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Introduction

Refining our understanding of an unknown system through modelling lays the groundwork for
being able to optimally control it and opens the door to a myriad of potential applications, exploit-
ing the once enigmatic and unpredictable effects of this now known system. For instance, quantum
systems evolve according to principles seemingly magical or at least counter intuitive when studied
in a classical physics framework. Adopting properties from both waves and matter or being able to
exist in several states simultaneously, quantum particles can even communicate non-locally between
entangled pairs, as experimentally demonstrated for the first time by [1]. By formalising the behaviour
of ensemble of particles, such as atoms or photons, quantum theory led to a technological revolution,
first enabling in the mid 20th century the development of transistors and lasers, indispensable compo-
nents of today computers, smartphones, satellite navigation systems and advanced medical diagnostic
tools. With ever more advanced experimental control enabling their individual manipulation, quan-
tum systems can improve the accuracy of sensors by order of magnitude, encrypt data in unbreakable
ways for secure communication and hold the promise of performing computing tasks that are beyond
the scope of conventional computers. While this last hope stems from the exponential complexity
required to depict the state of a many-body quantum system, intractable for classical machines, the
potential of these highly complex quantum computers may remain untapped if not well operated or
if they fail to address pertinent challenges. Among the various quantum systems which can serve as
building components of this new class of computers, trapped ions and superconducting circuits are
prone contenders with their high fidelity of operations and their fast computing rate. In the recent
years, multiple technologies with various advantages have also emerged, making use of photons, polar
molecules, nitrogen-vacancy centres, topological particles or atoms trapped in optical lattices, or in
tweezers.

This thesis focuses on the latter technology, namely the use of neutral atoms trapped in tweezers
and excited to Rydberg states. The wide tunability of the implemented Hamiltonians combined with
the geometrical versatility of the platform allows us to study a large variety of many-body phenomena
in quantum simulation. We also address the challenges of operating and developing algorithms on
current Rydberg-based platforms in the noisy intermediate scale quantum (NISQ) era [2]. Successfully
implementing protocols requires a solid grasp of the technical possibilities and constraints of the
technology which determines the range of experiments we can conduct. Throughout this thesis, we
build several models of Rydberg-based quantum processors, enabling us to emulate the dynamics
of large-size systems using tensor networks or to sequentially incorporate various low-level physical
effects occurring on the experimental setups to accurately assess their detrimental impact on high-
level protocols. By identifying the dominating contributions, we can address the need for experimental
corrections or create mitigation techniques using optimal control frameworks, notably for designing
faster and more efficient state preparation protocols or entangling quantum gates. These classical tools
are of great help in the various applications reachable by analog Rydberg platforms. We illustrate this
assertion with enhanced experimental preparation of the antiferromagnetic ground state of the Ising
model, a stepping stone for studying many-body localisation phenomena. For benchmark purposes,

1
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we construct digital twins of a noisy processor probing continuous symmetry breaking in the dipolar
XY model and developing local rotations useful for quantum state tomography. Then, targeting
industry-relevant problems, we improve a variational quantum adiabatic algorithm with a classical
Bayesian optimiser to experimentally solve Maximum Independent Set problems on a family of unit
disk graphs representing smart charging tasks. We also test the performance of an implemented
quantum feature map incorporated in a machine learning classification algorithm used for predicting
the toxicity of compounds. Finally, we make the most out of limited quantum resources to design an
hybrid quantum-enhanced classifier for fallen angels detection in a financial risk management use case.
This thesis demonstrates the versatility of problems that can be tackled by Rydberg-based processors
while emphasising the need for accurate modelling and optimised control protocols.

The experimental results gathered during the course of this thesis have been obtained on three
distinct quantum processors, two of them, Iroise and Fresnel, belonging to Pasqal and the last one,
Chadoq, belonging to the Quantum Optics group at IOGS. Technical possibilities and constraints can
thus vary from one chapter to another but for each implementation, the device used will be mentioned.
It is also worth noting that Fresnel, on the contrary to both Chadoq and Pasqal prototype, Iroise,
was directly accessible through a cloud interface. It was thus possible to perform complex protocols
without the need for any manual intervention from experimentalists.

The manuscript is structured as follows.
In chapter 1, we describe the technology enabling to individually trap and control atoms, as well as
making them interact by promoting them to Rydberg states. Analysing the various steps needed to
perform quantum computation with Rydberg atoms, we also list the potential sources of error impact-
ing each of them.
In chapter 2, we then present three ways of modelling quantum systems, with a focus on Rydberg
atoms, in order to be able to classically emulate their dynamics. Balancing the use of these distinct
tools allows to predict properties emerging at large sizes or to precisely quantify the detrimental con-
tributions of the experimental noises by building digital twin of the quantum computer under study.
In chapter 3, we use the formalism of optimal control theory to first devise robust protocols for op-
erating optimally noisy quantum computers using the models built in the previous chapter. Second,
in order to efficiently tackle more complex tasks, we outline the components of variational quantum
algorithms and introduce the use of the Bayesian optimisation technique as a powerful classical opti-
miser. These emulation and optimisation classical tools are then used throughout the next chapters
to either better understand experimental limitations or enhance performance of the various protocols
presented.
For instance, in chapter 4, delving in the quantum simulation of the Ising model with Rydberg atoms,
we optimise with a variational algorithm an adiabatic schedule to enhance the preparation of the anti-
ferromagnetic ground state of the model directly on the quantum processor of Pasqal, Fresnel. Then,
we give some insights on how to use quenched dynamics to probe interesting properties of disordered
systems such as many-body localisation.
In chapter 5, we perform extensive noisy emulations of quantum dynamics in the XY model to inter-
pret experimental results obtained on Chadoq, the device of the academic group. Using these digital
twins enables to benchmark the utility of new control techniques such as local rotations for state
tomography, and validates results obtained at larger sizes in the context of probing a continuous sym-
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metry breaking in the dipolar XY model. Reinforced with optimised driving schedules and accurate
noise benchmarks, Rydberg platforms become prime synthetic simulators to probe exciting properties
in quantum magnetism.
In chapter 6, we then report on the use of those platforms to tackle graph-related problems, notably
in the combinatorial optimisation paradigm to which countless industrial applications can be mapped.
We explain how graphs can be optimally mapped to atomic configurations and then present, and
implement on Fresnel, optimised protocols to solve the Maximum Independent Set problem on unit
disk instances.
After commenting on the current limitations and prospects of such quantum optimisation algorithms,
we switch in chapter 7 to methods useful in quantum graph machine learning. There, we describe how
a quantum feature map can be used, instead of classical kernels, for a binary classification task and
report the performance obtained when implementing it on Iroise, the Pasqal prototype, to classify a
dataset of graphs representing toxic or harmless molecules.
Finally, in chapter 8, we build a quantum-enhanced machine learning algorithm tackling a financial
risk management use case, utilising a random graph sampling method tailored to Rydberg platforms.
After showcasing the performance of implementing such algorithm on Iroise and comparing it to clas-
sical methods, we comment on the best use of quantum resources as building blocks in larger hybrid
classical-quantum algorithms. For current analog Rydberg atom-based quantum computers to become
viable solutions for industrial challenges, one imperatively need to take into account the underlying
technical constraints in the theoretical possibilities in order to successfully implement relevant algo-
rithms.
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1 - From isolated atoms to many qubits: control and in-
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In this chapter, we detail the inner workings of a neutral-atom quantum processor, from trap-
ping individual atom to engineering quantum dynamics in a many-body interacting system. Inside
a Quantum Processing Unit (QPU), many physical processes remain hidden to the user perspective.
Understanding the constraints imposed by each of them and precisely modelling their actions on the
quantum processing part is paramount for building directly implementable protocols as well as assess-
ing the extent to which hardware imperfections will impact high-level algorithmic results. Although
we intend to describe as precisely as possible the physical processes harnessed in such quantum pro-
cessors, more exhaustive descriptions of the experimental set-ups can be found in the following theses:
[3–5].
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(a) (b) (c)(c)

Figure 1.1: QPU based on neutral atom technology. (a) Outside of Fresnel, the neutral atom-
based quantum computer developped by Pasqal. This shiny massive black box weights around 1.5 ton
for dimensions of approximately 1.7 × 2 × 3m3. (b) The inside of Fresnel comprises 5 laser sources
and more than 5000 optical, electronic and mechanical components. In total, those elements only use
5kW of power, the equivalent of a few kettles. The low consumption of such a device puts it well
below current supercomputers (∼ MW) [6] or quantum computers with dilution fridges like Google’s
Sycamore chip (∼ tens of kW) [7]. All the quantum computation steps occur at room temperature in
the vacuum chamber (background). (c) Overview of the main hardware components of neutral-atom
based quantum processor.

1.1 - Manipulating neutral atoms with tweezers

Atoms serve as the foundational building blocks upon which qubits are encoded. Therefore, the
individual trapping of atoms is a prerequisite for this technology.

1.1.1 - Trapping atoms with light
Isolating an atom from a macroscopic piece of material involves several experimental steps which

could each be the subject of an entire chapter. The journey of the atom starts in a block of rubidium
(87Rb) metal, heated in either an effusive oven or glass cell, up to 60◦C to prepare an atomic vapour.
Only atoms collimated along a chosen axis can then exit. Depending on the set up, atoms are then
slowed/cooled down using either a Zeeman slower or a 2D Magnetic Optical Trap (MOT) [8], creating
an atomic beam with velocity ∼ 10 m/s. The atoms end up forming a dilute cloud confined inside a
vacuum chamber by a 3D MOT created from a combination of a quadrupole magnetic field and six
counter-propagating laser beams. At the center of the vacuum chamber, a 1 mm3 cloud of 106 cold
atoms is trapped at temperature of hundreds of µK. To isolate an atom, a far-off resonant laser beam
is tightly focused down to a waist ∼ 1 µm using a high-numerical aspherical lense located inside the
chamber. This effectively creates a trapping potential with Gaussian profile (see Eq. 1.1) with typical
depth ∼ kB×1 mK (∼ h×20 MHz), well above the MOT temperature. Atoms thus falls into this optical
tweezer and if undisturbed remain there due to a friction force provided by the MOT light. Moreover,
two atoms cannot coexist in one tweezer due to a collisional blockade mechanism [9]. Whenever a
tweezer becomes doubly occupied, the MOT light facilitates the transfer of the pair to a molecule in
an excited state with attractive potential. The two atoms are then accelerated towards each other
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with sufficient kinetic energy to expel them both from the tweezer. Overall, a trap has 50% of being
occupied by a single atom and 50% of being empty. An even more sophisticated technique, known
as gray molasses (in contrast to the previously mentioned red molasses), allows for an increase in the
filling probability up to 90% [10] by using the repulsive branch of the molecular potential, producing
enough kinetic energy for only one atom to be expelled from a trap. Another method consists in
shielding the atom once in a trap by modifying the intensity profile to prevent another atom to fall in.
Once in a tweezer, the single atom is confined in a µm region with temperature T ∼ 10µK and can be
further cooled down using techniques such as Raman sideband cooling [11]. Another possibility is to
adiabatically lower the trap depth [12] to slow the atom by a factor α1/4 at the expense of the atom
position dispersion increased by the inverse factor. The lifetime of an atom confined within a tweezer
is constrained by two primary factors: random collisions with residual atoms present in the vacuum
chamber and the heating induced by the tweezer light scattering off the atom off-resonantly. Mitigating
the impact of random collisions necessitates enhancing the vacuum environment within the enclosure,
through the implementation of sophisticated apparatus such as a cryostat for instance. Remarkable
progress has been made in extending atom lifetimes to unprecedented durations, exemplified by the
achievement of a record lifetime of 6000 seconds under optimised cryogenic conditions [13]. Addressing
the heating effect induced by off-resonant tweezer light involves periodic cooling of the trapped atoms.

0 20 40 60 80 100
Time ( s)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

pt
ur

e 
pr

ob
ab

ilit
y

T0 = 120.0 K
T1 = 7.5 K

Figure 1.2: Release-and-recapture experiment. The probability of recapturing an atom after
switching off the traps for a given duration is measured on the QPU (dots) before (yellow) and
after an adiabatic lowering (blue). The decrease is fitted (solid line) using a Monte Carlo sampling
of positions and velocities of the atoms at temperature T . Before the cooling, the temperature is
estimated to be at T0 ≈ 120 µK while after the cooling, it has been reduced to T1 ≈ 7.5 µK as the
atoms have been slowed down by a factor α1/4 ≈ 0.25.

There are several ways to generate a pattern of traps for capturing tens or hundreds of atoms.
The options include an array of microlenses with fixed geometry, each of them generating one trap,
[15], an Acousto Optic Deflector (AOD) to control multiple beams [16] or a Spatial Light Modulator
(SLM) which imprints a adjustable phase pattern to the tweezer beam [17]. With this holographic
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Box 1: Temperature in a tweezer

When the traps are turned off, the atoms are in free fall. At that moment, the distribution
of velocities v0(T ) can be approximated by a centered Gaussian distribution with standard
deviation σv(T ) =

√
kBT/m with kB = 1.38 × 10−23 J/K and m = 1.45 × 10−25 kg for

rubidium. In addition, random motion in the traps prior to the dynamics give rise to a thermal
spatial distribution r⃗0(T ). The latter can be modelled with good approximation by a Gaussian
distribution spread around the trap center with σx,y,z(T ) = σv(T )/ωx,y,z with ωx,y,z the angular
trap frequency along each confinement direction. We consider a trap with depth U0/h ≈
20 MHz, produced by a laser of wavelength λ = 850nm, with waist w(z) = w0

√
1 + z2/z2

r , w0 =
1 µm being the minimum waist and zr = πw2

0/λ, the Rayleigh range. The axial confinement
is usually much weaker than the radial confinement with ωxy/ωz =

√
2πw0/λ [14], leading to a

larger motional spread along z, i.e. σz(T )/σxy(T ) ≈ 5.2. In order to measure the temperature
of the atoms in the traps, the standard procedure, called release-and-recapture, consists in
releasing them by turning the traps off and recapturing them after a time t by turning the traps
back on. Varying t enables to reconstruct the loss of atoms as some of them fly too far from
the trap. The potential energy of the trap is given by

Ep(r⃗) = −U0

(
w0
w(z)

)2
exp

(
−2x

2 + y2

w(z)2

)
(1.1)

while the kinetic energy of the atom is Ec(t) = mṙ(t)2/2 with

r⃗(t) = r⃗0(T ) + v⃗0(T )t (1.2)

and we consider an atom recaptured after a time t if Ec(t) +Ep(r⃗(t)) < 0. This model enables
to approximate the behaviour of atoms leaving the traps, as shown in Fig. 1.2. It also enables
to make the assumption that the atom losses do not decrease significantly for dynamics below
10 µs. The thermal motion related effects happening during the dynamics are described in
Box. 10

method, creating multiple traps in a specific geometric configuration requires computing on-the-fly
the inverse Fourier transform of the 2D spatial pattern desired in the image plane. The beam acquires
the phase pattern by reflecting off of the SLM and consequently diffracting after the lens into many
spots, creating layouts of arbitrary traps in 2D and even 3D [18]. The number of traps achievable is
constrained by the available laser power (104 with current lasers [19]) while the diffraction efficiency
limits the total size of the array. The minimal distance between tweezers is constrained by limitations
in optical system design, such as diffraction effect and aberrations. The resolution of the microscope
objective focusing the light puts a constraint on the theoretical minimum distance between traps. At
NA=0.5 and trapping laser wavelength of 850 nm, traps can not be closer than 2 µm and optical
aberrations often increases this distance to 4 µm. Overall, achievable inter atomic distances range
from few µm to close to 100 µm, still limited by the field of view of the optics. In order to reduce the
power needed to produce each trap, one can either start with an even colder cloud of atoms, focus
the tweezer light to an even narrower spot using a higher Numerical Aperture (NA) or go closer to
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resonance, at the expense of more heating. After this loading stage, each of the Nt traps is randomly
filled with success probability pfill. The number of filled traps in an array thus follows a binomial
law B(Nt, pfill), creating random initial configurations of, on average, N = pfillNt atoms. While this
may be sufficient for some implementations (see Sec. 8.3), many problems require a specific spatial
configuration of atoms and thus a way to rearrange them.

1.1.2 - Imaging the atoms
Once a trap pattern has been loaded, a first fluorescence image of the atoms is taken. The scattered

light is collected by the same lens which creates the tweezers while a dichroic mirror separates it
from the tweezer beam. An electron-multiplying charge-coupled-device (EMCCD) camera collects
the photons with a typical integration time of 20ms and two levels of fluorescence can usually be
separated by an adjustable threshold as shown in Fig. 1.3. The photon distributions are fitted by two
Gaussians whose intersection sets the threshold. Below the threshold, the photons are assumed to
be collected from background scatter or camera noise, characterising an empty tweezer while above
it, they indicates the presence of a trapped atom. This image will serve as initial condition for the
rearrangement process described below.

1.1.3 - Rearranging atoms in a register

Second imagingRearrangementFirst imagingTweezer loading

Empty → filled

Filled→ empty

50%
filled

50%
empty

EMCCD fluorescence value

Desired register

Co
un

ts Threshold

∼ 100 ms ∼ 25 ms

First 
image → →

Moves
𝑖 → 𝑗

Moving 
tweezer Assembled 

atomic register

∼ 25 ms∼ 100 ms

Figure 1.3: Steps involved in an atomic register arrangement. During the tweezer loading step,
around half of the traps are randomly filled by an atom. A first fluorescence image enables to get the
initial configuration of atoms using a predetermined measurement threshold distinguishing filled from
empty traps. This initial image is fed to a rearrangement algorithm, computing moves carried out by
a moveable tweezer, placing atoms in the desired configuration one at a time. A second image ensures
the correct filling of the assembled register.

To initialise an atomic array consisting of N atoms at predetermined positions, two key steps
are necessary. Firstly, creating a trap pattern entails arranging N traps at desired locations, along
with approximately N(1/pfill − 1) extra traps positioned arbitrarily. Secondly, a method is required
to transport atoms from the arbitrary traps in which they are initially loaded to the traps that need
filling. This can be achieved using a programmable moving tweezer driven by two orthogonal AODs
which can capture, move at 100nm/µs and release one atom at a time with efficiency pmove = 99%.
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With the first image giving the random initial filling, an algorithm computes set of moves on the
fly to reach the assembled atomic register. The ordered set is usually optimised both in terms of
total number of moves and travelling distance, with for instance the Linear Sum Assignment Problem
solver [20] or the Gerchberg-Saxton algorithm [21]. To reduce the duration of the active feedback,
the transfer of array pictures and the generation of the moving tweezer signals can be taken care
of by dedicated Field-Programmable Gate Arrays (FPGA) while the algorithm runs on an external
Graphics Processing Unit (GPU). Thus a rearrangement step with a unique moving tweezer usually
takes ∼ 100ms for hundreds of atoms [22]. Other algorithms [23, 24] allows only one move per atom
to reduce the risk of losing it when it is captured or released or harness parallel control operations
to speed the rearrangement. A second fluorescence image is usually taken to ensure a perfectly filled
array or at least to post select on experiments with no defects. However, as the arrangement efficiency
scales with pNmove, larger arrays might require several iterations of this procedure (imaging followed by
rearrangement) to reach perfect filling with the initial number of atoms needed also increasing or a
way to continuously load the traps. Those methods have enabled the arrangement of arrays of up to
N = 324 atoms [25] and even more recently of N = 1225 [26]. Other techniques include dynamically
changing the SLM pattern [27] with the atoms already trapped, or using a 1D array of moving tweezers
controlled by the same two AODs to speed movements when possible [28, 29].

1.2 - Controlling qubits with lasers

Individually trapped atoms constitute the building block of the quantum processor as one can
encode a qubit in their internal degree of freedom.

1.2.1 - An atom is a two-level system
Choosing which two levels to label as the logical qubit states |0⟩ and |1⟩ depends both on which

interesting properties they may have, such as long lifetime or strong interactions, but also on the
capacity of addressing the transition between the two. Coupling two internal states can be done using
a laser, characterised by the amplitude e(t), frequency ω(t) and phase ϕ(t) of its electric field, to the
atomic transition involved with frequency E1 −E0. The resulting Hamiltonian of this two-level system
in the rotating wave approximation – neglecting fast oscillating terms, valid when ω(t) ∼ (E1 −E0)/ℏ
– is

Ĥc(t)/ℏ = Ω(t)
(
eiϕ(t) |0⟩ ⟨1| + e−iϕ(t) |1⟩ ⟨0|

)
− δ(t)

2 (|1⟩ ⟨1| − |0⟩ ⟨0|)

= Ω(t)
2 (cosϕ(t)σ̂x − sinϕ(t)σ̂y) − δ(t)

2 σ̂z,

(1.3)

with σ̂α the Pauli matrices (α = x, y, z). The control fields are the Rabi frequency Ω(t) ∝ e(t), the
detuning δ(t) = ω(t) − (E1 − E0)/ℏ and the phase ϕ(t) and can thus be varied in time by changing
the intensity and frequency of the laser field. These controls are not strictly speaking independent,
with for instance the relation δ(t) = dϕ

dt making it not physically possible to change both δ and ϕ

independently at the same time. We will refer in the following to pulses which are defined as a
modulation of amplitude Ω and detuning δ (or sometimes ϕ) during a given time tpulse.

Ĥc enables to control the state of a qubit, usually represented on the Bloch sphere, by sending
pulses to it. In the Bloch sphere representation, for each instant t of a pulse, this Hamiltonian
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Box 2: Modulating the control fields

The amplitude, frequency, and phase profiles desired for the control field are generated using an
Arbitrary Wave Generator (AWG) and are applied to the laser field using two kinds of shaping
devices: the Acousto- and Electro- Optic Modulators (AOM/EOM).

• an EOM employs the electro-optic effect occurring when an electric field is applied to a
crystal, causing a change in its optical properties. Effectively it can be used as an on/off
switch for the amplitude with rise time τEOM ∼ 10 ns. This enables to switch Ω between
Ωoff = 0 and Ωon while fixing a constant value of δ, engineering train of square pulses
with the same amplitude.

• an AOM employs the acousto-optic effect, occurring when an acoustic wave interacts with
a light wave inside a medium. By varying the frequency and intensity of the acoustic wave,
the light wave direction and frequency can be modulated with typically longer rise time
τAOM ∼ 100 ns. This enables to continuously change in time the value of the control
fields (Ω, δ → Ω(t), δ(t)).

Those shaping devices also act as low pass filters due to their finite rise time/bandwidth and the
related distortions can be modelled to first approximation by convolving (here denoted by ∗)
with the filter response function :

Ω̃(t) = Ω(t) ∗ [
√
πf2

c e
−π2f2

c t
2 ] and fc = B/ ln

√
2 = 0.48/(τEOM/AOM ln

√
2) (1.4)

where f̃(t) stands for the Fourier transform and fc the modulation bandwidth. The finite
bandwidth of the shaping devices gives a lower bound Tmin on the duration of a pulse and on
the minimum delay between two pulses to keep them well separated as shown in Fig. 1.4.

describes a rotation of the state vector around the axis Ω(t) = (Ω(t) cosϕ(t),−Ω(t) sinϕ(t),−δ(t))
with angular velocity Ωeff(t) = |Ω(t)| =

√
Ω(t)2 + δ(t)2. For instance, rotating a qubit state from |0⟩

to |+⟩ = (|0⟩ + |1⟩)/
√

2 amounts to a π/2-rotation around the y-axis and can be achieved with Ω
constant, δ = 0 ϕ = 0 and tpulse = π/(2Ω). More generally, at resonance and fixed ϕ, we denote a
rotation of angle θ =

∫ tpulse
0 Ω(t)dt around Ω(t) = Ω(t)e(ϕ) with e(ϕ) = (cosϕ,− sinϕ, 0) by Re(ϕ)(θ)

which can be decomposed as a rotation around the Bloch sphere’s x-axis, conjugated by z-rotations

Re(ϕ)(θ) = Rz(−ϕ)Rx(θ)Rz(ϕ). (1.5)

Adding another z-rotation, virtually applied through a shift in the phase reference frame [30], con-
structs an arbitrary unitary operator R(γ, θ, ϕ) = Rz(γ)Rx(θ)Rz(ϕ) which can drive a qubit from an
arbitrat initial state to anywhere on the Bloch sphere. Thus with resonant pulses and phase reference
frame changes, the state of a single qubit can be fully controlled.
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Figure 1.4: Input vs output controls. The programmed shape of Ω(t) (solid lines) is distorted by
the finite bandwidth of the shaping device (left-EOM, right-AOM). The output shape (filled) can be
measured with a photodiode and the rise time can be approximated : τEOM ≈ 20ns and τAOM ≈ 60 ns

1.2.2 - Approximating a two-photon transition
While modern lasers are capable of emitting light across a broad spectrum of frequencies, there are

still limitations to the range of frequencies they can cover. Some transitions in the energy spectrum
of an atom occur at frequencies outside of this range and coupling indirectly two levels can require
more complex protocols. For instance, the energy transition used below in Sec. 1.3.3 has a wavelength
of 297 nm, making it hard, although possible, to address it with a single laser. However, with a
two-photon scheme, i.e. using two lasers labelled "red" and "blue" and an intermediate state |e⟩ as
a stepping stool, one can excite an atom from |0⟩ to |1⟩. The Hamiltonian of the three-level system
reads

Ĥc(t)/ℏ = 1
2(Ωb(t)eiϕb(t) |e⟩⟨0| + h.c.) + 1

2(Ωr(t)eiϕr(t) |1⟩⟨e| + h.c.) − δb(t) |e⟩⟨e| − δr(t) |1⟩⟨1| . (1.6)

Dealing with such a system is usually achieved by approximating it by an effective two-level system
accounting for the coupling between |0⟩ and |1⟩. The approximation becomes valid if δb ≫ Ωr/b and
the Hamiltonian in Eq. 1.3 is retrieved with the following effective controls

Ω(t) = Ωr(t)Ωb(t)
2δb

δ(t) = δr(t) + Ωb(t)2 − Ωr(t)2

4δb
ϕ(t) = ϕb(t) − ϕr(t).

(1.7)

The challenges associated with this technique are twofold. First, the two lasers have to be locked in
frequency, in order to be able to coherently drive the transition with a stable phase difference. Laser
phase noise (see Box. 3) can thus decrease the driving efficiency. Second, |e⟩ lifetime being usually
shorter than the effective pulse duration, part of the population brought in |e⟩ during the dynamics
actually leaks back to |0⟩ instead of occupying |1⟩ (see Box. 6). This can be prevented by working
far-detuned from the intermediate state (i.e. δb ≫ Ωr/b), effectively populating |e⟩ with negligible
amplitude and limiting the decoherence. Thus achieving Rx(π) only requires to fine-tune the red and
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blue laser control parameters to work at resonance and ϕ = 0. Another method, called STImulated
Raman Adiabatic Passage (STIRAP), induces a population transfer from |0⟩ to |1⟩ without populating
|e⟩, while working at δb = 0 and is described in Box. 14.

Box 3: Laser phase noise

In theory, lasers used in this work are considered as perfectly monochromatic, emitting at one
fixed frequency, and with perfectly stable phase. However, in practice, they exhibit a small
but finite range of emission, making them not monochromatic, and thus subject to phase noise,
resulting in random fluctuations in their phase over time. For a two-photon Rydberg excitation
scheme, Ω(t) = |Ω(t)|eiϕ(t) and shot-to-shot variations of ϕ(t) = ϕr(t) − ϕb(t) can lead to loss
of contrast when averaging over many shots. The time-dependent phase can be described by
random processes fluctuating in time whose behaviours are derived from the laser power spectral
density Sϕ(f) [Fig. 1.5(a)]. The frequency stabilisation of a laser can be done by locking it to
an ultra-stable cavity at frequency νcav. Variations from the locked frequency are handled using
an active feedback loop operating on the Pound-Drever-Hall (PDH) error signal [31]. This error
signal obtained by varying the laser frequency can be characterised by its slope K and one can
experimentally measure this signal power spectrum density SV (f). The phase spectrum is thus
derived with the equation

Sϕ(f) = Sν(f)/f2 = SV (f) × 1 + 4(f/νcav)2

Kf2 . (1.8)

and realisations of the phase [Fig. 1.5(b)] read

ϕr/b(t) =
∑
f

df 2
√
Sϕr/b(f)cos(2πft+ rf ) (1.9)

with rf ∼ U([0, 2π]) [32].

1.2.3 - Constraints on control fields
Several constraints on the control fields directly arises from the hardware limitations. The finite

power output of lasers puts an upper bound on achievable Ωmax when coupling it with a specific
transition. As already mentioned in Box. 2, the finite modulation bandwidth of the EOM/AOM
devices alters the temporal shape of Ω(t)/δ(t) and limits how fast ϕ can be changed in between
pulses. In addition, AOMs have a restricted frequency range around which their diffraction efficiency
remains reasonable, limiting the absolute value of detuning achievable by |δmax|. Typical values for
the lasers used in this thesis are Ωmax

b /2π ≈ 80 MHz, Ωmax
r /2π ≈ 35 MHz, |δmax

b |/2π ≈ 700 MHz
and |δmax

r |/2π ≈ 10 MHz. Thus an effective laser coupling with those parameters can not drive an
atomic system faster than Ωmax/2π = 2 MHz. This value can be increased either by switching to
more powerful lasers, increasing Ωmax

r/b , or by reducing δb at the expense of an increased spontaneous
emission effect from the intermediate state.

The precision at which a control operation such as a π/2 rotation can be achieved is not only
limited by the finite resolution of the calibration of control parameters. Fluctuations in the beam-
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Figure 1.5: Modelling laser phase noise. (left) Experimentally measured power spectral density
Sν(f) of the frequency noise of a 1013 nm laser (red) and a 420 nm laser (blue). (b) Instances of
time-dependent random processes ϕr/b(t) (red/blue) consistent with previous spectrums. The black
line is the sum of the two coloured random processes, offset to have ϕ(t = 0) = 0.

delivery system, such as optical fiber, can alter the value of the Rabi frequency from one shot to
another. Effectively, Ω will follow a Gaussian distribution centred around its calibrated value and
spread with standard deviation σΩ. This deviation is typically of the order of a few percent with a
lower bound of 1% achieved with feedback loops. In the case of two-photon transitions, due to light
shift terms [see Eq.(1.7)], this can also induce shot-to-shot fluctuations in δ.

In addition to constraints on maximum values, the resolution and stability of those controls is
thus limited by several physical phenomena, including the one described in Box. 3. This leads to
either slow drifts of parameters over durations longer than a typical experimental timescale, or to
fast fluctuations in between repetitions of an experiment. Whereas in the first case, monitoring the
controls can enable automatic recalibration using feedback loops, in the second, faster case, parameter
values can be recorded and the results of experiments post-selected when a fluctuation threshold is
exceeded, to the detriment of requiring more statistics.

Although precisely controlling isolated qubits already constitutes a scientific feat, engineering
many-body dynamics requires a way to make those qubits interact with one another.

1.3 - Generating interactions between qubits

In a trapped array, atoms are seemingly isolated from one another. One solution to make them
interact at those large scales consists in promoting them to Rydberg states.
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Figure 1.6: Heatmaps of Rabi frequency Ωr/b(r). The Rabi frequency at each site of a trap layout
is monitored for both blue (left) and red (right) lasers of a two-photon excitation scheme. Despite
waists wr = 300 ± 10 µm and wb = 240 ± 10 µm, fluctuations up to 2%, due to optical aberrations,
can be observed below 20 µm of distance, larger than those expected from a typical gaussian profile.

1.3.1 - Rydberg states and their properties
Atomic species typically used in neutral atom platforms such as rubidium or cesium share the

property of having their valence orbital occupied by only one electron (or two in the case of strontium).
Through a multi-photon excitation scheme, this electron can be excited to states characterised by a
high principal quantum number n, effectively increasing the radius ⟨rn⟩ of its orbit around the nucleus
by several order of magnitude. Such highly excited electronic states are called Rydberg states and
most of their properties can be characterised by just a few quantum numbers as explained in Box. 5.

Numerous Rydberg states properties scale with the effective quantum number n∗ = n− δ(n,L, J),
with δ a phenomenological quantum defect, introduced to account for the difference with the hydrogen
atom. For rubidium, δ mostly depends on L with δ(0, 1, 2, 3) ≈ 3.13, 2.64, 1.35, 0.016 and δ(L > 3) = 0.
These Rydberg atoms can reach notable sizes as their radius scales with n∗2, extending into the
micrometer scale at typical values n ∼ 50 − 100. Moreover, these states remain quite stable, with
lifetimes τn ∼ n∗3 extending to hundreds of µs, many orders of magnitude beyond the timescale of an
excitation scheme.

The most compelling attribute of Rydberg atoms lies in their high polarisability due to the far
orbiting electronic cloud. Nearby atoms or molecules can induce temporary fluctuations in the electron
density of this cloud, mixing orbitals and creating charge asymmetries, forming an induced dipole
moment in the Rydberg atom. The scalar polarisability α(0)

n scales as n∗7, making high-lying Rydberg
states more prone to significant energy shifts in the presence of undesired external electric fields.
Choosing a Rydberg state in a experiment thus involves balancing Rydberg decay, introduced in
Box. 6, and sensitivity to a noisy environment, both limiting the coherence time.

In this thesis we will use the following notation for states:
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Box 4: Spatial dependency of laser parameters

Lasers generally exhibit a Gaussian intensity profile: the electric field they are applying to the
atoms declines with distance from the focus point. For a circular Gaussian beam of waist w,
the electric field can be approximated by:

e ∝ w0
w(z) exp

(
−x2 + y2

w(z)2

)
, (1.10)

with w(z) = w0
√

1 + z2

z2
r

and zr, the Rayleigh range. At the focal point, i.e. z = 0, the spatial
inhomogeneity of Ω reads:

Ω(r) ∝ exp
(

− r2

w2

)
. (1.11)

Thus, the atoms sit on a spatial gradient of Rabi frequency (and light-shift) and their motion
(see Box. 10) can alter the control parameters applied to them. In a two-photon scheme, if both
excitation lasers are aligned then the effective waist of Ωeff is obtained from the red/blue waists
w = wrwb/

√
w2
r + w2

b and the resulting variation in light shifts can be derived from Eq. 1.7.
While this Gaussian profile modelling can be a good approximation when working with large
systems, i.e. having distance between atoms of the order of w, it will exhibit a flat behaviour
for small systems. However, as conveyed by experimental measurements displayed in Fig. 1.6,
spatial fluctuations of the order of % can still occur due to ghost reflections of the beam. A
possibility to model those effects is to randomly draw a value of Ω(ri) at each shot and for each
qubit.

• |g⟩ = |5S1/2, F = 2,mF = 2⟩

• |e⟩ = |6P3/2, F = 3,mF = 3⟩

• |nS⟩ = |nS1/2,mJ = 1/2⟩

• |nP ⟩ = |nP1/2,mJ = −1/2⟩

• |D⟩ = |59D3/2,mJ = −1/2⟩

Considering two atoms separated by R⃗ = Rn⃗ not coupled initially. The energy levels of the system
Hamiltonian Ĥ0 can be grouped by multiplicity such that

Ĥ0 |i, α⟩ = Eiα |i, α⟩ and |Eiα − Ejα| ≪ |Eiα − Ejβ|, (1.12)

where i, j identifies different levels of the same manifold α. In our case, |i, α⟩ is a Rydberg pair state
and a manifold α includes pair states not too distant in energy. When both excited to Rydberg states,
the atoms experience a dipole-dipole interaction whose operator reads

V̂dd(R) = 1
4πϵ0

ˆ⃗
d1 · ˆ⃗

d2 − 3
(

ˆ⃗
d1 · n⃗

)(
ˆ⃗
d2 · n⃗

)
R3 (1.13)

where ˆ⃗
d = eˆ⃗r is the outer shell electron dipole moment, with e = −1.60 × 10−19C and r⃗, distance from

the reference point, usually the nucleus centre, to the electron. The interaction terms between states
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Quantity Symbol Unit Scaling Values (n ∼ 50)
Energy En GHz n∗−2 ∼ 103

Energy splitting ∆En GHz n∗−3 50
Lifetime τn µs n∗3 ∼ 102

Orbit radius ⟨rn⟩ a0 n∗2 ∼ 103

Dipole moment S ↔ P d C·nm n∗2 e× 100
Dipole-dipole coeff. C3 ∝ Vdd ∝ d2 hMHz·µm3 n∗4 See 1.3.2

Van der Waals coeff. C6 ∝ V 2
dd/∆En hMHz·µm6 n∗11 See 1.3.3

Ionization field F ion
n V/cm n∗−4 50

Scalar polarizability α(0)
n MHz/(V/cm)2 n∗7 50

Table 1.1: Scaling of various quantities with the effective quantum number n∗ of a Rydberg
state [33].

|i⟩ and |j⟩ of the same manifold α are obtained by applying perturbation theory to Ĥ0 + V̂dd(R) with

⟨i, α| Ĥ0 + V̂dd(R) |j, α⟩ = Eiαδij

+ ⟨i, α| V̂dd(R) |j, α⟩

+ 1
2
∑
k,γ ̸=α

⟨i, α| V̂dd(R) |k, γ⟩ ⟨k, γ| V̂dd(R) |j, α⟩
[

1
Eiα − Ek,γ

+ 1
Ejα − Ek,γ

]
+ . . .

(1.14)
The dipole-dipole coupling induces energy shifts in the Rydberg spectrum of the coupled pair, leading
to first- and second-order interaction terms which intensities are derived in Box. 7. The second term
represents the direct coupling between levels, from which arises the ∝ 1/R3 spin flip coefficient while
the third represents the indirect coupling between these two levels via all the k levels of the other
multiplicities γ, from which arise the ∝ 1/R6 coefficients. Depending on the parity of the pair states
involved, some terms can be cancelled leading to two distinct behaviours as explained in the next
section.

1.3.2 - XY model from Rydberg-Rydberg encoding
First-order terms in Eq. 1.14 can give rise for specific choices of Rydberg pair states, such as states

with consecutive n and opposite parity of L, to strong dipolar interaction terms scaling as n4 and
1/R3. In the following, the qubit states are |0⟩ = |nS⟩ and |1⟩ = |nP ⟩ and the transition between the
two can be addressed with coupling strength ΩMW using a microwave antenna operating at GHz scale
(see Box. 8). The interactions of an array of atoms at position r can thus be mapped to the spin-1/2
XY/R3 model with Hamiltonian

ĤXY(r) = 1
2
∑
i<j

Udd(r⃗i − r⃗j ;n)
(
σ̂xi σ̂

x
j + σ̂yi σ̂

y
j

)
(1.19)

where the interaction term reads

Udd(R⃗;n) = C3(n)/ℏ
R3 × (1 − 3 cos2 θ)/2 (1.20)
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Box 5: Quantum numbers characterising Rydberg states

Quantum states are usually denoted by a set of quantum numbers describing the properties of
the quantum particles involved, such as the electron in the case of Rydberg states. A Rydberg
state reads |nLJ ,mJ⟩ with

• n, the principal quantum number describing the energy level of the outermost electron. n
takes on very large values in Rydberg states, often ranging from tens to a hundred, which
indicates that the electron is highly excited and occupies an orbital with an extended
radial distribution.

• L, the orbital angular momentum quantum number describing the shape of the electron
orbital with L < n. While Rydberg states with low L such as S-states (L = 0) or P-states
(L = 1) are commonly used due to the ease of excitation with lasers, circular Rydberg
states with highest possible value of L at a given n (L = n − 1) exhibit interaction
strengths and lifetimes orders of magnitude higher [34].

• J , the electron total angular momentum quantum number, i.e. J = L ± 1/2, which
incorporates the spin angular momentum of the electron.

In addition, another interesting number is F , the atom total angular momentum quantum
number, i.e. F = J + I with I the nuclear spin quantum number (I = 3/2 for Rb). It arises in
the context of hyperfine structure of atomic energy levels, particularly in the study of atomic
spectra in the presence of magnetic fields. However in Rydberg states, this coupling between J
and I vanishes and F is no longer used.
To each angular momentum quantum number i = L, S, J, F is associated a magnetic quantum
number mi describing the orientation of the angular momentum in space, with |mi| ≤ i.

with C3(n) the dipole-dipole interaction constant for nS − nP pair states and C3(n) ∝∼ n∗4, C3(n =
60)/ℏ = 2π × 3.0 GHz·µm3, the pair distance R = ||R⃗|| ∼ 10µm and θ the angle between R⃗ and the
quantisation axis set by the magnetic field B⃗. As the angular dependency indicates, the interaction
strength can thus be engineered to be anisotropic by setting B⃗ in the atomic plane as in [36]. Each
term in the sum corresponds to a coherent exchange between the spin states, transforming the pair
state |0i1j⟩ into |1i0j⟩ while conserving the total number of excitations in the system. A typical value
of intensity for this interaction (for θ = 0) is Udd(12.5 µm; 60) ≈ 2π×1 MHz. This flip-flop interaction
[Fig. 1.7(a)] enables exploring topological phases of matter [36] and frustration in quantum magnets
[37] as studied in chapter 5 or investigating excitation transport [38] within contexts as intricate as the
photosynthesis process for instance. It has indeed been proposed that the migration of energy towards
light-harvesting complexes could be steered by such XY-like quantum dynamics [39]. More recently,
the experimental realisation of a discrete quantum random walk with atoms on optical lattices [40],
and promises of exponential speed up with their continuous counterpart [41] have highlighted the
potential of using neutral atom platforms to study the continuous XY model.
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Box 6: Finite lifetime and decay rate

The spectral linewidth of a state characterises the range of frequencies over which it can absorb
or emit radiation. The natural linewidth is directly linked to the spontaneous decay rate, i.e.
the probability per unit time that an atom in this state will undergo a transition to a lower
energy state by emitting a photon. For instance, the state |e⟩ will naturally decay to |g⟩ with
rate Γe/3 (Γe/2π = 1.41 MHz). However, other decay channels can lead to populating other
states with rate 2Γe/3. The finite spectral linewidth of the lasers used in the excitation scheme
can also broaden the natural linewidth of a state and affect its decay rate. In the case of Eq. 1.6,
the intermediate state decay rate is scaled by (Ω2

r + Ω2
b)/(4δ2

b ).
Although highly stable, Rydberg states also exhibit finite lifetimes which depends both on
quantum numbers and surrounding environment temperature Tr due to

• spontaneous emission towards lower energy states such as |g⟩. The finite lifetime
of the Rydberg state τn(0K) ∝ n∗3 with corresponding decay rate τn(0K)−1 where
τ60S(P )(0K) ≈ 230.3(464.8)µs.

• blackbody radiation happening at finite temperature. Since all objects emit thermal
radiation according to their temperature, this radiation can induce transitions between
Rydberg states with corresponding rate τn(Tr)−1 − τn(0K)−1 with τ60S(P )(Tr = 300K) =
100.6(134.6)µs.

This finite Rydberg lifetime puts an upper bound on the duration of the quantum processing
part and thus on the number and duration of protocols applied to atoms in Rydberg state before
they start to significantly decay. It can be linked in an effective model to the relaxation time
T1.

1.3.3 - Ising model from ground-Rydberg encoding
For states with same parity, the first-order terms in Eq. 1.16 vanish, and another kind of interaction

arises: the van der Waals (vdW) interaction. In the following, the qubit states are |0⟩ = |g⟩, belonging
to the ground state manifold of the rubidium atom, and |1⟩ = |nS⟩. Addressing the transition between
the two requires a two-photon excitation scheme as shown in Fig. 1.7(b) which can be modelled by an
effective laser coupling as explained in section 1.2.2. The interactions of an array of atoms at position
r can thus be mapped to the spin-1/2 Ising 1/R6 model with Hamiltonian

ĤIsing(r) =
∑
i<j

UvdW (r⃗i − r⃗j ;n)n̂in̂j (1.21)

where the interaction term reads

UvdW (R⃗;n) = C6(n)/ℏ
R6 u(θ) (1.22)

with n̂i = (Î + σ̂zi )/2 = |1⟩⟨1|i being the projector of qubit i to |1⟩. C6(n) is the vdW interaction
constant for nS − nS pair states, with C6(n) ∝∼ n∗11, C6(n = 60)/ℏ = 2π × 137.8 GHz·µm6. The
pair distance R = ||R⃗|| ∼ 10µm and θ is the angle between R⃗ and the quantisation axis set by
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Box 7: Derivation of Vdd(R)

A Rydberg state typically writes |r⟩ = |nLJ ,mJ⟩ with quantum numbers described in Box. 5.
Let |r⟩, |r′⟩, |r′′⟩ and |r′′′⟩ be four Rydberg states. The coupling between pair states |r, r′′⟩ and
|r′, r′′′⟩ is given by:

〈
r, r′′∣∣ V̂dd(R)

∣∣r′, r′′′〉 = 1
4πϵ0

d⃗rr′′ · d⃗r′r′′′ − 3
(
d⃗rr′′ · n⃗

) (
d⃗r′r′′′ · n⃗

)
R3 (1.15)

This expression can be written as :

Vdd(R) = 1
4πϵ0R3 ||d⃗rr′′ ||||d⃗r′r′′′ ||


A0(θ)

(
Υ−1

1 Υ+1
1 + Υ+1

1 Υ−1
1 + 2Υ0

1Υ0
1

)
+A1(θ)

(
Υ+1

1 Υ0
1 − Υ−1

1 Υ0
1 + Υ0

1Υ+1
1 − Υ0

1Υ−1
1

)
+A2(θ)

(
Υ+1

1 Υ+1
1 + Υ−1

1 Υ−1
1

)
 (1.16)

||d⃗rr′′ || is the radial part of the dipole matrix element between |r⟩ and |r′′⟩ and can be calculated
using the Pairinteraction Python package [35]. θ is the angle between n⃗ and the quantisation
axis set by the global magnetic field. Υk

1 are the first order complex spherical harmonics. Their
values are computed using the magnetic quantum numbers mJ and the following rule :

Υka
1 Υkb

1 ̸= 0 iif m′′
J −mJ = ka

m′′′
J −m′

J = kb
(1.17)

The values of Υk
i are given in the spherical harmonics table and the angular dependencies

(ϕ = 0) are gathered inside

A0(θ) = (1 − 3 cos2 θ)/2, A1(θ) = 3 cos θ sin θ/
√

2 and A2(θ) = −3 sin2 θ/2 (1.18)

Note that each term Ai(θ) couples pair states |ra⟩ ↔ |rb⟩ where the total magnetic quantum
number M = ma

J +mb
J changes by ∆M = ±i.

the magnetic field B⃗. While the vdW interaction also features anisotropic behaviour with u(θ), the
variations remain small for nS states and more pronounced for nP or nD states. A typical value
of intensity at θ = 0 (π/2) for this interaction is UvdW (5µm; 60) = 2π × 8.8 (8.96) MHz. Using
the scaling law UvdW (R;n) ∝∼ n11R−6 it is possible to approximately extrapolate to other principal
quantum numbers or distances. The vdW interaction strength can thus be finely tuned over a broad
range – from a few kHz to hundreds of MHz – by modulating inter atomic distances and selectively
utilising Rydberg states.

The pairwise vdW interaction terms in Eq. 1.21 actually engineer the Rydberg blockade effect, shift-
ing the energy of doubly excited states |1⟩i |1⟩j . The simultaneous excitation with effective amplitude
Ωeff =

√
Ω2 + δ2 of pairs of atoms closer than the Rydberg blockade radius rb = (C6(n)/ℏΩeff)1/6 is

thus prevented when Ω ≪ UvdW (R;n) even at resonance (i.e. when δ = 0). In the meantime, interac-
tions terms for atoms separated by far more than rb can be neglected due to the sharp decay of UvdW .

https://mathworld.wolfram.com/SphericalHarmonic.html
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Box 8: Microwave manipulation

Transitions within the Rydberg manifold commonly occur at frequencies on the order of tens
of GHz, as indicated by the energy differences ∆En in Table 1.1. Instead of lasers, these
transitions are often driven using microwave (MW) radiation. The MW signal is typically
produced by mixing a microwave oscillator output by a synthesizer with a radio frequency
(RF) signal generated by an AWG. This enables to imprint a temporal shape in the MW
signal to create a control pulse ΩMW(t), δMW(t), ϕMW(t). This pulse is radiated by a dipole
antenna emitting outside the vacuum chamber and thus globally addresses the atoms with Rabi
frequencies up to Ωmax

MW/2π = 20 MHz.

Rydberg blockade
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Figure 1.7: Encoding qubits and effective models. (a) The Rydberg-Rydberg encoding (using
|0⟩ = |nS⟩ and |1⟩ = |nP ⟩) gives rise to the Rydberg flip-flop effect (from XY model) which couples
states within same magnetisation sector ⟨n̂⟩. (b) The ground-Rydberg encoding (using |0⟩ = |g⟩ and
|1⟩ = |nS⟩) gives rise to the shift in energy of the doubly excited state which leads to the Rydberg
blockade effect. The two-photon process can be approximated by a two-level system when δb ≫ Ωr/b.

For a blockaded pair initialised in |00⟩, resonantly addressing the 0 − 1 transition (i.e. with δ = 0)
drives the system to the so called W -state |W2⟩ = (|01⟩ + |10⟩)/

√
2 with a coupling enhanced to

√
2Ω

as conveyed by Fig. 1.7(b). Similarly, for an N -atom blockaded ensemble, states with more than one
excitation and especially |1⟩⊗N , become non-resonant and coupling to |WN ⟩ = ∑

i |0 · · · 1i · · · 0⟩ /
√
N

is enhanced by a factor
√
N . This blockade effect can be neutralised for specific values of detuning,

when for example a pair of qubits interacting with strength U is subjected to a detuning δ ≈ U/2. In
this scenario, the doubly excited state energy aligns closely with the ground state energy of the qubit
pair, presenting an energy of −2δ + U ≈ 0, while the singly excited states experience a shift of −δ.
This facilitation mechanism may lead to undesired transfers of small population between states |00⟩
and |11⟩, effectively overriding the blockade.

While the Ising model has been extensively studied over the last decades, the understanding of
numerous condensed matter phenomena remains challenging, even within this framework. These
include the behaviour of geometrically-frustrated arrays [42], quench dynamics of many-body systems
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Box 9: vdW terms in XY model

In the Rydberg-Rydberg encoding, the dipole-dipole interaction terms prevail during the dy-
namics at distances such that

d ≫
(
C6(n)
C3(n)

)1/3
≈

n=60
3.6 µm. (1.23)

However, at those distances the van der Waals interaction between similar Rydberg states can
still alter the many-body dynamics in the XY model. It can be incorporated by adding to
ĤXY(r) the following Hamiltonian

ĤvdW (r) =
∑
i<j

1
||r⃗i − r⃗j ||6

[
C6(n)u(θ)(1 − n̂i)(1 − n̂j) + C̃6(n)ũ(θ)n̂in̂j

]
, (1.24)

where C̃6(n) the van der Waals interaction constant for nP −nP pair states. A typical value of
C̃6(n)ũ(θ) for n = 60 and θ = 0(π/2) is −217.1(−84.8) MHz·µm6 showing that the anisotropic
behaviour is more significant for nP states.

[43] and many-body localisation on disordered lattices [44]. The complexity emerging from these
problems and their simulations motivate the use of Rydberg platforms as quantum simulators as
conveyed by examples of chapter 4. Moreover, as explained in chapter 6, some classes of combinatorial
optimisation problems can also be tackled with such devices, by mapping them to the Ising model.

1.4 - Quantum computing with Rydberg atoms

1.4.1 - State initialisation
A crucial step in the quantum computation paradigm is the ability to initialise a set of N qubits

to the simple state |0⟩⊗N [45]. In the MOT, the rubidium atoms occupy their fundamental energy level
5S1/2 but are distributed among the Zeeman sublevels mF of the hyperfine F = 2 state. Initialising
them specifically inmF = 2 is achieved through optical pumping where cycles of excitation-deexcitation
using a 780nm laser and a repumper end up populating |g⟩. This enables to initialise an array of qubits
in the ground-Rydberg encoding with efficiency (1 − η)N with η ≈ 0.5%. For the Rydberg-Rydberg
encoding, an extra step is needed to initialise all the atoms in |0⟩ = |nS⟩ for instance. Provided
that the atoms are far enough so that vdW interaction is negligible (see Box. 9), a STIRAP protocol
(described in Box. 14) enables to globally excite all atoms in |nS⟩ with efficiency (1 − ηS)N with
ηS ≈ 1%. While it is possible to initialise an array of qubits in |ψ(t = 0)⟩ = |0⟩⊗N for both the Ising
and the XY models, the preparation efficiencies are thus different.
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Figure 1.8: Computation cycle. In the initialisation phase, atoms are spatially arranged in a
register and prepared in a specific initial state with optical pumping (and STIRAP). A global evolution
operator Û(t) produces a quantum state |ψ(t)⟩. During the measurement phase, the qubit basis states
are mapped to occupancy of the traps containing the atoms and repeating the global cycle several
times outputs a probability distribution Pψ.

1.4.2 - Performing quantum dynamics
The ability to evolve a quantum system in time starting from the simple initial state given above is

at the heart of the quantum computation paradigm. Most quantum algorithms or quantum simulation
protocols rely on either creating a specific state |ψ⟩ from |ψ(t = 0)⟩ or looking at the characteristics
of that state evolving in time. The Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩ (1.25)

governs the dynamics of a quantum system with Ĥ, the Hamiltonian of the system. For an array of
N trapped atoms at positions r⃗i, the global Hamiltonian reads

Ĥ(t; r) = Ĥctrl(t) + Ĥint(r) (1.26)

with the control part enabling global coherent driving

Ĥctrl(t)/ℏ = Ω(t)
2

N∑
i=1

(cosϕ σ̂xi − sinϕ σ̂yi ) − δ(t)
N∑
i=1

n̂i (1.27)

and the interaction part depending on the qubit encoding, i.e. ĤIsing for ground-Rydberg and ĤXY
for Rydberg-Rydberg.
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The quantum state obtained when globally evolving an atomic system under this Hamiltonian for
a duration t− t0 is |ψ(t)⟩ = Û(t− t0) |ψ(t = t0)⟩ with

Û(t) = T
[
exp

(
− i

ℏ

∫ t

s=t0
Ĥ(s; r)ds

)]
(1.28)

being the propagator and T the time-ordering operator. In the analog mode, the global Hamiltonian
can be directly fine-tuned by playing with either the control parameters or the atomic positions : it
constitutes a resource for computation. This requires the user to delve into the physics of the system
and work at a low level, close to the hardware. Most of the work presented in this thesis will be done
using this mode.

Box 10: Temperature-induced noise during dynamics

As conveyed in Box. 1, the atoms are subject to thermal motion which affects the quantum
evolution in a noisy way. When the traps are turned off, the random motion of the atoms
introduces a change in the frequency of the light they emit or absorb. This Doppler effect
thus induces random shifts in the detuning of each atom and can be modelled by additional
terms δi generated from a centred normal distribution with deviation σδ(T ) = ||⃗k||σv(T ), with
k⃗ the wave vector of the laser system and ||⃗k||/2π ∼ µm−1. Thus for each new shot, the lasers
are slightly off resonant and the dynamics of the system differs by the value of the detuning
perceived.
In addition, this thermal motion affects shot-to-shot the global Hamiltonian in two sepa-
rate ways. Firstly, the distance-dependent interaction strength U(r) can be considered time-
dependent if the dynamics lasts long enough such that σv(T )t becomes a small fraction of R, the
typical spacing between atoms. Even during short dynamics, taking into account the random
initial positions of the atoms may prove to be relevant as δU/U = α × δR/R with α = 6 for
vdW interactions and α = 3 for dipole-dipole interactions. Secondly, as explained in Box. 4,
the intensity profile of the laser is not constant and in the case of tightly focused addressing
beams (w ∼ a few µm), moving atoms may deviate far away from the focus point if σr(T ) ∼ w,
resulting in a diminishing control amplitude Ω with time.

