〈Φ〉

)
: 〈x⊗ x〉Ω. (3.14)

Reconst. log Rlog
〈Ψ〉: logarithmic variation of the first-order statistics within the averaging bins

Near the wall and within a SBL it is reasonable to suppose that the mean velocity
follows a logarithmic profile. In order to use such a reconstruction method, we need
the shear velocity ũ∗. One may assume that the shear stress is constant in such zone
and estimate it as:

ũ∗ =
√
|〈uτun〉Ω| (3.15)

where uτ and un are respectively the fluctuations of the velocity components along
the streamwise and normal directions. The covariance 〈uτun〉 should not be affected
by the spatial averaging error since, near wall, the normal mean velocity should be
null: 〈Un〉 = 0. In the general case for a quantity Ψ one may want to estimate the
corresponding value ψ̃∗ defined as:

ψ̃∗ = −〈ψun〉Ω√
|〈uτun〉Ω|

(3.16)

Based on this value, for rough walls, one can estimate Rlog
〈Ψ〉(X) as:

Rlog
〈Ψ〉(X) = 〈Ψ〉Ω + ψ̃∗

κ
(ln (dwall)− 〈ln (dwall)〉Ω) , (3.17)
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where dwall is the distance of the particle to the wall, typically for rough wall one may
consider dwall = Xn + z0. Thus, for the mean streamwise velocity, the corresponding
spurious spatial covariance can be estimated as:

CorΩ

(
Rlog
〈Ψ〉,R

log
〈Φ〉

)
= ψ̃∗φ̃∗

κ2

(〈
ln
(
d2
wall

)〉
Ω
− 〈ln (dwall)〉2Ω

)
.

Let us remark that Eq. (3.11) allows the reconstruction methods for 〈Ψ〉 and 〈Φ〉 to differ. For
example, one may estimate:

CorΩ

(
Rlin
〈Ψ〉,R

log
〈Φ〉

)
=
φ̃∗g̃radΩ〈Ψ〉

κ
〈x ln (dwall)〉Ω (3.18)

3.3.2.2 Numerical Results

To investigate the effects of the proposed correction terms in conjunction with the interpolation
methods, numerical results were obtained in the SBL case. Two sets of results are presented
in Figure 3.10 corresponding to two slightly different particle dynamics: in Figure 3.10A, the
mean field values at particle locations were obtained from an analytical interpolation in the
whole flow (i.e. similar to the one used in the first cell using the Interp. 4 scheme), whereas
in Figure 3.10B a linear interpolation method (the Interp. 3 scheme) was used to simulate
particle dynamics. In each situation, the three different reconstruction methods for the statistical
operator are then applied. It is worth stressing that, in each case, these three reconstructions
correspond to the same particle dynamics.
It is seen that, in both situations, the three statistical reconstruction methods differ mostly in
the first cell near the wall which, with the coarse mesh used in the simulations, is indeed where
the discrepancy between the linear and logarithmic evolutions is significant (see Figure 3.6A).
In Figure 3.10A, the linear reconstruction clearly underestimates the variation of the mean
velocity within the cell and the corresponding correction term (Reconst. lin) is too small. On
the other hand, the correction term based on the logarithmic profile (Reconst. log) enables
to perfectly correct the source of error presented in Section 3.3.1. In Figure 3.10B, the
logarithmic assumption (Reconst. log) strongly overestimates the variation of the mean velocity
whereas the linear assumption (Reconst. lin) gives now much better results. Therefore, these
results show clearly that the interpolation of the mean fields at particle positions presented
in Section 3.2.2 and the reconstruction of these mean fields used in the corrected estimator
presented in Section 3.3.2 must be consistent.
These conclusions are supported by additional results obtained with another interpolation
method, namely Interp. 4 (see Section 3.2.2) which consists in a mixed interpolation scheme
based on a logarithmic profile in the first cell near the wall and a linear profile otherwise.
Results are presented in Figure 3.11 where it is seen that nearly perfect predictions are obtained
when a coherent reconstruction method is used to correct statistical estimators, i.e. using the
logarithmic reconstruction in the first cell near the wall and the linear one elsewhere. Note that
the requirement to have consistent methods between what appears as two adjoint operators, the
interpolation method (i.e. going from the mesh to the particles) on the one hand and the one
used to extract statistics (i.e. going from the particles to the mesh) on the other hand, is in line
with the analysis set forth in Peirano et al. [2006] about similar concerns.
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Figure 3.10: Vertical profiles of the statistical estimators of the streamwise component of the
Reynolds tensor in the vicinity of the wall for different interpolation-reconstruction combinations
compared to the analytical solution ( ). The three reconstruction methods described
in Section 3.3.2, corresponding to three assumptions on how the ensemble mean velocity field
varies in averaging bins, are compared: Reconst. unif, assuming a piece-wise constant profile
(�); Reconst. lin, assuming a piece-wise linear profile (H); Reconst. log, assuming a logarithmic
profile (•). The two sub-figures correspond to two different particle dynamics on which these
correction terms are tested. In sub-figure (A), particles were simulated using the logarithmic
interpolation of the mean velocity field at their positions. In that case, the linear reconstruction
(Reconst. lin) works better than having no correction (Reconst. unif) but is not sufficient,
whereas the logarithmic reconstruction (Reconst. log) corrects nearly perfectly the statistical
estimation. In sub-figure (B), particles were simulated using the piece-wise linear interpolation
of the mean velocity field at their positions. In this case, the logarithmic reconstruction
(Reconst. log) overestimates the correction needed, whereas the linear reconstruction (Reconst.
lin) provides now a fairly good correction of the results obtained with no reconstruction (i.e.
with Reconst. unif).

3.4 Local Conclusions and Perspectives

In this chapter, a detailed analysis to evaluate how SBLs are predicted by a one-particle PDF
model was carried out. This analysis was performed with two main objectives in mind.
The first main objective was to assess the validity of the wall boundary condition developed
by Dreeben and Pope [1997a] and Minier and Pozorski [1999] in the spirit of the wall-function
treatment of the near-wall region. On the one hand, pursuing the analysis proposed by Bahlali
et al. [2020] for hybrid methods, we have shown that this reference an-elastic wall-boundary
condition allows to correctly reproduce the characteristic mean-field profiles of SBLs, by which
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Figure 3.11: Vertical profiles of the statistical estimators of the streamwise component of the
Reynolds tensor in the vicinity of the wall when using the method Interp. 4 to interpolate
the mean carrier fields at particle locations. Two results corresponding to two corrections of
the statistics are compared with the analytical ones ( ): Reconst. unif (�); and, a correction
coherent with the interpolation methods considered, i.e. a logarithmic reconstruction of the
ensemble mean velocity Rlog

〈U〉 in the first cell near the wall and a piece-wise linear reconstruction
Rlog
〈U〉 otherwise (N).

we can say that the physics of such layers is indeed well captured. On the other hand, it
was demonstrated that applying a specular rebound as the wall boundary condition yields non-
physical results and serious discrepancies near the wall. Compared to previous studies, additional
results have been obtained. Since the reference an-elastic wall-boundary condition is built so as
to reproduce the shear stress within the logarithmic zone, the results put forward in Section 3.1.2
prove that this condition can be applied, without any modification, for both rough and smooth
walls. Another key result is that the height at which the rebound plane is implemented can
be chosen arbitrarily in the logarithmic zone without impacting the statistics extracted, as
demonstrated by the numerical results presented in Section 3.1.3. It is important to note that
the formulation of the reference an-elastic wall boundary condition does not depend on the
specific details of the Langevin model retained to simulate the velocity of fluid particles. In that
sense, present results and conclusions, obtained with a SLM modelling, are nevertheless valid
and applicable to general PDF models based on particle locations and velocities.
The second main objective was to investigate spatial numerical errors in the context of hybrid
FV/PDF formulations and corresponding Monte Carlo particle/mesh methods. In such hybrid
simulations, it is useful to distinguish two sources of spatial errors, depending on whether they
influence particle dynamics or not. The first source of spatial error is caused by the interpolation
of mean fields at particle positions. These interpolated mean field values enter the Langevin
equation that models the evolution of particle velocities and, therefore, directly affect particle
dynamics. The results put forward in Section 3.2.2 show that, to properly reproduce the local
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mean gradients and production terms, it is important to have a non-uniform interpolation of
the mean velocity field. Furthermore, these results also illustrate a new approach introduced
in the present numerical formulation, which consists in interpolating the Lagrangian timescale
along with the fluid mean velocity. Numerical results indicate that the interpolation of the
Lagrangian timescale should be coherent with the one used for the mean velocity so as to satisfy
the production-dissipation balance at the numerical level. To fulfil these conditions, a local
interpolation method has been proposed with a specific treatment in the wall cells in the spirit
the wall functions. This interpolation method is based on the assumption of an established SBL
within wall cells and can be easily implemented on complex meshes. The second source of spatial
error arise when particle statistics are derived by performing local Monte Carlo estimations in
small volumes around a given point. In the context of hybrid FV/PDF methods, statistics
for fluid particles are not used in the Langevin evolution equation, which means that they do
not affect particle dynamics. These statistics are then mere observables, but it is important
to bring out potential spurious effects to avoid misleading interpretations of particle dynamics.
Such statistical artefacts are linked to the breakdown of the underlying assumption of local
homogeneity upon which these spatial averaging is based. Indeed, as shown in Section 3.3.1,
when first-order statistics are not uniform within the averaging bin, spurious artefacts appear in
the estimation of the corresponding covariances. To lower such effects, a first solution consists in
introducing finer averaging bins. In practice, this means that we are handling two meshes, one
for the fluid mean field computation in the FV solver and one to extract particle statistics in the
PDF solver. In complex geometries, tracking particles in such duplicate partitions of space (or
meshes) can quickly become cumbersome. To keep only one space decomposition while avoiding
these potential artefacts when deriving particle statistics, new correction methods have been
developed. Based on an assumed reconstruction of profiles of the first-order statistics within
the averaging volume, it is shown in Section 3.3.2 that these statistical artefacts can indeed be
almost perfectly corrected. To achieve this, it is important that the interpolation scheme and
the reconstruction assumed in this correction be coherent. Using this method, the statistics can
then be estimated directly on the same mesh than the one used for the interpolation step.
This study has mainly focused on hybrid FV/PDF formulations. However, they can be extended
to stand-alone methods, with the difference that the second source of spatial numerical error
would also affect particle dynamics. Indeed, in stand-alone methods, the statistic extracted
from the set of particles are reinjected in the dynamics creating a bias error. Furthermore,
only the dynamic aspect of the flow with a very simple state vector Z = (X,U) has been
taken into account in the present work. It is worth noticing that considering more complex
physics, transporting additional fields such as passive or active scalars, similar reasoning should
be applied for the choice of the wall-boundary condition, interpolation scheme and averaging
methods for the turbulent fluxes and variances of interest. This issue is explicitly tackled for
the potential temperature in Section 5.2 to extend the present analysis to thermally stratified
SBL flows.
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Local Appendix

3.A Complement on the Error Induced by Piece-wise Constant
Interpolation

;Contents
The goal in the present appendix is to further discuss the influence of the interpolation methods
considered on the particle dynamics. The errors occurring when using a piece-wise constant
interpolation near the wall are emphasised.
Injecting the interpolated mean carrier fields at the position of the particle in the modelling of
the increments of velocity Eq. (1.217b), the SLM model becomes:

dU = − 1
[ρ] [gradP ] (X(t); t) dt− U − [U ](X(t); t)

[TL](X(t); t)
dt+

√
CLC0

[k](X(t); t)
[TL](X(t); t)

TL(X(t); t) dW ,

(3.19)
where for any carrier field Ψ, Ψ denotes the averaged value extracted from the finite volume
approach and [Ψ](X(t); t) its interpolation at the position of the particle X(t) at the instant
t. For the sake of clarity the term (X(t); t) will be discarded from now on, yet it is important
to keep in mind that generally these interpolated values are space and time dependent. The
corresponding equation for the first-order statistics is:

∂〈Ui〉
∂t

+ 〈Uk〉
∂〈Ui〉
∂xk

+ ∂〈ukui〉
∂xk

= − 1
ρr

∂P

∂xi
− 〈Ui〉 − [Ui]

[TL]
. (3.20)

An additional relaxation term between the mean velocity extracted from the set of particles and
the interpolation of the mean carrier flow at this position appears. For the streamwise mean
velocity the equation Eq. (3.20) becomes:

∂〈uw〉
∂z

= −〈U〉 − [U ]
[TL]

. (3.21)

Thus, if the mean velocity associated to the particles (〈U〉) differs from the local interpolation
of the mean carrier velocity fields at this position (U), the local shear stress associated to the
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particle will not remain uniform. This effect is strengthened when approaching the wall where
the Lagrangian timescale becomes small. From this equation one can obtain the equation for
the particle-averaged velocity:

〈U〉 = [U ]− ∂〈uw〉
∂z

[TL]. (3.22)

In a zone where the interpolated mean carrier velocity field is differentiable, we can write:

∂〈U〉
∂z

= ∂[U ]
∂z
− ∂2〈uw〉

∂z2 [TL]− ∂〈uw〉
∂z

∂[TL]
∂z

. (3.23)

Supposing piece-wise uniform interpolation denoted ([.]0), away from the faces of the cells, the
gradients of the interpolated mean carrier fields are well defined and are null. We get :

∂〈U〉
∂z

= −∂
2〈uw〉
∂z2 [TL]0. (3.24)

The derivation of the Reynolds tensor remains formally unchanged, however the shear stress
being now non uniform we will also consider the turbulent diffusion terms in the equation:

∂〈uiujw〉
∂z

= −δxj〈uiw〉
∂〈U〉
∂z
− δix〈ujw〉

∂〈U〉
∂z
− 2〈uiuj〉

TL
+ C0CL

k

TL
δij . (3.25)

Injecting the mean velocity gradient Eq. (3.24) in the shear stress equation, we have:

∂〈uww〉
∂z

= 〈ww〉∂
2〈uw〉
∂z2 [TL]0 − 2 〈uw〉

[TL]0
, (3.26a)

〈uw〉 =− [TL]0
2

∂〈uww〉
∂z

+ 〈ww〉∂
2〈uw〉
∂z2

(
[TL]0

)2

2 . (3.26b)

Injecting the mean velocity gradient Eq. (3.24) and the shear stress Eq. (3.26b) in the streamwise
component of the Reynolds tensor equation we get:

∂〈uuw〉
∂z

=
(
−[TL]0

∂〈uww〉
∂z

+ 〈ww〉∂
2〈uw〉
∂z2

(
[TL]0

)2
)(

∂2〈uw〉
∂z2 [TL]0

)
− 2 〈uu〉

[TL]0
+ CLC0

[k]0
[TL]0

,

(3.27a)

〈uu〉 = CLC0[k]0
2︸ ︷︷ ︸

〈ww〉=〈vv〉= 2
3k
iso

− [TL]0
2

∂〈uuw〉
∂z

+

(
[TL]0

)2

2
∂2〈uw〉
∂z2

(
−∂〈uww〉

∂z
+ 〈ww〉∂

2〈uw〉
∂z2 [TL]0

)
.

(3.27b)

Assuming that we are going close to the wall where the Lagrangian timescale tends towards zero
the equations Eq. (3.24), Eq. (3.26b), Eq. (3.27b) imply that the particle-averaged velocity
gradient and the shear stress tend towards zero whereas the streamwise component of the
Reynolds tensor tends towards the normal component of the Reynolds tensor i.e. the one
obtained for maintained isotropic turbulence. This spurious behaviour is schematised on
Figure 3.5 and demonstrated in Figure 3.A.1.
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Figure 3.A.1: Vertical profiles of the dimensionless mean streamwise velocity (A), the four non
null components of the dimensionless Reynolds tensor (B) in the few cells near the wall near
the wall using a piece-wise uniform interpolation scheme Interp. 1(�) (note that in the spanwise
and normal direction the Reynolds tensor components are equal, only the latter one is plotted).
These statistics are compared with analytical solution ( ). In each cell of the FV simulation
(whose faces are schematised by the grey dotted lines) the statistics are first estimated into 100
finer bins. The results plotted are an agglomeration of these statistics based on a spatial average
over ten bins.
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The goal of this chapter is to describe the dispersion of passive non-reactive pollutants in
neutrally stratified flows. To this end, we will study a case of linear source dispersion based
on experimental setup of Gamel [2015]. To limit the computational cost of this approach, only
the flow issued from the linear source will be simulated using particles. As the flow rate of
pollutant is very small compared to the total flow rate, this would enable a large limitation
of the computational cost. First, we will introduce in Section 4.1 the method used in the
context of hybrid moment/PDF approaches to derive averaged statistics associated to the whole
flow from statistics associated to a particle set conditioned on its injection location. Then two
cases of linear source dispersion issued from Gamel [2015] work will be studied with both a
RANS approach and a hybrid RANS/PDF method. The simulation results will be compared to
experimental data. The first case, presented in Section 4.2, is a dispersion of pollutant injected
at the ground in an unobstructed 2D channel flow. Finally, a more complex setup will be put
forward in Section 4.3 where pollutant is injected at the ground in the wake of an infinite isolated
obstacle.

4.1 Modelling of Pollutant Plumes with Hybrid Moment/PDF
Methods

Contents
4.1.1 Leading Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.1.2 Estimation of the Flow Statistics from Conditioned Statistics . . . . . . . 163

4.1.1 Leading Approach

We will first focus on the treatment of such dispersion from a hybrid moment/PDF point of
view. As we consider a neutral situation here again the potential temperature is not considered.
For the dynamics, we still consider the SLM model. Two approaches might be followed to treat
the evolution of the pollutant dispersion.

• The first one consists of a description of the whole flow by simulating both the flow issued
from the source of pollutant and the flow issued from other inlets referred as background
flow. Doing so, we can consider the micro-mixing between the particles issued from the
pollutant source and the background particles issued from other inlets. Thus, similarly
to the treatment presented for the temperature in Paragraph 1.3.3.2.2, the evolution of
the instantaneous concentration of pollutant in each particle can be treated with an IEM
model: dC = C−〈C〉

τc with τC a characteristic exchange time defined as τC = k
CCε . Doing so,

the mass of pollutant may migrate from source issued particles to background particles.
Yet, the flow rate issued from a leak of pollutant is in general negligible compared to the
whole flow rate. The mass of fluid issued from the source, whose explicit treatment is
necessary to obtain a proper description of the dispersion, is then negligible compared
to the background particles mass. It would thus be required to use a very large number
of particles to simulate this background flow. The explicit treatment of the later one
in a Lagrangian stochastic context therefore provides little information compared to the
corresponding increase of computational cost. This is the reason why such formulations,
where both particles issued from the source and from the background flow are simulated,
are in general too costly for industrial setups.
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• In order to drastically reduce this cost, a second idea, considered here, is to focus only
on the description of the particles issued from the source of pollutants without explicitly
computing the background ones. Doing so the micro-mixing, which is responsible for
the exchange of pollutant mass between source issued particles and the rest of the flow,
becomes difficult to treat. Indeed, so as to conserve the mass of pollutant, the mass
lost by the particles issued from the source of pollutant should be added somewhere else.
To decorrelate the pollutant mass in the particles issued from the source and from the
background particles, it is then necessary to neglect the micro-mixing as proposed by
Pope [2000]. This hypothesis states that the mass of pollutant δmP in a particle remains
constant over its trajectory: dδmP = 0. It is thus not necessary to explicitly add the
concentration or mass of pollutant in the state vector as it remains a constant property
which has not to be transported. This assumption is in line with the hypothesis made by
Taylor [1922] stating that at high Reynolds number the transport of scalar by molecular
induced micro-mixing is negligible compared to the turbulent transport and the advection
by the mean flow. However, for the scalar variance the micro-mixing effects play a first-
order role as indicated by Pope [2000][Chapter 12.4] and cannot be neglected should we
be interested in this quantity. Furthermore, looking only at the statistics associated to
pollutant concentration and assuming a zero micro-mixing hypothesis, it is equivalent to
consider explicitly or not the background particles.

4.1.2 Estimation of the Flow Statistics from Conditioned Statistics

Presentation of the Statistics Obtained on Different Set of Particles
An important issue remains that the statistics issued from a set of particles conditioned by their
original location cannot be directly used to describe the whole flow. Let us assume that the
latter is described with a Lagrangian stochastic methods using a set of particles PT containing
nT particles. This set may be split into two sub-sets PS and PB composed respectively of the
nS particles issued from the source and the nB background ones (which are not simulated in our
case). For any quantity Ψ it is then possible to consider different averaging operators depending
on the set of particles considered:

〈Ψ〉S = 1
MS

∑
iS∈PS

δm(iS)Ψ(iS), (4.1a)

〈Ψ〉B = 1
MB

∑
iB∈PB

δm(iB)Ψ(iB), (4.1b)

〈Ψ〉 = 1
MT

∑
i∈PT

δm(i)Ψ(i). (4.1c)

where δm(i) corresponds to the mass of the particle i, MT , MS and MB represent the total
mass of the particles respectively of the whole set, of particles issued from the source and of
background particles. We have then MT = MS +MB and MB �MS . In the case considered,
only the particles of the sub-set PS issued from the source are simulated and then we have a
direct access only to the conditioned statistics 〈(.)〉S . Because of this condition on the statistics,
no averaged field estimated with this approach represents a duplicated field of any carrier field
provided by the FV solver. The goal of this section is to present how to derive mean quantities
associated to the whole flow (i.e. based on the whole set PT ) knowing only the conditioned
statistics associated to the subset PS .
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Estimation of the Mean Pollutant Concentration
The mean concentration of pollutant in a volume Ω is defined by 〈C〉Ω = MP

Ω
Ω , with MP

Ω the
mass of pollutant in the volume Ω. It is then direct to define the concentration in a particle i as
C(i) = δmP,(i)

ω(i) with ω(i) its representative volume. It is assumed that the pollutant is a passive
scalar and then ρP = ρ, we have then C(i) = ρ δm

P,(i)

δm(i) and:

〈C〉Ω = 1
MT

Ω

∑
i∈PTΩ

δm(i)C(i) = 1
Ω
∑
i∈PTΩ

δmP,(i), (4.2)

with MT
Ω the total mass of fluid in the volume Ω. This average on the whole set of particles can

be split between the two sets PSΩ and PBΩ as:

〈C〉Ω = 1
MT

Ω

 ∑
iS∈PSΩ

δm(iS)C(iS) +
∑

iB∈PBΩ

δm(iB)C(iB)

 = 1
Ω


∑
iS∈PSΩ

δmP,(iS) +
∑

iB∈PBΩ

δmP,(iB)

︸ ︷︷ ︸
=0

 .
(4.3)

Background particles, originating from location far upstream the pollutant source, have initially
no trace of pollutant. Moreover, neglecting the micro-mixing, the mass of pollutant remains
constant over each particle trajectory. Thus, these background particles keep a concentration of
pollutant null everywhere even downstream the pollutant source. Note that in the case where
there is pollutant in the background, this background concentration should simply be added.
One can also assume that in the general case, the concentration simulated represents the excess
of pollutant compared to the background. We have thus simply:

〈C〉Ω = 1
Ω

∑
iS∈PSΩ

δmP,(iS) = MP
Ω

Ω = Cinj
MS

Ω
MT

Ω
, (4.4)

with Cinj , the pollutant concentration at injection.

Estimation of the Turbulent Scalar Fluxes
Once we have estimated the mean concentration, we can take an interest in the scalar fluxes
〈uc〉 noting:

〈uc〉 = 〈UC〉 − 〈U〉〈C〉. (4.5)

As the whole flow is not simulated within the Lagrangian solver, it is not possible to directly
have access to the mean velocity 〈U〉. Yet, in the scope of hybrids moment/PDF methods, we
can use the mean velocity provided by the FV solver U and the relation between duplicated
fields: 〈U〉 = U . Rigorously speaking, we should ensure the consistency between RANS and
PDF models to use such a relation. However, as presented in Section 4.2.3 and in Section 4.3.3,
it can still be used with non-consistent models, keeping in mind this potential source of error.
The mean flow velocity being provided by the FV solver and the determination of 〈C〉 being
already treated in Eq. (4.4), we should then focus on the estimation of 〈UC〉. In a volume Ω
we have:
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〈UC〉Ω = 1
MT

Ω

∑
i∈PTΩ

δm(i)U (i)C(i)

 = 1
MT

Ω


∑
iS∈PSΩ

δm(iS)U (iS)C(iS) +
∑

iB∈PBΩ

δm(iB)U (iB)C(iB)

︸ ︷︷ ︸
=0


(4.6)

For reason similar to the mean concentration, the second sum is null, and we have simply:

〈uc〉Ω = 1
Ω

 ∑
iS∈PSΩ

δmP,(iS)(U (iS) −U)

 (4.7)

Assuming that all particles have the same statistical weight and initial concentration, they
represent the same unit of fluid and pollutant mass. We can then extract the particle mass from
the sum, and the previous equation can be simplified into:

〈uc〉 = 〈C〉(〈U〉S −U), (4.8)

with 〈U〉S defined based on Eq. (4.1a). From this equation, it is clear that the averaged fields
provided by both approaches are not duplicated fields. Indeed, the difference between both
mean velocity 〈U〉S and U is directly proportional to the turbulent scalar fluxes.

Estimation of the Concentration Variance using a Volumetric Particle Approach
As each particle represents the statistical behaviour of a given mass of fluids, the concentration
in each particle remains constant. The reasoning followed for the turbulent fluxes, based
on zero micro-mixing hypothesis, does not hold for variance estimation as recalled by Pope
[2000][Chapter 12.4]. Indeed, following the same logic as previously, we would obtain:

〈cc〉Ω = 1
Ω

 ∑
iS∈PSΩ

δmP,(iS)(C(iS) − 〈C〉Ω)

 (4.9)

Assuming that at the source all the particles are injected with the same concentration Cinj we
would have:

〈cc〉Ω = 〈C〉Ω(Cinj − 〈C〉Ω), (4.10)

with the concentration at injection Cinj which is great compared to 〈C〉Ω as soon as we move away
from the injection. This estimation 〈cc〉 ' 〈C〉Cinj is a gross overestimation of the physics as
highlighted later on in Figure 4.16A. This might well be understood looking at the corresponding
transport equation similar to Eqs 1.227, where the dissipative term is null in absence of micro-
mixing. Thus, there is no term to balance the production term.
To improve this result, Cassiani [2013] proposed the so called volumetric particle approach.
The key idea is that each numerical particle does not represent the statistical description of
physical domain containing a given mass of fluid δm but a given mass of pollutant δmP .
It is then possible to take into account the micro-mixing within a particle without loss of
pollutant mass by increasing particle size. In this scope, the conservation of the mass of
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pollutant over the trajectory dm(i),P

dt = 0 does not ensure the conservation of the total mass
in the particles which increases as the pollutant dilutes itself. This interpretation is not fully
satisfactory as the modification of the particle total mass with dilution implies the absorption
of mass from the background flow (with different dynamics). The latter would have an impact
on the particle dynamics which is not tackled. First, we have no control on the evolution of
the particle total mass δm. The physical domain represented by the particle volume might
become too big to consider the instantaneous quantities associated to the state vector and the
mean carrier flow uniform within it. Moreover, the impact of the added background mass on
the particle instantaneous velocity and trajectory is not straightforward and would require a
specific modelling.
One may prefer an interpretation where the particle mass remains constant so there is no impact
on the particle dynamics. In this case, we also consider a dummy volume δω̃ to take into account
micro-mixing. The latter represents the volume over which the particle may have exchanged
mass by micro-mixing processes assuming all the pollutant mass would have remained in the
close vicinity of the simulated particle as schematised in Figure 4.1). This quantity will be used
only to estimate concentration variance. It is then possible to introduce for each particle the
corresponding concentration C̃ = δmP

δω̃
which will decrease over particle trajectory by micro-

mixing induced dilution.
The mean value associated to C̃ can be estimated as:

〈C̃〉 = 1
MT

Ω

∑
iS∈PTΩ

δm̃(iS)C̃(iS) = 1
Ω

∑
iS∈PTΩ

δmP,(iS) = 〈C〉Ω, (4.11)

with δm̃ = ρδω̃, the mass of fluid within the dummy volume δω̃.

