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École des Ponts ParisTech
University College LondonÉ
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4 Preamble

Introduction

As an introduction to my Ph.D. thesis, I would like to explain in simple words what matching,
economics, and theory are (or rather what I have understood of these so far) and how research in these
fields can (or should) connect with real life.

Matching

Partnerships

Most of our human production and consumption cannot be generated by one single person. In
many cases, it can only result from some kind of partnership between several people. Only a pair of
two people, one male and one female, can jointly produce offspring. Only a firm owning capital and
workers owning skills can jointly produce goods and services. This is due to some underlying physical
or biological constraint in our environment that we may summarize under the word complementarities.
The fact that human beings are social animals directly implies that we have based our societies on these
partnerships.

Matching problems

Matching problems study the formation of these partnerships or “matches” between people or “par-
ticipants”. A matching market is the place where matches between participants are formed and broken.
There are many examples of real-life matching markets. I have mentioned the dating market and the
job market. The problems of allocating housing to households, students to schools, and organs to
patients can also be viewed as matching problems.

A matching market is typically two-sided (participants are grouped into two sides, where matches
can only form between agents from different sides) and one-to-one (each participant can match with at
most one agent). A matching market can be with monetary transfers. In the private job market (private
housing market), firms and workers (landlords and tenants) can freely negotiate on the wage (rent).
But many matching markets forbid or regulate monetary transfers for ethical or fairness reasons. In the
public job market for civil servants (allocation of doctors to hospitals, of teachers to schools), wages are
fixed and cannot be negotiated. In social housing, rents are set in advance. Trading organs is forbidden
in most countries. A two-sided, one-to-one, no transfer matching market is usually called, by analogy,
a “marriage market”.

Important primitives of matching problems are the preferences (which specify how participants
value or rank each other) and the allocation mechanism (which specify how participants can express
their preferences and how they are matched).
For example, preferences are common if all agents from a given side of the market value the agents on
the other side in the same way. Preferences are aligned if whenever an agent A likes a potential partner
B a lot, then B also likes A a lot. Preferences are idiosyncratic when they vary within and across sides.
Deferred Acceptance (Gale and Shapley (1962) [2]) is the most famous allocation mechanism for mar-
riage markets. In this mechanism, agents from both sides of the market are asked to rank potential
partners. In the male-proposing Deferred Acceptance, each male then asks his most preferred female
whether she wants to mate with him. Each female chooses her most preferred male among the appli-
cants, if any, and tentative matches form. In the next round, previously rejected males apply to their
second choice. Females receiving new applications are allowed to substitute a tentative partner from a
previous round for a preferred applicant. The process continues until all males are matched. Deferred
Acceptance is widely used worldwide, especially for matching students to universities.

Matching in the eye of the analyst

Economics

Economics is the social science studying scarcity and its implication on welfare. In particular, mi-
croeconomics studies individual behaviors at the level of one market. Economic theory uses models –
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formal simplified representations of reality to gain insight into economic problems. In these models, an
agent’s satisfaction from an economic outcome is modeled through a “utility function”, summarizing
all the benefits and costs associated with the outcome, and each agent seeks to maximize her utility. In
matching specifically, the utility functions enclose the preferences over the various possible matches.

Decision and Game Theories
In some economic situations, the maximization problems that agents solve remain independent.

Each agent’s decision or “action” impacts only her own utility. The agent’s maximization problem,
therefore, remains reasonably simple to solve. It may become more complex when information about
the situation the agent is facing is imperfect. For example, if there is some uncertainty on the utilities
associated with the various outcomes. In this case, before making a decision, the agent needs to form
beliefs about the world she is in. Decision theory is the field of mathematics formally modeling and
analyzing decision problems.
In most economic situations, though, utilities are interdependent. There are some “externalities”, mean-
ing that the action of one agent affects the utilities of other agents. This creates a strategic interaction
or game, where agents try to respond to the externalities by adjusting their behaviors or “strategies”
to other agents’ strategies. Game Theory is the field of mathematics formally modeling and analyzing
strategic interactions.

Decision and Game Theory propose solution concepts, which describe a generic way in which eco-
nomic agents behave in a decision problem or game. Solution concepts usually have an interpretation
in terms of rationality. The most famous solution concept for games with complete information is Nash
equilibrium (Nash (1950) [6]). It demands that no agent wants to unilaterally deviate from her action
after observing other agents’ actions. To play Nash equilibrium, players must hold rational expectations
about the behavior of other players. A stronger concept is equilibrium in dominant strategies: all agents
play a strategy that is better than any other strategy, whatever the other agents are doing. In decision
problems with incomplete information, the main solution concept is Bayesian rationality. It demands
that a player’s beliefs are equal to the true probabilities of each state of the world, conditional on the
player’s information. For example, suppose butterflies go out in the mornings on only half (respectively
a fourth) of the sunny (resp. rainy) days, and that sunny and rainy days are equally likely. A Bayesian
agent seeing a butterfly in the morning would think that the day will be sunny with a probability of
two-thirds. In games with incomplete information, the concept of Bayes-Nash equilibrium (Harsanyi
[3]) mixes the two approaches.

Micro-economic theory uses decision and game theory as a tool. Most of the job of micro theorists
consists of modeling an interesting economic environment as a game and applying a solution concept
from Game Theory to this game. This results in a solution of the game, predicting how agents will
behave in the economic situation considered. Economists then study the welfare properties of the
solution. The main social objective is efficiency, with various criteria. For example, a solution is said to
be Pareto-optimal if it is not possible to improve one agent’s outcome without deteriorating the outcome
of another agent. A solution is utilitarian optimal if it maximizes the sum of all agents’ utilities. Fairness
can also be viewed as a social objective with, again, multiple criteria.

Matching as an economic theory problem
The outcome of matching markets (job, marriage) governs much of our lives and happiness. Ideally,

we would like agents with high complementarities to be effectively matched. Said differently, welfare
stakes in matching are very high. Thus, matching appears as a natural and priority field of research
in economics. Indeed, in the last sixty years, matching problems have received much interest from
economists.

Matching markets involve some obvious strategic interactions. In general, the fact that participant
A applies to B decreases the chances of another participant C to match with B. So, a matching market
induces a game between participants, and Game Theory is needed for the analysis of this market. The
convention there is to call a strategic participant an “agent” and a non-strategic participant (behaving
according to some exogenous fixed rule an “object”.
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Matching Theory

In parallel, matching theory has developed its own solution concepts to describe the expected out-
come on the matching market directly in terms of matching rather than through behaviors. A pairwise
stable matching is a matching where no currently matched agent would prefer to be single, and there
is no pair of two participants that would both prefer matching with each other rather than staying
with their current partners. This latter condition is called the “no blocking pair condition” and can be
interpreted as a fairness criterion: it demands that there is “no justified envy” on the market. Pairwise
stable matchings appear as a credible prediction of the long-run outcomes in a market where agents
can unilaterally break a match and freely form a new match if both new partners agree. Fortunately,
at least when all agents have perfect knowledge and understanding of the market, a pairwise stable
matching always exists (Gale and Shapley (1962) [2]).

Market Design

Economists ask two main questions about markets. The first one is: If we let agents behave inde-
pendently and maximize their own utility functions, what outcome should we expect? This outcome is
called the “decentralized equilibrium” of the market. The answer to this question depends both on the
market considered and on the solution concept used. The second one is: If a social planner could force
agents to behave in a given and coordinated way to maximize a social objective, what could be the
outcome? This outcome is called the “centralized social optima”. The answer to this question depends
both on the considered market and on the social objective targeted.

Ideally, we would like the decentralized equilibrium and the centralized social optima to coincide.
If they do not, it becomes interesting to engage in market design. The design question is the following:
can we organize the market environment (the mechanism, the information) in a way that ensures that
the decentralized equilibrium achieves the social optima? Instead of considering that the environment
is fixed and mechanically applying a solution concept to derive a solution, we fix what is a desirable
solution and characterize the environment that enables us to reach it. The economist becomes an
engineer. If such a design exists and we are able to find it, we should recommend policymakers and
market operators to adopt it.

In standard markets for homogeneous goods using prices as a mechanism, and with perfect com-
petition, the decentralized equilibrium (defined as demand equals supply) coincides to a large extent
with the efficient outcomes (in the Pareto sense). We usually refer to these results as the “Welfare
Theorems”.
Unfortunately, we do not have equivalent results for matching markets. In matching markets, in gen-
eral, stability and efficiency are not compatible. One example can be given with Deferred Acceptance.
Consider a marriage market where matching occurs with the (male-proposing) Deferred Acceptance
mechanism. At Nash equilibrium of the induced game, all agents truthfully report their preferences (this
is even a dominant strategy, which we summarize by saying that Deferred Acceptance is a “strategy-
proof mechanism”), and whatever the preferences, this results in a pairwise stable matching. Yet, in
terms of efficiency, this matching is Pareto-optimal only for the male side. For the female side, it is the
worst matching among the set of all stable matchings.

The consequence is that there is much need and room for design in matching markets. This is
probably why matching is one of the rare fields where economic research has managed to connect with
political decisions. The most prominent example is college admissions in the US, where numerous
student assignment systems have been redesigned in the last decades using input from economists.

Matching in the eye of the participant

Matching complexity

Nobel prize Alvin Roth defines a matching market as “a market in which prices do not do all the
work” (Roth (2017) [7]), implicitly comparing standard markets for homogeneous goods and matching
markets.
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A standard market connects sellers willing to sell goods and buyers willing to buy and consume
goods. All relevant information is summarized in the price, which acts as a signaling device, and agents
just need to solve a (simple) decision problem: whether they want to buy / sell (and how many units)
at a given price.

On matching markets with monetary transfers, prices still do “part of the job”; on matching markets
with no transfers, prices are absent. An important corollary is that a matching market participant
cannot just choose an object as long as she can afford it; she has to be chosen as well. There is an
unfortunate applied consequence to this. To be able to play optimally on matching markets, an agent
needs to know the market she is in finely.
The issue is that matching markets are utterly complex environments where perfect information and
rationality are unlikely to happen. In general, participants only have limited information about their
environment and bounded rationality about how they could try to understand it better.

Limited information

Playing optimally in a matching game demands information about the preferences and the mecha-
nism. Unfortunately, this information may not be readily available on the market.

One’s own preferences describe how happy one would be in all possible matches. But intuition
suggests it may be hard to assess future happiness prior to experiencing the match, so before effectively
being married or hired. This is especially true when preferences include some idiosyncrasies.
This is mostly because the utility from a match or “match utility” depends not only on one’s own
productive characteristics but also on the partner’s characteristics. However, collecting information on
a potential partner before approaching him and starting to produce with him can prove challenging.
When accepting a job position, some aspects of the job (quality of daily interactions with colleagues,
effective workload) are not written in the contract and can only be discovered through experience in
the job.
In addition, the kind of partnerships we have in mind are rare events, and the same partnerships are
maintained over long time horizons. At the extreme, some people get married, go to college, receive
an organ only once, and occupy only a few different houses or job positions in their whole lives. These
people lack experience and are unable to collect data signaling their potential partner’s characteristics
and their future happiness in different matches.
Finally, even in contexts where participants can acquire information by approaching other participants
during an exploration stage before matching, information acquisition is either constrained or costly. A
high school student who wants to learn about colleges is time-constrained and will not be able to learn
about all the colleges she could rank in the mechanism. Still in the school choice example, the best way
to acquire information is likely to visit the colleges’ campuses, hence moving effort and travel costs. In
this case, even a rational agent, could decide to remain (partially) uninformed if the cost of acquiring
information outweighs the expected benefit of being informed.

As soon as the allocation mechanism is not strategy-proof, agents also want to know about their
priorities. The priorities describe how the (non-strategic) objects value the (strategic) agents. They
determine the chances of an agent being accepted at an object conditional on applying. An example
of a non-strategy proof mechanism that is widely used in practice (especially for college admission)
is truncated Deferred Acceptance, where agents cannot list all available options in their rank-ordered
lists. In this mechanism, at Nash equilibrium, a student wants to list safe schools (where her probability
of acceptance is high) and does not always list (first) her most preferred schools.
The issue is that priorities are often uncertain due to underlying uncertainty about the competition
that one faces. In social housing, a household usually observes that the market operator has assigned
a priority score to her, reflecting the level of emergency of her housing need. However, she is often
uncertain about the number of other applicants and their scores.

The empirical matching literature supports these intuitions, providing evidence from various real-
life markets that participants are, in general, poorly informed about their preferences and priorities.1
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Bounded rationality

In the matching markets where information is indeed imperfect, participants need to form beliefs.
The issue is that the standard Bayesian paradigm appears far too demanding in complex environments
like matching markets. It demands that agents store and process a large quantity of data in a highly
sophisticated way. In a marriage market, for instance, there are many individual characteristics that are
relevant for the outcome of the marriage (health, fertility, cooking abilities...). A Bayesian agent should,
at any point in time, hold a joint probability distribution over possible sets of vectors of characteristic of
all agents on the market. Whenever a new match would be formed, the Bayesian agent would interpret
the matching and the resulting utilities as weak signals over the characteristics and would update her
beliefs accordingly through Bayes’ rule.

There is overwhelming evidence coming from the field or the lab that agents are unable to do so.1

They rather show systematic biases in the way they analyze the data, which are consistent with some
simple heuristics of belief formation. The inference is then coarser but simpler.

1We review these references in the introduction of each chapter.
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Summary (in English)

This Ph.D. thesis models and analyses matching problems with limited information and bounded
rationality. It is made of four chapters - 2 main articles (1) and (2), and 2 shorter and preliminary notes
(3) and (4):

(1) Information and Discrimination in Matching with Priority Scores

(2) A Heuristic Approach to Matching and Stability

(3) Robust Incomplete Information Stability

(4) Pre-Matching Information Acquisition
Chapters (1), (2) and (3) are single-authored. Chapter (4) is co-authored with Francis BLOCH.

Motivations

This thesis is mainly motivated by applied concerns about how real-life matching markets work. It
also seeks to address a gap in the economic matching literature.

Theoretical matching papers most often do not investigate the effect of limited information and
bounded rationality or of any kind of friction that would burden real-life operations on matching mar-
kets.2 With respect to information, most existing papers assume perfect information on one’s own
preferences and set strategy-proof mechanisms (hence, no incentive to know about others). This is
mainly for tractability reasons but at the expense of realism. With respect to rationality, the majority
of existing papers that look at matching in incomplete information model perfectly Bayesian agents.
The literature on behavioral matching remains quite scarce but growing. Behavioral matching papers
typically plug a known behavioral bias into the standard matching framework.

The perfect information literature is still very useful as a benchmark for the pure allocation problem.
It often defines the maximum welfare that can be achieved on the market.
But these models should not be taken too seriously to the field: they are bound to produce incorrect
predictions in terms of matching and welfare, and biased design recommendations.

Research question

The ambition of this research has been to model and analyze matching markets featuring partici-
pants with limited information and bounded rationality. The analysis has aimed at both a descriptive
value (improving our understanding of matching markets and of the world) and a normative value
(making policy design recommendations to achieve a number of social objectives such as efficiency or
fairness). Common sense suggests both the predictions and the recommendations should be revised
once one introduces the informational and cognitive frictions.

Methodology

The exact way I model limited information and bounded rationality depends on the motivations
and the real-life applications I had in mind. I have tried to design it as simple and natural as possible.
The limited information always applies to the preferences and priorities. The information structure
is often (a) private information (an agent only observes her own preferences and priorities and is
ignorant of others’ preferences and priorities), (b) present information (an agent only observes the
current outcome on the markets and the resulting signals on preferences and priorities), (c) asymmetric
information (agents from one side of the market have full information whereas agents from the other
side of the market do not observe productive characteristics of potential partners), (d) constrained
information (agents can acquire information but with is a limit: a capacity constraint or a cost), or
rather a combination of these.
In terms of bounded rationality, this thesis makes a central distinction between instrumentation (the
ability, given beliefs on the environments, to optimize) and cognition (the ability to form correct beliefs
on the environment). It does not question perfect instrumentation in matching environments and

2With some interesting exceptions, which I discuss in the literature reviews of each chapter.
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rather argues that cognition is the challenging part. In chapter (2), I model agents forming beliefs
through a simple (non-Bayesian) heuristic. In the paper, I argue that this heuristic summarizes a
very natural way to exploit the very limited information available on preferences. I also show that
the heuristic captures a famous behavioral bias from the psychological literature, the “projection bias”
(Dawes (1989) [1], Krueger and Clement (1994) [4]). In chapter (3), I model incomplete information
agents as holding a set of reasonable beliefs on the characteristics of potential partners (rather than a
probability distribution over these possible characteristics as in the Bayesian framework). Agents can
only dismiss some beliefs in this set, using their observation that the current matching is stable.

The analysis uses game theory as a tool to analyze the strategic interactions at play – both non-
cooperative game theory (computing Bayes-Nash equilibria in chapters (1) and (4)) and cooperative
game theory (characterizing pairwise stability in chapters (2) and (3)). In this sense, this thesis is
mostly applied theory.
It also proposes methodological contributions by identifying novel strategic interactions and equilib-
rium structures (in chapter (1), the interactions within the agent side of an agent-object market, and
the block structure arising at symmetric Bayes-Nash equilibrium) and by defining new solution concepts
(in chapter (2), a learning heuristic and a notion of (stable) mixed matching).

Summary of each chapter

Chapter (1) models a matching market where agents have private information on their priority
scores and must choose an object to which they apply. The analysis derives the Bayes-Nash equilib-
ria, computes welfare ex-ante and interim, and discusses implications for market design. Three main
findings emerge. One, there is no symmetric equilibrium in pure strategies. Second, the symmetric
equilibrium exhibits a block structure: agents sort into a finite number of classes of neighboring scores
where they use the same application strategy. Third, the inefficiencies proceeding from the frictional
market design prove interim asymmetric: low-score agents are better off under private information
than under public information. In total, private information mitigates the discriminatory power of the
priority system.

Chapter (2) models a marriage market with unknown preferences (agents only observe the current
matching and realized match utilities) and defines a novel and natural heuristic of belief formation
(valuation), which incorporates a well-known and documented cognitive bias (the projection bias).
Under this heuristic, an agent estimates a counterfactual match utility by extrapolating from realized
match utilities: his own utility and the weighted average utility of all current partners of the targeted
partner’s type. I study how this reshuffles the market outcome, as given by pairwise stable matchings
when agents have valuation beliefs (v-stability). When restricting attention to pure matchings, I find
that v-stability is equivalent to any two partners holding the same rank according to current utilities
(happiness sorting). The predictions under specific preference structures are then straightforward. The
alignment of interests across the market governs the size of the v-stable set from empty to maximal. The
correlation of preferences by agent or target stabilizes the positive assortative matching. For a generic
market, though, we get neither the existence of a pure v-stable matching nor the convergence of a
dynamic blocking pair process (predicting persistent moves on the market). The most general version
of the model defines a notion of mixed matching, characterizing the proportions of each productive type
matched with each partner type. The main result is a general existence theorem for v-stable matchings
in the mixed extension.

In the short chapter (3), I consider a matching market with no transfers and incomplete asymmetric
information: on one side, agents do not observe types of potential partners; they just observe the type
of their current partner. The model can represent civil servants’ job markets where wages are regu-
lated and where employers have trouble learning about workers’ productivity prior to hiring. I apply
the definition of incomplete-information stable matchings by Liu, Mailath, Postlewaite, and Samuelson
(2014) [5]: a pair is blocking if both partners strictly want to block under any reasonable beliefs they
may have using their private information and common knowledge of stability. Even under monotonic
payoffs, the incomplete-information stable set may be large – it depends finely on the market structure
and the prior belief support. If the unknown workers’ type function is a bijection, the stable sets with
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complete and incomplete information perfectly coincide (to include only positive assortative match-
ings). I show, using examples, that the robust approach can reach precise predictions even beyond the
monotonic case.

In the short chapter (4), we study a college admission problem gathering heterogeneous students
and colleges where students can endogenously acquire information on their own preferences. Students’
preferences over colleges include a common component, which is common knowledge, and a private
component, which is unknown ex-ante. Students can learn about the private components, before
matching occurs through a standard Deferred Acceptance mechanism with common priorities. The
question is: What information do students acquire, as a function of their priority rank? With unit
constraint on learning and unit capacities at colleges, we find that the best student learns about one of
the best colleges. Students with lower-priority learn about the best college among the ones where they
are admitted for sure. The proof uncovers a novel additive property of the values of information. We
discuss matching and welfare implications and ongoing generalizations.

Epilog

I view the stakes of this strand of research as high and still growing. That’s why I would like to
continue developing this research in the future.
Decentralized (matching) markets, where strategic agents sequentially meet and trade (match), are as
old as humankind. But centralized markets, where agents’ meetings are coordinated in space and time,
have gradually developed with our ability to organize in societies with rules. Centralized matching
markets specifically have appeared relatively recently, and the current trend is much towards more
centralization. The public markets for civil servants’ jobs, slots at universities, social housing, and
organs in developed economies have been centralized at the national scale in the last decades. This
gives economists avenues for market design and data collection.
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Résumé (en français)

Cette thèse de doctorat modélise et analyse des marchés d’appariement avec information et ratio-
nalité limitées. Elle est divisée en quatre chapitres - 2 articles principaux (1) et (2), et deux notes plus
courtes et préliminaires (3) et (4) :

(1) Information et discrimination sur des marchés d’appariement avec scores de priorité

(2) Une approche heuristique du problème de stabilité sur un marché d’appariement

(3) Stabilité robuste en information incomplète

(4) Acquisition d’information avant appariement
Je suis la seule auteure des chapitres (1), (2) et (3). Le chapitre (4) est coautoré avec Francis BLOCH.

Motivations

Cette thèse est principalement motivée par des considérations d’économie appliquée sur le fonc-
tionnement des marchés d’appariement réels. Elle cherche également à répondre à une carence dans
la littérature économique actuelle sur les marchés d’appariement.

La plupart des articles théoriques sur les marchés d’appariement n’étudient pas l’effet de
l’information ou de la rationalité limitée, ni en fait de n’importe quelle friction qui empêcherait ces
marchés de fonctionner de façon optimale.3 En ce qui concerne l’information, une majorité d’articles
fait l’hypothèse que l’information sur ses propres préférences est parfaite, et modélise des mécanismes
d’allocation où aucun agent n’a intérêt à manipuler ses préférences (donc où il n’y a aucune incitation à
apprendre sur les autres agents). Cette hypothèse est faite principalement pour que le modèle théorique
reste relativement simple à analyser, mais le rend peu réaliste. Du côté de la rationalité, la majorité des
articles qui s’intéressent aux marchés d’appariement en information incomplète modélise des agents
bayésiens. La littérature mêlant économie comportementale et marchés d’appariement reste réduite,
mais en croissance. La plupart des articles dans ce domaine introduisent un biais comportemental
connu dans le problème d’appariement classique.