1.4.3 - Measurement of observables
During a quantum experiment or algorithm implementation, a target quantum state |ψ⟩ is pro-

duced at the end of the pulse sequence and an observable Â = ∑
i ai |ai⟩⟨ai|, ai ∈ C, needs to be

measured to retrieve valuable information on the system. When an observable is measured, the quan-
tum system is randomly projected onto one of the eigenstates |ai⟩ of Â with probability |⟨ai|ψ⟩|2. The
expectation value of Â over |ψ⟩ reads

⟨Â⟩ = ⟨ψ|Â|ψ⟩ =
∑
i

ai|⟨ai|ψ⟩|2. (1.29)

Note that after a measurement, the original qubit state is lost, forcing to repeatedly prepare and mea-
sure |ψ⟩ to approximate the distribution of |⟨ai|ψ⟩|2. Thus probing the result of a quantum algorithm
requires repeated applications of said algorithm, or shots due to the probabilistic nature of quantum
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states. One can then approximate ⟨Â⟩ by averaging the outcomes of the measurements.

On neutral atom devices, for any qubit encoding, one can measure in the computational basis 0−1
by mapping the qubit basis states |0⟩ and |1⟩ to the occupancy of the trap. The measurement process
thus requires the imaging technique mentioned in 1.1.2 which enables distinguishing filled from empty
traps with a global fluorescence picture. In the case of ground-Rydberg encoding, this mapping is
made naturally when the traps are turned back on at the end of the dynamics. Indeed, the tweezers
exert a repulsive ponderomotive potential on the far-orbiting electron of the Rydberg atoms, expelling
them from the trapping region. On the contrary, atoms in their ground state are recaptured by the
trapping potential given in Eq. 1.1 and appear as bright spots on the detected image. In the case
of Rydberg-Rydberg encoding, two extra steps are needed. Let |0⟩ and |1⟩ be the same states as in
1.3.2 and add |e⟩ and |D⟩. First, a freezing protocol enables to shelve the population from |1⟩ to
|D⟩, which hardly interacts with |0⟩, using MW pulses. The system is quickly "frozen", preventing
interaction-induced dynamics between |0⟩ and |1⟩ from happening during the following longer step.
Second, a subsequent deexcitation from |0⟩ to |e⟩ is performed by applying a τdesex ∼ µs light pulse at
resonance: the atoms originally in |0⟩ then quickly decay back to the 5S1/2 manifold where they can
be recaptured and imaged. Atoms in |D⟩ are also expelled by the repulsive ponderomotive potential,
effectively mapping the basis states of the XY model to the presence or absence of atoms in the
tweezers. This global measurement procedure provides a sufficiently accurate estimate, if repeated
over enough shots, of the distribution of ⟨n̂i⟩. Thus for each qubit i, pi(0) = 1 − ⟨n̂i⟩ and pi(1) = ⟨n̂i⟩
and we denote Pψ, the probability distribution describing a perfect measurement of the system in the
computational basis. In practice, a quantum system is only sampled within a limited budget of shots,
collecting a finite set of bitstring n1 · · ·nN and thus subjecting measurements to sampling noise.

The measurement process is inherently flawed by several physical processes which can result in
measuring a 1 instead of a 0, leading to false positive detection event and conversely to false negative
(see Box. 11). Background-gas collisions can eject a recaptured atom, emptying a trap and thus flipping
a 0 to a 1 in a bitstring with probability ε ≈ 1%. Additionally, the ejection of atoms in Rydberg states
typically lasts around a few microseconds, leaving enough time for some of them to decay from |1⟩,
effectively flipping a 1 to a 0 in a bitstring with probability ε′ ≈ 5%. Reducing the temperature T of
the background atoms help lower ε while increasing the Rydberg lifetime by using larger n can lower
ε′.

1.4.4 - Cycle rate of neutral atom technology
The major limitation of neutral atom technology naturally arises when summing the durations

of all the steps presented above. While the actual quantum dynamics happens at the MHz scale,
the necessity to load the tweezers (∼ 100ms), arrange the atoms (∼ 150ms), initialise their state
(∼ 50ms) and image them several times (∼ 100ms) for each shot reduces the repetition rate of the
useful computation to a few Hz. In addition, the effective repetition rate is even scaled down by
the probability of assembling a defect-free quantum register at each cycle. As moving an atom from
one trap to another has a finite efficiency η due to losses, reaching a perfect arrangement of N atoms
scales as ηN . For instance arranging a 100-node graph may take η−N ≈ 3 times more cycles at η = 99%.

Boosting the repetition rate to start closing this frequency gap with others technologies thus carries
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Box 11: Effective model for detection errors

The many physical processes inducing bit flips during the measurement phase can be effectively
encompassed by two terms ε = p(0 → 1) and ε′ = p(1 → 0). Keeping in mind that this
definition depends on the physical states chosen as |0⟩ and |1⟩, the values of the two terms can
vary for various experiments but are usually at the percent level. Moreover, when the atoms
are addressed locally, those values can become site-specific. Modelling these bit flips can be
achieved using the following transfer matrix

Mi =
(

1 − εi ε′
i

εi 1 − ε′
i

)
(1.30)

As shown in Fig. 1.9, the incorrectly measured distribution is thus P̃ψ = (⊗iMi)Pψ where we
assume uncorrelated errors. While the detection errors at the single qubit level remain low
and easy to correct, they quickly scale with the size of the system. For instance, for N = 100
and ε = 1%, measuring |ψ⟩ = |0⟩⊗N is only achieved with an efficiency of (1 − ε)N = 36.6%.
Correcting those errors turns critical for state preparation or algorithmic tasks and requires
the inversion of a 2N × 2N matrix. While the matrix construction/inversion procedure can
be sped up using tensor formalism, the most computational resource demanding aspect lies in
building the probability distribution vector of size 2N . Moreover, due to finite sampling of the
state and wrong estimation of ε, ε′, (⊗iM

−1
i )P̃ψ may not be a proper probability distribution.

While naive methods such as renormalisation or truncation can give sufficient approximation of
Pψ, more advanced methods such as Bayesian reconstruction may prove to yield more accurate
results.

substantial significance and requires technical improvements at each step. The loading stage can be
fastened by continuously loading the target register using an atom reservoir [26, 46] or improving the
filling efficiency from 50% to ∼ 90% using gray molasses [10]. The scaling of the duration required by
an atom-by-atom assembler is another bottleneck which can be addressed by either parallel transport
of atoms [29] or optimized arrangement algorithms [24]. Fast imaging can be obtained using resonant
imaging of free atoms with high numerical aperture optics [47] or replacing EMCCD used to collect
fluorescent photons by cryogenic avalanche detectors [48]. One can ultimately achieve fast high-
fidelity non-destructive measurement by using cavity-assisted detection such as in [49]. Overall, the
combination of all those techniques should raise the effective repetition rate to the 100 Hz or kHz
range.
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Figure 1.9: A probability distribution Pψ (dashed) is incorrectly measured. From the measured
distribution P̃ψ (grey) and known values of detection errors (ε = 3%, ε′ = 5%), one can approximate
the true distribution by a corrected distribution (green) up to 25 qubits in reasonable time. Only the
first 16 states with the highest probabilities are shown here.

1.4.5 - Digital mode: gates and circuits
In contrast to analog mode where the evolution is global and continuous in time, the digital mode

relies on a discrete set of quantum operations, called gates. This mode focuses on a more high level
universal vision of quantum computation and allows the user to build hardware-agnostic protocols,
called quantum circuits, by applying local gates on each qubit independently. Single-qubit gates are
essentially rotations (see Eq. 1.5) in the Bloch sphere and two-qubit gates enables to entangle a pair
of qubits, usually with the interactions inherent to the considered system. For instance, the X gate
flips the states |0⟩ ↔ |1⟩ of a qubit and is obtained by performing a π−rotation along the y−axis.
The controlled-NOT gate (CNOT) acts on a pair of qubits, flipping the state of the second, or target
one, i.e. it applies an X gate depending on the state of the first, or control qubit. A quantum circuit
is thus characterised by its depth, i.e. the number of consecutive layers of gates applied to the qubits,
a number to compare with the duration of an analog evolution.

Achieving digital calculations on a neutral atom requires a different basis encoding using long
lived hyperfine states |0⟩ = |5S1/2, F = 1,mF = 0⟩ and |1⟩ = |5S1/2, F = 2,mF = 0⟩ while still
harnessing Rydberg-driven interactions with an additional state |nS⟩ and the scheme described in
1.3.3. Transitions between digital qubits can be driven using a two-photon Raman process |0⟩ ↔
|5P1/2, F = 1,mF = −1⟩ ↔ |1⟩ approximated by a one-photon transition with effective Rabi frequency
Ω01/2π ∼ MHz [50]. The high-fidelity single qubit rotations already existing for this technology were
recently supplemented by two-qubit gates with fidelity reaching 99.5% [51] using optimal control
protocols [52], bridging the gap with other digital-focused platforms such as ions and superconducting
circuits. This also leads to the prospect of fault-tolerant quantum computing [53], as the effectiveness
of error correction codes hinges on maintaining error rates, directly tied to the fidelity of two-qubit
gates, below a critical threshold. This threshold is essential to ensure that error correction does not
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Figure 1.10: Single-atom fluorescence in 3D arrays reproduced from [4].

inadvertently introduce additional errors into the system while correcting existing ones. While the
applications discussed in later chapters of this thesis will not utilise the digital mode, it’s worth noting
that the optimal control techniques outlined in chapter 3 offer a means of enhancing the fidelity of
certain operations relevant to this field.

1.4.6 - Upcoming hardware improvements
Neutral atom technology is not only closing the gap to other state-of-the-art platforms but also

exhibits significant hardware potential for further enhancement. New Rydberg platforms are currently
emerging with the notable use of alkaline-earth atoms [54], bi-species arrays of Rb-Cs atoms [55],
circular Rydberg states [56, 57] and combination of tweezer technology and cryogenic environments
[25]. Some exhibit new features such as local addressing capabilities [58] (see Box. 12), atom shuttling
[53], 3D registers [18] [Fig. 1.10], and mid-circuit measurements [59]. We will discuss the use of some
of those advances in following chapters.
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Box 12: Local addressing in analog mode

To enhance the versatility of analog computing with neutral atoms, the focus can be put on
engineering local driving or detuning terms in the Hamiltonian 1.3. Achieving this involves
addressing individual atoms with laser light, either resonantly for local driving (Ω-term) or
far-off resonance for local detuning (δ-term) through the AC Stark shift effect. Technically,
this requires focusing a laser beam onto µm-sized spots overlapped with the atomic register.
Controlling the intensity of each spot for maximal flexibility in Hamiltonian parameters poses a
significant challenge due to the small scales involved and the need for fast temporal modulation
at the ns-to-µs scale. Addressing laser beams using liquid-crystal based spatial light modula-
tors (LCoS-SLM) offers a promising method for spatial shaping. However, these devices face
limitations in swiftly switching between configurations. Coupling LCoS-SLM with previously
introduced shaping device (EOM/AOM) allows for temporal modulation, inducing in Ĥctrl the
following additional term

Ĥlocal(t)/ℏ = −∆(t)
N∑
i=1

ϵin̂i (1.31)

with −20 ≤ ∆(t)/2π ≤ 0 MHz and 0 ≤ ϵi ≤ 1. The global temporal shape ∆(t) is controlled
by the amplitude modulator, while the LCoS-SLM spatially modulates the light intensity on
all sites, providing site-dependent ϵi. By applying both a global positive detuning and local
negative detunings, we can generate effective local positive and negative detunings. Setting a
pattern of ϵi values requires the same procedure as changing a pattern of traps, meaning it
cannot be changed easily from one shot to another. Notably, it has been used for tasks such
as light shifting atoms for initial state preparation [60], adiabatic driving in XY model [37] and
measurement of various spin components [58] (see chapter 5). In those works, the detuning
term δls = Ω2

r/(4δr) is obtained by lightshifting |nS⟩ from the transition |e⟩ ↔ |nS⟩ using a
1013 nm laser with parameters Ωr and δr (Ωr ≪ δr).
Alternative approaches for addressability involve acousto-optical deflectors (AODs), either by
themselves or combined with LCoS-SLM, allowing neutral atom addressing. Shuttling atoms
with AODs to a dedicated zone for addressing with a fixed laser beam is another strategy.
Higher refreshing rates for spatial modulation are achieved using micro-electromechanical sys-
tems (MEMS) or digital micromirror devices (DMDs) for local Raman transitions or Stark-shift
addressing on neutral atoms or ions. Multiplexing approaches, utilising individual modulators
for each channel, can be applied in free space with a multi-channel AOM or using photonic
integrated circuits (PICs) [61, 62]. The latter case incorporates a steering SLM to match the
pattern out of the PIC to the atomic register [63]. Despite the challenges, these techniques
provide diverse options for achieving addressability in neutral atom systems.
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Modelling is a matter of approximation, particularly for complex physical systems such as arrays of
trapped atoms, for which keeping an exhaustive record of all the physical effects happening, no matter
how minor their actions, would be unthinkable. Real-world phenomena can usually be simplified
to abstractions with manageable complexity allowing to first understand the underlying mechanisms
modifying their apparent behaviours and then predict the likelihood of possible outcomes. Current
neutral atom quantum computers remain expensive systems to query, both regarding their limited
access bandwidth and their relatively low repetition rate. In addition, their noisy behaviours, due
to imperfect controls, couplings to the environment or fundamental probabilistic nature, makes the
analysis of their outputs a complicated task. Both their high probing cost and the impact of their
hardware noises on higher level figures of merit in the NISQ era clearly motivate the need for their
modelling by a digital twin. The latter should be faster and cheaper to run than an actual experiment
and its representation level should be tunable. Indeed, a crucial aspect of modelling lies in the
delicate balance between the accuracy and complexity of the model. By increasingly approximating
a system or conversely, by selectively adding effects acting as potential noise sources, one can find
the optimal trade-off between computation speed and faithful representation of a noisy QPU, and
therefore understanding of its results.

In the following chapter, we will examine the various levels at which we can model a neutral atom
quantum computer both in terms of ability to reproduce experimental results and to be run within a
reasonable time budget. Those emulation methods will then be used in the following chapters to either
explain discrepancies between experimental data and theoretical expectations or to predict scaling of
performance of quantum algorithms with the system size.

Some elements from the Pulser description are taken from the following article to which I con-
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tributed :

• [64] H. Silvério, et al., “Pulser: An open-source package for the design of pulse sequences in
programmable neutral-atom arrays,” Quantum, vol. 6, p. 629, 2022.

2.1 - Programming QPUs at the pulse level

A first model useful in the quantum computation paradigm, already discussed in Sec. 1.4.5, consists
in abstracting complex quantum operations into a set of fundamental gates. This formalism allows
for a consistent framework applicable to various architectures working with qubits, such as supercon-
ducting circuits, trapped ions, and neutral atoms. This uniformity streamlines the development of
quantum protocols across technologies. However, by specifically focusing on neutral atoms and their
programmability, we can start at a lower level of modelling. Our building blocks are not standardised
gates but rather atomic positions and laser pulses. The latter give rise to Hamiltonians described in
the previous chapter which can easily be programmed and emulated in the following formalism.

2.1.1 - Pulser: a pulse-level library

Figure 2.1: Relationship between the main Pulser classes. The central object is the Sequence,
which is linked to a Device. The Device holds the available Channels — which are selected and
declared in the Sequence — and information of the hardware constraints. These constraints are
enforced upon the Register, where the neutral-atom array is defined, and upon the Pulses. Each
Pulse, defined by its amplitude and detuning Waveforms and a fixed phase, populates the declared
channels alongside other commands like target — which points local addressing channels to specific
qubits — and delay — which idles the channel. The resulting Sequence can then be sent for execution
on the neutral-atom QPU or emulated locally or remotely on a cluster.

Pulser is an open-source Python library, developed by Pasqal, for programming neutral-atom
devices at the pulse level [64]. The main goal of this library is to serve as an interface between
experienced users and neutral-atom quantum hardware. Using Pulser, users can control all the relevant
physical parameters of a pulse-level quantum program. The library also contains several emulation
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routines (or Backends) for studying and simulating the outcome of pulse sequences for small (using
QuTip-based solvers) or larger (using Tensor Network-based methods) systems. We list the main
components of Pulser :

(i) The Device mimicks the QPU itself. It includes a series of specifications characterising the hard-
ware, including the chosen Rydberg level, the available trapping geometries (fixed or arbitrary),
the different Channels (iv) that can be declared as well as constraints on their amplitudes,
detunings or Sequence (vii) duration.

(ii) The RegisterLayout mimicks the trap pattern created by the SLM. It includes the trap posi-
tions and one can be easily created by either providing free-space coordinates or truncating a
regular lattice with fixed spacing.

(iii) The Register mimicks the assembled atomic array. It stores the information about the co-
ordinates of the atoms and their respective ID’s, which serve to identify them when applying
targeted operations and at measurement. It can be created from selecting a subset of traps of
a RegisterLayout or directly from scratch by providing free-space coordinates.

(iv) The Channels represent the action of the lasers and are organised by addressing (local or global)
capabilities and the type of transition (ground-ground, ground-Rydberg, Rydberg-Rydberg) the
lasers can be coupled to.

(v) Waveforms are the basic building blocks of a Pulse (vi). They can have custom or predetermined
shapes, like a ramp or a Blackman window.

(vi) Pulses consist of two Waveforms, one for the amplitude and one for the detuning. They can
be further shifted by a phase. Once a Pulse is constructed it has to be added to a Sequence
indicating which atoms are targeted and which channel will implement it.

(vii) The Sequence contains the schedule of the pulses in each Channel. It is also linked with a
Register and the Device in which it is to be executed. This is the object that can be sent to
a real neutral-atom QPU or simulated on a classical computer.

Pulser also incorporates various specialised objects designed for specific tasks, such as limited noisy
simulations, local addressing, or qubit masking. Collectively, these features offer maximum flexibility
and control over the behaviour of key physical parameters associated with the control and interaction
aspects of the Rydberg Hamiltonians, all while adhering to the hardware limitations imposed by the
selected device.
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2.1.2 - Example of interfacing with a QPU
In the following, we will illustrate how one can access Fresnel, the neutral atom QPU of Pasqal,

and run a Ramsey experiment described in Box. 13 to calibrate the detuning and get a first estimate
of the dephasing time of the system. We will show how we can parameterise this basic pulse sequence,
simulate it using a local emulator and send it to run on a neutral atom QPU through a cloud interface,
all using Pulser.

Box 13: Ramsey experiment

A Ramsey experiment involves a straightforward pulse sequence applied to isolated qubits to
evaluate the accuracy of detuning calibration. It includes three steps displayed in Fig. 2.2(a). A
first resonant π/2-pulse prepares the state (|0⟩ + i |1⟩)/

√
2 starting from |0⟩, which amounts to

putting the qubit on the equator of the Bloch sphere as shown in Fig. 2.2(b). An evolution period
with detuning δ and parameterised duration τ rotates the qubit along the equator, preparing the
state (|0⟩ + ieiϕ |1⟩)/

√
2 with ϕ = δτ being the accumulated phase. Finally a second π/2-pulse

pushes the qubit towards |0⟩ or |1⟩ depending on ϕ. Varying τ enables to measure oscillations
at a frequency being the calibrated value of δ. Damping of these oscillations is characteristic
of decoherence due to the environment of the free atom. This protocol thus also enables to
gain an initial insight of such decoherence whereas a Rabi experiment during which the atom
is constantly driven is more sensitive to control fluctuations.

Parameterised Sequence
A significant feature of Pulser used in this example and in the overall thesis lies in the possibility of

parameterising Sequences. Indeed, many experiments involves scanning a set of parameters possibly
over several configurations of atomic registers, while conserving the same overall structure of the
applied pulse sequence. For instance, in the Ramsey experiment described above, a waiting time of
variable duration is interleaved between two π/2 resonant pulses. The following code implements such
a Sequence for a given trap layout, a given Device and a fixed value of Ω for the resonant pulses.

def parameterised_Ramsey_sequence(trap_layout, device_used, Omega=2*np.pi*1):
mapp_reg = trap_layout.make_mappable_register(trap_layout.number_of_traps//2)
para_seq = Sequence(mapp_reg, device_used)
para_seq.declare_channel("rydberg", "rydberg_global")
ramsey_duration = para_seq.declare_variable("tau")
para_seq.enable_eom_mode("rydberg", amp_on=Omega, detuning_on=0)
para_seq.add_eom_pulse("rydberg", duration= np.pi/2/Omega*1000, phase=0.0)
para_seq.delay(ramsey_duration, "rydberg")
para_seq.add_eom_pulse("rydberg", duration= np.pi/2/Omega*1000, phase=0.0)
para_seq.disable_eom_mode("rydberg")
para_seq.measure(basis=’ground-rydberg’)
return para_seq

A first mappable Register is created so as to be able to select various qubit registers over which to
test this protocol. A Sequence takes as an input a Register (mappable or not) as well as a Device to
check during the sequence composition if it remains hardware compatible. A global Channel addressing
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(a)
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Figure 2.2: Ramsey protocol (a) A Ramsey sequence built with Pulser using the EOM mode. (b)
Bloch sphere visualisation of the evolution of a qubit under a Ramsey sequence with two resonant
π/2-pulses (green) interspaced by a free evolution time with Ω = 0 (purple). (c) Recapture probability
P0(τ) obtained when applying the sequence in (a) on an isolated qubit. Experimental data (blue dots)
deviates from the simulation with only shot noise (blue area) but can be fitted either (Fit 1) by a
damped sine or (Fit 2) by the dynamics obtained using an effective noise model with ε = 1%, ε′ = 8%,
T1 = 100 µs and T2 = 4.5 µs.

the ground-Rydberg transition is labelled and a Variable τ is declared. As to create sharp square
pulses, we switch to EOM mode, which only allows to work with on pulses of fixed amplitude Ω and
detuning δ (here 0) or with delays. We then add one π/2-pulse, delay the sequence for a duration τ ,
add another π/2-pulse, switch off the EOM mode and measure the system.

Connecting to the QPU
Once a parameterised Sequence has been created, sending it to Pasqal’s QPUs is a matter of few

lines described below.

from pulser_pasqal import PasqalCloud
from pulser import QPUBackend
from pulser_pasqal.backends import RemoteResults

# Provide a connection to the cloud platform using login details
connection = PasqalCloud(project_id, username, password)

# From the connection, one can retrieve available devices and select a trap layout
device_used = connection.fetch_available_devices()["FRESNEL"] # or AnalogDevice
layout = list(device_used.calibrated_register_layouts.values())[0] # Using first Layout

# Create the Parameterised Sequence and select the QPUBackend
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para_seq = parameterised_Ramsey_sequence(device_used, layout)
backend = pulser.QPUBackend(para_seq, connection)

# Several almost isolated atoms are selected to increase the statistics of each shot
isolated_trap_ids = [0,11,13,30,28,32,49,47,60]
qubits = {"q{}".format(i):trap_id for i,trap_id in enumerate(isolated_trap_ids)}
params_list = np.linspace(100,4000,40) # Varying tau between 0.1 and 4 us

# All parameters are gathered inside a list of jobs with 50 shots each
job_params = [{"runs":50,"variables":{"qubits":qubits,"duration":p}} for p in params_list]

# A Batch is created, containing several jobs, and sent to the QPU
results = backend.run(job_params=job_params)
batch_id = results._submission_id

# After some time, the results can be retrieved using the submission id and processed
bitstrings = [res.bitstring_counts for res in RemoteResults(batch_id,connection).results]

With credentials and the Connection object, one can retrieve informations such as a QPU avail-
ability, send batches of jobs to an operative QPU, and retrieve results of a whole experiment, when
desired, with a single id.

Fig. 2.2(c) provides the processed results of the above code run on the Fresnel device as well as
perfect simulation done with Pulser, easily achieved by switching QPUBackend to QutipBackend.

Fitting noisy results for calibration
The experimental data significantly differs from the perfect simulation due to a miscalibration of

δ and decoherence-inducing effects. To calibrate δ we can fit the oscillation with a first effective fit
function

f1(t) = Ae−t/T cos
(
δ̃t+ φ

)
+B (2.1)

returning δ̃/2π = 0.583(7) MHz when |δ|/2π = 0.5 MHz and φ/δ̃ = 0.10(2) µs. Measuring δ̃ enables
to recalibrate the detuning and is in fact regularly performed in an automatic way on the Fresnel
device, along other calibration jobs. This first fit also gives insight on the noise level as A and B

differing from 0.5 reveals the presence of detection errors and a finite value of T = 4.2(8) µs reveals
damping due to decoherence. However, it can be complicated to decouple the values of these effective
fit parameters in order to extract precise noise levels. The fitted results of several independent and
distinct experiments are usually combined. While analytical forms such as Eq. 2.1 are sufficient to
analyse the noisy results for some experiments, others necessitate simulating the noisy dynamics of
the system by incorporating adjustable levels of noise as conveyed in Sec. 2.3.

Overall, noiseless emulation with Pulser remains relatively fast up to 15 − 20 qubits. Simulating a
1 µs long dynamics of N = 15 atoms with Pulser takes around a few seconds of classical computation
when not considering any additional noise. As N increases, the simulation process gets increasingly
time-consuming and approximations are needed to circumvent the exponential scaling inN . The tensor
network formalism presented below offers a compact and efficient means of representing quantum
states. This enables scaling up the system size to make predictions for larger systems, extending the



CHAPTER 2. MODELLING A QPU ... 39

reach of emulation to more complex scenarios.

2.2 - Emulation for larger systems with Tensor Networks

In tensor network (TN) methods [65], quantum states are represented as networks of intercon-
nected tensors, capturing the entanglement properties of the system. They are particularly effective
in emulating the behaviour of quantum systems using classical hardware, as demonstrated by recent
work challenging Google’s quantum supremacy claim [66]. TN operations rely heavily on linear al-
gebra, with the size of the matrices involved scaling with the entanglement present in the system
being analysed. The relevance of different quantum states in a many-body system’s Hilbert space
varies, with some being more significant than others in describing physical phenomena. This is par-
ticularly relevant in systems where interactions between particles exhibit locality, such as nearest or
next-nearest neighbours interactions. Locality constrains the levels of entanglement present in the
system and these characteristics make TN well-suited for representing quantum states of the Rydberg
systems probed with neutral atom devices.

Since the works in this thesis solely employ widely used TN methods for simulating neutral atom
systems, without attempting to develop new ones, we only provide a brief introduction to TN, high-
lighting the methods which will be used in later chapters.

2.2.1 - Strategy behind TN representations
Let’s consider a quantum system composed of N particles with d basis states. The wave function

|ψ⟩ describing the system can be written in the following form

|ψ⟩ =
∑
{s}

As1,s2,..,sN |s1 ⊗ . . .⊗ sN ⟩ (2.2)

where defining the value of the dN complex coefficients of the tensor A is a computationally inefficient
definition of the quantum state of a many-body system.

TNs primarily aim at simplifying the representation of such states, while retaining precise descrip-
tion of their predicted entanglement properties. To achieve this, the large tensor A is replaced by a
network of N smaller tensors, as illustrated in Fig. 2.3(a), reducing the total number of parameters
from an exponential to a polynomial scaling with the system quantities. However, this efficient rep-
resentation of a quantum many-body state comes with additional complexity. Shaping A to a TN

…

𝐴
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𝑠!(a) (b)

MPS
PEPS

Figure 2.3: Schematics of tensor networks (a) A large tensor A is broke down into smaller tensors
arranged in a network. (b) Standard MPS/PEPS representation for 1D/2D systems respectively.
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introduces extra degrees of freedom, represented by connecting indices among the tensors. These
connecting indices encode the structure of many-body entanglement in the quantum state and the
number of unique values each index can take quantifies the amount of quantum correlations in the
wave function. These indices, often referred to as bonds, have a maximum number χ of possible values
known as the bond dimension.

Various TN structures have been introduced depending on the system geometry and each exhibits
different polynomial scaling with factors such as the system size. The Matrix Product State (MPS)
formalism [67] provides efficient representations of 1D systems. The conversion from A to a TN
is performed by applying N − 1 times the Schmidt decomposition. Each of the new tensor A[i] is
associated, as displayed in Fig. 2.3(b), with a physical index si and two bond indices σi−1 and σi. The
wavefunction can be written as

|ψ⟩ =
∑
{s}

∑
{σ}

A[1]s1
σ1 . . . A[i]siσi−1σi . . . A[N ]sNσN−1 |s1 ⊗ . . .⊗ sN ⟩ . (2.3)

The maximum bond dimension χ determines the computation complexity of the simulation, which in
this case scales as Ndχ2. While an exact representation of A can be obtained with χ = dN/2, in most
simulation, χ is bounded by a fixed value, serving as a trade-off between approximation and resource
consumption. Another structure displayed in Fig. 2.3(b) consists in 2D lattice of TNs and is called
Projected Entangled Pair States (PEPS). PEPS TN have primarily been used as ansatz to represent
ground states of two-dimensional Hamiltonians [68].

2.2.2 - Useful TN algorithms
Using the TN representation, one can tackle ground state estimation and dynamics solving tasks

with algorithms tailored to exploit their simplified structures. This often requires finding optimal
contraction methods for combining tensors, incorporating approximations while ensuring stability and
convergence to accurate results.

One highly successful algorithm for one-dimensional systems is the Density Matrix Renormalisation
Group (DMRG) [69] which can be applied to find low-energy and equilibrium states of 1D Hamiltonians
as illustrated in Fig. 2.4(a). It can also be extended to compute excited states or to simulate dynamical,
finite-temperature, and non-equilibrium systems. DMRG searches for the lowest energy MPS with a
bounded χ. After representing the Hamiltonian as a Matrix Product Operator (MPO), one fixes all
but a single MPS tensor and then solves for the minimum eigenvector of the remaining "environment".
Individual tensors are then iteratively updated while maintaining stability, often by placing them in
canonical form [70].

There also exists efficient algorithms developed for PEPS including routines for optimisation to-
wards low-energy states [71, 72]. Adaptations of the MPS-DMRG techniques in a cylindrical geom-
etry [73] have notably been used to successfully compare experimental results for up to hundreds of
atoms [74]. An example of the application of such DMRG algorithm is depicted in Fig. 2.4, where the
ground state of an Ising Hamiltonian with nearest-neighbour couplings is obtained for N = 66 spins.
DMRG is also used in Sec. 5.1.6 to assess order properties of the ground state of the XY Hamiltonian
up to N = 100 spins.

TN algorithms can also tackle time evolution of large quantum systems. The Time-evolving Block-
Decimation (TEBD) method relies on a Trotter-Suzuki decomposition and subsequent approximation
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Figure 2.4: Density Renormalisation Matrix Group. (a) ground state calculation in TN formal-
ism can be tackled by DMRG algorithms. (b) A 3D system of spins (nodes) interacting with nearest
neighbours couplings (edges) can be described by Ĥ = ∑

i ĥi + ∑
ij ĥij . Its ground state computed

using DMRG exhibits alternating upward (red) and downward (blue) pointing spins.

of the time-evolution operator exp
{

−iĤδt
}

of a constant Hamiltonian Ĥ. The method exploits the
fact that the time evolution operator can be decomposed into a product of local operations, which act
non trivially only on a few adjacent sites as showcased in Fig. 2.5(a). TEBD efficiently approximates
the action of these operations by applying them to each block separately and then sweeping through
the system multiple times, adjusting the boundaries between blocks as needed. Examples of dynamics
under constant Ising and XY Hamiltonians computed with TEBD are given in Fig. 2.5(b) and in
Sec. 4.5. The local nature of this algorithm however limits its use for more global Hamiltonians. One
of the most successful algorithms able to treat long-range interactions, while maintaining a sufficiently
small bond dimension, is the Time-Dependent Variational Principle (TDVP) [75, 76]. Its primary aim
is to constrain the time evolution to a specific manifold of MPS of a given initial χ by projecting the
Hamiltonian onto the tangent space to this manifold and then solves the time dependent SE solely
within the manifold.

2.2.3 - Software tools
Many different software packages have been developed in recent years to offer efficient routines

for the algorithms mentioned above. A very popular one is ITensor [77], which gathers a strong
community of scientists. In addition, it has recently expanded its reach by adding libraries written in
the Julia language [78], and by adapting its algorithms to the use of Graphical Processing Units (GPU).
Pulser includes a TN-based Backend enabling to emulate the dynamics of neutral atom systems up to
N = 100 within a reasonable computation time, i.e. less than an hour. This emulator [79] utilises the
2-site TDVP method from the ITensor.jl package and will be used in Sec. 4.3/6.3.3.
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Figure 2.5: Schematics of TEBD algorithm and examples. (a) A 1D Hamiltonian with local
controls and nearest neighbours coupling can be approximated as constant between t0 and t0 + δt. It
is decomposed into small operations (green) sequentially applied to a MPS representation, evolving
the state |ψ(t0)⟩ to |ψ(t0 + δt)⟩. (b) Examples of dynamics of chain of N = 50 spins computed with
a simple implementation of TEBD using the ITensor package for a Hamiltonian constant between 0
and T = 10 µs including (b1) controls and Ising interactions or (b2) only XY interactions

2.3 - Emulating noisy dynamics

When benchmarking experimental results with simulated ones, solving the noiseless version of the
Schrödinger equation (SE) of Eq. 1.25 might only give qualitative agreement. To bring simulation
closer to the experiment, the effects of various physical phenomena acting on the several steps of the
quantum dynamics must be taken into account.



CHAPTER 2. MODELLING A QPU ... 43

2.3.1 - Classification of noises
Most of the noisy processes treated in this thesis have been introduced in boxes of chapter 1 as

well as a way to represent them. Here, we will list them according to their related emulation cost. In
addition, similarly as in [80], we illustrate their effects on a simple Rabi protocol for which an isolated
atom is subjected to a resonant pulse of varying duration, with results displayed in Fig. 2.6.
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Figure 2.6: Impact on various noises on Rabi oscillations. A Rabi protocol is simulated including
(a) SPAM errors, (b) decay out of the qubit subspace, (c) Ω random fluctuations, (d) laser phase noise,
(e) Doppler shifts, (f) fluctuations of atom positions (g) residual electric field and (h) all of the above
with parameter values given in the text so as to match experimental data measured on the Fresnel
device.
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Cost-free noises
Few hardware imperfections can actually be considered almost "cost-free" to emulate as they only

require solving the SE once with a modified Hamiltonian. For instance, incorporating the experimental
shape of pulses, as altered by the finite bandwidth of the shaping devices (Box. 2), or as directly
measured on the device, can elucidate discrepancies at short times or delayed dynamics, and that
with limited additional emulation cost. In the case of large systems, adding the finite waist of the
laser beam as position dependant terms in the control Hamiltonian can explain discrepancies between
qubit behaviour. Other noises occurring during the measurement phase only impact the measured
distributions of bitstrings and are thus handled as post-processing steps. The shot noise on a high-level
observable Ô can be obtained by sampling |ψ⟩ M times with nshots and averaging ⟨Ô⟩ over the M
realisations. It is worth noting that the related cost can rise when repeatedly sampling |ψ⟩ for quite
large system sizes. Assessing the impact of detection errors ε, ε′ (Box. 11) can be achieved by applying
the transfer matrix of Eq. 1.30 to the probability distribution Pψ. However, constructing the transfer
matrix can also become resource-intensive as the system size increases. In such cases, it becomes more
efficient to probabilistically modify measured bitstrings one by one and utilise a similar sampling-
averaging method over M samples of size nshots. Fig. 2.6(a) shows how the detection errors limits the
contrast of a Rabi oscillation without inducing any damping (when ε, ε′ are not time-dependent). All
the size-scaling costs mentioned here are usually cheap compared to solving the SE at those sizes,
hence their classification as "cost-free" noises.

Master equation formalism
When solving the SE, the quantum system is often considered isolated from its surrounding envi-

ronment, resulting in its dynamics staying unitary. However, the approximation consisting in neglect-
ing external degrees of freedom becomes invalid when their interactions with the system significantly
impact its dynamics, as observed in the damping of oscillations depicted in Fig. 2.2(c). This dissipa-
tion of energy into the surroundings can cause uncontrolled decays or incoherent randomisation of the
phase and requires to consider non-unitary dynamics of open quantum systems. The latter can be
described by the Lindblad master equation (ME)

dρ

dt
= − i

ℏ

[
Ĥ, ρ

]
+
∑
k

γk

(
L̂kρL̂

†
k − 1

2
{
L̂†
kL̂k, ρ

})
. (2.4)

The density matrix ρ generalises the wavevector formalism describing pure states |ψ⟩ to mixed states.
Mixed states ρ = ∑

n pn |ψn⟩ ⟨ψn| represent statistical ensembles of possible prepared states |ψn⟩
and can also describe states entangled with an environment, where the combined state cannot be
impractical to write explicitly. Where Ĥ describes the unitary part of the dynamics, the set of jump
operators L̂k describes the dissipative part of the dynamics, each encompassing an action of the
environment on the considered system, happening with rates γk. [·] and {·} are the commutation and
anti-commutation operation respectively.

This formalism enables to effectively take into account, in a two-level system, decay L̂1 = |0⟩ ⟨1|
and dephasing L̂2 = σ̂z by two coherence times leading to decoherence rates γ1 = 1/T1 and γ2 = 1/T2.
This effective model, when combined with the detection errors encompassed by ε and ε′, may be
sufficient to reproduce experimental data such as the oscillations in Fig. 2.2(c) or the finite contrast
in Fig. 4.7.
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In some cases, the two-level approximation is not sufficient and the picture must be supplemented
by additional levels coupled to the others by coherent processes or spontaneous decay. Taking into
account spontaneous emission of the intermediate level in the ground-Rydberg encoding extends the
two-level system |g⟩ , |nS⟩ into a four-level system |g⟩ , |e⟩ , |nS⟩ , |g′⟩ where the two-photon transition
is addressed by two lasers. |g′⟩ is a garbage state not participating in the dynamics and representing
states living in the ground state manifold where the atom can decay to. Decays from |e⟩ to |g⟩ and
|g′⟩ have branching ratios of 1/3 and 2/3, respectively. Multiplying these by Γe we get the individual
decay rates. Fig. 2.6(b) showcases the effect of the intermediate spontaneous emission on the Rabi
oscillation: as the garbage state becomes more and more populated, less and less population can be
driven towards the Rydberg state, damping the oscillation in an asymmetric way.

The finite lifetime of the Rydberg state is usually modelled by L̂nS→g = |g⟩ ⟨nS| with rate γnS→g =
1/τn(0K). Including the blackbody radiation from |nS⟩ to various Rydberg states requires the addition
of another garbage state |r′⟩, effectively figuring the Rydberg manifold. This decay is figured by
L̂nS→r′ = |r′⟩ ⟨nS| with rate given in Box. 6. The additional emulation cost of adding these states and
solving the ME can be staggeringly high as it scales as d2N where d the number of basis states and
N the system size. Several physical processes, such as laser phase noise or Doppler effects, can be
encompassed inside dephasing terms such as L̂2 in an effective model. Nevertheless, another approach,
less scaling-intensive and allowing more detailed simulation of these processes is described below.

Monte Carlo sampling/trajectories
Most of the physical processes happening before or during the dynamics can be treated with a

Monte Carlo (MC) sampling approach. Experimental parameters θ ∈ Θ varying between each shot
can be sampled M times and for each realisation the related Hamiltonian can be constructed and
solved. Averaging the measured observable over large enough M number of repetitions enables to
extract the expected behaviour as well as confidence intervals. M should be chosen large enough
to prevent a single realisation with parameters sampled far from their mean value from significantly
affecting the averaged dynamics. Although the emulation cost scales with M , it can be parallelised
since the results of the repetitions do not influence one another. One caveat to consider nonetheless is
the presence of sampling noise in the result, which can especially affect derivative calculations using
finite-difference methods.

Some of the noises that can be managed with MC sampling include :

• imperfect state preparation, with finite efficiency of optical pumping for instance (see Sec. 1.4.1).
For each atom, the outcome of a Bernoulli variable B(η) indicates whether it is considered or
not during the dynamics. Fig. 2.6(a) highlights that for an isolated qubit, a finite η causes a
contrast reduction in a similar way to ε′, the two being then indistinguishable with this protocol.

• shot-to-shot fluctuations of control parameters. Values of Ω and δ are obtained by repeatedely
drawing scaling factors from Gaussian variables N (1, σ2

Ω/δ). Fig. 2.6(c) shows the damping
induced by averaging oscillations of various frequencies due to fluctuations of Ω.

• laser phase noise (Box. 3). At each shot, a time-dependent random phase process can be con-
structed with initial value drawn from U(0, 2π). Fig. 2.6(d) shows the damping induced by
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averaging oscillations where the two excitation lasers have random phases processes given by
the spectrums of Fig. 1.5(a).

• thermal motion of atoms. Initial positions and velocities (Box. 1) are shifted using Gaussian vari-
ables N (r0/v0,σ

2
r/v). Those values are considered when emulating Doppler shifts (Fig. 2.6(e)),

time-dependent interactions or the influence of spatial profile in the case of local controls with
small waist (Fig. 2.6(f)).

• influence of residual electric field. A value of electric field e drawn from a centered Gaussian
N (0, σ2

e) shifts the Rydberg level |nS⟩ energy by an amount α(0)
n e2/2 (Fig. 2.6(g)) similarly

to Doppler effect. In addition, inhomogeneities of the electric field can also induce a spatial
variation of this detuning shifts. Effects related to residual electric fields will not be considered
in the following.

In addition, decay processes can also be included in this picture by promoting jump rates γk from
the ME formalism to jump probabilities. At each small time step δt of the dynamics, the evolved state
|ψ(t)⟩ can either be randomly projected using one of the specified jump operators L̂k with probability
δpk(t) ≪ 1 or continues the unitary dynamics: this constitutes the quantum-trajectories MC approach
[81]. Averaged over enough realisations the result should converge towards the one obtained with the
ME. The MC method is advantageous over the ME approach regarding memory consumption as it
only needs to store the state vector |ψ⟩, rather than the entire density matrix ρ. As the number of
considered noises increases and more and more configurations of experimental parameters are possible,
increasing M enables to better sample Θ but can become cumbersome regarding the emulation cost.
When choosing between the ME and the MC methods, it is essential to estimate which quantity will
scale the worst between the state size and the number of samples/trajectories required for convergence.

Detailed noise model for Rabi oscillations
Fig. 2.6(h) showcases experimental data of Rabi oscillation performed at Ω/2π = 1 MHz and mea-

sured on Fresnel with a noisy emulation combining the ME and the MC approaches. This combination
is faster than a full MC approach as the system size is N = 1. We include the various decays described
in 2.3.1 as well as the processes described by the other panels of Fig. 2.6 : ε = 1%, ε′ = 8%, η = 0.5%,
σΩ = 3%, T = 20 µK and laser phase noise with already mentioned spectrum. Such simulation being
quite fast to run, it can be incorporated into a fit method so as to extract the various noise parameters
directly from this data. However, several of them can not be separated by only Rabi oscillations and
the results of other experiments should also be benchmarked at the same time. In the following, we
carefully benchmark a STIRAP protocol so as to build a model useful in an optimisation procedure
performed in chapter 3.
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2.3.2 - Benchmarking a STIRAP protocol
The STImulated Raman Adiabatic Passage (STIRAP) protocol enables to prepare a qubit in

|nS⟩ with efficiency ηSTIRAP. This preparation constitutes an essential step for initialisation in the
Rydberg-Rydberg encoding. In the following, we benchmark a STIRAP procedure utilised on the
Chadoq device in order to explain with an accurate noise model the finite efficiency experimentally
obtained.

STIRAP for robust Rydberg excitation
The STIRAP protocol is detailed in Box. 14 and the resulting dynamics is displayed in Fig. 2.7(b).

For this specific implementation with Ωmax
r = Ωmax

b = 2π × 50 MHz, T = 0.2 µs and α = 1/6,
the accumulated phase AΩrms ≈ 10π which yields a finite preparation fidelity of 98.8%. Indeed, the
protocol is not perfectly adiabatic and the instantaneous state (solid lines) deviates from the dark
state (dashed lines) inducing diabatic errors. In this noiseless model, the fidelity can be increased
arbitrarily by extending the protocol duration T to lower diabatic errors. However, accounting for
relaxation T1 and dephasing T2, a trade-off must be made as increasing T also makes the system more
prone to decoherence.

The main advantage of the STIRAP lies in its insensitivity to many parameters, including fluctu-

Box 14: STIRAP protocol

The STIRAP [82, 83] protocol is a two-photon scheme which enables to efficiently transfer atoms
from their ground state |g⟩ to a Rydberg state |nS⟩ without populating the intermediate state
|e⟩. Diagonalising the three-level Hamiltonian of Eq. 1.6 on the double resonance condition, i.e.
δb = δr = 0, reveals that the ground state of the system can be written as

|ψ0(t)⟩ = cos θ(t) |g⟩ − sin θ(t) |nS⟩ with tan θ(t) = Ωb(t)
Ωr(t)

, (2.5)

θ(t) being the mixing angle of this dark state. Finding a θ evolution respecting |ψ0(0)⟩ = |g⟩
and |ψ0(T )⟩ = |r⟩ implies starting with Ωr ≫ Ωb and ending with Ωb ≫ Ωr which results
in the counter-intuitive pulse sequence displayed in Fig. 2.7(a). It is worth noting that the
transfer only happens between αT and (1 − α)T but the finite ramping time of pulse shaping
experimental devices extends the protocol duration. The pulses can be spaced closer together
by reducing α to limit the lost time ≈ 2αT at the expense of the adiabaticity and therefore the
efficiency of the protocol. Indeed, for the system to remain at all time in |ψ0(t)⟩, the following
local adiabatic criterion must hold at any time :

Ωrms(t) ≫ |θ̇(t)| = |Ω̇b(t)Ωr(t) − Ω̇r(t)Ωb(t)|
Ω2

rms(t)
(2.6)

with Ω2
rms(t) = Ω2

r(t) + Ω2
b(t). As the protocol is sped up (reducing α or T ), the other in-

stantaneous eigenstates of the system can become populated instead of |ψ0(t)⟩ and the final
instantaneous state differs from |nS⟩. Integrating Eq. 2.6 gives AΩrms ≫ π/2 giving a more
global condition and AΩrms ∝ Ωmax

rms T .
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αT

(a)
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Figure 2.7: STIRAP protocol and induced dynamics. (a) Temporal evolution during a STIRAP
protocol of the controls amplitude Ωr/b (red/blue), of the mixing angle θ and of the ratio θ̇/Ωrms
assessing the protocol adiabaticity. (b) Temporal evolution of population in basis states |g⟩ (blue), |e⟩
(purple), |nS⟩ (red) when staying in the ground state |ψ0(t)⟩ (dashed) and obtained when solving the
SE (solid).

ations of Ωr/b, δr and the synchronisation between the two pulses characterised by αT . To illustrate
the latter, the protocol is implemented on Chadoq with Ωmax

r /2π = 36 MHz, Ωmax
b /2π = 85 MHz,

T = 1.3 µs and α = 0.185 on a square grid of atoms spaced by 12.5 µm. Both the two-photon
detuning δr and the spacing between pulses τ are varied around their respective central values, 0
MHz and τ0 = αT = 0.24 µs. Fig. 2.8 depicts the simulated and experimentally measured excitation
probabilities. In the noiseless case, the excitation probability plateaus close to 1 for |δr|/2π ≤ 10 MHz
and τ − τ0 ∈ [−0.15, 0.24] µs. For comparison, the excitation fidelity of a π−pulse (gray line) drops
quicker with |δr| and τ when using the same parameters for Ωr/b and δb/2π = 700 MHz. The asymme-
try around δr/2π = 0 MHz of the experimental curve on Fig. 2.8(a) is distinctive of a miscalibration
of δb and helps estimating the non zero value of δb/2π ≈ 13 MHz. Although this protocol should
exhibit a preparation fidelity of ηSTIRAP = 99.9% at δr/2π = 0 MHz and τ = τ0, the experimental
implementation is essentially limited by the altered shape of pulses (−0.6%) and spontaneous emission
from the intermediate/Rydberg state (−1.7%). The model also includes shot-to-shot fluctuations of
Ωr/b and δr to validate that those almost do not contribute. Accounting for detection errors of the
order of ε = 2% and ε′ = 5% reduces the measured simulated efficiency to 93%. However, close to
resonance, the experimental efficiency is measured to be around 87%. This discrepancy is believed to
be due to unwanted couplings with other states of the intermediate manifold occurring for large values
of Ωb and is reduced when increasing the detuning. This could also be caused by time-dependent
depumping effects causing transfers from |nS⟩ → |e⟩. Accounting for the latter would require non
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(a)

(b)

Figure 2.8: Robustness of STIRAP. Excitation probability obtained when varying (a) the two-
photon detuning δr and (b) the duration between the two pulses τ for either (gray) a π-pulse using
square shapes for Ωr/b(t) or (black) a STIRAP protocol. For the STIRAP, experimental data obtained
on Chadoq (dots) is benchmarked against noiseless simulation (solid) and noisy simulation (dashed)
with parameters given in the text.

trivial time-dependent collapse operators L̂(t) to be included in the simulation. A solution to improve
efficiency at resonance (followed by the optimisation procedure performed in next chapter) is to reduce
both the amplitude and the duration of the pulses. The model built in this part will be used as a
digital twin encompassing the main effects of the device for this protocol.
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2.3.3 - Summary of hardware constraints and noise levels
Finally, we gather typical values of hardware constraints and noise levels of a neutral atom QPU

in the following Table 2.1.

Specifications Noise
Symbol Unit Value Symbol Unit Value

Ising Hamiltonian SPAM
n - 60 ε % 1 − 2

Ωmax/2π MHz 2.5 ε′ % 5 − 8
|δ|max/2π MHz 10 η % < 1
Umax/2π MHz 8.9 Calibration

Traps and atoms Spacing % 1
Nmax
t - 61 Ω % 2
pfill % 55 δ/2π MHz 0.15
Nmax - 30 Decay
dmin µm 5 Γe/2π MHz 1.4
dmax µm 40 Γr→g/2π kHz 0.7
pmove % 99 Γr→r′/2π kHz 0.9

Repetition rate Hz 0.8 − 1 Shot-to-shot fluctuations
Laser and pulses σΩ % 3

Ωmax
b /2π MHz 85 T µK 10 − 20

Ωmax
r /2π MHz 30 α - 1/100
δmax
b /2π MHz 450 σr(T ) nm 50 − 100

|δr|max/2π MHz 10 σz/σxy - 5.2
wb µm 240 σv(T ) nm/µs 30 − 40
wr µm 300 ||k||/2π µm−1 1.2
w µm 180 σδ(T )/2π kHz 50

τEOM ns 20 Effective model
τAOM ns 100 T1 µs 100
Tmin ns 50 T2 µs 4.5
Tmax µs 6 1D ξ sites 3

Table 2.1: Device specifications and noise levels measured on Fresnel. Values updated
in April 2024.

In this section, we have seen how detailed modeling of the noise impacting a quantum system can
help understand some unexpected behaviours when implementing a protocol. Several examples of this
approach are given in chapters 4, 5 and 7 of this thesis. The numerical twins, once tuned with the
quantum device they describe, can provide useful predictions on the dynamics and its limitations but
always up to a relatively small system size. TN methods provide, at the other end of the spectrum,
simulations of larger systems but including noise in the latter remains a challenging issue.
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Improving the desired signal of a quantum experiment conducted on a noisy device can be ap-
proached from two angles. Once the influence of low-level noises on higher-level performance has been
modelled, specific improvements to the hardware can be undertaken, albeit at sometimes considerable
expenses. If no further enhancements are feasible and given that the noise intensities are monitored
and kept below a specified threshold, one may explore the development of more robust control protocols
tailored to operate optimally within these established conditions.

Classical control theory is a unified framework focusing on designing controls to optimise the
behaviour of classical dynamical systems within a set of constraints, such as speed, resilience or
resource economy. Quantum control theory [84, 85] expands upon these principles into the domain of
quantum systems. Originally developed in the context of molecular physics [86] and nuclear magnetic
resonance (NMR) [87], it has then been applied to countless quantum computing problems such
as finding improved protocols for quantum gates and optimising cost observables in the context of
variational quantum algorithms (VQA).

In this chapter, we provide a brief description of useful existing methods in quantum optimal
control and apply them to various examples involving Rydberg atoms, including time-optimal and
amplitude-robust controlled-Z (CZ) two-qubit gates, detuning robust single-qubit rotations and STI-
RAP protocols. Then we explain the need for gradient-free efficient optimisation techniques when
implementing a VQA, as current neutral atom quantum processors can be viewed as noisy black
boxes, expensive to probe.

51
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3.1 - Quantum Optimal Control: methods and examples

3.1.1 - General framework for quantum control
In quantum optimal control (QOC), the target operation to achieve on a system can usually be

encompassed inside an operator Ûtgt which acts on a set of basis states |ψs⟩. Such an operation can
for instance be a quantum gate such as the ones described in Sec. 1.4.5. To realise such a target, one
need to apply a protocol, i.e. a set of time-dependent control functions uc(t) associated to the control
Hamiltonians Ĥc. We focus here on bilinear systems whose dynamics are linear with respect to the
states and the controls. The total Hamiltonian Ĥ(t) reads in this formalism

Ĥ(t) = Ĥ0 +
∑
c

uc(t)Ĥc, (3.1)

with the time-independent part Ĥ0 usually being referred to as the drift. The action of this Hamiltonian
on the basis states can be obtained using the related unitary operator (see Eq. 1.28) such that |ψs(t)⟩ =
Û(t) |ψs⟩. For a protocol lasting a total duration of T , the operation fidelity F (infidelity I) is obtained
by comparing the resulting unitary Û(T ) to Ûtgt, i.e.

F =

∣∣∣∣∣∣
Tr
{
Û †

tgtÛ(T )
}

Tr
{
Û †

tgtÛtgt
}
∣∣∣∣∣∣
2

, I = 1 − F (3.2)

Fundamentally, methods in QOC rely on the variational principle to find sets of optimised pulses
minimising the infidelity over a set of basis states, while taking into account several constraints.
The functional J encompasses this problem with any required constraints implemented via Lagrange
multipliers and reads

J({|ψ(t)⟩}, {u(t)}) = I +
∑
c

∫ T

t=0
gctrl(uc(t))dt+

∑
s

∫ T

t=0
gstate(|ψs(t)⟩)dt. (3.3)

gctrl is a running cost on the control fields and can for instance penalise excessive amplitudes or include
knowledge on the control noise to mitigate using the filter function formalism [88]. gstate is a state-
dependent running cost and can encode time-dependent control targets [89] or penalise population in
a forbidden subspace [90].

QOC framework therefore includes three main components : a parameterisation of the control
fields, a functional to minimise and an optimisation method. Most algorithms thus iteratively updates
the control pulses based on the system dynamics and the desired optimisation goal, relying on gradients
of the functional to guide it towards the optimum ∇uc,ψsJ = 0. While these ingredients can be selected
independently to perform the task, leading to methods such as the ones described in Sec. 3.2.3, they
can also be constructed collectively in order to obtain analytical arguments for convergence such as
in the Krotov method.
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3.1.2 - Krotov method for monotonic convergence
The Krotov algorithm [91] has been applied to various quantum mechanical problems [92, 93] and

is based on a rigorous examination of the conditions for calculating the updated controls in order to
guarantee a monotonic convergence of J .

Theory
At each iteration k, the Krotov algorithm performs a forward-backward propagation of the states.

The co-states |χs(t)⟩ are obtained by evolving the target states Ûtgt |ψk⟩ backward in time under the
adjoint Hamiltonian Ĥ†. The condition for monotonic convergence of J reads

∂gctrl
∂uc(t)

∣∣∣∣
(k)

= 2Im

∑
s=1

〈
χ(k−1)
s (t)

∣∣∣∣∣
 ∂Ĥ

∂uc(t)

∣∣∣∣∣
(k)

 ∣∣∣∣∣ψ(k)
s (t)

〉 . (3.4)

The clever choice made by the Krotov algorithm implies a link between the control constraints and
the update scheme such that

gctrl(u(k)
c (t)) = Sc(t)

λa,c

(
u(k)
c (t) − u(k−1)

c (t)
)2
. (3.5)

The (inverse) Krotov step width λa,c governs the overall magnitude of the update and if too large,
uc(t) changes minimally each iteration, leading to slow convergence. Conversely, overly small values
may induce instability in numerical implementation. The update shape function Sc(t) helps enforce
boundary conditions on the controls: if both the guessed field at previous iteration and Sc transition
smoothly around 0 and T , this characteristic will be retained throughout the optimisation. Combining
Eq. 3.4 and Eq. 3.5 gives a first-order update scheme which, from an initial set of controls u(0)

c (t),
ensures a monotonic convergence towards optimised ones. In the following, we test an implementation
of the Krotov method using the krotov Python package [94] to optimise a global two-qubit CZ gate
for neutral atoms.