C̃(i)(t)

δω̃(i)(t)

δm(i)

δm(i),P

C̃(i)(t+ δt) < C̃(i)(t),

δω̃(i)(t+ δt) > δω̃(i)(t)

δm(i)

δm(i),P

CB = 0

δt

Figure 4.1: Scheme representing the leading idea of the volumetric particle approach proposed by
Cassiani [2013]. The red circles represent the ith simulated particle with constant masses δm(i)

and δm(i),P . The encompassing orange ones represent the dummy volume δω̃(i) interacting by
micro-mixing.

The corresponding second-order moment is then:

〈c̃c̃〉Ω = 1
MT

Ω

 ∑
iS∈PSΩ

δm̃(iS)
(
C̃(iS)

)2

− 〈C〉2 = 1
Ω

 ∑
iS∈PSΩ

δmP,(iS)(C̃(iS) − 〈C〉Ω)

 (4.12)
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This equation is somewhat similar to Eq. (4.9), yet, the dummy volume δω̃ being a variable
growing by micro-mixing, C̃ is smaller than Cinj leading to more physical results as shown
later on in Figure 4.16B. Thus, one can add one of these two quantities to the state vector to
consider micro-mixing effects on the second-order moments, (it is not necessary to add both
as they are univocally related by the pollutant mass associated to the particle which remains
constant). Considering a state vector Z = (X,U , C̃) it is then possible to use an IEM model
for the concentration based on the dummy volume δω̃:

dC̃ = C̃ − 〈C〉
τC

. (4.13)

Considering volumetric particle approach, it is important to ensure that the sum of the fictitious
mass δm̃ of the particles in a domain Ω shall be upper bounded by the total mass of fluid in
this domain.

1
MT

Ω

∑
i∈PTΩ

δm̃(i) < 1 (4.14)

In practice nothing ensures that this constraint is respected. It is necessary to clip the particle
C̃ so the sum of fictitious mass δm̃ in a volume Ω remains smaller than the overall mass MT

Ω
within this volume . Furthermore, the assumption stating that the micro-mixing occurs only in
a unit of volume encompassing the simulated particle and following it in its trajectory remains a
crude assumption. The results obtained with this choice of modelling will differ from the results
where micro-mixing would be taken into account explicitly by transporting background particles.
Indeed, in the latter situation, the pollutant mass being distributed by micro-mixing between
particles issued from the source and the background ones, it can diverge from the trajectory of
the source issued particles.

Remark 4.1.1. Note that the statistics were derived in the general case of mass weighted
statistics. It is straightforward to see that such statistics are consistent with Favre averaging.
Little attention has been given to the estimation of mean density of the flow 〈ρ〉 as we consider
in this chapter a flow in which it is assumed constant. In general, transporting fluid particles
or inertial ones in a sufficiently dilute regime, one may simply use the value ρ furnished by
the FV solver without specific treatment. Furthermore, for the simulation presented in this
work, all the particles are statistically equivalent. Therefore, they all represent the same unit
of fluid mass δm with the same initial concentration Cinj , thus also the same unit of pollutant
mass δmP . In this situation, one can simply replace the mass weighted averages by ensemble
averages on the number of particles as presented in Eq. (4.8).
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4.2 Dispersion near Ground in an Unobstructed Channel Flow
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The first test case considered is a statistically stationary turbulent linear emission of pollutant in
an unobstructed 1 m high channel flow based on the work of Gamel [2015]. A 1 cm large pollutant
injection is located at the ground in an almost fully developed channel flow as schematised in
Figure 4.2 with the boundary conditions in purple. Experimentally the pollutant used is the
ethane which can be considered a good passive tracer as its density is the same as the air.
Moreover, it does not react with air and does not deposit. Furthermore, the 600 L h−1 flow rate
at injection Qinj/ρ is sufficiently small to prevent any perturbation of the overall flow. Indeed,
given the linear source dimension, the injection velocity induced is around 0.0238 m s−1. The
inlet is located at 1 m upstream the pollutant injection and the injected profiles are based on
interpolation of the first experimental data available. The lower boundary condition is a rough
wall whose roughness height z0 will be further discussed in Section 4.2.2.1. Experimentally,
square wooden wands whose size are lrough× lrough×LY with lrough 15 mm are placed every 45
mm from one to another to create such rough walls. Due to these roughness elements, present
only on the lower part of the channel, the flow is not symmetric in the vertical direction. The
flow over the whole channel height is then simulated with a smooth wall on the upper part.
As a linear point source dispersion is presented, one may assume that the flow is periodic in
the spanwise direction and consider only a 2-D flow. Experimentally, this assumption may be
challenge due to the finite size of the channel flow in the spanwise direction which equals to
Ly = 0.7 m and will be further discussed in Section 4.2.1.1. It has however been asserted that,
around the half-plane cutting the channel flow in the spanwise direction, the streamwise velocity
and Reynolds tensor gradients in this direction are relatively small. So, such a 2-D simulations
are coherent if we compare simulation results to experimental data taken on this mid-channel
plane.
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Figure 4.2: Description of the domain studied in the case of linear source dispersion in an
unobstructed channel flow.

4.2.1 Analysis and Discussion about the Experimental Setup and Data

4.2.1.1 Discussion about Potential 3-D Effects

Considering the aspect ratio of the channel flow considered, it is likely that secondary flows
orthogonal to the mean flow do exist (see e.g. Melling and Whitelaw [1976], Akihiro Tominaga
and Nakagawa [1989], Demuren and Rodi [1984]). Some signals may be in line with
this assumption such as the presence of non-negligible vertical mean velocities and an
overestimation of the overall mean scalar flux respectively discussed in Paragraph 4.2.1.1.1 and
in Paragraph 4.2.1.1.2.

4.2.1.1.1 Discussion about Spurious Vertical Mean Flows
In the experimental setup, one can note the presence of a quite surprising downward vertical
mean velocity in Figure 4.3. In this figure, the mean normal velocity is adimensionised by
the turbulent scale of normal velocity

√
ww to see the potential relative effects of the induced

advection compared to the normal dispersion. The red arrow magnitude equals to 1, thus this
spurious mean velocity evolves from almost zero near wall to a value similar to the normal
turbulent velocity scale

√
ww.

For fully developed 2-D channel flows, the normal velocity should be null to conserve the
mass continuity. Furthermore, in the case of a developing 2-D channel flow, it is true that
a mean normal velocity may appear near wall. Yet, the expected direction would be upward to
compensate the slowing down of velocity at the ground and to maintain the mass continuity.
The experimental results although potentially coherent at the ground are not in the bulk. If this
spurious vertical mean velocity reflects physical effects and not a measurement error, it might
result in a non-negligible effect on the pollutant dispersion pushing the pollutant back to the
wall.
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Figure 4.3: Mean normal velocity adimensionised by the standard deviation of normal velocity
downstream the pollutant source for different turbulence model. The results using four turbulent
models: k−ε ( ); SSG ( ); Rotta ( ) ; LRR-IP ( ) are compared to Gamel [2015]
experimental data. The red arrow represents of magnitude of 1. The plume shape presented is
estimated based on experimental data.

Let us first ask ourselves if this error is not an experimental error due to a misalignment between
the hot wire anemometer directions and the flow directions. First, let us note that this error is
not randomly distributed as one may assume for such a misalignment error. Yet, it is possible
that the experimental setup induces a systematic misalignment between the flow and measured
direction e.g., in the case where the arm holding the anemometer is not perfectly vertical. In
this case we would then have:

U
measured = U cos θ+W sin θ, (4.15a)

W
measured = W cos θ− U sin θ, (4.15b)

with U
measured and W

measured the measured velocities rotated from the mean velocity by an
angle θ. A constant value for this angle may testimony for a systematic misalignment of the hot
wire anemometer. Assuming W � U , one may attest this assumption by plotting −W

measured

U
measured '

tan θ as done in Figure 4.4. In this figure, one may see that the value of θ increases in a similar
manner on all plots with the altitude from 0◦ to around 2.3◦. This tends to give credit to the
interpretation stating that this mean downward velocity measured is triggered by a physical
flow property. The latter could be caused by the presence of secondary flow structures in
the direction orthogonal to the mean flow. Such structures are induced by turbulent effects
resulting from the relatively close presence of the wall in the spanwise direction (at a distance
0.5Ly = 0.35Lz = 0.35 m). In this case, such structures which are not taken into account in these
2-D simulations may have an explicit effect on the pollutant dispersion. Indeed, locally near the
median plane considered, the resulting downward flow would oppose the normal dispersion.

4.2.1.1.2 Discussion concerning the Total Scalar Fluxes
A second element in line with the potential presence of 3-D effects is the value of the total
mean scalar flux integrated over the height of the channel flow. The latter is based on
the value measured at the centre of the channel flow. In Figure 4.5, an estimation of the
total mean flux integrated over the whole height scaled by the mean surface flux 〈UC〉tot∗ =
Ly/(Qinj)

´ Lz
0 〈UC〉dz at different distance downstream to the source is presented. In the

purpose of accessing this value, an assumption has been made to estimate the mean flux below
the first data available. It has first been considered that the concentration remains uniform in
this region, moreover a linear decrease has been considered for the mean velocity and horizontal
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Figure 4.4: Esimation of tan θ downstream the pollutant source for different turbulence model.
The results using four turbulent models: k−ε ( ); SSG ( ); Rotta ( ) ; LRR-IP ( )
are compared to Gamel [2015] experimental data. The red arrow represents of magnitude of
0.04 corresponding to an angle of around 2.3◦. The plume shape presented is estimated based
on experimental data.

scalar fluxes. Let us note that the presence of roughness elements represented by periodic wands
may induce a deviation from this assumption. Indeed no flux might traverse them when they
are present and recirculation zone might exist in between. For this reason, both the total mean
fluxes with this estimated mean flux below first data and without it are plotted. As expected, the
flow below the first available data has a greater impact in the vicinity of the source. Considering
this estimation of the fluxes below the first data available, it is clear that the overall fluxes in
the centre of the domain are overestimated compared to the 2-D periodic situation. Such an
excess of pollutant might be caused by a poor injection of pollutant at the source but also by
turbulent induced secondary flows. In the plane orthogonal to the mean flow direction, such
secondary flows might contribute to transport pollutant from the slow near wall region (lateral
ones) towards the centre of the domain. For this reason, it is considered for the rest of the section
that the mean concentration, turbulent scalar fluxes, and scalar deviation should be re-scaled by
the local value of 〈UC〉tot∗ to be coherent with the 2-D simulations considered. A further study
with 3-D simulations should be carried out to assert the basis of this assumption.

100 200 300 400 500 600 700 800 900
0.7

0.8

0.9

1

1.1

x in mm

⟨U
C
⟩tot ∗

Figure 4.5: Estimation of the adimensionised total scalar flux integrated over the height from
Gamel [2015] data in an unobstructed channel flow. A plot with an estimation of the scalar
flux below first available data ( � � ) is compared to the results without this extrapolated flux
( N N ) and to the expected flux ( ).
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Remark 4.2.1. Let us note that the transport by turbulent scalar fluxes in the streamwise
direction opposes the transport by the mean velocity and is not negligible especially near the
source as shown in Figure 4.6. In this figure, the ratio between the fluxes transported by
turbulent fluctuations integrated over the height 〈uc〉tot∗ = Ly/(Qinj)

´ Lz
0 〈uc〉dz and the total

scalar fluxes 〈UC〉tot∗ is presented. The transport by turbulent fluctuation reaches in norm
from 10% to 30% of the total transport depending on the distance to the source. As we move
further away from the source, the mean concentration horizontal gradient tends to plummet
and so does the streamwise turbulent transport.
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−0.3
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⟨uc
⟩tot ∗

∕⟨U
C
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Figure 4.6: Estimation of the scalar flux transported by turbulent fluctuations integrated over
the height and adimensionised by the total scalar flux integrated over the height from Gamel
[2015] data in an unobstructed channel flow.

4.2.1.2 Estimation of the Friction Velocity and the Roughness Height

In the generic case, developed rough channel flows are fully characterised by the knowledge
of three quantities: the dimensions of the channel, which are known, the friction velocity u∗
resulting from the pressure gradient imposed by the pump and the roughness height z0 modelling
the influence of roughness elements on the flow.
In our case, where the carrier flow inlet is imposed through interpolated experimental results,
only the knowledge of this second parameter is necessary. Yet, the values of both the
friction velocity and the roughness height should be extracted in a coherent manner from the
experimental mean velocity and shear stress profiles. Assuming that the channel flow is almost
developed, the latter should remain constant in the streamwise direction, so we can use a spatial
average over all the experimental profiles to obtain our reference profiles shown in Figure 4.7.
Based on these profiles, different assumptions may be made to estimate u∗ and z0. Three
assumptions will be considered:

(i) First, as proposed by Gamel [2015], one can determine the friction velocity from the shear
stress profile assuming a constant value near wall as:

u∗ =
√
uw(zlog) ' 0.37 m s−1. (4.16)

with zlog an altitude in the near-logarithmic zone going approximately from 0.1δUmax up
to 0.3δUmax , and δUmax ' 0.55 m the surface layer height defined as the height where
the velocity equals to 99% of its maximal value. Note that this value, highlighted in
Figure 4.7B by the green dash-dotted line, is bigger than the value proposed by Gamel.
A main drawback of this method to estimate the friction velocity is that it seems to
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Figure 4.7: Gamel [2015] experimental data used to estimate the mean friction velocity u∗
and roughness height z0. The grey solid lines ( ) correspond to the different experimental
profiles and the dots (•) represent the corresponding mean value after average on all profiles.
In Figure 4.7B, the green dash-dotted line ( ) and the red dashed lines ( ) represents
respectively the estimation of the shear stress under constant assumption (i) and linear
assumption (ii). The blue dotted lines ( ) represent the limit in which the shear stress
is considered almost uniform and the velocity nearly logarithmic.

understate its value. Indeed, according to Gamel, with this value we get k
u2
∗

1√
Cµ
' 4, thus

Cµ ' 0.063. This value is lower than the expected value of 0.09 proposed by Launder and
Spalding [1974] (see Table 1.2) and which was also experimentally fitted on channel flows.
One may wonder if this is caused by the experimental setups used, notably the hot wire
anemometer, which might have difficulty to measure the vertical velocity fluctuations in
the vicinity of the wall.
In any case, for a given friction velocity, it is possible to determine the roughness height
yielding to the best description of the experimental mean velocity profile. Indeed, assuming
that the mean velocity profile should be close to a logarithmic profile in the zone close to
the wall but sufficiently far from the roughness elements to avoid induced local effects (i.e.
in the zone 0.1δUmax < z < 0.3δUmax). In such a zone, based on analytical profile assumed
for rough logarithmic flows presented in Eq. (3.2b), the roughness height can be estimated
as:

z0 = z

exp U(z)
u∗
− 1

. (4.17)

As shown in Figure 4.8, based on the friction velocity presented in Eq. (4.16), a first value
of the roughness height z0 ' 1.95 mm can then be estimated.

(ii) The second hypothesis consists in assuming a linear interpolation of the shear stress based
on the slope above z = 0.3δUmax . Indeed, although it is expected for the turbulent shear
stress to decrease near the wall, theoretically the total shear stress profile is linear in
channel flows because of viscous effects. Doing so, we retrieve u∗ ' 0.45 m s−1 (see red
dashed line in Figure 4.7B). With this new value of u∗, using Eq. (4.17) we determine that
we have z0 ' 3.92 mm as shown in Figure 4.8. Considering this value of u∗, the TKE is
underproduced as we have Cµ = u4

k2 ' 0.13.
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(iii) The third assumption is a brute force method based uniquely on the mean velocity
profile. It consists in testing all the (u∗, z0) combinations and in keeping only the one
minimising the mean square-root error between the corresponding logarithmic profile and
the experimental values in the range of altitude between δUmax and 3δUmax . Using this
method, we find: u∗ ' 0.55 m s−1 and z0 ' 7.32 mm.
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Figure 4.8: Estimation of the roughness height using Eq. (4.17), for different values of friction
velocity: (�) u∗ = 0.37 m s−1 using constant shear assumption (i); (H) u∗ = 0.45 m s−1 using
linear shear assumption (ii) and (N) u∗ = 0.55 m s−1 using the assumption (iii) based only on
the mean velocity profiles.

4.2.2 Results using a Moment Approach

First the mean carrier flow dynamics is studied using the Eulerian moment approach. The latter
dynamics is a key element in the dispersion of pollutants both considering a Lagrangian and
Eulerian point of view. The dispersion results obtained with Eulerian approaches will then be
discussed to have a comparison point with the Lagrangian results obtained. After a temporal
and spatial convergence study on the dynamics, it has been chosen to consider a time step of
5.10−4s; a spatial discretisation of 5 mm near source in the streamwise direction and 5 mm in
the normal direction with an expansion factor of 1.05 as shown in Figure 4.9.

Figure 4.9: Reference mesh used to treat dispersion of pollutants in an unobstructed channel
flow considering a rough wall-modelled description.
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4.2.2.1 Treatment of the Wall Roughness

In an effort to characterise the carrier flow dynamics, we will first discuss the roughness
treatment. We will simulate the flow using a Rotta model, with the three different roughness
heights proposed in Section 4.2.1.2. In order to have a further comparison element, we will also
simulate explicitly the roughness elements removing the corresponding cells from the mesh and
considering a smooth wall as presented in Figure 4.10.

Figure 4.10: Mesh used to treat dispersion of pollutants in an unobstructed channel flow with
an explicit description of the roughness elements.

The results for each of the roughness treatments considered are plotted in Figure 4.11. First,
let us note that above 2 or 3 lrough i.e. 30 to 45 mm, the mean velocity profile obtained using
an explicit description of the roughness elements is relatively close to the one obtained with
modelled roughness. In the former case, below this zone, the flow varies much in the streamwise
position, and depends explicitly on the relative location of the profile to the surrounding wands.
Furthermore, looking at the shear stress, we can note that the flat behaviour experimentally
obtained is well retrieved when considering explicitly the roughness elements. This highlights
that the flat shape experimentally obtained is not the result of a measurement error near wall.
This shape might be caused by the creation of periodic structures such as recirculation zones in
between successive wooden wands. The near ground behaviour is less accurately described using
a roughness modelling which cannot take into account such periodic recirculation zones (see e.g.
the discussion about k-type roughness and d-type roughness in Kadivar et al. [2021]). Looking
at the kinetic energy distribution, using the explicit treatment of the roughness elements, the
kinetic energy in the streamwise direction is underestimated whereas it is overestimated in
the normal direction. This is due to the isotropic modelling of the pressure-strain correlation
considered providing too much energy in the direction orthogonal to the flow and too little in
the flow direction.
Let us now compare the results obtained with modelled roughness. Focusing on the mean
velocity Figure 4.11A, we can see that the mean velocity near wall decreases with the increasing
roughness height value. This results from the fact that the roughness tends to promote the
transfer of energy from the mean flow towards the turbulent one. The best results on the mean
velocity are obtained with the highest roughness z0 = 7.32 mm. Such a behaviour is expected
as this roughness height was fitted solely to retrieve a proper evolution of this mean quantity
based through the assumption (iii).
However, the description of the turbulent behaviour characterised by the Reynolds tensor,
presented from Figure 4.11B to Figure 4.11D, is less straightforward. First it is clear that the
higher roughness corresponds to a greater level of TKE. Looking at the TKE in the streamwise
direction in Figure 4.11C, better results are retrieved with the greater roughness height. Yet,
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Figure 4.11: Profiles of the RANS modelled dynamic properties downstream the pollutant source
for different treatments of the wall roughness. Experimental data of Gamel [2015] ( ) are
compared to four simulations: a first one considering an explicit treatment of the roughness
elements with smooth walls ( ) and three modelled roughness with different roughness height
respectively z0 = 1.95 mm ( ); z0 = 3.92 mm ( ) and z0 = 7.32 mm ( ). On each plot,
the red arrow represents the same physical magnitude. The plume shape plotted is estimated
based on experimental mean concentration profiles.
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with this value both the shear stress and the normal component of the Reynolds tensor are
overestimated, and better results are obtained with smaller roughness heights as we can see
respectively in Figure 4.11B and Figure 4.11D. Let us note that, physically, the fluctuations of
velocity in the normal direction play a preponderant role in the turbulent dispersion of pollutant
as we have div(uc) ' ∂wc

∂z . This preponderant importance of the normal component of the
Reynolds tensor can be asserted considering a GGDH modelling of the normal scalar fluxes. The
concentration gradient being mostly vertical, we would have wc ' 3

2
Cµ
Sct

k
εww

∂C
∂z . Furthermore,

explicitly transporting the normal turbulent scalar fluxes wc with a DFM approach, we can note
that ww appears in the production term of the normal scalar fluxes.
For all the roughness and simulations carried out too much energy is provided. This is probably
caused by an overestimation of the energy injected at the inlet for which experimental data were
not available over all the height of the domain. This excess of energy results in an overflow of
TKE when selecting a high roughness height or in an overflow of kinetic energy associated to the
mean flow when considering lower roughness heights. In both case this energy surplus will have
an impact on the dispersion of pollutant and will induce an underestimation of its concentration.
Indeed, an overestimated mean velocity will trigger an overestimation of the advection cleaning
up the air too fast. Similarly, an overproduction of the TKE will prompt an overestimation of
the normal turbulent transport towards high velocity zone also resulting in a too fast pollutant
evacuation.
So as to have a first idea of the impact of the dynamics on the pollutant dispersion, let us simulate
it using a RANS modelling. The mean concentration and its standard deviation are plotted in
Figure 4.12 obtained using a SGDH model. This model providing an isotropic turbulent viscosity
is physically less rich than GGDH or DFM approaches but has the advantage of numerical
robustness and is also applicable using EVM methods to model turbulence as proposed hereafter.
Furthermore, in this chapter the concentration will be normalised by the injection rate such that
the mean concentration and its standard deviation are given in atmospheric transfer coefficient
(ATC) whose dimension is m−3s.
Looking at Figure 4.12, all fluctuations of concentration are overestimated compared to the
experimental data. Focusing on the mean concentration in Figure 4.12A, better results are
still obtained with an explicit treatment of the roughness elements. In this case, in absence of
roughness element, in the first few cells near wall the concentration profile is almost uniform.
Such a shape might characterise the presence of recirculating zones trapping the pollutant and
mixing it in their midst. Yet, in this case, keeping in mind the assumption made during the
rescaling, this effect yields to an increase of pollutant concentration near wall which seems
to be stronger than experimentally encountered. The specific structures associated to this
topography may induce a non-negligible effect on the pollutant dispersion. Modelling these
roughness elements, smoother profiles are obtained. In this case, the shape of the plume flattens
with the increasing roughness height. This is due to two combined effects. First, as the roughness
height increases, the mean velocity decreases and so does the advection. This provides more time
for the plume to develop itself in the normal direction. Secondly, in neutral surface boundary
flows, close to the situation encountered here, the turbulent viscosity grows proportionally to
u∗κ(z+z0) with u∗ also growing with the roughness height as displayed in Section 4.2.1.2. With
the rescaling hypothesis considered, the mean concentration profiles seem then to be better
captured considering the lowest roughness height associated to a constant shear assumption (i).
This case also corresponds to the situation where the dispersion plays a lesser role compared to
the advection as more energy is included in the mean velocity and less in the TKE. Looking at
the concentration standard deviation in Figure 4.12B the explicit treatment of the roughness
element results in a bigger overestimation of this quantity whereas the roughness height seems
to have little effect.
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Figure 4.12: Profiles characterising the RANS modelled pollutant dispersion downstream the
pollutant source for different treatments of the wall roughness. Experimental data of Gamel
[2015] ( ) are compared to four simulations: a first one considering an explicit treatment of
the roughness elements with smooth walls ( ) and three modelled roughness with different
roughness height respectively z0 = 1.95 mm ( ); z0 = 3.92 mm ( ) and z0 = 7.32 mm
( ). On each plot, the red arrow represents the same physical magnitude. The plume shape
plotted is estimated based on experimental mean concentration profiles.

4.2.2.2 Comparison with Different Models for the Turbulence

One may wonder, if the errors noticed in the previous simulations are due to the choice of the
turbulent model. In Figure 4.13, an EVM model: the k − ε model, and 3 DRSM models: the
Rotta, the LRR-IP, and the SSG models are considered. These different models have been briefly
presented in Section 1.3.2. For the pollutant dispersion, a SGDH model is still considered with
a roughness height of 1.95 mm.
As we can see in Figure 4.14A, the different models being often fitted on channel flow there
is little difference on the mean velocity between the different results. Using the k − ε model,
the Reynolds tensor is post-treated based on the Boussinesq assumption presented Eq. (1.162).
As shown in Figure 4.14B and in Figure 4.14C, using this model, the isotropic distribution of
energy in the different directions is not in accord with the physics at stake. Yet, the overall level
TKE seems to be similar to the one obtained with DRSM methods. It can be noted that the
SSG model provides the best description of the Reynolds tensor. Indeed, using this model, the
anisotropy of the pressure-strain correlation in the three spatial directions is tackled. In contrast,
only the anistropy between the orthogonal and streamwise components of the pressure-strain
correlation (without difference between normal and spanwise components) is taken into account
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considering a LRR-IP model and the redistribution is assumed isotropic with a Rotta modelling.
In any case, as previously stated the overall level of TKE is overestimated.
Looking on the pollutant dispersion in Figure 4.13, one may see that these differences have little
impact on the dispersion of pollutants due to the isotropic assumptions considered within the
SGDH formulation. Yet slightly better results are obtained with more advanced model such as
the SSG. Moreover, the SLM model being fuelled only with the pressure gradient, the TKE and
the dissipation rate, the influence of the relative distribution of TKE might have little impact
as a carrier flow for the Lagrangian stochastic methods.
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Figure 4.13: Profiles characterising the RANS modelled pollutant dispersion downstream the
pollutant source for different turbulence modelling. The results using four turbulent models: k−ε
( ); SSG ( ); Rotta ( ) ; LRR-IP ( ) are compared to Gamel [2015] experimental
data. On each plot, the red arrow represents the same physical magnitude. The plume shape
plotted is estimated based on experimental mean concentration profiles.
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Figure 4.14: Dynamical profiles downstream the pollutant source for different turbulent models.
The results using four turbulence models: k − ε ( ); SSG ( ); Rotta ( ) ; LRR-IP
( ) are compared to Gamel [2015] experimental data. On each plot, the red arrow represents
the same physical magnitude. The plume shape presented is estimated based on experimental
data.
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4.2.3 Results using a Hybrid Moment/PDF Approach

We will now continue this dispersion study with a hybrid moment/PDF approach. Except
if otherwise stated, the results presented in this section will be obtained using a piece-wise
linear interpolation of mean velocity field, the an-elastic wall boundary condition studied in
Chapter 3 and injecting 100000 particles per second to represent the flow issued from the source
of pollutants.