La littérature avec information parfaite est très utile en tant que point de référence pour le prob-
lème d’allocation pur. Généralement, elle définit le niveau de bien-être collectif maximal qui peut être
atteint sur le marché. Mais ces modèles ne sont que de peu d’utilité sur le terrain : ils produisent
nécessairement des prédictions incorrectes sur l’appariement final et le bien-être en résultant, d’où des
recommandations politiques biaisées.

Question de recherche

L’ambition de cette thèse a donc été de modéliser et d’analyser des marchés où les participants n’ont
qu’une information et une rationalité limitées. L’analyse se veut à la fois descriptive (pour améliorer
notre compréhension des marchés d’appariement et du monde dans lequel nous vivons), mais aussi
normative (faisant des recommandations politiques sur la meilleure façon d’atteindre des objectifs soci-
aux comme l’efficacité ou l’équité). On s’attend à ce que les prédictions et les recommandations issues
du modèle d’appariement soient modifiées dès lors que les frictions informationnelles et cognitives y
sont introduites.

Méthodologie

La façon exacte donc je modélise l’information et la rationalité limitée dépend des motivations de
chaque chapitre et des applications concrètes associées. Je me suis efforcée de la penser comme la plus
simple et naturelle possible.

Dans tous les chapitres de la thèse, l’information limitée porte sur les préférences et les priorités.
Selon le contexte, c’est (a) de l’information privée (l’agent observe seulement ses propres préférences
et priorités et ignore celles des autres), (b) de l’information courante (l’agent observe seulement

3Il existe cependant certaines exceptions intéressantes, que je présente dans les revues de littérature de chacun des
chapitres.
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l’issue courante sur le marché et les signaux sur les préférences et priorités qui en résultent), (c) de
l’information asymétrique (les agents appartenant à un côté du marché n’observent pas les caractéris-
tiques de leurs partenaires potentiels), (d) de l’information contrainte (il est possible d’acquérir de
l’information mais avec une limite de capacité ou un coût), ou plutôt une combinaison de plusieurs de
ces aspects.
Pour ce qui est de la rationalité, cette thèse fait une distinction importante entre l’instrumentation (la
capacité, étant donné certaines croyances sur son environnement, de choisir les stratégies optimales) et
la cognition (la capacité de former des croyances correctes sur son environnement). Elle ne remet pas
en cause l’instrumentation parfaite sur les marchés d’appariement, et considère la cognition comme la
tâche la plus difficile. Dans le chapitre (2), je modélise des agents qui forment des croyances au travers
d’une heuristique (non bayésienne). Je démontre que cette heuristique représente une forme très na-
turelle d’apprentissage exploitant l’information disponible. Je soutiens également que cette heuristique
incarne un biais comportemental clairement identifié dans la littérature en psychologie, le “biais de
projection” (Dawes (1989) [1], Krueger et Clement (1994) [4]). Dans le chapitre (3), je modélise
les agents en information incomplète comme ayant un ensemble de croyances raisonnables sur les
caractéristiques de leurs partenaires potentiels (plutôt qu’une distribution de probabilités sur les carac-
téristiques possibles comme dans le cadre bayésien). Les agents peuvent seulement éliminer certaines
croyances de cet ensemble, en remarquant que l’appariement courant est stable.

Ces travaux utilisent la théorie des jeux comme un outil pour analyser les interactions stratégiques –
à la fois la théorie des jeux non coopérative (en calculant les équilibres de Bayes-Nash dans les chapitres
(1) et (4)) et la théorie des jeux coopérative (en caractérisant les appariements stables par paire dans
les chapitres (2) et (3)). En ce sens, cette thèse est principalement une thèse de théorie appliquée.
Je propose aussi une contribution méthodologique en identifiant des interactions stratégiques et des
structures d’équilibre nouvelles (dans le chapitre (1), les interactions entre agents sur un marché agent-
objet et la structure en blocs de l’équilibre de Bayes-Nash symétrique), et en définissant de nouveaux
concepts de solution (dans le chapitre (2), une heuristique d’apprentissage et une notion d’appariement
mixte (stable)).

Résumé de chaque chapitre

Le chapitre (1) modélise un marché d’appariement où l’information sur les scores de priorités est
privée et où chaque agent doit choisir un objet auquel il candidate. L’analyse caractérise les équilibres
de Bayes-Nash, calcule le bien-être social du point de vu ex ante et intérim, et en tire des conclusions
sur la meilleure façon d’organiser les marchés. Trois résultats principaux apparaissent. Tout d’abord,
il n’existe pas d’équilibre symétrique en stratégies pures. Ensuite, l’équilibre symétrique présente une
structure en blocs où les agents se rangent dans un nombre fini de catégories de scores pour lesquels
ils utilisent exactement la même stratégie mixte. Enfin, les inefficacités liées aux frictions sur le
marché sont asymétriques à l’étape intérim : les agents à faible score préfèrent l’information privée
à l’information publique. Au total, l’information privée atténue la discrimination induite par le système
de priorité.

Le chapitre (2) modélise un marché où les préférences ne sont pas connues (les agents observent
seulement l’appariement courant et les utilités réalisées) et propose une nouvelle heuristique naturelle
de formation des croyances (la valuation), qui intègre un biais cognitif connu (le biais de projection).
Sous cette heuristique, un agent estime une utilité contrefactuelle en extrapolant à partir des utilités
réalisées : sa propre utilité et la moyenne de l’utilité de tous les agents actuellement appariés à un
partenaire du type visé. J’étudie la façon dont ce mode de formation des croyances perturbe les issues
possibles sur le marché, données par l’ensemble des appariements stables par paires quand tous les
agents ont des croyances de type valuation (v-stabilité). En me concentrant sur les appariements purs
exclusivement, je trouve une condition nécessaire et suffisante pour la v-stabilité : les agents appariés
doivent avoir le même rang quand on ordonne les utilités courantes au sein de chaque côté du marché
(ordre sur le bonheur). Les prédictions sous des préférences standards s’en déduisent rapidement.
L’alignement des intérêts contrôle la taille de l’ensemble des appariements v-stables, de l’ensemble
vide à la taille maximale. La corrélation des préférences, au niveau de l’agent ou de la cible, stabilise
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l’appariement positivement assortatif. Pour un marché quelconque, cependant, un appariement v-stable
n’existe pas forcément, et un processus dynamique de paire bloquante ne converge pas nécessairement.
La version la plus générale du modèle définit une notion d’appariement mixte, qui fixe les proportions
de chaque type productif apparié avec chaque type de partenaire possible. Le résultat principal est un
théorème d’existence des appariements v-stables dans cette extension mixte.

Dans le court chapitre (3), je m’intéresse à un marché d’appariement sans transferts et avec une
information imparfaite asymétrique, telle que d’un côté du marché, les agents n’observent pas les types
de leurs partenaires potentiels ; ils observent uniquement le type de leur partenaire actuel. Ce modèle
peut représenter le marché du travail des agents de la fonction publique, où les salaires sont encadrés
et où les employeurs publics ont du mal à évaluer la productivité des travailleurs avant de les engager.
J’applique la définition des appariements stables en information incomplète de Liu, Mailath, Postlewaite
et Samuelson (2014) [5] – une paire est bloquante si les deux agents souhaitent former cette paire
quelles que soit leurs croyances raisonnables étant données leur information privée et leur connaissance
commune de la stabilité. Même quand les paiements sont monotones, l’ensemble des appariements
stables en information incomplète peut être grand – il dépend finement de la structure du marché
et du support des croyances possibles ex ante. Si la fonction qui définit les types des travailleurs
est une bijection, les ensembles stables en information complète et incomplète coïncident (ils incluent
seulement les appariements positivement assortatifs). Je montre, sur la base d’exemples, que l’approche
robuste peut parvenir à des prédictions relativement précises même sans l’hypothèse de monotonie des
paiements.

Dans le court chapitre (4), nous étudions un problème d’allocation d’étudiants hétérogènes dans
des universités hétérogènes, quand les étudiants ont la possibilité d’acquérir de l’information sur leurs
propres préférences. Les préférences des étudiants sur les universités sont composées de paramètres
communs, qui sont connaissance commune, et de paramètres privés, qui sont inconnus ex ante. Les
étudiants peuvent apprendre sur les paramètres privés, avant que l’allocation ne soit réalisée par
un mécanisme classique d’Acceptation Différée avec priorités communes. Nous posons la question :
Qu’apprennent les étudiants en fonction de leur rang de priorité ? Quand l’apprentissage est limité à
une seule université et que chaque université n’a qu’une seule place disponible, nous prouvons que le
meilleur étudiant apprend sur une des deux meilleures universités. Les étudiants moins bien classés
apprennent sur la meilleure des universités à laquelle ils sont sûrs de pouvoir être admis. La preuve
de l’équilibre met en lumière une propriété nouvelle sur l’additivité des valeurs de l’information. Nous
évoquons les conséquences en termes d’appariement et de bien-être, et les généralisations du modèle
en cours.

Epilogue

De mon point de vue l’intérêt et la portée de ces thématiques de recherche sont importants et crois-
sants. C’est pourquoi j’aimerais continuer à développer cette recherche à l’avenir.
Les marchés (d’appariements) décentralisés, où des agents stratégiques échangent entre eux (forment
des partenariats) au cours du temps, sont aussi anciens que l’espèce humaine. Mais les marchés cen-
tralisés, où les rencontres entre agents sont coordonnées dans l’espace et le temps se sont développés
de façon graduelle en parallèle de notre capacité à nous organiser en sociétés régies par des règles.
Les marchés d’appariements centralisés sont apparus particulièrement tard et la tendance actuelle va
clairement vers plus de centralisation. Dans les économies développées, les marchés publics pour les
postes de fonctionnaires, les places à l’université, les logements sociaux, les organes se sont concentrés
à l’échelle nationale ces dernières décennies. Cette tendance fournit aux économistes des perspectives
intéressantes d’ingénierie des marchés et de collecte de données.
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1 Introduction

Matching

Matching problems study the formation of productive partnerships, with numerous applications to
marriage, labor, housing, college admissions, organ donation, and many more. In centralized matching
markets, a mechanism summarizes the rules used to match participants. Important primitives of any
matching problem and inputs into the mechanism are the preferences and priorities, which specify how
participants value each other. "Preferences" ("priorities") summarize the tastes of strategic participants
or "agents" (non-strategic participants or "objects").
Strong evidence from the field shows that most mechanisms used in practice use priority scores and are
truncated.

Priority scores

A participant’s priority score summarizes the participant’s characteristics in a single real number.
A higher score is associated with a higher chance of obtaining a desirable partner in the mechanism.
Then, priorities are homogeneous (the score controls the priority of an agent to any object) and cardinal
(rather than ordinal).
Examples of real-life markets with scores include college admissions, where a student is assessed based
on her score in a standardized test; civil servant job markets such as teacher or doctor allocation, where
civil servants accumulate points for experience or performance; social housing, where households are
assigned a score reflecting the emergency of the housing need; or credit, where the credit score measure
an individual’s creditworthiness. This suggests that scores help to discriminate1 between agents on the
market.

Truncated mechanisms

In a truncated mechanism, agents are allowed to apply to only a limited number of objects.
On the matching field, truncation is the rule more than the exception. Students, civil servants, house-
holds rank only a subset of the whole set of national Universities, job positions, social housing units.
The motivations of the market operators for imposing such truncation are still debated. In his survey on
school choice, Pathak (2016) argues that there are hidden operational costs associated with reviewing
applications.
One important feature of truncated mechanism is that they are manipulable, even when the untrun-
cated version is strategy-proof. The profitable preference manipulation consists in ranking safe objects
high. Hence, agents would like to know about their order in priorities, so about other agents’ priority
scores.

Private information

The issue is that the default information structure on priority scores, absent any intervention by the
market operator, is private information. An agent observes her own priority score but is ignorant of
other agents’ scores. This is because, in general, these scores are computed based on criteria of private
circumstances.
In social housing, households are awarded priority points if they are currently homeless, have large
families, or have health issues. A household knows about her status with respect to every criterion
and is able to compute her aggregate priority score. However, she has no idea about other households’
status with respect to the same criteria and cannot compute competitors’ priority scores.

The empirical matching literature supports this intuition providing evidence that participants are
poorly informed about their order in priority. Kapor, Neilson, and Zimmerman (2020) [12] using data
from admissions of students to colleges in New Haven, US, show that beliefs about admissions chances
differ from rational expectations values. They predict choice behaviors and quantify the welfare costs

1Throughout the article, we use the word in a positive sense: discriminating means allocating a good (with a high
probability) to those who need it the most.
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of belief errors. Fabre et al. (2021) [8], using data from Chile, show that on-the-fly information about
college programs’ cutoff scores has a causal effect on reducing students’ biases and application mistakes
and improving students’ outcomes.

Research question

Yet, theoretical matching papers do not investigate the effect of privately known priority scores.2

Most papers model ordinal priorities and ordinal mechanisms (where agents are asked to rank available
options) rather than cardinal ones (where agents reveal how much they like each available option).
With respect to information, they mostly either assume perfect information (which is unrealistic) or set
strategy-proof mechanisms (hence, no incentive to know about others).

In this paper, we explicitly model private information on priority scores, jointly with the other
realistic and standard market frictions (truncation on the mechanism, participation cost).
We characterize application behaviors, the allocation, and the welfare. The stakes are both descriptive
(to improve our understanding of real-life markets) and normative (to engineer matching markets
efficiently).

Overview of model

Our model formalizes the dilemma of "Whether and Where to Apply?" and gives insights about any
market with uncertainty on priorities.

We define a stylized frictional matching market: two-sided, one-to-one, agent-object, with non-
transferable utilities. Preferences and priorities are homogeneous, meaning that each object is char-
acterized by a unique objective value, and conversely, each agent is endowed with a single (privately
known) priority score. The allocation occurs through a truncated Deferred Acceptance (equivalently,
truncated Serial Dictatorship) mechanism, with truncation one. Agents independently and simultane-
ously decide to apply to one or no object, where an application is costly. Then, each object goes to the
highest priority agent in the pool of applicants.

We model strategic interactions on the market as a Bayesian Game of incomplete information
termed “Application Game”. On the market defined, any participant suffers uncertainty on who else
applies and wonders “Whether and Where to Apply?”.3 Her answer to that question should depend on
the other participants’ strategies since any higher priority agent applying to the same object eliminates
her chances of getting the object. Thus, in building one’s application strategy, the agent must consider
the trade-off between being "ambitious", accepting the prospect of competition (targeting high-value
objects), or being "practical", seeking coordination (targeting under-demanded objects).

Preview of results

The analysis elicits the equilibrium application strategies as defined by the Bayes-Nash equilibria
of the Application Game. It finds that in any equilibrium, high-score agents are ambitious, and low-
score agents are practical. We fully characterize the symmetric equilibrium, and uncover two salient
features of the symmetric equilibrium structure. First, it is necessarily interior. Second, it has a "block
structure": agents with scores on a continuous support sort into discrete classes (defined as groups of
close priorities) where they adopt exactly the same strategy.

We compute the welfare associated with equilibrium outcomes using the two criteria of ex-ante
and interim expected payoffs, and compare it with the level of welfare achieved without the frictions.
We derive implications for market design. Although the frictional market design is sub-optimal for
the criterion of ex-ante welfare, it maximizes participation, and the inefficiencies associated with the
described market design are interim asymmetric. In many instances of the Application Game, we even
find that low-score agents are better off in the sub-optimal (private information) design than in the
optimal (public information) design. The conclusion is that the frictional design is less efficient but

2With some interesting exceptions, which we discuss in section §2.
3Because the model is static, agents do not wonder when to apply.
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more egalitarian than the frictionless design. Private information mitigates the discriminatory power
of the priority score system. This calls for a joint design of the priority score computation rule and the
information structure.

Outline of paper
The rest of the paper is structured as follows. Section §2 reviews the related literature. Section

§3 models the market and the associated game. Section §4 characterizes the Bayes-Nash equilibria.
Section §5 investigates the welfare. Section §6 concludes.
All proofs are available in appendix §A. Appendix §B presents additional results. In particular, it pro-
poses and processes three natural model extensions. It shows that the lessons learned from the baseline
model extend to more sophisticated and realistic markets, where the cost is endogenous to the score,
the truncation on the mechanism is larger than one, or the preferences are correlated.

2 Literature review

Matching with uncertain priorities
There is a recent but active literature on matching with private information or uncertainty. In the

majority of existing matching papers, the uncertainty applies to one’s own ex-post payoff in the match
(preferences). We discuss three notable exceptions, where the uncertainty applies to the probability of
acceptance (priorities), just as in the present paper.

Chade, Lewis, and Smith (2014) [5] consider a decentralized Bayesian game of admissions gather-
ing two colleges and many heterogeneous students. Colleges have the same value to all students, and
each student is characterized by a unique score. There is a cost of application for students, and in ad-
dition, colleges’ evaluations of students’ applications are uncertain.4 A student designs her application
strategy5 (no application, application to one college, to both colleges) to her expected payoff, and a
college designs her admission standard to maximize the total score of its student body under capacity
constraints. Their model differs from ours in two ways. In their model, strategic interactions happen
within the college side and between students and colleges, whereas in our model, strategic interactions
happen only within the agent side. The uncertainty also differs. They set common knowledge of stu-
dents’ priority types but exogenous noise on the allocation, whereas uncertainty on priority order in
our model endogenously arises from private information on priority scores. Their analysis finds that
at Bayes-Nash equilibrium, student-college sorting may fail in two ways: first, weaker students some-
times apply more aggressively; second, weaker colleges might impose higher standards. Our analysis
(see section §4.4) finds the opposite and more standard pattern: at the Bayes-Nash equilibria of the
Application Game, higher-value objects are played more often and at higher scores.

Ali and Shorrer (2021) [1] define the general decision problem of students who are uncertain about
their (correlated) priorities (whereas our paper studies a game between participants). Their focus is
on the correlation between admission chances and the subsequent signaling effects. Because priorities,
and admissions decisions, are correlated, the optimal portfolio involves applying to a combination of
"reach," "match," and "safety" schools. In our model, as in many applications beyond school choice,
priorities are homogeneous (perfectly correlated). We could generate results similar to Ali and Shorrer
(2021) only after enlarging the truncation on the mechanism.

Avery and Levin (2010) [2] model students who are differentiated in their academic ability and in
their fit for different schools. Each student knows her ability only imperfectly and, thus, is uncertain
about the priority order. The focus of the paper is on early admissions (dynamic concern, contrasting
with our static model). They show that early admissions have a sorting effect (early applications convey
a signal of good fit from students to schools) and a competitive effect (lower-ranked colleges attract
cautious high-ranked students).

4The key assumption about this uncertainty is a monotone likelihood property for the distribution of signals on students’
scores to colleges. Therefore, a higher-score student always sends a higher proportion of good signals (vs. bad signals) on
her score than a lower-score student, so that colleges use cutoff strategies at equilibrium.

5The paper-specific terminology says that students make “portfolio choices”.
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Matching with uncertain competitors’ preferences

In our paper, the uncertainty on priorities endogenously emerges from a lack of information about
competitors. It can be, therefore, connected with the wider literature on agent-agent matching with
uncertainty on other agents’ preferences.
The main technical difference is that in agent-agent matching with uncertainty on others’ preferences,
an agent’s payoff depends on the types of other players only indirectly through the actions of the
players. In agent-object matching with uncertainty on priorities, the payoff more generally depends
both on the actions and on the types of the other players. In addition, there are no reporting issues: by
definition, the market designer designs the priority system and perfectly observes the priority scores.

Roth (1989) [18] models agent-agent markets with private information on preferences on both
sides: an agent only observes her own utility function and holds a prior distribution over the possible
vectors of other agents’ utilities. He shows that results on dominant and dominated strategies are
similar to the standard results from the complete information benchmark. However, the results on
Bayes-Nash equilibria are negative: for any mechanism, there exist some prior distributions for which
at least some Bayes-Nash equilibria of the resulting game produce unstable matchings.

Kloosterman and Troyan (2020) [13] show that when preferences are uncertain but correlated,
DA is no longer strategy-proof or stable, and less informed students are worse off due to a curse of
acceptance (being accepted at a school signals that the school’s quality is low). They show that priority
design (so that any student is guaranteed a safe school) mitigates these issues.

Gleyze and Pernoud [9] model the information acquisition problem where agents on a matching
market can learn on their own and other agents’ preferences at a cost. Their main result is that a
mechanism does not incentivize information acquisition on other agents if and only if it is de facto
dictatorial.

Frictional matching

This paper more generally relates to the literature on frictional matching. The "Whether and Where
to Apply" dilemma stems from the fact that truncating the Deferred Acceptance mechanism sacrifices
the strategy-proofness (Haeringer and Klijn (2009) [10]).
The novelty in our approach comes from the fact that frictions add up and interplay to create novel
strategic interactions arising within the agent side of the market. It combines some aspects of cen-
tralized matching (coordination in the timing of application) with some decentralized aspects (private
information).

Multi-item auction

Because it features homogeneous preferences and priorities, the coming model also bears some
similarities with a multi-item auction. In Demange, Gale, and Sotomayor (1986) [7], a collection of
items is to be distributed among several bidders. All bidders rank items in the same way, and each
bidder is to receive at most one item. The truncated Deferred Acceptance mechanism in our matching
model and the generalized first-price or second-price mechanisms in the auction model have in common
that they fail to be strategy-proof and that they result in the same allocation (when bids in the auction
are consistent with priority scores in matching).
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3 Model

3.1 Frictional market and Application Game

We consider a market with n agents and m objects (m ≤ n). Agents (resp. objects) are numbered
by i ∈ {1, . . . , n} (j ∈ {1, . . . , m}).6 Agents have common cardinal preferences over objects: all agents
assign the same objective value to each object, denoted aj for object j ∈ {1, . . . , m}. The convention is
set that object 1 (resp. m) is the highest (lowest) value object: am < . . . < a1. Objects’ preferences over
agents (equivalently priorities) are also cardinally common: each agent i is characterized by a unique
priority score, denoted ωi. Priority scores are independently and identically distributed according to
some (cumulative) distribution F on the unit interval: ωi ∼ F ([0, 1]), i ∈ {1, . . . , n}.
Information about priority is private: an agent i only knows her own priority score ωi, but is ignorant
of the priority scores ωj of other agents j ̸= i.
The allocation occurs through a truncated Deferred Acceptance mechanism, with truncation one. In
this mechanism, agents are asked to independently and simultaneously choose whether to apply to an
object and, if yes, to which object. Because priorities are common, the mechanism is equivalent to a
serial dictatorship where the serial order is given by the score.
Application is costly, it costs c < am. If a given object receives no application, then it is wasted. If an
object receives exactly one application, it goes to the single applicant. If an object receives at least two
applications (crowding), the mechanism selects the agent with the highest priority score among the
pool of applicants and endows this agent with the object.7 In this latter crowding case, we say that the
agent who gets the object succeeds, while the other applicants fail.
A successful agent receives the value of the object she is assigned minus the application cost. An agent
who has failed just pays the application cost, hence a negative utility. An agent who has chosen not to
apply secures a reservation utility of zero.