Example : CZ gate with global addressing
An efficient and easily implementable two-qubit controlled gate is a prerequisite for building al-

gorithms in the digital quantum computing paradigm. Several realisations of a CZ gate have been
proposed for neutral atom technology, such as the π− 2π− π [95] or the Levine protocols [96]. While
the first requires local addressing on each qubit, the second utilises a global scheme with a phase jump
to achieve F ≥ 97%. A more recent time-optimal (TO) protocol has enabled to improve F to 99.5%
[51]. Indeed, speeding up a protocol involving Rydberg states enables to reduce the performance losses
due to the Rydberg finite lifetime. We reproduce here (and in the following example using GRAPE)
the theoretical results obtained in [52].

The objective is to design through optimal control a two-qubit CPHASE gate acting on a 3−level
system consisting of two hyperfine |0⟩, |1⟩ and a Rydberg state |nS⟩ by shaping the following time-
dependent controls : the detuning δ or the phase φ. In order to be as fast as possible, Ω(t) remains
constant at a maximum value Ωmax and the two qubits interacts when in |nS⟩ through an interaction
term with strength U = 10Ωmax. The target operator reads Ûtgt(α) = |00⟩⟨00| + e−iθ(|01⟩⟨01| +
|10⟩⟨10|) + e−i(2θ+α) |11⟩⟨11|, with θ being a free-parameter adjustable with a 1-qubit phase gate. For
α = π, Ûtgt implements a CZ−gate.
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Figure 3.1: Krotov method applied to global CZ gate. (a) Evolution of the optimised control
δ at various iterations, including (grey) k = 1, (pink) k = 10 and (red) k = 60. The pulses are
discretised in nt = 200 time steps. (b) Temporal evolution of the fidelity of the operation for various
iterations. (c) Temporal evolution of the probabilities of each basis states |00⟩, |01⟩, |10⟩, |11⟩ under
the optimised protocol. The solid lines are coloured according to the instantaneous phase of each state
(blue→green).

The analytical monotonic convergence result of Krotov is only valid for continuous controls and
one requires to discretise their shapes in numerical optimisations. However a sequential scheme, well
described in [94], can still guarantee its validity with controls as piece-wise constant functions over
thin enough time intervals. For this specific implementation using the Krotov method, we optimise
on δ, set φ to 0 and fixes T ≈ 7.612/Ωmax µs as this is the optimal time found in [52] (compared to
T ≈ 8.585/Ωmax µs in [96]). We initialise the optimiser with a constant shape for δ(t) and select a
flattop update shape S(t) with rising time 50 ns. After 60 iterations, the algorithm outputs I ≈ 10−3.
Fig. 3.1(a) showcases the updates on the initial constant shape of δ(t) after 1, 10 and 60 iterations,
settling on an oscillatory behaviour reminding of the phase profile found in [52]. Each iteration of
the algorithm improves the final fidelity as exemplified in Fig. 3.1(b) where F (k)(t) is plotted for the
corresponding pulses. We can check with Fig. 3.1(c) that for the optimised pulse the phase of the
basis states implements Utgt(π) up to a global phase of π. While further improving the fidelity can
be ensured by Krotov monotonic convergence, the cost of additional iterations can be prohibitive.
In addition, a thin enough time discretisation requires a high value of λa, meaning that controls are
updated by only small values. Another challenge thus arises in the balanced selection of the step
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width, which can accelerate convergence but lacks a systematic tuning method beyond trial and error.

3.1.3 - GRadient Ascent Pulse Engineering (GRAPE)
While Krotov method devises a sequential time discretisation through a clever construction, the

GRAPE method circumvents this challenge by initially discretising the functional before employing
variational calculus. The GRAPE method was first introduced to design NMR pulse sequences [97]
but its use extended to quantum computing, included in neutral atom technology [98]. As it utilises a
direct analytical expression for the gradient by discretising the continuous control fields, GRAPE can
efficiently find a suitable solution in the parameter space with improved convergence speed.

Theory
For a time interval discretised in nt steps of size ∆t, the resulting unitary Û(T ) can be written

as product of constant operators ∏n Ûn with u(t) = un for t ∈ [(n − 1)∆t, n∆t]. The gradient of a
functional, such as I = 1 − | ⟨ψtgt|ψ(T )⟩ |, can thus be calculated exactly at iteration k − 1 with

∂I
∂un

∣∣∣∣
(k)

= − ∂

∂un
⟨ψtgt| Û (k−1)

nt . . . Û (k−1)
n . . . Û

(k−1)
1 |ψ(0)⟩

= −
〈
χ(k−1)(n∆t)

∣∣∣ ∂Û (k−1)
n

∂un

∣∣∣ψ(k−1)((n− 1)∆t)
〉 (3.6)

On the contrary to Eq. 3.4, the gradient computation only requires knowledge of the previous iter-
ation and all control parameters un can be updated at once, making GRAPE a concurrent scheme
instead of a sequential one like Krotov. Meeting halfway, there also exist hybrid schemes that in-
terleave concurrent and sequential calculation of the gradient [99]. Using classical gradient descent
optimisations technique such as Broyden-Fletcher-Goldfarb-Shannon (BFGS) method, one can then
iteratively locate the optimum of the functional. One downside of GRAPE compared to Krotov is
that the optimised controls may not be approximately continuous, complicating in that case their
implementation on hardware. In the following, we test an implementation of the GRAPE method
using the gradient-based optimiser of the Boulder Opal software [100, 101] which relies on an efficient
tensor formulation of the objects at hand to provide powerful optimisation. Building on the problem
of finding the TO CZ gate, we then apply this formalism to build a protocol mitigating the influence
of amplitude noise in the controls.

Example : improving the robustness of CZ gates
We perform a similar optimisation procedure as for the Krotov case in order to minimise the

infidelity of a CZ gate on two qubits. We perform several optimisations for various values of 4 ≤
TΩmax ≤ 10 in order to locate the time optimum. On the contrary to the krotov package, we can
easily constrain δ to remain within |δ(t)|/Ωmax ≤ 5 (mimicking the ratio reachable on Fresnel). The
pulses are split into nt = 100 steps and smoothed with cut-off frequency nt/2T . We perform the
optimisation on either φ or δ separately while keeping the other to zero.

Fig. 3.2(a) shows the infidelity obtained at each optimisation with a clear drop around ToptΩmax =
7.612 rad giving the TO gate protocol. Below Topt, the gate time is too short to obtain the proper
phase accumulation of a CZ, while above, each optimisation procedure can produce a working pulse
where the minimal infidelity obtained only depends on convergence criterion of the procedure. The TO



56 CHAPTER 3. OPTIMAL CONTROL...

ℱ
(a)

(b)

(c)

5

5

5

5

1.0

Figure 3.2: GRAPE method for finding time-optimal and amplitude-robust protocols for
the CZ gate. (a) For each total duration T , the final infidelity is plotted when optimising (purple)
δ(t) or (orange) φ(t). The TO pulses obtained at the infidelity drop are given in the inset. (b) Similar
plot for the AR pulses. (c) The robustness of the infidelity against amplitude fluctuations εΩ is given
for the four pulses highlighted in (a) and (b).

shape in detuning closely resembles the one obtained in Fig. 3.1(a) while the phase shape reproduces
the result of [52].

Apart from finding optimal pulses in the noiseless case, QOC can also tackle the mitigation of
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experimental noise, such as fluctuations of laser intensities. This can be translated into a quasi static
amplitude noise Ωmax → (1 + εΩ)Ωmax with εΩ of the order of a few %. In [102], the authors
apply the same framework to the task of finding a TO amplitude-robust (AR) pulse. We incorporate
the sensitivity of the controls to this amplitude variation via a corresponding noise operator ∝ σ̂x
and use the filter function formalism [88, 100], adding FΩ(0) to the functional in order to tailor
the procedure to produce a robust pulse. Fig. 3.2(b) shows the minimised value of obtained for
various total durations with a clear inflection around TΩmax = 14 rad giving the fastest amplitude-
robust gate protocol. The two approaches, optimising on φ and δ are giving similar results and the
optimised shapes are comparable to the ones obtained in [102]. Fig. 3.2(c) displays the robustness of
the highlighted protocols when applied with Ωmax(1+εΩ). While the TO protocols performs very well
at εΩ = 0, the infidelity quickly increases to 10−2 at εΩ = 5%. Although less efficient in the noiseless
case, the AR protocols allow to gain at least an order of magnitude for |εΩ| ≤ 10%. Such approaches
on building robust pulses can be extended to various other noises, such as detuning fluctuations as
tackled in the following section.

3.1.4 - Chopped RAndom Basis (CRAB) optimisation
Both Krotov and GRAPE rely on computing or estimating the gradients of the functional relative

to the controls. However, relaxing on the condition of having access to those gradients, one can also
parameterise controls in more various ways including sums of basis functions such as in CRAB.

Theory
The essence of CRAB [103] lies in the specific choice of the parameterisation of the controls in terms

of a truncated randomised basis of functions recasting the problem from a functional minimisation to a
multi-variable function minimisation, manageable by direct-search methods such as the ones described
in Sec. 3.2.3. In this case, each control of Eq. 3.1 can be written as

uc(t; αc) =
∑
m

αmc fm(t) (3.7)

where fm is a family of functions such harmonic ones characterised by amplitude, frequency and
phase or a sequence of Gaussians. The optimisation is then performed over the αc. While for some
parameterisation, a gradient can still be calculated at relatively low cost, for more complex basis, the
use of gradient-free methods requires to set an upper bound on the size of the family to limit the
parameter space. Without knowledge on the gradients, the optimisation usually converges slower,
especially for large |αc|, but can be sped up by slightly randomising the hyperparameters of the basis
functions at each iteration. Constraints on the control pulses can be transformed into constraints over
the αc and robust pulses can be found by averaging the process over a broad array of possible noise
values.
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Example : π/2−pulse robust to detuning shifts
Another strong building block of digital quantum computation is the ability to perform resilient

single-qubit gates, i.e. rotations such as described in Eq. 1.5. Due to environmental noise or instabilities
in the drive, the detuning component can suffer from random shifts in its value. This problem was
tackled in the context of NMR with the authors of [104] introducing general rotation pulses, called
Band-selective Uniform Response Pulses (BURP) and optimised so as to be robust under shot-to-shot
fluctuations of the detuning. The latter utilises the following harmonics decomposition for the driving
field

Ω(t; α) = θ

T

[
α0 +

m∑
m=1

α2m−1 cos(ωmt) + α2m sin(ωmt)
]

with ωm = 2πm/T (3.8)

with T the protocol total duration and θ the rotation phase. While continuity of the controls are
straightforward by construction, we can implement constraints such as Ω(t = 0; α) = Ω(t = T ; α) = 0
→ α0 +∑m=1 α

2m−1 = 0 by incorporating them into the global function to optimise. We are especially
interested in applying single qubit x rotations to the system, i.e. Ûtgt = R̂x(θ) with for instance
θ = π/2.

This parameterisation enables to construct several pulses, displayed in Fig. 3.3(a), implementing
Ûtgt such as :

• the square pulse, with α = [1],

• the Blackman pulse, with α = [1,−1/(1 − a), 0, a/(1 − a), 0] with a = 0.16,

• and the Universal BURP pulse, with the 1 + 8 + 8 = 17 parameter values given in [104].

We implement a CRAB method to find an optimal pulse using as many parameters and as robust as
the BURP instance while speeding it up. We use the tensor formalism of Boulder Opal to compute the
dynamics occurring with Ω(t; α(k)) at various values of constant detuning δ0 up to Ωmax, averages the
obtained infidelity while including constraints such null values at the boundaries and time-optimality
and perform the optimisation using the gradient-free method available in Boulder Opal.

The optimised pulse given in Fig. 3.3(a) is 8 times longer than a simple square pulse but 40% faster
than the BURP one. Its benefit is highlighted in Fig. 3.3(b) where the deviation from a perfect π/2
rotation along x averaged over values of detuning shifts up to δ0 is plotted from the various pulses.
The square pulse excels primarily in nearly noiseless scenarios, whereas the Blackman pulse initially
lags behind in this domain but compensates a bit for it when larger shifts are occurring. While both
BURP and our optimised pulse are beaten by the square one at δ0 = 0, if the shifts can be as high
as Ωmax, they help gaining two orders of magnitude in robustness. The shorter optimised pulse also
outperforms BURP from one order of magnitude in the noiseless case but is slightly less efficient when
δ0/Ωmax ≥ 0.4. The dynamics of the Blackman and of the optimised pulse are given in Fig. 3.3(c1)
and (c2) respectively for various values of shifts. As the simpler pulse can not prevent the qubit state
from increasingly rotating along the z-axis, the optimised pulse leads to distinct dynamics, ensuring
that regardless of the shifts, the qubit ends up near the target state. Another interesting problem is to
consider pulses robust to interactions induced-shifts when wanting to perform single-qubit rotations
in an array of interacting qubits.
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Figure 3.3: CRAB method for robust single-qubit π/2−pulse. (a) The harmonics parameteri-
sation enables to construct (grey) a square pulse, (black) a Blackman pulse, (blue) the BURP pulse
and (red) the CRAB optimised pulse. (b) Deviations from the perfect rotation obtained when using
the pulses given in (a) and averaged over realisations with detuning shifts δ ∈ [0, δ0]. (c1) Bloch sphere
representation of the qubit dynamics (increasingly red points) with the Blackman pulse, starting from
the initial state |0⟩ (green) and targeting (|0⟩ + i |1⟩)/

√
2 (yellow). (c2) Same with the CRAB opti-

mised pulse.

3.1.5 - Improving STIRAP efficiency with QOC
The latter examples demonstrates the utility of QOC methods for designing time-optimal and

robust gates for digital computing with Rydberg atoms. In addition, QOC can also tackle the opti-
misation of protocols like the STIRAP (see Box. 14) benchmarked in Sec. 2.3.2.

As a reminder, the system at consideration is a 5-level system with basis states |g⟩ , |e⟩ , |nS⟩ , |g′⟩
and |r′⟩ where the efficiency of the targeted transfer from |g⟩ to |nS⟩ can be encompassed in the fidelity
F(t) = | ⟨nS| Û(t) |g⟩ | = PnS(t). Anticipating on the experimental testing of an optimised STIRAP
protocol, we can define a measurable fidelity:

Fm(t) = 1 −
∑
k=g,g′

Pk(t) =
∑

k=e,nS,r′
Pk(t) (3.9)

since differentiating between |g⟩ and |g′⟩ (or between |e⟩, |nS⟩ and |r′⟩) is not easily achievable with
the used measurement scheme. This fidelity is useful for benchmarking simulations and the device.
However when the STIRAP is only the first step of a more complex protocol, we are more interested
in the theoretical F(T ). With the model described in Sec. 2.3.2, the experimental STIRAP protocol,
given in the right inset of Fig. 3.4, achieves Fm(1.3µs) = 0.9756 when correcting for detection errors.
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(a)

(b)

Figure 3.4: Optimisation of a STIRAP protocol with quantum optimal control. (a) For
each total duration T , an optimised protocol is obtained, yielding a noiseless infidelity I (coloured
points). The measurable fidelity Fm is obtained when emulating the protocols with a realistic noise
model. (insets) Experimentally used and time-optimal STIRAP protocols with the time dependent
amplitudes of Ωr/b(t). (b) Recapture probability (1 − Fm(T )) obtained when varying the two-photon
detuning δr for both protocols highlighted in (a). Experimental measurements (dots) are benchmarked
against noisy simulations with detection errors (dashed) and the corrected recapture probabilities are
also given (solid).

This sets a baseline for our optimisation algorithm both in terms of pulse duration and fidelity to
reach. We focus on shaping the two driving fields in the two-photon scheme, Ωr/b(t), with a GRAPE-
like method using Boulder Opal while also letting δb as a free parameter to optimise within reasonable
bounds |δb|/2π < 15 MHz. The cost to minimise is the following :

J = 1 − F(T ) + 1
T

∫ T

t=0
| ⟨e|ψ(t)⟩ |2. (3.10)

While the first term accounts for the closeness to the target, the second implements a cost penalty
for populating too much the intermediate state, as it could lead to unwanted decays. Ωr/b are built
using piece-wise constant pulses with nt = 100 segments, filtered by a low-pass of cutoff frequency
∝ 1/τAOM and multiplied by a cosine envelope to ensure Ωr/b(0) = Ωr/b(T ) = 0. In order to reduce
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the influence of the finite lifetime, we want to implement a TO protocol. To avoid solving a master
equation at each step of the optimisation (and also because gradient estimation is costly within this
framework), this time optimisation is either done by adding another penalty term ∝ T (at the cost of
having to fix another hyper parameter) in J or by performing several optimisations each at a fixed
time T and emulating the corresponding dynamics with the master equation formalism to choose Topt,
the time enabling to achieve the target while not letting too much time for the decoherence effects to
strongly affect the system.

As the total duration available increases, the optimiser reaches improving values of I in the noiseless
case. However, when using the noise model derived from the experimental benchmark, including
various decay channels for instance, an optimal time can be found as shown in Fig. 3.4(a). The pulse
obtained by the optimiser at Topt is shown in Fig. 3.4(left inset) and achieves (with correction of the
detection errors) Fm(0.718µs) = 0.9847, improving the measurable STIRAP efficiency by ∆Fm = 0.9%
in simulation. The free parameter δb is set to 0 by the optimiser. We then implement this protocol
on the Chadoq device. The latter takes as inputs AWG voltage signals and perform several steps
to generate the controls. Some of those steps can be characterised by an experimentally measured
transfer function while others like the modulation by the AOM are not easily reversible. Thus, the
experimental controls sent to the atoms might slightly differ in shape from the theoretical ones. Ωmax

r/b

are set and measured to be at the right level while δb is set to 0 with ±1 MHz inaccuracy. The
experimental recapture rates obtained while sweeping δr are shown in Fig. 3.4(b) and are in agreement
with the noisy simulations. Fluctuations in calibrating δb, ε and ε′ can explain the few discrepancies.
Interestingly, we notice that around δr ≈ δ0 (at the resonance) the simu./expt. discrepancies are
less pronounced in the optimised case. This may be explained by the smaller power needed for this
optimised protocol, not being enough to couple unwanted transitions between |g⟩ and others hyperfine
levels. The optimised protocol also seems less robust than the previous one but exhibits better results
in the constrained range of |δr/2π| ≤ 3 MHz. However, while the optimised pulse is shorter and
requires less power, it remains hard to precisely measure its expected benefit in terms of measurable
fidelity (+0.9%). Looking at the theoretical fidelity F , the gap between the two pulses is in fact larger
by 1.7% meaning that the benefit of the optimised protocol is not fully measurable by Fm on the device.
A possible procedure for amplifying this signal would be to compute an optimised inverse STIRAP
protocol and apply sequentially the two several times. By measuring the expected decay of the fidelity
after enough steps, we could trace back from experimental measurements the theoretical improvement.
Another possibility would be to switch to a CRAB like approach with a simpler parameterisation, only
optimising on the maximum amplitudes, pulse widths and time separation of the pulses. This could
enable to directly optimise the protocol on the Chadoq device.
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3.2 - Running variational quantum algorithms on a QPU

Model-based optimal control techniques described above are especially useful when the controlled
system can be modelled accurately and its dynamics solved analytically or emulated at low cost. How-
ever, for systems of larger sizes, i.e. with more qubits, where the emulation cost is prohibitive or for
systems with noisy output hard to characterise, one can resort to closed-loop experimental optimisa-
tions. This approach operates independently of a Hamiltonian or other mathematical description of
the quantum system, making it highly effective in scenarios with unknown noises, such as caused by
unexpected couplings, interfering energy levels and control distortions.

3.2.1 - Building a hybrid closed-loop
The term closed-loop refers to the iterative process over parameters θ = (θ1, . . . , θi, . . .) ∈ Θ

between a classical optimiser, tasked to compute and minimise a cost function C(θ) through direct
queries to the experimental quantum system, producing the states |ψ(θ)⟩. If Θ only contains a finite
set of elements, the optimisation is said to be discrete, otherwise it is said to be continuous. The
optimiser iteratively adjusts candidate controls u(θ), incorporating experimental measurement results
into its decision-making process. The iterative loop ends after meeting fixed convergence criteria,
such as exceeding the total number of iterations or cost evaluations allowed (which can be different if
the decision-making process requires to probe several points to adjust its model) or having variations
||θ(k+1) − θ(k)|| or ||C(θ(k+1)) −C(θ(k))|| below a predefined threshold. Once θopt has been found, such
that

θopt ≈ argmin
θ∈Θ

C(θ), (3.11)

the prepared state, the optimised controls or the minimum cost can be used in subsequent problems.
This concept of closed-loop is especially used in the formalism of VQA, first introduced in the digital
paradigm. On the contrary to standard optimal control problems, focusing on building the optimised
controls u(θopt), VQAs aim at finding approximate solutions, embedded in |ψ(θopt)⟩, to quantum
computational problems. The parameterisation typically adopts the structure of a quantum circuit,
often consisting of a series of arbitrary unitary rotations denoted as Re(ϕ)(θi) (refer to Eq.,1.5), which
are subject to optimisation. However, with the emergence of the neutral atom technology, a number of
analog-based VQA proposals have emerged, with some of them detailed in Sec. 6.2.1. Gradient-based
methods have been especially used for the VQA classical optimisation part but can suffer from the
appearance of barren plateaus depending on the expressiveness of the parameterisation, as described in
Box. 15. The control parameterisations u(θ) introduced above in the QOC paradigm can be extended
to the analog VQA and additional ones will be used in Sec. 4.2.4 and Sec. 6.2.1.
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Box 15: The problem with gradient descent methods for VQA

The choice of the parameterisation of the quantum evolution, or ansatz, whether in the form of
circuits or continuous controls, directly influence the landscape of the cost function. A significant
challenge arises when this landscape appears relatively flat as gradient-based classical methods
rely on following the gradients ∇θC to navigate the parameter space. Unsurprisingly, this
phenomenon can occur when the evolution is over-parameterised and some parameters have little
influence on the overall dynamics. However, a larger problem arises when the gradients relative
to the parameters θi all exponentially vanish with N the number of qubits involved, causing the
optimisation process to stall: this problem is referred to as barren plateaus [105]. Specifically, it
has been observed that highly expressive ansätze tend to exhibit flatter cost landscapes, making
them more challenging to optimise [106]. Recent findings have also established a connection
between the dynamical Lie algebra of an ansatz and the occurrence of barren plateaus [107].
The effect of barren plateaus can be formalised by

Varθ
(
∂C(θ)
∂θi

)
∈ O(1/bN ) (3.12)

for b > 1. Combined with the Chebyshev’s inequality, the latter implies that the gradient of
the cost function will be, on average, exponentially small since

p

(∣∣∣∣∂C(θ)
∂θi

∣∣∣∣ ≥ c

)
≤ 1
c2 Varθ

(
∂C(θ)
∂θi

)
(3.13)

with c > 0. Consequently, gradient-based optimisation classical algorithms struggle to identify
the direction of steepest descent, as the gradient provides weak or no guidance. The presence
of barren plateaus poses a significant challenge for VQAs with parameterised quantum circuits
and gradient-based optimisation especially when applied to larger and larger systems. It can
lead to slow convergence, increased sensitivity to noise and errors, and a higher likelihood of
getting stuck in sub-optimal solutions.

3.2.2 - A QPU is just an expensive noisy black box

Finding the optimum value of a cost function C(θ) requires a well-crafted strategy to probe the
parameter space Θ. Without prior knowledge, finding the optimal solution could be done by evaluating
C for every possible combination of parameters. However sufficient for small discrete spaces, this
simplest scheme is quickly rendered unpractical on larger space by the curse of dimensionality. Indeed,
let imagine a classical computer evaluating C at a given set of parameters θ in less than 1 µs. If θ
is comprised of 20 parameters, such as the control slices in GRAPE, and each of them can only take
10 values (due to finite resolution of the signal generator for instance), then an exhaustive search
would still take a few million years. Furthermore, the functions considered here call on quantum
computers for their evaluation and thus bears a significantly higher monetary/time cost. Optimising
such expensive functions imposes fast converging methods, sparing on the number of calls. If C is
a black box function, lacking known particular characteristics such as linearity, differentiability or
concavity, traditional methods, including gradient-based approaches, often offer limited assistance.
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Nevertheless, certain techniques, like the finite differences and the subsequent parameter shift rule
[108, 109], provide the means to estimate gradients for such functions in certain scenarios, albeit
requiring additional costly evaluations of C. Finally, two successive evaluations of C at the exact same
set of parameters may not yield identical results. Indeed, the high-level cost C might be impacted
by low-level noises such as finite sampling of the quantum state produced, fluctuating controls or
inherent random physical processes happening during the dynamics. Examples of scenarios where
the expensive noisy black box optimisation problem arises abound, including tuning hyperparameters
in large machine learning models, performing lab experiments in biomedical research, optimising
investments portfolio in the finance industry or running a VQA on a NISQ quantum computer. In
the rest of the section, we will focus into choosing an efficient classical decision-maker for the future
hybrid loops used for antiferromagnetic state preparation in chapter 4 and combinatorial problems in
chapter 6.

3.2.3 - Gradient-free optimisation of black box functions
Although, the gradient-descent deterministic approach enables tackling parameterisation with hun-

dreds of variables, such as in GRAPE, the existence of barren plateaus and the high cost of estimating
gradients of expensive noisy black box functions make it less successful in VQAs. By resorting to
ansätze with fewer parameters (typically less than 20), such as in CRAB, an exploration of the pa-
rameter space with gradient-free methods becomes viable. A wide variety of gradient-free methods
exist, the best method to use depending on the formulation of the problem and the desired result.
They can either be deterministic, with the example of Nelder-Mead downhill simplex method [110] or
probabilistic, incorporating randomness into the optimisation process, often by introducing probabilis-
tic sampling or perturbation techniques. Among them, the simulated annealing method described in
Box. 21 is based on a non-greedy random search with a variable trust region and can still handle many
parameters. Genetic, or evolutionary, algorithms draw inspiration from natural selection, evolving a
population of candidate solutions through selection, crossover, and mutation operations to find the
optimal solution, mimicking survival of the fittest and genetic recombination [111]. Particle swarm
optimisation is a population-based technique mimicking bird flocks or fish schools, where candidate
solutions, or particles, adjust their positions based on their own and neighbouring particles best-known
positions, collectively converging towards optimal solutions by dynamically exploring promising re-
gions of the parameter space [112]. Finally, surrogate-based techniques approximate expensive black
box functions with faster-to-evaluate models [113], such as neural networks, random forest of decision
trees [114] or also Gaussian processes. They are typically trained on a limited set of calls to the orig-
inal function and can then provide fast predictions of the function values at unexplored points in the
parameter space. With a fairly representative model, the optimum found should be close to the real
one. However, the accuracy of the model is limited by several issues: the dimension of the input space,
the complexity of the modelled function, the presence of data noise and the bias–variance trade-off
[115]. The latter accounts in the observed discrepancy for two primary error sources: bias, resulting
from flawed assumptions in an under-trained algorithm, and variance, originating from the excessive
sensitivity to noise in an over-trained algorithm. The learning sample size must therefore be sufficient
without being excessive. By sequentially adding carefully selected data to the model, we can drive it to
approach C in regions the function is more likely to show a minimum. This process typically involves
leveraging a score function constructed from the model parameters. The target regions should be the
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surroundings of a spotted potential minimum, but also the unexplored areas that could host one. The
Bayesian algorithm presented in the following section encompasses all of these strategies in order to
quickly detect the minimum of an expensive black box function with as few calls to it as required.

3.3 - Bayesian algorithm as classical optimiser

Bayesian optimisation algorithm has two keywords, model and decide [116]. It encompasses both
a statistical model that reconstructs the landscape of the target function C while providing an uncer-
tainty on such reconstruction and a decision maker, the acquisition function a, which indicates where
the next evaluation will be most likely to enhance optimisation. After a training phase where the
model first fits few evaluations of C, as in surrogate-based methods, each new iteration will favour
either exploitation of promising areas of the parameter space or exploration of regions where the high
uncertainty leaves room for a potential minimum. The newly acquired measurement C(θ) updates
the prior knowledge of the model using a Bayesian inference technique. In the following, we delve
a bit more into statistical modelling with Gaussian processes and how the acquisition function helps
making decisions.

3.3.1 - Statistical modelling with Gaussian processes
For the algorithm to perform efficiently, the modelling of the landscape needs to be expressive

enough while staying as simple as possible to prevent undue costs. Random processes avoids the
necessity of an explicit parameterisation and guarantee essential properties like continuity and dif-
ferentiability. While in the following, we focus on Gaussian processes, it is possible to use other
statistical surrogate models such as binomial distributions which can represent the uncertainty of
quantum measurements in a fairer way [117].

Gaussian processes
A Gaussian process (GP) is a probabilistic model used for capturing uncertainty in functions.

It is defined by a mean function µ and a covariance function (also known as kernel) k. Sampling
from a GP at θ yields a set of values normally distributed with mean µ(θ) and variance k(θ, θ), while
their correlations with other values sampled at θ′ are governed by the positive semi-definite covariance
matrix defined with k(θ, θ′). Selecting µ and k establishes a prior probability distribution p(f) for the
GP, encompassing the beliefs about C before observing any data.

Faithfully reproducing the target function C with a GP requires some initial assumptions, which,
in the case of black-box functions, are usually quite poor. With no prior knowledge of C, no peculiar
behaviour for the mean can be assumed and a standard procedure consists in arbitrarily setting the
mean function µ to a constant µ0. If C is said to show some parametric structure, µ can also be
written as a sum of low-order polynomials in θ. The choice of k enables to choose to what degree
closeness in the parameter space should lead to correlation in values with various examples given in
Box. 16/
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Box 16: Examples of kernel functions

Various kernels are available, based on the properties the models are assumed to exhibit, with
among them [118]:

• the Gaussian, or Radial-basis, kernel given by:

k(θ, θ′) = exp
(

−||θ − θ′||2

2l2

)
(3.14)

where the length scale l accounts for how fast a surrogate model is believed to change
with θ. This infinitely differentiable kernel is often used, due to its smooth and stationary
behaviour.

• the Matern kernel, generalisation of the above, is written as:

k(θ, θ′) = 1
Γ(ν)2ν−1

(√
2ν
l

||θ − θ′||
)ν

Kν

(√
2ν
l

||θ − θ′||
)

(3.15)

with Γ, the gamma function, ν, the smoothness parameter, and Kν , a modified Bessel
function. As ν increases, the model should smoothen, with peculiar values at 1/2, 3/2
and 5/2 where it is respectively continuous, once differentiable and twice differentiable.
A fairly used one is

k(θ, θ′) = σ2
(

1 +
√

3||θ − θ′||
l

)
exp

(
−

√
3||θ − θ′||

l

)
for ν = 1.5 (3.16)

where σ is a normalisation term.

• the ExpSineSquared kernel is especially useful if the target has a known periodicity since

k(θ, θ′) = exp
(

−2 sin2(π||θ − θ′||/p)
l2

)
(3.17)

where p is the periodicity of the model.

• the Rational Quadratic kernel, which is a mixing of Gaussian kernels with different length
scales

Training the prior model

In order for the prior model to reproduce the target, we need to train it on a few observed
evaluations of C. Provided with a budget of nr calls, C is surveyed according to an initial space-
filling pattern. For small-sized spaces, the probing points, if enough, can be formed into a discrete
grid efficiently covering the entire parameter space. However, as the number of dimensions grows, it
becomes less resource consuming to utilise a more efficient space filling pattern such as Latin hypercube
sampling. The latter ensures a covering of the entire range of each input variable while minimising
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correlation between variables. The acquired training dataset D = (θ,C) = {θ(k), C(θ(k))}k=1,...,nr will
be used to prepare an initial model of C.

Tuning the hyperparameters
The training dataset is supposed to have been drawn randomly with probability p(C|f) by sampling

a model function f obtained from the prior probability distribution p(f). While f is entirely defined
by µ and k, the latter include numerous hyperparameters η, for instance η = {µ0, σ, l} in the case of
constant mean and Matern kernel. One can also include a noise hyperparameter which will be used
to fit the amount of noise estimated in the observations. Two methods exists for the hyperparameters
tuning in order to best capture the underlying function [119].

• Maximisation of the log marginal likelihood. This likelihood represents the probability of ob-
serving the data given a particular set of hyperparameters and reads

p(D|η) =
∫
f
p(D|f)p(f |η)df (3.18)

The set of hyperparameters explaining the best the data are η̃ = argmaxη log(p(D|η)).

• Full Bayesian approach. By combining a prior distribution over the hyperparameters p(η) with
the above likelihood one can retrieve the posterior distribution using the Bayes rule

p(η|D) = p(η)p(D|η)
p(D) (3.19)

Note that in practice, this distribution can only be approximated, using computational methods
such as Markov chain Monte Carlo. With this posterior distribution, one can make predictions
about the optimal hyperparameters or estimate the uncertainty associated with each hyperpa-
rameter.

Following the hyperparameter tuning, one can update the prior assumption of µ and k to generate
the posterior distribution p(f |C) using the following conditioning operations

µ′(θ) = κTK−1(C − µ(θ)) + µ(θ) (3.20)
k′(θ, θ) = k(θ, θ) − κTKκ (3.21)

where κ = k(θ,θ) encompasses the correlation between a new point and the precedently observed ones,
while K = k(θ,θ) constitutes the kernel matrix of the observed data. The model is then considered
trained. If we sample the posterior distribution p(f |C) multiple times across the parameter space, each
generated function evaluated at a point θ(k) ∈ θ will yield the exact value C(θ(k)) with zero variance. In
the vicinity of θ(k), the sampled functions will produce values close to C(θ(k)) with variance increasing
as the distance from θ(k) grows. However, further away from the already sampled points, the new ones
will be randomly distributed with larger variance. This behaviour reflects the uncertainty captured
by the posterior distribution across the parameter space. An example is given in Fig. 3.5(a) where a
noisy C(θ) (red) is approximated by a Gaussian process, using a fitted Matern kernel, trained over 5
observations spaced with the latin hypercube sampling method. Regions devoid of observations exhibit
large uncertainties and since the points are somehow distant, the noisy behaviour of the function has
yet to be understand by the model.
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(a) (b) (c)

Iterations
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Figure 3.5: Iterative procedure of a Bayesian optimisation. (a) A noisy cost function C (red)
is sampled 5 times to generate observation data (dots) used for training a Bayesian algorithm. The
fitted GP model (green) approximates C with µ with relative uncertainty given by k. Below, the
maximisation of the acquisition function a (black) outputs the next point to query θ(k+1) (dashed
black). (b) Updating the model with this new observation modifies µ, k and a iteratively. (c) After
enough iterations, the model has reproduced interesting regions of C and locates the minimum θopt
(dashed red).

3.3.2 - An iteratively updated decision maker
Navigating the parameter space with the acquisition function

The acquisition function a(θ) is defined using the trained surrogate model f(θ) provided by the
Gaussian process regression. It needs to take into account both the objective value predicted by f

and the uncertainty around this value and computes a score with a trade-off between exploitation and
exploration: while the former focuses on points in the vicinity of the last optimum, the latter pushes
the search towards unexplored regions with higher variance values. These regions where we have little
knowledge and are often distant from our previous measures might host better points. Thus reducing
their high uncertainty may be valuable. If exploitation is largely favoured over exploration, then the
algorithm will certainly converge faster, but towards a solution that risks being simply local and not
global. Otherwise, a solution will only be found after a slow sampling of the entire space. The balance
between those two strategies largely impact the performance of the algorithm.
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Types of acquisition function
Once the GP model has been trained, various acquisition functions can be considered to select the

best point to probe next :

• The lower confidence bound (LCB) allows to directly balance exploration and exploitation with

aLCB(θ) = −µ(θ) + α
√
k(θ, θ) (3.22)

where α > 0.

• The probability of improvement (PI) uses the utility function:

u(θ) =
{

1 if f(θ) ≤ c

0 if f(θ) > c
where c = min C (3.23)

which outputs a reward if the probed θ turns out to improve the minimum. The simplicity of
the reward, i.e. constant and not proportional to the improvement, constitutes a weakness of
this approach and may lead to local optima rather than global ones. The resulting acquisition
function is the expected utility:

aPI(θ) = E[u(θ)|θ,C] = Φ[c ;µ(θ), k(θ, θ)] (3.24)

with Φ, the probability distribution function. The next optimal point returned by the aPI is the
one bearing the highest probability of improvement, i.e. the maximal expected utility.

• The expected improvement (EI) builds on the above method and refines it: the reward is now
defined as the value of the improvement, using the following utility function:

u(θ) = max(c− f(θ), 0) (3.25)

The corresponding expected utility gives :

aEI(θ) = E[u(θ)|θ,C] = (c− µ(θ))Φ[c ;µ(θ), k(θ, θ)] + k(θ, θ)ϕ[c ;µ(θ), k(θ, θ)] (3.26)

with ϕ, the cumulative distribution function. The two components of aEI encompass respectively
the exploitation part and the exploration part.

Fig. 3.5(a) gives an example of the landscape of aEI using the trained model.

Optimisation of a
Having a well-defined acquisition function a over the parameter space θ enables to switch from

an expensive optimisation of C to a relatively cheaper one. In order to find where to evaluate the
function next, one can solve θ(k+1) = argmax a(θ), using the quasi-Newton method L-BFGS-B [120]
which exploits knowledge of the first and second derivatives of a. This gradient-based algorithm
makes only an estimation of the Hessian matrix, usually hard to compute, which greatly speeds up
the process. The optimised value θ(k+1) represents where C should be probed next as conveyed by the
additional observation in Fig. 3.5(b).
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Updating the model
With this additional point, the model can be improved, following the two steps already mentioned,

i.e. the hyperparameter tuning and the conditioning operations, using the updated dataset of obser-
vations. Fig. 3.5(b) gives the updated model when incorporating the point chosen by a at previous
iteration. After only one iteration, the model has already located a point to query close to the true
minimum. After nc−nr additional iterations, the model has converged to θopt and no better improve-
ment is expected as conveyed by Fig. 3.5(c). Another feature of this algorithm is the estimation of the
noise level of the function it tries to optimise. It is worth noting that due to the noisy behaviour of
C, sampling close points may return very different values; the model has thus modified the hyperpa-
rameter describing the noise to take that into account. This is highlighted by the non zero variance
at already observed points.

3.3.3 - Convergence in presence of local minima

θ1
θ2

A(
θ 1

,θ
2)

Figure 3.6: Example of convergence for Bayesian optimisation. The averaged convergences
of a random search (blue), a random forest algorithm (orange) and a bayesian algorithm (green) are
compared when optimising an instance of the Ackley function (inset). The performance is assessed
with the distance to the global minimum.

The Bayesian algorithm is said to converge faster to more global optima than other gradient-free
methods. In order to test this assumption and assess its relevance before including it in the VQAs of
following chapters, we realise a convergence comparison between several algorithms. The 2D-Ackley
function, displayed in the inset of Fig. 3.6,

A2(θ1, θ2) = e+ α[1 − exp

−β

√
θ2

1 + θ2
2

2

] − exp
(cos(2πθ1) + cos(2πθ2)

2

)
, (3.27)

with α = 20 and β = α/100, is taken as the expensive black box and the search space is the square
[−4, 4]2. While exhibiting a large amount of local minimum, this function only has one global null
minimum at the origin. We benchmark the Bayesian approach to a Random Forest algorithm [121],
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also used in Chapter 8. An averaged over 20 runs for each makes the comparison more robust to lucky
initial guesses.

As conveyed by Fig. 3.6, a random search struggles to approach the global minimum. The Bayesian
approach clearly outperforms the random forest, quickly locating the region of overall minimum within
20 iterations on average, 5 times quicker than its counterpart. However, the algorithm is quite resource
consuming as the models are updated and the observation dataset enlarged at each iteration. Hence,
the use of the Bayesian algorithm seems justified to study unknown functions with many local minima
as long as the cost evaluation remains large in front of the model updating duration (few seconds after
100 iterations). The algorithm is thus suited as a classical routine for VQAs. For cases where the cost
evaluation is negligible, other gradient-free methods are preferable.
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Studying intriguing properties of condensed matter systems like superconductivity requires being
able to vary the system parameters to evaluate their impact on observed features. Since some of them
may not be tunable in reality, modelling systems from a microscopic viewpoint allows for the numerical
examination of emerging macroscopic traits by adjusting the desired parameters of the effective model.
Insulating magnetic materials can for instance be described by spin Hamiltonians as the main degrees
of freedom of the system are the magnetic moment of electrons localised at the sites of a crystal lattice
structure. The most extensively studied spin models include the isotropic Heisenberg Hamiltonian
Ĥ = ∑

⟨i,j⟩ Jij
ˆ⃗σi · ˆ⃗σj and simpler ones like the anisotropic XY coupling J(σ̂xi σ̂xj + σ̂yi σ̂

y
j ) (whose dipolar

version is tackled in chapter 5) or the uni-axial Jσ̂zi σ̂zj introduced by Ernst Ising [122]. Despite the
apparent simplicity of these Hamiltonians, they lead to a fascinating variety of collective phenomena
referred to as quantum magnetism [123]. The motivation for quantum simulation then arises from a
simple statement. The basic exponential cost of numerically emulating quantum systems led scientists
like Richard Feynman to propose that for efficient computation of dynamics in large-scale instances,
the simulator itself should be quantum-mechanical in nature [124]. Since then, countless examples
of quantum simulation tasks have been presented across the various quantum technologies, including
trapped ions [125, 126], superconducting circuits [127], quantum dots [128], atoms [129] and polar
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molecules [130] in optical lattices, and atoms trapped in tweezers [74, 131].
In this chapter, we leverage the capability of Rydberg atoms to simulate an Ising-like Hamiltonian

and explore the phase diagram of the antiferromagnetic 1D Ising model. Although this model has
been extensively studied, we employ the formalism of variational quantum algorithms, introduced
in Chapter 3, to adiabatically prepare the antiferromagnetic ground state and enhance preparation
efficiency. Additionally, following a thorough benchmark of the limiting noise processes present during
these adiabatic protocols, we implement a closed-loop system to improve results obtained on the
QPU. Lastly, we briefly touch upon the many-body localisation problem [132], which necessitates
initialisation in the antiferromagnetic phase, and demonstrate how it can be tackled using quenched
dynamics.

4.1 - Probing the antiferromagnetic phase of the Ising model

Although relatively simple, the transverse field Ising (TFI) model yields intuitive insights into
quantum magnets. Its nearest-neighbour 1D case was analytically studied in the thermodynamic
limit 70 years ago [133], with its phase diagram calculated. As such, it serves as a valuable toy-model
for benchmarking protocols such as adiabatic preparation ones.

4.1.1 - 1D Ising model with Rydberg atoms
Considering a 1D chain of N spin−1/2 |↓⟩ − |↑⟩ placed in a magnetic field with longitudinal

component B∥ (along the quantisation axis of the spin) and transversal component B⊥ (perpendicular
to the quantisation axis of the spin), the Hamiltonian of the system reads

ĤTFI = B⊥

N∑
i=1

σ̂xi +
N∑
i=1

(B∥ +Bi
local)σ̂zi + J

N∑
i=1

σ̂zi σ̂
z
i+1 (4.1)

with the spins interacting with nearest neighbours coupling J and σ̂αi the Pauli matrices. The different
components of H each promote distinct spin arrangements. While B⊥ favours spins aligned in the
transverse direction |→⟩ = (|↓⟩ + |↑⟩)/

√
2, B∥ favours spins aligned in the longitudinal direction, with

the orientation depending on its sign. The spins structure themselves in a ferromagnetic order with
J < 0 as neighbouring spins tend to align in the same direction in order to minimise the system energy,
whereas they anti-align in an antiferromagnetic order with J > 0. A local longitudinal magnetic field
Bi

local can also be incorporated to, for instance, study disordered chains. This system exhibits a
quantum phase transition [134] as explained in the following.

This simple, yet rich, model can be "reproduced" in neutral atom platforms using the ground-
Rydberg encoding of the qubits. Indeed a 1D chain of N regularly spaced qubits with basis states
|↓⟩ = |g⟩ and |↑⟩ = |nS⟩ gives rise to the following Hamiltonian

Ĥryd[Ω, δ] = ℏΩ
2

N∑
i=1

σ̂xi − ℏδ
N∑
i=1

n̂i + U
∑
i<j

a6

r6
ij

n̂in̂j , (4.2)

with n̂i = (1̂+σ̂zi )/2, a, the chain spacing, U = C6/a
6 the nearest neighbours coupling and rij = a|i−j|.

Eq. 4.2 fundamentally differs from ĤTFI due to the power-law decay of its van der Waals interaction.
However, for pairs separated from more than rb = (C6/Ω)1/6, the decay in 1/R6 enables to overlook
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the pairwise terms as their strength quickly become negligible compared to Ω. In addition, Ĥ can
be written such that Ĥryd = ĤTFI + N(U/4 − ℏδ/2)1̂ taking B⊥ = ℏΩ/2, B∥ = −ℏδ/2, U = 4J
and Bi

local = ziU/2, with zi the number of neighbours of spin i. The additional term in the equality
is diagonal and can be gauged out when evolved over time. For infinite-size and periodic systems
(zi = 2), the local fields Bi

local can be absorbed in the global term B∥. It is thus possible to implement
an Ising-like Hamiltonian with Rydberg atoms, up to some shifts and rescaling of the coefficients. We
will therefore use this system to probe features of the Ising model, especially of its antiferromagnetic
phase with U > 0.

4.1.2 - Characterising ground state of 1D Ising model
An essential inquiry in studying a model involves discerning the system’s ground state relative to

variations in the Hamiltonian parameters such as Ω and δ. This entails uncovering the system phase
diagram, which delineates distinct regions, called phases, where the ground state exhibits unique
characteristics, such as ordered spins.

(a1) (b)

(a2)

Figure 4.1: Phase diagram of the 1D Ising model for even-length periodic chain of N = 6.
Energy spectrum of Ĥryd for varying δ/U ∈ [−1, 3] and (a1) Ω/U = 0 and (a2) Ω/U = 0.15 with levels
coloured by their degree of ordering, either with ⟨m̂stag⟩ for no transverse field or with SNéel. (b) 2D
phase diagram over the region δ/U ∈ [−1, 3] and Ω/U ∈ [0, 0.65]. At each point, the structure factor
is computed for the ground state of Ĥryd. The lowest levels of (a1,a2) are vertical slices of (b). The
transition line calculated at thermodynamic limit is figured in black.

We consider a even-numbered chain of spins with N = 2n with periodic boundaries as to avoid
the edge-effects described in Box. 17. In the absence of transverse field, i.e. Ω = 0, the Hamiltonian
in Eq. 4.2 is diagonal in its computational basis. When |δ| ≫ U the ground state of that system
is paramagnetic, all the spins are aligned towards a favoured direction depending on the sign of
δ. The system is fully magnetised as characterised by the overall magnetisation m̂z = ∑

i σ̂
z
i and

the interactions play no role. To locate the range of values for which the ground state is in its
antiferromagnetic phase, we can look at the energy of states in which this order appears. We denote
|ψAF↓⟩ = |↓↑ . . . ↓↑⟩ the product state for which spins are anti-aligned with the first one being down
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and conversely |ψAF↑⟩ with the first one being up. The AF order of these product states can be
characterised by their staggered magnetisation

m̂stag = 1
N

∑
i

(−1)iσ̂zi , (4.3)

a one-body observable assessing the anti-alignment of neighbouring spins. Those two states have
the same energy (since they are equivalent up to a rotation) which in the NN approximation reads
EAF (δ) = −nδ. Flipping one spin from ↑ to ↓ alters this energy by δ while flipping one from ↓ to ↑
modifies it by −δ + 2U . For those two quantities to be positive and thus EAF (δ) to be the minimal
energy, one needs to have 0 ≤ δ/U ≤ 2. We can check this assumption even further by diagonalising
Ĥryd for various values δ and Ω = 0, revealing in Fig. 4.1(a1) the AF zone where |ψAF↓/↑⟩, characterised
by ⟨m̂stag⟩ = ±1, are degenerate ground states of the system. At the critical points δ = 0 and δ = 2U ,
many energy levels cross and there is no gap between the ground state and the first excited state.

Box 17: Edge effects in an open even chain

In the absence of transverse field, one of the ground states of a even-numbered N = 2n chain
in a NN Ising model would be |ψAF↓⟩ with energy −nδ. However, unexpected edge effects arise
even in this simplified model and states, such as |ψpAF⟩ = |↑↓↓↑ . . . ↓↑⟩ where the first two spins
are inverted, also have energy −nδ. Adding the tail of interactions lifts the degeneracy as the
respective energies write:

EAF↑ = −nδ + U
n−1∑
i=1

n− i

(2i)6 (4.4)

EpAF = −nδ + U

(
n−1∑
i=1

n− i− 1
(2i)6 +

n−1∑
i=1

1
(2i+ 1)6

)
(4.5)

The gap between those two levels reads

∆EAF = EAF − EpAF = U
n−1∑
i=1

( 1
(2i)6 − 1

(2i+ 1)6

)
≃ 4.6%U (4.6)

Thus for an even number of atoms in a 1D chain, the ground state of the Ising Hamiltonian is no
longer the AF state but a slightly perturbed version where an excitation can move to the edge
to avoid interacting. In order to avoid these edge effects, the chain can be made periodic, with
the atoms forming a circle for instance. In the case of a circle of radius R, the gap becomes:

∆EAF = U

(
a

R

)6 n−1∑
i=1

(|2 sin(2iπ/N)|−6 − |2 sin((2i+ 1)π/N)|−6)

≃ −U
(
a

R

)6
|2 sin(π/N)|−6 < 0

(4.7)

and the AF state becomes the ground state.

Adding a transverse field Ω > 0 complicates the picture. In the limit where Ω/U ≫ 1, the spins
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align in a paramagnetic phase along the y axis but there is a delimited region in phase space (Ω,δ)
which exhibits AF order. This order can no longer be characterised by the same observable as the
eigenstates are superposition of product states. For instance at δ/U = 1 and Ω/U = 0.15, the ground
state is |ψAF⟩ = (|ψAF↓⟩ + |ψAF↑⟩)/

√
2 with vanishing staggered magnetisation. Rather than looking

at one-body observables to characterise this state, it is better to look at the correlations between
spins. Indeed, in |ψAF⟩, spins are perfectly anti-correlated. We introduce the Néel structure factor
with general expression over a lattice given in Box. 18 which reads in the 1D case

SNéel =
∑
k∈Z∗

(−1)|k|g(2)
c (k) (4.8)

where g(2)
c is the two-body correlation function obtained from Eq. 4.9 with σ̂ = n̂. We can quickly

check that SNéel reaches its maximum value of N for the superposition of equally favoured AF product
states, i.e. |ψAF⟩, and equals 0 in the paramagnetic phase where the aligned spins are not correlated
and for the classical AF product states. The 1D phase diagram presented in Fig. 4.1(a2) obtained
with Ω/U = 0.15 still displays an AF zone centred around δ/U = 1 although a bit reduced compared
to the case Ω = 0. Having Ω > 0 lifts the degeneracy around the borders and a gap appears. This
gap is known to decrease as 1/N when the system grows in size meaning that the gap vanishes in the
thermodynamic limit N → ∞.

Box 18: Static structure factor

Given a d−dimensional lattice L = {
∑
l klu⃗l | kl ∈ Z} with lattice vectors u⃗l and a measurement

operator σ̂, one can compute the correlation function

g(2)
c (k) = 1

|P(k)|
∑

(i,j)∈P(k)
[⟨σ̂iσ̂j⟩ − ⟨σ̂i⟩⟨σ̂j⟩] (4.9)

from the connected correlations between sites separated by k where P(k) ={
(i, j) ∈ [1, N ]2 | r⃗i − r⃗j = ∑

l klu⃗l
}

. The structure factor arising from g
(2)
c reads:

S(q) =
∑
k ̸=0⃗

eiq·kg(2)
c (k) (4.10)

For a square lattice with spacing R, u⃗1 = R (1, 0), u⃗2 = R (0, 1), q = π(1, 1) and σ̂ = n̂, one
can compute the Néel structure factor SNeel which is maximised for the perfectly correlated
antiferromagnetic state |ψAF ⟩.

Finally, we diagonalise Ĥryd for N = 6 over the phase space (Ω, δ) and compute the structure
factor over the ground state obtained for δ/U ∈ [−1, 3] and Ω/U ∈ [0, 0.65]. Fig. 4.1(b) highlights
the shape of the AF phase characterised by SNéel > 0 for this small system. In an infinitely large
system, the two phases are delimited by a second-order quantum phase transition of the (1+1)D Ising
universality class [134]. This phase transition is described by a line that forms a dome with critical
point Ω/U = 0.5, δ/U = 1 and can be calculated analytically in the thermodynamic limit [133] or by
extrapolating the position of the vanishing gap as N increases as done in [5].
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In the following, we will prepare the antiferromagnetic ground state of the 1D Ising model using
adiabatic protocols on the Rydberg quantum simulator and reconstruct this phase diagram.

4.2 - Adiabatic driving: standard and optimised schedules

Ground state preparation in quantum systems often involves using a schedule of external controls
to guide the system from an initial, easily prepared state to the desired ground state. This approach
relies on the adiabatic theorem, which in essence ensures that if a system evolves slowly compared to
its characteristic energy scale, it follows the instantaneous eigenstate of the Hamiltonian.

4.2.1 - Adiabatic theorem: what slow means
Utilising the adiabatic theorem requires first to couple an initial Hamiltonian Ĥi to a final one Ĥf

through a time-dependent schedule s(t) ∈ [0, 1] such that

Ĥ(s(t)) = (1 − s(t))Ĥi + s(t)Ĥf . (4.11)

Ĥi is typically chosen such that its ground state is trivial such as |↓⟩⊗N or |+⟩⊗N . In our case, neutral
atom systems are initialised in |↓⟩⊗N and Ĥi = Ĥryd[Ω = 0, δ < 0], favouring all spins down.

Let |ψ0(s)⟩ , |ψ1(s)⟩ be the instantaneous ground-state and first excited state of Ĥ(s), with respec-
tive energies E0(s) and E1(s). According to the adiabatic condition [135], a quantum system remains
in its instantaneous ground-state with probability 1 − ϵ if the following condition on the evolution
duration T is satisfied:

T ≫ 1√
ϵ

max
s∈[0,1]

|⟨ψ1(s)|∂sĤ(s)|ψ0(s)⟩|
∆(s)2 . (4.12)

where ∆(s) = |E1(s) − E0(s)| is the instantaneous gap between ground and excited states. The
transition term |⟨ψ1(s)|∂sĤ(s)|ψ0(s)⟩| relates to the difference in evolution of the ground and first
excited levels in the spectrum. As the schedule is continuous, its derivatives are bounded and this
term has no singular scaling with the system size N [136], the adiabatic condition of equation (4.12)
can be replaced by the simpler form

T ≫ O( max
s∈[0,1]

||∂sĤ(s)||/∆2
min), (4.13)

where ∆min = mins∈[0,1] ∆(s). Therefore one requires non-degenerate states without level crossings,
i.e. ∆min > 0, to perform adiabatic evolution within reasonable times. Even when levels do not cross
in the presence of a drive, the anti-crossing phenomenon can create exponentially small gaps that
make the evolution time impractically large. For instance, crossing the transition line depicted in
Fig. 4.1(b) at its apex, i.e. at (Ω/U = 0.5, δ/U = 1), induces a minimum gap scaling as 1/N meaning
that the duration to remain truly adiabatic would scale as N3. As the system scales up, it becomes
increasingly challenging to maintain adiabaticity, leading to the introduction of diabatic errors when
crossing the phase transition as emphasised by the Kibble–Zurek mechanism [137].
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4.2.2 - Driving through the transition with the Rydberg Hamiltonian
In order to probe the phase space, we need to perform an adiabatic evolution between Ĥi and

Ĥf = Ĥryd[Ω > 0, δ] using the controls Ω(t) and δ(t). A standard protocol [138] consists in starting
by a linear increase of Ω towards Ωmax, keeping δ(t) = δi < 0 fixed. It lifts the degeneracy of the
levels at δ = 0 by a quantity ∆ ∝ Ωmax. The detuning is then linearly ramped up towards its final
value 0 < δf < 2U while Ω remains fixed. Finally, Ω(t) is ramped down to 0 with δ fixed at its final
value. Examples of such ramp schedules are depicted in black on Fig. 4.2(a) and for a given δf , the
value of Ωmax and the timings will determine where the transition is crossed. It is worth noting that
while such a schedule may not strictly adhere to the formalism described in Eq. 4.11, it can still be
connected to it by utilising two schedule functions, denoted as si/f (t). In the following, we will fix
the total duration of the schedules used to T = 3 µs for reasons explained later. We will prepare the
ground state of a N = 10 circle of atoms.