4.2.3.1 Treatment of the Wall Roughness

First, let us see the influence of the wall treatment on the dispersion of pollutants. The mesh and
time step are conserved unchanged compared to the RANS simulations. It is clear, looking at
the mean concentration, that these simulations are too diffusive even compared to their Eulerian
counterparts. Indeed, focusing on the core of the plume near wall the mean concentration in
Figure 4.15A is underestimated, whereas it tends to be overestimated on the border of the
plume. Furthermore, even though it provides slightly better results, the explicit treatment
of the roughness element seems to play a lesser role compared to the moment simulations
Section 4.2.2.1. The normal scalar flux which is the only source of scalar transport in the
normal direction, although too diffuse, is relatively quite well captured near the ground as
shown in Figure 4.15C. Yet, it is overestimated after its peak value. These profiles for the
normal fluxes associated to the underestimation of the concentration near wall testimony for
an overshoot of vertical velocity associated to the particles. This might be explained partly
by two elements. On the one hand, the total level of TKE is overestimated compared to the
experimental flow yielding to an excess in the overall turbulent dispersion. On the other hand,
the isotropic Lagrangian timescale and production of turbulent fluctuations assumed in the
SLM model also results in an overestimation of the TKE ratio in the normal direction. This
issue is further discussed in Section 4.2.3.5. Yet, the impact of these issues on the Lagrangian
stochastic side is surprising in comparison with the results obtained with a SGDH modelling
of the dispersion. Indeed, in this case also overly turbulent mean carrier fields are provided.
Moreover, the isotropic turbulent diffusion and TKE distribution considered are expected to
yield to an even more diffusive situation in the normal direction. Further information on the
dissipation rate empirically encountered might shed light on the reason of such a behaviour.
Furthermore, it is possible, for the Lagrangian stochastic methods, to be more sensitive to the
lack of structures associated to secondary flows potentially experimentally encountered. Yet,
such effects should remain weak.
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(B) Streamwise turbulent scalar fluxes 〈uc〉
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. The red arrow represents a magnitude of -0.15 m−2.
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Figure 4.15: Profiles characterising the PDF modelled pollutant dispersion downstream the
pollutant source for different treatments of the wall roughness. Experimental data of Gamel
[2015] ( ) are compared to four simulations: a first one considering an explicit treatment of the
roughness elements with smooth walls (N) and three modelled roughness with different roughness
height respectively z0 = 1.95 mm (H); z0 = 3.92 mm ( ) and z0 = 7.32 mm ( ). On each plot,
the red arrow represents the same physical magnitude. The plume shape plotted is estimated
based on experimental mean concentration profiles.
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4.2.3.2 Estimation of Concentration Fluctuations

Let us take a look at the fluctuations of concentrations. As we can see in Figure 4.16A, estimating
it directly in absence of micro-mixing as proposed in Eq. (4.9), results in a crude overestimation.
Yet, considering a volumetric particle approach proposed by Cassiani [2013] with a constant
CC = CL, the shape of the concentration standard deviation in Figure 4.16B, remains too
diffusive but the proper order of magnitude is obtained. This choice of constant was made
to impose a turbulent Schmidt number of one, i.e., to enforce that the concentration diffuses
in a similar manner than the momentum. Other propositions do exist in the literature, Pope
[1994b] proposed a value of 1 in the generic case where all the flow is explicitly simulated.
Furthermore, similarly to the temperature and as proposed by Launder [1975], Rodi [2000],
we could take CC ' 0.625. These different values are tested using modelled roughness with a
roughness height z0 = 1.95 mm. As we can notice in Figure 4.17, the concentration fluctuations
are highly dependent on the relaxation timescale considered for the micro-mixing. Indeed, both
CC = 1 and CC = 0.625 induce a micro-mixing too slow which results in an overestimation of
the concentration standard deviation. At the contrary, the global shape of the latter is properly
captured using CC ' CL = 3.125.
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(A) Concentration standard deviation
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based on the spurious estimation Eq. (4.9). The red arrow

represents an ATC magnitude of 16.5 m−3 s.
.
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Eq. (4.12). The red arrow represents an ATC magnitude of 0.3 m−3 s.

Figure 4.16: Concentration standard deviation profiles downstream the pollutant source
estimated with PDF model for different treatments of the wall roughness. Experimental data of
Gamel [2015] ( ) are compared to four simulations: a first one considering an explicit treatment
of the roughness elements with smooth walls (N) and three modelled roughness with different
roughness height respectively z0 = 1.95 mm (H); z0 = 3.92 mm ( ) and z0 = 7.32 mm ( ).
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Figure 4.17: Concentration standard deviation profiles downstream the pollutant source
estimated with Eq. (4.12) for different IEM constants. The experimental data of Gamel [2015]
( ) are compared to Lagrangian stochastic simulations with CC = 0.625 ( ), CC = 1 ( ), and
CC = CL = 3.125 (H). The red arrow represents an ATC magnitude

√
〈c̃c̃〉

Qinj
= 0.3 m−3 s.

4.2.3.3 Influence of the Modelling selected for the Mean Carrier Flow

To measure the effects of the mean carrier flow modelling, simulations using the four models
treated in Section 4.2.2.2 are presented in Figure 4.18. Due to the simplicity of the flow, which is
often used to fit the model constants, most of the difference between the mean carrier fluid models
relies in the anisotropy of the Reynolds tensor. Yet, as presented in Paragraph 1.3.3.2.2, the
SLM solver does not explicitly take into account these elements and considers mainly the mean
velocity and total TKE budget (the pressure gradient and dissipation rate are also required but
no experimental data are available for these quantities). It results from this, that no matter the
model considered for the mean carrier fields, little effects can be seen on the particle dispersion
in Section 4.2.2.2.
Focusing on the streamwise turbulent scalar fluxes, let us however remark that, at the wall,
a spurious behaviour may be noticed when using non-consistent models. The latter is due to
the treatment of the wall boundary condition presented in Paragraph 1.3.3.2.4 which depends
explicitly on the Reynolds tensor anisotropy. Indeed, its impact on the streamwise velocity,
highlighted in Eq. (1.235), is directly proportional to the ratio between the Reynolds tensor
normal component and the shear stress. An overestimation of this ratio compared to the SLM
model, as encountered using a SSG or a LRR-IP model triggers an overestimated slow down.
This induces an underestimation of the mean velocity and then also of the streamwise turbulent
scalar flows. At the opposite, when using a k − ε model, the shear stress to normal Reynolds
component is lower, yielding to an overestimation of the streamwise velocity and turbulent scalar
fluxes.
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(A) Mean concentration 〈C〉
Qinj

. The red arrow represents an ATC magnitude of 0.6 m−3 s.
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(B) Streamwise turbulent scalar fluxes 〈uc〉
Qinj

. The red arrow represents a magnitude of −0.15 m−2.
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(C) Normal turbulent scalar fluxes 〈wc〉
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. The red arrow represents a magnitude 0.06 m−2.

Figure 4.18: Profiles characterising the PDF modelled pollutant dispersion downstream the
pollutant source. The results using four turbulent models for the carrier fields: k − ε ( ); SSG
(N) ; Rotta (H); LRR-IP ( ) are compared to Gamel [2015] experimental data.
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4.2.3.4 Influence of the Spatial Interpolation and Wall Boundary Condition

Let us study the effects of the near wall treatment presented in Chapter 3, on the pollutant
dispersion. To this end, five simulations are carried out in Figure 4.19 and in Figure 4.20
considering the same mean carrier flow obtained with a Rotta model and a roughness height
z0 = 1.95 mm.

• The first simulation plotted is a spurious situation, where an elastic wall boundary
condition is used with a piece-wise uniform interpolation for the mean velocity field.

• In order to see the influence of the interpolation scheme, the previous simulation may be
compared to this situation where an elastic rebound is also considered but with a piece-wise
linear interpolation of the mean velocity field.

• To see the influence of the boundary condition, as previously, a piece-wise linear
interpolation of the mean velocity field is considered with the proper an-elastic boundary
condition.

• So as to better take into account the dynamics near wall and especially near injection, a
logarithmic interpolation of the mean velocity field is proposed in the wall cells. In order to
be coherent with the production dissipation equilibrium a piece-wise linear interpolation
of the Lagrangian timescale is provided. In the rest of the domain a piece-wise linear
interpolation of the mean velocity fields and a piece wise uniform interpolation of the
Lagrangian timescale is used. In this case, the wall boundary condition is the proper
an-elastic rebounds.

• Finally, with a view to discussing the error that may arise when considering a linear
interpolation of the Lagrangian timescale, a situation similar to the previous one is
considered with a piece-wise uniform interpolation of the Lagrangian timescale in the
whole domain.

The results presented in Chapter 3 for the particles dynamics, are noticeable. Let us keep in mind
that on these plots the dynamics of the flow issued from the source (simulations) is expected
to differ from the dynamics of the whole flow (measurements). The experimental data are
then here only to recall the flow behaviour but should not be compared directly to simulation
results. Looking at both the shear stress and horizontal component of the TKE, the piece-
wise interpolation of the mean velocity fields with elastic rebounds underestimates this value
compared to the one using the an-elastic wall boundary condition. Although less noticeable, it is
worth noticing that the mean velocity is also slightly overestimated due to the use of the elastic
rebounds. Similarly, comparing both simulations with elastic boundary conditions, the choice
of a piece-wise uniform velocity interpolation near wall results in a further underestimation of
the shear stress and the kinetic energy in the streamwise direction, but also and less noticeably
an overestimation of the mean velocity. Furthermore, considering the logarithmic interpolations
near wall little modification of the streamwise component of the Reynolds tensor arise, yet an
inflection of the shear tress appears when considering a linear interpolation of the Lagrangian
timescale in wall cells. The error appearing with this interpolation will be further discussed
hereafter.
The influences of the interpolation methods and wall boundary condition are also noticeable
on the pollutant associated statistics. These impacts on the mean concentration remains small
as we can see in Figure 4.20A, except when a piece-wise linear interpolation of the Lagrangian
timescale is provided. In this case, an overestimation of the concentration in the wall cell is
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(A) Mean streamwise velocity 〈U〉S(z). The red arrow represents a magnitude of 5.8 m s−1.
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(B) Streamwise velocity standard deviation 〈uu〉S(z). The red arrow represents a magnitude of 1 m s−1.
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(C) Shear stress 〈uw〉S(z). The red arrow represents a magnitude of -0.3 m2 s−2.

Figure 4.19: Profiles characterising the PDF modelled pollutant dynamics downstream the
pollutant source for different interpolation methods and wall boundary conditions. The
experimental data of Gamel [2015] ( ) are compared to Lagrangian stochastic simulations
using respectively an elastic rebound with a P0 velocity interpolation ( ); an elastic rebound
with a P1 velocity interpolation ( ); an an-elastic rebound with a P1 velocity interpolation
(H); an an-elastic rebound with an interpolation locally logarithmic on velocity and either a
linear interpolation on Lagrangian timescale (N) or an uniform one (�). On each plot, the red
arrow represents the same physical magnitude. The plume shape plotted is estimated based on
experimental mean concentration profiles.
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clearly noticeable. Yet, looking at the streamwise turbulent fluxes, on can see that the poor
choice of the interpolation scheme or of the wall boundary condition results in non negligible
error near wall.
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(A) Mean concentration 〈C〉
Qinj

. The red arrow represents an ATC magnitude of 0.6 m−3 s
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(B) Streamwise turbulent scalar fluxes 〈uc〉
Qinj

. The red arrow represents a magnitude −0.15 m−2

Figure 4.20: Profiles characterising the PDF modelled pollutant dispersion downstream the
pollutant source for different interpolation methods and wall boundary conditions. The
experimental data of Gamel [2015] ( ) are compared to Lagrangian stochastic simulations using
respectively an elastic rebound with a P0 velocity interpolation ( ); an elastic rebound with
a P1 velocity interpolation ( ); an an-elastic rebound with a P1 velocity interpolation (H) and
an an-elastic rebound with an interpolation locally logarithmic on velocity and either a linear
interpolation on Lagrangian timescale (N) or an uniform one (�). Note that for the two latter
interpolation methods unfilled markers (4) and (�) are present in the wall cells of Figure 4.20B.
They correspond to corrected estimation of the horizontal scalar fluxes taking into account the
logarithmic profile of the carrier velocity in these cells. On each plot, the red arrow represents
the same physical magnitude. The plume shape plotted is estimated based on experimental
mean concentration profiles.

Let us now focus on the error introduced using the logarithmic interpolation. Two sources of error
may be segregated. The first one, impacting the horizontal scalar flux, is a post-treatment error
impairing only the estimation of the statistics. Indeed, the horizontal scalar flux is proportional
to 〈U〉S − 〈U〉. In the bulk of the flow, it has been assumed that we have 〈U〉 ' U , yet in wall
cells this assumption is not respected as a logarithmic interpolation of the carrier mean velocity
is imposed. The corresponding mean value may differ from the one provided by the FV solver.
We should then consider in the first cell a mean value of 〈U〉 coherent with the logarithmic
interpolation. For Cartesian cells, the latter may be written:
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〈U〉 =
√
−〈uw〉
κδz

(
(δz + z0) ln

(
δz + z0
z0

)
− δz

)
, (4.18)

with δz the height of the first cell. Doing so, we retrieve proper results in the first cell. Note
that, as shown in Figure 4.20B, this issue does not arise with linear interpolation because such
an interpolation does not modify the mean integrated value in the cell. The second source of
error impacts mostly the vertical transport of the particle and then the shear stress but also the
concentration. It appears only when a piece-wise linear modelling of the Lagrangian timescale
is tackled. In this case, particles might be located too deep in the boundary layer to use a
model developed for high Reynolds number flows. Indeed, the Lagrangian timescale near wall
converges towards a value which might be small compared to the value stored at the centre of the
cells. Therefore, it is possible for the particles to remain trapped near wall. In order to be able
to properly treat such zones, it would be necessary to consider models valid for low Reynolds
number where the viscous diffusion by Brownian processes is explicitly treated with additional
stochastic terms (see e.g. Dreeben and Pope [1997a, 1998], Wacławczyk et al. [2004]). Moreover,
for now the Lagrangian timescale is simply clipped by its analytical value at the altitude z0. It
is then possible, in wall cells, to have zones in which the Lagrangian timescale interpolated is
locally uniform at this too small value. An improvement of this method would be to overwrite
the Lagrangian timescale gradient in wall cells to avoid such clipping. For these reasons, this
interpolation will not be used later on.

4.2.3.5 Effects of the PDF Modelling Selected

In order to characterise. the effects of the modelling selected in the scope of Lagrangian methods,
the results obtained with different toy models are presented in Figure 4.21. These toy models
aim at mimicking the distribution of kinetic energy obtained with known moment approach
models. They are derived to be valid only in the specific case of stationary, and horizontally
uniform neutral surface boundary flows which are assumed close to the flow encountered in
this situation. To this end, anisotropic Lagrangian timescales are specified as presented in
Appendix 4.A. Furthermore, so as to mitigate the error induced by the estimation of the mean
carrier fields, the largest roughness height is considered to obtain the best estimation of the
mean velocity. Moreover, the level of TKE is reduced by 25% corresponding approximately
to the TKE overshoot of the FV simulation. This is a crude assumption as the experimental
data used do not contain any information about the spanwise turbulent kinetic energy nor the
dissipation rate kept unchanged. In this case, the TKE in the close vicinity of the wall remains
somewhat superior to the one estimated experimentally due to the difference of slopes between
FV results and experimental ones. First, for all models considered, this crude corrections of
the mean carrier flows enable to achieve much better results. This might serve as a reminder
that the results of hybrid moment/PDF simulations greatly depend on the quality of the mean
carrier fields provided by the FV approach.
Doing so, one can see that the modelling selected within the Lagrangian method has an impact
on the plume description. Indeed, the SLM model, which is consistent with Rotta modelling,
assumes an isotropic shape for the pressure-strain correlation. This is not representative of
the physics near wall where more TKE is redistributed towards the streamwise components.
Mimicking modelling taking into account this anisotropic redistribution such as the LRR-IP or
the SSG models, less kinetic energy is furnished to the normal fluctuation yielding to less diffuse
plume, as we can see on the mean concentration in Figure 4.21A. This is more noticeable looking
at the turbulent scalar fluxes in Figure 4.21B and Figure 4.21C especially when mimicking the
SSG model which better represents the TKE distribution. Indeed, as the concentration near
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wall and the turbulent fluctuations of velocity in the streamwise direction increase, better results
are obtained on the streamwise turbulent scalar fluxes. Looking at the vertical turbulent scalar
fluxes, the decrease of TKE in this direction is compensated by an increase of concentration.
This enables to properly capture the normal fluxes which almost perfectly fit the experimental
data mimicking the SSG model avoid the overly diffusive tail otherwise present. Assuming a
isotropic distribution of the TKE, which is somewhat similar to the assumption made in SGDH
methods, poor overly diffusive results are obtained.
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(A) Mean concentration 〈C〉
Qinj

. The red arrow represents an ATC magnitude of 0.6 m−3 s.
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(B) Streamwise turbulent scalar fluxes 〈uc〉
Qinj

. The red arrow represents a magnitude of −0.15 m−2.
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(C) Normal turbulent scalar fluxes 〈wc〉
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. The red arrow represents a magnitude 0.06 m−2.

Figure 4.21: Profiles characterising the PDF modelled pollutant dispersion downstream the
pollutant source using different toy models within the particle solver. The results mimicking
respectively: k − ε ( ); SSG (N) ; Rotta (H); LRR-IP ( ) TKE distributions are compared
to Gamel [2015] experimental data. On each plot, the red arrow represents the same physical
magnitude. The plume shape plotted is estimated based on experimental mean concentration
profiles.
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4.3 Linear-Source Dispersion near Ground in the Wake of an
Isolated Obstacle
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We will now focus on a slightly more complex situation: a statistically stationary turbulent
linear-source dispersion in the wake of an infinite isolated obstacle of height H = 0.1 m. It is
still based on the experimental study of Gamel [2015] made in a channel flow and our results
will be compared to these data. As the obstacle is considered infinite in the spanwise direction
and the source is linear, one may consider a 2-D flow. Here again the potential effects of
structures orthogonal to the streamwise direction are not considered but are quickly discussed
in Section 4.3.1.
The domain is schematised in Figure 4.22, with the boundary conditions (in purple) and the
main flow characteristics. A 0.1H large linear source of pollutants (red dot) is placed at a
distance H in the wake of a square obstacle of length H within its recirculation zone (in blue).
The injected flow rate at the pollutant source Qinj/ρ is still 600 L h−1, resulting in an injection
velocity of 0.0238 m s−1. The latter remains sufficiently small, so it does not perturb the overall
flow dynamics which is imposed by the free-of-pollutant flow injected upstream (also in blue) The
main aim is to study the dispersion of the pollutants downstream the obstacle (the corresponding
plume is schematised by the red line).

•
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L
z

=
10
H

Lx = 25H

H

H5H3H 16H
ROUGH WALL SMOOTH WALL

SMOOTH WALL

OUTLETINLET

LINEAR INJECTION
source of pollutants

•

Figure 4.22: Description of the domain studied to study the linear source dispersion in the wake
of an infinite isolated obstacle.

The inlet condition is provided by interpolation of the simulation results carried out in
Section 4.2, with a Rotta model and a roughness height z0 = 1.92 mm. The 2-D geometry
consists in a rectangular domain of 25H × 10H in which the obstacle has been introduced
by removing the corresponding cells. The domain dimensions respect the recommendations of
Franke et al. [2007] provided to treat dispersion around obstacles. Indeed, in the streamwise
direction, we have an upstream region of 8H bigger than the advised limit value of 5H. In
coherence with the experimental setup, a rough wall is kept over a distance of 3H downstream
the inlet with z0 = 1.92 mm, and the wall over the remaining 5H upstream the obstacle is
assumed smooth. The wake region is 16H long which is also longer than the recommended
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15H. Furthermore, in the spanwise and normal direction, the dimension of the experimental
channel flow are kept i.e., respectively 7H and 10H. The latter dimension is bigger than the 6H
above the obstacle recommended to avoid spurious acceleration effects. The mesh considered is
uniform and its cell dimension is lc × lc × Ly. As the flow is 2-D, only one cell is considered in
the spanwise direction. In the plane perpendicular to this direction the domain surface is 249
H2. The number of cells is then 249H2/l2c . Given that the source of pollutant is 0.1H large, to
properly characterise this zone, we will take a cell length lc such as 0.1H is a multiple of lc i.e.
0.1H = n lc with n the number of cells above the injection zone. We consider that the injection
zone is two cells large (n=2): lc = H/20 = 0.005 m. The mesh considered is then composed of
249× 20× 20 = 96.000 cells as shown in Figure 4.23.

Figure 4.23: Reference mesh used to treat pollutant dispersion in the wake of an isolated obstacle.

Such a mesh may not be totally converged, however considering finer meshes the dimensionless
heights to the wall z+ = zu∗/ν would become too small for the high-Reynolds methods
considered to be valid as we can see looking at the dimensionless height z+ at the ground
in Figure 4.24. Indeed, the lowest part of the logarithmic zone is described by a zone where z+

is somewhere around 30 to 50.

Figure 4.24: Dimensionless height z+ near the obstacle for 5 mm high wall cells.
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4.3.1 Discussion on the Experimental Data

Also, in this case, spurious mean normal velocities seem to be present on the experimental data
as we can see in Figure 4.25. Indeed, the latter ones are always negative even in the region
close to the obstacle and slightly above it. In such an area it is expected to find an upward
velocity with an increase of streamwise velocity due to the continuity condition as the flow is
blocked by the obstacle. As in the unobstructed flow, such a downward velocity may testify
for the presence of measurement error or of secondary structures orthogonal to the main flow
direction. The latter ones may be caused by the presence of the channel flow wall nearby in the
spanwise direction. In the wake of an obstacle, the normal velocity varies with the distance to
the obstacle and cannot be neglected. Thus, in this case, the study of a potential misalignment
angle θ is not carried out.
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Figure 4.25: Profiles of the RANS modelled normal mean velocity adimensioned by the normal
turbulent velocity scale

√
ww downstream the obstacle. The results using four turbulent models:

k − ε ( ); SSG ( ); Rotta ( ) ; LRR-IP ( ) are compared to Gamel [2015]
experimental data. The red arrow represents a physical magnitude of 1. The plume shape
plotted is estimated based on experimental mean concentration profiles.

Moreover, as previously looking at the integrated flux over the height in Figure 4.26, we can
note the presence of an overestimation of the total fluxes especially near the injection point in
the recirculation zone. In this situation, the fluxes below the first values are almost null. Here
again we will rescale the mean concentration, turbulent scalar fluxes and concentration deviation
using these 〈UC〉tot∗ .

2H 3H 4H 5H 6H 7H 8H 9H0.9

1
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x in mm

⟨U
C
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Figure 4.26: Estimation of the adimensionised total scalar flux integrated over the height from
Gamel [2015] data when considering dispersion in the wake of an isolated obstacle. A plot with
an estimation of the scalar flux below first available data ( � � ) is compared to the results
without this added flux ( N N ) and to the expected flux ( ).
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4.3.2 Results using the Moment Approach

First, we focus on the dynamics of the mean carrier flow after the obstacle. The results using
four different closures of the turbulence are compared: one EVM and three 2nd order DRSM
methods. As previously, the models compared are respectively the k − ε, Rotta, LRR-IP and
SSG models. It is worth noticing that surprisingly the best results are obtained for the k − ε
model which fits the experimental dynamics with more accuracy, as we can see in Figure 4.28.
The latter tends to properly retrieve the end of recirculating zone at around 6H whereas the
three DRSM models tends to estimate a distance of 9H. Moreover, both within and out the
recirculating zone the k − ε model provides better mean velocity and Reynolds tensor profiles.
The three DRSM models tend to underestimate the overall energy associated to both the mean
and turbulent flows.
As the k− ε model better reproduces the flow dynamics, it is expected that the best results for
the pollutant mean concentration are also obtained using this closure as one can see respectively
in Figure 4.27. It is yet noticeable that the near wall dispersion is less accurate using this
EVM based carrier flow. Considering DRSM methods the pollutant is less diffused and more
transported by the mean flow, so more concentration reaches the top of the obstacle and are
transported from there. This is also noticeable on the concentration standard deviation which
remains closer the experimental data whereas the k − ε tends to overestimate this value.
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Figure 4.27: Profiles characterising the RANS modelled pollutant dispersion downstream the
obstacle. The results using four turbulence models: k − ε ( ); SSG ( ); Rotta ( );
LRR-IP ( ) are compared to Gamel [2015] experimental data.
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Figure 4.28: Profiles of the RANS modelled dynamic properties downstream the obstacle. The
results using four turbulent models: k − ε ( ); SSG ( ); Rotta ( ) ; LRR-IP ( )
are compared to Gamel [2015] experimental data.
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4.3.3 Results using the Moment/PDF Approach

SLM based Lagrangian stochastic simulations using the four models presented in Section 4.3.2
for the mean carrier flow are compared. as we can see in Figure 4.29A, a spurious effect still
exists within the wall cells where the mean concentration is overestimated. The best results
are obtained using the mean carrier fields issued from the k − ε simulation which provides the
best description of the flow dynamics. This highlights that the error arising from the lack of
consistency between this first-order model is small compared to the benefit of a more accurate
description of the mean carrier flow. The results obtained with the Lagrangian stochastic
methods seem adequately capture the dynamics of the pollutant plume. Moreover, the scalar
fluxes are fairly well retrieved as demonstrated in Figure 4.29B and Figure 4.29C respectively
for 〈uc〉 and 〈wc〉. Yet, although the order of magnitude of the concentration standard deviation
seems to be correct, a strong overestimation of its value is still obtained using the volumetric
particle approach as shown Figure 4.29D.
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(A) Mean concentration 〈C〉
Qinj

. The red arrow represents an ATC magnitude of 0.36 m−3 s.
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(B) Streamwise turbulent scalar fluxes 〈uc〉
Qinj

. The red arrow represents a magnitude of −0.075 m−2.
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(D) Concentration standard deviation
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estimated with Eq. (4.12). The red arrow represents a

magnitude of −0.02 m−3s.

Figure 4.29: Profiles characterising the PDF modelled pollutant dispersion downstream the
pollutant source. The results using four turbulent models for the carrier fields are compared:
k− ε ( ); SSG (N) ; Rotta (H); LRR-IP ( ) are compared to Gamel [2015] experimental data.
On each plot, the red arrow represents the same physical magnitude. The plume shape plotted
is estimated based on experimental mean concentration profiles.
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4.4 Local Conclusions and Perspectives

The description of the dispersion of pollutant downstream a linear source can be made using
a hybrid moment/PDF method by simulating solely the particles issued from the source of
pollutant. Using such a description, the mean concentration but also scalar fluxes can be directly
derived and represent a relatively good description of the plume physics. Even though it is not
possible to directly have access to the concentration fluctuations considering a zero-micro mixing
assumption, an acceptable yet overestimated value of the scalar variance may be reached using a
volumetric particle approach developed by Cassiani [2013] with an adequate relaxation timescale.
In the scope of SLM-IEM modelling, so as to consider a turbulent Schmidt number of one it
is then advised to consider the same timescale for the velocity and concentration (i.e. taking
TL = τC and thus CC = CL).
The preponderant element to characterise the pollutant dispersion remains the capacity to
properly treat the dynamics of the carrier flow. For this purpose, the proper treatment of
the roughness and choice of an adequate turbulence modelling are of primordial importance.
As seen in Section 4.3.3, the error induced by the non-consistency between PDF and moment
solver may be negligible compared to the benefit provided by a better description of the mean
carrier flow. Furthermore, using toy model, it has been demonstrated that the modelling selected
within the PDF methods have a significant effect on the simulated dispersion. This advocates
for the implementation of more complex GLM models which are expected to propose a better
physical description near wall. In addition, as presented in Section 4.2.3.4, the proper choice
of an interpolation method and a wall boundary condition, are not totally negligible in the
vicinity of the wall. However, at this scale, the corresponding errors remain of lesser importance
compared to the error induced by a poor description of the mean carrier flow or by a poor
Lagrangian modelling. Furthermore, an error on the concentration within the wall cell may
be noticed when going too close to the wall. A potential source of error may be the necessity
to explicitly treat the diffusion by Brownian movement to consider viscous effects in this zone.
Without this Brownian movement, the particles may be trapped for too long in this zone. A
comparison with Lagrangian stochastic models valid for low Reynolds number flow may be of
great interest to determine if we have indeed reached the limit of validity of the SLM model
developed for high Reynolds number flows.
Finally, let us note the presence in the experimental data of a downward mean velocity. Given
the nature of this flow, the latter are not physical considering a spanwise periodic flow. In order
to assert if this normal velocity results from measurement error or from physical secondary flow
orthogonal to the mean flow, a further 3-D study may be carried out. These potential 3-D
effects might be the cause the error observed on the estimation of the total mean scalar fluxes
based only on the value at the centre of the channel. Such 3-D simulations may then be used
to quantify influence of potential secondary flows on the pollutant dispersion.
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Local Appendix

4.A Description of the Class of Toy Models used to Discuss PDF
Model Sensibility

The goal of the present section is to present the derivation of a class of simple Lagrangian
toy models used in Section 4.2.3.5. The latter ones aim at mimicking the TKE distribution of
different RANS model in the case of stationary horizontally uniform neutral surface-boundary
layer flows. In order to do so, the conditions to fulfil are:

Balance of production and dissipation: P =ε = k

τk
,

Production and kinetic energy: k =− 1√
Cµ
〈uw〉,

Proportion in each direction : rα =〈uαuα〉
k

,

(4.19a)

(4.19b)

(4.19c)

where the considered distributions of TKE rα are given in Table 4.A.1.

k − ε Rotta LRR-IP SSG

std. (CR = 3.5) (CR = 1.8, CP = 0.6) std. (see Table 1.3)

rx
2
3 0.88 0.96 1.07

ry
2
3 0.56 0.52 0.52

rz
2
3 0.56 0.52 0.41

Table 4.A.1: Distribution of kinetic energy of a few RANS models.