This model poses a symmetric Bayesian Game of incomplete information that we call “Application
Game” (AG). This game comprises n players, with action space Ai = {A1, . . . , Am, N} - where Aj

denotes the action of applying to object j and N8 stands for the action of not applying -, privately
known independent types, prior F over [0, 1], and payoffs:

ui(Xi, X−i) =


aj − c if Xi = Aj and {l ∈ {1, . . . , n}\{i}|Xl = Aj , ωl > ωi} = ∅
−c if Xi = Aj and {l ∈ {1, . . . , n}\{i}|Xl = Aj , ωl > ωi} ≠ ∅
0 if Xi = N

where ui(Xi, X−i) denotes the payoff of player i when she plays action Xi and the rest of agents play
according to action profile X−i.

A pure strategy s : [0, 1] → {A1, . . . , Am, N} in the AG is a mapping from the interval of scores
to the set of available actions (distributions over actions). A mixed or behavioral strategy
p : [0, 1] → △{A1, . . . , Am, N} is a mapping from the support of scores into the simplex of the ac-
tion set: p : [0, 1] → △{A1, . . . , Am, N}). The probability pj

i (ω), j ∈ {1, . . . , m + 1} stands for the
odds that agent i chooses action Aj when her score is ω. A strategy is interior whenever the
probability distribution is non-degenerate on more than a finite number of points, that is when
∃ omega′ < ω” ∈ [0, 1], j ∈ {1, . . . , m + 1} s.t. ∀ ω ∈ [ω′, ω] : 0 < pj

i (ω) < 1.
A strategy can easily be represented graphically, displaying areas of scores where the agent chooses
each action in one dimension ([0, 1] line) for pure strategies and two dimensions ([0, 1] square) for
behavioral strategies.

6Notation: In all the following, numerals for agents (resp. objects) are written in indices (exponents).
7The mechanism does not specify how to break ties in case crowding happens between several agents with the same

priority scores. But since F is a continuous probability distribution, ties occur with probability 0, hence no consequence on
payoffs and equilibrium behaviors.

8Occasionally, to ease the notations in the rest of the analysis, we denote the action N as an additional application action,
Am+1 := N , and define am+1 := c.
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3.2 Benchmark Market with perfect information

Throughout the analysis, we continuously refer to an alternative market design with public infor-
mation. More precisely, priority scores are common knowledge.9 We call this design the “friction-less”
or “benchmark” market.10 It defines a game with perfect information called a "Sorting Game."
The following table summarizes the difference between the two markets.

Design Game Information on priorities
Frictional market Application Game Private (observation of own score)

Benchmark market Sorting Game Public (common knowledge of scores)

FIGURE 1.1: Summary of two market designs

The comparison between the two designs, both in terms of predicted behaviors and subsequent
welfare, will shed light on the most interesting features of the frictional market.
By definition, the benchmark frictionless market is efficient, whereas the frictional market is inefficient.
In section §5, we precisely characterize the inefficiencies associated with the frictions. The general idea
is that providing public information on priorities, removing the truncation, or making the mechanism
sequential would enable to capture the maximum welfare.

3.3 Leading example: Social Housing in Europe

A prominent example is the assignment of social housing units in Paris. Since 2016, the municipality
has allocated around 4,500 housing units a year through an online scheme called “LOC’annonces”.11

The allocation occurs in three steps. In the first step, households register as social housing seekers.
The market operator performs eligibility checks and places households in rent and bedroom categories
depending on their earnings and sizes. Most importantly, households are assigned priority scores based
on their circumstances. The computation mode awards points for homelessness or unsuitable current
housing (overcrowding), ill-health status, and more criteria. In the second step, households apply for
vacant housing units. More specifically, vacancies are advertised on a dedicated website12 from each
Tuesday morning until the following Wednesday midnight. Households apply to one housing unit per
round or choose not to apply. Very importantly, no precise feedback information is provided on the
identities of other applicants to the same housing units. Following the application closing, applicants
who have applied and who are on a shortlist of the highest priorities can view the accommodation and
decide to maintain or withdraw their bids. In the third and final step, each vacant property goes to the
applicant with the highest priority score among those who have applied for it. The whole allocation
process, from the application closing to the final allocation, can take a maximum of three months.13

During the three-month period, households may miss attractive opportunities from the private sector.

The London social housing allocation scheme (“Choice Based Lettings Scheme”) much resembles
the Paris scheme, except for the information. On the dedicated website,14 the application period runs
from each Thursday morning until the following Monday midnight. During this period, when a house-
hold applies, she observes her position in a priority ranking of all current applications on her targeted
housing unit. Through of trials and withdrawals, it is then possible to recover common knowledge on
(the order of) priority scores.

9Common knowledge of the order of score is the most parsimonious information structure leading to the same equilibria.
10An alternative but equivalent design would consist in making the mechanism sequential rather than static. The market

operator would organize the timing of applications by decreasing order of scores so that lower-ranked agents have the
opportunity to observe the highest-priority agent assignments before submitting their own applications.

11To be translated as “rental advertisements”.
12https://teleservices.paris.fr/locannonces.
13The example of social housing is, in fact, dynamic, with successive rounds on application. An agent who does not apply

or fails in a given round is offered the opportunity to apply again in the next round. With a static model, we certainly miss this
aspect. We address this issue in appendix §B.3 by introducing in the static model an endogenous cost of participation, which
captures one of the main effects of the dynamic. The cost decreases with the priority, reflecting that high-priority agents keep
their high score in successive rounds.

14www.homeconnections.org.uk.

https://teleservices.paris.fr/locannonces
www.homeconnections.org.uk
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3.4 Model justifications

Modeling a sub-optimal mechanism follows from the observation that market operators most often
stick to the frictional design. Paris social housing is just one example. More precisely, the model features
three frictions: the private information on priority scores, the truncation on the application list, and the
application cost.

Private information stands as the default information structure on priorities, absent any intervention
by the market operator. This is because, in general, the priority scores are computed based on criteria of
private circumstances. The table below shows the scoring rule used in London social housing. FIGURE

2 below illustrates this point.

FIGURE 1.2: London social housing - Priority score computation rule

Households are awarded priority points if they are currently homeless, have large families, or have
health issues. Household A knows about her status with respect to every criterion and, when given
this table, can compute her aggregate priority score. However, household A could not make the same
computation for another household, say B, simply because she had no idea about the inputs.

About the truncation, Pathak (2016) [17] reports that in school choice, the truncation is more
often the rule than the exception. We propose two families of explanations: constraints and hidden
objectives.
On the constraint side, Pathak (2016) suspects that truncation is used because it saves on operational
costs that are usually unmodelled in theoretical matching papers. In school choice, reviewing students’
records takes time. In social housing, organizing viewings of the accommodations also takes a lot
of time. Universities and social landlords could try to limit the number of applications they receive
to save on this time. With respect to private information, Roth and Sotomayor (1990) [19] note
that many two-sided matching markets - in particular, entry-level labor markets - use decentralized
application procedures, where agents from the same side of the market are isolated from each other, and
information on preferences or priorities is subsequently private. It could also be that public information
cannot be achieved due to privacy concerns. Finally, sequentiality is not a solution if there is a high
opportunity cost of time (in social housing, this corresponds to the cost of vacancy).
With respect to social objectives, we argue that market operators may have different or additional
objectives than just maximizing the ex-ante aggregate welfare. With respect to efficiency, they could
be interested in using more sophisticated criteria such as the Pareto order (considering that a market
design is superior if it leads to a higher payoff for all levels of scores). In addition to efficiency concerns,
they could be interested in participation. Indeed, in many social landlords reports, we observe that
statistics about high or increasing number of applications received are proudly announced.
In the baseline model, we impose an extreme truncation on the mechanism: agents can apply to at
most one object. This is mostly to keep the model simple and tractable. In appendix §B.24, we show
that our results are robust to a larger truncation.

The cost of application models the opportunity cost of time and effort dedicated to the application
(reviewing available objects, sending application), sometimes adding up to an objective application or
participation fee.

Finally, the homogeneous preferences are an extreme version of correlated preferences,15 and
15Homogeneous or correlated preferences are problematic empirically, hence interesting theoretically, because they intro-
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mostly a first approach. In appendix §B.5, we show that our results are robust to imperfect corre-
lation in the preferences.
Homogeneous priorities (as materialized with a unique priority score for each agent) fit the many con-
texts where the needs of the object side of the market are similar and are very standard in many public
economic applications. For college admissions, the SAT score, as a weighted average of student per-
formance in a number of maths, reading, and writing exercises, serves as a measure of a high school
student’s readiness for any college. In social housing, the priority score, reflecting the emergency of
the household’s housing need, controls the priority to any vacant housing unit. In the case of teacher
allocation to schools, the same priority score applies to any school where a teacher can apply.

4 Equilibria

To study behaviors in the AG, we use Bayes-Nash equilibrium (BNE) as equilibrium concept.

4.1 Preliminaries

We make a few preliminary qualitative remarks on the structure of the problem and introduce the
formalism.

Existence

We first state the existence of an equilibrium in the AG.

Lemma 1. [Existence]
There exists a Bayes-Nash equilibrium of the Application Game.

The proof is by the Bayes-Nash existence theorem for games with finite action space and indepen-
dent types (potentially infinite type space) - Milgrom and Weber (1985) [16].

Interim expected payoffs

The interim expected payoff of player i under strategy profile p, when her priority score is ω, is
denoted E[ui(p)|ω]. Due to the dictatorship, in the AG, interim payoffs depend on the strategy of
other agents through the behaviors of higher score agents, yet are independent of the behaviors of
lower score agents. Trivially, the interim payoffs also depend only on the agent’s strategy through
the agent’s behavior at the set score and not at higher or lower scores. Thus in the formalism for
interim payoffs, it is enough to specify for p just pi(ω) for the agent, and p−i([ω, 1]) for the other agents:
E[ui(p)|ω] = E[ui(pi(ω), p−i([ω, 1]))|ω].
At BNE p⋆, we have:

∀ i ∈ {1, . . . , n}, ∀ ω ∈ [0, 1] : p⋆
i (ω) ∈ arg max

pi(ω)
E[ui(pi(ω), p−i([ω, 1]))|ω]

In the case where the agent applies with full probability to one object at score ω, the interim payoff
is a weighted sum of two ex-post payoffs: the (positive) object value and the (negative) application
cost, where the value is weighted by the conditional probability of success, denoted P(S|p, ω):

E[ui(Aj
i , p−i([ω, 1]))|ω] = P(S|p, ω)aj − c

The following lemma characterizes this interim expected payoff:

Lemma 2. [Interim payoff after pure action - Characterization]
(i) Continuity: Interim payoff conditional on any action is continuous in the score.

(ii) Monotonicity:

duce competition within the sides of the matching market.
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• Interim payoff conditional on not applying is constant equal to 0.

• Interim payoff conditional on any application action is increasing (constant) on any interval of
scores where at least one other agent (no other agent) applies to the same object with a positive
probability.

(iii) Value at highest bound: Interim payoff at score 1 conditional on applying to any object is equal to
the value of the object minus the cost.

Statement (i) states that there is no jump in the interim payoff: one’s chance to get an object,
hence one’s payoff cannot dramatically change from one score to a neighbor score. Statement (ii) says
that one’s payoff increases when one’s score rises if and only if the agent was facing crowding on the
targeted object by agents with scores slightly above. Statement (iii) formalizes that the highest score
agent is successful for sure.
The three statements are direct consequences of the serial dictatorship mechanism and the continuity
of the priority score support.

Gross incentive analysis

It is well known that once truncated, the Deferred Acceptance mechanism is no longer strategy-
proof (Haeringer and Klijn (2009) [10]). The typical preference manipulation consists of applying to
"safe" objects (objects that accept the agent with high probabilities). It materializes in different ways at
different levels of scores.

A player with a score close to 1 should feel confident that when applying to any object and in case
of crowding, she will succeed. She should target high-value objects, fully accepting the prospect of
competition.
Conversely, a player with a score approaching 0 should expect that when applying to any object and
in case of crowding, she will fail. This low-score agent seeks to avoid competition and to coordinate
with peers so as to target different objects: she should target under-demanded objects. Even more than
that, she may be tempted not to apply to guarantee a utility of zero. Any agent with an intermediate
score faces a trade-off between applying to high-value objects and risking failure or to under-demanded
objects (or even giving up) and settling for a low (zero) satisfaction.
We illustrate this discussion in the graph below.

ω : 0 1

CompetitionCoordination Trade off

FIGURE 1.3: Coordination and competition behaviors in the AG as a function of priority scores

4.2 Example

As a prelude for the general results, we display the equilibria in an example where dimensions are
small (n = 3 > m = 2), and the distribution is uniform (F ∼ U([0, 1])). We provide a graphical
representation, a description, and the intuition.

Pure (asymmetric) equilibrium

On the graph below,16 each line going from 0 to 1 stands for the score support [0, 1], one line for
each strategy of the three players, and the letters above stand for the action played at the corresponding
scores.
The bracket “robust profile” specifies the part of the profile that is realized at the pure strategy equilib-
rium of any AG.

16We deal with the asymmetry by numbering players and assigning each of them to a specific role. Yet any permutation of
strategies between players is again an equilibrium.
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p1⋆ :

p2⋆ :

p3⋆ : A2

A2

A1

A1

A1

N

A2/N

s1 =
√

a2

a1s2 = −1 + s1 + c
a2

Robust profile

FIGURE 1.4: Pure (asymmetric) BNE - n = 3, m = 2, F ∼ U

The graph shows three intervals, where the intervals’ bounds s2, s1 are indifference points.

On an interval of high scores [s1, 1], all agents apply to object 1. This is because an agent with the
highest possible score 1 always gets the object she has applied to. So, she applies to the highest value
object and secures the highest possible payoff in the game a1 − c.

At score s1, confidence in success in case of crowding when applying to object 1 becomes quite
low. By contrast, the probability of success conditional on applying to object 2 is constant equal to 1.
Algebraically, the interim payoff of applying to object 1 hits the value of object 2 minus cost a2 − c. At
s1, agents become indifferent between applying to objects 1 or 2.
On an interval of intermediate scores [s2, s1], two agents (agents 2 and 3) apply to object 2. Because
they compete, their interim payoff steadily decreases from s1 leftward. The other agent (agent 1) keeps
on applying to object 1. From her point of view, there is no competition anymore on object 1; her
interim payoff is constant on the whole interval [s2, s1].
The fact that agents share roles (with a majority of applicants to object 2 and a minority of applicants
to object 1) breaks the possibility of a symmetric equilibrium in pure strategies. To get an intuition
on the necessity of asymmetry, we can consider (by contradiction) a symmetric strategy profile where
all players would shift to apply to object 2 below s1. Then, the interim payoff conditional on playing
object 1 would be constant (no competition) as the score decreases below s1, whereas the interim
payoff conditional on playing object 2 would increase (2 competitors). Consequently, the former would
be higher than the latter at any score below s1, and any player would face a profitable deviation from
object 1 to object 2.
At score s2, the interim payoff of agents 2 and 3 hit the zero bound. It becomes profitable for one of
them (say agent 2) to deviate to N , to secure a payoff of zero. Conditional on that, agent 3 is indifferent
between maintaining action A2 with no competition or playing action N (both deliver the same zero
payoff). Agent 1 keeps on playing object 1 on the whole interval [s2, s1]. She still faces no competition
on object 1, hence a constant interim payoff.

The bracket “robust profile” shows that only the right side of the graph is realized at the pure
strategy equilibrium of any AG. For some sets of parameters, we may observe only the top part of the
profile, and not the bottom part. Agents with a score of 0 may all apply (potentially only to the two
best objects).

Symmetric (interior) equilibrium

In the following graph, the horizontal line in the square still represents the score support [0, 1]. The
vertical line represents the probabilities of each action in the behavioral strategy.
For example, p2

J1,2K denotes the probability with which an intermediate score agent applies to object 2.
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FIGURE 1.5: Symmetric (interior) BNE - n = 3, m = 2, F ∼ U

As in the pure strategy equilibrium, all agents apply to object 1 at scores belonging to an interval
[t1, 1].
The equilibrium strategy becomes truly interior on an interval [t2, t1], where an agent applies with
positive probabilities to objects 1 or 2. What is striking here is that those probabilities are constant.
This is what we call the "block structure of the equilibrium ."In section §4.3.2, we discuss this central
result.
Notably, intermediate score agents apply more often to object 2 than to object 1 (p2

J1,2K > 1
2).

At some low score t2, due to competition by higher-ranked agents, the interim payoff of playing A1 and
A2 hits the zero bound. Agents choose not to apply at any score below. Symmetry does not allow one
player to keep on applying, unlike what happens in the pure case.

The bracket "robust profile" shows that for some parameters of the AG, all agents apply with proba-
bility one (potentially only randomizing on the two best objects).

Summary results from example

In both the pure and interior equilibria, confidence in success makes high-priority agents ambitious.
At intermediate scores, it becomes rewarding to be less ambitious (say “practical”) and to try to coor-
dinate to avoid competition.
In the pure equilibrium, this happens through a sharing of roles between applicants to different ob-
jects; in the interior equilibrium, by positive probabilities to apply to both objects. Many intermediate
score agents settle for the secure option. A remaining smaller group of intermediate score agents take
advantage of alleviated competition to maintain high ambitions. At the lowest possible scores, agents
may need to shift to the no application action so as to secure a positive payoff.

Although the structure of the equilibrium is very robust, whether the possibility to abstain or apply
to low-value objects is used at equilibrium depends finely on the parameters of the AG.

4.3 General results

The analysis from the example generalizes to any number of agents n, objects m, and any priority
score distribution F .

Nash equilibrium of the Sorting Game

Proposition 0. [(Unique) NE]
In the Sorting Game, there is a unique Nash equilibrium σ⋆, where:

(i) The agent ranked ith, 2 ≤ i ≤ m in priority applies to and is allocated object ranked ith in value.

(ii) Agents ranked ith, m + 1 ≤ i ≤ n in priority do not participate.
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The proof is done by induction, following the priority order for agents, which is also the serial order
used in the dictatorship mechanism.

On the benchmark market, agents are able to perfectly tailor their ambitions to their ranks in the
priority order and endogenously sort. The highest priority agent (second-highest priority agent) applies
to the highest value object (second-highest value object), and so on. If there are strictly more agents
than objects, the lowest score agents do not apply to avoid certain failure. In total, each available object
receives exactly one application, which is accepted. No object is wasted, and no agent fails.

Pure (asymmetric) Bayes-Nash equilibrium of the Application Game

Proposition 1. [Asymmetry of pure BNE]
A pure strategy Bayes-Nash equilibrium of the Application Game is necessarily asymmetric.

The proof is done by contradiction, just as in the example. The short intuition is that competition
by high-score agents on the highest-value objects smooths interim payoffs conditional on different
applications. Consequently, at any intermediate or low score, several objects of different values are
equally attractive. To guarantee the absence of profitable deviation, they all need to be targeted by at
least one agent with positive probability. A pure symmetric profile would not allow this.

In the rest of the paper, we discard the BNE in pure strategies for two reasons. First, we remain
skeptical about the capacity of (ex-ante symmetric) agents to coordinate and share the different roles
in an asymmetric profile without any communication. Second, the pure strategy BNE structure is little
robust. In the general model with any number of agents, objects, and any distribution, it depends very
finely on the set of parameters of the game.17

Symmetric (interior) Bayes-Nash equilibrium of the Application Game

We find that the symmetric has a very specific structure, which we illustrate on the next figure:

1

t0 = 1
0

tm+1 = 0

p

ωtm tm−1 t1t2t3

N

A1

Am

A3

A2

A1

. . .

A2

A1

A1. . .

Robust profile

pm
J1,mK

p1
J1,mK p1

J1,3K

p2
J1,3K

p3
J1,3K

FIGURE 1.6: Symmetric (interior) BNE of the AG – General form

Theorem 1. states the existence and uniqueness of a symmetric BNE and describes the "block
structure."

17We illustrate this lack of robustness in appendix §B.1.
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Theorem 1. [Symmetric (interior) BNE]
A symmetric (interior) Bayes-Nash equilibrium p⋆ of the Application Game:
(1) Exists and is unique.
(2) Exhibits a "block structure," meaning that there is a finite number of intervals of scores, called

"classes," where the interim strategy profile at any score is the same:
(i) There are between 2 and m + 1 classes: k0(p⋆) ∈ {2, . . . , m + 1}.

More precisely, there are exactly:

– k, k ∈ {2, . . . , m} classes iff: 1 +
k∑

l=1

(ak+1

al

) 1
n−1 ≤ k < 2 +

k−1∑
l=1

(ak

al

) 1
n−1

– m + 1 classes iff: m < 1 +
m∑

l=1

( c

al

) 1
n−1

(ii) Conditional on existence, classes write [tk, tk−1], with:

∀ k ∈ {1, . . . , k0(p⋆) − 1} : tk = F −1
(
1 − k +

k∑
l=1

(ak+1

al

) 1
n−1
)

tk0(p⋆) = 0

(iii) Conditional on existence:

– In class k ∈ {1, . . . , m}, agents apply to object j ∈ {1, . . . , k}, with probability:

pj
J1,kK :=

( k∑
l=1

(aj

al

) 1
n−1
)−1

– In class m + 1, agents do not apply.