4.2.3 - Standard protocol and constraints

(a) (b)

Figure 4.2: Adiabatically probing the phase space of the 1D Ising model. (a) The coloured
phase diagram is constructed from adiabatically evolving a 6-spin system using ramp schedules (dashed
grey) and measuring the structure factor (similar to Fig. 4.1(b)) of the prepared states. A ramp path
crossing the transition at its apex is given (dashed black). Two implementable paths respecting the
constraints on maximum amplitude and detuning of the device are also plotted: a ramp path (solid
black) and an optimised path (red). (b) Evolution of the normalised structure factor SNéel(t)/N
through time for paths given in (a) on system of 10 spins.

One possibility to probe the phase diagram is to enter the phase by its apex as performed with the
ramp schedules depicted in dashed line in Fig. 4.2(a). As conveyed by Fig. 4.1(a), higher values of Ω
make the gap wider, especially at δ/U = 1 facilitating the adiabaticity of a protocol following such a
path. The success of such protocol is shown in Fig. 4.2(b) where the structure factor slowly increases
towards its maximum value, showcasing the efficient preparation of |ψAF⟩. With similar starting ramp
schedules, all going from (−1, 0.) to (α, 0.6) via (−1, 0.6) in the δ/U,Ω/U phase space, and then
stopping at (α, β) (figured by the marked squares in Fig. 4.2(a)), we can probe the ordering of the
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system at any point and reconstruct with implementable protocols the phase diagram of Fig. 4.1(b).
However, this implies reaching high values of Ω/U which for limited laser power, and thus limited
amplitude Ω, can be hard to achieve. One possibility is to reduce U by spacing more the atoms for
example at the expense of the global energy scale of the system and thus timescale of the dynamics.
Another possibility is to cross the transition at another point by reducing Ωmax like with the schedule
given in Fig. 4.3(a). In fact, this protocol makes the most out of the possibilities of the Fresnel device
used in this chapter. Atoms are spaced by a = 5 µm, leading to U/2π = 8.9 MHz and the laser
power gives Ωmax/2π = 1.8 MHz and |δ|max/2π = 9 MHz. Thus, any schedule would be constrained
within the region delimited by this schedule. These limitations directly impact the efficiency of the
preparation as conveyed by the solid black line of Fig. 4.2(b) where the structure factor only reaches
around 55% of its maximum value. This decrease can be tracked back to diabatic errors as shown by
the energy spectrum of Fig. 4.3(b). At the beginning of the dynamics, only the paramagnetic ground
state (blue side of the bottom line) is populated but as the system evolves, more and more population
jumps into excited states, as the appearing and thickening lines illustrate.

The probability of having populated the first excited state through the evolution can be obtained
using the Landau-Zener formula

Pcross(t) = exp
[
−π∆(t)2/Ω̇eff(t)

]
. (4.14)

In essence, fast driving when the gap is small would induce population transfers whereas spectrum
regions where the gap remains large can be quickly covered. Computing the evolution of the gap
or more specifically its minimum value over the dynamics constitutes a resource consuming problem
and can generally only be done for small systems. This crossing probability is shown in Fig. 4.3(c)
and reaches almost 50% around the time where the system crosses the transition. At the end of
the dynamics, the system remains in a equal superposition of AF ordered ground state (red side of
the bottom line) and paramagnetic excited states (above blue lines). Although this straightforward
protocol may lose efficiency due to hardware constraints, it is feasible to design an optimised pathway
aimed at achieving improved ground state preparation within the same limitations.

4.2.4 - Optimising adiabatic driving towards antiferromagnetic phases
The optimal control algorithm benefits from the classical Bayesian optimiser described in Sec. 3.3

to shape the pulse schedule so as to maximise the ground state preparation.
We resort to the smooth parameterisation described in Fig. 4.4(a) obtained by interpolating the

control fields with monotonous cubic splines. This enables to describe a constrained schedule with only
2m parameters θ = {Ω(ti), δ(ti)}i=1···m with times ti regularly spaced in [0, T ]. The Bayesian optimiser
can thus explore the parameter space defined by the hyper rectangle [0,Ωmax]m × [δi, δf ]m. We fix
the values of the pulses at t = 0 and t = T with Ω(0) = Ω(T ) = 0 and −δ(0) = δ(T ) = U and use
m = 3. The state |ψθ(T )⟩ produced under the application of such parameterised schedule is obtained
using Eq. 1.28. As a metric to optimise, one could settle with the infidelity I(θ) = 1 − |⟨ψAF|ψθ(T )⟩|2.
However, this leads to a rather flat landscape, especially for increasing N , as the probability of
obtaining a non-zero projection approaches 0. While this may still work for this numerical study,
this would not be viable for an implementation where the resolution of the probabilities is limited by
the number of samples obtained as conveyed in the next section. The structure factor constitutes a
metric more appropriate as it can capture emerging order and not only perfect arrangement of spins.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.3: Adiabaticity of control schedules for ground state preparation. (a) Profiles of
amplitude Ω and detuning δ for a ramp schedule. (b) Instantaneous energy spectrum of a 10-spin
system with levels coloured by structure factor and thickened by population (levels are only appearing
when populated). (c) Evolution of the probability from having jumped from ground to first excited
state Pcross(t) (purple) and the probability to having populated excited states 1−P0(t) (black) through
the schedule. (d,e,f) Same for optimised schedule.

The optimiser is thus tasked to minimise 1 − SNéel/N within nc = 300 iterations, using the first
nr = 30 iterations as initialisation. Its convergence is displayed in Fig. 4.4(b), reaching a maximum
structure factor of 0.9994N . While the best minimum found keeps on improving with the number of
iterations (red line), the optimiser regularly tries to explore unseen regions of the parameter space
as illustrated by the coloured points. When it finishes to exploit a known region (dark points) with
good scores (such as around iteration 50 or 100) it then moves to new regions (brighter points) which
may result in higher scores at first but ultimately leads to better values. As the optimisation carries
on, the optimiser starts to converge towards interesting regions, not trying anymore to explore new
ones (or having efficiently covered the search space) as shown by the disappearance of yellow spots.
This example illustrates how the Bayesian optimiser avoids getting stuck in local minima and thus
proves very useful when exploring unknown landscapes. The optimised path is shown in Fig. 4.2(a)
as well as the corresponding evolution of the structure factor. It is worth noting that the optimiser
has no prior knowledge on where the transition lies but adapts the pulse so as to move fast when in
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Figure 4.4: Optimal control for ground state preparation using Bayesian optimisation. (a)
Parameterisation of the controls with bounds set by Ωmax and δi/f . (b) Convergence study of the
optimiser over 300 iterations. Each point representing a tried schedule is coloured by its normalised
minimal distance to previously tried points. The best value found is tracked down during the process
(red).

the paramagnetic phase and then slow when crossing the transition. This results in fewer diabatic
errors as conveyed by Fig. 4.3(e,f) with Pcross peaking at 5% and a bit of leakage in the excited states.
Another interesting feature of the optimised pulse is the increased sweep rate while deep in the AF
phase as conveyed by the increasing final slope of the detuning δ in Fig. 4.3(e). This seems to enable
to repopulate the ground state as P0(t), after increasing a bit during the transition crossing, returns
to 0 at later times. Overall, with the same constraints as for the ramp schedule we can find a schedule
with improved preparation efficiency even when not staying fully adiabatic. Another possibility would
be to increase T at a fixed size N as discussed below.
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4.3 - Preparation on hardware with scaled duration

4.3.1 - Emulation on 18-site hexagon
As conveyed by Eq. 4.12, for a given schedule, it is possible to lower the diabatic errors by increasing

the total duration T . To emphasise this effect, we turn to a system of N = 18 atoms placed in a 4-sites
sided hexagon as displayed in the inset of Fig. 4.5. This choice of geometry stems from a punctual
constraint of the device used where the trap pattern was fixed to a triangular lattice. This periodic
system, although different from a perfect circle, exhibits a similar phase diagram as the next nearest
neighbours terms are only 3% or 1.5% of U . The hexagon features 4 atoms per side so as not to
favour one AF state over the other. Indeed, with N = 12 for instance and 3-sites sides, the alternate
configuration with spins in |↓⟩ in the corners would have been slightly favoured due to the geometry. To
drive this system towards its AF ground state we apply a schedule obtained by numerical optimisation
with similar constraints as before. As the system size starts to become significant, we perform the
optimisation using the Matrix Product State method described in Sec. 2.2. To keep emulation times
down, we restrict the number of iterations to 50, leaving the optimiser little time to work through the
parameter space.

Figure 4.5: Correlation functions of prepared ground states for (black) ramp and (red) opti-
mised schedules over a N = 18 hexagon. Points are coloured according to g(2)(k) (red being positive
and blue negative) and exponential fits (solid lines) gives the correlation length obtained for each
method.

Fig. 4.5 depicts the correlation function g(2) measured on the final states obtained either after
a ramp protocol or the optimised protocol. The value of g(2)(k) describes how correlated are pairs
of spins distant of k sites on the hexagon. While a perfect |ψAF⟩ state can be characterised by
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g(2)(k) = (−1)k/4, both prepared states exhibit a decay of their correlations with the distance, meaning
that more distant spins influence each other less. This decay can be fitted exponentially by f(k) =
A exp(−2k/ξ) on an open chain and by f(k) = A[exp(−2k/ξ) + exp(−2(N − k)/ξ)] on a periodic one
with ξ being the correlation length. ξ is another order parameter for the quantum phase transition
and should diverge in the AF phase [134]. We obtain a correlation length of 5.56 sites for the state
obtained with the optimised protocol lasting T = 3 µs and around half as much with the ramp.

4.3.2 - Stretching a pulse for adiabaticity benchmark
We could boost this value by conducting further optimisation steps, or more simply by stretching

the pulse to extend its duration as represented by the insets of Fig. 4.6. Emulation results (small
squares) typically reveal that the correlation length ξ(T ) tends to increase with T within the range
T ∈ [1µs, 6µs]. Doubling the total duration from 3µs to 6µs enables to also double ξ up to 11 sites, more
than half the size of the system. We also see that correlation length and structure factor are strongly
correlated as expected. Longer pulses seem to benefit the adiabaticity. However, when experimentally
running the same protocol (circles), we notice a consistent reduction across all durations. More notably,
we observe a plateau (ξ ∼ 2.3) at intermediate values and even a slight decline at longer durations
(ξ ∼ 2.15). We first check that adding detection errors (squares) ε = 1% and ε′ = 8% only scales
down ξ(T ) without modifying the increasing trend. Better matching the decay of the experimental
data thus requires adding decoherence into the picture.

4.3.3 - Noisy benchmark on a small hexagon
In the following, we provide a benchmark on a smaller hexagonal systems for which we can per-

form extensive noisy simulations and assess how low-level experimental errors can impact high-level
observables such as the correlation length. We apply with the Fresnel device the previous schedule
optimised for N = 18 on three small isolated hexagons with N = 6 atoms each spaced by 5 µm. This
stamping method enables to acquire statistics faster by multiplying isolated copies of small enough
systems when large trap layouts are available. We ensure that the hexagons are located at d ∼ 20 µm
from each other as to ensure they do not interact. We select a stretching T = 4.3 µs as this seems to
be the optimal time before the decay of ξ in Fig. 4.6 and extend the schedule with constant δ for few
hundreds of ns at start and finish.

Fig. 4.7 encompasses numerical results with and without noise taken into account as well as the
experimental results averaged over 500×3 repetitions as to ensure limited shot noise. Perfect emulation
of the system shows, for all considered observables, steady increase towards expected values : (a)
⟨n̂⟩(T ) = 0.5 since all 6 sites are symmetrically half-filled, (b) SNéel(T ) = N and (c) diverging ξ

as the system orders. The experimental data exhibits similar behaviour but with limited contrast :
⟨n̂⟩(T ) = 0.45, SNéel(T )/N = 60% and ξ/N = 48%. A slight delay in the dynamics was noted, yet it
was verified that this was not caused by inadequate synchronisation of the pulses on the hardware. In
order to explain this contrast loss, we introduce two noise models:

• a real two-level model incorporating ε = 1%, ε′ = 8%, η = 1%, σΩ = 3%, Rydberg decay, finite
waists of the beam with weff ≈ 180 µm as well as temperature Tatom = 100µK induced effects
such as Doppler shifts and thermal motion. To mitigate the effects of the latter, an adiabatic
ramping down of the traps was performed on the hardware, so that the atoms are slowed down
but get spread out more, resulting in σv(Tatom/5) ≈ 44 nm/µs and σr(5Tatom) ≈ 0.35 µm. We
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Figure 4.6: Adiabaticity study by stretching the schedule duration. The correlation length
ξ(T ) obtained for stretching a pulse (insets) to reach a given total duration T ∈ [1µs, 6µs] is computed
numerically with (squares) and without (small squares) detection errors and is benchmarked to ex-
perimentally obtained data (circles). The points are coloured according to their normalised structure
factor.

consider time-dependent interactions as the atoms are moving and the schedule duration is such
that σvT ∼ σr. Finally, we consider the laser phase noise and other low-contribution noises with
an effective dephasing term Γ/2π = 1/7.5 MHz which is our only free parameter as the other
values have been independently measured on the device.

• an effective two-level model incorporating ε = 1%, ε′ = 8%, relaxation with T1 = 100 µs and
dephasing with T2 = 4.5 µs measured with a Ramsey experiment.

This kind of adiabatic preparation is very robust under shot-to-shot fluctuations (including the Doppler
shift, and fluctuations in position) as the latter only contributes slightly to the decay of the structure
factor. The real noise model manages to explain the experimental data and even reproduce the delay
in the dynamics of ξ as conveyed by overlapping curves in Fig. 4.7(c). The limited preparation of AF
states can thus be explained by the physical processes happening in the device and adding incremen-
tally the noise one by one enables to track down their individual contribution such as performed in
Sec. 5.2.3 for the XY model. More practically, the effective model adeptly mirrors the behaviour of
the real model, especially concerning the structure factor in Fig. 4.7(b), amalgamating preparation
errors, temperature influences, time-dependent interactions, and laser phase noise into a single de-
phasing term T2. This confirms that characterising the noisy operation of the device can be limited
to measuring these 4 effective parameters for this kind of experiment and therefore for larger systems,



88 CHAPTER 4. QUANTUM SIMULATION OF ISING MAGNETS
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Figure 4.7: Noisy benchmark of adiabatic preparation on Fresnel class device. Temporal
evolution of (a) the mean site-occupancy ⟨n̂⟩ (b) the normalised structure factor SNéel/N and (c) the
normalised correlation length ξ/N for numerical emulation without noise (solid green), with detailed
noise model (light green), effective noise model (dashed green) and experimental data (red) obtained
on Fresnel.

one can use the Monte Carlo Wave Function method [81] described in Sec. 2.3.1 to implement such a
model.

4.4 - Closed-loop on hardware for improved correlation length

4.4.1 - How to improve hardware results
Three possibilities exists to improve the preparation efficiency on a device with assessed noise

intensity. The first one entails identifying the primary contributions by incrementally introducing
noise in the descriptive model, thus creating a roadmap for potential hardware enhancements. While
this will be performed to improve the Fresnel device in a near future, other options are available if we
choose to maintain these specifications. We can for instance perform a numerical schedule optimisation
using the effective noise model. Such a process can be quite resource-intensive, particularly for large
systems. We could consider running such optimisation on a noisy version of a tensor network algorithm,
but with current simulation resources, this could potentially take several days. Finally, we can perform
a closed loop optimisation directly on the device which would output a schedule fine tuned for the
current noise level. This comes with two main limitations :

• At current repetition rate, probing a system of N = 18 atoms with finite resolution, for instance
nshots ∼ 1000, takes around 20 minutes. For larger systems, since efficient quantum state
estimation should theoretically require a number of measurements exponential with N and
since the effective repetition rate also decreases with N as rearrangement fails more, probing
a state can become quite time consuming. If probing one point lasts hours or days, drifts of
parameters hitherto unconsidered could occur. The machine therefore requires regular automatic
recalibration, extending further the duration of the implementation.
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• In case of hardware miscalibration, such as δ → δ + 2π × 1 MHz, the landscape of optimisation
could be altered significantly and an optimised schedule could not be used when the device is
later properly recalibrated. Similarly, if the noise level improves or deteriorates, applying the
optimal schedule might no longer yields the same efficiency as before.

4.4.2 - Building a closed-loop for state preparation
We construct a closed loop with the experiment to optimise the structure factor of the N = 18

hexagon presented in Fig. 4.5. The classical part is handled by a Bayesian optimiser trusted with
nc = 180 iterations and nr = 20 dedicated to the initialisation. The parameterisation of the chosen
schedules is done using Pulser and the communication with the QPU is managed through the cloud
platform of Pasqal as described in Sec. 2.1.2. While the start and ending values of Ω are still fixed at 0,
we let the optimiser locate the best starting and ending values of δ within [−U,U ]. Furthermore, the
total duration T ∈ [1µs, 6µs] also becomes a parameter so that the optimiser can balance adiabaticity
and decoherence on its own. Slicing the duration in 4, this gives a total of 3 + 5 + 1 = 9 parameters to
optimise. We ask for nshots = 1250, so as to retrieve around nshots × 80% = 1000 statistics on average,
accounting for failed rearrangement attempts. The loop thus takes around 63 hours to complete
without counting the recalibration jobs regularly interleaved and without any break in communication
between the classical and quantum parts at any time, highlighting the robustness of the experimental
device.

4.4.3 - Experimental results: convergence and outlook
The schedule obtained via the closed loop protocol (see Fig. 4.8(a)) enables to improve the maxi-

mum ξ obtained from 2.3 to 3 as shown in Fig. 4.8(b). As expected after the stretch study of Fig. 4.6,
the optimised schedule only lasts 4.53 µs as longer dynamics would be detrimental. More surprisingly,
it prefers to wait deep in the paramagnetic phase up to 1 µs before starting to ramp up the amplitude
and apply a more dense profile of Ω than the schedule of Fig. 4.3(e), not slowing down at the phase
transition. Either the resulting diabatic errors are not the limiting factor of the preparation and the
optimiser understood it or when trying to mitigate a decoherence-inducing phenomenon, the optimiser
fails to see that smoother schedules could improve the picture. Overall, the optimiser still converges
quite fast towards preparing ordered states as visible bands of alternating correlation function are
appearing up to k = N/2 after only 50 iterations. We manage to improve the correlation length
after 95 iterations and the structure factor goes up to 48% of N at iteration 175. Moreover, using
Bayesian optimisation, we can extract the parameters the figure of merit depends most on, i.e. T

and δ(3T/4). The latter should thus be prioritised when aiming to build on this optimised schedule,
either with additional optimisation steps only on those two parameters, or when building a similar
loop for another instance. Another way forward would be to parameterise the schedule with twice
as many points: half would be fixed at the optimal values obtained here while the new ones would
be optimised to check whether an intermediate profile other than a cubic spline might be beneficial.
Finally, another possibility would be to distribute the time intervals irregularly, for instance by giving
the optimiser more freedom around the phase transition, while constraining it more at the start. This
is supported by our observation that a change in δ(T/4) does not seem to have any impact on the
score.

Overall, the optimised schedule output by the closed-loop scheme makes the most out of the noisy
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(b)

Figure 4.8: Experimental results for an optimisation closed loop for AF state preparation.
(a) The optimised amplitude (green) and detuning (purple) of the schedule to apply. (b) Evolution of
the structure factor with the number of iterations performed (dots) as well as best correlation length
found (solid line) compared to the best one obtained by stretching (dashed). The correlation function
g(2)(k) of the state prepared at each iteration is also plotted.

neutral atom QPU in order to prepare as best as possible an antiferromagnetic state, regardless of
miscalibrations or noise processes that are hard to emulate. The discrepancies between this protocol
and the ones optimised on emulation give a better understanding of the limitations of hardware.
Either the latter remains unchanged and this precise protocol can then be used as a building block
for experiments requiring initialisation in an antiferromagnetic state, or the hardware is recalibrated
to allow the use of theoretically obtained pulses.
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4.5 - Many-body localisation in 1D Ising model

Previous sections solely focused on the properties of the ground state of the 1D Ising model and
additional excitations above this ground state were considered as diabatic errors introduced by im-
perfect adiabatic protocols. However, with sudden variations of the control parameters, or quenches,
one can also probe the intriguing phenomena occurring in quantum many-body systems out of equi-
librium such as quantum scars [139]. When quenching a quantum system originally in its ground
state, the instantaneous state is no longer an eigenstate of the Hamiltonian and non-trivial dynamics
make it difficult to predict whether the system will relax towards its equilibrium or not. The eigen-
state thermalisation hypothesis posits that individual eigenstates of a quantum system with many
degrees of freedom exhibit thermal behaviour, similar to what is expected from the micro-canonical
ensemble of statistical mechanics [140]. Ergodic systems will thus thermalise reaching a state where
macroscopic observables converge towards their thermal values. In contrast, many-body localisation
(MBL) occurs when disorder or strong interactions prevent a quantum system from thermalising, even
in the presence of interactions [141]. In an MBL system, the dynamics are effectively frozen, and the
system retains memory of its initial conditions over long timescales. This lack of thermalisation arises
from the presence of strong localisation effects, which inhibit the transport of energy and prevent the
system from reaching thermal equilibrium. In this section, we explore the possibility of experimentally
observing a MBL transition in the out-of-equilibrium dynamics of the 1D Ising model when a source
of local disorder is incorporated.

4.5.1 - Preparing antiferromagnetic disordered chains
Similarly to [142, 143], we consider an excitation transport experiment. The protocol consists

in quenching a disordered chain of N atoms that has been initialised in one of its antiferromagnetic
ground states using a global pulse with constant parameters Ω and δ. The initial state, for instance
|ψ0⟩ = |ψAF↑⟩, can be characterised by its maximum staggered magnetisation defined in Eq. 4.3. By
monitoring this one-body observable during the dynamics, we can check if the introduced excitations
localise and assess the degree of disorder a system requires to retain memory of its initial state instead
of thermalising.

Introducing disorder with random positioning/local light shifts
We introduce disorder in the interaction terms of the Hamiltonian by adding a random component

in the positions of the atoms of the chain of spacing a as described in Fig. 4.9(a). The nearest-neighbour
interactions Ui,i+1 are uniformly spread [142] such that

Ui,i+1 = U(1 + wi) ,with wi ∼ U(−W,W ), (4.15)

where U = C6/a
6 is the regular coupling and W is the disorder strength with 0 < W < 1. Weakly

disordered chains (Ui,i+1 ≈ U) can be obtained for W ≈ 0. The positions of the N atoms are obtained
sequentially by positioning the atom i, drawing a value of wi, converting Ui,i+1 into a distance ri,i+1
and placing the atom i+ 1 such that the pair is separated by ri,i+1. This straightforward method only
works in 1D and subsequent works in 2D would require a mapping technique in order to find from
a pairwise distance matrix the adequate positions in the plane (see Box. 27). Fig. 4.9(a) displays the
atom positions probability densities leading to uniformly random couplings Ui,i+1. Another possibility
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to introduce disorder in the system consists in randomly light shifting each site of the chain, using a
local addressing scheme with an additional SLM. This amounts in adding to the Hamiltonian random
local detunings terms δi (see Box. 12).

In both cases, generating random Hamiltonian requires changing an SLM pattern between each
instance, either for setting the traps at random positions or generating the local light shifts. Both
methods yield the same cost.

𝑎

𝑈(1 + 𝑤)

… …
𝑥	(𝜇𝑚)

(a)

(b) (c)

Figure 4.9: Many-body localisation example on a 1D disordered chain of atoms. (a) The
atoms of a regularly-spaced chain (green dots) can be randomly perturbed in positions (green his-
tograms) in order to introduce uniform disorder in the interaction part of the Hamiltonian. (b)
Temporal evolution of the staggered magnetisation ⟨mstag(t)⟩W averaged over 50 instances of disor-
dered chains for (beige) weak or (red) strong disorder. (c) Temporal evolution of the quantum Fisher
information fQ(t) for (beige) weak or (red) strong disorder. A logarithmic fit (dashed) is performed
to characterise the speed of the growth/decay in both cases.

Initial staggered state preparation
On the contrary to the previous section in which the target state was |ψAF⟩, the equal superposition

of the two antiferromagnetic states |ψAF↑⟩ and |ψAF↓⟩, we need to initialise the system in |ψAF↓⟩ only.
Two distinct methods can be used:

• an adiabatic driving towards |ψAF↓⟩ using an odd-numbered chain. In this case, the system
exhibits a very similar phase diagram as the one displayed in Fig. 4.1(b) but with a phase
characterised by m̂stag where |ψAF↓⟩ is the ground state. Thus after preparing the latter on
a long enough chain, we can asymmetrically truncate the sides so as to remain with an even-
numbered of atoms, and avoid edge effects in the meantime.
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• a local addressing scheme utilising an additional SLM to light shift all even sites. Applying a
global resonant π pulse such that Ω ≫ Ui,i+2 ≈ U/64 will only flip the spins located at odd sites.
This procedure displays the key advantage of being faster than the previous one, as it does not
rely on adiabaticity and hence can mitigate decoherence effects. However it requires to be able
to change the light shift weights on each site in between the preparation and the quench. Such
a scheme is in fact used in Chapter 5 for preparing checker-board patterns of alternating spins
in the XY model.

In order to highlight the MBL effects we need to perform the state preparation + quench protocol
on a significant number of randomly drawn instances of disordered Hamiltonians. With only global
addressing available, we can resort to the previous optimisation scheme to efficiently prepare the ground
states of many disordered chains of atoms. While for weakly disordered chains, the schedule optimised
for no disorder still yields good efficiency on all instances, chains strongly disordered might cause
some issues, as pairs of atoms can become isolated and modify the overall ground state. Optimising a
schedule for each instance proves to be extremely costly. Choosing an intermediate approach, one can
rather try to optimise the same pulse on a subset of instances and then use it on the rest. A device
equipped with local addressing, however, will only need a global π pulse for the preparation on each
instance, potentially saving a lot of resources.

4.5.2 - Many-body localisation properties of the quenched dynamics
Previous work [143–145] suggest that one should observe an ergodic to MBL transition for the

system under consideration.

Memory of the initial state in the staggered magnetisation
We perform a numerical study of a 1D system of N = 30 atoms in the case of weak and strong

disorder, using Ww = 0.05 and Ws = 0.85 respectively. The dynamics of these relatively large systems
can be emulated using the time-evolving block-decimation approach described in Fig. 2.5(a). For both
cases, we generate 50 chains disordered in positions and initialise them perfectly in |ψAF↓⟩. We apply
a global control pulse lasting 100 µs with parameters Ω/U = 0.17 and δ/U = 2, effectively quenching
the system outside of the antiferromagnetic phase. In the case of weak disorder, the system should
be ergodic and the staggered magnetisation averaged over the realisations, noted ⟨mstag⟩Ww , should
return to 0. On the contrary, for strong disorder, a memory phenomenon should appear and ⟨mstag⟩Ws

should deviate from its initial maximal value with longer timescales, showing MBL properties.
Fig. 4.9(b) showcases such behaviours. On one hand, ⟨mstag(t)⟩Ww quickly deviates from 1 and

reaches 0 after 60 µs. The imbalance between odd and even sites thus quickly disappears in the case
of weak disorder. On the other hand, ⟨mstag(t)⟩Ws exhibits a rather flat evolution, reaching only 0.7
after 100 µs. This macroscopic observable remains finite even at long times in the strong disorder
case.
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Growth of entanglement
Another well-known measure to characterise the MBL property of a 1D system is the logarithmic

growth of entanglement entropy between the two halves of the chain [132]. Since this quantity is
not an experimentally-accessible observable we focus instead, following [143], on the quantum Fisher
information fQ associated with the staggered magnetisation and defined by

fQ(t) = 4
N

(
⟨mstag(t)2⟩W − ⟨mstag(t)⟩2

W

)
. (4.16)

This quantity is a lower bound on the entanglement contained in the system, while presenting the
advantage of only requiring measurements of two-body observables in the z-basis. Fig. 4.9(c) displays
the logarithmic increase of fQ in time for the strong disorder case while in the weak case, the value
decays back to 0. We can fit the growth/decay with a logarithmic function of the form aW log(t) + bW
and get aw = −0.13 and as = 0.88, highlighting the distinct behaviour between the two cases at long
times.

Varying the disorder strength

(a)

(b)

Figure 4.10: Sweeping over the disorder strength. (a) Color map of the temporal evolution of
the staggered magnetisation ⟨mstag(t)⟩W averaged over 50 instances of disordered chains for various
values of disorder strength between 0.05 and 0.55. (b) Temporal evolution of the quantum Fisher
information fQ(t) for various values of disorder strength between 0.05 and 0.55. (inset) Logarithmic
growth constant aW obtained by fitting each corresponding curve between 30 µs and 100 µs.
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In order to observe the evolution of the growth with the disorder, we repeat the procedure given
above for a smaller system of N = 10 atoms, varying W between 0.05 and 0.55. This smaller system,
although bound to suffer from more significant edge effects, can be quickly emulated using Pulser.
Fig. 4.10(a) shows the evolution of the staggered magnetisation during the quench. Starting at its
maximum value for all disorder, it quickly starts exhibiting damped oscillations. As disorder levels
increase, the maximum contrast of the oscillations diminishes, and the ultimate value towards which
they converge increases linearly with W . The greater the disorder within the system, the more memory
of its initial state it preserves. Fig. 4.10(b) features the evolution of the Fisher information for several
values of W . While the small size of the system perturbs the behaviour a bit compared to the larger
case, it still illustrates the discrepancies between weakly and strongly disordered cases. As depicted
in the inset displaying the fitted logarithmic growths aW , below W = 0.35, fQ(t) decreases more
rapidly as the system becomes more ordered. However, above W = 0.35, it exhibits faster growth
with increasing values of W .

This experiment requires several features, such as the ability to study quenched dynamics over long
timescales, fast updating of the SLM pattern, and efficient preparation of antiferromagnetic states.
Given the current state of neutral atom QPUs, performing such a task would demand a colossal
allocation of resources. The Rydberg lifetime ∼ 100 µs would not be negligible and even if an isolated
system should remain staggered in theory, decoherence would strongly impact the decay of mstag. A
further limitation arises from the available field of view, constraining the maximum radius at which
the atoms can be placed. For few atoms, a linear chain remains suitable, but it becomes necessary to
bend it in more complex shapes as the number of atoms increases so as to fit inside the field of view
of the objective. For the strongly disordered case, this might cause unexpected interactions between
supposedly distant atoms in the chain. Finally, obtaining a curve similar as in the inset of Fig. 4.10(b)
would require nW ×ninstances×ntimesteps×nshots shots. Assuming that the SLM pattern can be changed
within a few minutes between each instance, and having a repetition rate of 1 Hz, this would take
of the order of 100 hours to compute. While this small numerical study is limited to relatively small
1D systems, it can be interesting with a QPU being able to reach higher number of qubits to tackle
similar problems in 2D [141, 146] as it should exhibit more complex phase diagrams.
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5 - Order and frustration in dipolar XY model
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The quantum XY model plays a significant role in condensed matter physics, providing valu-
able insights into the behaviours of frustrated magnetic systems. Unlike its Ising counterpart, the
XY model has a more pronounced quantum nature, with no classical configurations for its ground
states. Understanding its phase diagram, and associated phase transitions across various geometric
configurations, is essential for understanding exotic phases of matter, notably spin liquids [147], where
frustrated spin interactions are key elements. Additionally, exploring quantum many-body systems
with long-range interactions offers opportunities to uncover richer physics compared to those with
short-range interactions. Systems with dipolar interactions, in particular, have been linked to sta-
bilising various intriguing phases, including supersolids [148, 149], the Haldane phase [150], and spin
ice [151]. Understanding the precise interplay of competing instabilities within these systems and how
they lead to order and entanglement remains an active research field [152].

In this chapter, we operate the programmable Rydberg platform Chadoq as a dipolar XY quantum
simulator. We first probe the ferro- and antiferromagnetic ordered phases on a two-dimensional square
lattice, elucidating the spontaneous breaking of the continuous rotational symmetry inherent in the
model. In a second part, we enrich the capabilities of the simulator by incorporating arbitrary local
controls in the Rydberg-Rydberg encoding. This enhancement enables us to measure multi-body
observables and thus perform quantum state tomography of correlated states. Additionally, we explore
the dynamics of frustrated geometries, exemplified by a pair of triangular plaquettes.

The following chapter draws from the following articles to which I contributed:

97



98 CHAPTER 5. QUANTUM SIMULATION OF XY MAGNETS

• [37] C. Chen et al., “Continuous symmetry breaking in a two-dimensional Rydberg array,”
Nature, vol. 616, pp. 691–695, 2023.

• [58] G. Bornet et al., “Enhancing a Many-body Dipolar Rydberg Tweezer Array with Arbitrary
Local Controls.” arXiv, 2024.

5.1 - Ordered phases from continuous symmetry breaking

Spontaneous symmetry breaking underlies much of the classification of phases of matter and their
associated transitions [153–155]. The nature of the underlying symmetry being broken determines
many of the qualitative properties of the phase. For instance, in contrast to the discrete case, the
breaking of a continuous symmetry leads to the appearance of gapless Goldstone modes, influencing
thermodynamic stability [156, 157]. Various constraints can prevent symmetries from breaking in
many-body systems. For instance, long-wavelength fluctuations rule out the breaking of continuous
symmetries in low-dimensional systems with short-range interactions [158–162]. However, long-range
interactions can either stabilise finite-temperature orders, which would otherwise be forbidden [163–
166], or lead to frustration, where interactions compete with one another, preventing the formation of
order [167–171]. They can thus alter the picture [172] in a non trival way, and generate orders which
can be fundamentally distinct, regarding the dispersion of excitations or the decay of correlation
functions [165, 173, 174].

Quantum simulators are ideally suited to study these features and while ultra-cold atoms in optical
lattices have already investigated continuous symmetry breaking with contact interaction [175], dipolar
molecules in lattices [176–178] and trapped ions [179–182] constitutes promising platforms to realise
the long-range case. With the help of a Rydberg quantum simulator with up to 100 atoms, we
can study a long-range interacting, two-dimensional XY spin system exhibiting a continuous spin-
rotational symmetry, with either ferromagnetic (FM) or antiferromagnetic (AFM) couplings. The
exploration of the many-body physics of XY interactions on this system complements recent works
utilising the Rydberg-blockade mechanism to realise Ising-type interactions exhibiting discrete spin
rotation symmetry [74, 183–185].

5.1.1 - Characterising continuous symmetry breaking
Considering a collection of spins 1/2 |↑⟩−|↓⟩ arranged in a square lattice as depicted in Fig. 5.1(a),

the dipolar XY model reads

HXY = −J/2
∑
i<j

a3

r3
ij

(σxi σxj + σyi σ
y
j ) (5.1)

where σαi are Pauli matrices, J/h the dipolar interaction strength, a the lattice spacing and rij the
distance between spins i and j. This Hamiltonian possesses the following continuous symmetry:

Uz(θ)HXYUz(−θ) = HXY (5.2)

with Uz(θ) = exp(−iθM z/2). This operator is generated by the total magnetisation, M z = ∑
i σ

z
i ,

thus a conserved quantity of HXY, and represents the Lie group U(1)(∼= SO(2)). U(1) corresponds
to the circle group, consisting of all complex numbers with absolute value 1, under multiplication.
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Figure 5.1: Symmetry breaking in spins lattice. (a) Schematic depicting the long-range dipolar
XY model. An effective spin is encoded in a pair of Rydberg states which exhibit dipolar flip-flop
interactions. (b) A Goldstone "sombrero" potential exhibits a U(1) rotational symmetry. The system
comprising the potential and a ball located at its top (black ball) remains symmetric. However, a
lower energy state where the ball has rolled down (blue) spontaneously breaks the symmetry as the
system is no longer invariant when rotating around the centre axis.

Additionally, HXY is invariant under the Z2 Ising symmetry, α2 : (σx, σy, σz) → (σx,−σy,−σz), as
well as any spatial symmetries of the lattice, such as translation or rotation. This model is also
time-reversal-symmetric, as represented by the anti-unitary operator T = C, where C applies complex
conjugation. Here T differs from the usual SU(2) time-reversal symmetry, which applies the unitary
spin rotation Uy(π) = exp(−iπMy/2) in addition to C. Our atypical choice of T = C allows it to
remain a symmetry in the presence of a on-site perturbation such as HZ given in Eq. 5.6. In a finite
closed quantum system, all eigenstates of HXY can be chosen to be simultaneous eigenstates of all of
these symmetry operators. In particular, they are eigenstates of the total magnetisation M z and so
can be collected into magnetisation sectors, conventionally labelled by Sz = M z/2. As a consequence,
all M z-non-conserving operators such as σxi and σyi have identically vanishing expectation values,
⟨σxi ⟩ = ⟨σyi ⟩ = 0, in any energy eigenstate or in any superposition of eigenstates within the same
magnetisation sector.

The many-body ground state of HXY, in either the FM (J > 0) or AFM (J < 0) case, exhibits off-
diagonal long-range order (LRO), which is indicative of a continuous symmetry breaking phase [186].
Put simply, the system spontaneously favours a configuration which no longer respects the overall
symmetry as illustrated by a simpler example in Fig. 5.1(b). This LRO property can be quantified by
the behaviour at long distance of the connected correlator,

Cxij = ⟨σxi σxj ⟩ − ⟨σxi ⟩⟨σxj ⟩ (5.3)

In the special case of M z eigenstates with ⟨σx⟩ = 0, it becomes Cxij = ⟨σxi σxj ⟩. If |Cxij | approaches a
constant Cx∞ > 0 for distantly separated spins i, j, then the corresponding state is said to possess LRO.
Such long-distance plateau of correlations is the defining feature of continuous symmetry breaking in
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finite quantum systems. An equally good order parameter to use as a smoking gun for U(1) symmetry
breaking is the in-plane magnetisation squared

m2
FM/AFM = 1

N2

∑
i,j

(±1)i+jCxij (5.4)

In the thermodynamic limit N → ∞, any state with a correlation plateau Cx∞ ̸= 0 will also have a
finite magnetisation m2

FM/AFM, and vice versa [187].
When continuous symmetry breaking occurs in the thermodynamic limit, then at finite size the

lowest energy state in each Sz sector will be approximately,
∣∣∣ΓFM/AFM
s

〉
= 1

Ns

∫ 2π

0

dθ
2πe

isθ
∣∣∣θFM/AFM

〉
(5.5)

where
∣∣∣θFM/AFM

〉
is the classical, symmetry-breaking product state where each spin points at angle

θ or −θ in the xy-plane, s is an integer specifying the Sz sector, and Ns is a normalisation factor.
Known either as the Anderson tower or Dicke states, |Γs⟩ are angular momentum eigenstates of an
emergent rigid rotor degree of freedom describing the collective orientation of all the spins in the
system [187–190]. The true ground states in each Sz sector are also dressed by quantum spin wave
fluctuations, which weaken the magnetic order [188]. For the ideal case of a uniform superposition
over fully spin-polarised states

∣∣∣θFM/AFM
〉
, the correlations in |Γ0⟩ lead to Cx∞ = m2 = 0.5, plus 1/N

corrections. The effective in-plane magnetisation of a U(1)-symmetric state should thus be identified
as meff ≡

√
2Cx∞. That is, if one were to add a small symmetry-breaking field, then the corresponding

non-symmetric ground state would have an average magnetisation ⟨σx⟩ = meff .
For the dipolar XY FM, theory predicts that the continuous symmetry breaking order persists

in the presence of thermal fluctuations [164, 165] in apparent violation of the Mermin-Wagner theo-
rem [191]. On the contrary, dipolar interactions are insufficient to stabilise finite temperature long-
range order in the antiferromagnet [162]. Rather, one expects power-law decaying, algebraic long-range
order due to Berezinskii-Kosterlitz-Thouless physics [192–196]. It is therefore of interest to prepare
those ordered states and probe their phase diagrams with respect to thermal and quantum fluctuations.

5.1.2 - Preparing XY ground state through adiabatic protocols
The ground state of HXY can be efficiently prepared by creating a connection to the spectrum

of states of a simpler Hamiltonian and smoothly transitioning the spins from one state to another
through adiabatic evolution. We utilise the Hamiltonian

HZ(t) = ℏδ(t)
∑
i∈B

(1 + σzi )/2 (5.6)

where only a checkerboard sublattice B is addressed, applying a time-dependent staggered field δ(t)
on half the spins as shown in Fig. 5.2(a). In the energy sector of null total magnetisation, i.e. M z = 0,
the classical Néel spin configuration is either the lowest energy state of HZ (δ > 0) or the highest
energy state (δ < 0). This staggered arrangement |ψNéel⟩ of |↓⟩ ∈ B and |↑⟩ ∈ A remains a good
approximation of the ground state/highest energy state of the total Hamiltonian H(t) = HZ(t)+HXY
when ℏ|δ| ≫ J . Adiabatically ramping down |δ(t)| towards 0 enables to connect H(0) = HZ where
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Figure 5.2: Adiabatic driving towards ground state. (a) A spatially dependent light-shift is used
to prepare the system in a Néel spin configuration. (b) The amplitude δ of the light-shift is decreased
as a function of time from δ0 to a final value, δf , coupling HXY to HZ through a path H(t). To study
the robustness of the magnetic order with respect to an excess energy, we also introduce a diabatic
quench of magnitude δq. This protocol enables to connect HZ at t = 0 starting from the Néel state
(green dot) to HXY. (c) Energy spectrum of H as a function of δ, for N = 2 × 3 spins. When starting
in its ground state for ℏδ/J ≫ 1, the system is adiabatically ramped to the ferromagnetic XY state
(red dot), pictured by the coloured fluctuating arrows correlated in directions. When starting in the
highest excited state for ℏδ/J ≪ −1, the system is adiabatically ramped to the antiferromagnetic XY
state (blue dot), portrayed by the anticorrelated fluctuating arrows.

the staggered field prevails to H(tf ) = HXY where the dipolar interactions prevail. We use in the
following an exponential ramp profile, δ(t) ≈ δ0e

−t/τ as displayed in Fig. 5.2(b). Choosing such a
protocol enables to start in the sector of null magnetisation and works with rather large gaps during
the dynamics, preventing potential diabatic errors. Compared to just starting from |↓ · · · ↓⟩ and
adding excitations with MW, this method proves more reliable.

The adiabatic ramp can also be quenched by an amount δq to study diabatic effects on the dynam-
ics. For δ(t) > 0, the ramp connects |ψNéel⟩ to low-temperature ferromagnetic states of HXY, as shown
in Fig. 5.2(b). Meanwhile, for δ(t) < 0, the adiabatic ramp prepares negative temperature states of
HXY or equivalently, low-temperature antiferromagnetic states of −HXY [197]. In the thermodynamic
limit of both cases, a quantum phase transition is expected to occur at some critical δ(t) = δ

FM/AFM
c ,

between the Néel configuration and the XY order (Methods of [37]).

5.1.3 - Description of the experimental implementation
The experimental setup consists of a two-dimensional square lattice of 87Rb atoms trapped in an

optical tweezer array as shown in Fig. 5.3(a). We encode an effective spin 1/2 in a pair of opposite-
parity Rydberg states, |↑⟩ = |60S⟩ and |↓⟩ = |60P ⟩. We manipulate them using resonant MW
at 16.7 GHz. Resonant dipole-dipole interactions between the spins naturally realise the dipolar XY
model as explained in Sec. 1.3.2. The lattice has fixed spacing a = 12.5 µm leading to J/h = 0.77 MHz.
The quantisation axis is defined by an external magnetic field perpendicular to the lattice plane, which
ensures that the dipolar interactions are isotropic.

The addressing laser pattern generated the staggered field uses a 1013-nm laser beam detuned
from the transition between the intermediate state |e⟩ and |↑⟩ as shown in Fig. 5.3(b). The sign of
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Figure 5.3: Experimental procedure and pulse sequence. (a) Fluorescence image of the atoms
in a fully assembled 6×7 array. (b) Scheme for the preparation of the initial staggered state using the
addressing light. (c) Detected staggered state, corresponding to the situation for which all the atoms
in sublattice A are in |↑⟩, and all the atoms in sublattice B are in |↓⟩. (d) Experimental sequence
described in Sec. 5.1.3.

the detuning sets the one of the light-shift δ: the frequency of the addressing laser is tuned below or
above the resonance by ∼ 250 MHz.

A dedicated SLM produces the desired pattern of addressing beams. Each beam is focused on a
1/e2 radius of about 1.5 µm, for a typical power of 60 mW. The light-shift for each addressed atom is
measured by microwave spectroscopy on the |↑⟩−|↓⟩ transition and the values are dictated by available
laser power. On average, for a 42(100)-atom array with 21(50) addressed atoms, |δ0|/2π = 15(9) MHz,
confirming the ability to start in the ℏ|δ| ≫ J regime. The dispersion of δ across the addressing beams
is 2.4%.

The experimental sequence is shown in Fig. 5.3(d). After assembling the array [198] we use Raman
sideband cooling along the radial directions of the tweezers, and reach a temperature of 10µK. We
then optically pump the atoms in |g⟩ before adiabatically ramping down the tweezer depth by a factor
∼ 40. Following this, we switch off the tweezers, and excite the atoms to |↑⟩ using a two-photon
stimulated Raman adiabatic passage (STIRAP) with 421-nm and 1013-nm lasers (∼ 2 µs duration).
To generate the classical Néel configuration along z, we first transfer all the atoms from |↑⟩ to |↓⟩
using a 54 ns microwave π-pulse. Subsequently, the addressing beams are applied to the atoms in
sublattice B. We then transfer the atoms A from |↓⟩ back to |↑⟩ by an adiabatic microwave sweep
while the atoms B remain in |↓⟩. In this procedure, exciting first the atoms in |↓⟩ has the advantage
of minimising the depumping of the |↑⟩ atoms by the addressing light. An example of perfect Néel
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configuration obtained at the end of the preparation is shown in Fig. 5.3(c).
At the end of the sequence, we read out the state of each atom in the natural z-basis. To do so,

we deexcite the atoms from |↑⟩ to the 5S1/2 manifold where they are recaptured in the tweezers and
imaged. Thus, the |↑⟩ (resp. |↓⟩) state is mapped to the presence (resp. absence) of the corresponding
atom. The subsequent deexcitation is performed by applying a 2.5 µs light pulse resonant with the
transition between |↑⟩ and the short-lived intermediate state 6P3/2 from which the atoms decay back
to 5S1/2.

Additionally, when we want to measure the spins along x we rotate them by applying a 27 ns
microwave π/2-pulse on the |↑⟩ − |↓⟩ transition prior to the detection. However, this procedure is
efficient only for light-shifts |δ(t)| much smaller than the microwave Rabi frequency, i.e. for times
larger than ∼ 0.5 µs during an adiabatic preparation.

The experimental sequence is repeated typically over 1000 defect-free assembled arrays. This
allows us to calculate the magnetisation and the spin correlations by averaging over these realisations.
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Figure 5.4: Theory and experiment on a plaquette. (a) Energy spectrum of HXY on a 2 × 2
plaquette arranged by magnetisation sectors. Magnetisation and correlations of (b) ideal eigenstates
and (c) experimentally prepared states (at t = 2 µs). The colour of each site (bound) represents the
value of the magnetisation (correlation) at that site (bound).

5.1.4 - Benchmark on a plaquette and noise model
As a first experiment, we apply the procedure described above on a square plaquette of 2×2 atoms

with δ0/2π = 15 MHz and τ = 0.3 µs. The spectrum of such a system is displayed in Fig. 5.4(a).
After preparing the system in the zero magnetisation classical state |ψNéel⟩, we start ramping down
the light-shift applied on the atoms in sublattice B. After a time t = 2µs (end of the ramp δ(t) ≈ 0)
we measure the magnetisation ⟨σαi ⟩ and the connected correlations Cαij = ⟨σαi σαj ⟩ − ⟨σαi ⟩⟨σαj ⟩ on the
plaquette. Figure 5.4(b-c) shows a comparison between the ideal and experimentally produced states.
Qualitatively, the observations are in agreement with the ideal expectations for the FM or AFM
state, in particular for the sign of the correlations between nearest neighbour (NN) and next nearest-
neighbours (NNN): CxNN > 0 and CxNNN > 0 for the FM case, and CxNN < 0 and CxNNN > 0 for the
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Figure 5.5: Simplified error tree associated to the preparation and measurement of the ini-
tial Néel state, for (a) the atoms in sublattice A (non-addressed), and (b) in sublattice B (addressed).
For simplicity, the events with a probability of order 2 or higher in the ηi, ε, ε

′ are disregarded.

AFM case. However, residual non-zero magnetisation on the sites and loss of contrast on the bounds
are still visible for both x and z. The protocol is therefore not perfectly preparing the desired states.

Numerical simulation of dynamics
For this small system, we can benchmark quantitatively the experimental results to numerical

simulations of the dynamics of this 2 × 2 system.
We first consider the various experimental imperfections occurring at the preparation and mea-

surement stages of the sequence, the so-called SPAM errors. In order to estimate the latter, we break
down the sequence depicted in Fig. 5.3(d) into a series of steps i, each having a small but finite failure
probability ηi. In the following, we keep only the contributions of imperfections to first order in the
ηi’s. As an example, we show in Fig. 5.5 the discretised sequence corresponding to the preparation
and measurement of the classical Néel configuration. Table 5.1 summarises the corresponding values
of the probabilities ηi, that are either inferred from a series of dedicated experiments, or estimated
from numerical simulations. For atoms in sublattice A (non-addressed), the error tree leads to the
probability to recapture the atoms at the end of the sequence, which reads (to first order):

PA
z ≈ 1 − ηMW − ηA − ηdx − εA (5.7)

Similarly, the calculation for sublattice B (addressed atoms) yields:

PB
z ≈ ηSTIRAP + ηB + ε′ (5.8)

The error tree allows us to infer the probability of successful initial preparation per spin: we find
1 − ηSTIRAP − ηMW − ηA/B = 0.89/0.88 for the atoms in sublattice A/B. These values are very similar
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Stage Symbol Value Main physical origin

|ψNéel⟩ prep.
ηSTIRAP 5%

Imperfect optical pumping,
Laser phase noise,

Spontaneous emission from 6P3/2 [199]
ηMW 2% Effect of HXY during pulse
ηA, ηB 4%, 5% Effect of HXY and finite value of |δ0|

Readout

ηfrz < 1% Effect of HXY during pulse
ηdx 3% Mechanical effect of deexcitation beam
ϵA/B 1%/3% Background gas collisions [199]/Addressing kick
ϵ′ 5% Rydberg state radiative lifetime [199]

Table 5.1: Summary of the experimental errors defined in Fig. 5.5, together with
their main physical origin.

to the experimentally obtained ones when correcting for the detection errors, i.e. 0.87/0.92 for A/B,
indicating that this experiment is dominated by preparation errors.

In addition to carefully estimating the SPAMs, our model incorporates van der Waals interactions
(see Box 9) and considers the thermal motion of atoms, resulting in time-dependent interactions.
Notably, the addressing beam imparts an additional velocity kick on atoms in region B due to the
repulsive ponderomotive force. Consequently, addressed atoms moves faster, altering further the
interactions and increasing susceptibility to losses, necessitating the definition of εB > εA.

Simulation results are obtained through Monte Carlo sampling. In each run, an imperfect initial
state is generated using the inferred preparation efficiencies per site, along with sampling initial po-
sitions and velocities for each atom. The simulation tracks dynamics from t = 0 to t = 8.2 µs and
detection errors are also incorporated. For both the FM and the AFM, we measure spin observables,
i.e. magnetisation averaged over sublattices A and B and correlations averaged over pairs of NN/NNN
as a function of the ramping time t as shown in Fig. 5.6. In both cases, we observe a rapid growth
of the correlations along x as we sweep down the lightshifts, showing the transition from a classical
uncorrelated phase to a quantum correlated phase. The final signs of the experimentally measured
correlations are compatible with the ones given by the ideal eigenstates, and their values are lower by
approximately a factor 2. However, these values are well reproduced when including the errors in the
simulation, indicating that we understand the main residual limitations of the setup.

The evolution of the magnetisation along x reveals a residual oscillation, which indicates that
the prepared state is not stationary, and thus not an eigenstate of HXY. Considering the spectrum
shown in Fig. 5.4(a), the oscillation frequency corresponds to the energy difference between the lowest
(resp. highest) energy states and the ones directly above (resp. below) for the AFM (resp. FM) case:
this indicates that the origin of the oscillations is the imperfect preparation of the ground state of
HZ at t = 0 leading to non zero population in higher energy states. Further discrepancies can be
explained by increased depumping on the addressed atoms in the FM case resulting in constant shifts
in magnetisations and by the Rydberg finite lifetime resulting in a slight decay of the correlations
along z at long times. Those two effects are further studied in the larger instances.

In addition to this benchmark, we can start to assess the role of the next nearest neighbour coupling
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(a)

(b)

AFM FM

Figure 5.6: Dynamics of the adiabatic preparation for the 4-atom system. Experimental mea-
surements (dots) are compared to perfect diagonalisation of instantaneous Hamiltonian H(t) (dashed)
and numerical simulations including experimental imperfections (solid). For the AFM (left column)
and for the FM (right column), the mean magnetisation over sublattices A (red) and B (blue) and the
mean spin-spin correlations overall nearest-neighbour (green) pairs of atoms and overall next-nearest-
neighbour (orange) pairs are measured both along (a) z and (b) x.
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Figure 5.7: Summary of connected correlations in 4-atom plaquette case with and without
diagonal coupling. Panel (a) (resp. b) exhibits Cx (Cz) for exact calculation (dot), the noisy
simulation described in the text (star) and experimental realisations (cross). For both exact and
noisy cases, NN (x-axis) and NNN (y-axis) correlations have been computed with the 1/R3 dipolar
interaction for AFM (blue) and FM (red) case. In addition, the same quantities have also been
computed when removing the diagonal coupling, in AFM (lightblue) and FM (orange) case. For both
noisy simulation and experimental data, the values are the average between 2 µs and 8 µs after the
beginning of the ramping down. Between those times, the lightshift is negligible and the system is
believed to remain in the AFM/FM XY state.

in the evolution and final values of the correlations. This can be achieved by removing the coupling
along the diagonal of the plaquette in the simulation. The results, shown in Fig. 5.7, highlight the
significance of considering the 1/r3 dependence of the dipolar interaction. In the NN case, besides the
sign of CxNN , there is no difference between FM and AFM cases.

5.1.5 - Probing the dynamics on larger systems
To investigate larger instances of the XY ferromagnet, we apply the protocol on a 6 × 7 lattice

with δ0 = 2π × 15 MHz and τ = 0.3 µs. As depicted in Fig. 5.8(a), for both sublattices, the on-site
z-magnetisation, obtained by averaging over many realisations of the experiment, decreases toward
zero, with a residual late-time offset arising from experimental imperfections. This is consistent with
the XY ferromagnet, which orders in the equatorial plane, but by itself, is insufficient to diagnose
the phase. Indeed, quenching the staggered light-shifts (in less than 100 ns) leads to a near infinite
temperature state, which also exhibits a magnetisation that rapidly relaxes to zero (lighter curves,
Fig. 5.8(a)).