The simplest GLM model enabling to have a non-isotropic redistribution is to consider a diagonal
matrix G with integral time-scale TL,α = τk

λ̃α
= k

λ̃αε
depending on the direction. A great interest

for the integration of such models is that each direction can still be considered independent,
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thus, the temporal scheme currently used can be used without modification. The instantaneous
velocity equation can be written:

dUα =
(
−1
ρ

∂〈P 〉
∂xα

− λ̃α
Uα − 〈Uα〉

τk

)
dt+

√
C0
k

τk
dWα. (4.20)

The three conditions imposed on Eqs 4.19 will be useful to fix the four parameters of these
models: the three λ̃α and C0. Such a modification of model will not appear on the mean velocity
equation and the equation for the Reynolds tensor becomes:

〈duαuβ
dt
〉 =∂〈uαuβ〉

∂t
+ 〈Uk〉

∂〈uαuβ〉
∂xk

+ (〈uαuk〉
∂〈Uβ〉
∂xk

+ 〈uβuk〉
∂〈Uα〉
∂xk

) + ∂〈uαuβuk〉
∂xk

,

=− (λ̃α + λ̃β)〈uαuβ〉
τk

+ C0
k

τk
δαβ.

(4.21)

For a surface boundary layer, it can be simplified into:

(〈uαw〉
∂〈U〉
∂z

δxβ + 〈uβw〉
∂〈U〉
∂z

)δxα + (λ̃α + λ̃β)〈uαuβ〉
τk

= C0
k

τk
δαβ. (4.22)

which component by component reads:

for 〈u2〉: λ̃x〈u2〉 = −〈uw〉∂〈U〉
∂z

τk + C0
2 k, (4.23a)

for 〈v2〉: λ̃y〈v2〉 = C0
2 k, (4.23b)

for 〈w2〉: λ̃z〈w2〉 = C0
2 k, (4.23c)

for 〈uw〉: − (λ̃x + λ̃z)〈uw〉 = 〈w2〉∂〈U〉
∂z

τk, (4.23d)

for 〈uv〉: 〈uv〉 = 0, (4.23e)
for 〈vw〉: 〈vw〉 = 0. (4.23f)

From Eq. (4.23a), in order to ensure the balance of the production and conservation Eq. (4.19a)
we have then to ensure that we have:

− 〈uw〉∂〈U〉
∂z

= −C0
2
k

τk
+ λ̃x

〈u2〉
τk

= k

τk
. (4.24)

Injecting the condition on the distribution of the streamwise energy Eq. (4.19c), we have then:

λ̃x = C0 + 2
2rx

. (4.25)

From Eq. (4.23c) the condition Eq. (4.19c) directly gives:

λ̃z = C0
2rz

. (4.26)

From the definition of the kinetic energy k = 〈uαuα〉
2 and the condition on the distribution of the

kinetic energy Eq. (4.19c) we have:

ry = 2− rx − rz. (4.27)
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Injecting this result in Eq. (4.23b), we obtain:

λ̃y = C0
2(2− rx − rz)

. (4.28)

Finally, multiplying the Eq. (4.23d) by 〈uw〉 we have:

−(λ̃x + λ̃z)〈uw〉2 =〈w2〉〈uw〉∂〈U〉
∂z

τk = −rzk2, (4.29a)

k2 =− λ̃x + λ̃z
rz

〈uw〉2. (4.29b)

Injecting this result in the condition Eq. (4.19b) and developing the coefficient λ̃x and λ̃z we
get:

1
Cµ

= λ̃x + λ̃z
rz

= 1
rz

(C0 + 2
2rx

+ C0
2rz

)
, (4.30a)

C0 = 2rz
rzrx − Cµ
Cµ(rz + rx) . (4.30b)

Considering, the TKE distribution of Table 4.A.1 the coefficient associated to each toy model
considered are presented in Table 4.A.2. By construction of the model, if one wants to mimic
the Rotta model the SLM modelling is retrieved.

k − ε Rotta LRR-IP SSG

std. (CR = 3.5) (CR = 1.8, CP = 0.6) std. (see Table 1.3)

C0 3.96 3.5 3.21 2.16

λ̃x 4.47 3.125 2.71 1.94

λ̃y 2.97 3.125 3.9 2.63

λ̃z 2.97 3.125 3.09 2.08

Table 4.A.2: Value of the toy model constants for different mimicked RANS models.
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As presented in Paragraph 1.2.2.3.2, in order to take into account the effects of the potential
temperature stratification on near ground atmospheric flows, one can consider the Monin–
Obukhov similarity theory. In the scope of this theory, all mean and turbulent quantities in
the surface-boundary layer (SBL) may be derived based on so called “universal functions”. In
the literature many propositions have been made to determine such functions for the mean
velocity and mean potential temperature (see e.g. Businger et al. [1971], Carl et al. [1973],
Högström [1988], Chenge and Brutsaert [2005], Hartogensis and De Bruin [2005]). However,
the selection of a specific proposition may be tricky and not fully satisfactory for multiple
reasons. First, on theoretical grounds, many propositions do not respect the stable or convective
asymptotic behaviour derived from the Monin–Obukhov similarity theory. Moreover, they do
provide information only on the mean first-order moments and are therefore not sufficient to
characterise the flows as no information on the turbulent quantities is provided. Finally, these
functions are experimentally fitted and may not agree with the turbulence model considered in
numerical simulations. Due to this issue, the selected universal functions, often used as inlet
profiles for micro-scale flows, are not solution of the numerical solver in statistically stationary
and horizontally uniform condition, yielding to the impossibility to maintain the injected profiles.
To avoid these difficulties, the main goal of Section 5.1 is to present a method to evaluate
model-consistent universal functions. In this scope, we aim at estimating the solutions of the
numerical solver to use them as universal functions. This method has been applied for a range
of second-order RANS models with a linear modelling of the pressure-strain correlation and
scrambling terms. The solution of algebraic equations consistent with the model selected are
derived in Section 5.1.1. This step enables to provide universal functions for all mean and
turbulent quantities except the mean velocity. Moreover, all these universal functions depend
solely on this universal function associated with the mean velocity, which has still to be exhibited.
To do so, an iterative resolution of the dissipation rate equation is carried out. A solution in
agreement with the theoretical asymptotic solution is then obtained in Section 5.1.2 and verified
in Section 5.1.3.
In addition, an extension of the spatial numerical treatment, presented in Chapter 3, is
then provided to treat thermally stratified wall flow in Section 5.2. It is first highlighted,
in Section 5.2.1, that a proper treatment of the wall boundary condition for the potential
temperature is necessary to retrieve the physical evolution of thermal quantities in stratified SBL.
Moreover, it is necessary to avoid errors on the well-mixed criterion tarnishing the concentration
profiles. Afterwards, similarly to the mean velocity and Lagrangian timescale fields, the necessity
to consider a proper interpolation scheme for the thermal properties is presented in Section 5.2.2.
Then, the error arising when estimating second-order moments on too coarse averaging bins is
put forward for stratified flows in Section 5.2.3.
Finally, the effects of the thermal stratification on the pollutant dispersion will be highlighted
in Section 5.3 with both moment and Lagrangian stochastic methods. It is shown that the
plume shape does not depend on the wind velocity but solely on the thermal stratification of the
atmosphere as presented by Monin [1959]. Moreover, in the Lagrangian standpoint, the impacts
of the proper thermal modelling are emphasised.
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5.1 Derivation of Universal Functions Coherent with the Se-
lected Turbulent Closure
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The goal of the present section is to fully characterise the stratified SBL flows simulated with a
given modelling of the turbulence. This issue is of particular interest to provide pertinent inlet
condition for micro-scale atmospheric simulation when no wind data are available. We will place
ourselves in the scope of the Monin–Obukhov similarity theory presented in Paragraph 1.2.2.3.2.
This theory provides the dependence between physical quantities but not the explicit shape
of these dependencies characterised by universal functions. As aforementioned and further
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discussed in Paragraph 1.2.2.3.2, selecting experimentally fitted universal functions of the
literature results in an incoherence between profiles injected at inlet and the solution of the
numerical solver. As a way to avoid these pitfalls, in the continuation of the work proposed by
Gibson and Launder [1978], this section aims at deriving solutions consistent with the modelling
selected and the numerical solutions. Indeed, the modelled set of equations considered to describe
the flow is closed and therefore it is possible to derive the universal function by resolving it. We
will consider a DRSM-DFM approach in which this set of equations is composed of 15 modelled
equations (i.e. 3 equations for mean velocity, 1 equation for mean potential temperature, 6
equations for Reynolds tensor equation, 3 equations for the turbulent heat fluxes, 1 equation
for the potential temperature variance and 1 equation for the TKE dissipation rate), yet the
approach presented here remains valid for other choice of modelling as shown in Appendix 5.A.

5.1.1 Derivation of Universal Functions for the Second-Order Turbulent
Quantities

To have a proper description of the turbulence, which plays a fundamental role in the treatment
of pollutant dispersion, we will first focus on the second-order turbulent quantities. To do so,
we will start by presenting the theoretical assumption considered. Then the derivation of the
corresponding algebraic model on the Reynolds tensor and the scalar fluxes is detailed.

5.1.1.1 Hypothesis Considered

Let us first introduce the assumptions considered. We remain in the SBL, sufficiently high for the
viscous effects to be negligible but sufficiently close to the ground to also neglect the long-distance
pressure gradient and Coriolis effects. The situation considered is then a horizontally uniform
and statistically stationary flow. It is vertically stratified due to the shear stress imposed by the
upper region wind and the thermal forcing imposed at the ground assumed flat and horizontal.
In this context, as discussed in Section 1.2.2.3, the mean velocity and potential temperature
equations simplify respectively into ∂〈uw〉

∂z = 0 and ∂〈wθ〉
∂z = 0, with e1 aligned with the flow

mean direction and e3 aligned with the vertical. Thus, the shear stress 〈uw〉 = −u2
∗, and the

vertical turbulent heat flux qheat
ρCp

= 〈wθ〉 = −u∗θ∗ are constant properties. We can then focus
on the treatment of turbulent quantities.

5.1.1.1.1 Reynolds Tensor and Turbulent Scalar Fluxes Modelling
In coherence with the high Reynolds number limit considered, the dissipation tensor in Reynolds
tensor equation is considered isotropic: ε = 2

3ε1 whereas the dissipation of turbulent scalar fluxes
is null: εθ = 01 (see discussion in Paragraph 1.2.1.2.2). Furthermore, for the pressure-strain
correlation Π and scrambling term Πθ introduced respectively on Eq. (1.75) and Eq. (1.108), we
limit ourselves to models in which they are treated as linear functions of the turbulent quantities
available:

Πij = −CRε
(〈uiuj〉

k
− 2

3δij
)

︸ ︷︷ ︸
Πsij

+2CkkSij − CP
(
Pij −

2
3Pδij

)
︸ ︷︷ ︸

Πrij

−CG
(
Gij −

2
3Gδij

)
︸ ︷︷ ︸

ΠGij

, (5.1)

Πθ,i = −Cθ1
ε

k
〈uiθ〉︸ ︷︷ ︸

Πs
θ,i

−Cθ2PUθ,i − Cθ′2P
Θ
θ,i︸ ︷︷ ︸

Πr
θ,i

−Cθ3Gθ,i︸ ︷︷ ︸
ΠG
θ,i

, (5.2)
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with Sij the deformation rate tensor Sij = 1
2

(
∂〈U〉i
∂xj

+ ∂〈U〉j
∂xi

)
which only has one component

in the case studied Sxz = 1
2
∂〈U〉
∂z . Moreover, in these equations the superscript s refers to

slow terms depending on the turbulent properties but not directly on the first-order-moment
gradients. The superscript r characterises rapid redistribution terms within which the first-order-
moment gradients have a direct impact. Finally, the last term with the superscript G represents
the redistribution induced by the buoyant effects. It is worth noticing that the redistributing
mechanism for the Reynolds tensor, the thermal variance and the turbulent heat fluxes results
from similar physical processes. The choice of modelling for the corresponding terms is thus not
independent from each other Pope [1994b]. The class of model selected does not encompasses
non-linear treatment of fluctuating pressure induced redistribution terms. Then, for example
the SSG model for the Reynolds tensor (see Speziale et al. [1991]) or the methods proposed by
Kenjereš et al. [2005] for the turbulent heat fluxes remain out of the scope of the present study.

5.1.1.1.2 Weak Equilibrium Assumption
With an aim to exhibit a proper algebraic model describing the flow, which aims at being
local, we place ourselves under the weak equilibrium assumption which is a common assumption
within SBL flows (see e.g., Launder [1975], Gibson and Launder [1978], Rodi [2000], Pope [2000],
Ferrand and Violeau [2012]). This hypothesis states for the Reynolds tensor:

k

D 〈uiuj〉k

Dt
−D 〈uiuj〉

k

 = 0, (5.3)

i.e.,

D〈uiuj〉
Dt

−D〈uiuj〉 = 〈uiuj〉
k

(
Dk

Dt
−Dk

)
, (5.4a)

= 〈uiuj〉
k

(P + G − ε) . (5.4b)

Similarly, to this hypothesis made on the dynamics, we also consider the weak equilibrium
assumption for the turbulent heat fluxes:

√
〈θ2〉k

D
〈uiθ〉√
〈θ2〉k

Dt
−D 〈uiθ〉√

〈θ2〉k

 = 0. (5.5)

We have then:

D〈uiθ〉
Dt

−D〈uiθ〉 = 〈uiθ〉√
〈θ2〉k

(
D
√
〈θ2〉k
Dt

−D√〈θ2〉k

)
, (5.6a)

= 1
2

(
〈uiθ〉
〈θ2〉

(
D〈θ2〉
Dt

−D〈θ2〉

)
+ 〈uiθ〉

k

(
Dk

Dt
−Dk

))
, (5.6b)

= 〈uiθ〉2

(P〈θ2〉 − ε〈θ2〉
〈θ2〉

+ P + G − ε
k

)
. (5.6c)
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5.1.1.1.3 Production-Dissipation Equilibrium Assumption
Furthermore, a more constraining equilibrium assumption is made for the kinetic energy and
the thermal variations. An equilibrium between their production and dissipation is assumed.
This is also a classical assumption within the SBL which states:

P + G = ε, (5.7a)
P〈θ2〉 = ε〈θ2〉. (5.7b)

This condition imposes that the LHS terms (i.e., the difference between temporal evolution and
diffusion) in Eqs 5.4 and Eqs 5.6 are null. Assuming a statistically stationary and horizontally
homogeneous flow, the temporal evolution is strictly null, so this assumption corresponds to
neglecting the diffusive term on the kinetic energy and on the potential temperature variance.
The limit of this hypothesis will be discussed in Paragraph 5.1.3.2.2. It should be noted that,
combined with the weak equilibrium hypothesis, this results in the temporal evolution and
diffusive terms of the Reynolds tensor and turbulent heat fluxes also being neglected.
Furthermore, under production dissipation equilibrium, it is possible to exhibit a relation
between the dissipation rate and the flux Richardson number or the momentum universal
function such as:

ε = P (1−Rif ) = u3
∗
κz

(ϕm − ζ) = u3
∗

κLMO

1−Rif
Rif

. (5.8)

with the flux Richardson number Rif = − GP = ζ
ϕm

(see Paragraph 1.2.2.3.2). Furthermore,
let us recall that in this situation, we can express the ratio of the production terms over the
dissipation rate as a function of the flux Richardson number:

P
ε

= 1
1−Rif

, (5.9a)

G
ε

= − Rif
1−Rif

. (5.9b)

5.1.1.1.4 Proportionality between Dynamical and Thermal Turbulent Timescale

Moreover, according to Kolmogorov [1941, 1962] theory, we assume that the thermal and
turbulence relaxation times are proportional with a factor CΘ constant, given that they are
caused by the same physical phenomenon i.e.:

CΘ = τk
τΘ

= k

ε

ε〈θ2〉
2〈θ2〉

. (5.10)
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The equation of 〈θ2〉 Eq. (1.117) under equilibrium assumption can be written:

〈θ2〉 = k

ε

ε〈θ2〉
2CΘ

= k

ε

P〈θ2〉
2CΘ

, (5.11a)

= k

CΘ (1−Rif )
〈wθ〉∂〈Θ〉∂z

〈uw〉∂〈U〉∂z

, (5.11b)

= θ2
∗

CΘ (1−Rif )
k

u2
∗
Prt. (5.11c)

The question raising is how to set the constant CΘ. The derivation of this value to capture the
proper turbulent Prandtl number near-neutral situations is presented later in Paragraph 5.1.1.3.3
in the scope of Rotta–Monin model. In the following, the algebraic solutions corresponding to
different models will be plotted. First the fully linear LRR-L model proposed by Launder [1975]
is plotted with the constants introduced in Table 1.4. The two other models correspond to
Rotta–Monin models with respectively CR = 6.25; CΘ = 1.875 and CR = 19; CΘ = 5.7. The
two CR constants correspond to the value necessary to retrieve the proper production of TKE
in neutral situation respectively according to Launder and Spalding [1974] fitted on channel
flow or to Duynkerke [1988] fitted on atmospheric flows. The value of CΘ is then obtained
in coherence this choice to obtain turbulent Prandtl number of 0.8 in near-neutral flows (see
Zilitinkevich et al. [2008], Zilitinkevich et al. [2010], Freire et al. [2019]) as presented later on in
Paragraph 5.1.1.3.3.

5.1.1.2 Derivation of Algebraic Model Consistent Universal Functions for the
Reynolds Tensor

As a way to determine the appropriate universal functions that are consistent with the chosen
model, we will derive the solutions for the corresponding the algebraic model. Only the results
obtained using a DRSM-DFM closure which is a second-order closure on both the dynamics and
the temperature are presented here. The results obtained using lower order methods are derived
in Appendix 5.A.
First considering the Reynolds tensor, one aims at obtaining the equation driving the dynamic
aspect of turbulence. The transport equation for the Reynolds tensor is recalled here:

D〈uiuj〉
Dt

−D〈uiuj〉 = −〈uiuk〉
∂〈Uj〉
∂xk

− 〈ujuk〉
∂〈Ui〉
∂xk︸ ︷︷ ︸

Pij

−giβ0〈ujθ〉 − gjβ0〈uiθ〉︸ ︷︷ ︸
Gij

+Πij − εij . (5.12)

Injecting Eq. (5.1) in Eq. (5.12) the modelled transport equation is:

D〈uiuj〉
Dt

−D〈uiuj〉 =− CRε
〈uiuj〉
k

+ 2
3 (P + G − ε+ CRε) δij + 2CkkSij ,

+ (1− CP)
(
Pij −

2
3Pδij

)
+ (1− CG)

(
Gij −

2
3Gδij

)
.

(5.13)

With the two equilibrium assumptions considered the LHS terms are null and the production
dissipation-equilibrium ensures that P +G − ε = 0. Thus, an algebraic model can be derived as:
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〈uiuj〉
k

= 2
3δij + 2Ck

CR

kSij
ε

+ (1− CP)
CR

P
ε

(
Pij − 2

3Pδij
)

P
+ (1− CG)

CR
G
ε

(
Gij − 2

3Gδij
)

G
. (5.14)

Under equilibrium assumption, the production by dissipation ratios are given by Eqs 5.9.
Injecting these equations in the previous one, we can write:

〈uiuj〉
k

= 1
(1−Rif )

(2
3δij + 2Ck

CR

k

u2
∗

κzSij
u∗ϕm

+ (1− CP)
CR

(
Pij − 2

3Pδij
)

P


−Rif

2
3δij + (1− CG)

CR

(
Gij − 2

3Gδij
)

G

). (5.15)

Component by component this equation reads:
〈uu〉
k

= 1
(1−Rif )

(2
3
CR + 2(1− CP)

CR
−Rif

2
3
CR − (1− CG)

CR

)
, (5.16a)

〈vv〉
k

= 1
(1−Rif )

(2
3
CR − 1 + CP

CR
−Rif

2
3
CR − (1− CG)

CR

)
, (5.16b)

〈ww〉
k

= 1
(1−Rif )

(2
3
CR − 1 + CP

CR
−Rif

2
3
CR + 2(1− CG)

CR

)
, (5.16c)

〈uv〉
k

= 0, (5.16d)

〈vw〉
k

= −Rif
(1− CG) 〈vθ〉〈wθ〉
CR (1−Rif ) , (5.16e)

〈uw〉
k

= 1
(1−Rif )

(
−Ck
CR

k

〈uw〉
+ (1− CP)

CR
〈ww〉
〈uw〉

−Rif
1− CG
CR

,
〈uθ〉
〈wθ〉

)
. (5.16f)

It is worth noticing from the diagonal terms Eq. (5.16a) to Eq. (5.16c) that for a given model
of the class selected and a known flux Richardson number the distribution of turbulent kinetic
energy might be determined. To simplify the notation and the comprehension, the equation of
the diagonal Reynolds tensor components can be written:

〈uu〉
k

= 1
(1−Rif )

2
3
CR + 2(1− CP)

CR︸ ︷︷ ︸
λx

1−Rif
CR − (1− CG)
CR + 2(1− CP)︸ ︷︷ ︸

µx<1

 = λx
1− µxRif
(1−Rif ) , (5.17a)

〈vv〉
k

= 1
(1−Rif )

2
3
CR − (1− CP)

CR︸ ︷︷ ︸
λ

1−Rif
CR − (1− CG)
CR − (1− CP)︸ ︷︷ ︸

µy∼1

 = λ
1− µyRif
(1−Rif ) , (5.17b)

〈ww〉
k

= 1
(1−Rif )

2
3
CR − (1− CP)

CR︸ ︷︷ ︸
λ

1−Rif
CR + 2(1− CG)
CR − (1− CP)︸ ︷︷ ︸

µ>1

 = λ
1− µRif
(1−Rif ) . (5.17c)

210



In order to have a physical behaviour, a few conditions should be respected by these new
constants:

• First, it is necessary to ensure that in neutral situations the TKE distribution is well
reproduced and is independent of the modelling selected for the thermal quantities. To
this end, one may consider the constants λx and λ which represent, for neutral flows, the
proportion of TKE respectively in the streamwise direction and in the other directions.
These constants should then be positive, which is well respected for CP in the range [0−1],
and CR > 1.

• One may then consider the deviation from the neutral state due to thermal effects by
comparing the constants µ, µx,µy to unity.

– In the normal direction: µ is greater than unity, indicating that the normal component
of the Reynolds tensor is decreasing with the flux Richardson number. This condition
reflects the fact that for unstable cases the convective effects produce kinetic energy
in this direction, whereas they destruct it for stable situations as we can see
in Figure 5.1A.

– In the spanwise direction: the constant µy is almost one. The proportion of kinetic
energy in this direction does not strongly depend on the stability as evidenced
in Figure 5.1B). Indeed, the redistribution of energy is quite similar whether it is
produced by the shear stress or by thermal effects. This is emphasised by the value
of the constants CP and CG which are somewhat similar.

– In the streamwise direction: the constant is below one, highlighting that the
proportion of kinetic energy in this direction increases with the stability. In fact, given
that the proportion of kinetic energy in the spanwise direction is almost constant, it
compensates almost completely for the evolution of kinetic energy ratio in the normal
direction as illustrated Figure 5.1C.

• Finally, it is essential to ensure that the diagonal terms of the Reynolds tensor describing
the kinetic energy in each direction remain positive. This requires ensuring that the
constants µ, µy, and µx are smaller than 1/Ricrf . In practice, we have µ > µy > µx, so
respecting this constraint only along the vertical direction is sufficient.

Remark that, as presented in Eqs 5.17, the relative distribution of kinetic energy in each direction
is uniform in stratified flows in the stable limit situation (Rif → Ricrf ) at all heights, but also in
the convective limit (Rif → −∞). However, this is not the case outside these limit situations. In
fact, local thermal effects, which either kill or produce normal fluctuations, modify the weight
of the corresponding component, which is compensated for by the other. As a result, this
distribution varies with altitude and the weak equilibrium assumption on the Reynolds tensor
Eqs 5.4 is not perfectly verified in such flows. This is a first limitation of the algebraic methods
presented here.
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Figure 5.1: Algebraic profiles for the distribution of kinetic energy for different models. Results
using three different models are compared: the LRR-L model presented in Table 1.4 ( ), and
two Rotta–Monin models respectively with CR = 6.25, CΘ = 1.875 ( ) and CR = 19, CΘ = 5.7
( ).

At this point, preliminary remarks regarding the evolution of the kinetic energy have already
been drawn. However, the description of the turbulence has to be completed. Indeed, the value
of the kinetic energy has yet to be established. For this purpose, we will focus on the equation of
the shear stress Eq. (5.16f) which is constant. Injecting the normal component of the Reynolds
tensor in the shear stress equation and replacing the constant fluxes by their values, we get:

u4
∗
k2 = − 1

(1−Rif )
Ck
CR

+ λ(1− CP)
CR

(1− µRif )
(1−Rif )2 −

Rif
(1−Rif )

(1− CG)
CR

〈uθ〉
u∗θ∗

u2
∗
k
, (5.18a)

u4
∗
k2 = 1

(1−Rif )2

(
λ(1− CP)− Ck

CR︸ ︷︷ ︸
α1

(
1− λ(1− CP)µ

λ(1− CP)− Ck
Rif

)
+ Ck
CR

Rif

)
(5.18b)

− Rif
(1−Rif )

(1− CG)
CR

〈uθ〉
u∗θ∗

u2
∗
k
,

u4
∗
k2 =

α1

(
1−

µxz︷ ︸︸ ︷(
λ(1− CP)µ

λ(1− CP)− Ck
− Ck
CRα1

)
Rif

)
(1−Rif )2 − Rif

(1−Rif )
(1− CG)
CR

〈uθ〉
u∗θ∗

u2
∗
k
, (5.18c)

where α−1
1 ' C−1

µ is the square of the dimensionless kinetic energy in the neutral situation. As
we can see on the second RHS terms of this equation, the kinetic energy to shear stress ratio
depends on the horizontal turbulent scalar fluxes.