From now on, the bounds of the classes tk are "thresholds," and the constant probabilities pj
J1,kK are

"levels”.18

The proof of Theorem 1. is done in three steps.
In the first step, we prove that we can divide the score support [0, 1] in a finite number of intervals
where agents with scores in one interval apply with positive probabilities to only object 1, then both
object 1 and 2 until an interval where they potentially apply to all objects and a bottom interval with no
application. This step relies heavily on Lemma 2., jointly with the intermediate value theorem applied
recursively m times. The proof that t1 necessarily exists is made by contradiction, exactly as in the
sketched proof of Proposition 1..
The next step is to characterize the probability functions. The proof that they are piecewise con-
stant is done by induction. At inductive step k ∈ {2, . . . , m − 1}, the strong indifference principle
applied at a score ω⋆ ∈ (tk, tk−1) delivers a system of k − 1 differential equations with k − 1 unknowns
(pj(ω⋆), j ∈ {2, . . . , k}). Substituting within the equations, we find a relation between the primitives
of fpj and f , hence constant probabilities ∀ ω ∈ [tk, tk−1], pj(ω) := pj

J1,kK. Meanwhile, we use the

differential equations again to get a recursive relation between all pj
J1,kK, j ∈ {1, . . . , k}, and use the

fact that they sum up to one to get the explicit formula.
In the third and final step, we use the thresholds’ definitions (tk, k ∈ {1, . . . , m} is the highest score
where there is indifference between all actions A1, . . . , Ak+1) to find their expressions.

The symmetric equilibrium in small (§4.2) and general dimensions displays the same pattern, and
the overall interpretation (intermediary between cooperation game at low scores and conflict game at
high scores) is similar. However, the general version sheds light on two interesting equilibrium features
deserving a dedicated discussion, in the coming paragraphs.

18Appendix §B.2 provides comparative statics showing how the thresholds and levels vary with the parameters. In partic-
ular, it shows that when the distribution of scores changes, the levels remain unchanged, and only the width of the classes
adapts so that the expected mass of agents belonging to each class remains constant.
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Block structure and sorting

This block structure of the symmetric equilibrium may appear surprising at first glance.
From a theoretical perspective, it says that within a very large strategy space made of potentially uneven
probability functions, agents effectively use a small number of application mixtures. Starting from a
continuous type support, we end up with a discrete number of equilibrium behaviors.
From an applied perspective, it means that agents self-sort according to their priority scores into a finite
and quite small number of classes. Two households with close priority scores (in the same class) use
exactly the same (potentially highly sophisticated) application mixture.
We could have rather expected that higher priority agents would be strictly more ambitious than lower
priority agents.

The algebraic necessity of the block structure is clear enough. It comes from the following obser-
vation (made on class [t2, t1], to fix ideas). The indifference principle, when applied at a score slightly
below threshold t1 (say t1 − ϵ) when indifference at t1 is already established, delivers exactly the same
constraint on the probability function as when applied slightly leftward at a score t1 − 2ϵ, when indif-
ference at t1 − ϵ is already established. This constraint writes as the ratio of probabilities of success
conditional on applying to different objects is equal to a constant. In both cases, it is thus expected to
deliver the same level p2

J1,2K. A more direct intuition combines the notions of ambition and risk. The
class defines the strategy, hence a constant level of ambition in each class. By contrast, the risk (as
measured by the probability of failure) varies within a given class: it is high (low) just above (below)
the thresholds. Therefore, for agents at the bottom of a class, the equilibrium strategy features a given
level of ambition and is risky; hence a low payoff. For agents at the top of the same class, the equi-
librium strategy features the same level of ambition but a low risk, hence a high payoff. The risk and
payoff variations are smooth in between. We illustrate this line of intuition below with a figure eliciting
the variations of risk and ambition within and between classes.

t1t2 1

low low high high

high low high low

Ambition

Risk

Payoff low high

FIGURE 1.7: Ambition, risk and interim payoffs at symmetric BNE of the AG

In total, the block structure is reminiscent of the "class segregation result" in the dynamic search
problems. The dynamic search literature (McNamara and Collins (1990) [14], Burdett and Coles
(1997) [4], Bloch and Ryder (2000) [3], Jacquet and Tan (2007) [11]) studies two-sided agent-agent
markets where each agent is characterized by a value distributed on a continuous support. At each
time period, agents are tentatively matched, they observe each other’s values and decide to accept or
reject the proposed match. At equilibrium, agents sort into a finite number of classes (value intervals)
where all agents use exactly the same acceptance cutoff and match within classes. In their case, the
equilibrium with class segregation is in pure strategies. In our case, the block structure is even more
surprising as agents use sophisticated behavioral strategies.

A related interesting question is whether, at equilibrium, agents are able to self-sort, conforming
their ambitions to their scores. It matters in relation to the frictionless benchmark, where the equi-
librium outcome is the perfectly positive assortative matching. In our environment with private infor-
mation, truncation, and application cost, we would like to know whether some assortativity remains.
The following corollary answers in a positive way. There is a kind of sorting, although, by the block
structure, it proceeds with discrete jumps.

Corollary 1. [Sorting at symmetric BNE]
At the unique symmetric (interior) Bayes-Nash equilibrium of the Application Game:

(i) For a given object j ∈ {1, . . . , m} and two scores 0 ≤ ω < ω′ ≤ 1 where the object receives applica-
tions, it receives more applications at the higher score ω′.
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(ii) At any two scores 0 ≤ ω < ω′ ≤ 1, the probability level vector at the higher score p(ω′) first-order
stochastically dominates the same vector at the lower score p(ω).

(iii) For a given score 0 ≤ ω ≤ 1 and two objects 1 ≤ j < j′ ≤ m that receive applications at this score,
the lower value object j′ receives strictly more applications.

(iv) In total, conditional on existence of class m, the ex ante probability to apply to object k is 1−
(

c
ak

) 1
n−1 .

Statement (i) states that as the score increases, agents apply more and more frequently to high-
value objects.
Statement (iii) uses the standard criterion of First Order Stochastic Dominance (FOSD).19 What it
means is that the probability of playing the highest value object is increasing in the score, the cumulative
probability of playing one of the two highest value objects is also increasing in the score, and so forth.
Interestingly, statement (iii) also claims that within class [t2, t1] (for example), agents apply more often
to object 2 than to object 1 (as displayed on FIGURE 6). Hence, the equilibrium appears closer to a
pure strategy equilibrium with perfect vertical sorting than to a single-class block equilibrium with no
sorting.
Statement (iv) computes the ex-ante probability with which an agent applies to a given object, giving
a sense of how bankable an object is. It finds that it is increasing with the value of the object ak

(higher-value objects are played more often), decreasing with the application cost c, independent of
other objects’ values aj , j ̸= k and of the score distribution.

Robust profile and participation

Theorem 1. (2)(i) ensures that the two highest classes [t1, 1] and [t2, t1] are realized at symmetric
equilibrium of any AG. Yet, it does not guarantee that any lower class is reached. For some sets of
parameters (low cost, low and balanced number of objects and agents, heterogeneous values), classes
3 to m + 1 (interval [0, t2]) may not be observed (t2 = 0), and low score agents may apply to objects 1
and 2 only. This is the meaning of the vocabulary “robust profile” for [t2, 1].
In particular, in the extreme case with only 2 classes, this suggests that agents with very different scores
(distant from about a half) use exactly the same randomization over actions.

The robust profile bracket also characterizes participation in the mechanism. We say that an agent
(fully) participates if she applies with positive (one) probability. The next corollary discusses participa-
tion in the AG.

Corollary 2.
At the unique symmetric (interior) Bayes-Nash equilibrium of the Application Game:

(i) If m ≥ 1 +
m∑

l=1

( c

aj

) 1
n−1 , all agents on the market participate.

(ii) If m ≥ n

n − 1

m∑
l=1

( c

aj

) 1
n−1 , expected participation is higher than in the Nash equilibrium of the

Sorting Game.

Statement (i) states that whenever class [0, tm] is not reached, all agents on the market - including
the ones with the lowest possible scores-, fully participate. They do so in spite of the congestion (the fact
that there are fewer objects than agents on the market). This is a major contrast with the benchmark
design, where the agents with the lowest possible scores do not apply.
The more general statement (ii) provides a sufficient condition for higher participation in the frictional
market. The condition is easily satisfied, as soon as n is not too small or values are quite heterogeneous,
or the cost is low.
The lesson is that frictions enhance participation. This has major welfare consequences, which we
explore in the next section §5.

19First-order stochastic dominance translated to our (discrete) case is given by: p(ω) ⪰F OSD p(ω′) if
∀ j ∈ {1, . . . ,m− 1},

∑j

l=1 p
j(ω) ≥

∑j

l=1 p
j(ω′).
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5 Welfare

In this section, we compute the welfare at the symmetric equilibrium of the AG (§4.3.2). We
compare this welfare from the fictional market to the welfare on the benchmark frictionless market.

5.1 Ex ante

We first examine the ex-ante payoff, that is, for an anonymous agent, before her priority score is
realized. It is a measure of aggregate welfare.

Inefficiencies

The ex-ante payoff on the benchmark market is given by:

W B := E[u(σ∗)] =
( m∑

k=1
ak)− cm

There is no waste (agents collectively capture the whole sum of objects’ values) and no failure (the
number of agents paying the cost equals the number of applicants equals the number of objects (m)).

The ex-ante expected payoff on the frictional market20 is given by:

W F := E[u(p∗)] == 1
n

( m∑
k=1

ak)− c

n

(
m − (n − 1)

m∑
j=1

( c

aj

) 1
n−1
)

Therefore, the difference in welfare is:

W B − W F := c(n − 1)
(
m −

m∑
j=1

( c

aj

) 1
n−1
)

Proposition 2. [ex ante welfare]
(B) The benchmark market design is efficient.

(F) The frictional market is inefficient: W B − W F > 0.
The size of the inefficiency increases with the values of all objects and with the cost of application.

(B) recalls that, by definition, the frictionless design achieves a higher total welfare than the fric-
tional design. The comparative statics in (F ) is straightforward. When an object’s value increases,
waste on this object is more detrimental to welfare. When the application cost increases, failure is also
more consequential.

5.2 Interim

We push the characterization of the inefficiencies identified in section §5.1. We are not only inter-
ested in the size, but also in the shape of the inefficiencies.

Interim expected payoffs

The interim expected equilibrium payoff in the benchmark market is given by:

W B(ω) := E[u(σ⋆)|ω] =
m∑

j=1

(
n − 1
j − 1

)
(1 − F (ω))j−1F (ω)n−j(aj − c)

20The formula is written for the case tm ≥ 0. For case tm < 0, the formula is more sophisticated but Proposition 2. remains
valid.
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It is just the sum of probabilities that the agent with score ω is ranked ith, i ≥ m in priority multiplied
by the ex-post payoff in this case (object value minus application cost). If the agent is ranked lower
(ith, i > m), the ex-post payoff is zero.

The interim expected equilibrium payoff in the frictional market is given by:

W F (ω) := E[u(p⋆)|ω] =


k∑

j=1
pj

J1,kK.
((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−1
aj − c

, ω ∈ [tk, tk−1], k ∈ {1, . . . , m}
0, ω ∈ [0, tm]

At any score where the agent applies, it is an expected sum. pj
J1,kK is the probability that the agent

applies to object j, it multiplies the probability of success conditional on applying to object j. To
succeed, one needs that each of all other agents (n − 1) does not apply to the same object or has a

lower score, which happens with probability
(

ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK.
21

How the interim expected payoff varies with the score indicates the effect of priority on individual
welfare. If the priority score system fulfills the role of discriminating between agents with different
levels of priority, the interim expected payoff should increase with the score.

Lemma 3. [Equilibrium interim payoffs]
(B) On the benchmark market, the interim equilibrium payoff is continuous and strictly increasing with

priority score ω.

(F) On the frictional market, the interim equilibrium payoff is continuous and:

– Constant on [0, tm] (tm > 0).
– Strictly increasing on [tm, 1]

The proof of (B) is from the formula above, plus the continuity and monotonicity of the cdf F .
The proof for (F ) just stems from the initial characterization of interim payoffs in Lemma 2. and the
symmetric equilibrium structure from Theorem 1..
Overall, in both kinds of markets, higher score agents are always better off. This means the block
structure (featuring constant ambition on each class of scores) still allows for continuously and strictly
increasing payoffs. For illustration, we display below two graphs for interim expected payoffs on the
frictional market, in the context of the example from section §4.2: one with k0 = 2 classes, one with
k0 = 3 classes.
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FIGURE 1.8: Interim expected payoff at the
symmetric (interior) BNE -

m = 2, n = 3, a2 = 2, a1 = 4, c = 0.2, F ∼ U
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FIGURE 1.9: Interim expected payoff at the
symmetric (interior) BNE -

m = 2, n = 3, a2 = 2, a1 = 4, c = 1, F ∼ U

21The fraction
(

ak

aj

) 1
n−1 simplifies the whole probability of an agent having a score in a higher class and applying to the

same object j.
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Asymmetries

FIGURE 8 specifically shows that on the frictional market, when k0 < m, agents with low scores
apply and expect a positive payoff. In the benchmark market (Proposition 0.), by contrast, low-score
agents decide not to apply to secure a zero payoff.
This is a clue that there is a score-related asymmetry in the way the inefficiencies associated with
private information affect market participants. The next proposition shows that this asymmetry can
make low-score agents prefer the situation when everyone has less information.

Proposition 3. [Low score agents’ preference for private information]

If m > 1 +
k∑

l=1

( c

al

) 1
n−1 , then ∃ ω′ ∈ (0, 1) s.t.: ∀ω ∈ [0, ω′), W B(ω) < W F (ω).

Thus, in some instances of the AG, low-score agents are better off with less (private) information
than with full (public) information. The condition on parameters looks quite general, easily satisfied
if the number of objects is large enough and the application cost is reasonably low.22 One important
implication is that we cannot rank the two benchmark and frictional designs through a Pareto order.
The proof uses the definition of tm as the indifference point between application actions and the no
application action, hence an expected payoff of zero, jointly with continuity and strict monotonicity of
interim payoff above tm (Lemma 2.). When tm < 0, the monotonicity mechanically induces a positive
interim payoff at score zero, to compare with an interim payoff in the benchmark design of 0. The
continuity of payoffs extends the comparison to a non-degenerate interval of low scores [0, ω′).
A graphical illustration is given below. FIGURE 10 (left) shows the interim expected payoffs from the
frictional market in orange, and the interim expected payoffs from the benchmark market in green. On
FIGURE 10 (right) the filled orange area displays the difference in interim payoffs W B(ω) − W F (ω).
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FIGURE 1.10: Frictional vs. benchmark markets: Interim expected payoffs at symmetric (interior) BNE
m = 2, n = 3, a2 = 2, a1 = 4, c = 0.2, F ∼ U

A more general statement from this graph is that intermediate score agents bear most of the burden
associated with the inefficiency of private information.

Signal quality, competitive advantage, and competition easing

We formulate the intuition in successive effects of private information on cardinal scores: discrepant
signal quality, competitive advantage, and competition easing.

In the application game, although all agents receive signals of the same nature (perfect observation
of their own priority score), the informative value of the signal depends on the score level. A low-score
agent, by observing a signal at the bottom of the prior distribution support, realizes that she is almost
surely the lowest type, ranked at the bottom of the priority order. By contrast, for an intermediate

22Notably, it seems to match our empirical driving empirical motivation of social housing.
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score agent, observing her score is a poor signal of her ranking. But ranking or ordinality of scores
(as opposed to cardinality) is what decides on the allocation in case of crowding. When it comes to
information, the low-score agent benefits from a relative competitive advantage. This advantage more
than offsets the fact that, in absolute terms, the private information they get is slightly less revealing.
It translates into actions in the following way. The intermediate score agent, misguided by imprecise
posterior on ranking, is likely to make mistakes (compared to what she would do with perfect infor-
mation): being too or too little ambitious, miscoordinating with intermediate-to-high score agents. In
total, and due to the recursive structure of the AG, these mistakes tend to alleviate the fierceness of
competition by intermediate score agents.
Thanks to the precision of her posterior, the low-score agent avoids any mistake due to unrealistic am-
bitions. More importantly, she is fully aware of the ease of competition. Therefore, she understands
that this leaves some room for her to apply. She applies and captures a positive expected payoff.23

The result that frictions favor participation and equity is very general and can be reconstructed in
many different economic settings. For example, Mekonnen (2019) [15] compares random and directed
searches on an agent-object market with also common preferences but homogeneous agents. This is
equivalent to comparing a no information design to a full information design. At equilibrium, an agent
is better off under the random search because she benefits more from the ease of congestion on high-
value objects than she suffers from not being able to target objects accurately. Che and Tercieux (2021)
[6] study the optimal design of a queueing system when agents’ arrival and servicing are governed by a
general Markov process. They show the optimal information is no information (beyond recommenda-
tion to join, stay in, or leave the queue). The intuition is that no information pools the various incentive
constraints, ensuring more participation, which, in the queue environment, increases efficiency.

Implications for decentralized matching markets

We have found that in a very stylized frictional market, private information on priorities tends to
favor low-score agents.
The question therefore arises: is it an issue for the proper functioning of markets?
The answer to that question rests on the role of priority score systems. In social housing, for instance,
the priority system recognizes differential rights to housing based on different levels of emergency. Dur-
ing the allocation stage, it maps those differential rights into proportionally different probabilities of
satisfaction. In particular, point rules and allocation mechanisms are often jointly thought of as giving
twice more chances to an agent with a score 2ω of getting an object or the best object than to an agent
with a score ω.
Yet, in the considered design, private information artificially distorts in an increasing fashion the prob-
ability for low-score agents to get a valuable object with respect to intermediate and high-score agents.
In other words, private information mitigates the ability of the priority system to discriminate between
agents.

From a design perspective, we have found that three elements matter for the final allocation and
for welfare: the allocation mechanism, the inputs in the mechanism (the exact rule used to compute
priority scores), and the information structure. Our analysis suggests that they should be designed
jointly in order to keep control over the amount of discrimination on the market.

23A wonder may be: how does private information affect the competition between high-score agents and intermediate-
score agents? A high-score agent observes a score close to the higher bound of the support, which is a clear signal that she
is likely the highest type, so this agent also benefits from a relative informational competitive advantage. But because she
always plays the same action (applying to the best object) in the two designs, she cannot exploit this advantage, and there is
no competition easing effect from which the intermediate score agent could benefit.
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6 Conclusion

This paper models a stylized market where agents with homogeneous preferences and privately
known priority scores can (costly) apply to at most one object, and each object is assigned to its highest
priority applicant. In this market, the frictions (private information, truncation of the mechanism, and
application cost) ask for a trade-off between competition and coordination, with participants wondering
"Whether and Where to Apply?". They consider the trade-off between being "ambitious", accepting
the prospect of competition (targeting high-value objects), or being "practical", seeking coordination
(targeting under-demanded objects).

We find that in all equilibria, high-score agents are ambitious, and low-score agents are practical.
The analysis also uncovers three salient and surprising features of the symmetric equilibrium. One, the
symmetric equilibrium necessarily involves agents randomizing between applications. Second, in this
equilibrium, agents with scores on a continuous support sort into discrete classes, defined as intervals
of priority scores, where they adopt exactly the same strategy. Third, the frictional market design
is less efficient but more egalitarian than the benchmark design. Indeed, low-score agents may be
better off with private information than with public information because they benefit from a relative
informational competitive advantage.

The value of this work is two-fold. It illustrates the role of information on priorities matching mar-
kets, showing how uncertainty interplays with other standard market frictions to distort the allocation.
This results in a straightforward design recommendation that should be applied broadly: the mecha-
nism design, information design, and priority design should be performed jointly in order to achieve
the desired pattern of discrimination. It also makes a methodological contribution by displaying a
novel and rich mode of strategic interactions arising within the agent side of a matching market (the
application game), resulting in an equally novel equilibrium structure (the block structure).

We believe the lessons learned from this work may generalize to more sophisticated (idiosyncratic,
hybrid) preferences and mechanism (dynamic, with deterministic and stochastic stages). Ultimately,
our framework should be able to accommodate more numerous and interesting empirical applications:
beyond social housing, any market where priority is defined by a cardinal point system (teacher alloca-
tion, college admissions in many countries).

Another interesting challenge in this research is to provide micro-foundations for the use of a sub-
optimal mechanism. Ideally, we would explicitly model the general design problem and show that once
we consider a two-fold social objective (we care not only about efficiency but also about participation),
the private information mechanism becomes optimal. Another foundation could come from political
economy. In our applied example, the market frictions give a chance to middle-class households to be
allocated social housing. Using a frictional design could be a way for a greedy politician to earn these
households’ votes for reelection.
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Appendix A Proofs for results in the main

Proof of Lemma 1.
• Action spaces ∀ i ∈ {1, . . . , n}, Ai = {A1, . . . , Am, N} are finite. So by Proposition 1 in Milgrom and Weber

(1985) [16], payoffs are equicontinuous (R1).

• Types ωi, i ∈ {1, . . . , n} are independent. So by Proposition 3 in Milgrom and Weber (1985) [16], infor-
mation is absolutely continuous (R2).

Finally, by Theorem 1 in Milgrom and Weber (1985) [16] applied to the AG satisfying R1 and R2, there exists a
BNE in the AG.

Proof of Lemma 2.
• By definition, ∀ ω ∈ [0, 1], E[ui(Ni)|ω] = 0. This proves (i) and (ii) for Xi = Ni.

• For Xi = Aj
i , j ∈ {1, . . . , m}, we have:

E[ui(Aj
i , p−i([ω, 1]))|ω] =

∏
i′∈{1,...,n}\{i}

(
ω +

∫ 1

ω

(1 − pj
i′(x))dx

)
︸ ︷︷ ︸

P(S|Aj
i
,p−i([ω,1]),ω)

ak − c

∀ i′ ∈ {1, . . . , n}\{i}, j ∈ {1, . . . , m}, ω 7→
∫ 1

ω
(1 − pj

i′(x))dx is continuous.
So the probability of success ω 7→ P(S|Aj

i , p−i([ω, 1]), ω) and the whole expectation E[ui(Aj
i , p−i([ω, 1]))|ω]

are also continuous. This proves (i).
Set ω− < ω+.

ω− +
∫ 1

ω−
(1 − pj

i′(x))dx =
(
ω+ +

∫ 1

ω+
(1 − pj

i′(x))dx
)

+ ω− −ω+ +
∫ ω+

ω−
(1 − pj

i′(x))dx

=
(
ω− +

∫ 1

ω−
(1 − pj

i′(x))dx
)

+
∫ ω+

ω−
(−pj

i′(x))dx

< ω+ +
∫ 1

ω+
(1 − pj

i′(x))dx

=⇒ P(S|Aj
i , p−i([ω, 1]), ω−) < P(S|Aj

i , p−i([ω, 1]), ω+)
=⇒ E[ui(Aj

i , p−i([ω, 1]))|ω−] < E[ui(Aj
i , p−i([ω, 1]))|ω+]

This proves (ii).
In addition:

lim
ω→1

P(S|Aj
i , p−i([ω, 1]), ω) = 1 =⇒ lim

ω→1
E[ui(Aj

i , p−i([ω, 1]))|, ω] = aj (iii)

Proof of Proposition 0.
For agent ranked ith in priority, i ∈ {1, . . . , n}, denote µ(i) ∈ {1, . . . , m, ∅} her final allocation on the benchmark
market.