The key characteristic of the XY ferromagnet is only revealed upon measuring the correlation
function, Cxij introduced in Eq. 5.3. For the quenched state, the correlation functions remain near
zero for all times, consistent with high-temperature behaviour (lighter curves, Fig. 5.8(b)). The
dynamics of the adiabatic protocol are markedly distinct – both nearest-neighbour and next-nearest-
neighbour correlations grow to a stable non-zero value at late times, indicative of order [186]. By
switching the sign of δ0, we also investigate the XY antiferromagnet. Both the z-magnetisation shown
in Fig. 5.9(a) and the correlation functions shown in Fig. 5.9(b) exhibit qualitatively similar dynamics
as the ferromagnetic case. One notable difference is that Cx < 0 for nearest-neighbour correlations,
indicating that neighbouring spins have anti-aligned.
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We then first increase the system size to a 10 × 10 lattice and perform the analogous adiabatic
preparation protocols. We find the same behaviour for all observables (insets, Fig. 5.8/5.9(a)), indi-
cating that our results are robust to finite-size effects [200]. Second, to explore the adiabaticity of our
protocol, we vary the time-constant of the exponential ramp. As shown in the insets of Fig. 5.8/5.9(b),
the dynamics of the correlation function agree between τ = 0.15 µs and τ = 0.3 µs, indicating that
potential diabatic errors appearing at larger sizes are not a limiting factor. Third, while the long-range
tail of the dipolar interaction reinforces the XY FM order, it is weakly frustrating for the AFM [172].
As a consequence, the phase transition between the Néel configuration and the XY AFM is expected
to occur at a smaller value of the staggered light-shift as compared to the XY FM, i.e. |δAFM

c | < |δFM
c |.

This is indeed borne out by the data where we observe that the magnetisation decays to zero faster
as a function of δ for the FM case than for the AFM.
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Figure 5.8: Adiabatic preparation of dipolar XY ferromagnet. (a) Sublattice-resolved mag-
netisation ⟨σzi ⟩ as the staggered field δ(t) is reduced. At t = 0, the state is prepared in a classical
Néel state along the z-axis, as indicated by the opposing magnetisation of atoms in the A (red) and B
(blue) sublattices. As the staggered field δ(t) is turned off, either adiabatically or via a sudden quench,
the Néel magnetisation decays towards zero. (inset) Comparison of the z-magnetisations decay as a
function of δ for a 6×7 versus a 10×10 lattice. The gray vertical line indicates the value δFM

c where the
phase transition occurs, inferred from the theory (Methods of [37]).(b) The formation of a low-energy
XY-ferromagnet is detected via the in-plane two-point correlation function, Cxi,j . Data is shown for
i, j averaged over either nearest or next-nearest pairs. The sudden quench produces additional energy
which destroys the XY order and leads to correlations near zero. (inset) Nearest and next-nearest
correlations for two different adiabatic ramp rates.
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Figure 5.9: Adiabatic preparation of dipolar XY antiferromagnet. Similar results than for the
antiferromagnetic case depicted in Fig. 5.8

5.1.6 - Measuring long range order
Our measurements of the local correlations suggest we have dynamically prepared low-temperature

states of the XY FM and AFM – but are these states truly long-range ordered? To investigate
this, we measure the long-distance spin-spin correlations of the 10 × 10 spins systems after adiabatic
preparation. In Fig. 5.10(a) we show the correlations as a function of the displacement d⃗, averaging over
initial positions: Cx(d⃗ ) ≡ ⟨Cx

r⃗,r⃗+d⃗ ⟩r⃗. The FM correlations are of constant sign and appear to plateau
at long distances, indicative of long-range order, while the AFM correlations are staggered and exhibit
a decay. For a more quantitative assessment, we plot Cx(d), averaging over displacements of the same
distance d = |d⃗ |. In the XY AFM, correlations decay to zero at large distances, indicating the absence
of long-range order. By contrast, the XY FM indeed exhibits a plateau, Cx∞ ∼ 0.13, which establishes
it as a magnetically ordered state with an effective magnetisation density meff ≡

√
2Cx∞ = 0.51.

For additional insight, in Fig. 5.10(b), we plot the exact ground-state prediction obtained from
DMRG calculations [201] using the MPS framework implemented in the TeNPy software library [202].
We can compute Cx(d) up to 10 × 10 arrays for the FM case HFM

XY (J > 0), for the AFM case
HAFM

XY (J < 0) and for the NN version HNN where only NN terms are kept in Eq. 5.1. AS already
conveyed by the 2 × 2 case, HNN exhibits similar behaviour in the FM and AFM case. Overall, the
ground state of the HFM

XY is clearly XY LRO, while for HAFM
XY and HNN, the states exhibit stronger

finite-size effects. Given that HNN is rigorously known to be LRO in the thermodynamic limit, the
similar behaviour observed for HAFM

XY is a strong indication that it is as well. While the qualitative
structure of the measured Cx(d) (e.g. alternating sign structure in the AFM case) is consistent
with theory, the experimental correlations are weaker. A number of effects could contribute to this.
For example, the finite fidelity of the initial Néel state introduces an entropy density (i.e. an effective
finite temperature). This is especially destructive to the AFM, for which finite temperature long-range
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Figure 5.10: Observing long-range XY order (a) Correlations along x averaged over displacements
of the same distance, Cx(d) for the 10 × 10 lattice. The XY ferromagnet exhibits a plateau consistent
with long-range order, while the XY antiferromagnet exhibits a decay to zero. (inset) Spatial corre-
lations as a function of displacement, measured at time t = 1 µs. (b) Theoretical correlation profile
|Cx(d)| on L× L square clusters with open boundary conditions for HFM/AFM

XY (red/blue) and HNN.

order is forbidden [162, 172], in agreement with our observation. Including other already discussed
experimental imperfections, e.g. readout errors, leads to excellent agreement with the data for the
6 × 7 lattice (see Methods of [37]). However, we also observe that running the adiabatic preparation
protocol to longer timescales leads to additional decoherence which adversely affects the ferromagnetic
magnetisation plateau in a non-trivial fashion; in particular, correlations at the largest distances begin
to decay before their shorter-distance counterparts as showcased by Fig. 5.11.

5.1.7 - Noise effects happening at large sizes

We discuss the influence of identified noises on the results obtained at large sizes. The initial
magnetisations along z in Fig. 5.8/5.9(a) are a bit reduced due to preparation errors. We can check
using the error tree in Fig. 5.5 that their measured values are in accordance with their expected ones,
taking into account the finite efficiency of each step: σA/B

z = 2PA/B
z − 1 = 0.8/ − 0.70. In addition,

in the FM case, the z-magnetisations of sublattices A and B do not vanish at late times, but reach
a constant finite value of a few percent. In contrast, this does not occur in the AFM case. We
qualitatively explain this effect by the following observations. First, due to off-resonant scattering by
the addressing beam, atoms in |↑⟩ are slowly depumped to the ground state |g⟩; we have measured
the effective lifetime of an addressed |↑⟩ atom to be ∼ 4 µs, whether the light-shift is 2π × 15 or
−2π × 15 MHz (so that this alone, cannot explain the difference between the FM and AFM cases).
However, during our adiabatic ramp down of light-shift δ(t), the addressed atoms are initially in |↓⟩
(and thus cannot be depumped). Depumping sets in only when the system enters the ordered phase,
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where an addressed atom has a significant probability to be in |↑⟩. Since δAFM
c < δFM

c , the addressing
beam intensity (and thus the depumping rate) is at this stage much smaller for the AFM case than
for the FM case, and thus has a negligible effect in the former case.
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Figure 5.11: Time dependence of the correlations along x in the FM case for a 10 × 10
lattice. (a), Time evolution of the nearest-neighbour correlations along x (different colours correspond
to different times). (b), Spatial correlations as a function of distance, measured at different times
t = {0.0, 0.5, 1.0, 2.0, 8.0} µs indicated by dashed lines in (a).

We also investigate the role of decoherence on the appearance of long-range order along x in
the FM case, for the 10 × 10 array. Fig. 5.11(a) shows the time evolution of the nearest-neighbour
correlations as we ramp down the light-shift, all the way up to 8 µs (in contrast with Fig. 5.8(b) where
the evolution is shown only up to 3 µs, and for 42 atoms). Two timescales appear: first, correlations
build up until t ≃ 1 µs as the FM state is adiabatically prepared ; then, they slowly decay and lose
25 % of their value in 7 µs. This decay is not expected, since the system should be ideally in steady
state once it has reached the ferromagnetic phase. We conjecture that the experimental system is
affected by decoherence arising from a combination of the residual atomic motion and spontaneous
emission from the Rydberg states. To further analyse the evolution of the ferromagnetic order, we
probe the full spatial structure of the correlations at different times. Figure 5.11(b) summarises the
results. We observe that for a given distance d all the correlations feature a similar time evolution:
a fast increase followed by a slow decay, with a turning point around 1 µs. For this particular point,
the data reveal a plateau for distances of more than 6 sites – the signature of the long range order –
that disappears for t ≳ 2 µs. This suggests that despite the decoherence present in the system, we are
able to observe the long range ordering expected from the dipolar interactions over a substantial time
window.

As a final characterisation of the prepared states, we investigate whether each realisation of the
experiment produces a classical magnet pointing in a random direction θ in the xy-plane or a genuinely
quantum many-body state described by Eq. 5.5. To do so, we analyse the statistical distribution of
M z, which is conserved during the adiabatic ramp. For a classical FM or AFM, each spin, aligned or
anti-aligned along θ, is an equal superposition of |↑⟩ and |↓⟩, so that M z follows a binomial distribution.
By contrast, the ground state of HXY is an eigenstate of M z, and its variance should be zero.
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Figure 5.12(a,b) shows experimental histograms of the z-magnetisationat t = 2µs for the FM and
AFM. Figure 5.12(c) presents the variance for various times t. We observe that the states exhibit
variances smaller than those expected from a binomial distribution, suggesting that classical magnets
are not being prepared. Notably, the non-zero variances measured can be entirely accounted for by
the SPAM errors described in Fig. 5.5. Furthermore, we have verified the rotation invariance of the
state about the z-axis by measuring magnetisation along the y-axis, yielding consistent results with
measurements along the x-axis. Altogether, our measurements suggest a state which is a coherent
quantum superposition over a continuous family of classical configurations. For such a state, the
defining signature of order is a long-distance plateau in the correlation function Cx(d) – as we observed
in the XY FM [157].

SPAM errors (42)

only preparation errors (42)

classical mixture

quantum superposition

SPAM errors (100)

a

b

c(c)

(b)

(a)

Figure 5.12: Analysis of the z-magnetisation during the adiabatic ramp. Experimental his-
tograms of the z-magnetisation M z (N = 42) for (a), the FM and (b), AFM case together with the
ideal case (purple), and the expected distribution including state preparation and measurement errors
(grey bars). The orange line is the binomial distribution corresponding to a classical magnet (see
text). (c) Normalised variance (∆M z)2/N as a function of time during the ramp, for the experiment
(circles for N = 42, triangles for N = 100), the classical magnet (orange line) and a perfect XY-
magnet (purple line). Grey continuous and dashed lines: ideal case including state preparation and
measurement errors. Dotted line: ideal case (N = 42) including only state preparation errors.
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5.1.8 - Exploration of the phase diagrams
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Figure 5.13: Experimentally measured and theoretical XY phase diagrams. (a) Ferromag-
netic phase diagram depicting the magnetisation squared as a function of the final staggered field
strength, δf and the diabatic quench magnitude, δq. Symmetry breaking is expected in a lobe about
(δf = 0, δq = 0) and is destroyed by either quantum (δf ) or thermal (δq) fluctuations. On a 6 ×
7 system, a crossover between ordered and disordered behaviour is observed. (b) Analogous phase
diagram for the antiferromagnet. Note that at finite temperature, only algebraic long-range order is
expected. (insets) Theoretical phase diagrams obtained with Minimally Entangled Typical Thermal
States (METTS) algorithm [203] method.

As mentioned earlier, the long-range order observed in the FM case should persist at finite tem-
perature. We therefore investigate the stability of the prepared magnetic orders as a function of an
effective temperature. To do so, we insert a partial quench of amplitude δq into the ramp, followed by
an equilibration time of at least 1 µs at a final value δf of the staggered field (Fig. 5.2(b)): the variable
quench introduces excess energy into the system, and we observe a relaxation of the magnetisation
and correlations during the equilibration time. We will use the amplitude of the quench, δq, as a proxy
for the final effective temperature.

After each {δf , δq} ramp, we measure the in-plane magnetisation squared m2
FM/AFM defined in

Eq. 5.4 and construct the phase diagram shown in Figs. 5.13. Starting with the ferromagnet (a), for
small values of δf and δq (corresponding to low effective temperatures), the magnetisation per site is
of O(1), consistent with the ordered phase. As either δf or δq increases, the magnetisation density
decreases toward zero indicating melting into a disordered phase. This is consistent with theoretical
expectations, where δq drives the transition via thermal fluctuations [164], while δf tunes across the
quantum phase transition. We perform the same analysis for the antiferromagnet (b). Compared
to the XY ferromagnet, we find that a much smaller region of the {δf , δq} phase space exhibits
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significant AFM correlations, consistent with the frustration induced by the long-range interactions
which destabilises the phase. Theoretical expectations for those phase diagrams as well as precise
thermometry of the system with correspondence between δq and an effective temperature are more
deeply explained in Methods of [37] and in [152].

5.1.9 - Outlook
It would be interesting to investigate the nature of the phase transition between the disordered

and XY-ordered phases; this will require overcoming a number of technical challenges including scaling
to larger system sizes. Second, the ability to directly prepare low-temperature states in different M z

magnetisation sectors due to state preparation errors suggests the possibility of directly observing the
so-called Anderson tower of states, which underlies continuous symmetry breaking in finite quantum
systems [187–190]; the structure of these states has led to recent predictions for scalable spin squeezing
by quenching in the ferromagnetic XY phase [204, 205]. Finally, combining optical tweezer geometries
which exhibit frustration (i.e. triangular or Kagome lattices) with antiferromagnetic interactions leads
to a rich landscape for exploring frustrated magnetism as showcased in the next section for a small-size
system.

5.2 - Observing frustrated magnetism with multi-basis measurements

Enhanced level of control in quantum simulators enables the preparation of broader classes of
initial states [206, 207], the measurement of multi-basis observables [208], and even mid-evolution
gates [209]. These advances enabled the integration of novel quantum information protocols with
quantum simulators [210–213]. In neutral atom systems, combining ground-state Raman manipula-
tions [214, 215] with the ability to address individual atoms has already allowed for the demonstration
of local rotations in such systems [216–218]. However, in the Rydberg-Rydberg encoding, no analo-
gous procedure has been realised. Here, we address this challenge by demonstrating a general protocol
implementing nearly-arbitrary local control in a dipolar Rydberg atom array and we adiabatically pre-
pare and measure states exhibiting both ferromagnetic and antiferromagnetic (six-body) chiral-chiral
correlation functions.

5.2.1 - Multi-basis measurement protocol
Our protocol to perform multi-basis measurements relies on the combination of microwave pulses

and local light-shifts. The microwaves, tuned to the |↑⟩ − |↓⟩ transition (at ω0/(2π) ∼ 16.7 GHz), only
allow for global rotations. To perform local rotations, we apply light-shifts on specific atoms using
addressing beams generated by reflecting a 1013 nm laser on an SLM.
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Generating the addressing pattern
The addressing laser beams are generated by an external cavity, 1013 nm diode laser seeding an

amplifier outputting up to 8 W. The light is blue-detuned from the (6P3/2,mJ = 3/2) to |↑⟩ transition
by ∆/2π ∼ 400 MHz resulting in a light-shift δ ∼ Ω2

1013/(4∆) for a Rabi frequency Ω1013 on an
addressed atom. We use a dedicated SLM to produce the pattern of addressing beams, superimposed
onto the tweezer array pattern. Each beam is focused on a 1/e2 radius of 1.5 µm and induces a
light-shift of either 1δ or two 2δ. A power of ≈ 300 mW on one atom results into a light-shift
δ/(2π) ≈ 23 MHz. The average measured light-shifts for the 1δ (and 2δ) atoms are 2π × 22.82 MHz
(2π × 45.46 MHz) with a typical dispersion of 2π × 0.2 MHz (2π × 0.4 MHz) between the different
atoms. A current limitation of this scheme is that the only characteristic of the addressing pattern that
can be dynamically modified during the ∼ 10µs timescale of an experiment is the overall amplitude
of the light-shift; however, one could envision to circumvent this limitation in the future, using e.g.
several SLMs in a multiplexing configuration.

As illustrated in Fig. 5.14(a), the atoms are addressed with different intensities to produce different
values of light-shifts, realising the Hamiltonian Hz = ℏ

∑
i δi(1 + σzi )/2, with δi = 0δ (atoms not

addressed), 1δ or 2δ (with δ/2π ≈ 23 MHz). From now on, we refer to these classes of atoms as the
0δ, 1δ and 2δ atoms.

2𝛿

(a) (b)

1𝛿

0𝛿

(c)

Figure 5.14: Multi-basis measurement on a triangle. (a) Experimental set-up. The microwaves
at a frequency ω0 and ω0 + δ (green/yellow) are on resonance with the 0δ and 1δ atom transitions
(no colour/light red) and off-resonant with the others (red). (b) Experimental sequence to measure
the state of three atoms in the y, z and x basis. A global MW pulse (green) is followed by a combi-
nation of addressing (red) and MW pulses (green/yellow). (c) Average magnetisation of each class of
atoms during a Ramsey experiment. Experimental data (dots) are benchmarked against simulations
including experimental imperfections (solid). The shaded areas represent the standard deviation in
MC simulations.
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Applying local rotations
To perform local rotations on these three classes, we apply the addressing beams and send simul-

taneously two microwave pulses with frequencies ω0 and ω0 + δ, resonant with the 0δ and 1δ atoms.
This allows for arbitrary qubit rotations of the 0δ and 1δ atoms while the 2δ atoms remain unaffected.
By applying a global rotation prior to the local ones, as detailed below, we can now perform measure-
ments in arbitrary bases on three classes of atoms at the same time: the choice of the measurement
basis is set by the duration and phase of each microwave pulse with respect to a local oscillator at ω0.

As an example, Fig. 5.14(b) shows the experimental sequence used to measure the 0δ, 1δ and 2δ
atoms along the y, z and x axis. The first microwave pulse applies a global π/2 rotation along the
−y. We call R−y the corresponding rotation operator. Then, combining two microwave frequencies
with the addressing, we apply the following local rotations Rx0δ ⊗ Ry1δ ⊗ 12δ with Ru

nδ the operators
corresponding to a π/2 rotation of the nδ atoms around the u axis. This full sequence is thus equivalent
to the rotations (Rx0δ ·R−y

0δ ) ⊗ (Ry1δ ·R−y
1δ ) ⊗R−y

2δ . As, Rx1δ ·R−y
1δ = Rz1δ ·Rx1δ, and as we measure in the

z-basis, the z rotation has no effect on the measured probabilities. The sequence thus amounts to the
rotation Rx0δ ⊗ 11δ ⊗ R−y

2δ Another, more natural, experimental protocol would have been to apply 3
microwave frequencies tuned on the 0δ, 1δ and 2δ-atoms. However residual spatial inhomogeneities
on the 2δ light-shifts degraded the fidelities of the rotation in an early attempt.

Building the noise model
In this section, we review the sources of errors decreasing the preparation and detection fidelities.

We estimate the fidelity of the Rydberg excitation ηSTIRAP = 98 ± 0.3% [37, 205], thus a bit improved
compared to previous section. For the detection errors, a set of independent experiments leads to first
order to ϵ↑ = (1 − ηdeexc) + ϵ = 1.5% + 1.2% = 2.7 ± 0.3% and ϵ↓ = 1.5 ± 0.3%.

We also identified six sources of imperfections occurring during the local rotations sequence. (1)
The finite value of light-shits compared to the MW Rabi frequency Ωmax/2π = 5.43 MHz induces
crosstalk with the off resonant microwave leading to imperfect rotations of the atoms. (2) The XY
interactions can not be turned off during the ∼ 100 ns of local rotations. This rotation time is optimised
experimentally as to find a balance between shorter duration with increased Ωmax while keeping δ ≫
Ωmax to maximise the rotation efficiencies. (3) Due to the spontaneous emission induced by off-resonant
coupling to the short-lived intermediate state 6P3/2, the addressed atoms in |↑⟩ are slowly depumped
to the ground state 5S1/2. For ∆/2π ∼ 400 MHz and δ/2π ≈ 23 MHz we experimentally measure
effective lifetimes of ∼ 2.3 µs and ∼ 1.1 µs for the 1δ and 2δ atoms in the |↑⟩ state. (4) The tightly
focused addressing beams apply a ponderomotive force on the addressed atoms, pushing them away
from their trap center, thus preventing them from being recaptured before readout. Experimentally,
for δ/2π ≈ 23 MHz, we measure losses of 0.3 ± 0.3% and 1.3 ± 0.3% for the 1δ and 2δ atoms when
sending a 80 ns addressing pulse. (5) As mentioned above, the light-shifts applied to the atoms are not
perfectly homogeneous. We measured a dispersion on the order of 1% after calibration that can drift
up to 3% after one day without further calibrations. When the addressing is on, the dispersion results
into a variation of the phase accumulation of the 1δ-atoms across the array. This leads to a spread of
the angle of rotation of the qubits when sending the microwave pulses for local rotations. (6) Finally,
we measure an electronic jitter of ±2 ns between the addressing and the microwave pulses. It has a
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similar effect to that of light shift inhomogeneities. Shot-to-shot, the jitter induces an uncertainty in
the angle of rotation of the 1δ atoms leading to imperfect microwave rotations.

Calibrating through Ramsey sequence
We illustrate and benchmark the protocol above by performing a Ramsey experiment: starting

from all atoms in |↑⟩, we apply a first global rotation Rx cosφ+y sinφ, followed by the local rotations
Rx0δ ⊗Ry1δ ⊗ 12δ and finally read-out the states for various φ. Each experimental sequence is repeated
∼ 500 times to compute the average magnetisations. We expect oscillations of the 0δ and 1δ-atom
magnetisation that are out of phase by π/2. The 2δ-atom magnetisation should remain constant at
0. Fig. 5.14(c) shows the experimental results. We attribute the finite contrast of the oscillations to
the experimental imperfections described above. To confirm this, we perform a Monte Carlo simu-
lation including SPAMs, finite Rydberg lifetime, interactions between atoms, jitter of the addressing
and depumping and losses induced by the addressing. Taking into account all these experimentally
calibrated mechanisms in the numerics yields good agreement with the data.

5.2.2 - Quantum state tomography on entangled states

Figure 5.15: State tomography. (Table) First column: measurement basis for the 0δ, 1δ and 2δ
atoms. Second column: applied rotations. Three last columns: relative phases of the microwave pulses
used implement the corresponding rotations (ϕall refers to the global rotation and ϕ0,1δ to the local
ones). The − symbol indicates that the corresponding pulse is off for this sequence. Real (a,b,c) and
imaginary (d,e,f) parts of the reconstructed density matrix for the |W ⟩,

∣∣χ+〉 and |χ−⟩ states. The
transparent bars represent the expectation values for perfect states.

We now demonstrate how the local control introduced in our work enables the preparation and
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detection of complex, correlated states. In particular, we investigate the entangled states of three
atoms placed in an equilateral triangle and interaction via HXY. In this configuration, the in-
teraction lifts the degeneracy between |↑↑↓⟩, |↑↓↑⟩ and |↓↑↑⟩, leading to three eigenstates |W ⟩ =
(|↑↑↓⟩ + |↑↓↑⟩ + |↓↑↑⟩) /

√
3 and |χ±⟩ = (|↑↑↓⟩ + e±i 2π

3 |↑↓↑⟩ + e±i 4π
3 |↓↑↑⟩)/

√
3 separated in frequency

by 3J/ℏ.
In order to prepare these states, we proceed as described in the preparation phase of Fig. 5.16(a).

Starting from all atoms in |↑⟩, we apply a Gaussian microwave pulse at frequency ω0 + 2J/ℏ to
drive a direct transition from |↑↑↑⟩ to |W ⟩. This pulse is performed at a relatively reduced Rabi
frequency (much smaller than 3J) compared to the values used for the measurement rotations (in
which ΩMW ≫ J). The Rabi frequency is collectively enhanced by a factor of

√
3, compared to

the one measured for single atom Rabi oscillation experiment. Finally, we turn on the addressing
light for a duration tphase to imprint a phase 0ϕ, 1ϕ and 2ϕ on the 0δ, 1δ and 2δ atoms, with
ϕ(tphase) =

∫ tphase
0 δ(t) dt, thus preparing |χ(ϕ)⟩ =

(
|↑↑↓⟩ + eiϕ |↑↓↑⟩ + ei2ϕ |↓↑↑⟩

)
/
√

3.
We now exploit our ability to apply arbitrary local rotations to perform quantum state tomography

of |W ⟩ and |χ±⟩ and reconstruct their density matrix. To do so, we measure the state of each
class of atoms in the x, y and z bases, corresponding to 33 = 27 different measurements detailed
in Fig. 5.15(table), from which we compute the relevant correlation functions, as well as extract the
density matrix (see Box. 19).

Box 19: Density matrices reconstruction

In order to reconstruct the density matrices ρ of quantum states using the measurements in x
,y and z basis, we perform a maximum-likelihood estimation to constrain ρ to be physical. We
follow the method described in the Supplemental Materiel of [219]. Any density matrix can be
written as ρ(T ) = T †T/Tr(T †T ) with T being a complex 8×8 lower triangular matrix with real
diagonal elements. Thus T has 64 independent real parameters (t1, t2, · · · , t64) that minimise
the following cost function:

C(T ) =
∑

α∈{x,y,z}3

∑
β∈{↑,↓}3

(
⟨β|R†

αρ(T )Rα|β⟩ − P βα

)2
.

Here, α is the basis in which we measure each atom, β is an experimental outcome, P βα the
probability to measure β in the α basis and Rα the set of applied rotations to measure in α. For
example, when measuring in the xyz-basis, Rxyz = R−y

0δ ⊗Rx1δ ⊗12δ. The minimisation process
is numerically achieved using a L-BFGS-B algorithm and the density matrix is initialised as the
identity.

Figure 5.15 shows, for one triangle, the real and imaginary parts of the density matrices ρ of the
three states |W ⟩,

∣∣χ+〉 and |χ−⟩. From them, we compute fidelities F = ⟨ψ|ρ|ψ⟩ of 0.74(1), 0.71(1)
and 0.68(1) without correction and 0.80(1), 0.78(1) and 0.74(1) when correcting for detection errors.
They are all above 2/3, revealing genuine three-partite entanglement [220–222]. In addition, the
produced W -state violates the Mermin-Bell inequality: S = |⟨σz0δσz1δσz2δ⟩−⟨σx0δσx1δσz2δ⟩−⟨σz0δσx1δσz2δ⟩−
⟨σz0δσz1δσx2δ⟩|≤ 2 as we measure Sexp = 2.083(26) [223]. Much like in the more conventional Bell-state
case, this violation rules out a hidden-variable model for the measured correlations.
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5.2.3 - Measuring the chirality

Box 20: Intuition for the chirality operator

The classical interpretation of the chirality operator χ = σa · (σb× σc) highlights its connection
to the handedness of three spins, or the signed volume of the formed parallelepiped by the Bloch
vectors. It’s odd under time reversal symmetry and invariant under spin rotations. However,
it doesn’t explain why the maximal value of chirality can’t be achieved classically. An intuitive
understanding emerges when considering it as a form of angular momentum of spins hopping
the three sites forming the triangle of interest.
This picture becomes more transparent when writing the chirality operator in terms of the
raising and lower spin operators:

σ⃗a · (σ⃗b × σ⃗c) = ϵαβγσαaσ
β
b σ

γ
c

=
∑

perm {a,b,c}

(
σaxσ

b
y − σayσ

b
x

)
σcz

=
∑

perm {a,b,c}
2i
(
σa+σ

b
− − σa−σ

b
+

)
︸ ︷︷ ︸

jba

σcz

(5.9)

where jba is the spin current from spin b into spin a. This means that the state
∣∣χ+〉 that

maximises the chirality is a state hosting a persistent spin current in a particular direction, or
alternatively, the states with maximal angular momentum. Under the action of the chirality
operator, each term of the superposition leads to a contribution: 2i ei2π/3−e−2π/3

3 = 4
3 sin 2π/3 =

2√
3 .

The angular momentum is maximised for permutation invariant state; classically, such a state
would necessarily exhibit zero chirality since all the spins would be collinear. As a result,
tripartite quantum entanglement is necessary to maximise the angular momentum. From the
above calculation, an equal superposition of all the rotationally related terms of the wavefunction
is needed for the terms to coherently add together. Since the magnetisation is globally conserved,
this requires a W-like superposition, which cannot be described using a classical separable state.

Despite |W ⟩,
∣∣χ+〉 and |χ−⟩ exhibiting homogeneous magnetisation and two-point correlation

functions, they can be distinguished through their chirality. The chirality χ is a spin rotationally
symmetric observable that breaks time reversal symmetry and is defined for three spins i, j and k

by ⟨χijk⟩ = ⟨(σi × σj) · σk⟩, with σi = σxi x + σyi y + σzi z [224]. For a classical product state, ⟨χ⟩ is
bounded by ±1 and this limit can be overcome for entangled states. ⟨χ±|χ̂|χ±⟩ reaches a maximum
value of ±2

√
3 as explained in Box. 20.

To measure the chirality, we first note that it can be written as the sum of six terms correspond-
ing to the different permutations of {x, y, z}: ⟨χ0δ,1δ,2δ⟩ = ⟨σx0δσ

y
1δσ

z
2δ⟩ + ⟨σy0δσz1δσx2δ⟩ + ⟨σz0δσx1δσ

y
2δ⟩ −

⟨σy0δσx1δσz2δ⟩ − ⟨σx0δσz1δσ
y
2δ⟩ − ⟨σz0δσ

y
1δσ

x
2δ⟩. For each value of ϕ, we measure each set of bases to compute

the total chirality of |χ(ϕ)⟩, similarly to previous work using superconducting qubits [208].
Fig. 5.16(b) shows the results (purple circles) as a function of ϕ, together with the theoretical

expectations. The amplitude being reduced due to experimental imperfections, we perform a detailed
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Figure 5.16: Measuring the chirality. (a) Experimental sequence used to prepare a |χ(ϕ)⟩ state,
from the Rydberg excitation step to the readout. (b) Chirality of |χ(ϕ)⟩ as a function of ϕ. The
theoretical amplitude (black) is reduced in experimental implementation (purple dots). Simulating
with MC sampling either only imperfect preparation phase (red) or imperfect measurement phase
(blue) gives the separate contributions of each phase. Simulating the whole procedure and accounting
for detection errors (purple) enables to explain the data. The shaded areas represent the standard
deviation.

numerical simulation of the experiment including all the sources of noise described above. We simulate
the dynamics of this 53-level system (|g⟩ , |e⟩ , |↑⟩ , |↓⟩ , |D⟩) using the package qutip, starting from
|g⟩⊗3 and solving the Lindblad equation for each step of the sequence and each set of experimental
parameters.

We account for the shot-to-shot fluctuations in the inter atomic distances and timing jitters by a
Monte-Carlo sampling of the experimental parameters with the estimated bounds given in the previous
sections. We also include inhomogeneities of the light-shifts across the array. As solving the Master
equation becomes quickly resource-consuming (∼ 1 hour/shot), we average the simulation results
over only 20 shots, which appears to be enough to reproduce the experimental data with reasonable
agreement. At the end of the Monte Carlo simulation, we apply to the results the addressing-induced
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atom losses and readout errors following the procedure described in previous sections. The simulation
predicts a STIRAP efficiency for one atom of 98.3%, in very good agreement with the experiment.
The phases of the microwave pulses are optimised so as to reproduce the data in Fig. 5.14(c), and are
then fixed to these values.

To simulate the chirality curves shown in Fig. 5.16(b) and assess the impact of the various imper-
fections, we first calculate the preparation fidelity of the |W ⟩. We obtain ηW = 88.4 ± 0.4%, with
contributions to the infidelity of 4.0% from the STIRAP finite efficiency, 6.0% from the Rydberg life-
time, 0.5 ± 0.2% from positional disorder and 1.0 ± 0.2% from the microwave pulse finite amplitude.
We experimentally measure a fidelity of 80 ± 1%, corrected for detection error, with the tomography
performed above. We attribute the remaining 8% of fidelity difference between experiment and simu-
lation to various imperfections occurring during the rotations. We then include the phase imprinting
step to prepare the state |χ(ϕ)⟩. Measuring exactly the normalised chirality ⟨χ⟩ of this imperfectly
prepared state (by dividing by 2

√
3) yields a maximum (minimum) value of 0.8(−0.79) (red curve

in Fig. 5.16(b)). Applying the experimental measurement sequence for each of the 6 components of
the chirality and starting from a perfect |χ(ϕ)⟩ leads to normalised peak values of 0.7(−0.62) (blue
curve). Finally, we simulate the preparation and the measurement phase, adding the detection errors,
and obtain maximum (minimum) values 0.55(−0.44) (purple curve), in good agreement with the data.
We thus find that the main limitations of the chirality measurement are the imperfections during the
measurement phase.

5.2.4 - Frustration on triangular plaquettes
Having leveraged our local control to prepare and probe entangled states, we now demonstrate the

power of this tool set in a quantum simulation experiment.
Using a frustrated geometry consisting of a pair of triangular plaquettes [Fig. 5.17(a1)], we attempt

to adiabatically prepare low-energy states of the antiferromagnetic dipolar XY model. Strictly speak-
ing, since in Eq. (5.1) we have ferromagnetic couplings J < 0, we explore the low-energy properties
of the antiferromagnetic model (J > 0) by preparing the highest-energy state(s) of our quasi-isolated
system. Owing to time-reversal symmetry, all states in the spectrum exhibit zero chirality, ⟨χ⟩ = 0.
However, exact diagonalisation demonstrates that, the two lowest-energy states exhibit large, but
opposite, chiral-chiral correlations. To illustrate this feature, we prepare both the ground and first
excited states, by carefully choosing an appropriate pattern of local light shifts.

Our protocol proceeds similarly as in the first section: after initialising all the atoms in |↓⟩,
we turn on a pattern of local light shifts [Fig. 5.17(a)]; we then apply a microwave pulse to rotate
the non-addressed atoms to |↑⟩. This prepares a product state which is the lowest energy state of
HZ . Starting with δ ≫ |J |, we then reduce the light-shift as δ(t) = δ0e

−t/τ [with τ = 0.55 µs and
δ0/2π = 23(46) MHz for the 1δ(2δ)-atoms], thus quasi-adiabatically connecting the initial Hamiltonian
(≈ HZ) to the final one HXY.

In general, such an adiabatic protocol is expected to prepare the ground state of the final Hamil-
tonian, regardless of the details of the ramp. This expectation fails when the system’s ground state
exhibits a level crossing, which requires either fine-tuning or some underlying symmetry. Utilising
our ability to shape the addressing light, we thus consider two different patterns exhibiting distinct
symmetries: pattern 1 respects a mirror symmetry My along the y-axis [Fig. 5.17(a1)], while pattern
2 respects inversion symmetry I [Fig. 5.17(a2)]. For the first pattern, both initial and ground states
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live in the same symmetry sector of My and thus are adiabatically connected [Fig. 5.17(b1)]. We thus
expect to prepare the ground state, leading to the observation of anti-ferromagnetic chiral-chiral cor-
relations. By contrast, for the second pattern, the initial and ground states live in different symmetry
sectors of I and thus cannot be adiabatically connected [Fig. 5.17(b2)]. We thus expect to prepare
the first excited state, which exhibit ferromagnetic chiral-chiral correlations.
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Figure 5.17: Adiabatic preparation of low energy states (a) Light shift patterns (0, 1δ, 2δ)
and associated initial states. Pattern 1 respects mirror symmetry along the y-direction My whereas
pattern 2 respects inversion symmetry I. (b) Energy spectrum during the adiabatic ramp for pattern
1[2]. (c) Connected chiral-chiral correlations ⟨χAχB⟩′ for pattern 1 (green), pattern 2 (purple) and
non interacting triangles (blue). The early time (t ≲ 1.5µs) observation of non-zero ⟨χAχB⟩′ is due
to a necessary waiting period before measurement, during which the system undergoes additional
dynamics.). (d) Chirality for triangles A and B under the two patterns.

We experimentally explore this difference using the multi-basis measurement protocol described
above. It not only allows measuring the chirality ⟨χ(t)⟩ of a single triangle, but it also enables the
measurement of six-body correlation functions, from which the two-triangle chiral-chiral correlations,
⟨χAχB⟩, can be extracted.
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In principle, the full reconstruction of ⟨χAχB⟩ requires the measurement of 36 different terms.
However, a smaller subset of six terms is sufficient to faithfully capture the system’s correlations as
detailed in Methods of [58]. We can, therefore, use the same addressing pattern for both the adiabatic
ramp and the multi-basis measurement. More specifically, we measure:

⟨χAχB⟩′ = η
∑

a,b,c ∈ perm(x,y,z)

⟨σa0δσb1δσc2δσ̃a0δσ̃b1δσ̃c2δ⟩
−⟨σa0δσb1δσc2δ⟩⟨σ̃a0δσ̃b1δσ̃c2δ⟩

(5.10)

where σ[σ̃] refers to spins in triangle A[B] and η = ±1 is set by the relative handedness of the two
three-spin measurement patterns: η = −1 for pattern 1 and η = 1 for pattern 2.

We begin by studying the quasi-adiabatic ramp using the pattern depicted in Fig. 5.17(a1). Focus-
ing on the connected chiral-chiral correlation, we observe the development of strong anti-ferromagnetic
⟨χAχB⟩′ correlations that persist to late times [Fig. 5.17(c), green]. This observation is consistent with
a preparation yielding more than 50% population in the ground state. By contrast, when considering
the second pattern [Fig. 5.17(a2)], the dynamics exhibit similar features but with opposite sign. The
presence of equally strong ferromagnetic ⟨χAχB⟩′ correlations is consistent with an equally large pop-
ulation in the first excited state of the system. To demonstrate that our observations indeed arise from
the dipolar interactions between the two triangles, we also measure ⟨χAχB⟩′ for non-interacting trian-
gles separated by ≈ 72 µm. In this case, neither patterns lead to significant correlations [Fig. 5.17(c),
blue].

Finally, we discuss two important sources of imperfections in our protocol. First, although τ was
chosen to be much longer than the timescale of the system (1/J), residual diabatic errors manifest
themselves in a small chirality value ⟨χ(t)⟩ [Fig. 5.17(d)]. Second, there are fluctuations in the posi-
tions of the atoms owing to their initial position and velocity uncertainty upon the release from the
tweezers. As a result, for each repetition of the experiment, the atoms experience slightly different
time-dependent interactions, that ultimately lead to the damping of the chirality oscillation and to
the decay of the connected chiral-chiral correlations.

5.2.5 - Conclusion
In conclusion, we have demonstrated a new tool combining global microwaves and local light-

shifts to enable local control of qubits encoded in Rydberg levels. Our protocol is generic and can
be extended to an arbitrary number of classes of atoms. The agreement between experiments and
simulations highlights our good understanding of error in our system—a crucial ingredient for further
improvements.

More broadly, this work opens the doors to a number of intriguing directions. First, the mea-
surement of multi-body correlation functions can capture the intricate correlations that characterise
complex phases of matter such as time reversal symmetry breaking and topological order [225]. Sec-
ond, the ability to measure along arbitrary bases enables the implementation of novel certification
protocols [226]. Finally, by interspersing unitary rotations with analog quantum simulation, one can
study multi-time correlation functions as well as more varied dynamical protocols [126, 208, 227].

Overall, in this chapter, we have demonstrated the use of Rydberg based quantum simulators to
study with the dipolar XY model frustration in spins system. In the following part of this thesis, we
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will return to the Ising model and show how industrial applications can also be tackled, especially
with the help of combinatorial optimisation and machine learning methods.
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6 - Combinatorial optimisation with Rydberg atoms
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Representing data in the form of graphs is ubiquitous in a multitude of scientific, engineering
and industrial scenarios as they naturally represent complex connections between entities. They
naturally describe how individuals are connected based on their relationships in social networks [228],
characterise interactions of proteins and genes [229] and can represent the structure of sentences in
linguistics [230]. The visual abstractions and universality that graphs provide make them invaluable
tools for addressing and understanding complex problems, such as combinatorial optimisation ones.
Harnessing the innate properties of neutral atoms offers an appealing avenue in achieving enhanced
computational capabilities in graph-related optimisation tasks, such as Maximum Independent Set
(MIS) problems. The ability to solve the MIS problem has broad implications, extending to various
other graph-related problems, given their connection in graph theory, and aligning with numerous
industrial challenges [231].

In this chapter, we delve into the process of mapping graphs onto arrays of trapped neutral atoms
to faithfully reproduce their topologies through pairwise van der Waals interactions. We explain how
variational quantum algorithms can be used to find MIS solutions and implement the corresponding
hybrid classical-quantum loops on Fresnel for several approaches. Subsequently, we construct an
adiabatic protocol applicable to a family of similarly structured graphs, demonstrating its applicability
in an industrial scenario involving smart-charging tasks for electric vehicles. Finally, we address the
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limits on the kind of combinatorial problems we can tackle with current hardware, while also surveying
diverse strategies to augment these capacities.

Some elements of this chapter are taken from the following articles to which I contributed :

• [232] C. Dalyac et al., “Graph Algorithms with neutral atom quantum processors”, arXiv, 2024.

• S. Tibaldi et al., "Analog QAOA with Bayesian Optimization on a neutral atom quantum
processor", in preparation.

6.1 - From graphs to spins to Rydberg atoms

6.1.1 - Mapping combinatorial problems to spins systems
Combinatorial problems involving graphs typically revolve around selecting an optimal configura-

tion from a finite set of distinct elements, all while adhering to specified constraints. Let us start with
a simple but stressful enough example for anyone who has ever faced it, entitled making a guest list.

Inviting people is hard, seriously
For any event, be it a wedding or a thesis defense celebration, selecting the attendees involves

navigating a delicate balance. One must carefully choose from a pool of individuals, bearing in mind
potential conflicts or strained relationships among them. This intricate network can be modelled by
a graph G = (V, E) where each vertex i ∈ V represents a prospective guest and an edge (i, j) ∈ E
between two guest i, j represents their relationship as showcased in Fig. 6.1(a).
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Figure 6.1: Instances of combinatorial problems solved by finding MIS. (a) A list of potential
guests can be represented as a graph where persons/nodes are connected by weighted edges according
to their relationships. Nodes can also be weighted according to the relationship between the host
and their guest for instance. (b) Broadcasting problem where identical radio transmitters over French
cities have the same radius of transmission. One needs to assign distinct frequencies to nearby towers
to avoid interference but the finite bandwidth requires using as few frequencies as possible. The MIS
indicated by red dots shows which towers could share the same frequency. (c) Example of a Group
Interval Scheduling problem described in Sec. 6.4.

Depending on the situation, one will assign weights wi to each vertex and wij to each edge with
w ∈ R, arbitrary scores. Planning successfully the event would then require minimising the following
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cost function
CG(z) =

∑
i∈V

wizi +
∑

(i,j)∈E
wijzizj , (6.1)

where zi is a binary variable, equal to 1 when node i is selected (guest i is invited) and 0 otherwise.
A configuration z, or guest list, is thus successful (optimal), according to the scenario given by
the weights, when the cost CG(z) is low (the lowest). For instance, consider a scenario where each
individual, regardless of their specific identity, is assigned a negative weight wi = −1. This directly
translates into the more people the merrier as adding a new person decreases CG(z). By then assigning
wij = 0 for pairs of people getting along and wij = c > 0 for pairs who don’t, adding someone on
bad terms with an already invited guest results in an increase of CG(z). Here, the ratio c accounts
for the personal balancing on inviting as many guests as possible (c ≪ 1) or making sure that the
event would be trouble-free (c ≫ 1). Finding a solution to this problem implies finding a maximum
subset of nodes not connected to each other, i.e. with wij = 0, and is known in the optimisation
field as the Maximum Independent Set problem. As more and more details and constraints are taken
into account, this problem can even be made more complex. For instance, the personal benefit of
choosing someone could depend on its identify as inviting your best friend i to your birthday holds
more significance than a total stranger j, i.e. wi < wj < 0. Moreover, the links between people can be
further quantified by the scores wij > 0 with a thousand-year-old rivalry weighing more than a mere
feeling of discomfort. Bringing along a group of friends who all appreciate each other will benefit the
event, and can be modelled by a cluster of connected nodes with negative weights on the edges, i.e.
wij < 0. The MIS thus become a weighted MIS (MWIS).

As many people have noticed in the run-up to their wedding, planning this guest list/solving this
MIS problem is in fact hard. With the number of elements N increasing, the exponential number of
possible configurations |BN | = 2N explodes rendering an exhaustive search quickly intractable. With
N = 100 guests for instance, checking the 2100 ≈ 1030 arrangements would take thousand of years
to even the most advanced supercomputer. Interestingly, no other method than this straightforward
but painfully time-consuming one has been found to solve this problem exactly. For this reason, MIS
problems have been cast to the NP-hard complexity class, stating that no known polynomial-time
algorithm can solve them exactly on all instances [233]. Approximate methods will be discussed in
Sec. 6.4.4.

Parallel with statistical physics
Using graphs to embed instances, several other problems, such as network flows, scheduling, max-

cut, max-clique or vertex cover, can be tackled [234]. They can be formalised as Quadratic Uncon-
strained Binary Optimisation (QUBO) problems, encompassing the problem and the specific graph
instance G to solve such that the cost function to optimise reads

CQ(z) = zTQz =
N∑
i=1

Qizi +
N∑

i,j=1
Qijzizj (6.2)

with N = |V|, z ∈ BN , a binary vector/bitstring and Q ∈ MN (R), a symmetric matrix containing
the weights of the problem. Thus solving a QUBO Q amounts to find the bitstring minimising CQ.
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Interestingly, this formulation is exactly the same as classical Ising models of spins σi as the
Hamiltonian of such system reads

H =
N∑
i=1

hiσi +
N∑

i,j=1
Jijσiσj = CQ(σ) (6.3)

with Q encompassing the terms related to J the interaction exchange and h the magnetic field. Finding
the ground state of this Ising Hamiltonian is equivalent to finding the optimal configuration z min-
imising CQ. This connection between two seemingly distant fields helped leveraging methodologies
from statistical physics, notably simulated annealing described in Box. 21, to tackle challenging QUBO
instances [235, 236]. For instance, we utilise this approach in chapter 8 to benchmark a quantum-
enhanced QUBO-solving algorithm. Conversely, computational complexity theory also yielded signif-
icant insights into the hardness of polymer protein folding [237]. Notably, in 2014, all of Karp’s 21
NP-complete problems were explicitly translated into equivalent Ising spin formulations [238].
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Figure 6.2: Minimising a system energy through annealing. The energies of the possible states
(yellow ball) of a system forms a landscape (black line) with local minima and a global minimum.
(a) Classical thermal jumps (orange), used in simulated annealing, enables to jump over low and
wide potential barriers while tunnelling (red), used in quantum annealing, can help transfer through
thin and high barriers. (b) Initialising a state in the global minimum of a landscape (highest line)
and evolving the system slowly enough to a final landscape (lowest line) should keep the system in
the instantaneous global minimum through adiabatic evolution (blue), as seen in quantum adiabatic
algorithms.

6.1.2 - Native embedding of Unit Disk graphs with Rydberg atoms
The topology of the interaction Hamiltonians obtained with Rydberg atoms natively echoes the

ones of the classical spins models, making the neutral atom technology a potential resource to
tackle specific graph problems. By utilising the spatial dependency U(rij) of the two body terms
in Eq. 1.19/1.21, one can for instance reproduce the adjacency matrix A of a graph G as shown in
Fig. 6.3. We define the corresponding graph Hamiltonian as

ĤG =
∑
(i,j)

Aijn̂in̂j (6.6)
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Box 21: Simulated annealing

Simulated annealing is a probabilistic black-box optimisation algorithm inspired by thermo-
dynamics, wherein solutions to complex problems are iteratively refined by probabilistically
accepting uphill moves based on a decreasing temperature parameter as shown in Fig. 6.2(a).
For a cost/energy function C with N binary variables, one can introduce a Boltzmann proba-
bility measure pβ on the space of configurations BN such that for each configuration z,

pβ(z) = 1
Z(β)e

−βC(z), where Z(β) =
∑

z∈BN
e−βC(z). (6.4)

β > 0 acts as an inverse temperature and the partition function Z(β) ensures the normalisation
of the probability law. This temperature can be related to a kinetic energy term which can help
the system escape local minima in a thermal hopping fashion. At high temperatures (β ≈ 0),
the probabilities are spread out across the configuration space. As the temperature decreases
(β → ∞), the probabilities concentrate around configurations with lower energy, much like
cooling a material causes it to solidify into its more stable shape.
The simulated annealing algorithm mimicks this cooling process using a Markov chain Monte
Carlo method. Starting from a random configuration, the temperature is gradually lowered
over a series of steps called the annealing schedule. At each temperature 1/βi, the algorithm
explores the configuration space through a random walk, with transitions between configurations
occurring depending on pβi . For instance, a proposed move from z to z′ can be accepted with
the following law :

P (z → z′) =
{

1 if C(z′) < C(z)
pβi(z′)/pβi(z) else (6.5)

The random walk focuses more and more on the low-cost regions as the temperature is reduced.
An important remark is that this method is guaranteed to converge to the optimum if for every
temperature βi the random walk, seen as a Markov chain, converges to its stationary distribu-
tion. By the end of the annealing schedule, at very low temperatures, the algorithm converges
to the configuration with the minimum energy, which corresponds to the optimal solution to the
optimisation problem. A main drawback of simulated annealing lies in the arbitrary selection
of numerous hyperparameters, such as the initial temperature, the temperature decay schedule,
the stopping criteria, or the length of each temperature stages. Moreover, for some optimisation
problems/graphs, the required number of iterations of the random walks exhibit exponential
scaling with N [239].

More precisely, assigning qubits to vertices enables a direct correspondence between their pairwise
interactions and the weights of the edges. Mapping a N -node graph to an interaction Hamiltonian
thus requires placing N qubits such as to satisfy the N(N − 1)/2 constraints U(rij) = Aij ∀(i < j) up
to a global scaling coefficient. The task of solving this embedding problem poses challenges in itself,
and the subsequent sections will delve into various options for resolution.

As a reminder, the Rydberg blockade effect can be approximated as enforcing that pairs of atoms
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can not be both excited at the same time, if located closer than a certain threshold rb. Incidentally,
distant pairs remain free from this constraint. This binary perspective, solely depending on the
threshold rb, natively mimicks the topology of Unit-Disk (UD) graphs where two vertices i, j are
sharing an edge if and only if they lie within a threshold distance from each other in the Euclidean
plane. These graphs are part of the larger family of intersection graphs, that appear in concrete
problems such as wireless networking [240] as shown in Fig. 6.1(b), computational biology [241], map
labelling [242] or to maximise yield when cutting chips from a large chip wafer [243].

Thus, embedding UD graphs into a neutral atom system amounts to a free-space positioning
problem with 2N variables r = (xi, yi)i=1···N and the constraints U(rij)/U(rb) ≫ 1 for (i, j) ∈ E and
≪ 1 otherwise.

The resulting Ising interaction Hamiltonian reads

Ĥint(r) =
∑

(i,j)∈E
U(rij)n̂in̂j +

∑
(i,j)/∈E

U(rij)n̂in̂j

= U(rb)ĤG + U(rb)
∑

(i,j)∈E

(
r6
b

r6
ij

− 1
)
n̂in̂j +

∑
(i,j)/∈E

U(rij)n̂in̂j
(6.7)

where we artificially separate into two the sum over pairs sharing an edge in order to highlight the
presence of ĤG .
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Figure 6.3: Representing graph connectivity with interactions. With an adequate spatial
positioning r of the atoms in a register (green), their interactions (upper corner of the matrix) can
reproduce the adjacency matrix A (lower corner of the matrix) of an input graph G, up to a global
scaling factor. The sharp decay of the interaction allows neglecting terms between second (and further)
nearest neighbours.

The first sum accounts for the variation of distances between pairs representing an edge. For a
perfect embedding, all linked pairs are spaced by rb, cancelling the sum. Non-zero terms in that sum
can lead to lifts of degeneracy of blockaded states in the spectrum of Ĥint(r). For instance, a 2 × 2
square with atoms spaced by a represents in a fully blockaded regime, i.e. rb >

√
2a, the simplest

King’s graph where all four nodes are connected. While all combinations of highlighting two nodes
out of four hold the same cost in the graph, exciting two atoms on the same border or two atoms
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across a diagonal does not yield the same energy in Ĥint(r). It can be worth to note when wanting to
reproduce perfectly the spectrum but harmless when only considering ground state mapping.

The second sum gathers the spurious terms generated by the tail of the interactions which are
usually neglected in the blockade approximation. One has to ensure that the largest distance between
a pair sharing an edge in the graph is always far less than the shortest distance between a pair not
sharing an edge. For instance, when embedding onto a regular register, one needs to be aware of the
ratio between nearest-neighbour (NN) distance rnn and next nearest-neighbour (NNN) rnnn distance.
For a theoretical clean embedding of a binary adjacency matrix, where all edges have the same weight,
the distances should be chosen as rnn ≪ rb ≪ rnnn, in order for the NN pairs to represent the edges and
the interactions between NNN pairs to be neglected. More practically, a good choice for the blockade
approximation to work is rb ≈ √

rnnrnnn. However, for regular lattice or arbitrary configurations of
atoms, having rnnn/rnn ⪆ 1 will translate into erroneous blockade approximation and thus smaller
energy separation between blockaded and non blockaded states. Going back to the previous square
geometry, this ratio is

√
2. Therefore, embedding a graph corresponding to a square without diagonal

connections is especially tricky as the diagonal terms, supposedly not representing edges, will still
contribute with strength 1/8 regardless of the chosen blockade radius.

More involved strategies can be used to entirely get rid of those unwanted terms. For instance, one
can combine dynamical decoupling/Floquet engineering techniques [244] together with Trotterisation,
in order to implement stroboscopically all the various Hamiltonian terms. Another approach valid in
the Ising encoding consists of taking advantage of the multi-level nature of atomic qubits. One can
thus use an additional non-interacting ground state to temporarily store the quantum state of a group
of qubits, building on the idea of Ref. [29] where this approach was used for digital-analog computing.
Along the same line of thought, switching on and off desired interaction terms for selected durations
can be achieved through Rydberg dressing [245, 246].

A perfect embedding should result in each term of the two remaining sums of Eq. 6.7 to be zero
such that Ĥint(r) ∝ ĤG . This establishes a perfect correspondence between the two spectra, ensuring
that the order of the energy levels is preserved. For specific graphs such as UD ones generated on
bi-dimensional regular lattices, the mapping process is relatively straightforward. Consider G as a
UD graph derived from selecting a subset of sites on a triangular lattice, with rb matching the lattice
spacing. In this scenario, the first sum cancels out, and the dominant terms in the second sum exhibit a
strength of U(rb)/27, allowing for their neglect. While the mapping is effective for this particular case
and situations where UD graphs can be mapped to a triangular layout, for most graphs, embedding
them into an atomic register necessitates an optimisation procedure, keeping in mind the hardware
constraints.

In the following, we will focus on graphs mappable to layouts obtained from regular lattices, such
as triangular, and build variational quantum algorithms (VQA) tasked to solve their associated MIS
problems.
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6.2 - Solving the UD-MIS problem with variational algorithms

Exploiting the representation of a graph’s adjacency matrix within the interaction Hamiltonian of a
set of Rydberg atoms has spurred the development of various proposals for solving MIS problems [247].
For a graph G, the MIS cost function outlined in Eq. 6.1 can be encoded as an operator of the form:

CG(n̂) = ĈG = −
∑
i∈V

n̂i + cĤG . (6.8)

Here, nodes are uniformly weighted with −1, and edges between adjacent nodes carry a uniform
weight of c > 0. The ground state of this operator manifests as a coherent superposition of MIS
classical product states. Such an operator finds correspondence with the Rydberg version of the Ising
Hamiltonian (with Ω = 0 and δ > 0) of N = |V| atoms well-positioned such that:

Ĥ/ℏ = −δ
N∑
i=1

n̂i + Ĥint/ℏ(r) ≈ δ

−
N∑
i=1

n̂i + U

δ︸︷︷︸
=c

ĤG

 = δĈG (6.9)

where U = U(rb)/ℏ and the ratio between the next-nearest interactions and the detuning encodes
the edge weight c. By preparing the ground state of Ĥ and subsequently sampling it nshots times, it
becomes possible to measure not just one, but all the MISs of G as they are degenerate. The paradigm
of VQA involves leveraging a variational optimisation scheme to discover a control protocol capable of
preparing such ground states with good efficiency. This approach tackles in essence the challenges of
ground state preparation occurring in the quantum simulation field and discussed in chapters 4 and
5.