212



5.1.1.3 Modelling of the Turbulent Heat Fluxes and Impacts on the Dynamics

5.1.1.3.1 Estimation of the Turbulent Heat Fluxes
The Reynolds tensor being coupled not only with the known normal component of the turbulent
heat fluxes but also with its horizontal one, we will now focus on the turbulent fluxes to determine
the kinetic energy. The transport equation for the turbulent heat fluxes is recalled here:

D〈uiθ〉
Dt

−D〈uiθ〉 = −〈ujθ〉
∂〈Ui〉
xj︸ ︷︷ ︸

PU
θ,i

−〈uiuj〉
∂〈Θ〉
xj︸ ︷︷ ︸

PΘ
θ,i

−β0〈θ2〉gi︸ ︷︷ ︸
Gθ,i

+Πθ,i − εθ,i, (5.19)

Considering the weak equilibrium and the production-dissipation equilibrium the LHS terms are
null. The resulting algebraic model is then given by:

〈uiθ〉 = k

ε

(
1− Cθ2
Cθ1

PUθ,i +
1− Cθ′2
Cθ1

PΘ
θ,i + 1− Cθ3

Cθ1
Gθ,i

)
, (5.20)

which on each component reads:

〈uθ〉 = −k
ε

(
1− Cθ2
Cθ1

〈wθ〉∂〈U〉
∂z

+
1− Cθ′2
Cθ1

〈uw〉∂〈Θ〉
∂z

)
, (5.21a)

〈vθ〉 = −k
ε

(
1− Cθ′2
Cθ1

〈vw〉∂〈Θ〉
∂z

)
, (5.21b)

〈wθ〉 = −k
ε

(
1− Cθ′2
Cθ1

〈ww〉∂〈Θ〉
∂z
− 1− Cθ3
Cθ1

gβ0〈θ2〉
)
. (5.21c)

Replacing the constant fluxes and the potential temperature gradient by their expressions and
injecting the dissipation rate relation Eq. (5.8), the normal component of the Reynolds tensor
Eq. (5.17c) and the thermal variance Eq. (5.11c) in the normal turbulent heat fluxes Eq. (5.21c),
we can have access to the turbulent Prandtl number:

u∗θ∗ = u∗θ∗

(1−Rif )2
k2

u4
∗


1− Cθ′2
Cθ1

λ(1− µRif )Prt −
1− Cθ3
Cθ1CΘ

1/LMO︷ ︸︸ ︷
gβ0θ∗κ

u2
∗

z

ϕm︸ ︷︷ ︸
Rif

Prt

 , (5.22a)

Prt = ϕh
ϕm

= u4
∗
k2

(1−Rif )2

1− Cθ′2
Cθ1

λ︸ ︷︷ ︸
β1

1−Rif
(
µ+ 1− Cθ3

(1− Cθ′2)CΘλ

)
︸ ︷︷ ︸

β2


= u4

∗
k2

(1−Rif )2

β1(1− β2Rif ) . (5.22b)

In order to ensure that this turbulent Prandtl number is well defined one must ensure that we
have β1 > 0 and β2 < 1/Ricrf . Furthermore, injecting the horizontal shear 〈uv〉 Eq. (5.16d), the
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dissipation rate Eq. (5.8) and of the turbulent Prandtl number Eq. (5.22b) at equilibrium in the
spanwise turbulent fluxes Eq. (5.21b), we get after simplification:

∀Rif , 〈vθ〉
(

1−Rif
(
β2 −

1− CG
λCR

))
= 0 (5.23a)

〈vθ〉 = 0. (5.23b)

As expected, the spanwise terms 〈vθ〉 and 〈uv〉 are null as they do not depend on thermal nor
shear effects. Furthermore, injecting the known quantities in the streamwise turbulent heat flux,
we get:

〈uθ〉 = k

u2
∗

u∗θ∗
1−Rif

(
1− Cθ2
Cθ1

+ 1
λ

u4
∗
k2

(1−Rif )2

(1− β2Rif )

)
. (5.24)

5.1.1.3.2 Derivation of the Universal Functions for Turbulent Quantities
For the shear stress, injecting Eq. (5.24) in Eq. (5.18c), we can then obtain:

u4
∗
k2 = 1

(1−Rif )2

(
α1 (1− µxzRif ) (5.25a)

−Rif

(
(1− CG)
CR

1− Cθ2
Cθ1

+ (1− CG)
CR

1− Cθ′2
Cθ1

u4
∗
k2

(1−Rif )2

β1(1− β2Rif )

))
,

(5.25b)

u4
∗
k2 (1−Rif )2 = α1

(
1−Rif

(
λ(1− CP)µ

λ(1− CP)− Ck
− Ck
CRα1

+ (1− CG)(1− Cθ2)
CRCθ1α1︸ ︷︷ ︸

α2

)

− u4
∗
k2Rif

(1−Rif )2

(1− β2Rif )

(
(1− CG)(1− C′θ2)
CRCθ1β1

)
︸ ︷︷ ︸

α3= (1−CG)
λCR

, (5.25c)

ϕk = k

u2
∗

= (1−Rif )
√

(1− (β2 − α3)Rif )
α1(1− β2Rif )(1− α2Rif ) . (5.25d)

The modelling of the Reynolds tensor, turbulent heat fluxes and potential temperature variance
allows us to derive a relation between the kinetic energy and the flux Richardson number. As
expected, for convective SBLs, the buoyancy effects increase the overall kinetic energy as we
observe in Figure 5.2A. For stable cases, the situation is more ambiguous. Notwithstanding
the fact that thermal stratification has the effect of suppressing turbulent fluctuations in the
normal direction, it has been demonstrated that the TKE also increases in this situation when
certain constants are considered. This result, which may appear paradoxical at first glance, is in
agreement with experimental data (see, e.g., Nieuwstadt [1984]). This can be explained by the
fact that the destruction of normal velocity fluctuations also decreases the shear stress, thus, to
maintain a given shear stress more energy is necessary particularly in the streamwise direction.
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Furthermore, being a function of the flux Richardson number, which is not uniform, the kinetic
energy is not uniform either except in the neutral and stable limits. Thus, the corresponding
diffusion term is not null, and the assumption of production-dissipation equilibrium is not
exactly respected. Nevertheless, for the time being, we continue to assume that the influence of
the diffusion remains relatively minor, and thus the production-equilibrium assumption is still
considered.
Injecting the kinetic energy Eq. (5.25) into the relative distribution of TKE Eqs 5.17 we can
access the diagonal Reynolds tensor components adimensioned by the shear stress:

ϕ〈uu〉 = 〈uu〉
u2
∗

= λx(1− µxRif )
√

(1− (β2 − α3)Rif )
α1(1− β2Rif )(1− α2Rif ) ,

ϕ〈vv〉 = 〈vv〉
u2
∗

= λ(1− µyRif )
√

(1− (β2 − α3)Rif )
α1(1− β2Rif )(1− α2Rif ) ,

ϕ〈ww〉 = 〈ww〉
u2
∗

= λ(1− µRif )
√

(1− (β2 − α3)Rif )
α1(1− β2Rif )(1− α2Rif ) .

(5.26a)

(5.26b)

(5.26c)
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Figure 5.2: Evolution of the kinetic energy and Reynolds tensor diagonal terms with the
flux Richardson number for different algebraic models. Results using three different models
are compared: the LRR-L model presented in Table 1.4 ( ), and two Rotta–Monin models
respectively with CR = 6.25, CΘ = 1.875 ( ) and CR = 19, CΘ = 5.7 ( ).

Furthermore, the universal function of the TKE Eq. (5.25) can be injected respectively in the
streamwise turbulent heat fluxes Eq. (5.24), in the turbulent Prandtl number Eq. (5.22b) and
in the potential temperature variance Eq. (5.11c) to obtain a relation between these thermal
quantities and the flux Richardson number as:
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ϕ〈uθ〉 = 〈uθ〉
u∗θ∗

= 1− Cθ2
Cθ1

√
(1− (β2 − α3)Rif )

α1(1− β2Rif )(1− α2Rif )

+ 1
λ

√
α1(1− α2Rif )

(1− β2Rif ) (1− (β2 − α3)Rif ) ,

P rt = ϕh
ϕm

= α1(1− α2Rif )
β1 (1− (β2 − α3)Rif ) ,

ϕ〈θ2〉 =〈θ〉
2

θ2
∗

= 1
β1CΘ

√
α1(1− α2Rif )

(1− β2Rif ) (1− (β2 − α3)Rif ) .

(5.27)

(5.28)

(5.29)

The corresponding evolution for the turbulent thermal quantities is presented in Figure 5.3
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Figure 5.3: Evolution of the turbulent heat fluxes with the flux Richardson number for different
algebraic models. Results using three different models are compared: the LRR-L model
presented in Table 1.4 ( ), and two Rotta–Monin models respectively with CR = 6.25,
CΘ = 1.875 ( ) and CR = 19, CΘ = 5.7 ( ).

Let us take an instant to focus on the asymptotic behaviours of the turbulent quantities derived
from Eq. (5.25) to Eq. (5.29). In the stable limit, as the quantities depend solely on the flux
Richardson number, which tends towards a finite limit when ζ tends towards infinity, all these
quantities tend towards constant value as predicted by Monin–Obukhov theory. Furthermore,
in the convective limit the flux Richardson number tends towards minus infinity. It is clear from
Eq. (5.25) to Eq. (5.26c) that the diagonal components of the Reynolds tensor expand due to
thermal forcing at the expected rate (−Rif )1/2. Moreover, the potential temperature variance
Eq. (5.29) and the normal fluxes Eq. (5.27) decrease also with (−Rif )−1/2 according to the
Monin–Obukhov predictions. In the neutral situation, all the properties converge towards the
known neutral values and the dynamics is independent of the modelling selected for the thermal
quantities.
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5.1.1.3.3 Estimation of the Constant CΘ based on the Near Neutral Turbulent
Prandtl Number.
In the near-neutral situation, the algebraic solution for turbulent Prandtl number in the class
of models considered Paragraph 5.1.1.1.1 equals to:

Pr0
t = α1

β1
= (1− CP)

1− Cθ′2

Cθ1
CR
− 3CkCθ1

2(1− Cθ′2)(CR − (1− CP)) . (5.30)

This relation might be used to fix some constants in a coherent manner. In the case where a
Rotta–Monin model is selected, this equation is simplified into:

Pr0
t = α1

β1
= Cθ1
CR

. (5.31)

Based on modelling consistency, the Lagrangian stochastic counterpart of the Rotta–Monin
model is SLM–IEM model. Thus, it results from Eqs 1.228, that considering these models we
have Cθ1 = Cuθ = CΘ + 1

2CR and then we retrieve the result obtained by Pozorski et al. [2003a]:

CΘ = CR(Pr0
t −

1
2). (5.32)

So as to retrieve the value Pr0
t = 0.8 (see Zilitinkevich et al. [2008], Zilitinkevich et al. [2010],

Freire et al. [2019]), given a value CR = 6.25 to obtain a proper production of kinetic energy we
obtain a value CΘ = 1.875 which will be our reference value.

5.1.2 Derivation of the Momentum Universal Function issued from the
Dissipation Rate Equation

As seen in Section 5.1.1 from Eq. (5.25) to Eq. (5.29), for any modelling of the Reynolds tensor
and turbulent heat fluxes in the class treated, algebraic solutions have been found for all second-
order statistics. They provide universal functions that depend solely on model constants and
on the flux Richardson number. However, the system remains for now unclosed as the latter is
still unknown. To close this system, we will consider the modelling of the dissipation rate which
will furnish an additional equation. This equation will enable the estimation of the momentum
universal function by providing a scale for the distance to the ground. The dissipation rate is
governed by:

−Dε = ε

k
(Cε1P + Gε)− Cε2

ε2

k
, (5.33)

where the temporal evolution and advection by mean velocity Dε
Dt is null since we consider a

stationary simple sheared flow. However, for the dissipation rate, no local algebraic solution
is searched as the diffusion term should be considered. Indeed, it is the only non-local term
in the set of equations treated. Therefore, it provides a notion of length scale for the distance
to the wall which is necessary to derive the momentum universal function. Then, both the
buoyancy effects on the dissipation rate Gε and the diffusion term Dε must be modelled. The
corresponding modelling will be discussed respectively in Section 5.1.2.1 and Section 5.1.2.2.
The implicit solution consistent with the modelling considered for this system will be presented
in Section 5.1.2.3.
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5.1.2.1 Relation between the Modelling of the Buoyant Effects on the Dissipation
Rate and Asymptotic Flux Richardson Number

Let us first focus on the treatment of the thermal effects on the dissipation rate. Two models will
be presented for this term: first a model linear in G followed by a model quadratic in G. For each
of these models, we will exhibit the value coherent with the asymptotic turbulent behaviour.

5.1.2.1.1 Linear Modelling of the Buoyant Effects on the Dissipation Rate
We first consider the most common modelling of the impacts of the thermal effects on the
dissipation rate: Gε = Glinε = Cε3 Gεk (see e.g. Wyngaard et al. [1975], Lumley and Khajeh-
Nouri [1975]). In stable situations, the destruction of dissipation by buoyancy effects is often
considered as negligible compared to the sink term (Cε3 = 0), whereas in unstable situations the
production of dissipation by thermal effects has to be considered. Furthermore, in this case, the
contributions of thermal and mean strain productions are often considered analogues, resulting
in the choice Cε3 = Cε1 (see discussion in Hanjalić and Launder [2022]). It is worth noticing that
the modelling of this contribution and the value for this constant are still subject to debate. We
will consider the two asymptotic limit cases.

Conv. lim. The convective limit case corresponds to the situation encountered on hot days without
wind. In this case, the production by shear can be considered null. Thus, we should
have an equilibrium between the dissipation rate, the production of energy by thermal
effects which is constant in all the domain and finally the TKE diffusion. As presented
in Paragraph 1.2.2.3.2, in this situation the latter one should also tend towards a positive
constant D−∞k (see Monin and Yaglom [1971][Chapter 7.5]). Thus, at all heights, the
dissipation rate equation becomes:

ε

k
(Cε3G − Cε2ε) = ε

k
G
(
Cε3 − Cε2

(
1 + D

−∞
k

G

))
= 0. (5.34)

Neglecting the TKE diffusion, in this limit, the dissipation rate is in competition with the
production by buoyancy and tends towards the latter. For this reason, it has been chosen
to provide similar weight to both these processes by setting Cε3 = Cε2 . This choice has
been made in an optic to obtain a proper decrease of the momentum universal function,
considering the approach developed here, as further explained in Paragraph 5.1.2.3.2.

Stable lim. Let us assume a stable boundary layer with the Monin–Obukhov length scale tending
positively towards zero. For all heights the dimensionless parameter ζ tends towards
infinity and the corresponding Richardson number is equal to its critical value at all heights
(∀z, Rif (z) = Ricrf ). Then, given Eq. (5.8), ε is constant at all heights and its diffusion
term is then null. Moreover, the destruction of the dissipation rate by thermal effects is
also null, i.e. (Cε3 = 0). The dissipation rate equation is then simplified into:

ε

k

(
Cε1P − Cε2P(1−Ricrf )

)
= 0, (5.35a)

Cε1 = Cε2(1−Ricrf ), (5.35b)

Ricrf = 1− Cε1
Cε2

. (5.35c)
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Thus, the choice of Cε1 and Cε2 (respectively, for the production by shear and the dissipation
of the dissipation rate) restricts the value of the critical Richardson number (see Duynkerke
[1988]). Using the literature value of respectively Cε1 = 1.44 and Cε2 = 1.92 we get
Ricrf = 0.25 as expected.

5.1.2.1.2 Quadratic Modelling of the Buoyant Effects on the Dissipation Rate A
second proposition made by Wyngaard [1975] for atmospheric flows is to consider that Gε is a
quadratic function of G which can be written Gε = Gquadε = Cε3G + Cε4 G

2

ε . In doing so, for stable
situations where G is negative, the linear and quadratic terms tend to compensate each other.
In contrast, for convective flows, both produce dissipation rate. Such a modelling allows us to
keep a single set of constants, no matter the value of the flux Richardson number. In addition,
it represents the physics at stake, i.e. the predominant role played by the thermal effect on the
dissipation rate in convective situations (see Duynkerke [1988]).

Conv. lim. Let us once more consider the convective asymptotic behaviour. As previously, in this
case, the dissipation rate diffusion and the TKE production by shear can be neglected.
The dissipation rate equation becomes:

ε

k

(
Cε3G + Cε4

G2

ε
− Cε2ε

)
= 0. (5.36)

In absence of TKE diffusion, in this limit, the dissipation rate is in competition only with
the production by buoyancy and tends towards the latter. For this reason, it has also been
chosen to provide similar weight to both of these processes by setting Cε3 + Cε4 = Cε2 .
This choice is also made in an optic to obtain a proper decrease in the momentum
universal function, considering the approach developed here, as further explained in
Paragraph 5.1.2.3.2. Let us note that the production of TKE by buoyant effects is inferior
to the dissipation rate under the production-dissipation equilibrium because of the positive
sign of the production by shear stress (which here becomes negligible). Thus, with this
choice of modelling the production of dissipation rate by thermal effects is weaker than
considering a linear modelling of Gε. It results that the momentum universal function
value expected using the quadratic approach is lower in the convective situation than the
one obtained with the linear approach.

Stable lim. Let us now focus on the stable asymptotic behaviour. As previously the diffusion effects can
be neglected as the dissipation becomes uniform at equilibrium when the flux Richardson
number tends towards its critical value Ricrf . The dissipation rate equation becomes:

ε2

k

(
Cε1
P
ε

+ Cε3
G
ε

+ Cε4
G2

ε2
− Cε2

)
= 0, (5.37a)

i.e., 1
1−Ricrf

(
Cε1 − Cε3Ricrf + Cε4

(Ricrf )2

1−Ricrf
− Cε2(1−Ricrf )

)
= 0, (5.37b)

i.e., Cε1 − Cε2 + (2Cε2 − Cε3 − Cε1)Ricrf + (Cε4 + Cε3 − Cε2)(Ricrf )2 = 0. (5.37c)

In this situation, we consider that all model constants are fixed and we have Cε4 +Cε3 = Cε2 .
Then, the quadratic term in flux Richardson number disappears and we have:

Ricrf = Cε2 − Cε1
2Cε2 − Cε3 − Cε1

. (5.38)
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In this case, the critical value of the flux Richardson number associated with our model
depends on three constants namely Cε1 , Cε2 and Cε3 . As we only want to influence the
behaviour of the model regarding the thermal effects without modifying the behaviour in
the neutral case, the two first constants will remain unchanged compared to the reference
model. It is then possible to obtain Cε3 as a function of these two constants and of the
Ricrf as:

Cε3 = Cε1 − Cε2
Ricrf

+ 2Cε2 − Cε1 . (5.39)

Using as previously Cε1 = 1.44 and Cε2 = 1.92 from Launder and Spalding [1974], and
imposing Ricrf = 0.25 in agreement with the linear model and the experimental estimation,
we get Cε3 = 0.25Cε2 = 0.48 and thus Cε4 = Cε1 = 0.75Cε2 = 1.44.

In the following, we will write the equation of ε in the most generic form:

−Dε = ε2

k

(
Cε1
P
ε

+ Cε3
G
ε

+ Cε4
G2

ε2
− Cε2

)
. (5.40)

with the value of the constants appearing in the RHS terms recalled in Table 5.1.

Cε1 Cε2 Cε3 Cε4

Glinε
1.44 1.92

{
1.92 if LMO < 0
0 if LMO > 0

0

Gquadε 0.48 1.44

Table 5.1: Coefficient values associated with the two models presented for the RHS of the
dissipation rate transport equation.

5.1.2.2 Estimation of Dissipation Rate Diffusion Term

In contrast to the Reynolds stress tensor, the turbulent heat fluxes and the temperature
variance, the dissipation rate diffusion term is not neglected outside the two aforementioned
limit situations. Knowing the value of this term one can obtain a further equation on the kinetic
energy, thereby completing the system of equations. The transport equation of the dissipation
rate Eq. (5.33) can then be written:

Dε =

ε2/k︷ ︸︸ ︷
u6
∗

kκ2L2
MO

(
1−Rif
Rif

)2

−
(
Cε1
P
ε

+Cε3
G
ε

+Cε4
G2
ε2
−Cε2

)
︷ ︸︸ ︷(
Cε2 − Cε1 − (2Cε2 − Cε3 − Cε1)Rif + (Cε2 − Cε4 − Cε3)Ri2f

(1−Rif )2

)
,

(5.41a)
k3

u6
∗

= Cε2 − Cε1
κ2

k2

DεL2
MORi

2
f

(
1− γ1Rif + γ2Ri

2
f

)
, (5.41b)
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with γ1 = 2Cε2−Cε3−Cε1
Cε2−Cε1

γ2 = Cε2−Cε4−Cε3
Cε2−Cε1

. Furthermore, the diffusion term has still to be modelled
and the results using both the Shir and the Daly–Harlow model are presented here.

Estimation of Dε using the Shir Model
We have then to model the diffusion term, considering first the Shir model, it can be written as:

DSε =
d
(
CSε k

2

ε
dε
dz

)
dz , (5.42a)

= CSε
k2

L2
MO

1
Ri2f (1−Rif )2

(
Ri′2f −Rif

(
Ri′′f + 2Ri′2f

)
+Ri2fRi

′′
f

)
︸ ︷︷ ︸

FS(Rif )

. (5.42b)

Injecting this equation in Eq. (5.41b), it results from the neutral equilibrium that:

CSε = Cµ
σε

= (Cε2 − Cε1)α3/2
1

κ2 . (5.43)

Estimation of Dε using the Daly–Harlow Model
In the scope of Daly–Harlow model, we have:

Dε =
d
(
CDHε k

ε 〈ww〉
dε
dz

)
dz . (5.44)

Injecting 〈ww〉/k from Eq. (5.17c), one can find:

Dε = CDHε λ
k2

L2
MO

1
(1−Rif )3Ri2f(

Ri′2f −Rif (Ri′′f + 3Ri′2f ) +Ri2f (2µRi′2f +Ri′′f (1 + µ))− µRi3fRi′′f

)
︸ ︷︷ ︸

FDH(Rif ,µ)

. (5.45)

Injecting this equation in Eq. (5.41b), it results from the neutral equilibrium that:

CSε = λCDHε = (Cε2 − Cε1)α3/2
1

κ2 . (5.46)
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5.1.2.3 Analytical Differential Equation for the Flux Richardson Number

5.1.2.3.1 Derivation of the Equation
Two equations have been derived to represent the kinetic energy. The first one Eq. (5.25) is
derived in Section 5.1 from the algebraic solution of the shear stress equation. The second
one Eq. (5.41b) is obtained in this section from the transport equation of the dissipation rate.
Injecting in this equation, the dissipation rate diffusion term estimated either with a Shir model
in Eqs 5.42 or treated with a Daly–Harlow model in Eq. (5.45). Using these two equations, we
can close the system and we obtain an ordinary differential equation for the flux Richardson
number as:

F(Rif ,µ)(1−Rif )1−δDH (1− (β2 − α3)Rif )3/2 (5.47)

=
(
1− γ1Rif + γ2Ri

2
f

)
(1− α2Rif )3/2(1− β2Rif )3/2,

with:

F(Rif , µ) =


FS(Rif ) = Ri′2f −Rif

(
Ri′′f + 2Ri′2f

)
+Ri2fRi

′′
f using Shir model,

FDH(Rif ,µ) = Ri′2f −Rif (Ri′′f + 3Ri′2f ) +Ri2f (2µRi′2f +Ri′′f (1 + µ))− µRi3fRi′′f
using Daly–Harlow model,

(5.48)

and:

δDH =
{

0 using Shir model,
1 using Daly–Harlow model.

(5.49)

Due to the complex form of this implicit definition, it is not possible to provide an analytical
solution for the flux Richardson number. Indeed, this equation is a second-order ordinary
differential equation (ODE) due to the second derivative function. The two main difficulties in
its resolution reside in the fact that this ODE is non-linear due to the presence of the squared
derivative function and product between the flux Richardson and its derivatives. Moreover,
polynomial terms of relatively high power are also present. From this equation and the relation
Rif (ζ) = ζ

ϕm
(ζ), it is also possible to derive an implicit definition for the momentum universal

function. Yet, its structure is more complex making it impossible to determine explicit analytical
solutions.

5.1.2.3.2 Analysis of the Asymptotic Behaviour
It is however still possible to study the asymptotic behaviour to ensure that the modelling
considered is coherent with the Monin–Obukhov theory.

Neutral limit First, we can notice that the neutral limit is respected as Ri′2f (0) = 1
ϕ2
m(0) = 1 with Rif = 0

are solutions of Eq. (5.48). A question arising is then how ϕm evolves near the neutral
situation. To this end, for near-neutral stratification, we will consider a first-order Taylor
expansion: ϕm = 1 + ϕ′m(0)ζ. As the convective and stable situations correspond to two
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different turbulent regimes, let us note that the right derivative ϕ′m(0)+ in stable situations
may a priori differ from the left derivative ϕ′m(0)− for convective cases (see Monin and
Yaglom [1971][Chapter 7.3] for further discussion). Keeping only this first-order term in
the Taylor expansion and injecting it in Eq. (5.48), we get the relation:

1−
(

2ϕ′m(0) + 3 + 3
2(β2 − α3)

)
ζ = 1−

(
γ1 + 3

2(α2 + β2)
)
ζ + o(ζ) (5.50a)

ϕ′m(0) = γ1
2 + 3

4(α2 + α3 − 2) (5.50b)

Thus, for the derivation of the momentum universal function to be continuous it is
necessary for Cε3 to be constant around zero. This is the case using the quadratic modelling
of Gε. On the contrary, with a linear modelling of Gε, two different values respectively
ϕ′m(0−) and ϕ′m(0+) may be obtained for the left and right limits. In this case ϕm is
expected to be continuous but not its gradient.

Remark 5.1.1. The choice to consider Cε4 + Cε3 = Cε2 has now impact on this Taylor
development near-neutral situation. Indeed, without this relation, the additional terms
would be neglected due to its higher order.

Stable limit Moreover, through the selection of a first free constant, we have ensured that the stable
limit is well respected (see Section 5.1.2.1). Indeed, the flux Richardson number tends
towards a critical value Ricrf , thus ϕm is linear in ζ with a slope

(
Ricrf

)−1

Conv. limit Furthermore, we have ensured that a steady state can be reached when the Richardson
number tends negatively towards infinity. This corresponds to a natural convection
situation where the mean streamwise velocity and thus the production by shear is null.
Thereby we have lim

ζ→−∞
ϕm = 0. We can wonder if the rate of decrease of ϕm imposed

by our choice of modelling is correct. For this purpose, we will consider that at high
flux Richardson number, the latter one can be considered polynomial and keep only the
highest order term such as (−Rif ) = C−∞Rif (−ζ)η. As the momentum universal function
tends towards zero, we know that η is greater than unity. Thus, keeping only the highest
order terms in Eq. (5.48) we get:

(−ζ)
11
2 η−2

(
C−∞Rif

) 3
2 (1+(µ−1)δDH)η(η+1)(β2−α3)

3
2 = (−ζ)4ηγ1α

3
2
2 β

3
2
2 +(−ζ)5ηC−∞Rif γ2α

3
2
2 β

3
2
2

(5.51)
With the modelling considered, we have in convetive situations γ2 = 0, then we obtain
both the polynomial power η and the constant C−∞Rif as:

η = 4
3 ,

C−∞Rif = α2β2
β2−α3

(
9γ1

28(1+(µ−1)δDH)

) 2
3 .

(5.52)

As we can see the power 4/3 issued of the Monin–Obukhov theory is retrieved. Moreover,
the turbulent Prandtl number Eq. (5.28) converging towards a constant value the
temperature gradient also converges with the proper rate. Furthermore, as discussed in
Paragraph 5.1.1.3.2, all turbulent quantities evolving coherently with the flux Richardson
number, which is properly retrieved, their asymptotics is also in agreement with Monin–
Obukhov theory.

223



Remark 5.1.2. In this situation, the choice of the relation Cε4 + Cε3 = Cε2 is of major
importance. Indeed, without this choice of modelling, a term of higher order and the
power on the RHS of Eq. (5.51) would be 5η. This would result in having η = 4 i.e.,
a decrease of the momentum universal function proportionally to (−ζ)3 way too rapid
compared to the expected power of 1/3.