(i) We prove an induction statement: H(i) : µi = i, i ∈ {1, . . . , m}

– Initial step
∀ i{1, . . . , n} : ω1 > ωi =⇒ u1(Aj

1, σ−1) = aj − c
u1(N1, σ−1) = 0
=⇒ ∀ σ−1, BR1(σ−1) = {A1

1}
=⇒ σ1 = A1

1, µ1 = 1 H(1)
– Inductive step

Set i ∈ {1, . . . , m − 1} s.t. H(1), . . . , H(i) true.
∀ j ∈ {1, . . . , i} : ωj > ωi+1 =⇒ ui+1(Aj

i , σ−(i+1)) = −c

∀ j ∈ {i + 1, . . . , n} : ωi+1 > ωj =⇒ ui+1(Aj
i , σ−(i+1)) = aj − c

ui(Ni, σ−(i+1)) = 0
=⇒ BRi+1(σ−(i+1)) = {Ai+1

i+1}
=⇒ σi+1 = Ai+1

i+1, µi+1 = i + 1 H(i + 1)
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(ii) We set m + 1 ≤ i ≤ n.
By (i): ∀ j ∈ {1, . . . , m}, ui(Aj

i , σ−i) = −c
ui(Ni, σ−i) = 0
=⇒ BRi(σ−i) = {Ni}
=⇒ σi = Ni =⇒ µi = ∅

Proof of Proposition 1.
We define the “interim action set” at score ω as the subset of actions that are played with positive probabilities at
score ω: Aj ∈ IAS(ω) if pj(ω) > 0.
We state and prove a lemma characterizing interim action sets at any BNE of the AG (symmetric or asymmetric).

Lemma 4. [Interim action sets at BNE]
(i) At any BNE of the AG, σ ∈ □BNE(G):

• Robust profile:

– ∃ 1 = ω0 > ω1 > ω2 ≥ 0 s.t. :
{

IAS((ω1, ω0)) = {A1}
IAS((ω2, ω1)) = {A1, A2} .

• Potential profile:
– ∀ k ∈ {3, m}, if ∃ ω|pk(ω) < 0, then:

∃ 1 = ω0 > ω1 > ... > ωk ≥ 0 s.t.: ∀ j ∈ {1, . . . , k}, IAS((ωj , ωj−1)) = {A1, . . . , Aj}.
– If ∃ ω|pm+1(ω) < 0, then:

∃ 1 = ω0 > ω1 > . . . > ωm > ωm+1 =
0 s.t.

{
∀ j ∈ {1, . . . , m}, IAS((ωj , ωj−1)) = {A1, . . . , Aj}

{N} ⊆ IAS((0, ωm))
(ii) Moreover: ω1 is the same in all multiple BNE of a given AG G.

Proof of Lemma 4. Set σ ∈ □BNE(G).
• By Lemma 2., (iii), we have:

lim
ω→1

E[ui|A1
i , σ−i, ω] = a1 − c >

{
aj − c = lim

ω→1
E[ui|Aj

i , σ−i, ω]
0 = lim

ω→1
E[ui|N, σ−i, ω]

And by Lemma 2., (i) (continuity): ∃ ω1 s.t. IAS((ω1, 1)) = {A1}.

• Suppose all players play A1 at all scores: IAS([0, 1]) = {A1}. Then:

lim
ω→0

P(S|A1
i , ω) = 0 =⇒ lim

ω→0
E[ui|A1

i , σ−i, ω] = −c < 0

j ∈ {2, . . . , m} : lim
ω→0

P(S|Aj
i , ω) = 1 =⇒ lim

ω→0
E[ui|Aj

i , σ−i, ω] = aj − c

lim
ω→0

P(S|Ni, ω) = 0 =⇒ lim
ω→0

E[ui|Ni, σ−i, ω] = 0

Then, by Lemma 2. again, (i) and (ii):
– ω 7→ E[ui|A1

i , σ−i, ω] is continuous and strictly increasing on [0, 1] from −c to a1 − c.

– ω 7→ E[ui|Aj
i , σ−i, ω], j ∈ {2, . . . , m} is constant on [0, 1] and equal to aj − c.

– ω 7→ E[ui|Ni, σ−i, ω], j ∈ {2, . . . , m} is constant on [0, 1] and equal to 0.

By the bijection theorem, ∃ ω1 ∈ [0, 1] s.t.:

E[ui|A1
i , σ−i, ω1] = E[ui|A2

i , σ−i, ω1] = a2 − c >

{
aj − c = E[ui|Aj

i , σ−i, ω], j ∈ {3, . . . , m}
0 = E[ui|N, σ−i, ω]

And by Lemma 2., (i) (continuity) again: ∃ 0 < ω2 < ω1 s.t. IAS((ω2, ω1)) ⊆ {A1, A2}.

• Suppose no one plays Ak, k ∈ {1, . . . , 2} on (ω2, ω1). Set k′ ∈ {1, 2}, ̸= k.
Then, by Lemma 2., (ii), again:

– ω 7→ E[ui|Ak
i , σ−i, ω] is constant on (s2, s1) equals to a2 − c.

– ω 7→ E[ui|Ak′

i , σ−i, ω] is strictly increasing on (s2, s1).

So: E[ui|Ak
i , σ−i, ω] > E[ui|Ak′

i , σ−i, ω], and playing Ak is a profitable deviation. So Ak ∈ IAS((ω1, ω2)).
Exchanging the the roles objects 1 and 2, we get: {A1, A2} ⊆ IAS((ω1, ω2)).
In the end: IAS((ω1, ω2)) = {A1, A2}.
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• The proof for the intervals (ωk, ωk−1), j ∈ {3, . . . , m} below is similar. The inclusion IAS(ωk, ωk−1) ⊆
{A1, . . . , Ak} relies on the continuity and monotonicity of expected interim payoffs in Lemma 2. enabling
an application of the intermediate value theorem. The reverse inclusion comes from the indifference in
ωk−1 plus the monotonicity of expected interim payoffs in Lemma 2., giving a sharp characterization of the
no profitable conditions.

• If ωm−1 exists and ∀ j ∈ {1, . . . , m} s.t. lim
ω→0

E[ui|Aj
i , σ−i, ω] < 0, then by the intermediate value theorem

again, ∃ 0 < ωm < ωm−1 s.t. {N} ⊆ SS((0, ωm)) ⊆ {A1, . . . , Am, N}.
All the preceding proves (i) and (ii).

Notations: sk := ωk, k ∈ {0, m + 1}.
Lemma 4. shows that both actions A1 and A2 are played with positive probabilities on (s2, s1). At pure equilib-
rium, this implies that different players play different actions and the equilibrium profile is asymmetric.

Proof of Theorem 1.
1. Interim action sets

Interim action sets at symmetric equilibrium are given by Lemma 4..
Notations: tk := ωk, k ∈ {0, m + 1}.

2. Constant probabilities
Let us now locate on the interval (tk, tk−1) and prove that the probability functions ω 7→ pj(ω), j ∈ {1, m}
are constant on each interval (tk, tk−1). Due to the complexity of notations, we write down the explicit
proof of the probabilities being constant at the inductive step for k = 2 and give the way to go for the
lower classes.

• Set k = 2. Let us locate on the (t2, t1) interval.
The strong indifference principle applied at a score ω⋆ ∈ (t2, t1) delivers the following differential
equation:

(E1
J1,2K) : E[ui(A1

i (ω), σ−i([ω⋆, 1]))|ω⋆] = E[ui(A2
i (ω), σ−i([ω⋆, 1]))|ω⋆]

⇐⇒
(

1 −
∫ 1

t1
f(ω)dω −

∫ t1

ω⋆

p1(ω)f(ω)dω
)n−1

a1 − c =
(

1 −
∫ t1

ω⋆

p2(ω)f(ω)dω
)n−1

a2 − c

⇐⇒
(

1 − F (1) + F (t1) − F (t1) + F (ω⋆) +
∫ t1

ω⋆

p2(ω)f(ω)dω
)n−1

a1

=
(

1 −
∫ t1

ω⋆

p2(ω)f(ω)dω)
)n−1

a2

⇐⇒ F (ω⋆) +
∫ t1

ω⋆

p2(ω)f(ω)dω =
(a2

a1

) 1
n−1
(

1 −
∫ t1

ω⋆

p2(ω)f(ω)dω
)

⇐⇒ (1 + F (t1))
∫ t1

ω⋆

p2(ω)f(ω)dω = F (t1) − F (ω⋆)

Set: G2, a primitive of p2f . Then:

(E1
J1,2K) ⇐⇒ G2(t1) − G2(ω⋆) = F (t1) − F (ω⋆)

1 + F (t1)

Deriving on both sides, we get a necessary condition on the probability functions:

(E1
J1,2K) =⇒ p2(ω⋆)f(ω⋆) = −f(ω⋆)

1 + F (t1)

=⇒


p2(ω⋆) = 1

1 + F (t1)

p1(ω) = F (t1)
1 + F (t1)

We now need to check that those constant probability functions indeed verify equation (E1
J1,2K):

(1 + F (t1))
∫ t1

ω⋆

1
1 + F (t1)f(ω)dω = F (t1) − F (ω⋆)

⇐⇒ (1 + F (t1))
(1 + F (t1)) (F (t1) − F (ω⋆)) = F (t1) − F (ω⋆) ✓
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• Set k ∈ {2, . . . , m − 1}, and suppose H(1), . . . , H(k) hold. Let us locate on the interval (tk+1, tk).
The strong indifference principle applied at a score ω⋆ ∈ (tk+1, tk) delivers a system of k differential
equations with k + 1 unknowns. We denote those equations (El

J1,k+1K), j ∈ {1, . . . , k}. Each of them
is given by:

(Ej
J1,k+1K) : E[ui(Aj

i (ω), σ−i([ω⋆, 1]))|ω⋆] = E[ui(Ak+1
i (ω), σ−i([ω⋆, 1]))|ω⋆]

⇐⇒
(

1 −
∫ tk

ω⋆

pj(ω)f(ω)dω −
tk∑

l=j

∫ tl−1

tl

pj(ω)f(ω)dω
)n−1

aj − c

=
(

1 −
∫ tk

ω⋆

pk+1(ω)f(ω)dω
)n−1

ak+1 − c

If we replace p1(ω⋆) by 1 −
∑k+1

j=2 pk(ω⋆), we end up with only k unknowns, hence a Cramer sys-
tem. We can use the substitution method, to get in the end a relation between (for instance) only∫ tk

ω⋆ pk+1(ω)f(ω)dω and pk
J1,kK

∫ tk−1

tk f(ω)dω. Posing primitives and deriving the whole gives constant

probabilities pj
J1,k+1K.

3. Probability levels
Set k ∈ {2, . . . , m − 1}, and further exploit the differential equations:

(Ej
J1,k+1K) : E[ui(Aj

i (ω), σ−i([ω⋆, 1]))|ω⋆] = E[ui(Ak+1
i (ω), σ−i([ω⋆, 1]))|ω⋆]

⇐⇒
(

1 −
∫ tk

ω⋆

pj(ω)f(ω)dω −
tk∑

l=j

∫ tl−1

tl

pj(ω)f(ω)dω
)n−1

aj − c

=
(

1 −
∫ tk

ω⋆

pk+1(ω)f(ω)dω
)n−1

ak+1 − c

⇐⇒
(

1 −
∫ tk

ω⋆

pj(ω)f(ω)dω −
tk∑

l=j

∫ tl−1

tl

pj(ω)f(ω)dω
)

=
(ak+1

aj

) 1
n−1
(

1 −
∫ tk

ω⋆

pk+1(ω)f(ω)dω
)

⇐⇒
(

1 − pj
J1,k+1K(F (ω⋆) − F (tk)) −

tk∑
l=j

pj
J1,lK((F (tl) − F (tl−1))

)
=
(ak+1

aj

) 1
n−1
(

1 − pk+1
J1,k+1K(F (ω⋆) − F (tk))

)
Deriving on both sides, we get:

(Ej
J1,k+1K) =⇒ −pj

J1,k+1Kf(ω⋆) = −
(ak+1

aj

) 1
n−1

pk+1
J1,k+1Kf(ω⋆)

=⇒ pj
J1,k+1K =

(ak+1

aj

) 1
n−1

pk+1
J1,k+1K

This is a recursive formula for the probability levels within class (tk+1, tk). To find the explicit formulas,
we use the fact that the k + 1 probability levels sum up to one:

k+1∑
j=1

pj
J1,k+1K = 1 =⇒ pk+1

J1,k+1K

k+1∑
l=1

(ak+1

al

) 1
n−1 = 1

=⇒ pk+1
J1,k+1K =

(
(ak+1)

1
n−1

k+1∑
l=1

(al)
−1

n−1

)−1

=⇒ pj
J1,k+1K =

(
(aj)

1
n−1

k+1∑
l=1

(al)
−1

n−1

)−1

=⇒ pj
J1,k+1K =

( k+1∑
l=1

(aj

al

) 1
n−1
)−1
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Finally, on the bottom interval (0, tm), it cannot be that players apply to j ∈ {1, . . . , m}. Otherwise, by
Lemma 2. (ii), ω 7→ E[u|Aj , σ, ω] would be increasing so strictly negative at some score ∈ (0, tm), hence a
profitable deviation to action N . So: pm+1 is constant equal to 1 on (0, tm).

4. Thresholds
The remaining task is to characterize the thresholds tk, k ∈ {2, . . . , m}.

• tk, k ∈ {2, . . . , m − 1} By definition:

tk := inf
{

ω⋆ ∈ [0, 1]| ∀ ω > ω⋆, min
l∈{1,...,k}

E[ui(Al
i(ω), σ−i([ω, 1]))|ω] ≥ E[ui(Ak+1

i (ω), σ−i([ω, 1]))|ω]
}

By the strong indifference principle, we have that all E[ui(Al
i(ω), σ−i([ω, 1]))|ω], l ∈ {1, . . . , k} are

equal on (tk, tk−1). So:

tk = inf
{

ω⋆ ∈ [0, 1]| ∀ ω > ω⋆, E[ui(Ak
i (ω), σ−i([ω, 1]))|ω] ≥ E[ui(Ak+1

i (ω), σ−i([ω, 1]))|ω]
}

=⇒ E[ui(Ak
i tk), σ−i([tk, 1]))|tk] = E[ui(Ak+1

i (tk+1), σ−i([tk+1, 1]))|tk+1]

=⇒
(

1 −
∫ tk−1

tk

pk(ω)f(ω)dω
)n−1

ak − c = ak+1 − c

=⇒
(
1 − pk

J1,kK(F (tk−1) − F (tk)
)n−1

ak − c = ak+1 − c

=⇒ pk
J1,kK(F (tk−1) − F (tk)) = 1 −

(ak+1

ak

) 1
n−1

=⇒ F (tk) = F (tk−1) + 1
pk

J1,kK

(
− 1 +

(ak+1

ak

) 1
n−1
)

Plugging in the formula for the probability levels, we get:

F (tk) = F (tk−1) + (ak)
1

n−1

k∑
l=1

(al)
−1

n−1

(
− 1 +

(ak+1

ak

) 1
n−1
)

F (tk) = F (tk−1) + ((ak+1)
1

n−1 − (ak)
1

n−1 )
k∑

l=1
(al)

−1
n−1

This is a recursive formula characterising the thresholds. The explicit formula is therefore:

F (tk) = F (t0) +
k∑

j=1
((aj+1)

1
n−1 − (aj)

1
n−1 )

k∑
l=1

(al)
−1

n−1

The second term is close to be a telescopic sum. The second part is
∑k

j=1 αj(aj)
1

n−1 where we
compute the terms below:

– j = 1: α1(a1)
1

n−1 = −(a1)
1

n−1 (a1)
−1

n−1 = −1
– 2 ≤ j ≤ k:

αj(aj)
1

n−1 =
( j−1∑

l=1
(al)

1
n−1 −

j∑
l=1

(al)
−1

n−1

)
(aj)

−1
n−1 = −(aj)

1
n−1 (aj)

−1
n−1 = −1

– j = k + 1: αk+1(ak+1)
1

n−1 =
k∑

l=1
(al)

−1
n−1 (ak+1)

1
n−1 =

k∑
l=1

(ak+1

al

) 1
n−1

In the end, we get:

F (tk) = 1 − k +
k∑

l=1

(ak+1

al

) 1
n−1
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• k = m

E[ui(Am
i (tm), σ−i([tm, 1]))|tm)] = E[ui(N(tm), σ−i([tm, 1]))|tm)]

⇐⇒
(
1 − pm

J1,mK(F (tm) − F (tm−1))
)n−1

am − c = 0

⇐⇒ F (tm) = F (tm−1) + 1
pm

J1,mK

(
− 1 +

( c

am

) 1
n−1
)

⇐⇒ F (tm) = 2 − m +
m−1∑
l=1

(am

al

) 1
n−1 +

m∑
l=1

(am

al

) 1
n−1
(

− 1 +
( c

am

) 1
n−1
)

⇐⇒ F (tm) = 1 − m +
m∑

l=1

( c

al

) 1
n−1

5. Number of classes

k0(p⋆) = k ∈ {1, . . . , m} ⇐⇒ F (tk) ≤ 0 < F (tk−1)

⇐⇒ 1 − k +
k∑

l=1

(ak+1

al

) 1
n−1 ≤ 0 < 2 − k +

k−1∑
l=1

(ak

al

) 1
n−1

⇐⇒ 1 +
k∑

l=1

(ak+1

al

) 1
n−1 ≤ k < 2 +

k−1∑
l=1

(ak

al

) 1
n−1

k0(p⋆) = m + 1 ⇐⇒ F (tm) > 0

⇐⇒ 2 − m +
m∑

l=1

( c

al

) 1
n−1

> 0

⇐⇒ 2 +
m∑

l=1

( c

al

) 1
n−1

> m

Proof of Corollary 1.

(i) We characterize the probability level variations:

– Within classe
By the block structure, we immediately have that for ω, ω′ ∈ [tk, tk−1] : pj(ω) = pj

J1,kK = pj(ω′).
– Between classes

From Theorem 1., probability levels write as:

pj
J1,kK =

(
(aj)

1
n−1

k∑
l=1

(al)
−1

n−1

)−1

k 7→
∑k

l=1(al)
−1

n−1 is a sum with positive terms, hence increasing in k. Going to the inverse, we find
that pj

J1,kK is decreasing in k.

(ii) We prove First Order Stochastic Dominance:
Denote: σ(ω) the distribution with support {A1, . . . , Am} and probabilities: P(σ(ω) = Aj) = pj(ω), j ∈
{1, . . . , m}.
Using the formulas for probability levels in Theorem1., we find for ω ∈ (tk, tk−1):

j∑
l=1

pl(ω) =
j∑

l=1
pl

J1,kK =
{ ∑j

l=1

(
(aj)

1
n−1

∑k
l=1(al)

−1
n−1

)−1
if j < k

1 if j ≥ k

=


∑j

l=1(al)
−1

n−1∑k
l=1(al)

−1
n−1

if j < k

1 if j ≥ k

Set 0 ≤ ω′ < ω ≤ 1.
We seek to demonstrate ∀ j ∈ {1, . . . , m}:

(⋆)j :
j∑

l=1
pl(ω′) ≤

j∑
l=1

pl(ω)
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– If ω′, ω belong to the same class Ck, then because of the block structure:

j∑
l=1

pl(ω′) =
j∑

l=1
pl(ω)

So (⋆)j , j ∈ {1, . . . , m} trivially holds.

– If ω′, ω belong to different classes, ω′ ∈ Ck′
, ω ∈ Ck, k < k′, then there are two subcases:

* If k′ = m + 1 then ∀ j ∈ {1, . . . , m},
∑j

l=1 pl(ω′) = 0 and (⋆)j is trivially verified.

* If k′ ≤ m then:
For j ≤ k, then:

∑j
l=1 pl(ω) = 1 and (⋆)j is trivially verified.

For j < k < k′, then: ∑j
l=1 pl(ω)∑j
l=1 pl(ω′)

=
∑k′

l=1(al)
−1

n−1∑k
l=1(al)

−1
n−1

> 1 =⇒ (⋆)j

(iii) From the proof of Theorem 1., we have the following recursive formula:

pj
J1,kK =

(ak

aj

) 1
n−1

pk
J1,kK

And aj 7→
(

ak

aj

) 1
n−1

is decreasing in j, equivalently increasing in j. So, pj
J1,kK is increasing in j.

(iv) The ex ante probability of applying to object j writes:

pj : =
m+1∑
k=j

(F (tk−1) − F (tk))pj
J1,kK

For 1 ≤ k ≤ m − 1, from Theorem 1. we have:

(F (tk−1) − F (tk))pj
J1,kK = 1

pk
J1,kK

(
1 −

(ak+1

ak

) 1
n−1
)

pj
J1,kK

=
k∑

l=1

(ak

al

) 1
n−1 1

k∑
l=1

(aj

al

) 1
n−1

(
1 −

(ak+1

ak

) 1
n−1
)

=
(ak

aj

) 1
n−1
(

1 −
(ak+1

ak

) 1
n−1
)

= (ak)
1

n−1 − (ak+1)
1

n−1

(aj)
1

n−1
(⋆)

Summing up, we recognize a telescopic sum and we get:

pj = (aj)
1

n−1 − (am+1)
1

n−1

(aj)
1

n−1

pj = 1 −
( c

aj

) 1
n−1

Proof of Corollary 2.

(i) All agents participate iff there are at most m classes. By Theorem 1. (i), this happens iff:

m ≥ 1 +
m∑

l=1

( c

al

) 1
n−1

(ii) By Proposition 0., at the Nash equilibrium of the Application Game with perfect information, the expected
participation is m

n .
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By Theorem 1., at the symmetric BNE of the Application Game with imperfect information, expected
participation is:

1 − F (tm) = m −
m∑

l=1

( c

al

) 1
n−1 =

m∑
l=1

1 −
( c

al

) 1
n−1 =

m∑
l=1

pl

Participation is therefore higher at BNE iff:

m −
m∑

l=1

( c

al

) 1
n−1 ≥ m

n

1 − 1
n

≥ 1
m

m∑
l=1

( c

al

) 1
n−1

m ≥ n

n − 1

m∑
l=1

( c

al

) 1
n−1

Proof of Proposition 2.