6.2.1 - Main ingredients of a VQA
As showcased by Fig. 6.4, a VQA is essentially a hybrid loop between an optimisation procedure

fully handled by classical resources (CPU) and a QPU able to perform the quantum dynamics asso-
ciated with a given control. Communication between the two entities boils down to new protocols
being sent from the CPU to the QPU, and to measurements being sent back by the QPU and used
by the CPU to compute a better protocol. The loop is iterated until a convergence criterion is met,
the simplest being until a fixed number of iterations has been performed. Each iteration k of the loop
involves a protocol parameterised by θ(k), obtained following the three steps described below.

Cost estimation: MIS probability and approximation ratio
The cost estimation procedure attributes a cost C(θ) to each produced quantum state |ψ(θ)⟩ =∑

z az(θ)|z⟩ or to each set of measured bitstrings Pψ(θ). Presence of bitstrings close to MIS con-
figurations should lower the cost so as to incite the optimiser to work in this direction at the next
iteration. A straightforward procedure consists in only looking at the proportion of MISs in the mea-
sured distribution (and flip it to lower the cost), i.e. 1 − P (MIS). This can only be done if the size
of the MIS has been classically obtained beforehand, either with an exhaustive approach doable for
N ≲ 50 or with a reliable classical optimisation procedure for larger sizes. However, as the Hilbert
space increases exponentially with N , the probability of obtaining a non-zero projection to the MIS
subspace approaches 0, especially for small nshots. It is thus preferable to use a more continuous metric
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Figure 6.4: Variational quantum algorithm loop. A classical optimisation part is composed of a
cost estimation method, favouring MIS configurations, a decision making Bayesian optimiser, navigat-
ing the parameter space with an exploitation-exploration strategy, and a sequence parameterisation
step, building from a parameter instance a driving protocol sent to a neutral atom QPU. In the latter,
atoms are loaded, arranged into positions to reproduce the graph considered and the quantum system
evolves according to the built driving protocol. Measuring the system provides one bitstring and a
distribution is acquired by repeating the quantum procedure several times before being sent to the
classical part. This hybrid loop runs until the VQA converges.

in the sense that large IS should also lower the overall cost function. A fairly often used metric is the
approximation ratio defined as :

RG(θ) = ⟨ψ(θ)|ĈG |ψ(θ)⟩ =
∑

z

|az(θ)|2CG(z) (6.10)

with associated normalised cost C(θ) = 1 + RG(θ)/SG when the MIS size of the graph SG is known.
This cost helps discriminate between two distributions without MISs and its asymmetry favours IS
configurations over non IS ones, as removing a node from a MIS (making it an IS) increases the cost by
1 but adding one (making it a non IS) increases it by at least c− 1. Except for its normalised version,
it does not require to know the MIS size beforehand. The cost function can be further multiplied by
an additional function g(θ) ≥ 1 encompassing other objectives to fulfil such as time optimality. The
computed cost C(θ(k)) is then passed to a classical optimisation routine for further processing.
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Classical optimiser: the Bayesian algorithm
C can be seen as a noisy and expensive-to-evaluate black-box function. The Bayesian optimisation

method outlined in Sec. 3.3 proves particularly advantageous in this specific scenario, thanks to its
resilience against noisy evaluations, its efficiency even within a limited budget of iterations, and
its gradient-free approach. Having previously provided the parameter instance θ(k), it can update
its model with the computed value of C(θ(k)). Balancing exploration of unknown regions of the
landscape and exploitation of promising known regions, it then provides a new guess of optimal
parameter θ(k+1) to try on the QPU. The values of this guess define a control protocol depending on
the chosen parameterisation.

Controls parameterisation: layered and adiabatic protocols
The state evolution obtained when driving a N -qubit system under a parameterised control pro-

tocol can be written as :

|ψ(θ)⟩ = T

exp

−i
∫ tθ

s=0

Ωθ(s)
2

N∑
j=1

σ̂xj − δθ(s)
N∑
i=j

n̂j + UĤG

 ds
 |0⟩⊗N (6.11)

with the evolution operator obtained from Eq. 1.28 by parameterising the control fields Ω and δ (not
using the phase ϕ) of Eq. 1.27. Several parameterisations of the control fields have already been men-
tioned in chapter 3 and we focus here on a layered approach, as well as a smoothly interpolated one
which constitutes the building block of the variational quantum adiabatic algorithm used in Sec. 6.2.3.

Quantum Approximate Optimisation Algorithm (QAOA) approach
In this formalism, specific to the Rydberg setup as explained in Box. 22, θ effectively encompasses the
duration of each of the p control layers. The layer l includes a period of free evolution with detuning δ
and duration tlcost followed by a resonant pulse with amplitude Ω and duration tlmix. The sequence is
initialised with a π/2 resonant pulse which, without interactions, would prepare the system in |+⟩⊗N

but here, only spreads the state as much as possible. Implementing such a control sequence with
Pulser can be done similarly to Sec. 2.1.2 using EOMs as shaping devices. While this mode enables
to produce sharp rising pulses, it also fixes a degree of freedom as the value of δ in between pulses
fully depends on the value of Ω due to the three-to-two levels approximation (see Sec. 1.2.2). In-
deed, compensating for the change in light shifts due to turning off one of the two excitation lasers
is challenging at this timescale. Nevertheless, this "feature" enables to have a fast varying detuning
between 0 and a fixed value. The theoretical performance of a perfect QAOA with Rydberg atoms has
been extensively studied, notably by tackling industrial use cases [248] similar to the ones studied in
Sec. 6.4. A few experimental implementations of QAOA were performed [249] with the notable use of
more than 280 atoms in [250]. For long enough evolution times, the authors experimentally identified
a nearly quadratic quantum speedup with respect to classical simulated annealing on hard graphs.
An identified limitation of the QAOA approach is the need of increased p to further improve a score,
leading to longer sequences, as the layers keep piling up, and to longer convergence, as the parameter
space expands. One interesting idea to circumvent this issue consists in making an educated guess
from previous layers to the new one [251], hence limiting the size of the parameter space to optimise on.
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Variational Quantum Adiabatic Algorithm (VQAA)
This formalism builds on the adiabatic theorem introduced in Sec. 4.2.1 stating that with a slow enough
time evolution, one can transfer a state from the ground state of an initial Hamiltonian to the one
of a final Hamiltonian as pictured in Fig. 6.2(b). Quantum adiabatic algorithms (QAA) [252] were
developed based on this principle in order to solve optimisation problems with a quantum computer. In
this specific version, we parameterise a QAA so as to produce a VQAA tailored to solve MIS problems.
θ encompasses the values of the two control fields at fixed points in time, i.e. {Ωθ(ti), δθ(ti)}i=1···m.
These points can be evenly spaced, slicing the time interval regularly, they can be focused in regions
where one needs more flexibility in the evolution, or they can even be set as optimisation parameters.
In addition, the total pulse duration T can also be used as a tunable parameter and included in θ.
The resulting parameter space of dimension 3(m + 2) can be shrunk to a (2m + 3)-dimensional one
by fixing ti = T (i − 1)/(m − 1) and Ωθ(0) = Ωθ(T ) = 0. The control fields are finally derived using
interpolation by monotonic cubic splines which ensures that intermediate values will not cross the
control bounds. Since these sequences are being produced by the AOM shaping devices, they are
subjected to its finite bandwidth and deformation effect.

Examples of sequence obtained with the two parameterisations are displayed in Fig. 6.4. In both
cases, the parameter space is bounded by hardware-related constraints such as the maximum coherence
time of the machine or the available laser power. In the following, we study these two approaches on
a single graph instance composed of 6 atoms arranged on a triangular layout, displayed at the top of
Fig. 6.5(a).

6.2.2 - Standard QAOA-like approach
We apply the QAOA-like approach as a way to benchmark both the ability of the QPU to perform

quantum dynamics under such protocols and the ability for the Bayesian optimiser to find optimal
driving parameters even in the presence of noise.

Dynamics benchmark and noise mitigation
We emulate an optimisation procedure for increasing values of p = 1, 2, 4 over a parameter space

Θ = [0.1µs, 1µs]2p, using 100 iterations (10 of them being reserved for initialisation) and nshots = 64
shots per iteration. The normalised approximation ratio 1 − R = 1 − (RG/(−4)) is used as cost
function. We obtain three optimised protocols displayed in Fig. 6.5(a), yielding 1 − R = 0.45, 0.16
and 0.27 respectively. Increasing p from 1 to 2 improves the score but the limited budget of iterations
implies that at larger depth, like with p = 4, the optimiser will likely not converge, resulting in poorer
performance as shown in Fig. 6.5(b,c).

We test these three protocols on Fresnel and probe the dynamics of 1−R at intermediate points in
time, comparing it with a noiseless simulation using Pulser. As displayed in Fig. 6.5(b), in both cases,
1 − R is modified after each layer, ultimately reaching a minimum value at T = π/2/Ω +∑

l(tlmix +
tlcost). However, a large discrepancy between simulated and experimental data remains. Adding
detection errors to the simulation to match the experimental data reveals that the approximation
ratio is especially sensitive to ε due to the asymmetry already mentioned. As more population is
transferred to MIS states, the number of measurements violating the Rydberg blockade constraint is
increasing as non zero ε produces non IS bitstrings. With detection errors included, the final values
of 1 − R increase up to ≈ 1, close to its initial value, making the idea of directly optimising on the
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Box 22: Quantum Approximate Optimisation Algorithm with Rydberg atoms

The Quantum Approximate Optimisation Algorithm (QAOA) [253] is a prominent method
within the quantum optimisation paradigm [251, 254], inspired by the Trotterised version of
adiabatic evolution. In QAOA, the quantum unitary evolution operator is parameterised by
two sets of p angles, p being the depth of the algorithm, and alternates between two types of
operations: mixing and problem-specific evolution.

Hardware-agnostic version: The algorithm applies p successive layers of two distinct Hamil-
tonians: a cost operator Ĉ and a mixing operator M̂ . Mathematically, this can be represented
as:

|ψ(γ,β)⟩ =
p∏
j=1

ÛM (βj)ÛC(γj) |ψ0⟩ (6.12)

ÛX(θ) = e−iθX̂ for X ∈ {M,C} denotes the unitary operators corresponding to mixing and cost
evolution, respectively. The algorithm initialises by preparing the system in |ψ0⟩ = |+⟩⊗N =
2−N/2∑

z∈BN |z⟩, representing the ground state of the mixing Hamiltonian, often chosen as
M̂ = ∑

i σ̂
x
i . By evolving from this state, and with the aid of a classical optimiser, it becomes

possible, as p → ∞, to determine optimal angles γopt and βopt such that:

|ψ(γopt,βopt)⟩ = argminψ ⟨ψ| Ĉ |ψ⟩ (6.13)

This approach can be viewed as a quantum version of annealing using quantum tunnelling to
locate the minimum of a landscape as described in Fig. 6.2(a).

Rydberg version: In the Rydberg version, the cost operator Ĉ can be replicated for specific
graphs and the mixing part can be tackled with resonant pulses of amplitude Ω. A major
limitation preventing a straightforward implementation of QAOA on a Rydberg setup lies in
the inability to turn off the interaction component of the Rydberg Hamiltonian during the
mixing phase of each layer. This also implies that a clean preparation of |ψ0⟩ might require a
more complex protocol or be even not possible. Applying pulses with Ω ≫ U enables to neglect
the interaction effects but the maximum amplitude reachable on current devices is only around
Ωmax/2π ∼ few MHz. Consequently, this requirement mandates low values of U and hence of δ,
which in turn prolongs the sequence and renders the evolution vulnerable to decoherence. One
can nonetheless program an evolution with a QAOA-like protocol, applying series of resonant
pulses with fixed Ω interleaved by periods of free evolution under fixed detuning δ. Each layer
duration constitutes a parameter to optimise on.

QPU challenging.
A first solution consists in correcting for the detection errors using the scheme described in Box. 11,

at the expense of possible additional computing costs. With ε = 3% and ε = 8%, the corrected data
are more in line with noiseless simulation and the remaining gap between the two at longer times can
be attributed to decoherence effects. It is worth noting that imperfect correction of the measured
distributions can nonetheless happen due to finite sampling effects and wrong estimation of ε and ε′.
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Figure 6.5: Benchmark runs of the quantum dynamics with QAOA-like approach. (a)
Sequences parameterised with QAOA-like approach are applied on the atomic register given in the
inset. For increasing depth p, the control shapes of Ω and δ are displayed as sent to the atoms, i.e.
distorted by the shaping device. The evolution of (b) the normalised approximation ratio 1 − R100%
and (c) the normalised truncated approximation ratio 1−R80% during the dynamics is obtained using
noiseless emulation (solid line) or emulation with shot noise (nshots = 1000) and detection errors
(ε = 3% and ε′ = 8%) (dashed). This enables to benchmark raw experimental measurements (filled
dots) and SPAM corrected ones (white dots). The standard deviation (filled area-error bars) over the
finite sampling with detection errors is obtained using the Jackknife resampling method.

A second possibility to make the approximation ratio more resilient to detection errors is to discard
all the bitstrings violating the Rydberg blockade condition, assuming that their presence can only be
due to noise. In the hard blockade limit where U ≫ δ,Ω, the resulting discarding slightly modify the
initial distribution and is an efficient way to mitigate ε. However in the regime of control parameters
of this implementation, we can not rule out that the dynamics itself, through facilitation mechanisms
for instance, could not produce bitstrings with unwanted excitations. Discarding bitstrings with the
previous rule may alter significantly the optimisation landscape as some measured distributions could
be almost emptied. Another straightforward approach consists in erasing a fixed percentage of each
measured distribution, discarding bitstrings z among the ones with the highest energies CG(z). This
percentage can either be estimated knowing the value of ε or set arbitrarily high, at the expense of
maybe discarding bitstrings not produced by the imperfect detection events. As N increases, the effect
of detection errors intensifies and a large discarding percentage might be needed, at the expense of
acquiring more statistics to balance the loss. The effect of this truncation is shown in Figure 6.5(c)
with R80% being the approximation ratio computed when keeping only the 80% best bitstrings of
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the distributions. Both noisy emulated and experimental refined data present good agreement with
noiseless emulated one when discarding 20% at N = 6. Overall, at this time scale, the main effect
impacting the MIS preparation remains the detection errors and possible miscalibration of the controls,
as emphasised in the next part. However, by optimising directly on the QPU, one can still locate an
optimum as long as the landscape is not too flattened.

P(MIS) 0.27 0.27
(a) (b) (c)

Estimator of P(MIS) P(MIS)

Figure 6.6: Landscape of MIS probability for QAOA with depth 1. (a) Varying the two
parameters tmix and tcost of a QAOA-like sequence with p = 1, the noiseless landscape browsed when
optimising P(MIS) can be retrieved. (b) The Bayesian optimiser constructs an estimator of P(MIS)
by strategically sampling the parameter space (dots) with the help of the QPU. The redder the dot,
the later it has been sampled. The minimum is updated (red line) each time a better one is found.
(c) Adding detection and calibration errors in the emulation moves the global minimum location in
the parameter space and explains the model built by the optimiser when using the noisy QPU.

Navigating a noisy landscape
We first perform a closed loop with p = 1 on the N = 6 graph using the MIS probability as a figure

of merit in this case. The landscape of optimisation in the noiseless case is displayed in Fig. 6.6(a)
with a unique global optimum located at t∗mix = t∗cost = 0.633 µs. We explore this landscape with
the Fresnel QPU using a Bayesian optimiser provided with 10 + 50 iterations with 256 shots each.
The optimiser starts by using its initialisation budget to randomly sample the parameter space in
an efficient covering as shown by clearer points in Fig. 6.6(b). Building a model to estimate the MIS
probability at unexplored points, it then exploits the central region (green), sometimes exploring a
bit outside of it (red points) to reduce its uncertainty and ultimately converging towards a believed
optimum t∗mix = 0.611 µs and t∗cost = 0.483 µs (darker red points).

Surprisingly, the found optimum and constructed estimator do not coincide with the noiseless case.
We checked that detection errors alone do not move the optimum, revealing that a miscalibration of
parameters is involved. Indeed, when measuring Ω and δ with independent Rabi and Ramsey protocols,
we obtain Ω/2π = 1.08 MHz and δ/2π = −0.775 MHz, instead of 1 Mhz and −0.5 Mhz, respectively.
Fig. 6.6(c) exhibits the noisy landscape computed with detection errors and those miscalibrations,
highlighting a displacement of the optimum location and a reduced optimal value of MIS probability
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in accordance with the results found on the QPU. In the presence of limited noise, the Bayesian
optimiser can still navigate the modified landscape and helps construct an optimised protocol to
sample MIS configurations. This is promising as noise levels on QPU are, although not negligible,
often maintained below known thresholds. However, a downside of such an optimised protocol is that
it becomes useless once the QPU is recalibrated. Another optimisation procedure needs therefore to
be computed, increasing the total cost. Consequently, this stresses the significance of building a VQA
able to generate protocols with greater noise resilience and generalisability.

6.2.3 - Designing a VQAA with pulse shaping optimisation
We now switch to the second formalism, utilising a smoother parameterisation of the pulses to

work with adiabatic protocols.

Avoiding diabatic errors with optimised drive
Similarly to the approach used in Sec. 4.2.4, we seek to find an optimised path adiabatically driving

a system towards the ground state of ĈG . For the same graph with N = 6 atoms, we diagonalise
the Rydberg Hamiltonian over Ω/U ∈ [0, 1.5] and δ/U ∈ [−1, 3] and plot in Fig. 6.7(a) the MIS
probability obtained when sampling the ground state. A lobe-shape portion of the phase diagram
(yellow) constrained between δ/U = 0 and δ/U = 3 exhibits MIS probabilities higher than 95%. We
emulate an optimisation procedure with smooth pulse shaping using a periodic temporal slicing with
m = 4 over the parameter space Θ = [0.5µs, T ] × [0, 1.5U ]m × [−2U, 3U ]m+2 and use 10 + 90 iterations
with perfect access to the states produced. We set a maximum duration of T = 3 µs for the protocols
explored by the optimiser, compelling it to manipulate the shapes of Ω and δ to ensure adiabaticity
within these constraints.

With the optimised path (red) displayed in Fig. 6.7(a), we obtain a MIS probability of 99.98% after
3µs. While the optimiser has hit the temporal bound, hinting at the fact that longer protocols could be
even more successful, both amplitude and detuning were used with parsimony, without any explosion
of the parameters. Although the path may initially appear convoluted, Fig. 6.7(b) illustrates that it
effectively circumvents regions characterised by vanishing energy gaps, i.e. Ω/U ≈ 0 and δ/U ≈ 0/3.
The gap ∆ is defined between the MIS manifold of states (here only including the ground state since
the graph has only one MIS) and the first above excited state. The parameter T dictates the minimum
acceptable gap value (here around 0.7U) to maintain adiabaticity, as excessively small values might
induce undesired population transfers to excited states. The protocol is not perfectly adiabatic as
shown by the instantaneous energy spectrum of Fig. 6.7(c). While most of the population remains in
the ground state, transitioning from the IS phase to the MIS phase, a bit of population leaks to the
first excited state around 1 µs and between 2.5 µs and T , when the gap is minimum. Overall, the
Bayesian optimiser constitutes an effective pathfinder, avoiding the areas most likely to cause diabatic
errors.
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Figure 6.7: Optimised adiabatic driving to the MIS phase. (a) Phase diagram of the MIS
probability obtained by computing the ground state of the Rydberg Hamiltonian with constant pa-
rameters Ω, δ and U . The path taken by the optimised protocol (red) is constrained by Ω/U ≤ 1.5
and |δ|/U ≤ 3. (b) Similar as (a) for the gap ∆ between ground state and first excited state. The
optimised protocol avoids regions of vanishing gaps (dark blue). (c) Instantaneous spectrum of the
system during the optimised dynamic with levels coloured with their proportion of non IS (red), IS
(green) and MIS (blue) configurations and thickened by population (levels are only appearing when
populated).

Noise resilience of VQAA
In order to assess the resilience of such almost adiabatic protocols, we conduct a noise analysis

detailed in Fig. 6.8. The protocol appears resilient to parameter miscalibrations, such as rescaling of
Ω and shifts of δ, as depicted in Fig. 6.8(a). In fact, even with similar miscalibrations observed in the
QAOA case (Ω̃/Ω = 1.08 and (δ̃ − δ)/U = 0.03), the obtained MIS probability would only decrease
from 99.98% to 99.95%, hinting at minimal deviation from the optimum found. The influence of T
is also indicated in Fig. 6.8(b) where noiseless simulation exhibits a significant diabatic drop below
1 µs but rather flat behaviour otherwise. Adding the detection errors only rescales the curve by a
factor ≈ 71%. However, when considering decoherence with an effective model of relaxation T1 and
dephasing T2, lengthening the duration becomes detrimental and an optimal duration starts to appear
for this rather small instance. At T = 3 µs, the MIS probability is already reduced by a factor 2.
For larger graphs, this balanced optimum between adiabaticity and decoherence should move towards
longer times, thereby reducing the optimum value of P(MIS) that can be achieved. Despite all this,



CHAPTER 6. COMBINATORIAL OPTIMISATION... 143

(a) (b)

Figure 6.8: Noise analysis of an adiabatic protocol. (a) Colour map of 1−P(MIS) when rescaling
the global amplitude drive Ω to Ω̃ and shifting the detuning δ to δ̃. (b) Emulated evolution of the MIS
probability when stretching in time an adiabatic protocol. In the noiseless case (blue), only diabatic
errors impact the result at short times. Detection errors ε = 1% and ε′ = 8% (orange) rescales the
behaviour while decoherence T1 = 100 µs and T2 = 4.5 µs (green) impacts the probability for longer
sequences. With this noise model (red), an optimal duration can be derived, here around 1.4 µs to
balance adiabaticity and decoherence.

the VQAA approach remains more resilient than the QAOA-like and, as explained in the next section,
more generalisable.

6.3 - Generalisation of optimised protocols: QAOA vs. VQAA

The previously introduced VQAs provide a means to derive an optimised protocol for preparing a
quantum state tailored to a specific graph, which when sampled, yields MIS configurations of the said
graph. Nevertheless, they are quite resource consuming, requiring dozens if not hundreds of iterations
to converge. An appealing idea explored in this section involves constructing a general protocol capable
of preparing MIS states for a family of structurally similar graphs, with specific training on only a
portion of the family, for instance the smallest graphs.

6.3.1 - Cost landscapes of various geometries
A family of graphs with similar structure can be generated by randomly sampling a lattice with

regular geometry, using random walks. Given a periodic trap layout, we can select subsets of adjacent
traps with or without cycles and therefore obtain similar looking graphs. Examples of such families
are given in the first column of Fig. 6.9 using triangular geometry, square geometry or a combination
of the two, using a periodic Shastry-Sutherland lattice, well-known in condensed-matter physics [255].
For each layout, we generate a family of 30 graphs of size ranging from N = 5 to 10 and apply to
each graph either a QAOA-like or a QAA-like sequence. Each protocol, showcased on the first line of
Fig. 6.9, is parameterised by two parameters (red) and we obtain the corresponding landscapes of C(θ)
by sweeping over their possible values within the bounds Θ = [0.1, 0.5]2 for QAOA and Θ = [0, U ]2
for the QAA. Fig. 6.9 depicts the cost landscapes associated with the normalised approximation ratio,
averaged over the graphs of each family. Additionally, the location of the global minimum for each
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Figure 6.9: Study of generalisability of VQAs over graphs generated from regular lattices.
Datasets of graphs generated from either triangular, square or Shastry-Sutherland lattices (layouts
plotted on the left) are subjected to QAOA-like or QAA-like protocols parameterised by two parame-
ters (Pulser sequences plotted above): either the two durations of a standard depth 1 QAOA protocol
or the last two detuning values of a standard QAA protocol. The corresponding colour maps are
obtained by averaging over the dataset the landscapes obtained when computing the normalised ap-
proximation ratio 1 + RG(θ)/SG for each graph over the parameter space. The minimum found for
the averaged landscape is plotted (red cross) as well as the minimum found for each graph over this
space (dots). Regions with lower cost are displayed in darker colours.

graph is also indicated to highlight possible grouping effects. In the QAOA-like case, despite the
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value of the global minimum for each graph all being close to 0, the lack of similarities among the
distinct landscapes creates numerous local minima on the averaged landscapes. For none of the three
families does the averaged landscape exhibit a global minimum (red cross) close to 0 in value. For the
three geometries considered, the individual minimum only partially group together, invalidating the
hypothesis of a single QAOA-like protocol enabling preparation of MIS over a graph family.

On the contrary, for the QAA-like approach, the individual landscapes overlap to create a global
minimum for the averaged case, closely surrounded by the clustered individual global minimum lo-
cations. For the triangular and Shastry-Sutherland layouts, the global minimum of the averaged
landscape reaches 0 whereas for the square case, it only approaches 0.06. Two elements can contribute
to explain this discrepancy : firstly, some graphs in this family may not be as similar as ones in the
triangular family, which is supported by the existence of some individual minima located far from
each other. Secondly, in the square case, the NNN interactions are often only reduced by a factor 1/8
compared to the NN ones, making such graphs more prone to have imperfect embeddings. If ĤG is
not well reproduced, a QAA protocol will only yield a finite efficiency. This effect seems reduced when
combining square and triangular geometries. In addition, we can also see that variations of the pa-
rameters will only poorly affect the averaged preparation as the landscapes of QAA remains quite flat
around the global minima. Finally, it is interesting to notice that the optimal locations varies between
the geometries with δ(tm = T ) increasing from triangular to square, passing by Shastry-Sutherland.
This gives an interesting insight on the values around which the MIS phases of the various geometries
are centred. Those observations motivate the choice of the VQAA approach to find a general optimal
protocol for graphs with triangular structure.

6.3.2 - General protocol for triangular graphs
The procedure pursued here involves utilising the VQAA on a family of triangular graphs, split

into training and testing sets. The goal is to efficiently derive a generalised pulse capable of preparing
MIS configurations for all graphs within the family, including those for which the protocol has not been
specifically optimised on. This strategy is driven by the considerable expense associated with running
a VQA for multiple graphs on a neutral atom QPU, given the current sampling rate. By simulating
the protocol optimisation on the training set, composed of small-sized graphs, we keep the classical
computation cost low. Then, we can directly employ on the QPU the optimised protocol for the test
set, composed of unseen larger graphs, mitigating both the classical and quantum computation cost.

The optimisation is performed over 50 graphs, 10 of each size ranging from 5 to 9, including
instances with and without cycles. The cost C(θ) is obtained summing the average ⟨ ⟩G of the MIS
probability obtained for each graph and the associated standard deviation σG . Adding the standard
deviation in the cost function helps the optimiser to favour protocols with uniform scores across the
family over ones working very well for specific instances but less generalisable. Fig. 6.10(a) showcases
the convergence over 25 + 175 iterations for both a 4−depth QAOA and a VQAA with m = 3 and
Tmax = 4 µs. As expected, even a deeper QAOA fails to find a working general protocol and remains
stuck at ⟨P(MIS)⟩G ≈ 0. The VQAA locates an interesting region with cost below 0.5% after 100
iterations and ultimately converges towards ⟨P(MIS)⟩G ≈ 99.73%, where all the graphs have a MIS
probability above 98.5%. We can check that running separate optimisation routines for each graph
gives very similar average convergence both in terms of speed and quality of preparation but with
final scores more spread. The optimiser history can be boiled down to three main steps : before the
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Figure 6.10: Optimisation scheme to devise a generalisable adiabatic protocol for triangular
graphs. (a) Convergence of the optimiser when searching for regions of parameters minimising 1 −
⟨P(MIS)⟩G (dots) using a QAOA-like parameterisation (light blue) or a QAA parameterisation (red).
The cost obtained for each graph at each iteration is also plotted in transparent. (b) Similar maps as
in Fig. 6.7(a,b) where the minimal P(MIS) and gap calculated across the dataset of graphs are plotted.
The optimised path obtained for the QAA parameterisation (red) finds the MIS phase (yellow) and
avoids regions with vanishing gaps (dark blue).

50th iteration, it tries to work on all the graphs at the same time, while between 50 and 125, it allows
itself to try pulses working very well, and even better than the final one, only a few graphs while the
score of the others can be worse than before. Finally, after iteration 125, it only refines the averaged
cost by a few tens of %.

The optimised path given in Fig. 6.10(b) starts deep in the IS phase and ends in the middle of the
MIS phase where the MIS probability of the ground state goes to 1 for all graphs. We have constrained
the optimiser to use hardware realistic bounds similar to the used for Fig. 4.3, explaining the shorter
path taken compared to Fig. 6.7(a). When taking the minimal value over the family of graphs, the
MIS phase is narrower, i.e. 0.2 ≤ δ/U ≤ 1. Additionally, the optimiser identifies the optimal path



CHAPTER 6. COMBINATORIAL OPTIMISATION... 147

while adhering to both hardware constraints and the adiabatic criteria, ensuring avoidance of regions
with low energy gaps ∆, for instance around (Ω, δ)/U ≈ (0, 0). ∆ is defined here as the maximum
between the gaps within the MIS manifold and the gap between MIS manifold and the first excited
state above it. The protocol seems to work well on the training set and can now be tested on larger
graphs exhibiting similar triangular structure.

6.3.3 - Scaling of MIS probability with the graph size using TN emulation

(a)

(b)

𝑁0 ≈ 100

𝑁" ≈ 400

𝑁# ≈ 1300

Figure 6.11: Scaling of the adiabatic preparation efficiency with the system size. (a) For
graphs with sizes ranging from 10 to 100, the size of the MIS is computed using classical methods,
like subgraph exclusion (blue) and CPLEX (red) or quantum methods (orange). (b) Cumulative
probabilities of finding non IS, IS, MIS−4, . . ., MIS configurations after the adiabatic preparation,
averaged over graphs of the same size. The decline of ∑i<kP(MIS−i) with the graph size N is fitted
by an exponential decay with exponent 1/Nk (dashed line) for k = 0, 1 and 2.

The test set is comprised of 110 graphs, 10 of each size ranging from 10 up to 100. Emulating
the dynamics over such large systems requires using tensor network methods described in Sec. 2.2.
Another scaling problem to deal with is the classical computation of the MIS size for each graph SG .
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For sizes smaller than 50, a classical computer can still perform an exhaustive search over the space
of configurations, but for larger instances, such a method is not an option. We therefore rely on
two classical algorithms : an approximate algorithm using the subgraph exclusion (SE) method [256]
implemented in the NetworkX python package and the state-of-the-art CPLEX algorithm from IBM.
CPLEX employs a variety of advanced optimisation techniques, including linear programming, branch-
and-bound, cutting planes, and heuristics, to efficiently solve large-scale optimisation problems in
various domains such as supply chain management, resource allocation in logistics and decision-making
processes in finance. We apply the optimised protocol obtained in the previous section to all the graphs
of the test set and we check the size of the maximal IS found for each of them. Fig. 6.11(a) displays
the found MIS size with graphs sorted by size for the two classical approaches and the quantum one.
For all graphs, we have SSE

G ≤ Sadia.
G ≤ SCPLEX

G . The SE method (blue) proves to be unreliable as
it can not even reach the MIS sizes found by an exhaustive search at graph size ≤ 50 and is always
matched or exceeded by the general QAA approach (orange). The latter, when compared to the sizes
found by CPLEX (red) in less than 10 ms, seems to give the right MIS size in 82% of the cases, with
more errors as the graph size increases. Keep in mind that no optimisation was performed on those
graphs as only the generalised adiabatic drive of Fig. 6.10 was applied.

In order to further quantify the quality of the states prepared at large sizes, we study the distribu-
tions of probabilities of the configurations for each graph. Fig. 6.11(b) depicts the average cumulative
probabilities for each type of configuration, i.e. non IS, IS (with the largest ones being labelled as
MIS−k, meaning they are missing k elements to be MIS) and MIS. It is worth noting that even
in the case where MISs were not found, a large portion of the distributions is still composed of
MIS−1 and MIS−2 which is a promising feature for including such a QAA approach in a hybrid
algorithm. Indeed, a good enough solution can then be classically enhanced as checking if config-
urations of MIS−1 + 1 (MIS−2 + 2) are in fact MISs only scales with N (N2). As the graph size
increases, the probabilities summed over the MIS−k decline and can be naively fitted with an ex-
ponential decay exp[−N/Nk] with N0 ≈ 100, N1 ≈ 400, N2 ≈ 1300, etc. Following this fit, we can
extrapolate that measuring a MIS with F = 99% probability at size N = 1000 would require around
nshots > log(1 − F )/ log(1 − exp(−N/N0)) ≈ 105 shots but measuring a MIS or a MIS−1 would only
need around 50 shots with this method. This whole study was carried out without taking noise into
account and many effects, not necessarily related to the adiabatic driving itself, could impact the
scaling when implemented on a noisy QPU.

6.4 - Using adiabatic quantum computing for an industrial use case

We will now utilise the adiabatic protocol optimised above to solve with a QPU an industrial use
case provided by the French electric utility company EDF and similar to the one tackled in [248].
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6.4.1 - Modelling a smart charging task as optimal scheduling of load time intervals
Smart charging is an umbrella term encompassing all optimisation problems related to electric

vehicle (EV) charging. The recent increase in the number of EVs presents both new challenges and
opportunities for electricity management. Issues like charging task allocation, scheduling, and cost
optimisation emerge due to the significant charging times of EVs and their unpredictable load on the
electrical system [257]. Vehicle batteries can serve as energy storage and power supply devices, a
technique known as vehicle-to-grid (V2G), which significantly enhances the flexibility of the electric
system and reduces the reliance on fossil fuels during high-peak demand [258].

Charging an EV takes a finite duration and its starting time can be fixed by the users of the
vehicles, imposed by technical constraints or decided by the smart-charging manager. Given a set of
charging/load tasks, one can represent them as intervals on a timeline as shown in Fig. 6.1(c), such
that each of them belongs to a specific group, for example distinct vehicle fleets of a company. One
needs to select a subset of these tasks to maximise the number of non-overlapping ones, such that at
most one task in each group is completed. Therefore, the completion time of the selected loads will be
minimised and no group will be over-represented in the schedule. This problem belongs to the class of
Group Interval Planning (GIP) problems [259]. Adding fake empty loads enables to consider instances
where all groups contain the same number k of tasks. Such a problem is NP-hard for k ≥ 3 [260]. We
can easily map such a problem to a MIS one by building the graph where a node i corresponds to an
interval and i and j are connected if their corresponding intervals overlap in time or if they belong to
the same group. Therefore, solving a GIP problem modelling a smart charging task can be tackled by
a MIS-solving QAA algorithm if one can map the instances to implementable graphs.

The graphs used originate from a data set of 2250 loads performed during May 2017 on identical
charging points of the Belib’s network of load stations located in Paris [261]. GIP instances can be
derived by randomly sampling the loads and we limit this work to specific instances that can be
formulated as MIS on two-dimensional UD graphs.

6.4.2 - Embedding of GIP graphs into structurally similar atomic registers
Embedding UD graphs into a plane can be achieved in a relative straightforward way using force-

directed graph drawing methods such as the Fruchterman-Reingold algorithm [262]. The latter aims
at positioning nodes such that connected pairs of nodes are placed close together, while unconnected
pairs of nodes are positioned farther apart. The algorithm simulates a physical system where nodes
are represented as particles that repel each other due to an electrical charge and are connected by
springs. The optimal positions, iteratively obtained, correspond to the equilibrium state reached by
the system.

However, the additional terms of Eq. 6.7 appearing due to the 1/r6 scaling of the vdW interactions
can cause unwanted dynamics if the mapping obtained with this method is not cleaned. Formally,
for a UD graph G = (V, E), the interaction energy UE

min = min{Uij , (i, j) ∈ E} should be an order of
magnitude stronger than U Ē

max = max{Uij , (i, j) /∈ E} so as not to have unconnected pairs of atoms
exerting comparable blockade as connected pairs.
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Improved free-space mapping of the UD graphs
We develop a heuristic that locally modifies the positions of the vertices of a UD graph, starting

from an initial guess. The latter can be obtained with a Fruchterman-Reingold algorithm [262] or
with a manifold learning algorithm as described in Box. 27. Because UD graphs are local, we can first
devise a procedure that finds optimal positions for sub-groups of vertices, before concatenating the
positions together. In this procedure, we keep track of the vertices for which we have already found
optimal positions. Then, we select a vertex i and its neighbourhood N (i) and build the subgraph
G̃ induced by N (i). We then minimise the ratio U Ē

max/U
E
min on this subgraph only using Sequential

Least Squares Programming [263]. Hardware constraints such as the limited field of view can also be
enforced by slightly penalising atoms outside of the system bounds or pairs of atoms too far from each
other. We add a contribution of the variance of the distance across all connected pairs to ensure that
the significant terms of the interaction matrix are all of the same order and the atoms dynamics do
not happen at too different timescales. The result of such optimisation is shown in Fig. 6.12(a). The
positions can be globally rescaled so as to respect the hardware constraints on minimum inter atomic
distance.
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Figure 6.12: Mapping and batching techniques used to embed datasets of UD graphs. (a)
An initial mapping using the Fruchterman-Reingold algorithm can try to reproduce the adjacency
matrix A of a graph G (upper corner of the matrix) with the atomic register interactions (lower
corner of the matrix). However, the scale differences between representative terms can lead to poor
embeddings. A local optimiser improves the initial guess and reduces the scale difference between the
terms. (b) Illustration of the batching method where two graphs G1 (red) and G2 (blue) are mapped
to an underlying triangular lattice (grey). By sharing common traps, a single SLM pattern (white
circles) can be used for several atomic registers.
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Batching SLM patterns for time saving
The optimised free-space positions calculated above usually define the locations of the filled traps

in a trap layout. The additional traps required to get enough trapped atoms from the initial random
filling of the layout can be put randomly around them, or in a designated area. For each graph of
the dataset, an SLM pattern is then derived and the atomic register can be constructed in the device.
In practice however, the SLM calibration step can be quite time-consuming, i.e. of the order of a
few minutes, getting close in duration to a few hundreds of shots. In the interests of speeding up the
experimental implementation, we therefore seek to batch several graphs onto the same SLM pattern,
reducing the number of calibrations needed for the whole dataset.

The batching method first implies clustering the dataset of graphs according to similarities in
their structures. By identifying identical structures across graphs, such as hexagons or crosses, we
can separate graphs into several families and build a dedicated trap pattern for each. The similarity
metric used for the clustering is a linear combination over the types of recurring cycles in the dataset
of the following quantity

s(G1,G2) = 1 − exp(−α|c1 − c2|), (6.14)

where c1/2 represents the number of a given cycle in G1/2 and α is a hyper-parameter. For instance,
the graph displayed in Fig. 6.12(a) has c = 4 3-node cycles. The similarity matrix between all graphs
of the dataset is fed to a k-means clustering algorithm [264]. Furthermore, since the laser power is
distributed over all the traps, we want to reduce the total number of traps, in order to maximise the
intensity provided to each trap. This ensures that the traps are deep enough to obtain a satisfying
filling efficiency (pfill ≈ 55%) over the whole pattern. Once we have clustered the graphs into different
batches, we embed them onto an underling grid structure. For each batch, we thus select a periodic
lattice including the types of cycle appearing in its graphs and sequentially select sites to include in the
pattern, conserving the pairwise distance between free-space mapped nodes of a graph and favouring
the use of already selected sites. Once all graphs have been embedded, the obtained layouts are shifted
and rotated to further try to maximise the occupation of the same traps. Finally, if only M sites have
been selected and the largest graph has more than pfillM nodes, random adjacent sites are added to
the pattern to ensure proper initial filling.

In the case of the smart-charging dataset, we select a batch consisting of 33 graphs, ranging in
size from 9 to 23 nodes. The mapping-and-batching procedure outputs a unique trap layout using 61
traps. An example of overlapping graphs is given in Fig. 6.12(b).

6.4.3 - Experimental implementation and results
We embed the graphs into atomic registers on Fresnel as shown by the fluorescence pictures of

Fig. 6.13(a). Applying the adiabatic protocol obtained above and imaging again, we can directly
retrieve MIS configurations composed of the missing atoms between the two pictures. We acquire
around nshots ≈ 1000 × (pmove)23 = 1000 × 80% = 800 shots for each graph. On average, in noiseless
emulation, we obtain ⟨P(MIS)⟩G = 98.3(4)% while in experiment, we get 29(2)%. The quality of
the distributions, either emulated or experimentally obtained, can be summarised by looking at the
evolution of the truncated approximation ratio introduced in Sec. 6.2.2.

Fig. 6.13(b) displays how the normalised approximation ratio approaches 1 as bitstrings with high
cost are discarded more and more. For instance, the averaged cost obtained in noiseless simulation
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Figure 6.13: Experimental results when applying the generalisable QAA protocol to smart
charging use case. (a) Fluorescence pictures of the atomic register taken before and after the
adiabatic dynamics. Missing atoms forms a MIS. (b) Evolution of the approximation ratio, averaged
over the dataset, when discarding the d% worst bitstrings of each distribution. Mean (solid line) and
standard deviation (transparent filled areas) are plotted for (light green) noiseless emulation, (green)
noisy emulation, experimentally obtained (blue) raw and (light blue) corrected data. (c) Histograms
of the MIS probabilities obtained for each graph. The dataset is sorted and separated (dashed black
vertical lines) according to the graphs size. On the x axis, the number of different MIS configurations
found is given in the format Simu. Expt.

Exact .

(light green) is around 1% but discarding the 10 worst percent of the distributions makes it plummet
to 0, highlighting that the minimum MIS probability reached across the dataset is around 90%. We
can also quantify how much the detection errors ε = 1% and ε′ = 8% (green) modify the scores by
checking the proportion that needs to be discarded to retrieve the original score (following the grey
dashed line), here about 38%. The detection errors are not the only contributors to the discrepancies
between emulated and experimental data as correcting for those does not reproduce the noiseless
behaviour. Indeed, from Fig. 6.8(b), we expect from a 4 µs adiabatic pulse a drop in MIS probability
of at least 60% due to both imperfect detection and decoherence. The experimental curve (dark blue)
drops at large d emphasises that the worst preparation over the dataset still includes around 10%
of MISs in its distributions. Fig. 6.13(c) gives a more detailed picture of the experimental results
with the smaller graphs (N = 9) exhibiting between 35% and 50% of MIS configurations while few
graphs at sizes 11, 15 and 19 only have around 10% of MISs. Correlating these significant drops with
the number of MISs of the graph and the efficiency of preparation in the noiseless case for instance
remains challenging as various experimental parameters may also have influenced the results. Spatial
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inhomogeneities of the control fields could result in distinct protocols being applied across positions,
even though the devised protocol seemed resilient to control fluctuations. Overall, for almost all
graphs, except the ones with the largest MIS subspaces, such as the 23−nodes instance with 264
possible MIS configurations, all the MISs were found at least once. On average, the first MIS was
found after a few shots/seconds, two orders of magnitude longer than with the 10 ms of CPLEX.
A gain in speed/performance from the quantum method is not to be expected at those sizes. The
threshold at which the tables could turn, inducing a so called quantum advantage, is hard to predict
both because of the cost of simulating large quantum systems, even with tensor networks, and because
constant improvements of classical algorithms makes it a moving target to reach.

6.4.4 - Conclusion : UD-MIS seems not so hard
Notably, the triangular UD graphs of this dataset are all chordal, meaning that every induced cycle

in them has exactly three vertices. For this specific family, there exist classical solvers able to find
a MIS in polynomial time [265]. Keep in mind that we could devise the same method of generalised
adiabatic driving for other families of graphs, exhibiting longer or more complex cycles, and apply
it to a batch of graphs with such structure obtained from the smart-charging dataset. However,
the locality of UD-MIS makes it relatively easy to approximate classically, and there even exists a
so-called polynomial-time approximation scheme that guarantees a 1 − ϵ approximation ratio found
in polynomial time with the instance size [266], as already noticed in early publications [247, 267].
Extrapolating from realistic coherence levels and current repetition rate of neutral atom devices, the
authors of [267] estimated that a quantum algorithm exploiting this locality aspect could potentially
surpass their classical benchmark with 8000 atoms for a time budget of 2 seconds, or with 1000−1200
atoms for a time budget of 0.2 seconds. Authors of [268] introduced an additional local Hamiltonian
to the annealing scheme to achieve a quadratic speed-up over effective classical techniques. Recent
works assess the use of quantum dynamics in excited regimes to solve combinatorial problems, using
for example many-body localisation [269] or quantum critical dynamics [270]. Specifically, quantum
quenches with neutral atoms have been explored to circumvent super-exponential closing gaps in
annealing schemes [271].

6.5 - Beyond the UD-MIS problem

The existence of efficient classical approximation schemes for UD-MIS problems motivated efforts
towards quantum procedures capable of tackling more complex groups of problems such as UD-MWIS,
where nodes are marked with distinct weights. Those weights represent an additional degree of com-
plexity that can be tuned to make the instances harder to solve. Employing site-dependent detuning
as explained in Box. 12, facilitates the encoding of solutions to the UD-MWIS problem in the Rydberg
Hamiltonian. However, only relying on a global driving Ω proves inadequate in this context. Over-
coming this limitation demands a more extensive set of operations, prompting the implementation of
advanced sequences with local controls.

An alternative route involves the exploration of atomic embeddings of graphs that go beyond the
UD property. It has indeed been observed that classical solvers exhibit a time-to-solution order of
magnitude higher when applied to instances with larger connectivity or less local structure [272]. In
particular, the incorporation of ancillary vertices, coupled with the ability to construct atomic arrays
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Figure 6.14: Going beyond UD using local addressing and ancillary atoms. (a) Embedding
a non-planar graph in 3D using ancillary chains of atoms. (b) A 2D-gadget implementing a crossing
edge using additional local detunings (grey nodes). (c) Framework of geometric programming: a
general unconstrained binary optimisation function f is translated into a sum of terms that can each
be encoded in an arrangement of M atoms and local detunings {δi, i ∈ 1, . . . ,M}. Then, one can
assemble these gadgets together using predefined rules: this usually requires additional atoms (green).
By construction, the Hamiltonian spans a Hilbert space where the low-energy bulk Hsol encodes the
solutions to the QUBO in an ε−energy band. The excited states are gaped from the solutions by an
energy difference ∆E > 0.

in 3D, facilitated the examination of the MIS problem on various platonic [273] and non-planar, high-
degree graphs [249]. The key idea driving these developments is the utilisation of a chain of auxiliary
qubits to mediate strong interactions between distant qubits, allowing for the effective tackling of
complex non-UD graphs. A subsequent demonstration in Ref. [274] showcased a deterministic and
polynomial approach capable of embedding any bounded degree graph. As an illustration, this method
successfully addressed the MIS problem for the complete bipartite graph K3,3 using a 3D arrangement
of qubits shown in Fig. 6.14(a), in conjunction with local detunings. The ground state of this 3D
graph, found using DMRG, can be viewed in Fig. 2.4(b). By discarding the ancillary vertices, one can
check that this ground state is actually a MIS configuration of K3,3.

Advancements in local controls and ancillary chains of atoms have spurred the utilisation of the
native UD-MIS solving capabilities of neutral atoms to address optimisation problems in higher com-
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plexity classes. Solutions to the original problem are mapped to the lower energy states of the Rydberg
Hamiltonian, a process referred to as geometric programming on Rydberg platforms [275]. This in-
volves finding a geometric arrangement of atoms and a set of laser controls to achieve the desired
hierarchy of eigenstates. Various methods of geometric programming have been recently proposed,
relying on gadgets—small atomic ensembles encoding parts of an optimisation problem. Assembling
these gadgets using defined gluing rules constructs a faithful UD-MIS problem. For instance, Ref. [276]
introduces copy and crossing gadgets that facilitate all-to-all connectivity on a crossing lattice, as il-
lustrated in Fig. 6.14(b). This enables the encoding of any node-unweighted QUBO problem into
a UD-MWIS problem, using at most 4N2 atoms and global detuning masks. Gadgets described in
Ref. [277] specifically address the implementation of 3- and 4-body parity constraints in the parity
encoding of connected higher-order binary optimisation (HOBO) problems, facilitating the encoding
of any HOBO as a UD-MWIS.

Additional gadgetisation techniques, such as the QUBO-centric approach proposed in Ref. [278],
offer robust solutions without requiring local fields. Triangular gadgets and anti-copy wires, intro-
duced in Ref. [279], encode 3-Satisfiability (3-SAT) problems as UD-MIS problems, demonstrating
experimental success on small systems. This toolbox has been experimentally applied to factorise
small semi-prime numbers in [280]. Geometric programming techniques have also been developed for
quantum simulation, expanding the range of algorithmic problems solvable by neutral atoms, as seen
in [275] or [281]. The geometric programming formalism is underpinned by the functional complete-
ness of PXP models, as demonstrated in [275]. The hard-blockade approximation, enabled by an
embedding respecting rnn ≪ rb ≪ rnnn, allows encoding solutions of various algorithmic problems
into the bottom end of a Rydberg Hamiltonian spectrum with a finite gap and perfect degeneracy, as
depicted on the right of Fig. 6.14(c). These techniques significantly broaden the spectrum of algorith-
mic problems solvable by neutral atoms, albeit at the cost of introducing auxiliary atoms to propagate
Rydberg blockade and employing local controls to fix different maximum independent configurations
at the required energy levels on the Hamiltonian spectrum.
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Graphs are not only employed as representations of combinatorial problems but also as pivotal
tools in machine learning (ML). Impactful applications abound, such as predicting potential edges in
recommendation systems [282], identifying fraudulent activities in communication networks [283], and
forecasting protein function [284]. While graphs offer a rich structure for manipulating complex data,
the level of freedom they afford can prohibit straightforward analysis. For instance, graphs with iden-
tical adjacency matrices yet disparate node and edge labels constitute challenges in directly applying
linear algebra techniques. It is therefore essential to create efficient ML models that correctly and
effectively learn and extract information from graph structures. Using the exponentially large Hilbert
space accessible to a quantum computer in order to generate new types of graph embeddings is an
appealing idea, with many proposals and theoretical studies over the past few years [285–288].

In this chapter, after introducing the procedure followed by classical ML algorithms to perform
classification tasks on graphs, we will show how a neutral-atom QPU can be seen as a learning model
for graph-based data and incorporate the latter, as a quantum kernel, into a classification algorithm
implemented experimentally on a real-world dataset of toxic molecules [289]. Finally, we will evaluate
the potential advantage of our method by means of a novel metric that is sensitive to the similarity
between the geometry of the feature spaces of two kernels [290].

The following chapter draws from the following article to which I contributed:
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• [291] B. Albrecht et al., “Quantum feature maps for graph machine learning on a neutral atom
quantum processor,” Physical Review A, vol. 107, no. 4., 2023.

7.1 - Classification task in Graph ML

7.1.1 - Supervised learning
In supervised learning, a ML algorithm is provided a dataset of associated pairs of input-output,

D = {(x1, y1), · · · , (xM , yM )} ⊂ (X × Y)M , and is tasked with predicting the corresponding output
y ∈ Y of an unknown input x ∈ X . Each input x is characterised by N = |X | features, x(1), · · · , x(N).
Depending on whether Y is continuous or discrete, the prediction is referred to as either a regression or
a classification task. Whereas in regression, y can take a range of possible values, in classification, the
goal amounts to sort inputs into a finite set of categories. The algorithm is also given a parameterised
family of models {f(x; θ) : X × Θ → Y} from which it must choose the best mapping based on the
patterns observed in the training data. This is achieved through training, i.e. the the optimisation of
a model-dependent score function penalising discrepancies between the model guesses and observed
data. The trained model is then trialled on unseen data points to assess its generalisability. A lack
of training data or over-simplifying assumptions can cause a model to underfit, making it perform
poorly on both training and test sets. On the contrary, optimising a highly complex model for too
long can lead to overfitting of the data, taking, for example, random fluctuations in the training set
for significant patterns. Such a model will score well on its training dataset, but will be of no help on
new data, even if the latter displays easy-to-recognise patterns. To address those issues, regularisation
terms, often labelled as λ, can be added to the loss function to penalises overly complex models and
redundant features can be removed during pre-processing of the data. In addition, cross-validation
procedure, in which D is split into multiple subsets for training and pre-testing, can help assess the
generalisation performance of the model and identify overfitting.

7.1.2 - Classification task and performance metrics
We focus in this chapter on binary classification for which Y = B = {0, 1}, i.e. the inputs are

labelled as positive or negative. As an example, let us take a recipe book where each instance is a
cake recipe with features being, among others, k the amount of sugar and l, the baking time. Through
trials-and-experiments, making each recipe once, one can assign a binary label, good or bad, to each
recipe and thus collect a training dataset as displayed in Fig. 7.1(a). When experimenting with new
ingredients or variations in a recipe, it becomes valuable to anticipate the success of these alterations
with a reasonable level of accuracy.

A classification model is typically evaluated on its ability to correctly predict the class labels using
the following metrics :

P = tp
tp + fp

, R = tp
tp + fn

, Fβ = (1 + β2) PR

β2R+ P
(7.1)

Here, t/fp/n represents the proportion of true/false positives/negatives of the predicted distribution.
For instance, a good recipe wrongly labelled as bad will increase the fn proportion. The precision P

is the ability of a classifier to not mistake a negative sample for a positive one; it thus represents the
quality of a positive prediction made by the model. Similarly, the recall R can be understood as the
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Figure 7.1: Classification task in ML. (a) A dataset of input-output pairs (xi, yi) is gathered : for
each input xi, the binary output yi is known. (b) A linear classifier is trained over the known dataset,
trying to find the best way of separating the two classes. (c) The trained classifier can be used to
label with known performance a new input x. Its generalisability can be assessed by applying it to a
test dataset, distinct from the training dataset used for its training.

ability of the model to find all the positive samples. Fβ is a combination of the two and will be used
in the following with β = 1.

The linear discriminant model described in Box. 23 is one of the simplest classifier to try. Training
this linear classifier on the collected data, i.e. maximising F1 in the case displayed in Fig. 7.1(b),
enables to get a clear cut over the dataset. Fig. 7.1(c) reveals that while the baking time l is not a
defining feature of good cakes, the sugar amount k, on the contrary, will only produce bad cakes if
excessive. Keep in mind, that this conclusion is only valid for the dataset presented in this example.
While this simplest model proves to be sufficiently appropriate for the dataset at hand, it may perform
poorly on more complex collections, such as the non linearly separable distribution of Fig. 7.2 or ones
containing graphs for instance. More advanced models such as Random Forest of decision trees or
Gradient Boosted Machines aggregating weak learners can prove useful and will be used in the following
chapter 8. Rather than increasing the complexity of the classification model itself, an alternative
approach described below involves transforming the data by mapping it into a feature space where the
distributions can exhibit different shapes.
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Box 23: Linear regression models

Linear discriminant analysis consists in finding a linear combination θ of features that will help
to directly characterise classes or lead to problem dimensionality reduction by feature selection.
Such a parameterised model can be represented by

f(x; θ) = θTx + b (7.2)

with the bias b taken as 0 for centred data. Finding the best set of parameters θ is typically
achieved by minimising the empirical risk

R(θ) = 1
M

∑
(x,y)∈D

L(f(x; θ), y) (7.3)

with L(y, y′) being a loss function characterising discrepancies between true labels and inferred
ones such as 1y ̸=y′ or ||y−y′||2/2. This optimisation can be tackled by gradient-descent methods
[292, 293] where θ is updated until convergence with the following rule θ′ := θ − γ∂R(θ)/∂θ
with γ, a hyper parameter. A possible choice of R reads

R(θ) = 1
2M ||θTX − y||2 + λ

2 ||θ||2, (7.4)

where X encompasses the inputs xi, y encompasses the labels yi and λ is the hyper parameter
controlling the ridge regularisation which prevents excessively high values of the parameters
θ. This quadratic optimisation problem is known as the primal problem. In this particular
least-squares minimisation, we can solve analytically the optimisation with

∂R(θ)
∂θ

= 0 ⇒ θ∗ = (XTX + λI)−1XTy. (7.5)

but this requires the inversion of a matrix of size M × M which can quickly become resource
consuming if the inputs are characterised by many features.