To sum-up, given an adequate choice of constants for the TKE dissipation rate equation,
all asymptotic behaviours agree with the Monin–Obukhov theory. Thus, determining the
momentum universal function from the dissipation rate equation seems to be a promising way
to close the set of equations considered in a coherent manner. However, given the complexity
of Eq. (5.48) no analytical solution has been exhibited. A numerical method will then be used
to resolve dissipation rate equation and to furnish the value of momentum universal function as
we will see in Section 5.1.2.4.

5.1.2.4 Numerical Estimation of the Momentum Universal Function

5.1.2.4.1 Description of the Iterative Resolution of the Dissipation Rate Equa-
tion
So as to have access to a value for the flux-Richardson number, one may want to integrate
numerically the dissipation rate equation and then use the relation at the equilibrium between
this quantity and the momentum universal function to close the system. The domain is vertically
discretised into N cells. Using the divergence theorem, we get:

−
(
Ki+ 1

2

(
∂ε

∂z

)
i+ 1

2

−Ki− 1
2

(
∂ε

∂z

)
i− 1

2

)
= ∆z

(
εi
ki

(Cε1Pi + Gεi)− Cε2
ε2i
ki

)
, (5.53)

where Ki+ 1
2
is the turbulent viscosity at the face between the cell i and i+ 1 defined as:

Ki+ 1
2

=


Cε
2

(
(ki)2

εi
+ (ki+1)2

εi+1

)
using Shir model,

Cε
2

(
(ki)2

εi

1−µRifi
1−Rifi

+ (ki+1)2

εi+1

1−µRifi+1
1−Rifi+1

)
using Daly–Harlow model.

(5.54)

In the bulk of the flow, we can numerically estimate the gradient as:

Ki+ 1
2

εi − εi+1
∆z

+Ki− 1
2

εi − εi−1
∆z

= ∆z

(
εi
ki

(Cε1Pi + Cε3G + Cε4
G2

εi
)− Cε2

ε2i
ki

)
. (5.55)

Keeping all the dissipation and destruction terms implicit (on the LHS) and the production
terms explicit (on the RHS), this equation can be written:

−Ki+ 1
2
εi+1 −Ki− 1

2
εi−1+

(
Ki+ 1

2
+Ki− 1

2
+ Cε2

εi
ki

∆2
z + max(0,−Cε3

G
εi

)
)
εi

= ∆2
z

εi
ki

(
Cε1Pi + max(0, Cε3G) + Cε4

G2

εi

)
. (5.56)
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On top of the domain, we impose:

−Ktop

(
∂ε

∂z

)
top

= −Ktop

(
∂ε

∂Rif

∂Rif
∂z

)
top

= Ktop
u3
∗

κLMORi2ftop

(
∂Rif
∂z

)
top
, (5.57a)

' CSε
k2
N

εN

G
∆zRi2fN

(
RifN−1 −RifN

)
. (5.57b)

This term should always be positive, so it will be kept implicit.
Moreover, at the lower part of the domain, we can consider that the situation is almost neutral.
The boundary condition is treated in coherence with the method used within code_saturne
which aims at reaching a second-order accuracy (see Saturne [2023]) :

Kbot

(
∂ε

∂z

)
bot

= −CSε
k2

1
ε1

u3
∗

κ(0.25∆z + z0)2 . (5.58)

Let us note that the treatment of the dissipation flux near wall is cumbersome, as we want to
study its behaviour in the vicinity of a singular point. This leads to a relatively high numerical
error which can be lowered by resolving a quantity such as the turbulent timescale τk = k

ε (see
e.g., Speziale et al. [1992]) or the turbulent Reynolds number Ret = k2

εν (see e.g., Zhang et al.
[2020]). Indeed, these quantities tend smoothly towards zero and may therefore be numerically
estimated with greater accuracy. Yet, in order to remain as close as possible to the solution
obtained with the CFD solver, this resolution based on the dissipation rate is maintained. This
system can then be written as:



Λ1 −K1.5

−K1.5 Λ2 −K2.5

. . . . . . . . .

−Ki− 1
2

Λi −Ki+ 1
2

. . . . . . . . .

−KN−1.5 ΛN−1 −KN− 1
2

−KN− 1
2

ΛN


︸ ︷︷ ︸

M



ε1

ε2

...

εi

...

εN−1

εN


︸ ︷︷ ︸

ε

=



k2
1
ε1

Cεu3
∗

κ(0.25∆z+z0)2 + ε1
k1

(
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︸ ︷︷ ︸

RHS
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(5.59)
where we have:

Λi =


K1.5 + ε1

k1
∆2
z

(
Cε2 + max(0,−Cε3 Gε1 )

)
if i = 1,

Ki− 1
2

+Ki+ 1
2

+ εi
ki

∆2
z

(
Cε2 + max(0,−Cε3 Gεi )

)
if 1 < i < N,

KN− 1
2

εN
kN

∆2
z

(
Cε2 + max(0,−Cε3 GεN )

)
+ CSε

k2
N

ε2N

G
∆zRi2fN

(
RifN−1 −RifN

)
if i = N.

(5.60)
This system can simply be written:

M ε = RHS, (5.61)

where M is reversible as it is a diagonally dominant matrix. We should then resolve:

225



ε = M−1 RHS. (5.62)

Once the dissipation rate is obtained it is possible to access the flux Richardson number at
equilibrium as:

Rif = −1(
ε
G − 1

) . (5.63)

However, M and RHS being functions of ε, we have to use an iterative process to solve this
equation using the superscript n to denote the iteration index.

5.1.2.4.2 Constraints on the Flux Richardson Number
Before convergence of the iterative process, it is possible for the equilibrium assumption not to
be fulfilled. In order to avoid getting non-physical results based on non-physical intermediate
values for the Richardson number, further constraints should be imposed.

Cond. 1 The dissipation rate should remain positive:

ε > 0 (5.64)

Cond. 2 Since the production induced by shear is positive, the flux Richardson number and the
production by convection should be of opposite signs:

RifG < 0, (5.65)

Cond. 3 The Richardson number is upper bounded by a critical value Ricrf :

Rif < Ricrf . (5.66)

We will evaluate the consequences of these conditions for both stable and unstable situations:

Stable sit. In the stable case, the convective effects tend to dump the kinetic energy, i.e. G < 0.
Compliance with the first condition implies then compliance with the second. The third
condition requires in each point i and at each iteration n to have:

1(
1− εni

G

) < Ricrf , (5.67)

εni > G
(

1− 1
Ricrf

)
≥ 0. (5.68)

This last condition is the most restrictive, and is the one that should be in place.

Conv. sit. In this case the convective effects tend to fuel the kinetic energy, i.e., G > 0. The
second condition, requiring the Richardson number to be negative, is the most constraining
(Ricrf > 0 > Rif ). It is therefore sufficient to ensure that the dissipation is greater than
the production by convection at each point i and at each iteration n :

εni > G > 0 (5.69)
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To ensure that the system under consideration respects Eq. (5.68) and Eq. (5.69) which can be
both written εni > Gd ≥ 0, the term ε̂n = εn − GdI is made implicit. We have then:

−Kn
i+ 1

2
(εn+1
i+1 − Gd)−Kn

i− 1
2
(εn+1
i−1 − Gd) + Λ̂ni (εn+1

i − Gd) = δ2
z

εni
kni

(Cε1Pni + max (0, Cε3G)) ,

(5.70)

with :

Λ̂ni = Kn
i+ 1

2
+Kn

i− 1
2

+ εni
kni
δ2
z

(
Cε2

(
1 + Gd

εni − Gd

)
+ max

(
0,−Cε3

εni
εni − Gd

))
(5.71)

The system resolved is then:
ε̂n+1 = (M̂n)−1RHSn. (5.72)

The matrix M̂n being a diagonally dominant matrix and all components of RHSn being
positive, this resolution ensures that all components of ε̂n remain positive. Thus, the respect of
the three conditions presented is ensured by resolving ε̂n instead of εn.

5.1.2.4.3 Numerical Corrections near Ground
In the purpose of exhibiting universal functions, let us consider a Rotta–Monin model with
respectively CR = 6.25 to retrieve the proper production of TKE in neutral case, and CΘ = 1.875
selected in coherence with CR so as to retrieve Pr0

t = 0.8. This choice of model for the fluctuating
pressure induced redistributive terms is made in coherence with the SLM–IEM model selected
within the Lagrangian stochastic methods. Furthermore, a Shir model is kept for the diffusion
term. Using the iterative process presented in this section, a 1-D 100 m high SBL is modelled
with 100 cells, for neutral stable and unstable situations with respectively a Monin–Obukhov
length scale LMO =∞, LMO = 20, and LMO = −20.
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Figure 5.4: Vertical profiles obtained with the iterative process presented for neutral situation.
These results ( ) are compared to the analytical solution ( ).

Let us note that the results obtained are impaired by numerical error even in the neutral case.
Indeed, as we can see in Figure 5.4, where a 1-D the numerical solution ε0

num tends to be
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Figure 5.5: Focus on the near-neutral momentum universal function profiles obtained using the
iterative methods presented resolving respectively a 100 m high convective and stable SBL with
100 cells and |LMO| = 20 m. The results before correction using the linear modelling of the
thermal term (H H) and quadratic modelling ( ) are compared to their corrected version
respectively (N N) and (• •). These results are also compared to the expected behaviour from
the first-order Taylor expansion presented in Eq. (5.50b), respectively ( ) and ( ).

overestimated near ground. In this case, the momentum universal function is derived from this
estimation of the dissipation rate as ϕ0

mnum(z) = ε0num(z)κz
u3
∗

. It is not constant nor equal to one
but noticeably overestimated near ground as shown in Figure 5.4B. ϕ0

mnum(z) can be seen as a
measure of the numerical error resulting from the treatment of the flux of dissipation rate at the
bottom of the domain. For this reason, it is expected to obtain better results, using methods
transporting of the turbulent timescale τk = k

ε instead of the dissipation rate as this timescale
has a smoother behaviour near wall (see as proposed by Speziale et al. [1992]). This error in the
estimation of the dissipation rate near ground also impacts the results obtained in this zone in
thermally stratified situations.
As we can see in Figure 5.5, it results in a spurious overestimation of the universal function in
the vicinity of the wall. As the velocity gradient evolves proportionally to ϕm/z, the shape of
the momentum function in the vicinity of the ground is of major importance. To mitigate the
error near ground, a correction is proposed. It is based on the fact that, near ground, the flow
can be considered almost neutral. Thus, the numerical error impacting the resolution of εnum
is close to its counterpart in neutral flows ε0

num. In order to measure the altitude over which we
can consider the thermal effects sufficiently small to have a flow somewhat similar to the neutral
situation, we can simply use the Monin–Obukhov length derived in this precise purpose. Then
a blending is proposed as a post-treatment of the value obtained from the iterative process:

εcornumi = εnumi

ϕ0
mnum(zi)e

−| zi
LMO

| +
(

1− e−|
zi

LMO
|
) . (5.73)
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With this correction the slope near ground is better retrieved, as we can see in Table 5.2. We can
compare the numerical gradient obtained with the asymptotic one Eq. (5.50b) corresponding
to the implicit solution Eq. (5.48). The correction proposed enables to obtain a smoother
more physical solution keeping in mind that the momentum universal function is meant to be
a strictly increasing function of ζ. Yet the numerical estimation seems to underestimate the
slope theoretically expected, especially with a quadratic modelling of the buoyant effects on
the dissipation rate as shown in 5.2. Moreover, the expected near-neutral momentum universal
function gradients are small compared to literature ones Eqs 1.155 to Eqs 1.159 which all agree
for a value close to 4.75. Let us note that other choice of modelling would provide other solutions,
yet, the standard LRR-IP modelling 1.4 provides similar value for the near-neutral gradients
increased by around 0.4.

ϕ′m(0−) ϕ′m(0+)

theor. Eq. (5.50b) num. cor. num. uncor. theor. Eq. (5.50b) num. cor. num. uncor.

Glinε 0.6607 0.62 -2.73 2.6607 2.29 5.72

Gquadε 2.1607 1.62 -1.63 2.1607 1.97 5.38

Table 5.2: Theoretical and numerical values for the gradient of ϕm in near-neutral situation
obtained resolving respectively a 100 m high convective and stable SBL with 100 cells and
|LMO| = 20 m.

Finally, the whole iterative process can be summed up as follows:
Input:
Physical properties: domain size H, Monin-Obukhov length LMO, friction velocity u?
Modelling choices: model constants (αi, βi), and model for the diffusion of ε
Numerical choices: threshold ξ, cell number N

Initialize iteration id n = 1
Compute buoyant term G = − u3

∗
κLMO

and d depending on LMO (see Eq. (5.68) and Eq. (5.69))
Initialization based on the neutral state i.e, ε1i = u3

∗
κ(i−0.5)H

N

+ Gd

do
Estimate Rinf based on εn and the relation under equilibrium assumption Eq. (5.8)
Estimate kn(Rinf ) based on algebraic model Eq. (5.25)

Estimate M̂n(εn,kn) and R̂HSn(εn,kn) Eq. (5.70) and Eq. (5.71)
Inverse the system ε̂n+1 =

(
M̂n

)−1
·RHSn

Estimate εn+1 = ε̂n+1 + Gd
Increment the iteration id: n++

while Convergence is not reached i.e. max(abs(εn − εn−1)) > ξ

Correct εn based on ϕ0
mnum

(get by using this algorithm with LMO =∞) and Eq. (5.73)
Estimate universal functions based on equilibrium assumption Eq. (5.8) and algebraic
solutions of the model selected from Eq. (5.25) to Eq. (5.29)

Output:
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Physical quantities on the mesh: ϕm, ϕh, Rif , Prt,k, 〈uu〉, 〈vv〉, 〈ww〉, ε, θ2, 〈uθ〉.;

5.1.3 Verification of the Universal Functions Derived

5.1.3.1 Momentum Universal Function Derived from the Iterative Method

We will now examine the solutions derived from the iterative solver. Considering that the
TKE is at equilibrium we simply have: ϕm = ϕε + ζ with ϕε = εκz

u3
∗
. The results displayed are

obtained using the simulations presented in Section 5.1.2.4.3. Most of the difference between the
two models of the buoyant term appears in the convective context as illustrated in Figure 5.7.
Indeed, as expected, in this situation, the quadratic modelling of the buoyant term results in
a reduction in the production of dissipation rate compared to a linear modelling. Thus, the
corresponding momentum universal function is also diminished. Furthermore, as demonstrated
in Figure 5.6A, the asymptotic decrease of both these solutions is proportional to ζ−1/3. In this
figure, in order to substantiate this proper rate of decrease, additional simulations are carried
out until larger values of ζ (in norm) are reached. This decrease, coherent with Monin–Obukhov
theory, is faster than the one proposed by Businger et al. [1971] and Högström [1988] who
assumed a power -1/4. As previously stated, Figure 5.7A shows that, in the close vicinity of
neutral situations, the slope of the model-consistent universal functions is less steep than the one
experimentally encountered. Yet, in the stable case, as these solutions are coherently modelled
to avoid crossing of the critical fluxes Richardson number, they increase faster than literature
profiles which do not respect this constraint as shown in Figure 5.7C and Figure 5.6B. As the
momentum universal function converged well so does the flux Richardson number. Moreover,
as discussed in Section 5.1.1, all the turbulent quantities converge coherently with the flux
Richardson number, and then also with ζ. Thus, all the quantities characterising the flow seem
to converge adequately with the assumption considered.
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(B) Stable case.

Figure 5.6: Asymptotic profiles for the momentum universal function derived by resolving
an iterative process on the dissipation rate in coherence with the algebraic solutions of the
Rotta–Monin model with CR = 6.25 and CΘ = 1.875. Two universal profiles are derived
either considering a linear modelling of the dissipation rate buoyant term (N N) or a quadratic
modelling of this term (• •). These functions are compared with the literature universal
functions: Businger et al. [1971] ( ); Carl et al. [1973] ( ); Högström [1988] ( );
Chenge and Brutsaert [2005] ( ); Hartogensis and De Bruin [2005] ( ). To estimate the
proper asymptotic behaviours, the functions ϕm = ζ (H); ϕm = ζ/Ricrf (+) with Ricrf = 0.25
are plotted in the stable case as well as the functions ϕm = 0.6|ζ|−1/4 ( ) and ϕm = 0.3|ζ|−1/3

(�) in the convective case. Theoretical asymptotic behaviours are retrieved.
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Figure 5.7: Profiles for the momentum universal function derived by resolving an iterative
process on the dissipation rate in coherence with algebraic solutions of the Rotta–Monin model
with CR = 6.25 and CΘ = 1.875. Two universal profiles are derived either considering a linear
modelling of the dissipation rate buoyant term ( N N ) or a quadratic modelling of this term
( • • ). These functions are compared with the literature universal functions: Businger et al.
[1971] ( ); Carl et al. [1973] ( ); Högström [1988] ( ); Chenge and Brutsaert [2005]
( ); Hartogensis and De Bruin [2005] ( ). The light grey zone represents the area defined
by Rif > Ricrf with Ricrf = 0.25, and the dark grey one the area defined by Rif > 1, both these
zones should be inaccessible to universal functions.
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5.1.3.2 Comparison with CFD results obtained with code_saturne

A numerical derivation of all the turbulent and mean profiles, characterising stratified SBL
flows has been obtained in agreement with the modelling selected and the underlying algebraic
solutions. In this context, all the diffusive terms have been neglected except for the dissipation
rate where a Shir model is considered. The goal of the present section is to compare the
aforementioned profiles with the solutions of the CFD solver code_saturne. In the latter, unless
otherwise stated, diffusive terms are also computed for the Reynolds tensor, the turbulent heat
fluxes and the potential temperature variance. All these terms will be computed using the
isotropic assumption of the Shir model. We will focus on the most common linear modelling of
the buoyant effects on the dissipation rate keeping however Cε3 = Cε2 . So as to remain consistent
with the SLM–IEM model considered, we will continue working with a Rotta–Monin model.
The full set of constants considered is recalled in Table 5.3.

CS CR CP CG CΘ CDθ Cθ1 Cθ2 C′θ2 C′θ3 CSε Cε1 Cε2 Cε3 Cε4

1.92 (conv.))
0.11 6.25 0 0 1.875 0.31 5 0 0 0 0.73 1.44 1.92

0 (stab.)
0

Table 5.3: Set of constants considered in the treatment of surface-boundary flows within
code_saturne simulations.

The test case taken into account is still the modelling of a 1-D 100 m high stratified SBL flow.
The roughness height z0 is equal to 0.1 m and the shear velocity is u∗ = 0.2 m s−1 with a
temperature at ground of 15◦C. To see the behaviour in the asymptotic in very stable and
convective situations, we will study two simulations with respectively a Monin–Obukhov length
scale of 20 m and -20 m. The time step kept equals to 0.1 s for stability reasons and as a way to
ensure

√
ww∆t/∆z < 0.5. At the bottom of the domain, the algebraic solution is imposed. On

top of the domain, the temperature obtained with the algebraic model, the shear stress and the
turbulent heat fluxes are imposed. For other quantities, the flux is imposed based on algebraic
solutions. In the horizontal directions periodic conditions are imposed.

5.1.3.2.1 Treatment of Stable Surface-Boundary Layer
We will first focus on the results obtained in the stable situation considering LMO= 20 m. In
order to ensure that the algebraic solution derived is close to the solution of the CFD solver,
we initialise the flow with a state corresponding to the algebraic solution of a k − ε model (see
Appendix 5.A) with a universal function proposed by Chenge and Brutsaert [2005] and observe
whether it converges towards the expected solution. Despite the presence of small numerical
oscillations, in this case the velocity and temperature gradients obtained using code_saturne are
found to be close to the solutions obtained with the new methodology, as evidenced in Figure 5.8.
Moreover, the diffusion terms (with the exception of the dissipation rate) are sufficiently small
to allow for the accurate retrieval of turbulent quantities, as evidenced in Figure 5.9. A small
difference between the proposed methodology and CFD results is still discernible in the centre of
the domain where the CFD profiles are slightly smoother due to diffusive effects. Furthermore,
numerical oscillations can be observed on the first-order moment derivatives as already stated,
but also on the turbulent Prandtl number where they are more pronounced. This suggest the
necessity for the development of stable integration methods for DRSM–DFM models (see e.g.
Ferrand et al. [2023]).
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Figure 5.8: Comparison between algebraic ( ) and computed first-order universal functions
at convergence ( ) in a stable case. The initial state ( ) corresponds to Chenge and
Brutsaert [2005] universal functions with algebraic solutions corresponding to the k − ε model
see Appendix 5.A.
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Figure 5.9: Comparison between algebraic ( ) and computed turbulent universal functions
at convergence ( ) in stable case. The initial state ( ) corresponds to Chenge and
Brutsaert [2005] universal functions with algebraic solution corresponding to the k − ε model
see Appendix 5.A.
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We can consider that the methodology proposed here offers a highly accurate and model-
consistent representation of the stable SBL. It could then be employed to fuel CFD simulations
by providing suitable idealised boundary conditions. Moreover, the significant disparity in
behaviour between the initial state and the final one underscores the necessity to provide
boundary conditions that align with the model’s underlying assumptions.

5.1.3.2.2 Treatment of Convective Surface-Boundary Layer
In the convective SBL obtained with LMO = -20 m, the numerical error becomes stronger, highly
deteriorating the CFD simulation, as we can see on the very noisy first-order profiles Figure 5.10.
Such numerical oscillations might testimony for inconsistency in the boundary conditions.
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Figure 5.10: Comparison between algebraic ( ); initial state ( ) based on Högström [1988]
universal functions and computed mean quantities at convergence ( )in a convective situation.

To get rid of these spurious oscillations, the shear stress, the normal fluxes but also the mean
velocity, mean temperature and the initial state are imposed based on algebraic solutions.
Imposing these fields, it is possible for the CFD simulations to run without diffusive terms in
code_saturne. The results with and without these diffusive terms are compared considering
either algebraic-solution-consistent Dirichlet condition or Neumann condition on top of the
domain. The goal is then to determine what kind of condition should be imposed. As we can see
in Figure 5.11, except on bottom of the domain where spurious numerical oscillations are still
present, the algebraic solution is perfectly retrieved without diffusive terms when considering
Dirichlet condition on top of the domain. A slight drift appears in this case when imposing a
Neumann condition. The first-order moment being imposed, these first results attest the proper
derivation of the algebraic solution. However, in this convective situation, the treatment of the
upper boundary condition is less straightforward taking into account diffusive effects on the
Reynolds tensor, the turbulent heat fluxes and the potential temperature variance. Indeed, the
presence of diffusive terms modifies quite noticeably the shape of the solution obtained using
code_saturne. In this case, it seems that we are outside the validity domain of the equilibrium
hypothesis as the thermally forced vertical gradient fuels the diffusive effects modifying totally
the slope near wall. It results that even though imposing a Neumann condition on top of the
domain enables to retrieve proper gradient on the upper half of the domain, the CFD results
converge towards a solution quite different from the one obtained using the algebraic solution.
It is possible to limit this difference between algebraic and CFD solution by imposing a Dirichlet
condition on top of the domain, but this condition is too strong and more difficult to justify on
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physical grounds. A further study in this situation should be carried out. Let us emphasise that
these results have been obtained with boundary conditions fuelled by the external resolution of
the iterative process aforementioned, which does not take into account the diffusive effects. A
first conclusion that can be drawn is that, in convective cases, the estimation of the solutions
used to set the boundary conditions should include the diffusive effects on the second-order
moments. Doing so, both the values and the gradients to impose would be modified compared
to the results presented here.
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Figure 5.11: Comparison between algebraic ( ) and computed turbulent universal functions at
convergence. The results imposing a Neumann condition on the upper part of the domain with
( ) and without ( ) diffusive terms are presented along the results obtained with Dirichlet
condition with ( ) and without diffusion term ( ). The shear flux, normal turbulent heat
fluxes mean velocity and potential temperature are imposed to ensure stability.

5.1.4 Local Conclusions and Perspectives

Considering a class of linear modelling for the fluctuating pressure induced redistribution terms,
a description of the stratified SBL has been proposed based on algebraic solutions of the Reynolds
tensor, turbulent heat fluxes and potential temperature variance. In this process, equilibrium
assumptions have been made, which implies neglecting the dissipation term for these quantities.
Doing so, in the scope of Monin–Obukhov theory, it is possible to extract universal functions for
all these second-order moments which depend only on the flux Richardson number or equivalently
on the momentum universal function. Having established these algebraic solutions, so as to
estimate the flux Richardson number, an iterative numerical resolution of the dissipation rate
has been carried out. Being the sole equation in which a diffusion term is considered, it provides
a notion of length to the wall necessary to compute the flux Richardson number. This approach
enables to close the system considered and to provide a description of the stratified SBL coherent
with Monin–Obukhov theory even in both stable and convective limits. It has been verified that
the solutions obtained in this manner are very close to the solution of the CFD solution in stable
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conditions, as the diffusive effects remain negligible. In contrast, the equilibrium assumptions
considered (assuming a zero diffusivity condition for the Reynolds tensor, turbulent heat fluxes
and potential temperature variance) do not hold in the case of convective boundary layers. In
view of this, the results obtained using the methodology proposed are quite far from the one
obtained using the CFD code taking into account the diffusive effects. A further study is then
necessary to properly treat these situations. Better results might be obtained considering the
TKE diffusion in the iterative process used to resolve the diffusion rate. Moreover, it might
also be possible to consider the diffusive effects in the derivation of an algebraic solution by
considering correlations between these terms and the local ones. It is possible, for example, in a
first approach, to simply consider diffusive effects proportional to the buoyant effects as proposed
by Takeuchi and Yokoyama [1963]. Doing so, algebraic solutions with a similar structure might
be obtained replacing some constants (e.g. αi and βi) by functions depending on model constant
and on the flux Richardson number. To directly take into consideration the diffusive terms, the
resolution of such a 1-D system could be carried out directly within code_saturne, to obtain
the coherent universal function, instead of using an external iterative solver as presented here.
Furthermore, to obtain accurate results in convective situations, a more detailed analysis of
the boundary condition considered and their implementation but also of the stability of the
numerical integration scheme selected should be carried out.