(B) By Proposition 0., the welfare on the benchmark market is given by:

W B := E[u(σ∗)] = 1
n

m∑
k=1

(ak − c)

Since ∀ k ∈ {1, . . . , m}, ak − c > 0, this is the maximum welfare attainable in the Application Game.

(F) We use the formula of the interim welfare, tk < w < tk−1 (see section §5.2):

W F (ω) =
k∑

j=1
pj

J1,kK.
((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−1
aj − c

The ex ante welfare aggregates all interim welfare (k = m) taking into acount the distribution of scores:

W F =
∫ 1

0
W F (ω)f(ω)dω

=
m∑

k=1

[∫ tk−1

tk

k∑
j=1

pj
J1,kK.

((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−1
ajf(ω)dω − c(F (tk−1) − F (tk)

]
We denote:

Ik :=
∫ tk−1

tk

k∑
j=1

pj
J1,kK.

((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−1
ajf(ω)dω

=
k∑

j=1
pj

J1,kKa
j .

∫ tk−1

tk

((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−1
f(ω)dω

We denote:

Lkj :=
∫ tk−1

tk

((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−1
f(ω)dω

=
[ 1

npj
J1,kK

((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n]tk

tk−1

= 1
npj

J1,kK

[(ak

aj

) n
n−1 −

((ak

aj

) 1
n−1 − (F (tk−1) − F (tk))pj

J1,kK

)n]
(⋆)= 1

npj
J1,kK

[(ak

aj

) n
n−1 −

((ak

aj

) 1
n−1 − (ak)

1
n−1 − (ak+1)

1
n−1

(aj)
1

n−1

)n]
= 1

npj
J1,kK

[(ak

aj

) n
n−1 −

((ak+1

aj

) 1
n−1
)n]

= 1
npj

J1,kK

[ (ak)
n

n−1 − (ak+1)
n

n−1

(aj)
n

n−1

]
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Substituting in Ik, we get:

Ik =
k∑

j=1
pj

J1,kKa
j .

1
npj

J1,kK

[ (ak)
n

n−1 − (ak+1)
n

n−1

(aj)
n

n−1

]

= 1
n

((ak)
n

n−1 − (ak+1)
n

n−1 )
k∑

j=1
(aj)

−1
n−1

Substituting in W F , we get:

W F = 1
n

( m∑
k=1

((ak)
n

n−1 − (ak+1)
n

n−1 )
k∑

j=1
(aj)

−1
n−1

)
− c

m∑
k=1

(F (tk−1) − F (tk))

The second term is a telescopic sum and the first term is close tot be a telescopic sum.

– k = 1: (a1)
n

n−1 .(a1)
−1

n−1 = a1

– 2 ≤ k ≤ m: (ak) n
n−1

(∑k
j=1(aj) −1

n−1 −
∑k−1

j=1 (aj) −1
n−1

)
= (ak)

n
n−1 (ak)

−1
n−1 = ak

– k = m + 1: −(am+1)
n

n−1
∑m

j=1(aj) −1
n−1

In total, we get:

W F = 1
n

( m∑
k=1

ak − (am+1)
n

n−1

m∑
j=1

(aj)
−1

n−1
)

− c(1 − F (tm))

= 1
n

( m∑
k=1

ak − c
n

n−1

m∑
j=1

(aj)
−1

n−1
)

− c
(

m −
m∑

l=1

( c

al

) 1
n−1
)

= 1
n

( m∑
k=1

ak
)

− 1
n

c

m∑
l=1

( c

al

) 1
n−1 − c

(
m −

m∑
l=1

( c

al

) 1
n−1
)

= 1
n

( m∑
k=1

ak
)

− c
(

m − n

n − 1

m∑
l=1

( c

al

) 1
n−1
)

The welfare gap is given by:

W B − W F = 1
n

m∑
j=1

(aj − c) −
[ 1

n

m∑
k=1

ak + c
(

m − n − 1
n

m∑
l=1

( c

al

) 1
n−1
)]

= c
(

− m

n
+ m − n − 1

n

m∑
l=1

( c

al

) 1
n−1
)

= c
n − 1

n

(
m −

m∑
l=1

( c

al

) 1
n−1
)

∀l ∈ {1, . . . , m},c < al ⇒
( c

al

) 1
n−1 < 1 ⇒ m >

m∑
l=1

( c

al

) 1
n−1 ⇒ W B > W F

Proof of Lemma 3.

(B) By Proposition 0., on at the Nash equilibrium of the benchmark market, and agent receives utility (ai − c)
iff he is ranked ith in priority. For an agent with score ω, this happens with probability:

P(ω ranked i) = (1 − F (ω))i−1F (ω)n−i

(
n − 1
i − 1

)
In total, we have:

W B(ω) =
m∑

i=1

(
n − 1
i − 1

)
(1 − F (ω))i−1F (ω)n−i(ai − c)



48 Chapter 1. Information and Discrimination in Matching with Priority Scores

F cdf hence continuous ⇒ W B continuous.
By definition (or by computation, using the binomial theorem):

n∑
i=1

(
n − 1
i − 1

)
(1 − F (ω))i−1F (ω)n−i = 1

When ω increases, P(ω ranked i) increases (decreases) for small (large) i - associated to high (low) utilities
(ai − c). So W B(ω) strictly increasing with ω.

(F) By Theorem 1., for tk < ω < tk − 1, we have:

W F (ω) := E[u(p⋆)|ω] =
k∑

j=1
pj

J1,kKP(S|Aj , ω)aj − c

P(S|Aj , ω) =
(

1 −
k−1∑
l=j

(F (tl−1) − F (tl))pj
J1,lK − (F (tk−1) − F (ω))pj

J1,kK

)n−1

From the proof of Corollary 1., we know:

(F (tl−1) − F (tl))pj
J1,lK = (al)

1
n−1 − (al+1)

1
n−1

(aj)
1

n−1
(⋆)

Summing up, we recognize a telescopic sum and we get:

k−1∑
l=j

(F (tl−1) − F (tl))pj
J1,lK = (aj)

1
n−1 − (ak)

1
n−1

(aj)
1

n−1
= 1 −

(ak

aj

) 1
n−1

Substituting, we get:

P(S|Aj , ω) =
((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−1)

W F (ω) := E[u(p∗)|ω] =
k∑

j=1
pj

J1,kKa
j
((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−1
− c

By Theorem 1. again, for 0 ≤ ω ≤ tm, we trivially get W F (ω) = 0 (constant).
F cdf hence continuous ⇒ W F continuous.
For the monotonicity, we differentiate:

∂P(S|Aj , ω)
∂ω

= f ′(ω)(F (tk−1) − F (ω))pj
J1,kK(n − 1)

((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−2
> 0

This immediately proves the monotonicity within class.
When combined with Corollary 1. (ii), it also proves the monotonicity across classes.

Proof of Proposition 3.

We define the interim welfare gap: g(ω) = W B(ω) − W F (ω).
By Theorem 1., we have:

m > 1 +
k∑

l=1

( c

al

) 1
n−1 ⇐⇒ W F (0) > 0 ⇐⇒ g(0) > 0

By Proposition 2. (continuity), we get existence of the threshold ω′.

***** Proofs of example (§4.2) *****

Proof of example n = 3 > m = 2, F ∼ U for (asymmetric) pure BNE

• Top class (s1, 1):
By Lemma 4., ∀ i ∈ {1, . . . , 3}, σi((s1, 1)) = A1.
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• Middle class (s2, s1):
By Lemma 4.:
∃ i ∈ {1, 2, 3}, si((s2, s1)) = A1 (set i=1).
∃ i′ ∈ {1, 2, 3}, si((s2, s1)) = A2 (set i′=2).
Let us characterize the action of player 3 on [s2, s1]. The interim payoffs of player 3 at ω′ < s1 write:

E[u3(A1
3(ω′), p([ω′, s1])|ω′] = ω′s1a1 − c

E[u3(A2
3(ω′), p([ω′, s1])|ω′] = (1 − (s1 − ω′))a2 − c

The difference between the two is:

∆(ω′) = [ω′s1a1 − c] − [(1 − (s1 − ω′))a2 − c] = ω′s1a1 − (1 − s1 + ω′))a2

We differentiate with respect to ω′:

∂∆(ω′)
∂ω′ = s1a1 − a2 =

√
a1a2 − a2 =

√
a2(

√
a1 −

√
a2) > 0

So ∆ is strictly increasing. We know, by indifference at s1: ∆(s1) = 0. So: ∆(ω′) < 0.
Conclusion: s3([s2, s1]) = A2.

• Bottom interval (0, s2):
By Lemma 4.: ∃ i ∈ {1, 2, 3} s.t. si([0, s2]) = N .
By Lemma 2. (ii): ω 7→ E[u1(A1(ω), s([ω, ])|ω] is constant..
So s1([0, s2]) = A1 and i ̸= 1.
Fix i = 2.

By Lemma 2. (i) and (ii):

 ω 7→ E[u2(N(ω), s([ω, ])|ω] is constant.
ω 7→ E[u3(A2(ω), s([ω, 1])|ω] = E[u3(N(ω), s([ω, 1])|ω] is constant.
ω 7→ E[u1(A1(ω), s([ω, 1])|ω] is constant.

So: s2([0, s2]) = N or A2.

Proof of example n = 3 > m = 2, F ∼ U for symmetric (interior) BNE
Included in Theorem 1..
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Appendix B Supplements

B.1 Pure (asymmetric) Bayes-Nash equilibrium - Partial characterization

The next theorem only partially characterizes the pure BNE of the AG:

Theorem 2. [Pure (asymmetric) BNE]
A pure strategy BNE of the AG:

(i) exists and is unique up to strategies on the (0, sm) interval, and payoff-unique.
(ii) exhibits finite number of intervals of scores where the interim action sets are constant.

The proof is in two steps. First, we use Lemma 4 characterizing the interim action sets. Second, for
each interval of score with constant interim action set, we characterize the number of agents playing each
action in the interim action set. For example, on the interval [s2, s1], we determine the pair(s) of two integers
(k1, k2), k1 + k2 = n, where k1 (k2) of agents playing A1 (A2). We find that the no profitable deviation
inequalities between payoffs always defines a (unique) pair (k1, k2). We proceed similarly at lower scores.
The theorem still allows many different patterns within the intervals where the interim action set is constant.
Whenever we introduce n ≥ 4 agents, the equilibrium patterns depends finely on the parameters of the AG,
hence a low robustness.24 We illustrate this lack of robustness below with an example:

n = 4, F ∼ U
• Case 1: a1 > 8a2 + 7c → (k1, k2) = (1, 3)
• Case 2: a1 < 8a2 + 7c → (k1, k2) = (2, 2)

1

1A2 A1

A1

s1s2

×k1

×k2

In general, the pure BNE can support quite odd strategy profiles, where some strategies exhibit no sorting
(an agent plays higher value objects at lower scores), or sorting with jumps (an agent plays high value objects
at high scores, low value objects at intermediate scores but never plays the intermediary value objects). In these
profiles, each strategy is virtually unique and highly sophisticated. The profiles are “very assymmetric”. This
questions the ability of players to coordinate on these equilibria.

24In this respect, the robustness of the pure equilibrium in section §4.2 was a special feature of the example.
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B.2 Symmetric (interior) equilibrium - Comparative statics

In this section, we describe how a change in the parameters of the AG affects the symmetric BNE of the AG.

Values and cost
The coming proposition emphasizes that the symmetric equilibrium is invariant to a rescaling of all object

values and the application cost.

Proposition 4. [Invariance to rescaling]
In an Application Game, if we multiply all object values and the cost by a given constant, the symmetric (interior)
Bayes-Nash equilibrium remains unchanged.

Proposition 4 implies that any non-trivial comparative static analysis must first keep the cost fixed as object
values fluctuate, and second, normalize the object values while varying the cost.

The relative position of values affects the equilibrium structure in an intuitive way. If objects are highly
homogeneous in values, agents almost perfectly randomize between available objects. There is close to a single
class, the lowest one, plus the no application class. Coordination is horizontal. When, on the contrary, the values
are heterogeneous, people sort by levels of scores, the strategy is close to being pure. Coordination is vertical.

When the cost is high, agents even with intermediate scores resort to the safe no application action, and
agents with the highest score coordinate. When the cost is low, incentives to play the no application action
disappear, and incentives to coordinate on different objects are reduced.

We provide below a graphical representation of the discussion in the example.

Homogeneous values

A2

A1

A1N

High cost

A2

A1

A1N

Heterogeneous values

A2

A1

A1N

Low cost

A2

A1

A1

FIGURE 1.11: Comparative statics: Symmetric (interior) BNE for various values and cost - m = 2

Market balance
An increase in the number of agents n increases all thresholds, decreases class sizes. The effect is especially

strong on bottom classes. It increases (decreases) probability levels for low (high) value objects. In net effect,
introducing more agents decreases the ex ante probability with which any action is played, except for the no
application action, which is played more frequently. The rationale is that more numerous agents generate com-
petition via an increase in the probability of crowding, hence in the occurrence of failure. This pushes agents to
be more cautious: high score agents mix with lower value objects, and low score agents more often decide not to
apply.

Due to the recursive structure of the AG, the introduction of an additional object has a very clean effect on
the equilibrium structure, described in the coming proposition.

Proposition 5. [Effect of additional object]
In an Application Game, the addition of an object with a given value ak0+1 < anew < ak0 :

- Only affects equilibrium thresholds tk and levels pj
J1,kK on the adjacent higher class and on lower classes

(k ∈ {k0, . . . , m}).
- Does not affect the equilibrium application probabilities for all application actions Aj , j ∈ {1, . . . , m} that

were already available before the addition.

In other words, the addition of an object does not affect individual behavior at levels of scores where agents
were all applying to higher-value objects. It does affect individual behavior at levels of scores where some were
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applying to lower value objects. The collective behavior remains unchanged in the sense that each lower value
object is played as often as before the addition: only the identities of the applicants are modified, not the mass.
Playing the new object only happens at the detriment of the no application strategy.

Priority score distribution
Another key property of the equilibrium is that the whole effect of the distribution is captured in the thresh-

olds hence in the class sizes. The next proposition formalizes this remark.

Proposition 6. [Effect of priority score distribution]
In an Application Game, the priority score distribution:

- Does not affect equilibrium levels.
- Only affects the equilibrium thresholds, in a way that keeps the mass of each class fixed.

In summary, we expect a narrow (wide) class at score levels featuring a high (low) concentration of agents.
Whether narrow with many agents or wide with few agents, an equilibrium class always features the same mass.
In particular, if we change the priority score distribution to a mean-preserving spread distribution, we will get
that extreme (middle) classes become narrower (wider). In expectation, the number of agents playing each
possible mixture will remain unchanged.
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B.3 Extension: Endogenous cost and the dynamic

In reality, decentralized allocation is always a dynamic process. This is also true in the leading example of so-
cial housing in Paris, where each week, a new application round opens and new vacant accommodation becomes
available.
There are two ways to include a dynamic in the model, thereby increasing its descriptive strength. The first and
probably most natural way is to model the dynamic explicitly and study the subsequent dynamic search prob-
lem.25 The second and undoubtedly more tractable way is to endogenize some previously exogenous parameters
of the static model to display the main effects of the dynamic while remaining in a static and simple framework.
In this line of idea, it must be considered that in a dynamic version of the allocation, an agent with a high priority
who fails in a given round necessarily keeps a high chance of being allocated an object in future rounds. Her
continuation value is high. One way to capture this effect in the static model is to have the cost depend nega-
tively on the priority score. C is now a strictly decreasing function of ω: c′(ω) > 0. We set c(0) < am implying
∀ ω ∈ [0, 1], j ∈ {1, . . . , m}, c(ω) < aj (the cost never exceeds the value of any object).

Proposition 7. [BNE with score-dependent cost]
In the application game with score-dependent strictly decreasing cost c(ω), c′(ω) < 0, a symmetric (interior) Bayes-

Nash equilibrium:
(1) Exists and is unique.

(2) Is similar to the symmetric Bayes-Nash equilibrium of the Application Game with exogenous cost:

(i) If tm < 0, the equilibria are exactly the same with exogenous and score-dependent costs.

(ii) If tm > 0, the equilibria are the same except that tm is higher in with endogenous cost and the mth class
[tm, tm−1] is narrower.

In the proof for the exogenous cost model equilibrium, it was already apparent that thresholds and probability
levels in the domain where agents apply with full probability were independent of the cost (with cost functions
canceling out on both sides of indifference differential equations). Only the indifference equations between
application actions Aj and no application N at tm feature the application cost on one side.
The implication is that with an endogenous cost rising sharply, the agent applies a little less to all objects by being
more prudent at low scores. The lowest value objects suffer the larger decrease in applications.
For illustration, we display the symmetric equilibrium for the small dimensional AG with a score-dependent
(linear) cost: c(ω) = 3

2 − ω. For comparison, we also display the equilibrium on the same market with exogenous
cost c = 1:26

A2

A1

A1N

t1t2

p2
J1,2K

A2

A1

A1N

t1t2

p2
J1,2K

FIGURE 1.12: Endogenous cost c(ω) = 3
2 − ω (left) vs constant cost c = 1 (right)

Symmetric (interior) BNE m = 2, n = 3, a2 = 2, a1 = 4, F ∼ U

Corollary 3. [Welfare with endogenous cost]
On the frictional market with score-dependent strictly decreasing cost c(ω), c′(ω) < 0, the equilibrium interim

expected payoff rises faster ( ∂W B(ω)
∂ω larger) on [tm, 1] than with exogenous cost.

We illustrate this point below:

25Stationarity assumptions may help: agents and objects leaving the market are replaced by agents with similar priorities
and objects with similar values, and agents staying on the market during several periods keep their priorities.

26Note that the expected cost is the same in both cases (equals 1).
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0 t2 t1 1
0

a2 − c

a1 − c

ω
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[u
(p

⋆
)|ω

]

FIGURE 1.13: Endogenous cost c(ω) = 3
2 − ω (blue) vs constant cost c = 1 (orange)

Interim expected payoff at the symmetric (interior) BNE - m = 2, n = 3, a2 = 2, a1 = 4, F ∼ U

In conclusion, endogenous cost induces more discrimination according to score. The market outcome is
closer to the outcome of the benchmark market (more discrimination). Accounting for the dynamic will reduce
the magnitude of the welfare effects identified in section §5.2.
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B.4 Extension: Larger or no truncation

In many real-life matching markets, agents are allowed to apply to more than one object. This is usually the
case in school choice or centralized job market. In particular, the French national system for allocating teachers
to schools uses a priority point system and a mechanism akin to a serial dictatorship where teachers can apply to
several schools.27

Thus, a natural extension of our model consists in relaxing or removing the truncation of the application menu.28

To simplify, we process this extension within the framework of the example with n = 3, m = 2, F ∼ U . With no
truncation, the action space includes an additional action B for “both” that consists of applying to both objects
on the market (hence paying the application cost twice).

Preliminary results are summarized in the next proposition.

Proposition 8. [BNE with no truncation]
A symmetric (interior) Bayes-Nash equilibrium of the Application Game with n = 3, m = 2, F ∼ U and no

truncation:
(1) Exists and is unique

(2) (i) If a2

a1 + c
a2 > 1, the symmetric equilibrium is the same as with the truncation. In particular, agents always

apply to at most one object.

(ii) If a2

a1 + c
a2 < 1, at symmetric equilibrium: agents with large scores apply to object 1, agents with scores

lower than a threshold r1 apply to both objects.

Case (i), where agents disregard the possibility of applying to both objects, arises when the application cost
is high relative to the objects’ values. In case (ii), agents use the possibility to apply to all objects, aiming for
the high-value object, but hedging against the possibility that it may not be available anymore. Below r1, all
interim expected payoffs strictly decrease due to competition on both objects, and what is the next shift in action
is non-obvious (and non-robust).

The figure below illustrates the two cases:

A2

A1

A1N

t1t2

p2
J1,2K

FIGURE 1.14: BNE with no truncation - Case (i)
m = 2, n = 3, a2 = 2, a1 = 4, c = 1.5, F ∼ U

B A1

r1

FIGURE 1.15: BNE with no truncation - Case (ii)
m = 2, n = 3, a2 = 2, a1 = 4, c = 0.5, F ∼ U

B.5 Extension: Imperfectly correlated preferences

The assumption that preferences are homogeneous, with any agent assigning exactly the same value as
her peers to any object, is rather restrictive. In social housing, for example, some criteria are valuable to all
applicants (size of the accommodation, equipment), but applicants may value (for example) different micro-
locations differently due, for example, to the location of their jobs. All in all, individual preferences likely
combine common and idiosyncratic components.

We model imperfectly correlated preferences in a simple setting with n = 2 agents and m = 2 objects, and
a uniform priority distribution. The objects can have two possible values v > u > 0, so that each agent has
exactly one most preferred object with value v and one least preferred object with value u. A preference profile
(X1X2), Xi ∈ {u, v} means that object 1 has value X1 to agent 1, X2 to agent 2.

27In two steps: The first step manages allocation between regions, and the second stage within regions.
28Due to homogeneous preferences, the ranking between objects is common, and the action space consists of menus rather

than rank-ordered lists.
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The prior distribution over preference profiles is such that objects are the same ex-ante (they are equally likely
to be each agent’s most preferred object), but preferences are correlated (positive correlation when θ > 1

2 ):

P(uu) = P(vv) = θ

2 , P(uv) = P(vu) = 1 − θ

2 , θ ∈ [0, 1]

We assume that preferences, just as priority scores, are private information. Thus, a type is two-dimensional:
it specifies the priority (score) and the preference (most preferred object), with independence between the two
dimensions.
In this setting, a strategy is a mapping of the score support into two possible actions: applying to one’s most
preferred object (denoted ⊕) or to one’s least preferred object (denoted ⊖).

Proposition 9. [BNE with correlated preferences]
A symmetric (interior) Bayes-Nash equilibrium of the Application Game (n = 2, m = 2, F ∼ U):
(1) Exists and is unique.

(2) Has the following block structure:

(i) There are between 1 and 3 classes.
(ii) In the top class [t1, 1], the agent plays ⊕ with full probability, t1 = θu−(1−θ)v

θv+(1−θ)u .

(ii) Conditional on existence, in intermediate class [t2, t1], the agent plays ⊕ with probability p(⊕) =
θu−(1−θ)v

(2θ−1)(u+v) , ⊖ with probability p(⊖) = 1 − p(⊕)

(iii) Conditional on existence, in the bottom class [0, t2], the agent does not apply.