7.1.3 - From feature maps to kernels

In many classical machine learning methods, one seeks to map input data into a different space
called the feature space, making it easier to work with, using a transform called the feature map. An
example is shown in Fig. 7.2, where the distribution of the binary classes into concentric circles makes
the dataset not linearly separable in R2 and thus not manageable with the simple linear discriminant
approach described in Fig. 7.1. The feature map ϕ solves this issue by mapping data points from a
two-dimensional plane into three-dimensional space, making the data linearly separable in R3. One
of the drawbacks of this formalism, alongside finding the right expression for the feature map, is that
the higher the dimension of the feature space used to integrate the data, the more resource-intensive
the calculation of ϕ(x) is likely to become. Fortunately, rather than needing the absolute values of
ϕ(xi), most ML algorithms merely require understanding the relative distance between mapped data
points in this transformed space: this is referred to as the kernel trick.
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From the feature map ϕ we can define an associated kernel function K : X × X −→ R with
K(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩. The kernel function K is a positive semi-definite bivariate function and
serves as a similarity measure between data points. The interesting property of kernel functions is that
they can be used directly in the linear regression model instead of the explicit feature vectors. Using
a feature map ϕ, we can define a linear model on the mapped feature space by f(x; θ) = θTϕ(x). By
replacing X with Φ, the matrix encompassing the mapped features ϕ(xi), in the equations of Box. 23,
we can derive an expression of the trained model :

y(x) = f(x; θ∗) = K(x)T (ΦΦT + λI)−1
y. (7.6)

where K(x) = (K(x,x1), . . . ,K(x,xM )). The symmetric matrix ΦΦT can be written as a kernel
matrix K since (ΦΦT )ij = ⟨ϕ(xi), ϕ(xj)⟩ = K(xi,xj) = Kij . As previously emphasised, the solu-
tion to this linear regression problem can be solely expressed in terms of the kernel function K and
no longer requires the expression of ϕ. This trick is especially utilised by Support Vector Machine
(SVM) algorithms, which aim to delineate data points by identifying a separating hyperplane within
the feature space as conveyed in Box. 24. In this space, the coordinates of each data point can be
determined with respect to the kernel function K. Therefore, it is often interesting to directly come
up with a kernel function rather than an explicit feature map. For example, the Radial basis function
kernel, with hyper parameter γ > 0 can be written as

K(xi,xj) = e−γ∥xi−xj∥2
= ⟨ϕ(xi), ϕ(xj)⟩ with ϕ(k)(x) = e−γx2

√
(2γ)k
k! xk (7.7)

where ϕ(x) is a feature vector of infinite size which would require truncation to be used in a ML numer-
ical model. Feeding such as kernel to an SVM enables it to effectively handle non-linear relationships
between data points without explicitly mapping them to a higher-dimensional space.
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7.1.4 - Classical kernels for graphs
Kernels also offer the versatility to handle symbolic objects, extending beyond vectors to encompass

more complex structures such as graphs. Graph embedding techniques [294], which refer to finding a
representation of a graph or of its individual nodes in a vector space, serve as an imperative component
in numerous GML algorithms. By finding node representatives which preserve different types of
relational information from the graph, node embedding can be used for prediction tasks such as
node classification [295] or link prediction [296]. Embedding can also be done at the graph-level to
distinguish graphs of different nature. Notions of distances and similarities between the representative
vectors can then be used to find the best boundary between datapoints with different labels in the
context of supervised machine learning. This is the main idea behind the notion of graph kernel, which
represents a measure of similarity between input graphs in the form of a scalar product between their
representative vectors obtained either using a feature map or directly a kernel. A simple example of
a graph kernel is the size kernel which for two graphs G1 = (V1, E1) and G2 = (V2, E2), is defined as:

Ksize(G1,G2) := e−γ(|V1|−|V2|)2
, (7.8)

with a choice of hyper parameter γ > 0. It considers two graphs to be similar solely based on their
sizes, lacking in-depth analysis of their topological structures. Different graph kernels have been
introduced to capture different aspects of graph structures and we describe several of them, including
the SVM-θ, the Graphlet Sampling (GS), the Random Walk (RW) and the Shortest Path (SP) kernels,
in Appendix A. The latter classical kernels will be used to benchmark the quantum kernel built in the
next section.

7.2 - Quantum Evolution Kernel for graphs

ML algorithms are both versatile tools able to handle complex analysis of various types of data
and expensive models requiring substantial computational resources. The Quantum Machine Learning
(QML) field gathers diverse methodologies for infusing quantum principles into classical ML, with the
aim of enriching classical techniques through the potential of the quantum information paradigm.

7.2.1 - QML: a matter of mixing
Classifying QML algorithms involves understanding where the quantum part is added. A note-

worthy classification [297] focuses on the nature of both the data and the processing device, dividing
QML into four sub-fields :

• (CC) Classical data analysed with classical devices, utilising quantum-inspired methods such
as tensor networks (see Sec. 2) for neural network training [298] and surprisingly, dequantised
quantum algorithms [299].

• (QQ) Quantum data analysed with quantum devices, envisioning tasks like quantum simulations
preparing ground-states and analysing them with specific quantum methods [300]. However, this
approach is seen as a long-term perspective due to challenges in storing and extracting quantum
states.
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Box 24: Support Vector Machine (SVM) algorithm

The SVM algorithm aims at splitting a dataset into two classes by finding the best hyperplane
that separates the data points in the feature space, in which the coordinates of each data point
(here each graph) is determined according to the kernel K.
Suppose we have access to a training graph dataset {Gi}i=1...M with a set of labels y =
{yi}i=1...M where yi = ±1 depends on which class the graph Gi belongs to. Mathemati-
cally, the dual formulation of the SVM problem consists in finding α∗, the parameters in
AC(y) =

{
α ∈ [0, C]M

∣∣∣αTy = 0}, minimising

1
2αTQα − eTα, (7.9)

where e is the vector of all ones, Q is a M × M matrix such that Qij = yiyjK(Gi,Gj), and
C > 0 is an adjustable penalty hyper parameter. Setting C to a large value increases the range
of possible values of α and therefore the flexibility of the model. On the other hand, it also
increases the training time and overfitting risk. The data points for which α∗

i > 0 are called
support vectors (SV). Once the αi are trained, the class of a new graph G is predicted by the
decision function, given by:

y(G) = sgn
{∑
i∈SV

yiα
∗
iK(G,Gi)

}
. (7.10)

Once the kernel is trained, the prediction relies only on estimating with the kernel the distances
between the unseen graph and the support-vector graphs. The choice of the kernel function
determines the nature of the decision boundary that the SVM can learn.

• (QC) Quantum states analysed using classical ML tools, where ML techniques predict properties
of quantum systems from limited measurements [301]. In the context of quantum simulation,
the behaviour of the phase space over certain regimes of parameters can be predicted, aiding
experimentalists in locating phase transitions [302].

• (CQ) Classical data processed on a quantum device, with the initial motivation on exploring
whether quantum computing could accelerate ML sub-routines, akin to Shor algorithm’s impact
on factorisation [303]. Driven by complexity theory, researchers sought speed-ups in linear
algebra routines with the notable, yet controversial, example of exponential speed up of the
Harrow-Hassidim-Lloyd algorithm [304, 305].

While the following chapter 8 utilises the CQ approach as a way to speed up a combinatorial
optimisation problem, this chapter focuses on the capabilities of quantum devices to act as ML mod-
els themselves rather than accelerating sub-routines. We thus treat classical data with a quantum
processor in a CQ approach.
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7.2.2 - Quantum dynamics as a learning model
With the recent advances in geometric QML, works have shown how classical graph-structured

data could be encoded into quantum states and manipulated for classification, clustering or regression
tasks. These efforts started with quantum convolutional neural networks [300, 306], and attempts were
made to translate classical Graph Neural Network (GNN) architectures to Quantum Neural Networks
(QNN) [307]. These procedures involve realising a quantum feature map [285, 286].

Using both the ability to encode graphs in the interaction Hamiltonian of neutral atom registers
(see Sec. 6.1.2) and to dynamically evolve a quantum state with the control Hamiltonian of Eq. 1.27,
we can generate from qubits initialised in |0⟩ a graph-dependent wavefunction

|ψG⟩ = U(G; t) |0⟩⊗|G|, (7.11)

where the time evolution operator U(G; t) reads

U(G; t) := T
[
exp

(
−i/ℏ

∫ t

s=0
(ĤG + Ĥctrl(s))ds

)]
. (7.12)

The state |ψG⟩ depends on the graph topology and on the parameterised pulse sequence applied to
the qubits over time. This state can then be probed using a quantum observable Ô with eigenstates
{|ok⟩}k=1···K , with K = 2|G|, resulting in the measurement of a probability distribution:

PG = (p1, · · · , pk, · · · , pK), with pk = |⟨ok|ψG⟩|2 . (7.13)

Note that if some eigenvalues λk are degenerate, one would get instead

pk =
∑

i,λi=λk

|⟨oi|ψG⟩|2 , (7.14)

where pk is restricted to the distinct eigenvalues of Ô. In practice, if K is large, one would resort
to binning the values of λi by defining a set of K ′ < K intervals {Ik = [λ̃k, λ̃k+1]}k=1...,K′ , with
λ̃1 ≤ mink λk and λ̃K+1′ ≥ maxk λk, such that PG = (p̃1, . . . p̃K′), where

p̃k = |{mi|mi ∈ Ik}|
m

≡
m→∞

∑
i|λi∈Ik

|⟨oi|ψG⟩|2 . (7.15)

with m the number of measurements made to approximate the probability distribution.
We will call quantum feature map the function G → PG displayed in Fig. 7.3 with for ease of

writing no mention on the observable Ô or the pulse parameterisation, such as the total time t, used
to compute it.
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Figure 7.3: Building a quantum feature map (a) For each graph G, a quantum system is evolved
according to the propagator U . (b) Measuring |ψG⟩ with an observable Ô returns a probability
distribution PG of the eigenvalues of Ô. The distance between two distributions in the feature space
can be obtained using the Jensen-Shannon divergence

7.2.3 - Expressive power of the quantum feature map
The graph quantum feature map already shows interesting properties when associated with single-

body observables ⟨Ôj=1,...,|G|⟩. The measured values are not only affected by local graph properties such
as node degrees, but also by more global ones such as the presence of cycles. This enrichment provided
by the quantum dynamics contrasts with the locality of node representations in many classical GML
algorithms. This key feature comes from the fact that the quantum dynamics of a given spin model
(e.g. an Ising model) will be significantly influenced, beyond short times (given by the Lieb-Robinson
bound [308, 309]), by the complete structure of the graph.

We illustrate experimentally this behaviour for two graphs G1 and G2 displayed in Fig. 7.3(a) that
are non-isomorphic but locally identical. In these graphs, nodes can be separated into two equivalence
classes according to their neighbourhood: border nodes B have one degree-3 neighbour and one degree-
2 neighbour, while centre nodes C have two degree-2 neighbours and one degree-3 neighbour. These
graphs hold significance as they represent one of the smallest examples of non-isomorphic graphs where
the Weisfeiler-Lehman (WL) test [310], presented in Box. 25, fails. We will see that the presence of
interactions will enable us to discriminate between G1 and G2 by comparing the dynamics of local
observables on border and centre nodes.

We first embed the graphs in a tweezer array with a nearest-neighbour (NN) distance of rNN =
5.3 µm and apply a constant pulse with Ω/2π = 1.0 MHz and δ/2π = 0.7 MHz. We then measure the
local mean Rydberg excitation ⟨n̂j⟩j∈B/C for varying pulse duration t ∈ [0, 2.5]µs. As illustrated in
Fig. 7.4, a qualitative difference in the dynamics of both graph appears after t ∼ 0.25 µs. Precisely,
the excitation of the border nodes in Fig. 7.4(a) is initially increasing with indistinguishable behaviour
between the two graphs. Then, a distinction appears between the two graph instances: the mean
density for the border qubits of G1 exhibits damped oscillations around ⟨nB⟩ ∼ 0.15 with period of the
order of 0.5 µs while for G2 it exhibits flatter oscillations centered around 0.25 with period around 1 µs.
We can observe a comparable distinction between the two graphs for the centre qubits in Fig. 7.4(b).
The experimental measurements are consistent with the theoretical predictions supplemented by an
effective noise model with detection errors and dephasing included. First, due to the nature of the
quantum state and the limited budget of shots, measurements are subject to sampling noise. For
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Box 25: Weisfeiler-Lehman test and Message passing NN

The WL graph isomorphism test serves as a heuristic method for determining the presence
of an isomorphism between two graphs. Operating as a polynomial-time algorithm, the WL
test is renowned for its local approach, primarily reliant on the vertex neighbourhoods within
the graph. Initially, each vertex is assigned a unique label based on its immediate neighbours,
followed by iterative refinements incorporating information from neighbouring vertices and their
respective neighbourhoods. This process continues until a distinguishing characteristic emerges
or the labels stabilize [311].
By focusing on local neighbourhood information, the WL test captures the inherent structure
of the graphs under comparison. It exploits the notion that if two graphs are isomorphic,
their vertices and respective neighbourhoods should exhibit similar label patterns throughout
iterations. Conversely, non-isomorphic graphs should reveal distinguishing characteristics in
their labels, signifying structural differences. The WL test also bears relevance to standard
message-passing neural networks (MPNN) architectures, where information propagation occurs
solely along the graph’s edges. Notably, these successful MPNN models [312] have been proven
to be, at most, as powerful in discerning graph structures [313] as the WL test.
Despite its potency, the WL test fails when applied to the two graphs depicted in Fig. 7.3(a).
Hence, it becomes intriguing to explore the behaviour of these graphs when embedded with
atoms and allowed to evolve under a quantum Ising Hamiltonian.

instance, on average, each of the 25 experimental points on Fig. 7.4 is obtained using 600 shots and
the uncertainty related to this effect (vertical error bars) is estimated using the Jackknife resampling
method [314]. Second, the detection errors, measured at ε = 3% and ε′ = 8% for this experiment
can modify the measured excitation distributions, with a noticeable effect shown on at t = 0 where
the simulated ⟨nj⟩ does not start at 0 despite |ψ(t = 0)⟩ = |0 . . . 0⟩. Finally, we take into account
positional disorder, Doppler effect and laser phase noise in a effective dephasing term 2π × 0.06 MHz
obtained by fitting damped Rabi oscillations.

When restricted to the mean-field approximation (or similarly in the classical limit), the qubits’
dynamics on either graphs are far more similar, as illustrated in the insets of Fig. 7.4. We still
observe distinct dynamics between the two graphs, which is due to next nearest neighbours (NNN)
interactions, more pronounced for the centre nodes. If we neglected those NNN interactions, the mean-
field equations governing the dynamics of each qubit would only depend on its direct neighbourhood,
i.e. the local structure of the graph. In that case, the qubits dynamics for G1 and G2 obey the exact
same equations (see black dashed line in the insets). We therefore conclude that the presence of
interactions in the system enables us to discriminate between the two non-isomorphic graphs G1 and
G2 by evaluating node-level local observables ⟨nB⟩ or ⟨nC⟩.
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(a) (b)

Figure 7.4: Different Rydberg dynamics for locally-equivalent nodes. Based on their neigh-
bourhood, the nodes either belong to (a) the border region, B, or (b) to the centre region, C. Precisely,
we plot the evolution of the mean occupation ⟨ni⟩ of the two regions B and C for both graphs G1 (red)
and G2 (blue). The dots represent the experimental results while the full curves show noisy simulation
results. Horizontal error bars account for the sequence-trigger uncertainty (≈ 40ns) while the vertical
ones account for the sampling noise. The insets show the corresponding mean field dynamics (dashed)
with only NN (black) or full (coloured) interactions.

7.2.4 - Building a quantum kernel
By looking at Ô = ∑6

i=1 n̂i, we can quantify even more the difference in the dynamics between two
graphs. To this end, we first compute the histogram PGi(n) of the number of excitations observed in
each shot on graph Gi. The difference between those graphs is then estimated via the Jensen-Shannon
divergence JS of their respective histograms [315], a commonly used distance measure between prob-
ability distributions, which is defined as

JS(P,P ′) = H

(P + P ′

2

)
− H(P) +H(P ′)

2 . (7.16)

Here H(P) = −
∑
k pk log pk is the Shannon entropy of P. The Jensen-Shannon divergence reaches its

minimum at JS(P,P) = 0 and reaches its maximum at log 2 if P and P ′ have disjoint supports. This
is illustrated in Fig. 7.5, where the largest difference JSmax ≈ 0.28 (roughly 40% of the theoretical
maximal value) is achieved at a time t ∼ 0.57 µs where the two distributions are the most distinct. At
this duration, the distribution for G1 is sharply peaked at n = 0 while that of G2 is wider and peaks
around n = 2, as illustrated in the inset. We note that the local observables ⟨nj⟩j∈B/C also exhibit
maximal deviation at this same duration t, indicating direct correspondence between measurements
at the node and graph levels.
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Figure 7.5: Evolution of the Jensen-Shannon divergence of a global observable. The experi-
mental values (dot) are compared to the noisy simulation (plain). At each point in time, JS(PG1 ,PG2)
is computed using the excitation distributions PG1/2(n = 0, . . . , 6) obtained either numerically (bar)
or experimentally (dot). The inset depicts PG1/2 obtained at t ≈ 0.57 µs which yields the maximum
value JSmax ≈ 0.28.

The dependency of local observables evaluated after the application of the quantum feature map
on global graph structures have interesting consequences regarding quantum-enhanced versions of
GNN [307, 316, 317]. In standard GNN architectures, information is only propagated along the graphs
edges. Incorporating a propagation rule built from the quantum feature map above enables to go
beyond this well-known limitation of GNN architectures.

We now turn the quantum feature map into a Quantum Evolution Kernel (QEK). In essence, our
proposed approach involves associating each graph G with a probability distribution PG derived from
the measurement of an observable on a quantum system governed by the graph topology. Subsequently,
the kernel is computed utilising the Jensen-Shannon divergence introduced in Eq. 7.16. For two graphs
G and G′, and their respective probability distributions PG and PG′ we define the graph kernel as

Kµ(G,G′) = exp [−µJS(PG ,PG′)] ∈
[
2−µ, 1

]
. (7.17)

This kernel is well-defined, i.e. the kernel matrix is always positive definite. Throughout the rest
of this chapter we set µ = 1. Depending on the type of Hamiltonian evolution performed or observable
measured, QEK can be related to other kernels, a subject detailed in Ref [318]. In the following section,
we tackle binary classification tasks on graphs with a ML algorithm based on utilising our quantum
kernel inside a classical SVM.
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7.3 - Classification using QEK

7.3.1 - Binary classification task on PTC-FM
We now use the graph kernel introduced in Eq. (7.16) to tackle a binary classification task on a

dataset of chemical compounds, called PTC-FM (Predictive Toxicity Challenge on Female Mice) [289,
319]. The objective is to accurately predict the reactivity of chemical compounds (toxic/positive or
non-toxic/negative) based on their structural properties. Indeed in many cases poisonous proteins act
as enzyme inhibitors, where the geometry of the protein fits to the binding site of an enzyme and per-
turbs its usual functioning [320, 321]. In the next sections, we will detail the hardware implementation
protocol for obtaining a QEK-based SVM trained on this dataset. The whole process is illustrated in
Figure 7.6. We will estimate the quality of the classification with the F1 score defined in Eq. 7.1. On
the one hand, correctly predicting the toxicity of a compound (increasing tp) leads to better F1 scores.
On the other hand, classifying a toxic compound as harmless (increasing fn) or a harmless compound
as toxic (increasing fp) results in a lower score.

Dataset and mapping on hardware
In the original PTC-FM dataset, the 349 molecules are represented under the form of graphs

where each node is labelled by atomic type and each edge is labelled according to its bond type. We
first truncate the dataset to small graph sizes in order to be able to numerically train the kernel in
reasonable time, and discard larger molecules. For the M = 286 remaining graphs of this dataset,
we take into account the adjacency matrix of the graphs representing the compounds and discard
the nodes and edges labels. Note that the results of our implementation are therefore not directly
comparable to kernel results in the literature which take into account edge and node labels (see Ref.
[322] for example).

Each node of a graph will be represented by a qubit in the QPU. In the same fashion as for the UD
graphs in combinatorial optimisation schemes described in chapter 6, we first need to determine the
positions of these atoms in order to implement an interaction term that effectively reflects the graph
topology. To this end we use the same mapping and batching techniques. As a reminder, starting
from a Fruchterman-Reingold layout, the position optimiser needs to even out the distances between
two connected nodes while locating unconnected nodes further away than connected ones between
unconnected nodes. Using as a score to optimise the ratio between the minimum interaction term
across connected pairs and the maximum interaction term between unconnected pairs, one can tailor
the free-space optimiser to produce representative mapping of UD graphs. We achieve a significant
increase of the mean ratio across the dataset used, starting from 5.9 with the classical Fruchterman-
Reingold method and going up to 16.8. More than half the dataset exhibits a ratio higher than 10
and less than 5% of the dataset is embedded with some defects, i.e. a ratio smaller than 1.

We assess the benefit of this two-step approach by comparing the distributions of distance of
pairs sharing an edge and pairs not sharing an edge before and after the optimisation as shown in
Fig. 7.7. While some defects such as fake or missing bonds frequently appear in the pre-optimisation
embedding, the optimised positions are constrained in such a way that a clear cut is visible between
the two distributions.

Once the mapping is deemed good enough, we apply the batching method described in Sec. 6.4.2
to the dataset and successfully map the entire dataset of 286 graphs into only 6 SLM patterns. For
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Figure 7.6: Overview of QEK implementation. (a) A dataset of graphs G is first mapped onto
atomic registers r(G) implementable on the QPU, and separated between a training set Gtraining and
a test set Gtest. We use the training set to determine numerically the optimal pulse sequence to be
applied on the hardware using a grid search algorithm for optimising F1(t) (see (b)). This training
phase outputs the optimal parameter T used to design the laser-pulse sequence applied experimentally
on each register of the test set. The resulting dynamics performed on the QPU generates U(G;T ),
driving the system from |0⟩⊗G to |ψG⟩. A final F1 score is then derived from assessing if the measured
probability distributions {PG}G∈Gtest are well labelled by the trained SVM . (b) The optimisation of
the score function F1 during the training includes several steps. The parameter t, taken from the
constrained parameter space [tmin, tmax] defines a sequence with the laser parameters Ω and δ being
fixed. The dynamics of the system is emulated and enables to compute the probability distributions
associated to this particular value of t for the whole training part of the dataset. Finally, F1(t) is
obtained by fitting the SVM with the kernel constructed from those probability distributions.

example, we batch 66 graphs together onto a 71-trap pattern and on average, the 6 SLM patterns
use 70 traps each to encode 48 graphs each. Then, tailoring the spatial disposition of the tweezers
generated by the SLM to fit the optimised layouts, we can replicate the graphs in the hardware.
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Figure 7.7: Optimising positions for embedding graph topology in atomic registers. His-
tograms of normalised pairwise distances between atoms in the 286 graphs of the truncated dataset
when performing the embedding with (a) only a Fruchterman-Reingold layout or (b) when adding a
local optimisation step afterwards. For a given graph (insets), two atoms forming a pair ∈ E (blue)
can be close enough to form a bond via interaction (plain) or too far, creating a missing bond (dotted).
Likewise, two atoms forming a pair /∈ E can be placed too close and form a fake edge (thick line).

Model training

The quantum feature map used is thus based on embedding graphs into regular atomic patterns
with a NN distance of rNN = 5.6 µm and applying a resonant constant pulse with fixed Ω/2π = 1
MHz and varying duration t between tmin = 0.1 µs and tmax = 2.5 µs. We first need to optimise the
parameters of the quantum feature map, i.e. the hyper parameters of the ML model, to select those
leading to the best classification score when combined with an SVM. Running the quantum dynamics
on all the graphs of the training set with a chosen value of the hyper parameter t ∈ [tmin, tmax]
and fixed driving parameters will generate a set of probability distributions Dt = {PG}G∈Gtraining

.
From these distributions, a kernel matrix can be constructed and fed to an SVM. Through a cheap
classical optimisation, the latter is trained and its decisions can be benchmarked against a test set.
Given the modest size of the dataset, we can evaluate the performance of the SVM using repeated
cross-validation. One realisation of the procedure entails randomly dividing Dt into d equal parts,
termed "splits," where one split is reserved for testing while the remaining d − 1 splits are used to
construct a kernel matrix passed to the SVM for training. Subsequently, the SVM is tasked with
classifying the elements of the reserved split and a F1 score can be derived from its performance. This
process is repeated for each of the d splits, putting one aside and training on the remaining, finally
giving out a mean F1 score computed by averaging the d values obtained. In addition, the overall
procedure can be iterated multiple times with random dataset splits. We can consider this cross
validation over the training of the SVM as a block (see Fig. 7.6(b)) taking as input a set of probability
distributions obtained for hyper parameter t, or equivalently the constructed kernel, and returning
the corresponding F1 score. Performing the hyper parameter optimisation on the QPU would involve
applying several sequences (usually niter ∼ 100) on the whole graph dataset, requiring a tremendous



172 CHAPTER 7. GRAPH MACHINE LEARNING...

𝒢!
𝒓(𝒢!)

𝒢"

Free-space mapping Batching

⋯ ⋯

𝒓(𝒢")

Figure 7.8: Batching graphs to the same SLM pattern. A family of 66 graphs, ranging in sizes
from 4 to 19 nodes, is mapped in free-space and then batched to the same SLM pattern (white dots)
over a triangular grid with spacing 5.6 µm. The traps used when implementing GA (GB) are coloured
in red (blue). The bi-coloured traps are those used for both graphs.

amount of computation (niter × M × nshots ∼ 1500 hours for this implementation). We therefore
perform this optimisation numerically, only including in the training part of the dataset graphs with
sizes |G| ≤ 20. The score to optimise F1(t) is defined as the average of the F1-score over 10 realisations
of the cross validation scheme with 5 splits. For each split, we perform a grid search on the penalty
hyper parameter C of the SVM (see Box. 24) on the range [10−3, 103] such that the final score of a
given pulse is the best cross-validation score among the tested values of C. This numerical procedure
is described on Fig. 7.6(b).

We select the optimal duration T = 0.66 µs that exhibits the maximum F1(t)-score and apply the
constructed feature map to the whole dataset of M = 286 graphs. It should be noted that we are
using the feature map optimised for graphs smaller than size 20 on the entire dataset where the graphs
have up to 32 nodes. This may limit the benefit of hyper parameter optimisation, but remains better
than a random choice of t. Without resource limitation on the QPU, we could resort to the procedure
described in Fig. 7.6(a), with a training handled directly on the QPU and a fixed split between training
and testing sets. However, due to limited size of the dataset, we apply a cross validation procedure in
the last block of Fig. 7.6(a), randomly splitting the experimentally obtained probability distributions
between training and testing sets and outputting an average F1 score.
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Figure 7.9: Kernel matrices obtained numerically or experimentally. Each kernel is repre-
sented by a M × M matrix where Ki,j = K(Gi,Gj). The graph indices are sorted by increasing
size. A separation (black line) is drawn between numerically simulated (top right) and experimentally
measured (bottom left) QEK matrices. (a) QEK kernel obtained using directly the raw distributions
PGi and PGj . (b) Kernel obtained vian SVM-ϑ method. (c) Size kernel obtained with γ = 0.1. (d)
Kconv, QEK kernel obtained using modified distributions P̃Gi and PGj , where graphs of smaller sizes
are convoluted with binomial distributions when compared to larger graphs.

Classification results
After a training of our model, we experimentally obtain an F1-score of 60.4±5.1%. For comparison

purposes, we examine the performances of other kernels on this dataset: the GS, RW, SP and SVM-ϑ
kernels, all these kernels being described in detail in Appendix A. The F1-scores reached by the various
kernels are collected in Table 7.1. Obtained scores range from 49.8 ± 6.0% up to 58.2 ± 5.5%. Those
results show that the Quantum Evolution Kernel is competitive with standard classical kernels on this
dataset. The SVM-ϑ kernel is found to be, among the classical kernels tested, the one with the best
performance. As described in Appendix A.1, it is defined up to a choice of base kernel between real
numbers, which gives it a certain degree of flexibility.

We show in Fig. 7.9(a) the kernel matrix associated with QEK, with indices sorted by increasing
size of the graphs. Using the same noise model as in the previous section, we find adequate agreement
between the numerically Pnum and experimentally Pexp obtained data. Quantitatively, we make use
of the JS divergence to estimate this agreement for any Gi and observe that ⟨JS(Pnum

Gi ,Pexp
Gi )⟩i ≈

0.03 ± 0.01 is one order of magnitude below ⟨JS(Pexp
Gi ,P

exp
Gj )⟩i ̸=j ≈ 0.33 ± 0.01. An interesting feature

of both QEK and SVM-ϑ (Fig. 7.9(b)) kernel matrices is the emergence of size-related diagonal blocks,
signalling that the models identify the size of the graphs as an important feature for classification.
Examining more closely the dataset, we indeed remark that the subset of PTC-FM that we used is
significantly size imbalanced, as illustrated in Fig. 7.10. Since the graph size seems to be a relevant
feature for this particular dataset, we check that the size kernel defined in Eq. 7.8 reaches a F1-score of
56.7 ± 5.6%. The corresponding kernel matrix is displayed in Fig. 7.9(c) and exhibits a block-diagonal
shape with a Gaussian tail. It is interesting to note that the quantum model was able to identify size
as a relevant parameter for this dataset, leading to classification results which are on par with the
best classical kernels.

Going forward, we modify the QEK procedure in order to make the kernel insensitive to size.
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Kernel F1-score (%)
QEK 60.4 ± 5.1

QEK (size-compensated) 45.1 ± 3.7
SVM-ϑ 58.2 ± 5.5

Size 56.7 ± 5.6
Graphlet Sampling 56.9 ± 5.0

Random Walk 55.1 ± 6.9
Shortest Path 49.8 ± 6.0

Random (baseline) 42

Table 7.1: F1-score reached experimentally on the PTC-FM dataset by QEK (± std.
on the splits). In addition, the scores reached numerically by the classical kernels SVM−ϑ, Size,
Graphlet Sampling, Random Walk and Shortest-Path. The values reported are the average over
a 5-fold cross-validation repeated 10 times. The baseline is set by looking at the score when
randomly labelling instances which due to the class imbalance of the dataset is 42%.

To that end, we compare the measurement distributions obtained for different graph sizes using a
convolution operation. Let us consider two graphs Gi and Gj , of Ni and Nj = Ni + ∆N > Ni nodes
respectively, and note their respective observable distributions PGi and PGj . From PGi we construct
P̃Gi = PGi ⋆ b

(i/j)
∆N the convolution of PGi and a binomial distribution :(

∆N
n

)
pn(1 − p)∆N−n. (7.18)

P̃i corresponds to the distribution one would get by adding to the graph ∆N non-interacting qubits,
submitted to the same laser pulse as the other. Each of these isolated qubits undergoes Rabi os-
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Figure 7.10: Size imbalance in PTC-FM dataset. For small number of nodes (≲ 10) more graphs
are labelled as harmless (blue) while it is the opposite for larger graphs, more prone to be labelled as
toxic (red).
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cillations, induced by the applied pulse sequence. They are therefore measured either in |0⟩ with
probability p or in |1⟩ with probability 1 − p, where p = sin2(πΩT ) (≈ 0.768 here). We finally define
the modified graph kernel as

Kconv(Gi,Gj) = exp
[
−JS(P̃Gi ,PGj )

]
. (7.19)

Using this procedure on the data obtained experimentally, we obtain the kernel matrix shown in
Fig. 7.9(d), with a corresponding F1-score of 45.1 ± 3.7%. If this size-compensated version of QEK
had been implemented without interaction between atoms, its score would be 42%, which is the lowest
score reachable by any kernel. We therefore see that this compensated version of QEK cannot capture
useful features beyond the graph size, meaning that the presence of interactions by itself is not sufficient
to produce an interesting kernel for the task at hand. While the size-compensated QEK does not give
results that are comparable with classical kernels, we study in the following part its expressive power,
and show that the geometry induced by this method is hardly reproducible by a classical kernel.

7.3.2 - Geometric test with respect to classical kernels
Geometric difference

In order to obtain an advantage over classical approaches it is not sufficient to implement a
quantum feature map based on quantum dynamics that are hard to simulate classically. As shown
in [290], classical ML algorithms can in certain instances learn efficiently from intractable quantum
evolution if they are allowed to be trained on data. The authors consequently propose another metric
between kernels in the form of an asymmetric metric function called the geometric difference g12,
further detailed in Box. 26. Intuitively, g12 characterises the disparity regarding how each kernel K1
and K2 maps data points to their respective feature spaces. In our case, we take K1 to be the size-
compensated QEK Kconv, and K2 is selected from a set of classical kernels. If the geometric difference
is small, it means that there exists no underlying function mapping the data to the targets for which
Kconv outperforms the classical kernel. On the other hand, a high geometric difference between a
quantum and a classical kernel guarantees that there exists such a function for which the quantum
model outperforms the classical one. Estimating the geometric difference is therefore a sanity check
to stating that the encoding of data to the feature space through QEK could not be closely replicated
by a classical model.

We compute the geometric difference between QEK and various classical kernels over the PTC-FM
dataset and report the results in Table 7.2. The threshold for a high geometric difference is typically
taken to be

√
M , where M is the size of the dataset. Here, the obtained g12 is always far beyond√

M ∼ 101, indicating that the embedding of data through our quantum-enhanced kernel is not trivial
and cannot be replicated by a classical ML algorithm.
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Box 26: Geometric difference and relabelling

Given two kernel functions K1 and K2, the geometric difference g12 described in [290] is an
asymmetric distance function that quantifies whether or not the kernel K2 has the potential to
resolve data better than K1 on some dataset. In its simplest form, the geometric difference is
defined as:

g12 =
√

||
√
K2 (K1)−1√K2||∞ (7.20)

where || · ||∞ denotes the spectral norm. The geometric difference becomes an especially useful
metric when K1 = KC is a classical kernel and K2 = KQ is a quantum kernel. If M is the size
of the dataset, a value of gCQ of order

√
M or greater indicates that the geometry of the feature

space induced by the quantum kernel is rich enough to be hard to learn classically, and the
quantum kernel can potentially perform better than classical kernels. In that case, it is possible
to artificially relabel the dataset in order to maximally separate the kernels’ performance. Such
a relabelling process is a constructive proof of the existence of a certain dataset on which
one kernel performs much better than the other. If v is the eigenvector of

√
K2 (K1)−1 √

K2
corresponding to the eigenvalue g2

12, the vector of new labels is given by ynew =
√
K2v.

When dealing with a finite amount of training data, Eq. 7.20 should be regularised in order to
stabilise the inversion of K1. The regularised expression reads:

g12(λ) =
√

||
√
K2
√
K1 (K1 + λI)−2√K1

√
K2||∞ (7.21)

where λ is the regularisation parameter. The geometric difference g12(λ) has a plateau for small
λ, when the regularisation parameter becomes smaller than the smallest eigenvalue of K1, and
decreases for increasing λ. The effect of λ is to introduce a certain amount of training error.
The training error can be upper bounded by a quantity proportional to:

gtra(λ)2 = λ2||
√
K2 (K1 + λI)−2√K2||∞. (7.22)

Practically, one should look at the regime where g12 has not plateaued but the training error is
still small enough. A regularisation should be introduced also in the relabelling procedure. The
new labels are taken to be ynew =

√
KQv, where v is the eigenvector of the regularised matrix√

KQ

√
KC (KC + λI)−2√KC

√
KQ

corresponding to the eigenvalue g12(λ)2.

Relabelling the targets

To summarise, while the F1-score on PTC-FM is rather similar using quantum or classical models,
we see nonetheless that the geometry created by our quantum model is non-trivial. A possible inter-
pretation of the non-superiority of quantum approaches on PTC-FM would be that the relationship
between the data and the targets is not better captured by our quantum model, although its feature
space is not reproducible by classical means. To further confirm this understanding, we find a function
that increases and even maximises the utility of the potentially richer quantum feature space. We
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build such a function by artificially relabelling the targets according to a procedure presented in [290]
and outlined in Box. 26. We observe that QEK, without retraining, retains an F1-score of around
99% on the relabelled dataset, while the closest classical kernel reaches a score of at most 82% even
after retraining it on the new labels. The results are summarised in Table 7.2, where the difference in
F1-score between QEK and the various classical kernels after relabelling is shown.

Classical kernel g12 F1-gap (%)
SVM-ϑ 103 17.2 ± 4.5

Size 105 17.8 ± 4.2
Graphlet Sampling 104 20.1 ± 4.5

Random Walk 105 17.3 ± 4.3
Shortest Path 105 18.2 ± 4.4

Table 7.2: Comparison between QEK and classical kernels. First column gives the order
of magnitude of the geometric difference g12 between quantum and classical kernels. Second
column gives the gap in F1-score after relabelling the dataset.

In light of the geometric difference assessment and the observed gap of F1-score between QEK and
classical kernels on an artificial function, it remains an open question to generally characterise which
types of dataset naturally offer a structure that better exploits the geometry offered by our quantum
model, without requiring artificial tweaking of the labels. In the following section, we present a
synthetic dataset on which QEK is able to outperform classical methods without any relabelling.

7.3.3 - Building and classifying a synthetic dataset
This binary classification dataset is created by sampling weighted random walks on a triangular

lattice. In class A, sites belonging to a honeycomb-type sublattice are favoured. They are explored
with a weight 1 while the rest of the triangular lattice sites are explored with a weight p < 1. Class B
is constructed in a similar fashion, but taking a Kagome sublattice instead of a honeycomb one. The
construction of this artificial dataset is illustrated in Fig. 7.11. For p = 0, the dissimilarities in local
structure between graphs from the two classes facilitate easy differentiation. However, as p increases,
their local structures become progressively more alike due to the incorporation of additional triangular
lattice sites. When p reaches a sufficiently large value, numerous triangular local substructures are
shared by graphs of both classes, potentially making them challenging to distinguish using classical
methods. At p = 1, the underlying triangular lattice is uniformly explored when generating both
datasets, rendering the two classes indistinguishable.

Exploiting our capability to discern between graphs with similar local but globally distinct struc-
tures, we apply QEK to this synthetic dataset. We anticipate our method to be minimally affected
by the presence of sparse defects and thus to surpass classical approaches in performance.

We investigate numerically this assumption, for several values of p. In each case, we create 200
graphs of 20 nodes each, 100 in each class. The graphs are mapped to a triangular lattice with 5 µm
spacing. Here, we consider two alternative schemes of pulse sequences. The first one remains almost
the same as the experimentally implemented one, i.e. a unique resonant pulse of Ω/2π = 2 MHz with
parameterised duration up to 8 µs. The second one is an alternate layer scheme with 4 parameters as
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Figure 7.11: Synthetic dataset. Graphs in class A contains honeycomb sites (blue) with inclusions
of non-honeycomb sites (red) with probability p. Graphs in class B contains Kagome sites (blue) with
inclusions of non-Kagome sites (red) with probability p. We show examples of generated graph with
the aforementioned process.

described in [318], where we evaluate 500 random values of the parameters and select the best one. The
procedure is designed such that it would be directly implementable on the hardware, as we did for the
PTC-FM dataset. We then compare the F1-score reached by QEK to those reached by other classical
kernels, namely: SVM-ϑ, GS, RW and SP. The results are summarised in Fig. 7.12. With decreasing
proportion of defects, all methods perform increasingly better, as expected. Overall, regarding the
mean F1-score reached, the two QEK schemes outperform the four other classical kernels tested for
all p ≤ 0.5. Noticeably, at p = 0.1 (resp p = 0.2), the mean gap in F1-score between the QEK scheme
and the the best classical scheme is 4.5% (resp 7.1%) while the mean gap obtained with the alternate
QEK scheme is even larger with 13.7% (resp 21%), thus showing that QEK can significantly surpass
classical approaches on certain types of datasets. When adding too many defects, i.e. p = 0.5, our
QEK exhibits similar performance to the SVM-ϑ.

7.3.4 - Conclusion
In this chapter, we reported the implementation of a quantum feature map for graph-structured

data on a neutral atom quantum processor. We experimentally show that this embedding is not only
sensitive to local graph properties but is also able to probe more global structures such as cycles. This
property offers a promising way to expand the capabilities of standard GNN architectures, which have
been shown to have the same expressiveness as the WL isomorphism test in terms of distinguishing
non-isomorphic graphs [313, 323]. Some properties of quantum-enhanced versions of GNNs have been
explored in [317].

We then use the quantum graph feature map for a toxicity screening procedure on a standard
bio-chemistry dataset comprising 286 graphs of sizes ranging from 2 to 32 nodes. This procedure
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Figure 7.12: F1-score reached on the synthetic dataset for different probabilities p of including
defects using the Quantum Evolution Kernel (the alternate scheme is noted QEK layer) as well as by
the best SVM-ϑ, GS, RW and SP kernels. The values reported are the average over a 5-fold cross-
validation repeated 10 times. Each kernel reaches an F1-score of 100% when p = 0.

achieves an F1-score of 60.4 ± 5.1%, on par with the best classical kernels. We intentionally do not
include GNNs in the benchmark, as they belong to another distinct family of models. Beyond this
pure performance assessment, we showcase the potential advantage of using a quantum feature map
through the computation of geometric differences with respect to said classical kernels, which are
metrics evaluating the degree of similarity between the kernels’ feature spaces. We show that QEK
captures features that are invisible to the classical kernels we consider. An artificial relabelling of
the data enables us to create a synthetic dataset for which the performance of QEK could not be
matched. We also identify another dataset made of bi-partite 2D lattices, for which the quantum
procedure exhibits superior performances.

This proof-of-concept illustrates the potential of quantum-enhanced methods for graph machine
learning tasks. Further work on more diverse datasets will be required to assess the viability of the
approach compared to powerful state-of-the-art GNN architectures [324–327]. These experimental
developments stand to benefit from recent advances in geometric quantum machine learning [328,
329], with the latter exploring applications to weighted graphs. Furthermore, in-depth theoretical
studies on equivariant and geometric aspects of quantum machine learning have also been presented
recently [330–332].



180 CHAPTER 7. GRAPH MACHINE LEARNING...



8 - Hybrid algorithm: quantum-enhanced classification in
finance

Contents
8.1 A financial risk management use case . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.1.1 Fallen angels forecasting using machine learning . . . . . . . . . . . . . . . . . 182
8.1.2 Benchmarking the use case with a classical solution . . . . . . . . . . . . . . . 183

8.2 Quantum-enhanced classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.2.1 QBoost framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.2.2 QBoost-inspired classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.2.3 Optimisation of the ensemble via QUBO solving . . . . . . . . . . . . . . . . . 187
8.2.4 QUBO solving with VQAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.3 Random Graph Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.3.1 Leveraging stochastic atomic loading . . . . . . . . . . . . . . . . . . . . . . . 189
8.3.2 Optimised relabelling process . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.3.3 Benchmark against numerically simulated QAOA . . . . . . . . . . . . . . . . 192

8.4 Experimental implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.4.1 QUBO solving results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.4.2 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.5 Review of hybrid quantum-classical algorithms . . . . . . . . . . . . . . . . . . . . . . 198
8.5.1 Hybrid optimisation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.5.2 Hybrid GML approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Finance is one of the most promising fields where quantum computing could be useful in practi-
cal industrial applications [333]. ML models capable of handling the large datasets collected in the
financial world can often become black boxes expensive to run. In addition, their training often in-
volve solving hard combinatorial problems such as the ones introduced in chapter 6. The optimisation
techniques provided by the quantum computing paradigm may deliver competitive, faster and more
interpretable models when combined with already efficient classical ML framework. Integrating quan-
tum solutions as modules in a classical-quantum hybrid workflow is at the core of today efforts to find
practicality for noisy intermediate-scale neutral atom quantum computers.

Quantum and quantum-inspired approaches have already shown many promising applications in
financial problems [334–341]. In this work, we implement an hybrid algorithm in the form of a
quantum-enhanced machine learning solution for the prediction of credit rating downgrades in the
financial risk management field. The QUBO-solving block of the QBoost-based algorithm presented
below utilises a neutral atom QPU with a native quantum sampling approach called Random Graph
Sampling. Using the proposed quantum solution, we achieve a similar performance as with the classical
counterpart algorithm used as benchmark using comparable training times and showcasing better
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interpretability, i.e. a simpler and smaller predictive model. More details on this work can be found
in this paper:

• [342] L. Leclerc et al. “Financial risk management on a neutral atom quantum processor”. Phys.
Rev. Res. 5, p. 043117, 2023.

8.1 - A financial risk management use case

In finance, an interesting and relevant problem consists in estimating the probability of debtors
reimbursing their loans, which represents an essential quantitative problem for banks. Financial
institutions generally attempt to estimate credit worthiness of debtors by sorting them in classes
called credit ratings. These institutions can build their own credit rating model but can also rely on
credit ratings provided by one or more of the three main rating agencies Fitch, Moody’s and Standard
& Poor’s (S&P). Borrowers are generally grouped into two main categories according to their credit
worthiness: investment grade borrowers with low credit risk, and sub-investment grade borrowers with
higher credit risk. Should a borrower’s rating downgrade from investment to sub-investment category,
it will be referred to as a fallen angel.

8.1.1 - Fallen angels forecasting using machine learning
The early anticipation of these fallen angels is a problem of utmost importance for financial institu-

tions and one that has gathered significant attention from the ML community in the past years. Indeed,
these institutions usually have access to large amount of data accumulated over several decades. The
wide variety of features gathered can be fed to advanced ML models tasked with solving a classification
problem. As a reminder, a classification task involves categorising input data x into predefined classes
or categories y. The goal is to train a model to learn patterns from already labelled training data
[Fig. 7.1(a)]. This classifier can then accurately assign new data points to one of these classes based
on their features [Fig. 7.1(c)]. For example, classifying a pet as dog or cat, a chemical compound as
toxic or harmless or a client as likely or not to reimburse a loan are all binary classification tasks with
only two possible output y = ±1. In the fallen angel forecasting context, the trained ML model needs
to answer with good enough performance the following question: will a debtor have a high or low risk
of becoming a fallen angel in the foreseeable future?

Proposals of binary classification methods, or classifiers, targeting such tasks have shown promising
results using Random Forest (RF) and XGBoost algorithms [343, 344]. The RF algorithm is a well-
known ensemble method based on bootstrap aggregation, also called bagging, applicable for regression
and classification alike [121]. Training a RF of m trees on a given dataset of size n entails generating
m new datasets with n elements each by sampling with replacement the original training set. To
ensure low correlation between the trees, each tree is also trained on a different subset of randomly
selected features. The trained classifiers are then collectively used to predict the class of unseen
data through majority vote over the m decisions. Due to their feature extraction flexibility, those
tree-based ensemble methods turned out to be more suitable for similar credit risk modelling tasks
[345, 346], compared to deep learning approaches [347, 348]. However, these methods quickly become
computationally demanding as the numbers of decision trees grow. Furthermore denser and denser
forests usually become black boxes in terms of interpretability, i.e. hard to understand by their users.
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8.1.2 - Benchmarking the use case with a classical solution
Dataset

The dataset used in this study originates from public data over a period of 20 years (2001-2020).
It comprises of more than 90 000 instances characterised by around 150 features, representing the
historical evolution of credit ratings as well as numerous financial variables. Predictors include rating,
financial and equity market variables and their trends calculated on a bi-annual, quarterly and five-
year basis. The examples considered are based on over 2000 companies from 10 different industrial
fields (e.g. energy, healthcare, utility) and 100 sub-sectors (e.g. infrastructure, oil and gas exploration,
mining), located in 70 different countries. Each of the records is labelled as either a fallen-angel (i.e.
critical downgrade; class 1/positive) or a non fallen-angel (i.e. stable or upgraded credit score; class
0/negative) based on standard credit rating scales. The training set consists of around 65 000 examples
from the 2001-2016 period. The testing set includes around 26 000 examples from the 2016-2020 period.
The class distribution is highly unbalanced with only 9% of fallen angels in the training set and 12%
in the test set, making it hard to find generalisable patterns.

Performance metrics
The metrics used are defined in Eq. 7.1 Our primary goal consists in increasing the precision P

of predicting fallen angels while keeping the recall R over 80%. This goal amounts to increase the
number of true positive, i.e. of successful detections of fallen angel, while keeping the number of errors
under control. However, the impact of fn is far worse than the one of fp as missing a fallen angel is
far more detrimental in terms of resources for a bank than remaining cautious by wrongly considering
instances as potential fallen angels. It is therefore preferable to lower fn at the expense of maybe
lowering tp too and improve the precision, at the expense of maybe increasing fp.

Classical solution
The provided classical ML algorithm is a standard RF model using 1200 decision trees. To deal

with the highly skewed distribution of classes, as mentioned above, both random under-sampling of
majority class and over-sampling of minority class were tested to balance the training set. Training
the RF model and optimising its hyperparameters through random search lasts more than 3 hours
on a classical computer. The model achieves R = 83% and P = 28%. This result, far from being
optimal, especially in terms of precision, is due to several factors, representative of the complexity of
the problem:

1. The dataset is highly unbalanced, which is a notoriously hard problem for classical machine
learning models.

2. Processing a significant amount of features can be resource-consuming and it remains impossible
to exhaustively search the space of solutions at too large sizes. Therefore, the classical method
uses a suboptimal shortcut to select relevant features.

3. Finding the optimal weight for each predictor is an exponentially complex optimisation problem
as the number of predictors increases. Hence, the RF model uses majority voting for classifica-
tion, which is quite restrictive in terms of performance.
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In the following, we will keep the RF model performance as a benchmark baseline and build a
model aiming at enhanced precision while keeping the recall at this same value of R = 83%. Ac-
commodating this criterion of constant recall requires tuning the decision threshold, a parameter that
governs conversion of class membership probabilities to the corresponding hard predictions (e.g. 0 or
1). Specifically, P and R will be computed for several decision thresholds and a linear interpolation
enables to determine the precision value corresponding to a given R.

8.2 - Quantum-enhanced classifier

We address the limitations identified above with a proposed quantum-enhanced machine learning
approach, taking advantage of quantum combinatorial optimisation to efficiently explore the space of
solutions.

8.2.1 - QBoost framework
First proposed by Neven et al. [349], the QBoost algorithm is an ensemble model comprising of

a set of weak, i.e. simple low-depth, Decision Tree (DT) classifiers, also called learners, optimally
combined to build a strong classifier.

The workflow of the algorithm starts with a boosting procedure, based on the standard Adaboost
algorithm [350, 351]. A set of N weak learners hi is classically trained in a sequential fashion on
the training set T = {xs, ys}Ss=1 where ys ∈ [−1, 1] is the classification label of the data point xs.
Initially, the first weak learner is trained such that all the data points are weighted uniformly, using
the constant distribution Di=1(s) = 1

S . Each weak learner hi is then iteratively trained on the same
training set where the data points are however weighted differently based on an updated distribution
Di(s). This latter distribution is re-computed after the training of each weak learner. More precisely,
it depends on the quantity εi that considers the misclassified points by the previous weak learner:

εi =
∑
s

1 [hi(xs) ̸= ys]Di(s). (8.1)

From εi, one computes the quantity αi = ln(1/εi − 1)/2 used as exponential coefficients to update the
data distribution

Di+1(s) = 1
Zi
Di(s) · e−αiyshi(xs). (8.2)

with a normalisation factor Zi such that Di+1 remains a probability distribution.
After the entire ensemble of weak learners {hi}Ni=1 has been trained, a strong classifier H is built by

selecting a subset of the weak learners. The optimal combination is obtained through the optimisation
of binary weights w ∈ BN that minimise the following cost function

C(w) =
∑
s

(
1
N

N∑
i

wihi(xs) − ys

)2

+ λ∥w∥0, (8.3)

where wi is the i-th binary weight and hi(xs) ∈ [−1, 1] is the prediction of the i-th weak learner for
the data point xs. A regularisation term parameterised by λ helps to favour better generalisation of
the model on new data by penalising too complex ensembles with many weak learners.
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Expanding the squared term in the above equation and dropping the constant terms, which are
irrelevant to the minimisation problem, we can reformulate the cost function as

C(w) =
N∑
i,j

wiwjCorr(hi, hj) +
N∑
i

wi(λ− 2Corr(hi, y)), (8.4)

with Corr(hi, hj) = ∑
s hi(xs)hj(xs) and Corr(hi, y) = ∑

s hi(xs)ys. On the one hand, the weak clas-
sifiers whose outputs correlate well with the labels cause the second term to be lowered via Corr(hi, y).
On the other hand, via the quadratic part Corr(hi, hj) describing the correlations between the weak
classifiers, pairs of strongly correlated classifiers increase the value of the cost function, thereby in-
creasing the chance for one of them to be switched off. This is in line with the general paradigm
of ensemble methods for promoting a diversification of the ensemble in order to improve the model
generalisation on unseen data.

Once the optimisation of Eq.(8.4) is performed (see section 8.2.3), the strong classifier H can
be built using the weights minimising C, wopt

i . Given a new data point x, we infer a classification
prediction by:

H(x) = sign
(

1
N

N∑
i

wopt
i hi(x) − yopt

)
(8.5)

where yopt is an optimal threshold that enhances results as proposed in [352] and is computed as a
post-processing step

yopt =
(

1
S

S∑
s

1
N

N∑
i

wopti hi(xs)
)
. (8.6)

8.2.2 - QBoost-inspired classifier
An important challenge in designing a successful ensemble is to ensure that the base learners are

highly diverse, i.e., that their predictions do not correlate too much with each other. The initial
idea of QBoost was to accomplish this by using weak learners of the same type, specifically Decision
Trees (DT) classifiers and train them sequentially using the boosting procedure. Another way is to
use different types of base learners [353], creating an heterogeneous ensemble with a mix of different
learners including, e.g., DT, Logistic Regression (LR), k-Nearest Neighbours (kNN), and Gaussian
Naive Bayes (GNB) [354]. Having inherently different mathematical foundations, these learners can
exhibit significantly different views of the data landscape.

For this specific problem, we find that a classifier based on a heterogeneous ensemble comprising
different types of learners can lead to better generalisation performance than the plain-vanilla model
with DT only. The choice of type and mixing of such an heterogeneous ensemble is motivated by com-
paring results from extensive simulations, both with one type of learner as well as with combinations
thereof. Each of these models are trained on the under-sampled version of the training set and the
corresponding prediction performance are obtained on a separate cross-validation set, using Precision
and Recall. As displayed in Fig. 8.1, DTs perform better in recall while kNNs perform better in pre-
cision. Heuristically, combining these two types of base learners results in the actual best performing
model over any other tested combinations.
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Figure 8.1: QBoost performances as per type of base learners. Comparison of Recall (blue)
and Precision (orange), obtained using QBoost with different base learners including decision trees,
k-nearest neighbours, gaussian naive bayes and logistic regression.

Furthermore, in order to take advantage of the historical structure of the data, where multiple
historical data points for the same companies are available, we propose to train each of the learners
of the heterogeneous ensemble on different historical periods of the dataset. Specifically, using dates
features in the dataset, the raw training set is split into subsets and then subgroups of learners are
trained on them. This ensemble-training procedure based on subsampling is expected to further
diversify the ensemble, where the weak learners are trained independently on the different economic
recession and expansion periods underlying the training dataset. Additionally, it reduces the training
time significantly as each subgroup of learners is trained on a subset of data. The learners trained in
this way can potentially capture different views of the data, resulting in a better diversification of the
ensemble.

Here we propose this approach with two variations:

1. Boosting. Following [349], we train each of the ensembles on the different subsamples of data
with the sequential boosting procedure described in section 8.2.1. Generally, the learners can
exhibit negative correlations among each other.