5.2 Analysis of Particle/Mesh PDF Methods for Thermally
Stratified Surface-Boundary-Layers Flows
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The goal of the present section is to propose an extension of the work presented in Chapter 3, for
thermally stratified wall boundary flows. We will place ourselves in the stable state studied in
Paragraph 5.1.3.2.1, i.e. consider a 100 m high SBL with a Monin–Obukhov length of 20 m. In
this case, the solution of the algebraic model represents quite well the dynamics of the flow and
will be used for the mean carrier fields. The simulations are carried out during a physical time
of 1000 s with a time step of 0.05 s and using 200,000 particles initially uniformly distributed.
In Section 5.2.1, we will first examine the influence of the correct wall boundary condition for
instantaneous potential temperature on thermal quantities and concentration are emphasised.
In Section 5.2.2, a particular interest is directed towards the spatial error that is induced by
the interpolation of mean potential temperature at the location of the particles. Finally, the
error impairing the estimation of the statistics due to the lack of statistical uniformity in the
averaging bins is presented in Section 5.2.3.
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5.2.1 Verification of the Wall-boundary Condition on Potential Temperature

We will first present the necessity to use an an-elastic wall boundary condition (WBC) for the
instantaneous potential temperature presented in Paragraph 1.3.3.2.4 and first proposed for the
real temperature by Pozorski et al. [2003b]. The corresponding results will be compared to
the elastic WBC where the potential temperature is unchanged by the crossing of the rebound
plane. For the dynamics, the standard an-elastic boundary condition is considered in both
cases. We first consider a mesh containing 100 cells and a roughness height of 0.1 m. As for
the neutral situation similar results are obtained with smooth and rough walls in high Reynolds
flows. Indeed, the boundary conditions imposed in the Lagrangian stochastic methods are based
on the respect of the proper fluxes near wall (see Section 3.1.2). As previously, in order to limit
the spatial numerical error discussed hereafter, the rebound plane is placed at an altitude of 5
m. The values plotted are adimensionised by the friction velocity u∗, the friction temperature
θ∗ and the mean concentration over the height. They are then indexed with the superscript
+. For the mean potential temperature, the dimensionless difference between local and ground
value 〈δΘ〉+ = (〈Θ〉 −Θ0)/θ∗ is presented.
The an-elastic WBC on potential temperature being designed to retrieve the correct normal
turbulent fluxes near wall, the latter is properly described using this condition as we can
see in Figure 5.12C. Additionally, a less noticeable effect also appears on the mean potential
temperature profiles in Figure 5.12A. Indeed, using an elastic rebound, the mean potential
temperature gradient being assumed null at the rebound plane (instead of positive in this stable
situation), it results in an overproduction of potential temperature. At the contrary to the
dynamics, where the WBC used has no effect on the concentration in one dimensional SBL
flows, the elastic rebound on potential temperature triggers an error on the concentration profile
highlighted in Figure 5.12B. Indeed, the temperature profile being poorly retrieved, it results in
an inaccurate estimation of the buoyant effects which are no longer in equilibrium with the local
pressure gradient. In the stable case, where the elastic WBC on potential temperature induces
an overestimation of the latter, a decay in the particle concentration near ground appears.
Similar processes are expected in the convective situation leading to opposite effects, namely the
accumulation of particles near the ground. Finally, the impacts of the elastic rebounds may also
be noticed on second-order quantities such as the potential temperature variance in Figure 5.12D
and turbulent heat fluxes in Figure 5.12C. Indeed, the elastic boundary condition imposing a null
thermal gradient, the production terms of these second-order moments are underestimated which
in turn leads to their underestimation (in norm). This issue is analogous to the one affecting the
streamwise component of the Reynolds stress tensor in the neutral case, see Section 3.1.2, where
an elastic rebound on the streamwise velocity results in an underestimation of both shear stress
and streamwise component of the Reynolds stress tensor. These results demonstrate that the
an-elastic boundary condition should also be applied to the instantaneous potential temperature.

5.2.2 Influence of Mean Field Interpolation at Particle Positions

A second source of error is the interpolation of the mean carrier fields at particle locations,
which tarnishes the evolution of the instantaneous properties associated with the particles.
In order to dampen this error, the interpolation method should respect the three conditions:
Placing the rebound plane directly on the bottom of the domain and using a coarser spatial
discretisation with 20 cells over the height of the latter, we will compare the results obtained
using four different interpolation methods:
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Figure 5.12: Comparison of the vertical profiles obtained using both the standard an-elastic
wall-boundary condition (�) and the elastic one ( ). These results are obtained in a stably
stratified SBL. Only the an-elastic rebound respects the well-mixed criterion and enables to
retrieve proper thermal quantities compared to the algebraic or analytical solutions ( ).

Interp. A A piece-wise uniform interpolation of the mean velocity, the potential temperature and
the Lagrangian timescale fields.
Similarly to the neutral situation discussed in Section 3.2.1, this condition is not
coherent with the condition Cond. ii, stating the necessity to have an interpolation
more accurate than piece-wise uniform near wall for the mean velocity nor the mean
potential temperature. This condition is necessary to reproduce well the first-order
moments but mostly the corresponding gradients and the resulting production terms.
Moreover, this interpolation is not coherent with Cond. iii either. The latter one asserts
that the interpolation should be consistent with production dissipation equilibrium
near wall. The piece-wise uniform interpolation on the mean velocity triggers a poor
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interpolation of the TKE production by shear, but also a poor interpolation of the
production term in the streamwise turbulent heat fluxes. Similar issue arises with the
piece-wise uniform interpolation on the mean potential temperature triggering a poor
interpolation of the production terms in the turbulent heat fluxes equations but also
in the temperature variance equation.

Interp. B A piece-wise linear interpolation of the mean velocity, with a piece-wise uniform
interpolation of the potential temperature and the Lagrangian timescale fields.
This interpolation method aims at separating the error caused by the interpolation
of the mean velocity and mean temperature. Assuming that the normal turbulent
heat fluxes are properly retrieved, this scheme is coherent to properly treat the TKE
equation. Yet, due to the poor interpolation of the mean potential temperature, the
normal turbulent heat fluxes and thermal variance are expected to remain unaltered
in comparison to the previous interpolation method.

Interp. C A piece-wise linear interpolation of the mean velocity and the potential temperature
with a piece-wise uniform interpolation of the Lagrangian timescale fields.
This interpolation is coherent with respect to the production-dissipation equilibrium
near wall for the TKE but also turbulent heat fluxes and potential temperature. An
important remark is that, in the velocity equation, the mean pressure gradient can
be decomposed into a mechanical component resulting from the constraints imposed
by the flow and in a hydrostatic one in equilibrium with the weight. Within the
FV solver, the mean carrier fields are assumed uniform within a cell, so the mean
hydrostatic pressure gradient furnished is locally in equilibrium with a piecewise
uniform interpolation of the mean buoyant term. However, in this case, a finer
interpolation of the mean carrier potential temperature and then of the mean buoyant
term is provided at the position of the particles. In order to prevent spurious
accumulation of particles either at the face or at the centre of the cell (depending
on the stability considered), the local interpolation of the mean pressure gradient
should locally be at equilibrium with the buoyant term. Assuming a Boussinesq
approximation, it is then necessary to modify the mean pressure gradient as follows:[

∂P

∂xi

]
(X) = ∂P

∂xi
(Xc)− ρ0giβ

(
[Θ](X)−Θ(Xc)

)
, (5.74)

where the quantities within brackets are interpolated quantities obtained with an
interpolation scheme to define. Furthermore, we have X and (Xc) which are
respectively the positions of the particle and of the centre of the cell. Thus, considering
a piecewise linear interpolation of the potential temperature we should consider:

[
∂P

∂xi

]
(X) = ∂P

∂xi
(Xc)− ρ0giβ

∂Θ
∂xj

(Xj −Xc
j ). (5.75)

As in Chapter 3, the mechanical component of the pressure gradient is still considered
uniform within each cell.

Interp. D An interpolation based on the estimated universal functions for the mean velocity, the
potential temperature and the Lagrangian timescale fields near ground.
In order to achieve a more accurate description than a piece-wise linear interpolation,
one may wish to utilise an analytic solution in the wall cells. However, in thermally
stratified SBLs, the analytical solution is not directly accessible. In order to derive
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a pseudo-analytical interpolation we should resort to estimated universal functions.
Using an integration by parts, we have:

Ψ(z) =
ˆ z+z0

z0

ϕ

z
dz, (5.76a)

= ϕ(z + z0) log(z + z0)− ϕ(z0) log(z0)−
ˆ z+z0

z0

∂ϕ

∂z
log(z)dz. (5.76b)

Assuming a linear evolution for the universal function on the mean gradient, we get:

[U ]Ψ(z) =u∗
κ

(
[ϕm]1(z + z0) log(z + z0)− [ϕm]1(z0) log(z0) (5.77)

− (ϕm(zc)− 1)
(zc + z0)

(
(z + z0) log(z + z0)− z0 log(z0)− z

))
,

[Θ]Ψ(z) =θ∗
κ

(
[ϕh]1(z + z0) log(z + z0)− [ϕh]1(z0) log(z0) (5.78)

− (ϕh(zc)− 1)
(zc + z0)

(
(z + z0) log(z + z0)− z0 log(z0)− z

))
.

Let us note that different limits of this interpolation may be put forward. A first source
of error arises from the selection of the universal function to be considered. In this
instance, we use the functions derived from the solutions presented in Section 5.1. As
the latter ones are stored only in the computation points, a further interpolation of
these values is necessarily associated with additional error. Furthermore, in order to
remain consistent with this interpolation for the first-order moments, the Lagrangian
timescale is also estimated based on the algebraic solutions within the wall cells.
Note that here again the hydrostatic part of the mean pressure gradient should be
corrected respecting Eq. (5.74) in coherence with the interpolation procedure outlined
in Eq. (5.78).

The results obtained near wall with these different propositions of interpolation are presented
in Figure 5.13, where the statistics associated with the particles estimated on a partition
of the domain 10 times finer than the FV mesh are plotted. In order to circumvent any
potential inaccuracy resulting from the estimation of the statistics ( treated for neutral SBL
in Section 3.3.1), the statistics on display were originally computed on a sub-mesh 1000 times
finer than the FV mesh and then spatially averaged on a sub-mesh 10 times finer than the FV
one. The error impacting the post-treatment of the statistics when the latter are not uniform
in the averaging bins will be further discussed for stratified flows in Section 5.2.3.
Comparing the Interp. A and Interp. B in Figure 5.13, we can see that the interpolation method
for the mean velocity field at particles location has an impact on the streamwise component of
the Reynolds tensor and horizontal fluxes due to the production by mean velocity appearing
in these equations. Using a piece-wise constant interpolation, a spurious behaviour appears.
It is characterised by an overproduction of gradients and production terms in proximity to
cell interfaces with an underestimation in the vicinity of the cell centres. This phenomenon is
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Figure 5.13: Vertical profiles near wall in a stably stratified SBL flow for different interpolation
methods. The results obtained with four interpolation methods are compared: Interp. A which
is a piece-wise constant interpolation for all mean fields(�); Interp. B which is a piece-wise
linear interpolation on mean velocity fields and a piece-wise constant interpolation on both the
potential temperature and mean Lagrangian timescale (N); Interp. C which is a piece-wise linear
interpolation on both mean velocity and potential temperature fields and piece-wise constant
for other fields (H); Interp. D which is an interpolation based on estimation pseudo-analytical
solutions for the mean velocity, potential temperature fields and Lagrangian timescale field in
the cell at wall. The latter (•) is similar to Interp. C otherwise. These statistics are compared
to the analytical solution ( ). Note that a specific statistical treatment has been made to
avoid the statistical error discussed on Section 3.3 and in Section 5.2.3.

particularly evident in the context of the mean velocity, as observed in the streamwise component
of the Reynolds tensor and turbulent heat fluxes. A similar pattern caused by interpolation error
on the mean potential temperature emerges when examining the potential temperature variance
and the normal turbulent heat fluxes. This error on thermal quantities is of a lesser amplitude
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than the one on the dynamics. These interpolation errors decrease as we move towards the
upper part of the SBL. This improvement in the particles dynamics is due to the increase of
the Lagrangian timescale. The latter becomes sufficiently high for a proper turbulent mixing
between particles issued from different cells to take place. Moreover, such spurious effects seem to
be properly damped using a piece-wise linear interpolation proposed in Interp. C. Nevertheless,
quite big interpolation errors are still discernible on the first or two first cells near wall depending
on the field considered. To enhance these outcomes, one may want to use the pseudo-analytical
interpolation scheme Interp. D. This scheme enables the accurate retrieval of results in proximity
to the wall within the first cell. This underscores the necessity for a rigorous derivation of the
pseudo-analytical solution proposed. Nevertheless, the effects of the discontinuity of the mean
carrier fields at the first cell upper interface are still discernible. They are characterised by an
underproduction of the second-order moments at the interfaces. Moreover, outside the wall cell,
the errors induced by the piece-wise linear interpolation are still noticeable, in the few first cells.

5.2.3 Analysis of Statistical Bias Induced by Local Spatial Averaging

We will now take a closer look at the errors introduced by estimating statistics on coarse
averaging bins within where the flow is not statistically uniform. To this end we will focus
on results obtained with the interpolation Interp. C (i.e., piece-wise linear for the mean velocity
and potential temperature and piece-wise constant for the other quantities). As discussed in
Section 3.3.1.1, there is no systematic error in the estimation of first-order moments from the
set of particles. However, an error appears in the estimation of the covariances as highlighted in
Eq. (3.10). Indeed, the covariances obtained directly on the coarse averaging bins correspond to
the sum of the true covariances of interest, but also to the spatial covariances of the mean fields
associated with the particles. The latter biases the obtained statistics. In the case of neutral
SBL, since the velocity gradient decreases proportionally to the inverse of the height, this error
affects the streamwise component of the Reynolds tensor only near wall and disappears in the
bulk. However, in the case of stably stratified flows, as both the mean potential temperature
gradient and the streamwise velocity gradient tend to become uniform, this systematic error
impairs the estimation of covariances in the whole flow and the resulting error tends to become
uniform. The latter affects the streamwise TKE and turbulent heat fluxes but also the potential
temperature variance, as one can see in Figure 5.14. In this figure, for a given set of particles
obtained using the interpolation methods Interp. C (i.e. with the same dynamics and thermal
evolution of the particles), the statistics are estimated on different averaging bins. Although the
interpolation error is still present close to the wall, the statistical error converges well, as one
can see in the bulk. This highlights the relative importance of this source of error in such flows.
So as to avoid considering a cumbersome second partition of the domain to estimate the statistics,
one may want to estimate the spurious spatial covariance of the mean fields directly onto the
coarse original mesh as discussed in Section 3.3.2. Considering a linear estimation of the mean
fields one can use the reconstruction Reconst. lin. With this choice of reconstruction, the
correction is given by Eq. (3.14). The latter is non null only for Ψ and Φ representing the
mean streamwise velocity and/or the mean potential temperature, yielding to a bias only on
the streamwise TKE, streamwise turbulent heat fluxes and potential temperature variance. As
presented in Figure 5.15, this source of error associated with the estimation of the statistics is
properly corrected in the whole domain with an error subsisting near ground due to too a poor
interpolation of the first-order carrier fields at particle location.
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Figure 5.14: Vertical profiles of the statistical estimator of the thermal and dynamical variances
and covariances using different spatial bins for the local averaging compared to the algebraic
solutions ( ). Compared to the FV cells (indicated by the grey dotted lines), the bins are
respectively: of the same size (�); 2 times finer ( ); 3 times finer (•); 10 times finer (H); 20
times finer (N). Note that these observed statistical estimators are extracted from the same
particle set, i.e. they correspond to identical particle dynamics and thermal evolution.
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Figure 5.15: Vertical profiles of the statistical estimators of the thermal and dynamical variances
and covariances with and without correction. Both profiles correspond to the same set of
particles obtained using a linear interpolation of the mean velocity and potential temperature is
considered. The uncorrected results (�) are compared with the results obtained when correcting
the post-treatment of the statistics based on linear assumption for the evolution of the mean
fields (H) and with algebraic solutions ( ).
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5.2.4 Local Conclusions

In this section, an extension of the work presented in Chapter 3 to stratified flows has been
proposed. It has been applied to a stably stratified SBL flow.
In this case, the importance of using a consistent modelling of the boundary condition for the
instantaneous thermal properties has been verified in Section 5.2.1 using the an-elastic rebound
presented in Eq. (1.239) following the work of Pozorski et al. [2003b]’s work. Indeed, considering
an elastic rebound for the potential temperature is equivalent to imposing a zero-flux condition
on this quantity, resulting in the destruction of the turbulent heat fluxes. This is in contradiction
with the physical phenomena at stake in the SBL. Moreover, the overestimation of the potential
temperature in stable flows results in an erroneous depletion of concentration near wall and then
to the non-respect of the well-mixed criterion. In convective situations, the use of the elastic
rebound for the instantaneous potential temperature would result in an underestimation of the
latter and in an accumulation of the particles near wall.
In addition, similarly to the issue presented in Section 3.2.2, it has been shown in Section 5.2.2
that the interpolation method used to estimate the mean carrier fields at the particle location
should be more accurate than piece-wise uniform for the mean velocity and potential temperature
fields especially near the wall. Moreover, considering an interpolation finer than piecewise
uniform for the mean carrier thermal property appearing in the buoyancy term, it is necessary
to adjust the hydrostatic part of the mean pressure gradient, in order to respect the local
hydrostatic equilibrium. For the time being, a linear interpolation method is considered for the
mean velocity and potential temperature fields.
Finally, the error induced by the estimation of second-order statistics on coarse averaging bins is
put forward. In the neutral case, presented in Section 3.3, where the velocity gradient decreases
as the inverse of the distance from the wall, this error occurs only in the vicinity of the wall.
In contrast, in stably stratified flows, where the first-order gradients tend towards a non-zero
constant in the bulk, this error impacts the estimation of the statistics everywhere. A first
solution to limit this error is to use a finer partition of the domain to estimate the statistics. Yet,
to avoid the cumbersome tracking of particles on two different meshes, it has been shown that
this error can be properly corrected directly on the original mesh. To do so and because the first-
order moments are estimated only in the centre of the cells, an assumption to reconstruct them
everywhere is necessary. This assumption should be coherent with the interpolation methods
considered. Thus, if one wants to correct the covariance estimators on the original coarse mesh
with another interpolation scheme, the reconstruction of the mean fields associated with the
particles and the resulting correction should be adapted accordingly.
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5.3 Linear Dispersion in 2-D Thermally Stratified-Boundary-
Layer Flows
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5.3.1 Study of the Plume Shapes in Stratified Surface-Boundary-Layer Flows

The goal of this section is to present a case of 2-D linear dispersion in stratified SBL flows. It
is based on the work of Monin [1959], who showed that pollutant plumes must have a finite
dimension. Indeed, the spatial amplitude of a plume is limited by the velocity of the fastest
vertical eddies which remain finite. Such a constraint is not verified by EVM or Gaussian
methods, in which the diffusive terms transport pollutants throughout the entire domain at
infinite speed. Moreover, Monin demonstrated that the shape of the plume in stationary and
horizontally homogeneous SBL flows does not depend on the mean velocity characterised by the
friction velocity u∗ but solely on the stability measured through the Monin–Obukhov length scale
LMO. In order to verify the numerical results obtained and the effects of the atmospheric stability
on pollutant dispersion, we will consider a linear emission at the ground with a roughness height
z0 = 0.1 m. Different stability conditions, from very convective to very stable situations, are
considered with Monin–Obukhov length-scale going from −10 m to 20 m. The friction velocity
considered equals to 0.2 m s−1 for the thermally stratified flows and different values from 0.2
m s−1 to 1 m s−1 are compared for neutral flows. The domain considered is a 140 m long and
200 m high rectangular domain, meshed using a uniform Cartesian mesh containing 200 × 200
cells. The pollutant is injected on the ground at a distance of 14 m downstream of the inlet.
The height of this domain can be large compared to the physical height of the SBL especially
in stable situations where it can be limited to a few dozens of metres. The dynamics of the
upper part of the domain might suffer from neglecting Coriolis effects and assuming constant
fluxes. Based on physical grounds, such assumptions should no longer be considered in such area.
However, we only consider the near source dispersion over a distance within which the pollutant
plume remains in the SBL. Thus, it is assumed that the dynamics in the upper region has little
impacts on the dispersion in the lower part of the domain. The simulations are performed with
a time step of 0.5 s and injecting 1000 particles per second (i.e., 500 per iteration) within the
Lagrangian stochastic method.
The numerical results obtained using both a second-order FV solver and particle solver are then
verified. So as to characterise the limit of the plume, we consider that it corresponds to the
volume encompassing 99% of the pollutant mass. Such a restriction of the plume dimension
is necessary in Lagrangian methods as we should only consider statistics associated with a
sufficient number of particles. The 1% particles outside the plume may correspond to very
specific stochastic trajectories of notional particles whose dynamics is not representative of the
plume physics.
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5.3.1.1 Results Obtained using the Moment Approach

First, in the scope of the moment approach, the universal functions derived in Section 5.3 are
imposed at the inlet but also on both the lower and upper cells. In these simulations, a DRSM-
DFM model is considered with a Shir model for the diffusion term and a Rotta–Monin model
for the pressure-induced redistribution terms. From the green curves in Figure 5.16 representing
plume shapes in neutral situations for three friction velocities, we can see that the latter are
indeed independent of this parameter. This may at first glance seem paradoxical, however, both
the transport velocities in the horizontal and normal direction are proportional to the friction
velocity. Thus, increasing the shear stress will increase the advection which is the main source
of transport in the horizontal direction but also the turbulent transport in a similar manner. As
a result, the angle made by the plume remains unchanged, as does its shape (see Monin [1959]
for further discussion).
Looking at the evolution of the plume shape with the Monin–Obukhov length scale for a constant
value of the friction velocity u∗ = 0.2 m s−1, it is retrieved that the stability plays a major role
in the shape of the pollutant as discussed in Paragraph 1.2.2.2.4. In stable flows, the thermal
effects tend to kill normal fluctuations of velocity lowering the vertical transport. Consequently,
as stability increases, plume sizes shrink while pollutant concentration increases. In contrast,
in convective SBLs, the normal fluctuations are enhanced by thermal effects. In such a case, it
is also retrieved that the plumes widen and the concentrations in their midst decrease due to a
better turbulent mixing.
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Figure 5.16: Pollutant plume shapes obtained using a Rotta–Monin model, for different friction
velocities and Monin–Obukhov length scales. The limit of the plume is characterised by the
zone below which 99% of the pollutant is encompassed. Three neutral flows with different
friction velocities are compared: u∗ = 0.2 m s−1 ( ), u∗ = 0.56 m s−1 ( ), u∗ = 1 m s−1

( ). Furthermore, the plume shapes obtained with a friction velocity u∗ = 0.2 m s−1 are
plotted for different stability situation, respectively LMO = 200 m ( ); LMO = 50 m ( );
LMO = 20 m ( ); LMO = −50 m ( ); LMO = −20 m ( ); LMO = −10 m ( ). The
plume is independent of u∗ but its amplitude depends strongly on the stability.
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5.3.1.2 Results Obtained using the Lagrangian Stochastic Methods

We will now consider the results obtained using the Lagrangian stochastic methods. In coherence
with the Rotta–Monin model taken into account in the FV simulations, a SLM–IEM model is
considered with C0 = 3.5 and CΘ = 1.875 to retrieve a proper Prandtl number. In order to avoid
errors induced by the resolution of the FV solver, we will use the universal functions derived
from Section 5.1, to provide the mean carrier fields. Such a choice might be questionable in
the case of convective SBL flows where the diffusion of TKE should not be neglected. Yet, this
source of error should be weighed against the errors arising from the resolution of the FV solver.
It is true that using the solution issued from the FV solver the errors obtained would be smaller
than those encountered in Section 5.1.3.2, since it is easier to maintain the profile injected at
inlet than to retrieve it from upper and lower boundary conditions. Nevertheless, the solutions
from the methodology developed in Section 5.1 are used to fuel the mean carrier fields, we can
see in Figure 5.17, that results obtained are similar to the one obtained using a DRSM-DFM
modelling. The independence of the plume shape with regards to the friction velocity is properly
captured as well as the qualitative effects of the dynamics on the stability.
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Figure 5.17: Pollutant plume shapes obtained using a SLM–IEM model, for different friction
velocities and Monin–Obukhov length scales. The limit of the plume is characterised by the
zone below which 99% of the pollutant is encompassed. Three neutral flows with different
friction velocities are compared: u∗ = 0.2 m s−1 (�), u∗ = 0.56 m s−1 (N), u∗ = 1 m s−1 (H).
Furthermore, the plume shapes obtained with a friction velocity u∗ = 0.2 m s−1 are plotted for
different stability situation, respectively LMO = 200 m ( ); LMO = 50 m ( ); LMO = 20 m
( ); LMO = −50 m ( ); LMO = −20 m ( ); LMO = −10 m (•). The plume is independent of
u∗ but increases with the thermal effects.

Impacts of the Thermal Modelling on the Plume
Our aim here is to measure the effects of properly modelling the instantaneous potential
temperature within the Lagrangian stochastic approach. To do so, using the same mean carrier
fields, the results obtained with three modelling variants of this quantity are compared in
Figure 5.18:
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• In the first simulation, in Figure 5.18A, as in Figure 5.17, we consider an IEM model with
a finite relaxation time characterised by the choice CΘ = 1.875. This value is selected in
coherence with the constant C0 = 3.5 and the turbulent Prandtl number in neutral case
an will be considered as the reference situation.

• The second simulation corresponds to an instantaneous relaxation time for the potential
temperature obtained by taking CΘ = 0. The potential temperature associated with the
particles then remains constant over their trajectories. As we can see in Figure 5.18B, with
this modelling the deviation of the particle potential temperature compared to the local
mean flow is not dampened. This results in overestimated stability effects, with plumes
that are too diffuse in convective situations and overly confined in stable situations.

• Finally, an instantaneous relaxation time is assumed by setting CΘ =∞. Such a modelling
is often used in the scope of atmospheric dispersion with Lagrangian stochastic methods
(see e.g. Tinarelli et al. [2012], Massimo et al. [2013], Pisso et al. [2019]). In this
situation, where the potential temperature associated with the particle corresponds to
the local mean fields without any memory of the particle trajectory, the stability effects
are underestimated, resulting in a smaller variation of the plume shape with LM0. At the
opposite of the infinite relaxation time, we can see that the stable plumes are more diffuse
than in the reference case, whereas they are less diffuse in the convective situations and
all the plume shapes come closer to the neutral setup.

We can then see that the relative importance of the stability on the plume shape depends,
as expected, on the Monin-Obukhov length scale, but also on the modelling of the potential
temperature. The latter impacts are enhanced by taking larger relaxation times and diminished
by taking smaller ones. Thus, although this issue is often overlooked in the context of
atmospheric dispersion, the modelling of the instantaneous thermal quantities and the selection
of a suitable relaxation time should be seen as of significant importance.

5.3.2 Impacts of the Thermal Modelling on the Dynamic of a Buoyant Plume

To discuss the implications of the thermal modelling of plume rise, we will now consider the
simulation of a weakly buoyant plume in a stably stratified flow with LMO = 20 m. The difference
between the ground potential temperature and the potential temperature of the injected flow
equals to 3.5◦C, the reason explaining this choice of a small temperature difference is twofold.
First, the effects of the pollutant dispersion on the background flow are not taken into account,
thus, to be physically sound, relatively small buoyancy effects should be considered. Secondly,
since we want to remain as much as possible in the SBL, we want a moderate rise of the plume.
Furthermore, to be able to discuss the shape of these plumes with more ease, we will consider
an emission at a height of 25 m. As previously, the carrier fields selected are derived from the
solutions presented in Section 5.1. The corresponding potential temperature at the injection
altitude is equal to ground temperature plus 2.5◦C, while the isotherm at ground temperature
plus 3.5◦ C is reached at 39 m. To illustrate the importance of the instantaneous potential
temperature modelling, the lower limit but also the centre and the upper limit of pollutant
plumes are plotted in Figure 5.19. Each of these limits represents respectively the altitude
below which 1%, 50% and 99% of the pollutant is located. As in the previous paragraph, the
three plumes plotted are obtained with the same mean carrier flow and three modelling variants
of the instantaneous potential temperature corresponding to three limit relaxation times.

249



0 20 40 60 80 100 1200

10

20

30

40

50

60

70

HH
HHH

HHH
HHH

HHH
HHH

HHHH
HHHH

HHHH
HHHH

HHHH
HHHH

HHHH
HHHH

HHHH
HHHH

HHHH
HH

x (m)
z t

op
pl
u
m
e
(m

)

stable

neutral

unstable

(A) Finite relaxation time
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(B) Infinite relaxation time

0 20 40 60 80 100 1200

10

20

30

40

50

60

70

HH
HHH

HHHH
HHHH

HHHH
HHHHH

HHHHH
HHHHH

HHHHH
HHHHH

HHHHHH
HHHHH

HHHHH
HHHHH

HHHHHH
HHHHHH

HHHHHH
HHHHHH

HHH

x (m)

z t
op

pl
u
m
e
(m

)
stable

neutral

unstable

(C) Instantaneous relaxation time

Figure 5.18: Pollutant plume shapes obtained using different thermal relaxation times, for
different friction velocities and Monin–Obukhov length scales. The limit of the plume is
characterised by the zone below which 99% of the pollutant is encompassed. Three neutral
flows with different friction velocities are compared: u∗ = 0.2 m s−1 (�), u∗ = 0.56 m s−1

(N), u∗ = 1 m s−1 (H). Furthermore, the plume shapes obtained with a friction velocity
u∗ = 0.2 m s−1 are plotted for different stability situation, respectively LMO = 200 m ( );
LMO = 50 m ( ); LMO = 20 m ( ); LMO = −50 m ( ); LMO = −20 m ( ); LMO = −10 m
(•). The plume shape is independent of u∗ but increases with the thermal effects and the
relaxation time.