At any equilibrium, and as expected, agents with high scores are ambitious and apply to their most preferred
object (⊕). It may become more profitable at lower scores (below a score t1) to also target one’s least preferred
object (⊖) because, in expectation, this object is less demanded. Interestingly, the block structure remains.
The difference with the perfect correlation case is that the shift at t1 does not necessarily happen. Indeed, the
fact all agents play ⊕ combined with the imperfect correlation guarantees that both objects receive applications
with positive probabilities. Even when both agents are ambitious, there is partial coordination. Thus, it can be
that all agents keep on with the same strategy at low scores. The shift happens if and only if the correlation is
sufficiently strong and the gap between the two object values is sufficiently small (θ > v

v+u ).

The figure below illustrates the two cases:

⊖

⊕

⊕N

t1t2

p(⊖)

FIGURE 1.16: BNE with correlated preferences
m = n = 2, F ∼ U , v = 2, u = 1, c = 0.5, θ = 0.75

⊕N

t

p(⊖)

FIGURE 1.17: BNE with correlated preferences
m = n = 2, F ∼ U , v = 5, u = 4, c = 1, θ = 0.75
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B.6 Proofs for supplements

Proof of Proposition 7.

The proof is similar to the proof of Theorem 1..
• On class 1 to m, the endogenous cost simplifies in the differential equations, and we get the same system

than with exogenous cost.

• In the equation for the threshold tm differs, the cost does not simplify:

E[ui(Am
i (tm), σ−i([tm, 1]))|tm)] = E[ui(N(tm), σ−i([tm, 1]))|tm)]

⇐⇒
(
1 − pm

J1,mK(F (tm) − F (tm−1))
)n−1

am − c(tm) = 0

⇐⇒ F (tm) = 1 − m +
m∑

l=1

(c(tm)
al

) 1
n−1

The difference in F (tm) in the endogenous cost model vs exogenous cost model is given by:

(c(tm) − c)
m∑

l=1

( 1
al

) 1
n−1 > 0 ⇐⇒ c(tm) > c

Proof of Corollary 3.

The interim expected payoff with endogenous cost is given by (, ω ∈ [tk, tk−1], k ∈ {1, . . . , m}):

W F
e (ω) :=

k∑
j=1

pj
J1,kK.

((ak

aj

) 1
n−1 − (F (tk−1) − F (ω))pj

J1,kK

)n−1
− c(ω)

∂W F
e (ω)
∂ω

= ∂W F (ω)
∂ω

− dc(ω)
dω

c() decreasing with ω ( dc(ω)
dω < 0) implies ∂W F

e (ω)
∂ω > ∂W F (ω)

∂ω .

Proof of Proposition 8.

The interim expected payoffs at score 1 write:

E[ui(A1
i (1))|1] = a1 − c

E[ui(A2
i (1))|1] = a2 − c

E[ui(Bi(1))|1] = a1 − 2c

E[ui(Ni(1))|1] = 0

So σ⋆
i (1) = A1. By continuity, ∃ω1 < 1 s.t. σ⋆

i ((ω1, 1]) = A1.
The interim payoffs at lower scores write:

E[ui(A1
i (ω), σ⋆

−i[ω, 1])|ω] = ω2a1 − c

E[ui(A2
i (ω), σ⋆

−i[ω, 1])|ω] = a2 − c

E[ui(Bi(ω), σ⋆
−i[ω, 1])|ω] = ω2a1 + (1 − ω2)a2 − 2c

E[ui(Ni(ω), σ⋆
−i[ω, 1])|ω] = 0

We solve indifference equations:

E[ui(A1
i (ω), σ⋆

−i[ω, 1])|ω] = E[ui(A2
i (ω), σ⋆

−i[ω, 1])|ω] ⇐⇒ ω =
√

a2

a1

E[ui(A1
i (ω), σ⋆

−i[ω, 1])|ω] = E[ui(Bi(ω), σ⋆
−i[ω, 1])|ω] ⇐⇒ ω =

√
1 − c

a1√
a2

a1 <

√
1 − c

a1 ⇐⇒ a2

a1 + c

a2 > 1

We get two cases:
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• a2

a1 + c
a2 > 1: Below a threshold t1 =

√
a2

a1 , players switch to playing A1 and A2 with indifference.

Just below t1 and similarly to the case with truncation, the agents plays A2 with probability p2
J1,2K = 1

1+t1 .
At a score ω < t1, interim payoffs write:

E[ui(A1
i (ω), σ⋆

−i([ω, 1]))|ω] = E[ui(A2
i (ω), σ⋆

−i([ω, 1]))|ω] =
(
1 − (1 − t1) − (t1 − ω)p1

J1,2K
)2

a1 − c

E[ui(B(ω), σ⋆
−i([ω, 1]))|ω] =

(
1 − (1 − t1) − (t1 − ω)p1

J1,2K
)2

a1 +
(
1 − (t1 − ω)p2

J1,2K
)
a2 − 2c

∆(ω) := E[ui(A1
i (ω), σ⋆

−i([ω, 1]))|ω] − E[ui(B(ω), σ⋆
−i([ω, 1]))|ω] = c −

(
1 − (t1 − ω)p2

J1,2K
)2

a2

∂∆
∂ω

= −2p2
J1,2K

(
1 − (t1 − ω)p2

J1,2K
)2

a2 < 0

So ∆ is decreasing until t1. And by definition of this case: ∆(t1) = 0. So on the left of t1, ∆(ω) > 0.
The agent does not switch to B. Just as in the model with truncation, he randomizes between A1 and A2

potentially until a threshold t2 where he starts playing N . Below t2 all interim payoffs stay constant, so
the agent keeps on playing N until score 0.

• a2

a1 + c
a2 < 1: Below a threshold r1 =

√
1 − c

a2 , players switch to playing B.
At a score ω < r1, interim payoffs write:

E[ui(A1
i (ω), σ⋆

−i([ω, 1]))|ω] = ω2a1 − c

E[ui(B(ω), σ⋆
−i([ω, 1]))|ω] = ω2a1 +

(
(1 − r1)2 + 2ω(1 − ω)

)
a2 − 2c

∆(ω) := E[ui(B(ω), σ⋆
−i([ω, 1]))|ω] − E[ui(A1

i (ω), σ⋆
−i([ω, 1]))|ω] :=

(
(1 − r1)2 + 2ω(1 − ω)

)
a2 − c

∂∆
∂ω

= 2(1 − 2ω)a2 > 0 ⇐⇒ ω <
1
2

So ∆ is decreasing on the left neighborhood of r1. And by definition of this case: ∆(r1) = 0. So on the left
neighborhood of r1, ∆(ω) > 0, and the agent does not immediately switch to another action.

Proof of Proposition 9.

The interim expected payoffs at score 1 write:

E[ui(⊕(1)i)|1] = v − c

E[ui(⊖(1)i)|1] = u − c

So σ⋆(1) = ⊕. By continuity: ∃t1 < 1 s.t. σ⋆((t1, 1]) = ⊕
The interim expected payoffs at score ω < 1 write:

E[ui(⊕i(ω), σ⋆
−i)|ω] = (1 − (1 − ω)θ)v − c

E[ui(⊖i(ω), σ⋆
−i)|ω] = (1 − (1 − ω)(1 − θ))u − c

We characterize the threshold point t1 where the agent start being indifferent between the two actions:

E[ui(⊕i(t1), σ⋆
−i)|t1] = E[ui(⊖i(t1), σ⋆

−i)|t1] ⇐⇒ (1 − (1 − t1)θ)v = (1 − (1 − t1)(1 − θ))

⇐⇒ t1 = θu − (1 − θ)v
θv + (1 − θ)u

We find t1 > 0 ⇐⇒ θ > v
v+u , and v

v+u > 1
2 so the condition is non trivial.

The interim expected payoffs at score ω < t1 write:

E[ui(⊕i(ω), σ⋆
−i)|ω] = [ω + ((1 − t1) + (t1 − ω)p(⊕))(1 − θ) + (t1 − ω)(1 − p(⊕))θ]v − c

E[ui(⊕i(ω), σ⋆
−i)|ω] = [ω + ((1 − t1) + (t1 − ω)p(⊕))θ + (t1 − ω)(1 − p(⊕))(1 − θ)]u − c

The probability level p(⊕) making the agent indifferent between the two actions is characterized by:

E[ui(⊕i(ω), σ⋆
−i)|ω] = E[ui(⊖i(ω), σ⋆

−i)|ω]
⇐⇒ [ω + ((1 − t1) + (t1 − ω)p(⊕))(1 − θ) + (t1 − ω)(1 − p(⊕))θ]v

= [ω + ((1 − t1) + (t1 − ω)p(⊕))θ + (t1 − ω)(1 − p(⊕))(1 − θ)]u
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We differentiate this equation and get:

[1 − p(⊕)(1 − θ) − (1 − p)θ]v = [1 − pθ − (1 − p)(1 − θ)]u

⇐⇒ p(⊕) = θu − (1 − θ)v
(2θ − 1)(u + v)

We check that this level indeed verifies the indifference equation.
The interim payoff at scores below t1 strictly decreases and may hit the zero bound at some lower score t2, where
the agent with lower score would decide not to apply.
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1 Introduction

Matching and complexity

Nobel prize Alvin Roth defines a matching market as “a market in which prices do not do all the
work” (Roth (2017) [56]), implicitly comparing standard markets for goods and matching markets.
A standard market connects sellers willing to sell goods and buyers willing to buy and consume goods.
All relevant information is summarized in the price, which acts as a signal, and agents just need to
solve a decision problem: whether they want to buy / sell, at a given price.
A matching market connects agents with other agents willing to form productive partnerships. Prices
are either absent or set in advance, they do not result from bargaining, and lose their signaling role. An
important corollary is that a matching market participant cannot just choose an object as long as she
can afford it, she has to be chosen as well. The unfortunate consequence is that matching markets are
utterly complex environment for market participants, in at least two ways.

Limited information on preferences

First, playing optimally demands information that may not be available prior to matching. In partic-
ular, matching market participants need knowledge about their own preferences. But intuition suggests
it may be hard to assess how happy one would be in a match prior to experiencing the match. Suppose
for example that the match utility of agent m when matched with f writes like a function taking as ar-
guments two vectors of characteristics, Cm for the agent m, Cf for the partner f : umf := um(Cm, Cf ).
We may assume that agent m perfectly knows himself, his characteristics Cm, and what he values in
matching (the functional form um). In many real-life applications though, assuming prior knowledge
of the full vectors of characteristics Cf of potential partners f seems unrealistic, hence too demanding.
Indeed, in most empirical contexts, information does not come for free. Pre-matching information ac-
quisition is either impossible (when accepting a job position, some aspects of the jobs (quality of daily
interactions with colleagues, effective workload) are not written in the contract and can only be dis-
covered through experience in the job), constrained (a high school student who wants to learn about
colleges is time-constrained and will not be able to learn about all the colleges she could rank in the
mechanism) or costly (in the school choice example, the best way to acquire information is to visit
the colleges’ campuses, hence moving effort and travel costs). In a rational inattention approach,1 an
optimizing agent could decide to remain (partially) uninformed.
Empirical evidence from real-life matching markets2 shows that participants indeed have limited infor-
mation about their options, their preferences, and priorities.

However, we argue there is one piece of information that agents have access to. In general, par-
ticipants observe the current state of the market: who is matched with whom and the realized match
utilities. For marriage: one observes who live together and gets a clue of how happy each partner is in
the marriage (through facial expressions, body language or small talks). This defines a social learning
environment, where one may learn from other agents’ experience.
To fix ideas, consider a case of correlated preferences: assume that all males (females) tend to value
males (females) similarly. Then if one agent A observe that an agent B is very happy in a given match
with another agent C, this is a signal that C has valuable productive characteristics. Agent A should
infer that she could also be quite happy in a match with C.

Bounded cognition3

Second, in the contexts where information is indeed imperfect, (social) learning is complex. This

1See Sims (2003) [63].
2Hoxby and Avery (2013) [32], Wiswall and Zafar (2015) [69], Kapor, Neilson and Zimmerman (2020) [38]. Evidence

is provided through survey and treatment (when one gives agents more information, the strategies change).
3We make a central distinction: between instrumentation (the ability given beliefs on the environments, to optimize) and

cognition (ability to form correct beliefs on the environment). The present paper does not question perfect instrumentation
in matching environments, and rather argue that cognition is the challenging part.
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is because the vector of individual characteristics relevant for matching is multi-dimensional.4 In this
respect, the Bayesian paradigm appears far too demanding. It demands that participants store and
process a large quantity of data in a highly sophisticated way.
There is overwhelming evidence (coming from the field or the lab)5 that agents are unable to do so.
They rather have systematic biases in the way they analyze the data, mostly in a way that simpli-
fies the inference they make. This results in important strategic mistakes (typically, even under the
strategy-proof Deferred Acceptance mechanism, they would submit truncated Rank-Ordered List and
not necessarily rank their favorite option first).

Research question

The issue is, under the type of environment we describe (with limited information on preferences
and bounded cognition), the stability properties of centralized matching mechanisms (such as the cel-
ebrated Deferred Acceptance mechanism by Gale and Shapley (1962) [25]) or decentralized matching
procedure (such as the dynamic blocking pair process studied by Knuth (1976) [40] and Roth and
VandeVate (1990) [58]) no longer hold. Hence the need to develop a new approach to stability.

In this paper, we explicitly model incomplete information on preferences. We set a specific but
natural information structure where agents perfectly observe all realized match utilities but do not
have access to counterfactual utilities. We define a heuristic way in which agents form beliefs on their
own preferences in this environment (the “valuation”).
The question is then: how does this belief formation process affect the (long-run) matching outcome?
We answer by applying the usual pairwise stability solution concept to a market where all agents have
valuation beliefs (“v-stability”). We characterize v-stable matchings.

Summary model and results

Under the valuation heuristic, an agent builds an estimate of the counterfactual utility that she
would get in a blocking pair by extrapolating from current realized utilities. Thus, agents holding
valuation beliefs base their blocking decisions on cardinal comparisons of current utilities across their
own side of the market. In this sense, the heuristic can be connected to the famous and documented
“projection bias” (referring to the tendency to overestimate similarities between oneself and others).

In the pure version of the model, the agent extrapolates from only two signals: his own utility
and the utility of the current partner or the targeted partner. A necessary and sufficient condition for
v-stability is happiness sorting: any two partners must hold the same rank according to realized match
utilities. The predictions under specific preference structures are straightforward. The alignment of
interests across the market governs the size of the v-stable set from empty to maximal. The correlation
of preferences by agent or target makes the positive assortative matching the unique stable matching.
For a generic market, though, we get neither the existence of a v-stable matching nor the convergence
of a dynamic blocking pair process (predicting persistent moves on the market).

In the most general, mixed, version of the model, the market is made of a continuum of agents
belonging to discrete types. A mixed matching describes the proportions of each male type matched
with each female type. The valuation aggregates the utilities of all types matched with the targeted
type. We define a v-stable matching as a steady state of the dynamic blocking pair process, where
blocks that keep the proportions of types matched unchanged are allowed. We get existence of a
v-stable matching in the generic case. The existence theorem proof for mixed v-stable matchings is a
standard fixed point proof using Kakutani’s theorem.

The value of this analysis is two-fold. First, it connects in various ways with stylized facts from
the empirical marriage market. As an example, the “happiness sorting” condition can be read as a
formalization of the famous maxim “You can’t be happier than your wife” which can account to a large

4On a marriage market, Becker (1973) [9] quotes some the individual characteristics that he thinks may be determinant
for productivity in marriage: health, fertility, cooking abilities...

5See Rees-Jones and Shorrer (2023) [52] for a review on education markets.
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extent for divorces (Guven, Senik and Stichnoth (2012) [29]). Second, it has an interpretation in
terms of the long run dynamic that we can expect on real-life markets. Overall, the analysis predicts
significantly more moves than with perfect information.

Outline of paper
The rest of the paper is structured as follows. Section §2 reviews the existing literature on behavioral

matching.6 Section §3 defines and defends the valuation heuristic in its pure version as a natural belief
formation process for matching markets with limited information. Section §4 characterizes pure v-
stable matchings in a general environment as well as for standard preference structures. The analysis
is both static - answering the “what” (what is v-stable?) question -, and dynamic - answering the “how”
(how do we get to a v-stable matching?) question. It emphasizes the lack of existence of a v-stable
matching and the lack of convergence of a dynamic blocking pair process in the general case. Section
§5 defines a notion of mixed matching over a two-sided population of types. Section §6 applies a
standard fixed point theorem in this new setting and restores existence of v-stable matchings. Section
§7 proposes various paths to extend the pure model. Section §8 concludes. All proofs are available in
appendix §A.

2 Literature review

Limited information
We are not the first ones to raise the issue of limited information on matching markets.

Actually, Alvin Roth early on identified modeling of information as an important next step in the analysis
of matching mechanisms as this quote can testify: “[Common knowledge of preferences] is not an
accurate description of the situation prevailing in the kinds of markets to which these models can
mostly be applied. [...] Some of the conclusions reached about strategic decisions are particularly
sensitive to the assumption of complete information.” (Roth (1989) [55]). Since then, a literature
modeling either private information on preferences7 or allowing information acquisition8 has emerged
(still modelling perfectly rational agents).

Bounded rationality
The literature on behavioral matching remains quite scarce, but growing. Behavioral matching

papers typically plug a known behavioral bias (such as non standard preferences)9 into the standard
matching framework. Their focus is mostly on the strategic interactions (non-cooperative game theory).

On the bounded instrumentation side, Caspari and Khana (2021) [12] model agents who are un-
able to choose consistently between potential partners when the menu size exceeds two. They derive
necessary and sufficient conditions on the choices for existence of a pairwise stable matching. In a large
market setting, Artemov, Che and He (2023) [6] propose a solution concept (robust equilibrium) that
requires only an asymptotically optimal behavior. They use it to study large random matching markets
operated with the applicant-proposing Deferred Acceptance. Although applicants may be non-truthful
in Deferred Acceptance, the outcome is arbitrarily close to the stable matching.

On the bounded cognition side, Antler and Bachi (2022) [3] apply cursed equilibrium and analogy-
based expectation equilibrium to a dynamic search market to account for an important empirical puzzle

6In section §3 and §5, we also connect the heuristic with the economic literature on projection bias and bounded ratio-
nality through aggregation.

7Wilson (1978) [68], Roth (1989) [55], Nagypal (2004) [49], Dutta and Vohra (2005) [18], Ehlers and Masso (2007)
[19], Lee (2009) [43], Hoppe, Moldovanu and Sela (2009) [31], Chakraborty, Citanna and Ostrovsky (2010) [14], Chade,
Lewis and Smith (2014) [13], Goursat (2023) [28].

8Bade (2015) [8], Hagenbach, Koessler and Tregouët (2017) [30], Immorlica, Lesno, Lo and Lucier (2020) [33], Gleyze
and Pernoud (2020) [26], Artemov (2021) [5], Chen and He (2021) [15], Bucher and Caplin (2021) [11].

9Meisner (2023) [47] and Meisner and Von Wangenheim (2023) [48] introduce expectation-based loss aversion into a
school-choice setting, to account for students playing dominated strategies in strategy-proof mechanisms. Ranking a preferred
school below a less preferred one is a way to avoid disappointment. Depending on the preferences, this may result in
inefficiencies and instabilities at equilibrium.
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in dating markets. They show that when participants are cursed or coarse, the matching technology be-
comes less efficient as the frictions vanish, with some agents remaining single forever. Li (2017) [44]’s
concept of obvious strategy-proofness also has a behavioral interpretation: a mechanism is obviously
strategy-proof if and only if an agent who is unable to understand how states affect outcomes could
recognize weakly dominated strategies. But since Ashlagi and Gonczarowski (2018) [7] have shown
that no stable mechanism is obviously strategy-proof (hence no hope for mechanism design that would
be robust to bounded cognition), we need to explicitly model cognition on the market.
Liu, Mailath, Postlewaite and Samuelson (2014) [46]10 also model non-Bayesian inference. In their job
market example, firms infer about workers’ types based on the common knowledge of stability. Firms
do not compute a posterior distribution but hold a set of “reasonable” beliefs, beliefs that are consistent
with the premise that the observed matching is stable. Firms are modelled as prudent: they are willing
to form a blocking pair only if the block is beneficial under any reasonable belief.
Richter and Rubinstein (2023) [53] also has a behavioral flavour. In the context of the roommate prob-
lem, they define a notion of unilateral stability, considering that harmony in society may be disrupted
by a unilateral proposition to form a blocking pair. Their favorite interpretation is a story of endogenous
preferences: When A, currently matched with B, approaches C, B (C) feels betrayed (flattered) and
this makes A (less) (more) attractive to B (C).

For the specific field of application of the education markets, Rees-Jones and Shorrer (2023) [52]
provide an exhaustive review of empirical works documenting deviations from the rational theory.
They also list behavioral theories that have been presented as possible explanations for the deviations.
Our model would fall into the category of “application of improper heuristics”. It is consistent with
Rees-Jones and Shorrer (2023)’s intuition that most students do not fully attempt to understand the
matching procedure and instead merely apply rules that served them well in the past.

When introducing the model, we connect the defined belief formation process to various existing
notions of bounded rationality in games.

3 Model: Valuation and v-stability (pure)

3.1 The marriage market

The environment is a marriage market:11 two-sided, discrete (one side of males m ∈ M , one side
of females f ∈ F ), balanced (|M | = |F | = n agents on each side), and without monetary transfers.

A full matching µ ∈ Σ is a one-to-one mapping from the set of agents to itself: µ : M ∪ F → M ∪ F
µ(m) = f ⇐⇒ µ(f) = m. The set of full matchings is denoted Σ.
A male m ∈ M receives a utility umf ∈ R when matched with a female f ∈ F .12

In the baseline model, we do not allow agents to stay unmatched.13 This is equivalent to restricting
our attention to markets where there is a positive matching value14 (and agents understand this). For
example, we can normalize all utilities of singles to zero and set all match utilities positive.