2. Subsampling. We train each of the ensembles without sequential boosting, relying only on
subsampling for diversification. Generally, the learners exhibit only positive correlations among
each other.
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8.2.3 - Optimisation of the ensemble via QUBO solving
As explained in section 8.2.1, the weak learners obtained during the ensemble training are then

optimally combined to form a stronger classifier. Finding the best binary weights w for this combi-
nation amounts to the minimisation of the cost function given in Eq.(8.4). Since the weights wi are
binary variables, that is, w2

i = wi, we reformulate the cost function C as CQ:

CQ(w) = wTQw =
N∑
i,j

Qijwiwj , (8.7)

where
Qij =

{
Corr(hi, hj) if i ̸= j
S
N2 + λ− 2Corr(hi, y) else. (8.8)

This second formulation is written in the form of a Quadratic Unconstrained Binary Optimisation
(QUBO) problem [355]. Solving a QUBO problem amounts to finding the minimum of a quadratic
polynomial of bit variables, i.e., the optimal bitstring minimising the cost function CQ, with Q ∈
MN (R), the symmetric matrix encompassing the correlations between the weights to optimise.

As the number of learners grows, the classical optimisation of the weights is performed over an
exponentially increasing space, thus opening the door to potentially more efficient quantum methods.
Indeed, some results suggest that quantum computers could better approximate sufficiently good solu-
tions (as defined in Section 8.3.3) in a shorter time compared to classical computers. This expectation
partly stems from the fact that quantum computers may offer shortcuts through the optimisation
landscape inaccessible to traditional classical simulated annealing methods [356]. In our case, if one
can produce a state such that the probability amplitudes peak in low-cost bitstrings, sampling from
it becomes an efficient way of optimising the weights.

8.2.4 - QUBO solving with VQAs
One crucial ingredient for solving QUBO-like combinatorial problems using neutral atom quantum

processors lies in the ability to implement a custom cost Hamiltonian ĈQ on the quantum processor
which should be closely related to the cost function CQ. When this Hamiltonian is generated exactly,
the iterative methods mentioned in chapter 7 can ensure that after k iterations the evolution of a
quantum system subjected to Ĥ(k)

ctrl(t) + ĈQ will tend to produce low energy states |w⟩, i.e. solutions
with low values CQ(w). There are ways to compute the evolution over ĈQ using circuit-based quantum
computers [254], or special-purpose superconducting processors like D-wave machines [357].

For analog neutral atom technology, innately replicating the cost Hamiltonian is tackled with the
position dependent interaction part Ĥint of the resource Hamiltonian as explained in chapter 6. As
an illustration, we examine a collection of QUBO problems, each comprising N = 10 variables, and
explore the production of solution states using progressively more complex QAOA protocols. As we
increase the depth p of the QAOA, we anticipate a corresponding enhancement in optimisation effi-
ciency, with the normalised cost function ⟨ĈQ⟩ ∈ [0, 1] gradually converging towards 0. This trend
arises as the optimised driving protocols generated by the deeper and deeper QAOAs tend to popu-
late states that minimise more the associated QUBO. For each QUBO instance, we benchmark two
distinct embedding techniques, as depicted in Fig. 8.2(a): the 10 qubits are either located at fixed po-
sitions on a rescaled triangular lattice or optimally positioned in free space using the Multidimensional
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Figure 8.2: Limitation of QAOA protocol on embedded QUBOs. (a) A QUBO represented by a
symmetric matrix is mapped to atomic registers using either triangular embedding or MDS optimised
positioning. The resulting interaction matrices are also plotted with normalised colour bars. (b)
Performance comparison with QAOA of increasing depth for the two types of embedding presented in
(a).

Scaling (MDS) protocol described in Box. 27. Despite employing an optimal embedding strategy, the
interaction matrix falls short of replicating all QUBO features as conveyed by the large discrepancies
between the displayed QUBO matrix and interaction counterpart. A perfect match between the two
necessitates satisfying a set of constraints that grows quadratically with variable count. Consequently,
any embedding can only partially approximate ĈQ, typically leading to Ĥint providing an incomplete
representation of the desired cost function.

Fig. 8.2(b) illustrates the distribution of scores obtained with both embedding when increasing the
depth of QAOA. Although expanding the parameter space of QAOA improves distribution quality
in both methods, convergence appears swifter with the MDS embedding. Furthermore, distributions
obtained with MDS embedding demonstrate lower costs compared to those with triangular embedding.
However,the mean of normalised ⟨ĈQ⟩ across the QUBO set eventually reaches a nonzero plateau in
both cases. This plateau arises from the inherent discrepancy between the interaction Hamiltonian
and the desired cost Hamiltonian, limiting further enhancements through additional layers of QAOA.
Therefore, the quality of the solutions sampled from an optimised quantum state will be limited under
a straightforward implementation of a variational quantum algorithm.

In addition, the optimisation of variational quantum algorithms [358] usually requires diagnosing
the expressibility and trainability of several pulse sequences/circuits in order to trust that low energy
states are being constructed. Moreover, at each iteration, to obtain a statistical resolution of the
energy of the prepared state with given precision, one usually requires a number of samples scaling
as the inverse of the square of said precision. Given the current low repetition rate of neutral atom
based QPUs (of the order of 1 − 5 Hz), running variational algorithms for each problem instance may
require several tens of hours of operation on robust hardware. With current technology, it is therefore
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Box 27: Free-space mapping of QUBO with Multidimensional Scaling

An alternative to the classical optimisation scheme described in Sec. 6.4.2 consists in relying on
existing ML algorithms dedicated to non-linear dimensionality reduction, labelled as manifold
learning procedures. These methods operates on datasets with artificially high dimensionality,
i.e. a large number of features, some of which are not really descriptive. Reducing this number
often eases the visualisation of the data and we can apply those algorithms, for example Multi
Dimensional Scaling (MDS) a, to map an artificial distance matrix obtained from a QUBO
instance to a set of positions in a plane. More specifically, MDS seeks a low-dimensional
representation of the data in which the new distances respect well the original distances in the
high-dimensional space. From a QUBO Q ∈ MN (R), one can construct the original distance
matrix D with terms Dij = (C6/Qij)1/6 for i ̸= j. Feeding D to MDS with or without an initial
guess of the positions outputs optimised coordinates of N points in a 2−dimensional space, used
to arrange in free-space the atoms in order to reproduce ĈQ with Ĥint as much as possible. As
no constraints are typically included in such algorithm, the positions can be rescaled afterwards
such that the minimum distance between two atoms remains greater than dmin µm. If atoms
stray too far from the centre, indicating they shouldn’t interact with the rest of the register,
they can be relocated within bounds, away from nearby atoms.

aSee scikit-learn for details

crucial to employ methods to generalise optimised protocols as already highlighted in chapter 7 or
methods involving only a small budget of cycles and that can quickly provide significant solutions to
the QUBO problem.

8.3 - Random Graph Sampling

Stepping away from the variational paradigm of QAOA and QAA, we devise a sampling algorithm
that exploits the stochastic loading probability of neutral atom QPU in order to probe efficiently
the solution space of a QUBO. This algorithm is faster to implement as it does not require iterative
processes such as atom rearrangement or closed loop communication between a classical optimiser
and the quantum hardware. We thus introduce the Random Graph Sampling (RGS) method which
builds up on the randomness of the atomic loading process. This procedure has allowed us to sample
solutions of QUBOs of sizes up to 50 as demonstrated in the following section.

8.3.1 - Leveraging stochastic atomic loading
In neutral atom QPU, atoms are spatially arranged by combining the trapping capacity of optical

tweezers with the programmability of a SLM (see Sec. 1.1.1). By the means of those two devices, atoms
can be individually trapped in arbitrary geometries. Once an atomic cloud has been loaded, each of
the Nt traps is randomly filled with success probability pfill according to a binomial law B(Nt, pfill).
Thus, one must set up around Nt = N/pfill traps to maximise the probability of trapping N atoms.
A rearrangement algorithm then moves atoms one at a time to the wanted positions using a moving
tweezer. The excess atoms are released mid-stroke to end up with a register of N correctly positioned

https://scikit-learn.org/stable/modules/manifold.html
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Figure 8.3: Random Graph Sampling pipeline for solving a QUBO Q on a neutral atom
based QPU. First, a QUBO, here with negative weights on the diagonal (red) and positive weights
outside (green scale), is taken as input. From this QUBO, a trap pattern is devised and sent to the
QPU, as well as the wanted number of repetitions and the pulse sequence used. At the beginning of
each cycle, a first fluorescence picture enables to identify which traps were filled by an atom (bright
spot). The system evolves according to Ĥ(t) and a final picture is taken to measure the collapsed
state of the system, outputting a bitstring w. Using Q, we select wQ among D, the distributions of
bitstrings obtained from repeating this process several times.

atoms. However, by skipping the rearrangement step, we obtain samples from an essentially random
sub configuration of the underlying pattern of traps. For Nt = 2N , the number of possible configu-
ration of size N scales as

(2N
N

)
∼ 4N/

√
N , offering a large variety of Ĥint for a devised pattern. In

order to produce the quantum distributions from which we sample the QUBO solutions, we repeatedly
apply a fixed sequence of constant pulses to the atoms. The latter evolve under Ĥ(t) according to
their interactions, which are set at each cycle by the atom random positions.

The QUBO to solve, Q, first acts as a resource to design the trap pattern (Nt, shape, spacing) sent
to the QPU (see Fig. 8.3). Once a chosen budget of samples has been acquired on the QPU, we are left
with a bitstring distribution D. Using again the QUBO, we apply a relabelling procedure described
in the following paragraph to each bitstring according to both Q and the related atom positions. This
optimisation procedure is designed to scale only linearly with N and is tasked to search for a way of
labelling the atoms from 1 to N which minimises for each repetition the difference between ĈQ and
Ĥint. Finally, we compute the bitstring corresponding to the optimised weights for the ensemble of
learners considered.
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8.3.2 - Optimised relabelling process
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Figure 8.4: Classically optimised relabelling used in RGS. (a) 15 atoms (green dots) are filling
a fraction of a triangular trap layout (gray circles). Each atom is randomly labelled (green) and
from their positions an interaction matrix U is derived. Using the QUBO to solve, Q, and Eq. 8.9, a
permutation of the labels σopt is found. The atoms are relabelled (red) such as the resulting interaction
matrix replicates better Q. (b) Normalised interaction matrices obtained when averaging over many
repetitions of traps loading. While the random labelling (top line) produces a uniform matrix, the
optimised labelling (bottom line) enables to access some features of the QUBO at each cycle, producing
an average matrix resembling Q.

We describe here the relabelling process used in RGS. For a given cycle where N traps out of Nt

are filled with atoms, a first measure of the system before the quantum processing part enables to
locate the atoms, as shown in Fig. 8.4(a). The latter are randomly labelled and this arbitrary labelling
usually orders the bitstring measured after the quantum processing. However, we can choose another
labelling more specific to the QUBO we want to solve. This post-processing step determines a labelling
σopt of the atoms such that the resulting interaction matrix better reproduces the QUBO matrix than
the one obtained from the randomly generated graph. For each way of labelling the atoms from 1 to
N , i.e. each permutation of length N , we compute the separation

sQ(σ) =
∑
i<j

∥U(rσ(i)σ(j)) −Qij∥, (8.9)

where Q is the QUBO matrix, σ, a permutation of length N and U(rσ(i)σ(j)) the interaction term
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Sorted bitstrings

Figure 8.5: Benchmark of RGS method. Evolution of the gap obtained after a number of repeti-
tions with a classical random search (black), a numerically simulated QAOA (blue) and numerically
simulated RGS (red) with QUBO dependent labelling (averaged over 10 random QUBO instances of
size N = 15). The inset shows the distributions (histograms) and the mean (solid vertical lines) of
the solutions found with each method, ranked by their cost function value (better bitstrings being on
the left).

between atoms originally named i and j. The two matrices are normalised to allow a proper compari-
son. We perform a random search with fixed budget niter over the N ! possible labelling permutations.
The permutation minimising sQ is then used to read out the measured bitstring. Searching for such
a permutation is reasonably fast for the sizes that can be loaded in the QPU. We have checked that
for N ≤ 100, this takes less than niter × 2 ms to converge. In the following, we set niter = 10N so as
to scale only linearly with the number of qubits and not as N !. This may not be sufficient to identify
the best permutation at larger sizes, but it remains enough to reproduce some of the features of the
QUBO at each cycle as shown in Fig. 8.4(b). Furthermore, on average, the whole QUBO is much
better represented with this optimised relabelling step than simply using a random permutation. It
is worth pointing out that this optimisation step can be done retrospectively, after the quantum data
has been acquired, as long as we have access to the initial traps filling. Thus, its execution time does
not limit the duration of a cycle, and this can effectively become a post-processing step done on a
classical computer.

8.3.3 - Benchmark against numerically simulated QAOA
While RGS offers no theoretical guarantee of sampling a global minimum of the cost function, we

can still expect to output bitstrings with low function value. To characterise a solution, we introduce
the gap of a bitstring w defined as:

gap =
∣∣∣∣∣CQ(w) − CQ(w0

Q)
CQ(w0

Q)

∣∣∣∣∣ (8.10)

where w0
Q is the best solution found by a classical algorithm. This solution w0

Q is not guaranteed to
be the best possible, but acts as such for benchmark purposes. Reaching a gap of 0 amounts to having
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found the best solution provided by the benchmark. Note that for small sizes of N , it is possible to use
an exhaustive search as a benchmark and w0

Q is in that case the theoretical best solution. For larger
cases, w0

Q is returned by a state-of-the-art simulated annealing (SA) algorithm which is given a large
amount of repetitions (200 000 in this work). Finding a bitstring with a gap below 1% for instance,
means finding a solution with a cost close to 1% of the optimal one, which, in many operational
problems such as our case study, is often considered sufficient. We check that for the various sizes
considered, the difference between selecting a 1% solution and the optimal one, i.e. with a gap of 0) is
reflected in the classification model with variation of precision P smaller than the standard deviation
obtained on the QUBO set. We thus consider as a good enough solution a bitstring with gap below 1%.

We benchmark the RGS approach on a set of randomly generated QUBOs of size 15 and compare
it to a classical uniform sampling of BN and to a numerical simulation of QAOA using Pulser, all
using a similar budget of 1000 cycles, or measurements. Getting into the detail, the QAOA algorithm
is allowed 10 iterations with 100 cycles each in order to optimise the duration of 3 pulses. The cost
function evaluated at each iteration is ⟨CQ⟩ averaged over the 100 measurements. The atoms are
positioned using the MDS embedding method, meaning that an experimental implementation would
require to rearrange them after the loading, lengthening the duration of each cycle. In contrast, for
RGS, the positions are random at each cycle while the pulse sequence remains the same, 3 pulses with
fixed durations independent of the QUBOs. This sequence can be pretrained classically on numerical
simulations. We show the results of these three methods in Fig. 8.5 with both the convergence of each
one with respect to the number of cycles performed and the aggregated bitstring distributions sorted
by increasing values of CQ. Not only does RGS converge faster, achieving a gap of less than 1% with
three times fewer cycles than QAOA, it also produces, on average, sampled distributions with greater
concentration on bitstrings with low value. For this set, a bitstring sampled using RGS+relabelling is
on average in the 11 best % of BN while one sampled with QAOA is in the 17 best %.

8.4 - Experimental implementation

8.4.1 - QUBO solving results
We experimentally implement the RGS method described in section 8.3 to solve 5 sets of QUBOs

ranging in size from N = 12 to 50 qubits and compare its performance with the SA algorithm used
to define w0

Q. The methods are always compared for similar budget of cycle repetitions and we can
assess the quality of the bitstring distribution or the scalability of each approach.

QUBOs of one set of fixed size being produced by repeatedly applying the QBoost subsampling
approach on the same dataset, they only exhibit minor discrepancies between their structure and range
of values. Therefore, we can, within reasonable approximation and for faster implementation on the
quantum hardware, only use one trap pattern per set. Considering a loading probability pfill = 0.55,
we design a triangular pattern with Nt = 40/0.55 ≈ 73 traps for QUBOs of size 40 (see Fig. 8.3) and
similarly with 91 traps for QUBOs of size 50. This choice is motivated by both available trapping laser
power and maximisation of number of samples at sizes 40 and 50. The spacing of the regular pattern
and thus the atomic interaction in the array is chosen in combination with the maximum value of Ω(t)
reached during the pulse sequence. Having Hamiltonian terms Ω and U of comparable magnitude in
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Ĥ(t) enables to explore the interacting regime.
In addition, we can reuse statistics acquired at large sizes and extract distributions of bitstring

of smaller size as explained in Box. 28. In essence, by neglecting the interaction between pairs of
atoms separated by more than the lattice spacing, a N -atom regular array can be divided into smaller
clusters with similar regular shape and regions seemingly isolated from each other. Applying this
method to the original distribution of ∼ 65 000 measurements, ranging in size from 34 to 66 atoms,
outputs a wider distribution of ∼ 334 000 bitstrings ranging in size from 1 to 66 as depicted on Fig. 8.6.
In this implementation, since we only consider QUBOs output by the subsampling approach detailed
in Sec. 8.2.2, all of them are similar in structure, being produced by the same dataset and with the
same hyperparameters for weak learners ensemble generation. We apply the relabelling step to the
extracted distribution in order to solve the considered sets of QUBOs.

Figure 8.6: Clustering of atomic configurations to extract n-sized bitstrings from N -sized ones
with N > n. From an original distribution of 65 000 bitstrings (dark green), we construct a larger
distribution of 334 000 bitstrings (light green). A bitstring of size 45 has been measured with the
atomic configuration displayed in the inset. Atoms are sorted between clusters (various colors) of
sizes 2, 6, 7, 9, 20. and the initial bitstring is cut into 5 smaller bitstrings, usable to solve QUBOs of
corresponding sizes.

The results obtained by RGS with relabelling are showcased both in terms of convergence to
low cost value CQ(w) solutions (see Fig. 8.7(a)) and scalability of the method with respect to the
complexity of the problem, i.e. the QUBO size (see Fig. 8.7(b)). The classical random method
consisting in uniformly sampling with replacement bitstrings from BN , it scales exponentially with
N . In contrast, the RGS algorithm shows better performances, already finding solutions with a gap
smaller than 10% after only a few repetitions. Looking at the number of repetitions needed to go below
1% with respect to N , a log-log linear fit returns a scaling in 0.2 × N1.55. Since the QPU run-time
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Box 28: Configuration clustering by NN approximation

We elaborate on how to extract usable bitstrings of size n from ones of size N > n measured
on the quantum set up. Those smaller bitstrings can in specific cases be used to solve QUBOs
of size n. At each computation cycle, a pattern of Nt traps is filled by N ∼ B(Nt, pfill) atoms.
Many cycles would then produce bitstrings whose sizes follow a Gaussian distribution centred
around Nt pfill as shown in Fig. 8.6. For each cycle, knowing which traps were filled (as shown
in inset), we can isolate cluster of atoms with the following rule: two atoms belong to different
clusters if their pair distance exceeds the pattern spacing. Therefore, due to the rapid decay of
the interaction with the distance, i.e. U(rij) ∝ r−6

ij , we can consider that clusters do not inter-
act between them. Indeed, here, two non neighbouring atoms are interacting at least 27 times
weaker than a pair of neighbouring ones. Segmenting a N -sized bitstring leads to the extraction
of s smaller bitstrings with sizes ni such that ∑s

i ni = N . This method produces bitstrings ob-
tained from fully nearest neighbour interacting systems, as no atom remains isolated. However,
it can reduce the number of measurements made at a large size N . The resulting bitstrings can
only be used to solve QUBOs of corresponding sizes and which would have produced the same
trap pattern as the one used to acquire the original distribution.

scales linearly with the number of cycles, the quantum optimisation actual duration is also expected
to scale as N1.55. Comparing RGS to the SA algorithm, we observe better performance of the latter
at small sizes but more and more comparable performance at increasing sizes. In the case of N = 40,
this specific implementation of RGS finds on average a gap below 0.2% after 150 repetitions while
SA needs around 4 times more cycles. For N = 50, the mean gap achieved after hundreds of cycle
is around 1.%. Overall, RGS with relabelling applied to QUBOs produced by the subsampling-based
classifier exhibits similar behaviour with the state-of-the-art SA algorithm.

8.4.2 - Classification results
In this section, we present the classification results obtained using the quantum classifier based on

subsampling (see Section 8.2.2), trained using the quantum optimiser implemented on the QPU up to
50 qubits. This quantum classifier, leveraging the subsampling approach without boosting, is based on
the optimisation of QUBOs with positive off-diagonal values, amenable to efficient optimisation with
the current quantum hardware (see Section 8.4.1). We find the best results for 50 qubits, correspond-
ing to an initial weak ensemble of 50 learners, whose percentages of kNNs and DTs have been optimally
chosen through a hyperparameter optimisation procedure. For this hyperparameter optimisation, the
training set was split into 80% training and 20% cross-validation sets using stratified-shuffled splitting.

Our proposed classifier is able to achieve very similar performances to the classical RF algorithm
as conveyed by comparing the confusion matrices depicted in Fig. 8.8(a). Using bitstrings with gap
below 1%, our model (a2) reaches P = 2585/(2585 + 6681) = 27.9 ± 0.09%, closely approaching the
benchmark threshold (a1) P = 28.0 ± 0.07% for the same recall value of R = 83%. The proposed
model reduces a bit the number of fn by increasing its tendency to label instances as positive, i.e.
fallen angel. Very interestingly, this result is obtained with only 50 initial learners compared to the
RF ensemble of 1200 learners. The difference in the number of learners employed is of great relevance
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Figure 8.7: Experimental results for QUBO solving. (a) Gap convergence obtained with classical
uniform sampling (black), Simulated Annealing sampling (blue) and RGS sampling with optimised
relabelling (red) for increasing size of QUBOs. The best gap found after some cycle repetitions is
averaged over sets of 5 QUBOs (plain line). (b) Scaling analysis of the number of repetitions needed
to reach a gap below a threshold of 1% with respect to problem size. The results obtained by the
three mentioned methods at sizes N = 12, 20, 32, 40 and 50 (dots) are fitted either exponentially or
polynomially (line) depending on the best match.

for the interpretability of the model. Indeed, the decision for a new unseen point outputted by the
model can be traced back more easily and better understood by the user. The best results for 50
qubits were obtained with a total runtime of around 50 minutes, against a total runtime of more than
3 hours for the classical benchmark, representing a relevant practical speed-up.

Fig. 8.8(b) exhibits the scaling of the mean classification performance for the subsampling approach
performed on the QPU and the boosting approach simulated with TN. This latter model, being based
on the boosting procedure, leverages the optimisation of QUBOs with negative off-diagonal values
which cannot be currently directly optimised on neutral atom QPU. It can be seen that even at low
values of qubits/learners, the proposed model based on boosting, already showed the same level of
performance as the RF with 1200 trees. With 90 learners, it shows a mean precision score of about
P = 29% (reducing the false positives by 1%) corresponding to the recall of 83%. The best results for
90 qubits/learners present a total runtime of the order of 20 minutes against the total runtime of more
than 3 hours for the classical benchmark, attaining also in this case a relevant practical speed-up.

Based on the scaling projections, it can be argued that this type of model is expected to remain
the best performing one. It can be seen in the inset of Fig. 8.8 that a crossing with the experimentally
realised classifier based on subsampling could occur for a large number of qubits, around 380, although
it is difficult to assess the reliability of the extrapolation done at those limited number of qubits.

The algorithm proposed in this chapter comprises a hybrid classical-quantum classification model
based on QBoost, tested on a neutral atom quantum platform and benchmarked against Random
Forest, a classical ML model used in the Finance industry. These results were obtained leveraging the
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Figure 8.8: Classification results. (a) Confusion matrices obtained with (a1) the RF benchmark
algorithm and (a2) the QPU subsampling approach at 50 qubits. Each proportion of t/fp/n is nor-
malised. (b) Scaling of precision P of various proposed quantum classifiers with respect to the number
of qubits, keeping R = 83%. The subsampling approach (red) is implemented on QPU (filled dot)
between 12 and 50 qubits. The boosting approach (yellow) is implemented using Tensor Networks
between 12 and 90 qubits. The best performance of the RF classifier acts as threshold (dashed). The
error bars represent the variability in corresponding performance across 5 iterations/QUBOs. Scaling
projections are obtained by linear extrapolation (solid lines).

hardware-tailored Random Graph Sampling method to optimise QUBOs up to size 50. This method
showed similar performances with Simulated Annealing approach and was able to provide solutions
to QUBO within acceptable repetitions budget. We report that the proposed classifier trained on
QPU achieved competitive performance with 27.9% precision against the benchmarked 28% precision
for the same recall of approximately 83%. However, the proposed approach outperformed its classical
counterpart with respect to interpretability with only 50 learners employed versus 1200 for the Random
Forest and comparable runtimes. A variety of similar problems appearing in the finance industry can
be tackled by quantum-enhanced algorithms as interpretability and performance improvements for
real case scenarios with complex and highly imbalanced datasets are pressing issues. In order to gain
practical advantage over fully classical methods, one need to make the best possible use of the available
neutral atom technology, including quantum blocks into well known classical frameworks, in hybrid
approaches such as the ones presented below.
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Figure 8.9: Schematics for possible hybrid algorithms. These algorithms require heavy classical com-
putation, either at preprocessing (left) in quantum extremal learning framework, in iterative processes
(center) as detailed in 8.5.1 or at post-processing (right) as detailed in 8.5.2.

8.5 - Review of hybrid quantum-classical algorithms

The prevailing belief that "classical algorithms" exhibit in general exponential resource consump-
tion with problem size overlooks many efficient methods developed to simplify large-scale instances.
State-of-the-art classical solvers employ extensive pre-processing and heuristics rather than brute force
methods to efficiently tackle such problems. For example, branch-and-bound (B&B) methods [359] di-
vide the input problem into smaller problems and employ bounds to eliminate sub-problems that
cannot lead to an optimal solution. Kernelisation, on the other hand, reduces the size of the input
problem while preserving the solution and helps to distil the essential features into a more manageable
size [360]. Methods such as B&B and kernelisation therefore offer an elegant framework to limited
quantum processors. They enable quantum processors to handle limited-size components of a prob-
lem while delegating the pre-processing and the aggregation of sub-solutions to classical processors.
Implementing "non-native" hybrid schemes has recently been proposed on neutral-atom quantum com-
puters [361]. In the following, we present how hybrid approaches can help tackle optimisation and ML
tasks.

8.5.1 - Hybrid optimisation approaches

In the realm of classical optimisation problems, the quantum optimisation framework is seldom
a standalone solution but rather a module integrated in a hybrid workflow. Solving a combinatorial
problem already embedded into an atomic register amounts to an optimal control task and can be
tackled by variational quantum algorithms [358] as explained in chapter 6 or quantum neural networks
[362]. The algorithm involved may rely on a set of parameters, such as pulse shape or circuit layer,
which when optimised gives an efficient protocol to drive the quantum system to the correct solution
state. In this context, as shown on top of Fig. 8.9, a light classical routine performs an optimisation
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process over the parameters of the controls, forming a closed loop with the QPU. Hybrid classical-
quantum methods involves decomposing the optimisation problem at hand into two or more sub-
problems, each linked to specific decision-making processes of the original problem. While certain
sub-problems can be tackled by a quantum algorithm such as a VQA, others are resolved using
classical resources. The overall solution to the original problem is then a composite of the solutions to
each sub-problem. Over the years, several advanced methods have been proposed, each with significant
potential and notable limitations in terms of universality.

A widely applied classical method is the Column Generation algorithm [363], which aims to con-
strain the solution space to a few viable options. It iteratively adds new options during the process
only if they can enhance the current best solution for the problem. However, identifying such solutions
involves addressing several smaller, yet challenging, combinatorial sub-problems. Therefore, designing
an efficient approach to solve these sub-problems, commonly known as pricing sub-problems, is crucial
to ensuring high-quality solutions for a given problem.

Researchers in [364] demonstrated that addressing the pricing sub-problems with a quantum algo-
rithm could not only enhance the quality of the final solutions but also reduce the number of iterations
needed to find them. Utilising a neutral atom-based quantum computer as a sampler, one can design
a quantum algorithm to identify not only one but several viable options to be added to the origi-
nal problem. The authors presented a proof-of-concept for solving the well-known Vertex Colouring
problem, which has immediate real-world applications such as resource allocation, scheduling, and
planning-related problems [365].

Benders’ Decomposition (BD) is another well known method in mathematical optimisation for
solving large-scale problems, especially mixed-integer linear programs (MILPs) with continuous and
integer variables. It breaks down the problem into a master problem and subproblems. The master
problem deals with only a subset of decision variables, while the subproblems handle the rest, and
usually becomes easier to solve. Solutions from subproblems generate additional constraints, called
Benders’ cuts, enhancing by addition the master problem’s solution. While the subproblems are in
general manageable on classical computers, the master problem, containing discrete variables, consti-
tutes the computational bottleneck. Authors in [366] propose a framework combining classical BD
with neutral atom-based computation where they automate the conversion of the master problem into
a QUBO formulation.

8.5.2 - Hybrid GML approaches
Similar to the quantum optimisation approach, significant advancements in both performance and

insights can be obtained through the hybridisation of QPUs with classical computers in GML. Utilising
the unique expressiveness of quantum feature maps in conjunction with state-of-the-art graph machine
learning techniques can lead to fruitful developments [317, 367, 368]. In [369, 370], the authors employ
quantum correlation matrices as positional encoding for a transformer model. Empirical evidence is
provided to show that the use of quantum features, particularly in the case of k = 2 particle quantum
walks (k-QWs), exhibits superior expressiveness. When tested on arbitrarily chosen families of non-
isomorphic strongly regular graphs, the k-QWs can distinguish between them, whereas classical walk
kernels and k-Weisfeiler Lehman (k-WL) tests with k < 3 (at least) fail. It’s worth noting that classical
k-WL involves comparisons between k-tuples of nodes, rendering its complexity at least O(Nk), where
N is the size of the graph. In contrast, for k-QWs, the algorithm’s complexity is determined by
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the number of shots needed to measure and reconstruct the distribution of the desired observable.
The number of shots is O( 1

ϵ2 ) for a precision up to ϵ [301]. This potential advantage arises if the
expressiveness of k-QWs is provably comparable to k-WL, as observed empirically for k equal to 1&2
but not proven in the general case.

This approach is not limited to transformer architectures alone. Quantum feature maps can be
integrated into a generic encoder, which undergoes classical post-processing in any ML framework, as
long as it ensures superior expressiveness for the specific task. In the realm of GML, this translates
to the distinguishability of graphs by the WL test and its variants [323].

Another scheme called quantum extremal learning involves first to learn a surrogate function based
on a given dataset, and second to optimise this function to find its extremal value. Previous meth-
ods [371, 372] relied on classically fitting QUBOs to datasets first, using for instance Factorisation
Machines, and then optimising with a quantum QUBO solver. The authors of [373] uses a quantum
ML model as a surrogate before applying the quantum optimisation procedure, greatly extending the
class of models that can be studied and optimised with a notable example of applying this method on
an industrially-relevant dataset of molecular structures.



9 - Conclusion and outlook

In this manuscript, we presented how Rydberg-based analog quantum computers can be supple-
mented by classical routines of numerical modelling and optimal control in order to enhance their
overall performance in the context of quantum simulation and quantum algorithms. Furthermore, we
emphasised that the optimal utilisation of existing quantum resources, still limited by noise and slow
repetition rate, is achieved by integrating them within broader classical frameworks of optimisation
and machine learning.

Throughout the course of this thesis, we wanted to convey the idea that performing successful
experiments on current Rydberg atom platforms still requires a deep knowledge of the underlying
physics. The quantum resources at our disposition being limited by hardware constraints and noisy
processes, making the most out of them requires careful benchmarks and well designed control pro-
tocols. In chapter 1, we provided a step-by-step explanation of the inner workings of a quantum
processor using Rydberg atoms, characterising the available possibilities, the kind of noise happening
at each stage and the future features we can expect from the technological developments.

Empowering a quantum computer with classical tools
In chapter 2, we presented Pulser, an open source Python package dedicated to the emulation of the
dynamics happening on Rydberg atom processors and enabling a direct communication with Pasqal
QPUs using a cloud pipeline. We also presented several tensor network methods used throughout the
thesis and gave insights on how to incorporate various physical noise such as decoherence or control
fluctuations in emulation routines. We applied the latter to build a digital twin of a quantum processor
and performed a first benchmark on a STIRAP protocol. Finally, we provided a summary table of
the typical values of the encountered constraints and noises as we think it can prove useful for the
community.

In chapter 3, after having presented several quantum optimal control methods and demonstrated
their use to find time optimal and more robust quantum gates, we applied the GRAPE framework
to the STIRAP protocol benchmarked in chapter 2 and showed that a faster and less power consum-
ing protocol can slightly improve the state initialisation in the XY mode. Then, we introduced the
concept of variational quantum algorithms with several parameterisations, including QAOA-like and
an adiabatic version, and motivated the use in the following chapters of the Bayesian optimisation
method as an efficient gradient-free classical optimiser.

Quantum many-body dynamics for quantum simulation
In chapter 4, we used the constructed variational quantum adiabatic algorithm to optimise a path
towards the antiferromagnetic phase of the 1D Ising model, showing that the Bayesian optimiser helps
locate regions with high structure factor while avoiding vanishing gaps, responsible for diabatic errors.
Then, we report that implementing an adiabatic schedule optimised on a tensor network emulated
version of the QPU does not yield the expected performance due to decoherence effects. We carefully
benchmarked the noisy dynamics of small hexagonal systems to understand the hardware limitations
on the correlation length and construct a variational closed loop to improve hardware results. Finally,
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we performed a numerical study on the many body localisation phenomenon that one can probe using
disordered antiferromagnetic chains of atoms on the processor and elaborated on the feasibility of
implementing such an experiment.

In chapter 5, we switched to the dipolar XY model to first investigate how the preparation of
its ground state can highlight a continuous symmetry breaking. After a detailed benchmark of the
complete protocol on a small plaquette to identify the various noise contributions, we adiabatically
prepare long range order ferromagnetic states on a 10 × 10 square lattice. Then using quenches, we
experimentally probe the phase diagram of both ferromagnetic and antiferromagnetic version of the
dipolar XY model and showed how thermal and quantum fluctuations can destroy order. In a sec-
ond part, after introducing a new way of performing multi-basis measurement on Rydberg-Rydberg
encoded qubits, we experimentally prepare and measure chiral states showcasing with a digital twin
that the hardware errors are well understand. Using local rotations, we performed full quantum state
tomography and studied topological properties of frustrated geometries. Using either ground-Rydberg
or Rydberg-Rydberg encodings, Rydberg platforms can thus probe a number of interesting phenomena
in quantum magnetism utilising adiabatic protocols and local addressing schemes.

Quantum algorithms : exploring innovative applications with graphs
We have also demonstrated in the last part of this thesis, in addition to the traditional use for simu-
lating intractable quantum dynamics, that Rydberg atom QPUs also possess the capability to address
combinatorial optimisation problems and machine learning tasks in innovative hybrid algorithms.

In chapter 6, we presented how to map combinatorial problems such as the Maximum Indepen-
dent Set to spin systems and to embed the related graph instances to atomic arrays using optimised
positioning and batching techniques. We then solved specific unit disk instances using variational
quantum algorithms, aided by classical Bayesian optimiser as a clever navigator of the landscape to
optimise. We showed that the Rydberg version of Quantum Approximate Optimisation Algorithm
suffers from technical limitations while the Variational Quantum Adiabatic Algorithm can not only
provide more robust optimised drives but also protocols working on a family of similarly structured
graphs. We selected an optimised adiabatic protocol for its generalisability on triangular graphs and
experimentally applied it to a dataset of graphs representing smart charging tasks provided by EDF,
reporting that a solution was found each time after only few repetitions.

In chapter 7, we illustrated how quantum dynamics across an ensemble of Rydberg atoms can serve
as a quantum feature map for graphs. We extended the latter to a Quantum Evolution Kernel, and we
highlighted that the geometric structures produced by this new kernel are beyond the reach of classical
learning methods. Although no clear improvement of the classification score was obtained on the
experimentally implemented PTC-FM dataset, we numerically estimated that a gain in performance
could be obtained on a synthetic dataset created from underlying lattices that yield distinct frustrations
during quantum dynamics.

Finally, in chapter 8, we introduced a quantum-enhanced classification algorithm tasked with pre-
dicting credit rating downgrades in the finance sector. We combined the already existing QBoost
framework with a novel QUBO solving method utilising Random Graph Sampling on Rydberg atom
processors and obtained results similar in performance with classical methods such as simulated an-
nealing and random forest. However, the quantum-enhanced machine learning model, once trained,
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was using significantly fewer weak learners, improving on the interpretability side. We ended the
chapter by reviewing recent techniques to combine in an optimal way quantum blocks within classical
optimisation and machine learning frameworks in an hybrid fashion.

Outlook
Reaching practicality in industrial applications for the kind of analog algorithms presented above

will first require an increase of the size of the instances being tackled. Fortunately, Rydberg platforms
are constantly increasing the number of atoms they can trap, with a groundbreaking record of 6100
highly coherent atomic qubits [374], approaching the threshold values mentioned by [267] for practical
advantage of UD-MIS solving for instance. However, scaling the instance size must not constitute the
only target as integrating the hypothesis of finite fidelity of operations inside adapted tensor networks
can accelerate the classical emulation of large quantum systems [375] and close once again a leap
quantum computers could take.

Building on the results of chapter 6, it would be interesting to produce generalisable adiabatic
protocols on more complex lattices, extending the families of unit disk graphs tackled, or on other
kind of structural similarities, notably for QUBO problems generated by the same methods as viewed
in chapter 8 . Moreover, one can also consider the potential of optimising more complex protocols using
counter-diabatic local terms to mitigate diabatic errors, as explored in [376], or leveraging Bayesian
optimisation to craft efficient reverse annealing protocols, as demonstrated in [377]. Furthermore,
training neural networks with optimised controls executing specific gates can lead to the discovery of
a suite of protocols realising a parameterised family of gates, such as two-qubit controlled rotations,
as introduced in [378].

On another note, the results of chapter 7 conveys the idea that while the geometry induced by
quantum kernel might not be useful to tackle classical data, it could prove fruitful handling quantum
datasets. However, to be able to not only compare measured observables but the quantum states
themselves, one would require more advances methods of manipulation and transfer through quantum
networks [379] and storage with quantum memories [380].

Apart from the optimised gates exemplified in chapter 3, the entirety of the research showcased
in this thesis relies heavily on the analog computation paradigm. Nonetheless, the digital paradigm
is currently catching up quickly in the Rydberg community, characterised by significant enthusiasm
for achieving higher entanglement fidelities and more resilient error-correction codes [53]. Given the
familiarity of a substantial portion of the quantum computing community with this paradigm, par-
ticularly prevalent in superconducting and ion qubits, this momentum could propel Rydberg atom
technology to the forefront of efforts toward building a fault-tolerant quantum computer [381].
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A - Classical kernels

A.1 - SVM-ϑ kernel

The Lovasz-ϑ kernel is a graph kernel that is based on the Lovasz extension of graph isomor-
phisms. It measures the similarity between graphs by comparing their induced subgraphs. However,
computing the Lovasz-ϑ kernel can be computationally intensive, especially for large graphs, which
may limit its practicality in some scenarios. The SVM-ϑ kernel was proposed as an alternative to
the more computationally intensive Lovasz-ϑ kernel. Both ϑ kernels leverage the so-called orthogonal
representation of a graph. Given a graph G = (V, E), the orthogonal representation is an assignment
of unit vectors {ui} to each node of the graph, subject to the constraint that unit vectors associated
to vertices that are not joined by an edge are orthogonal: ⟨ui,uj⟩ = 0 if {i, j} /∈ E .

Orthogonal representations are not unique, but there is a particular representation associated with
the ϑ number [382] of a graph. Given a graph G = (V, E) with n vertices, denote UG an orthogonal
representation of G, and C the space of unit vectors in Rn. The ϑ number is defined as:

ϑ(G) := min
c∈C

min
UG

max
ui∈UG

1
⟨c,ui⟩2 . (A.1)

From now on, we will always be referring to the particular orthogonal representation UG that minimizes
(A.1).

Now consider a subset of vertices B ⊂ V, and call UG|B the orthogonal representation obtained
from UG by removing the vectors that are not in B:

UG|B := {ui ∈ UG : i ∈ B}. (A.2)

Note that UG|B preserves the global properties encoded in UG through the orthogonal constraint, and
that UG|B is not in general the orthogonal representation of the subgraph of G containing only the
vertices in B. Define the ϑB number:

ϑB(G) := min
c∈C

max
ui∈UG|B

1
⟨c,ui⟩2 . (A.3)

We are ready now to give the definition of the Lovasz-ϑ kernel. Given two graphs G1 = (V1, E1),
G2 = (V2, E2), define:

KLo(G1,G2) :=
∑

B1⊂V1

∑
B2⊂V2

δ|B1|,|B2|
1
Z
k (ϑB1 , ϑB2) , (A.4)

where Z =
( |V1|

|B1|
)( |V2|

|B2|
)
, δ is the Kronecker delta, and k is a freely specifiable kernel (called base kernel)

from R × R to R.
The SVM-ϑ kernel is defined as (A.4), but it uses an approximation for the ϑ numbers. Consider a

graph G with n vertices and adjacency matrix A, and let ρ ≥ −λ, where λ is the minimum eigenvalue
of A. The matrix

κ := 1
ρ
A+ I, (A.5)
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is positive semi-definite. Define the maximization problem:

max
αi≥0

2
n∑
i=1

αi −
n∑

i,j=1
αiαjκij . (A.6)

If {α∗
i } are the maximizers of (A.6), then it can be proven that on certain families of graphs the

quantity ∑i α
∗
i is with high probability a constant factor approximation to ϑ(G):

ϑ(G) ≤
n∑
i=1

α∗
i ≤ γϑ(G), (A.7)

for some γ. The SVM-ϑ kernel then replaces the ϑB numbers on subgraphs with:

ϑB(G) →
∑
j∈B

α∗
j . (A.8)

The SVM-ϑ kernel requires a choice of base kernel k : R × R → R. We choose a translation invariant
universal kernel [383] k(x, y) = (β + ||x− y||2)−α, where α and β are two trainable hyperparameters.

A.2 - Graphlet Sampling kernel

This kernel is designed to capture the local structural patterns, known as graphlets, within a
graph. Graphlets are small connected subgraphs that can be used as building blocks to represent
the structural properties of a larger graph. The Graphlet Sampling kernel measures the similarity
between two graphs by counting the occurrences of different graphlets in both graphs and comparing
their frequencies.

Formally, let G = (V, E) and H = (VH , EH) be two graphs. We say that H is a subgraph of G if
there exists an injective map α : VH → V such that (u, v) ∈ EH ⇐⇒ (α(u), α(v)) ∈ E . In general it
might be possible to map H into G in several different ways, i.e. the mapping α, if it exists, is not
necessarily unique.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the idea behind the Graphlet kernel is to pick
an integer k < min{|V1|, |V2|}, enumerate all possible graphs of size k and find the number of ways
they can be mapped to G1 and G2. Denote by f

(k)
Gi the vector where each entry counts the way a

specific graph of size k can be mapped as a subgraph of Gi. A kernel can then be defined as the dot
product f (k)

G1
· f (k)

G2
between the two vectors.

The complexity of computing such a kernel scales as O(nk), as there are
(n
k

)
size-k subgraphs

in a graph of size n. For this reason it is preferable to resort to sampling rather than complete
enumeration [384]. Given a choice of integer N , graphs g1, . . . , gN of size between 3 and k are randomly
sampled. The number of ways each gi can be mapped as a subgraph of Gj is computed and stored in
a vector fGj , and the Graphlet Sampling kernel is defined as the dot product:

KGS(G1,G2) := fG1 · fG2 . (A.9)

To account for the different size of G1 and G2, each vector can be normalized by the total number of
its subgraphs.
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A.3 - Random Walk kernel

The Random Walk kernel is one of the oldest and most studied graph kernels [385]. Given two
graphs G1 = (V1, E1) and G2 = (V2, E2), the idea is to measure the probability of simultaneous random
walks of a certain length between two vertices in G1 and G2.

Simultaneous random walks can be conveniently encoded in powers of the adjacency matrix on
the product graph. The product graph G1 × G2 = G× = (V×, E×) is defined as follows:

V× := {(ui, ur) | ui ∈ V1, ur ∈ V2}, (A.10)
E× := {

(
(ui, ur), (vj , vs)

)
| (ui, vj) ∈ E1,

(ur, vs) ∈ E2}. (A.11)

In other words, an edge in the product graph indicates that an edge exists between the endpoints in
both G1 and G2. If A× is the adjacency matrix of the product graph, then the entries of Ak× indicate the
probability of a simultaneous random walk of length k between two vertices ui, vj ∈ V1 and ur, vs ∈ V2.

If p, q ∈ R|V×| are vectors representing the probability distribution of respectively starting or
stopping the walk at a certain node of V×, the first idea for a kernel would be to compute the sum∑
k q

TAk×p, which however may fail to converge. A simple modification to make the sum convergent
is to choose an appropriate length-dependent weight µ(k):

K(G1,G2) :=
∞∑
k=0

µ(k) qTAk×p. (A.12)

The Geometric Random Walk kernel is obtained by choosing the weights to be the coefficients of a
geometric series µ(k) = λk, and p, q to be uniform. If λ is tuned in such a way as to make the series
convergent, the kernel reads:

KRW(G1,G2) :=
∞∑
k=0

λk eTAk×e = eT (I − λA×)−1 e, (A.13)

where e denote vectors with all the entries equal to 1.
The cost of matrix inversion scales as the cube of the matrix size. If |V1| = |V2| = n, then the cost

of the algorithm scales as O(n6), as it involves the inversion of an adjacency matrix of size n2 × n2.
Several methods are proposed in [386] to make the computation faster. The Spectral Decomposition
method in particular allows to reduce the complexity for unlabeled graphs to O(n3). Essentially, one
exploits the fact that the adjacency matrix of the product graph can be decomposed in the tensor
product of the individual adjacency matrices:

A× = A1 ⊗A2, (A.14)

which allows to diagonalize each n×n adjacency matrix in O(n3) time and perform the inversion only
on the diagonal components.
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A.4 - Shortest Path kernel

Given a graph G = (V, E), an edge path between two vertices u, v ∈ V is a sequence of edges
(e1, . . . , en) such that u ∈ e1, v ∈ en, ei and ei+1 are contiguous (i.e. they have one of the endpoints
in common) and ei ̸= ej for i ̸= j. Computing the shortest edge path between any two nodes of
a graph can be done in polynomial time with the Dijkstra [387] or Floyd-Warshall [388] algorithms,
which makes it a viable feature to be probed by a graph kernel.

The first step of the Shortest Path kernel is to transform the graphs into shortest path graphs.
Given a graph G = (V, E), the shortest path graph GS = (VS , ES) associated to G is defined as:

VS = V, (A.15)
ES = {(u, v) | ∃ an edge path (e1, . . . , en)

between u and v in G}. (A.16)

In addition, to each edge e ∈ ES a label l(e) is assigned given by the length of the shortest path in G
between its endpoints. The Shortest Path kernel is then defined as:

KSP(G1,G2) :=
∑
e∈ES1

∑
p∈ES2

k(e, p), (A.17)

with k being a kernel between edge paths such as the Brownian bridge kernel:

k(e, p) := max{0, c− |l(e) − l(p)|}, (A.18)

for a choice of c.
In the following section, we will detail our quantum evolution kernel. A main interest is to

understand if it can capture graph features that are not accessible to classical graph kernels.
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Titre: Calcul quantique avec des atomes de Rydberg: contrôle et modélisation pour simulation
et algorithmes quantiques
Mots clés: Ordinateur quantique, Atome de Rydberg, Contrôle optimal, Jumeau numérique.
Résumé: Améliorer sa compréhension d’un
système en le modélisant permet d’espérer le
contrôler de manière plus optimale et ouvre
la voie à une myriade d’applications poten-
tielles, exploitant les effets jusqu’alors énig-
matiques de ce système désormais familier.
Cette thèse applique ce paradigme au cal-
cul quantique analogique avec des atomes de
Rydberg, montrant comment à l’aide d’une
modélisation minutieuse du bruit, de proto-
coles de contrôle optimaux et de techniques
d’apprentissage automatique, on peut espérer
améliorer des expériences de simulation de mag-
nétisme quantique ou la résolution de problèmes
d’optimisation et de classification de graphes.
Après avoir décrit la plateforme expérimentale
permettant de contrôler les atomes de Rydberg,
nous introduisons des outils classiques tels que
les jumeaux numériques de systèmes enclins à
des erreurs, la modélisation d’un grand nom-

bre d’atomes par réseaux de tenseurs, le con-
trôle optimal robuste et l’optimisation bayési-
enne pour les algorithmes variationnels. Nous
appliquons ces outils à plusieurs applications
prometteuses. Nous améliorons la prépara-
tion d’états antiferromagnétiques dans le mod-
èle d’Ising et réalisons une évaluation détail-
lée de l’influence d’erreurs sur l’étude de phases
magnétiques du modèle dipolaire XY et lors de
la tomographie d’états quantiques. En utilisant
des techniques d’optimisation et des méthodes
d’apprentissage automatique, nous abordons
également des cas d’usage industriels tels que la
résolution du problème de stable maximum sur
des graphes représentant des tâches de planifi-
cation de charge de batteries de voitures élec-
triques, la classification de composés molécu-
laires toxiques ou inoffensifs, et des tâches de
prédiction dans la gestion des risques financiers.

Title: Quantum computing with Rydberg atoms: control and modelling for quantum simulation
and practical algorithms
Keywords: Quantum computer, Rydberg atom, Optimal control, Digital twin.
Abstract: Refining our understanding of an
unknown system through modelling lays the
groundwork for optimally controlling it and
opens the door to a myriad of potential applica-
tions, exploiting the once enigmatic and unpre-
dictable effects of this now-known system. This
thesis applies this paradigm to analog quan-
tum computing with Rydberg atoms, showcas-
ing how careful noise modelling, optimal control
and machine learning frameworks can support
and enhance the simulation of quantum mag-
netism and the solving of graph-based optimi-
sation and classification problems. After de-
scribing the experimental platform enabling the
control of Rydberg atoms, we introduce classi-
cal tools such as digital twins of noisy systems,

tensor network modelling, robust optimal con-
trol, and Bayesian optimisation for variational
algorithms. We apply the latter to several appli-
cations. We improve the preparation of antifer-
romagnetic state in the Ising model and bench-
mark the noisy behaviour of a dipolar XY quan-
tum simulator when probing continuous sym-
metry breaking and performing quantum state
tomography. Using optimisation techniques and
machine learning methods, we also tackle indus-
trial use cases such as maximum independent
set on graphs representing smart charging tasks,
binary classification of toxic or harmless molec-
ular compounds, and prediction of fallen angel
companies in financial risk management.


	Introduction
	From isolated atoms to many qubits: control and interactions
	Manipulating neutral atoms with tweezers
	Trapping atoms with light
	Imaging the atoms
	Rearranging atoms in a register

	Controlling qubits with lasers
	An atom is a two-level system
	Approximating a two-photon transition
	Constraints on control fields

	Generating interactions between qubits
	Rydberg states and their properties
	XY model from Rydberg-Rydberg encoding 
	Ising model from ground-Rydberg encoding

	Quantum computing with Rydberg atoms
	State initialisation
	Performing quantum dynamics
	Measurement of observables
	Cycle rate of neutral atom technology
	Digital mode: gates and circuits
	Upcoming hardware improvements 


	I Empowering a quantum computer with classical tools
	Modelling a QPU : understanding noise contributions for better predictions
	Programming QPUs at the pulse level
	Pulser: a pulse-level library
	Example of interfacing with a QPU

	Emulation for larger systems with Tensor Networks
	Strategy behind TN representations
	Useful TN algorithms
	Software tools

	Emulating noisy dynamics
	Classification of noises
	Benchmarking a STIRAP protocol
	Summary of hardware constraints and noise levels


	Optimal control for improved driving protocols 
	Quantum Optimal Control: methods and examples
	General framework for quantum control
	Krotov method for monotonic convergence
	GRadient Ascent Pulse Engineering (GRAPE)
	Chopped RAndom Basis (CRAB) optimisation
	Improving STIRAP efficiency with QOC

	Running variational quantum algorithms on a QPU
	Building a hybrid closed-loop 
	A QPU is just an expensive noisy black box
	Gradient-free optimisation of black box functions

	Bayesian algorithm as classical optimiser
	Statistical modelling with Gaussian processes
	An iteratively updated decision maker
	Convergence in presence of local minima



	II Quantum many-body dynamics for quantum simulation
	Quantum simulation of Ising magnets
	Probing the antiferromagnetic phase of the Ising model
	1D Ising model with Rydberg atoms
	Characterising ground state of 1D Ising model

	Adiabatic driving: standard and optimised schedules
	Adiabatic theorem: what slow means
	Driving through the transition with the Rydberg Hamiltonian
	Standard protocol and constraints
	Optimising adiabatic driving towards antiferromagnetic phases

	Preparation on hardware with scaled duration
	Emulation on 18-site hexagon
	Stretching a pulse for adiabaticity benchmark
	Noisy benchmark on a small hexagon

	Closed-loop on hardware for improved correlation length
	How to improve hardware results
	Building a closed-loop for state preparation
	Experimental results: convergence and outlook

	Many-body localisation in 1D Ising model
	Preparing antiferromagnetic disordered chains
	Many-body localisation properties of the quenched dynamics


	Order and frustration in dipolar XY model
	Ordered phases from continuous symmetry breaking
	Characterising continuous symmetry breaking
	Preparing XY ground state through adiabatic protocols
	Description of the experimental implementation
	Benchmark on a plaquette and noise model
	Probing the dynamics on larger systems
	Measuring long range order
	Noise effects happening at large sizes
	Exploration of the phase diagrams
	Outlook

	Observing frustrated magnetism with multi-basis measurements
	Multi-basis measurement protocol
	Quantum state tomography on entangled states
	Measuring the chirality
	Frustration on triangular plaquettes
	Conclusion



	III Quantum algorithms : exploring innovative applications with graphs
	Combinatorial optimisation with Rydberg atoms
	From graphs to spins to Rydberg atoms
	Mapping combinatorial problems to spins systems
	Native embedding of Unit Disk graphs with Rydberg atoms

	Solving the UD-MIS problem with variational algorithms
	Main ingredients of a VQA
	Standard QAOA-like approach
	Designing a VQAA with pulse shaping optimisation

	Generalisation of optimised protocols: QAOA vs. VQAA
	Cost landscapes of various geometries
	General protocol for triangular graphs
	Scaling of MIS probability with the graph size using TN emulation

	Using adiabatic quantum computing for an industrial use case
	Modelling a smart charging task as optimal scheduling of load time intervals
	Embedding of GIP graphs into structurally similar atomic registers
	Experimental implementation and results
	Conclusion : UD-MIS seems not so hard

	Beyond the UD-MIS problem

	Quantum kernel for classification in Graph Machine Learning
	Classification task in Graph ML
	Supervised learning
	Classification task and performance metrics
	From feature maps to kernels
	Classical kernels for graphs

	Quantum Evolution Kernel for graphs
	QML: a matter of mixing
	Quantum dynamics as a learning model
	Expressive power of the quantum feature map
	Building a quantum kernel

	Classification using QEK
	Binary classification task on PTC-FM
	Geometric test with respect to classical kernels
	Building and classifying a synthetic dataset
	Conclusion


	Hybrid algorithm: quantum-enhanced classification in finance
	A financial risk management use case
	Fallen angels forecasting using machine learning
	Benchmarking the use case with a classical solution

	Quantum-enhanced classifier
	QBoost framework
	QBoost-inspired classifier
	Optimisation of the ensemble via QUBO solving
	QUBO solving with VQAs

	Random Graph Sampling
	Leveraging stochastic atomic loading
	Optimised relabelling process
	Benchmark against numerically simulated QAOA

	Experimental implementation
	QUBO solving results
	Classification results

	Review of hybrid quantum-classical algorithms
	Hybrid optimisation approaches
	Hybrid GML approaches


	Conclusion and outlook
	Conclusion and outlooks
	Classical kernels
	SVM-k kernel
	Graphlet Sampling kernel
	Random Walk kernel
	Shortest Path kernel