• In the first simulation (in green), considering an IEM method, we have CΘ = 1.875, this
value is selected in coherence with the carrier fields considered. In this situation, particle
instantaneous potential temperature tends towards the local mean temperature with a
finite relaxation time τΘ = k

CΘε . As expected, in Figure 5.19, the centre of the plume rises
due to thermal effects until a relatively constant altitude located in between the injection
height and the height corresponding to the isotherm of injection temperature. From there,
the centre of the plume tends to remain fairly constant, although there is a tendency for
this quantity to decrease. The latter could be explained by the asymmetric nature of the
flow around its mean location, which is noticeable by the asymmetric shape of the plume.
Indeed, the flow on the upper part being faster than on the lower part, the pollutant is
evacuated more quickly there, causing this slow decrease of the centre of the plume.

• Second (in red), a simulation is carried out considering CΘ = 0. In this case the relaxation
time for the potential temperature is infinite. Thus, the potential temperature associated
with the particles remains constant over their trajectories and the plume rises until it
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reaches the altitude associated with the injection temperature isotherm. Moreover, in
this case, for all the particles, the buoyant terms can be at equilibrium only when the
particles are in the vicinity of this constant target location. The buoyancy introduces then
a restoring effect pushing particles towards this position. This leads to a dampening of
the potential deviation to this location and thus to a less diffusive shape of the plume.

• Finally, a simulation (in blue) is considered with CΘ = ∞. In this case, the
instantaneous potential temperature relaxes instantaneously towards the local mean
potential temperature. Due to this choice, the plume rise is not naturally treated by
the buoyancy effects and an ad hoc parameterisation should be applied. For this reason,
in the case studied where no such specific modelling of the buoyant rise is considered, the
height of the centre of the plume remains fairly constant near the injection. Over larger
distances, reflection of the particles at wall triggers an elevation of the mean level of the
centre of the plume. A second element of interest is that in this case the buoyant effects
do not oppose at all the vertical dispersion yielding to a more diffuse and broader plume.
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Figure 5.19: Buoyant plume shape obtained with different relaxation times. The first relaxation
times tackled is k

Cθε with Cθ = 1.875 (in green), the top of the plume (N), its centre (�), and its
bottom (H) are plotted. The upper limit ( ), centre ( ) lower limit ( ) of the plume obtained
with an instantaneous relaxation are plotted in blue whereas the plume corresponding to an
infinite relaxation time is plotted in red with respectively ( ) for its upper limit, ( ) for its
centre and ( ) for its lower limits. These limits represent respectively the altitude below which
99%, 50%, 1% of the concentration is located. It is clear that the position of the plume centre
and the dispersion around this value depend on the modelling considered for the instantaneous
potential temperature.

In all the three plumes, due to the non-uniformity of both the mean flow and the turbulent
fields, the pollutant plume is not symmetric around its mean location. Over longer distances,
these effects may result in a shift of the mean location of the plume, mainly because the upper
region sees a faster velocity fields. Such phenomena cannot be properly handled by Gaussian
methods often used to simulate the dispersion far from the source.
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5.3.3 Local Conclusions and Perspectives

In this section, it has been demonstrated that the shape of the pollutant plumes in stationary
horizontally uniform SBL flows does not depend on the friction velocity characterising the flow
velocity. The only parameter impacting this shape is the Monin–Obukhov length-scale which
is representative of the thermal effects. Indeed, in stable flows, the latter killing the vertical
fluctuations of velocity, the plume remains narrow and concentrated. In contrast, in convective
flows, the thermal effects enhancing the vertical velocity fluctuations, they have a mixing effect
triggering the production of broad and diffuse plumes. This result is properly retrieved both
using the FV solver with a Rotta–Monin model and a Lagrangian stochastic one with a SLM–
IEM model. It has been showed that the proper modelling of the thermal relaxation is of major
importance to retrieve a proper plume dynamics, both to describe their central position or the
dispersion around this value. Assuming an instantaneous thermal relaxation time does not
enable to obtain a proper rise of the plume and strongly overestimates the width of the latter
in a stable case. Unfortunately, the treatment of highly buoyant plumes such as encountered
during a fire remains out of the scope of the present work. Indeed, in order to consider the
effects of highly buoyant plumes treated with the Lagrangian solver on the background flow, a
stronger coupling between particle quantities and the carrier flow should be ensured. Such a
two-way coupling is out of the scope of the present work. Moreover, such buoyant plumes would
rise above the SBL in a zone where the hypotheses considered to estimate the carrier fields are
no longer respected and are also out of the scope of the present work.
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Local Appendix

5.A Derivation of Algebraic Solutions for Lower Order Mod-
elling

In this section, a complement of Section 5.1 is presented with methods of lower order compared
to the DRSM-DFM methods presented. We still consider the case of a horizontally uniform
and stationary stratified SBL flow. First, the results for the kinetic energy obtained with the
standard k− ε model are presented. Then, the results obtained using respectively a SGDH and
a GGDH closures for the turbulent heat fluxes are displayed.

5.A.1 Algebraic Closure for the Turbulent Kinetic Energy using a Standard
k − ε Modelling

Using a k − ε modelling of the turbulence, the closure gives:

νt = −〈uw〉
∂〈U〉
∂z

= u∗κz

ϕm
= Cµk

2

ε
. (5.79)

Under the TKE equilibrium assumption, injecting the dissipation of the dissipation rate
Eq. (5.8), we get the equation:

k2

u4
∗

= 1
Cµ

(1−Rif ) = (1−Rif )2 (1− (β2 − α3)Rif )
α1(1− β2Rif )(1− α2Rif ) , (5.80)

where the result obtained with the k − ε model is compared with Eq. (5.25) obtained in the
broader case of DRSM models. Thus, the notation used in Section 5.1 can still be used by
setting for example α1 = Cµ and α2 = 0 α3 = β2 = 1. This might be of importance, as only the
algebraic solution on the TKE is necessary to fuel the iterative process on the dissipation rate.
Thus, the latter method can be directly extended to EVM models.
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Furthermore, if one wants to have an idea of the TKE distribution one may assume as a first
approach:

〈uiuj〉
k

=2
3δij −

νt
k

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
. (5.81a)

In this case, we have 〈uu〉k = 〈vv〉
k = 〈ww〉

k = 2
3 . Thus, with λ = λx = 2

3 and µx = µy = µz the
notation used in Eqs 5.17 might still be used.
If one wants to take into account the thermal effects in the distribution of TKE, the Reynolds
tensor might be modelled as:

〈uiuj〉
k

=2
3δij −

νt
k

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
+ Ck−εθ

(Gij − 2
3Gδij)
ε

, (5.82a)

=
2
3δij −

νt
k

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
1−Rif

1−
2
3δij −

νt
k

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
+ Ck−εθ

Gij− 2
3G
G

2
3δij −

νt
k

(
∂Ui
∂xj

+ ∂Uj
∂xi

) Rif

 . (5.82b)

Thus, for the diagonal terms, we would have:

〈uu〉
k

=
2
3

1−Rif

(
1−

(
1− Ck−εθ

)
Rif

)
, (5.83a)

〈vv〉
k

=
2
3

1−Rif

(
1−

(
1− Ck−εθ

)
Rif

)
, (5.83b)

〈ww〉
k

=
2
3

1−Rif

(
1−

(
1 + 2Ck−εθ

)
Rif

)
. (5.83c)

Here again, the notation introduced in Eqs 5.17 can be retained with λx = λ = 2/3, µx = µy =
1−Ck−εθ and µ = 1+2Ck−εθ . Moreover, as a k− ε can only be consistent with a SGDH modelling
of the turbulent heat fluxes, we would also have a consistent behaviour for the shear stress.

5.A.2 Algebraic Closure considering a SGDH Modelling for the Turbulent
Heat Fluxes

Modelling for the turbulent heat fluxes with the SGDH model, we have:

〈uiθ〉 = −Kt
∂〈Θ〉
∂xi

. (5.84)

The streamwise turbulent heat fluxes are then null and the equation Eq. (5.18c) for the shear
stress gives:

k2

u4
∗

= 1
Cµ

(1−Rif )2

(1− µRif ) = (1−Rif )2 (1− (β2 − α3)Rif )
a1(1− β2Rif )(1− α2Rif ) . (5.85)

Using for example the set of constants: α1 = Cµ, α2 = µ, α3 = 0 and β2 = 1, we can obtain
the solution for k with a similar form as Eq. (5.25) to fuel the iterative solver on the dissipation
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rate. Furthermore, considering Kt = νt
Pr0

t
= CSGDHθ k2

ε with CSGDHθ = Cµ
Pr0

t
and Pr0

t a constant we
have:

−〈wθ〉 = u∗θ∗ = Kt
∂Θ
∂z

= C
SGDH
θ k2

ε

θ∗
κz
ϕh, (5.86a)

u4
∗
k2 = CSGDHθ

ϕh
ϕm

1
1−Rif

= C
SGDH
θ Prt
1−Rif

, (5.86b)

Prt =u4
∗
k2

(1−Rif )
CSGDHθ

. (5.86c)

5.A.3 Algebraic Closure considering a GGDH Modelling for the Turbulent
Heat Fluxes

Modelling the turbulent heat fluxes with a GGDH model, we have:

〈uiθ〉 = −CGGDHθ

k

ε
〈uiuk〉

∂〈Θ〉
∂xk

. (5.87)

The equation Eq. (5.18c) becomes then:

u4
∗
k2 =α1

1− µxzRif
(1−Rif )2 −

Rif
(1−Rif )

(1− CG)CGGDHθ

CR
u3
∗

εθ∗

∂〈Θ〉
∂z

, (5.88a)

= α1
1− µxzRif
(1−Rif )2 − Prt

Rif

(1−Rif )2
(1− CG)CGGDHθ

CR
. (5.88b)

The kinetic energy depends then on the turbulent Prandtl number which can be obtained thanks
to the equation driving the normal turbulent heat fluxes as:

−〈wθ〉 = u∗θ∗ = CGGDHθ 〈ww〉k
ε

∂〈Θ〉
∂z

, (5.89a)

u4
∗
k2 = CGGDHθ λ(1− µRif ) 1

(1−Rif )2Prt, (5.89b)

Prt = u4
∗
k2

(1−Rif )2

CGGDHθ λ(1− µRif )
. (5.89c)

Injecting this equation in the equation of turbulent energy Eqs 5.88, we get:

u4
∗
k2

(
1 + Rif

1− µRif
(1− CG)
CRλ︸ ︷︷ ︸

3µ
4 −

1
2λ

)
=α1 (1− µxzRif )

(1−Rif )2 , (5.90a)

k2

u4
∗

=
(1−Rif )2

(
1−Rif

(
µ
4 + 1

2λ

))
α1 (1− µRif ) (1− µxzRif ) =(1−Rif )2 (1− (β2 − α3)Rif )

a1(1− β2Rif )(1− α2Rif ) . (5.90b)
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We can keep the same structure as in Eq. (5.25) in the iterative process by taking: α1 = Cµ,
α2 = µxz, α3 = 3

4µ−
1
2λ , β2 = µ.

Furthermore, we have:

Prt = α1
CGGDHθ λ

(1− µxzRif )(
1−Rif

(
µ
4 + 1

2λ

)) , (5.91a)

〈uθ〉
u∗θ∗

=
√√√√α1
λ2

(1− µxzRif )
(1− µRif )

(
1−Rif

(
µ
4 + 1

2λ

)) . (5.91b)
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CHAPTER 6

Conclusions and Perspectives

In this work, a first axis of study considered has been the analysis of the numerical error that
may arise when considering Lagrangian stochastic methods based on particle/mesh formulations.
In this scope, in Chapter 2, the question of the interplay between temporal and spatial errors
has been raised. Indeed, considering only the local mean carrier fields associated to the initial
location may introduce error, as the evolution of the mean fields along particle path over a time
step is not taken into account. Such an error may be particularly noticeable should we consider
highly varying mean fields or time steps long compared to the local CFL number. To limit this
source of error, a time-step-robust time-splitting method, enabling for each particle to estimate
the travelling time in each cell, has been developed. This algorithm enables to dynamically
update the mean carrier fields associated to the particle location with local values, every time a
particle enters a new cell. However, as a Lagrangian stochastic method based on Itô formulation
is used, the major concern of anticipation error has raised. In this matter, this chapter has
been a good vector to discuss and analyse precisely the spurious biases that may arise when
introducing mismanaged anticipating terms in Lagrangian stochastic methods. Indeed, because
of Itô definition for the stochastic integrals, it is necessary for the quantities integrated to be
selected at the previous time step and independently from the stochastic draws associated to the
current time step. Estimating the particle time of residence in a cell, based on draw-dependent
information, would then introduce an anticipation error when integrating over this time period.
To avoid the occurrence of such mismanaged anticipation error, it has been chosen to consider a
deterministic virtual particle associated to each stochastic one and whose free-of-bias trajectory
has been used to estimate the travelling time of each particle in each cell. This algorithm has
then been verified on two representative test cases ensuring both the correct computation of
the stochastic integrals but also the proper update of the mean carrier fields along the particle
trajectory. It has been shown that the latter may greatly diminish the computational error.
This issue led to the publication of a first scientific article (see Balvet et al. [2023a]).
Furthermore, still in a purpose of characterising and lowering the numerical error that may
impact the results obtained using PDF methods, a detailed investigation of the spatial numerical
error has been carried out. This issue has first been studied in detail in Chapter 3 for neutral-
surface boundary-layer (SBL) flows and has later been extended to thermally stratified SBL flows
in Section 5.2. The inquiry in neutral SBL was the subject of a second published article (see
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Balvet et al. [2023b]). It has been demonstrated that the spatial error encountered is twofold.
First, an error in the interpolation of the mean carrier fields at the location of the particles impais
the evolution of the instantaneous quantities associated to the particles. It has been exposed
that, especially near the wall, it is necessary to use an interpolation method more accurate than
piecewise constant for the mean velocity and potential temperature so that the corresponding
local gradient can be adequately estimated. The poor estimation of this gradient would impact
the mean first-order moments, but also and mostly the corresponding second-order moments,
as their production terms would be greatly tarnished. Moreover, it has been prescribed to use
an interpolation for the Lagrangian timescale coherent with the choice made for the first-order
moments and the respect of the production-dissipation equilibrium for both the TKE and the
potential temperature variance. Considering these constraints and the necessity to use a cell-
based method (i.e., based only on information stored in the particle cell), to be able to treat
complex unstructured 3-D meshes, different interpolations methods have been proposed. Using
a linear piecewise interpolation enables to improve greatly the results and has the advantage of
being general and easy to implement. However, it is still possible to improve these results near
wall by using locally a more accurate interpolation e.g., a pseudo-analytical interpolation of the
mean fields. In both cases, a remaining issue is the discontinuity of such interpolation, when
particles cross cell interfaces. To ensure such a continuity for a local interpolation method, a
further inquiry should be realised potentially relying on the use of compatible discrete operator
(CDO) schemes (see e.g. Bonelle [2014]). Let us note that such a choice would require a
consequent modification of the tracking algorithm. The second source of spatial numerical error
exhibited is the error impacting the estimation of the statistics from the set of particles. As
we have considered a hybrid formulation, in which the statistics estimated are not injected in
the particle dynamics, this error only impacts the observable post-treated and provided to the
user. Using a stand-alone method, it would also introduce a bias in the instantaneous evolution
of the quantities associated to the particles. It has been proved that computing the ensemble
statistics on coarse averaging bins, within which the statistics associated to the particles are not
uniform, results in the introduction of an error in the estimation of the covariances. Indeed, the
covariances obtained in such a manner correspond to the sum of the covariances of interest with
the local spatial covariances of the mean first-order fields. Two solutions are proposed to get rid
of the second covariances spoiling the user observables. The first one is to use an intermediate
finer mesh to estimate the statistics and spatially average resulting statistics onto the coarser
mesh. However, such a method is cumbersome as it requires to introduce a second auxiliary
mesh and then to track the particle location on both meshes leading to a non-negligible increase
of computational cost. To avoid such an issue, it is then proposed to correct the estimation of
the covariances directly on the coarse mesh by estimating the local spatial covariances of the
corresponding mean fields directly on this mesh. To do so, it is necessary to reconstruct the
mean fields profiles within the cells knowing solely their values stored at the centre of cells. It
is highlighted that proper results are retrieved when considering a reconstruction scheme for
the mean fields associated to the particle set coherent with the interpolation methods used to
estimate the mean carrier fields.
The second axis of this study, dealing with the modelling of atmospheric SBL flows with
Lagrangian stochastic methods, is also introduced. In this purpose, in Section 3.1 for the
dynamics and in Section 5.2.1 for the thermal effects, a special interest is provided for the
treatment of wall boundary conditions used in the particle solver. As we have considered only
a model valid for high Reynolds number flows, and as the particles can be arbitrarily close to
the limit of the domain, the wall boundary condition should be implemented in a zone where
the viscous effects are negligible (i.e., for the neutral case in the logarithmic zone). It has been
verified that for both the instantaneous streamwise velocity and the instantaneous potential

258



temperature an an-elastic rebound should be considered when the particles cross the limit of the
domain. The latter is necessary to retrieve proper normal fluxes (respectively the shear stress
and normal turbulent heat fluxes). Indeed, considering an elastic rebound amounts to impose a
zero-gradient on the first-order terms and a zero flux condition at the boundary condition. Such
specular rebounds are then in opposition with the physical phenomena at stake near wall and
result in a poor estimation of both the resulting first and second-order moment. Even though the
use of a specular rebound on the mean velocity does not impact the concentration profiles in 1-D
periodic flows, the elastic rebound on the potential temperature triggers a mistreatment of the
potential temperature profiles, and then also a mistreatment of the buoyant terms. The latter
ones are then no longer in equilibrium with the pressure gradient. Near the wall, this results in a
spurious accumulation of particles for thermally unstable conditions and in a spurious depletion
of particles for stable flows. This is in clear violation with the well mixed criterion. At the
opposite it has been further verified that using the an-elastic boundary condition proposed by
Dreeben and Pope [1997b] and Pozorski and Minier [1998] proper results are retrieved.
In the continuation of the design to better model the atmospheric flows and in the scope of
hybrid modelling, a model-consistent description of the SBL has been derived in Section 5.1
to provide proper mean carrier flows. Placing ourselves in the scope of the Monin–Obukhov
theory, this description is based on the algebraic solutions derived from a class of second-order
models within which the fluctuating pressure induced redistribution terms are modelled taking
into account linear contributions of the physical processes at stake. To do so, except for the
dissipation rate, the diffusion terms of turbulent quantities are neglected under equilibrium
assumptions. Doing so, it is possible to determine the universal functions characterising all
the first-order and second-order statistics except for the mean velocity. All these universal
functions depend solely on the flux Richardson number and then on the momentum universal
function. In order to estimate the latter, the turbulent kinetic energy dissipation rate equation
is considered. This is the only equation for which the diffusive term is considered. It is thus the
only non-local equation providing a scale for the distance to the wall necessary to estimate the
momentum universal function and to close the system. Even though it is possible to derive an
implicit solution for the flux Richardson number and then the momentum fluxes, the latter are
too complex to be resolved analytically. An iterative resolution of the dissipation rate equation
has then been considered, based on the algebraic solution previously obtained. Doing so, it
has been possible to exhibit a description of the SBL flows which agrees with Monin–Obukhov
similarity theory respecting both the theoretical stable and convective asymptotic behaviours.
It has been verified that the results obtained are coherent with results obtained using the CFD
solver code_saturne in stable situations. These situations are of most interest, as they are the
most penalising for a dispersion of pollutant. In contrast, in the case of convective flows multiple
difficulties have emerged. First, numerical discrepancies occur, the latter may stem from a poor
implementation of the boundary conditions or from the necessity to use more stable numerical
scheme for second-order methods. Moreover, it seems that in this situation the equilibrium
assumptions considered neglecting the effects of the diffusive terms are no longer valid. Yet,
it has been demonstrated that without the diffusive terms the algebraic solution proposed is
retrieved. Let us note that the algebraic solution is used to fuel the boundary condition of the
CFD simulations. A further work should then be made to properly characterise such situations.
In this scope, the effects of the TKE diffusion on the dissipation rate should be implemented
within the iterative resolution of the latter. Moreover, it would be pertinent to try to estimate
the effects of the diffusive terms based on correlation between local terms and the diffusive
terms. This work still paves the way for the development of model-consistent derivation of
universal functions which aims at maintaining profiles injected as boundary conditions at inlet
by providing profiles close to the solution of the FV simulation.
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Finally, the third axis of study of this work is the description of plume obtained using hybrid
PDF methods and where only the particles issued from the pollutant source are simulated.
This issue is first introduced for neutral flows in Chapter 4, comparing simulation results with
experimental data of Gamel [2015] obtained in a channel flow. Two cases are considered first a
dispersion in an unobstructed flow and then a dispersion in the wake of an isolated obstacles.
It is shown that, in the scope of hybrid moment/PDF methods, the mean concentration but
also of the scalar fluxes might be estimated directly by simulating only the particles issued from
the source and neglecting the micro-mixing effects. However, the consideration of the latter is
of major importance to be able to estimate the scalar variance. Without this modelling of the
micro-mixing, the scalar variance is grossly overestimated. It is however possible to obtain a
quite adequate description of the scalar variance scale, considering only particles issued from
the source, by using the volumetric particles approach proposed by Cassiani [2013]. Although
the aforementioned improvements proposed in this thesis have a noticeable effect near wall,
the latter remains of secondary order compared to the impact of a proper estimation of the
mean carrier fields. In this case where there are no duplicated fields between moment and
PDF approaches, it is put forward that the error induced by the lack of consistency in the
modelling selected might be weak compared to the gain of using non-consistent models which
better capture the recirculation zone and the physics of the carrier flow. Moreover, the choice
of modelling selected for the PDF methods also seems to have a preponderant effect on the
pollutant dispersion. Indeed, the isotropic turbulent timescale and the isotropic production
of turbulent fluctuations might induce an overestimation of the normal fluctuations near wall.
The latter results in overly diffusive plumes. Furthermore, in these flows, signals of the potential
presence of 3-D effects have been addressed, yet only a 2-D study has been performed. A further
study on the effect of secondary flows should be carried out using a 3-D simulation. Finally, the
thermal effects on the plume shapes have been qualitatively assessed in stratified SBL flows in
Section 5.3. Following Monin [1959], it has been verified that in these flows the plume shapes do
not depend directly on the wind velocity characterised by the friction velocity but solely on the
atmospheric stability characterised by the Monin–Obukhov length scale. Indeed, in stable flows
the thermal effects tend to kill the vertical fluctuations of velocity whereas they are enhanced
in convective situation. This results in a direct impact on the plume shapes going from small
and concentrated plumes for very stable situations to large diffuse plumes mixed by turbulent
effects in convective situations. Such qualitative results are properly captured in the simulations
carried out. Moreover, the impact of the thermal relaxation time modelling on rise and diffusion
of plumes has been exposed using a weakly buoyant plume. The simulations carried out properly
retrieve the physical behaviours expected and illustrate the importance of a proper consideration
of the thermal modelling on both the plume rise and dispersion.
In the continuation of the work proposed by Bahlali [2018], from both a numerical and theoretical
point of view, this study has furnished a detailed characterisation of the neutral and stratified
SBL flows using Lagrangian stochastic methods. It aims at providing guidelines and explanations
for a better use of such methods for atmospheric dispersion using the open source CFD solver
code_saturne. However, besides the perspectives already stated other ones are still to be
considered, from numerical, modelling and theoretical scopes.
First, from a numerical point a view, a further study on DRSM and DFM methods should
be tackled to obtain more stable schemes with a better implementation of the boundary
conditions. The proper resolution of these methods, which transports explicitly the Reynolds
stress tensor and turbulent heat fluxes, is of great importance as, using a Langevin standpoint,
GLM methods are intrinsically consistent with such approaches. This work on the boundary-
condition implementation and on the numerical scheme might then substantially improve the
estimation of the mean carrier flows provided to the particle solver. Furthermore, within the
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latter solver, a temporal numerical error is still present when considering fluid particles in the
diffusive regime with a varying Lagrangian timescale. Such a situation is classically encountered
in the near ground region imposing to use a very small time step for all particles. This triggers
a great increase in the computational cost which remains a limitation of the method presented.
The implementation and verification of the extended scheme proposed by Minier [2016] are a
promising way to release an important lock in the use and development of this approach with
the exponential temporal scheme considered.
Furthermore, from a modelling perspective, it is worth noting that the SLM model selected is
coherent with a Rotta model. Both assume an isotropic redistribution of the kinetic energy,
which is not representative of the situation encountered near wall where more energy is directed
towards the streamwise direction. Such a model might result in too diffusive plumes. The
extension to the GLM class of model might be of great interest especially given that the
methods used to derive model-consistent universal functions is directly applicable for a wide
range of GLM model. Yet, it is worth noticing that such an extension is not direct as it would
require a modification of the temporal scheme considered. For now, the integration in each
spatial direction is treated independently. Yet, using anisotropic GLM models the evolution
in one direction might depend on the integration in the other direction and would require
a specific change of basis to be able to consider an integration scheme like the one actually
implemented. Moreover, in the scope of developing a proper GLM model for atmospheric
purposes, one may either consider the implementation of the Lagrangian counterpart of the
standard SRQM model, but one may also derive a model specifically fitted to treat such flows.
To this end, for models of the class studied, it would be required to confront the algebraic
solutions derived with experimental data to validate the modelling proposed.
In addition, the approach developed has only considered Boussinesq assumption; and an
extension to an anelastic description of the atmosphere could be tackled. In this perspective,
we consider a deviation compared to the adiabatic flow instead of a deviation compared to a
constant flow for the treatment of buoyancy. This description is indeed physically sounder in the
context of atmospheric flows. This is of particular importance mostly if one aims at going upper
in the atmosphere where the adiabatic variation of density might become non-negligible. Indeed,
the scope of this work is limited to the SBL due to the conceptual framework considered based
on the Monin–Obukhov theory. Yet, the flow within the Eckman layer is of great importance
in the description of the dispersion at longer scales. In order to be able to consider such scales,
an extension of the Monin–Obukhov theory should be inquired to treat the Coriolis effects but
also the decrease of the shear stress and turbulent heat fluxes with altitude.
Furthermore, so as to be physically more accurate, the consideration of the humidity should be
investigated as for now only dry atmosphere have been considered. Such a study will show more
of the method potential if we also take into account the atmospheric chemistry for which such
methods are particularly well fitted. In addition, we may also take into account the inertial
particles, for which the work presented can be directly extended, to see the effect of segregation
based on particles mass and inertia (see Minier and Peirano [2001], Minier [2016]). Indeed, these
methods are well equipped to treat such poly-disperse flows, and to model deposition phenomena
whether they are dry or humid.
Moreover, in the perspective of using such methods for accidental purpose, we may consider
the case of buoyant or highly buoyant release which may occur in case of fire. Lagrangian
stochastic methods might be of great interest to treat such cases as the poly-disperse creation of
ashes, soot, chemical compounds and the corresponding radiation might be taken into account
explicitly. However, in this end, first a specific inquiry on the mechanisms at stake near the
fire source should be considered. Moreover, a stronger coupling (two-way coupling) between the
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particle solver and FV approach should be considered to characterise the effects of the fire on
the mean carrier flows. Finally the proper treatment of the Ekman layer should be seen as a
prerequisite if one wants to simulate such dispersion over relatively short distances.
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