3.2 The information

The information available on the market is limited but free and fully symmetric. Agents observe the
current state of the market, that is two things. They observe the current matching µ (who is matched
with whom) and the set of all realized utilities umµ(m), ∀ m ∈ M, ufµ(f), ∀ f ∈ F . So if m and f

10Followers: Liu (2020) [45], Chen and Hu (2020) [15], Bichkandani (2017) [10], Pomatto (2022) [51].
11We appeal to the marriage market vocabulary for illustration. This semantic choice should not conceal the generality of

the results and the variety of potential applications (in particular, to wage-regulated job markets).
12We define notations for true utilities and beliefs over utilities from the male point of view, but all notations will be

symmetric: ufm is the utility of the female in the pair (m, f).
13In section §7.1, we extend the model to study v-stability of any matching, including non full matchings.
14This case is very frequent in the matching literature. The interpretation for housing is that a household prefers to be

assigned any house rather than stay homeless. In education, a student wants to go to college anyway.
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are currently matched, anyone on the market observes umf , ufm, so knows precisely how much each
partner is happy in his or her marriage. The interpretation is that feedback information about current
satisfaction is easy to get from facial expressions, body language or small (non-strategic) talk.
But agents do not have access to counterfactual match utilities umf , ufm, µ(m) ̸= f . If m and f are
not currently matched together, no one knows about umf , ufm.15

FIGURE 1 below summarizes the information structure for a market of size 2. If the current matching is
µ (parallel lines), the matching and all green utilities are observed by anyone. Any utility arising from
the matching µ′ (crossed lines) in red is not available data.

µ{um1f1}m1

{um2f2}m2

f1{uf1m1}

f2{uf2m2}

µ′
{um1f2}m1

{um2f1}m2

f1{uf1m2}

f2{uf2m1}

FIGURE 2.1: Information structure
In green (red): data available (unavailable) when the current matching is µ

3.3 The valuation

Participants on the defined marriage market are potentially interested in changing partners. To
assess whether that would be beneficial, they must form beliefs on counterfactual match utilities.

We define a belief formation process termed “valuation”. More specifically, we put a constraint on
the beliefs that agents may have about counterfactual utilities.
We define the valuation from the point of view of male m. To clarify the notation, we represent on
FIGURE 2 a subset of the market where one male m is currently matched with a female µ(m) and
considers rematching with a target female f (whose current partner is µ(f)). We denote in green the
realized utilities from the male side.

{umµ(m)}m

{uµ(f)f }µ(f)

µ(m)

f

FIGURE 2.2: Sub-market of size 2 - Male m and target f

Definition 1.
The valuation is a function mapping a male m ∈ M , a female f ∈ F and a matching µ ∈ Σ to a possible
belief of male m over the utility umf that he would get with a targeted partner f when the current matching
is µ:

v : M × F × Σ ⇒ R

vµ
mf ∈ (umµ(m); uµ(f)f ]

↔

The belief is constrained to lie between two realized matched utilities: umµ(m) is the utility that m
currently gets in his own match with his current partner µ(m). uµ(f)f is the utility that the current
partner of the target µ(f) gets in his match with the target f . The double arrow simply means that we
ignore a priori the order between the two utilities. An important specific case is when f = µ(m), then v
is a singleton of the true match utility umf . This is consistent with the assumption that agents observe
all match utilities, including their own.

This valuation is a simple and, we believe, natural heuristic given the hard informational constraint
that feedback data is on realized match utilities only.

15Differently from standard models of limited information in economics, we do not define a prior distribution over coun-
terfactual match utilities. It would be useless for the analysis as the belief formation process we define is non-Bayesian and
prior-free.



Chapter 2. A Heuristic Approach to Matching and Stability 67

Clearly, this is a non-Bayesian estimation of the true utility, and prior-free. It defines a kind of belief
support without a distribution.
The valuation beliefs are endogenous to the current state of the market (and only to this - agents do
not use memory of past matchings).16 This endogeneity will play a major role in the negative results in
the next section §4.

As simple as it is, this heuristic does not force the preferences to be the same for all agents be-
longing to one side of the market: the preferences may still differ cardinally and ordinally (due to the
idiosyncratic bound umµ(m)).
An equivalent formulation would say that the belief can be any convex combination of the two utilities:
vµ

mf ∈ {(1 − λ)umµ(m) + λuµ(f)f , λ ∈ (0, 1]}.17

3.4 Connection with literature

Endogenous preferences
The valuation model introduces endogenous preferences: preferences about future partners depend

on the current matching. This is not completely new in the literature.
Liu, Mailath, Postlewaite and Samuelson (2014) [46] also have this endogeneity. In their case, the
incomplete information agents (firms on a job market) only use the matching (and their knowledge
of stability) to infer about the unknown workers’ types. Firms do not have access to workers’ realized
utilities. The approach to stability is almost opposite to ours. The inference is all about high-order
reasoning on selection effects, which a valuation agent completely neglects. Their stability definition
crucially rests on the firm having multiple reasonable beliefs (whereas the valuation is a point esti-
mator). Their results are drawn by the specific (asymmetric) information structure, (super-modular)
payoff function, and by the possibility for transfers.18 The “valuation” approach applies to a symmetric
environment, and is valid under any payoff functional form.
In Antler (2015) [1], preferences are endogenous to the strategies in a centralized mechanism. This
can model situations where an agent finds a target more attractive simply because he observes that the
target has ranked him high in her rank-ordered list. Antler (2015) is interested in the strategic aspects
and models the associated submission game (whereas agents in our model solve a decision problem).
A submission strategy affects the matching through two channels: the direct channel, and an indirect
channel (by modifying the preferences and strategies of others). Their main theorem is a negative
result, showing that the existence of a stable mechanism (in the exogenous case of Gale and Shapley
(1962) [25]) is non-robust to the introduction of endogeneity in the preferences. There always exist
strategies and preference functions such that the strategies form a Nash equilibrium of the submission
game, but the resulting allocation from the mechanism is unstable with respect to the realized prefer-
ences.
Antler (2019) [2] defines a strategic setting between one employer and many agents. Agents form be-
liefs about how much employers like them from the order in which they approach them, and it affects
their preferences and willingness to take the jobs.

Projection bias
In the economic and psychology literature, the term “projection” refers to the ability to assess how

similar or different others are from ourselves. Daily life experience suggests this ability can prove
helpful, in particular in social learning settings, where we can learn from others’ outcomes or actions.

Empirical evidence coming from the psychology and economics literature19 reports that agents
16In appendix §B.1, we show that the introduction of memory in the valuation heuristic does not modify the main no

existence results for v-stable pure matchings. We therefore suspect that the reason for the no existence is in the behavioral
bias rather than in the memory-less assumption. This further motivates our mixed approach in section §5.

17The weight λ can be different for different agents and pairs, can also be endogenous to the matching. It could be a mea-
sure of the distance between agents characteristics: agents would identify more strongly agents with similar characteristics
together.

18As Goursat (2023) [27] shows.
19See Dawes (1989) [16], Krueger and Clement (1994) [41].
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are unable to project correctly, hence a “projection bias”. Specifically, they tend to overestimate the
similarities, in a way that is inconsistent with Bayesian rationality.

Most of this literature focuses on “preferences projection” or “taste projection”. For instance, it has
been reported that people overestimate how many agents share their tastes for consumption goods
(Ross, Greene and House (1977) [54]), political candidates (Delavande and Manski (2012) [17]), risk
(Faro and Rottenstreich (2006) [21]), and temporary emotions like hunger and thirst (Van Boven and
Loewenstein (2003) [65]).
In a theory paper, Gagnon-Bartsch (2017) [23] incorporates taste projection into canonical models
of observational learning, where individuals choose between options, and payoffs depend both on an
unknown state of the world (common preferences) and on an idiosyncratic taste (private preferences).
In this environment, the private preferences are most often private information. Therefore, an agent
willing to learn about the state must disentangle between the role of the idiosyncratic taste and the
role of the private information about the state in accounting for different actions. A “taste projector”
wrongly interprets any difference in action as coming from differences in the information. Gagnon-
Bartsch (2017) studies the consequence in terms of beliefs and actions: “taste projection” leads to too
little dispersion in actions. Gagnon-Bartsch et al. (2022) [24] illustrate the point on a market for goods
between consumers uncertain about the quality and a monopoly.

The valuation heuristic implicitly assumes inter-personal utility comparisons.20 The agent extrapo-
lates based on two realized utilities.
Using the realized utility uµ(f)f as a signal of the counterfactual utility umf is correct only if the two
male agents µ(f) and m have the same preferences. This can be interpreted as a projection bias, in the
usual sense of taste projection, happening within one’s own side of the market.21

Similarly,22 using umµ(m) as a signal of umf is correct only if the two female agents µ(m) and f have
the same productive characteristics. This can be interpreted as a projection bias, where the agent
overestimates the similarity of characteristics of agents from the other side of the market.

3.5 V-stability

We define “v-stability” as the usual pairwise stability notion for matchings markets (Gale and Shap-
ley (1962) [25]) when everyone on the market has valuation beliefs.

Definition 2.

µ is v-stable if: ∃ v valuation s.t.: (NBP )v
µ : ∀ (m, f):


vµ

mµ(m) ≥ vµ
mf

or

vµ
fµ(f) ≥ vµ

fm

We demand that there is no blocking pair: there should be no pair of agents that would both strictly
prefer to match together than to stay with their current partners.

We have defined v-stability in definition 2. asking that just one valuation function v satisfies the
(NBP ) condition. The next lemma shows that this is equivalent to all possible functions v satisfying the
inequalities. Said differently whether a matching is v-stable or not is robust to the exact specification
of the weight λ in the convex combination vµ

mf = (1 − λ)umµ(m) + λuµ(f)f .

20In section §7.2, we provide a generalization of the heuristic that drops the interpersonal comparisons, while preserving
the extrapolation from realized market outcomes.

21Note however that the term “projection” implicitly assumes a direction : that the agent (wrongly) projects his own
preferences on another other agent. This makes sense in the social learning setting with asymmetric information structure
where each agent knows her own preferences but not others’ preferences. In our setting, the information structure is perfectly
symmetric so that an agent has access to exactly the same information (realized utilities) on his own preferences and on others’
preferences. It therefore makes less sense to constrain the direction of the projection: we model an agent who thinks than
himself m and another male µ(f) have similar preferences for whatever reason (projection, reverse projection). The word
“identification bias” would probably be more general in this respect.

22The valuation is defined as an interval of possible (point) beliefs, rather than as a point belief. This is for mostly for
consistency (if an agent identifies some agents belonging to the same side of the market together, it makes sense to assume
that he does this identification on both sides of the market); it has no consequence in the analysis (using a point belief version
of the heuristic with vµ

mf = uµ(f)f would lead to the same set of stable matchings).
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Corollary 1.

µ is v-stable if: ∀ v valuation: (NBP )v
µ : ∀ (m, f):


vµ

mµ(m) ≥ vµ
mf

or

vµ
fµ(f) ≥ vµ

fm

The proof consists in transforming the conditions on the v into conditions on the true utilities. We
can write the valuation as a convex combination of umµ(m) and uµ(f)f . The condition for m being
willing to block with f simplifies as a comparison between those two utilities. In total, conditions for
stability depend only on the true utilities.

FIGURE 3 below illustrates the way to check the (NPB) condition on an example matching.

[3, 6) < {6}m1

{3}m2 f2{1} < (1, 2]

f1{2}

f3{5}{4}m3

{3}m2

{6}m1

[4, 6) > {4}m3

f1{2} < (2, 5]

f1{1}

f3{5}

FIGURE 2.3: Example: Checking (NBP )v
µ

We first consider the potential blocking pair {m1, f2}. m1 currently gets 6 but thinks he would get
less by rematching with f2, so m1 is unwilling to block with f2 and {m1, f2} is not a blocking pair.
We then consider the pair {m3, f1}. Both agents think they would strictly increase their payoffs by
rematching together, so they block the matching. µ is v-unstable.

The usual interpretations of stability remain with a slight twist. At a v-stable matching, there is no
feeling of justified envy (a desirable fairness property). A v-stable matching is an absorbing state of the
market, hence a credible interpretation as a long-run outcome.

In terms of notation, Σv will be the set of v-stable matchings. Σu will be the set of “u-stable”
matchings, so matching that are stable with perfect information.

4 Results: V-stable matchings (pure)

We characterize v-stable matchings, first in the general case, then for specific market structures. We
use both static and dynamic approaches to stability.

4.1 Characterization: Happiness sorting

To state a concise characterization of v-stable matchings, we need the following vocabulary.

“Jealousy” is a local condition comparing two realized utilities within a given side of the market.

Definition 3.
m ∈ M is jealous of m′ ̸= m ∈ M in µ ∈ Σ if: umµ(m) < um′µ(m′).

Male m is jealous of another male m′ when m′ is currently happier than m given their current
matches.

“Happiness sorting” is a global condition constraining the whole matching.

Definition 4.
Set M = {m1, . . . , mn}, F = {f1, . . . , fn}.

Set µ ∈ Σ, s.t. ∀ i ∈ {1, . . . , n}, µ(mi) = fi, and um1f1 ≥ . . . ≥ umnfn .
µ satisfies happiness sorting if: uf1m1 ≥ . . . ≥ ufnmn .

A matching satisfies happiness sorting if when we order within each side of the market all agents
according to their realized utilities, any two partners hold exactly the same rank. The happiest of all
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males is currently matched with the happiest of all females, the second happiest of all males is matched
with the second happiest of all females and so forth. Happiness sorting can be interpreted an ordinal
version23 of the famous maxim "you cannot be happier than your wife".
FIGURE 4 below illustrates happiness sorting.

{um1f1}m1 f1{uf1m1}

f2{uf2m2}{um2f2}m2

{umnfn
}mn fn{ufnmn

}

. . .. . . . . .

≥ ≥

≥ ≥

≥ ≥

FIGURE 2.4: Happiness sorting

The next proposition fully characterizes v-stable matchings.

Proposition 1.
Set µ ∈ Σ.
µ is v-stable ⇐⇒ µ satisfies happiness sorting.

A necessary and sufficient condition for the absence of blocking pair is happiness sorting. In the
proof, we rewrite the condition for an agent being willing to block with a target as a function of true
match utilities u. We observe that m blocks with f if and only if he is jealous of f ’s partner. Thus,
for v-stability, we need to avoid any pair of jealous agents. We first prove that this is equivalent to
happiness sorting on a small-dimensional market of size 2. We then generalize to a market of any size
n by observing than imposing happiness sorting for any subgroup of size 2 is equivalent to imposing
happiness sorting on the whole market as in definition 4..
A short intuition for this result could say: blocking decisions are based on jealousy. But there are always
some jealous agents. There is no way one can eliminate jealousy from the market. The way to ensure
stability is rather to organize jealousy in a hierarchical way so that jealousies never coincide to trigger
a blocking pair. And this is exactly what happiness sorting does.24

These results, underlying the role of jealousy and ordinal happiness in stability seem to match styl-
ized facts about our real-life markets.
Jealousy, which is an irrational motive from a purely economic point of view, has attracted much at-
tention in psychology. In a book “Jealousy: Theory, Research, and Clinical Strategies” (White (1989)
[67]), Gregory White argues that jealousy has been a recurring theme in human relationships, and a
major motive for action (in the case of romantic jealousy, it may cause murder, spousal violence, and
marital breakdown).
In the economic empirical literature Guven, Senik and Stichnoth (2012) [29] try to account for di-
vorces, using French survey data on marriage, divorce and self-reported happiness. They find a large
correlation between divorces and happiness gaps between spouses. In particular, many divorces are
initiated by women being less happy than their husband. The prediction from the valuation model is
consistent with this finding, in an ordinal way: agents compare utility ranks rather than utility levels
with their spouses.

23Happiness sorting is silent on comparisons of utilities across sides: it could be that all men (women) are quite happy
(unhappy) in marriage and still the matching could satisfy the condition.

24In a matching complying with the happiness sorting condition, an agent mi (fi) is jealous of agents mj (fj) and wants
to block with fj (mj) if and only if j < i. In any potential blocking pair, exactly one agent is willing to block, hence no block.
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4.2 Structures on preferences and existence

Proposition 1. is a general characterization of v-stable matchings. An interesting application consists
in explicitly computing the set of v-stable matchings after imposing some structure on the market, in
particular on the preferences.

Alignment

The first result is about the role of the alignment in preferences. In matching, we say that prefer-
ences are aligned whenever when m likes f , then f also likes m. The simplest way to model alignment
is to write (without loss of generality) match utilities with two components that depend only on the
identity of the pair: {

umf = a{m,f}s{m,f}
ufm = (1 − a{m,f})s{m,f}

s{m,f} is the surplus generated by the pair {m, f}. a{m,f} is the sharing rule - a share a{m,f} of the
surplus goes to the male m, a share 1 − a{m,f} to the female f .

We then look at two polar cases:

Proposition 2.
1. Full alignment: a{m,f} = a

Σv = Σ

2. Full misalignment: s{m,f} = s

Σv = ∅

In a first extreme case (1.), we fix the sharing rule to a constant so that the heterogeneity in the
utilities comes from the surplus. This defines fully aligned preferences.25 Then, any full matching is
v-stable.26

The next figure displays an example on a market of size 2, where the sharing rule is always a = 2
3 .

On this small market, there are only two possible full matchings: the one with parallel lines and the one
with crossed lines, that we both display on the same figure, jointly with the resulting match utilities.
Match utilities from a given pair are displayed on the line connecting the pair, each utility closer to the
agent receiving it.

9 2
4 3

2 1

6 3
FIGURE 2.5: Numerical example with fully aligned preferences

One can check that for any of the two possible matchings, happiness sorting is indeed verified.
The intuition is that in any matching, no agent belonging to the pair generating the highest surplus is
willing to block. Conditional on that, agents in the second-highest-surplus pair will not block either
and one can continue the induction until the pair currently generating the second-lowest surplus.

25This is, for instance, the trick used in Arnosti (2016) [4] with a = 1
2 .

26This result would still hold with a more general version of aligned preferences:

“Top-top pair” preferences as in Lee and Yariv (2014) [42]

{
umf = ϕ(s{m,f})
ufm = ψ(s{m,f}) ϕ, ψ increasing.

Whatever the subset of the market that one considers, one can find a pair such that the agents are each other’s most preferred
partner.
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At the other extreme (2.), we fix the surplus so that the heterogeneity comes from the sharing.
Then, no full matching is v-stable.
The next figure is a numerical example, where the surplus is fixed to 7.

1 5
2 6

6 1

5 2
FIGURE 2.6: Numerical example with fully misaligned preferences

No matching satisfies happiness sorting. The intuition in the example is the following. m1 receives
a high realized utility so attracts jealousy from m2. But the reason why m1 is very happy is because
he extracts much surplus from his partner f1 who gets a low utility, hence jealousy from f1 on f2. The
agents getting a bad deal block together.

Correlation

In the real world, preferences are often correlated across different agents on the market.27 We study
what the v-stability theory can predict in this case.28

The next proposition defines homogeneous (heterogeneous) preferences - when there is an exoge-
nous quality of each partner (agent) in a quite strong sense and characterizes the v-stable set.

Proposition 3.
1. Homogeneous preferences

Suppose: ∀ i < j ∈ {1, . . . , n},

{
∀ m, m′ : umfi

> um′fj

∀ f, f ′ : ufmi
> uf ′mj

Then:

Σv = {µ⊕} , ∀ i ∈ {1, . . . , n} : µ⊕(mi) = µ⊕(fi)

2. Heterogeneous preferences

Suppose: ∀ i < j ∈ {1, . . . , n},

{
∀ f, f ′ : umif > umjf ′

∀ m, m′ : ufim > ufjm′

Then:

Σv = {µ⊕} , ∀ i ∈ {1, . . . , n} : µ⊕(mi) = µ⊕(fi)

In statement (1.), preferences are almost cardinally homogeneous (or common): we can order
females so that, for instance, f1 delivers higher utilities to any males than whatever f2 would deliver.
A consequence is that all males hold the same preferences ordinally (even if two different males may
still value the same female differently cardinally). We find that there is a unique v-stable matching, it
is the positive assortative matching, that is, the matching where the most-preferred female is matched
with the most-preferred male, and so forth. In this case, the prediction with perfect and imperfect
information perfectly coincide (Σv = Σu = {µ⊕}).29

The intuition for this case is that the valuation beliefs perform very well in a context of homogeneous
preferences. The taste projection is correct. It enables agents to recover their true preferences at least
ordinally,30 and to make the same blocking decisions they would make had they access to the true
match utilities.

In statement (2.), we introduce correlation by agents rather than by target. Then preferences are
heterogeneous; some agents are more cheerful than others and always receive higher utility. The

27This correlation is often explicitly modeled in the matching literature as it is what creates competition on the market.
28Note, however, that the assumption of common knowledge of preferences is easier to defend in this case.
29Becker (1973) [9] has shown than with (ordinally) homogeneous preferences, the positive assortative matching is the

unique stable matching in perfect information.
30The valuation interval is not necessarily a singleton.
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unique stable matchings sorts agents according to their degree of cheerfulness. the intuition is that at
any other matching, the less cheerful agents wrongly identify to the more cheerful ones and block the
matching.
This result contrasts with perfect information where we have no precise prediction31 for the u-stable
set.32

4.3 Existence of v-stable matchings

No existence

The case with misaligned preferences provides a sound example where the set of full v-stable match-
ings is empty:

Corollary 2.
A v-stable matching may not exist (Σv = ∅).

This is a major contrast with the environment with perfect information, where Gale and Shapley
(1962) [25] have shown that a u-stable matching always exists.33 This is a direct consequence of the
fact that beliefs are endogenous to the current matching. Conversely, the case with aligned preferences
illustrates that potentially all possible matchings can be stable.
In summary, the v-stable set is significantly more flexible / changeable than the u-stable set.34 The
degree of alignment is what governs the size of the v-stable set, from empty to maximal.

Frequency of no existence

We run Monte Carlo simulations to assess how frequent this issue of no existence is. We draw
a set of idiosyncratic utilities, for instance umf , ufm i.i.d. ∼ U([0, 1]). The computer checks for any
possible matching whether it is stable and eventually reports whether a stable matching exists. We
iterate multiple times, and plot the proportion of preference realizations for which a full matching is
stable.
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FIGURE 2.7: Proportion of stable matching existence cases with idiosynratic preferences

We notice that the proportion of inexistence cases is quite large and increasing with market size.35

31The issue is that heterogeneous preferences describes preferences across different agents but does not say anything about
each individual’s preference order.

32A fortunate consequence is that one could build an additional empirical test of the valuation theory in the environment
of heterogeneous preferences.

33And in the positive matching value specification, it is necessarily full.
34An intuition for this flexibility could be following. With perfect information, the fact that a pair {m, f} blocks a given

matching µ, making µ unstable implies that in any matching µ′ where m and f are matched, they both prefer to stay together
than to go with their partners in µ. Said differently, the fact that µ is unstable helps µ′ being stable. With v-stability, as with
any belief heuristic based on current match utilities only, one looses the dependence: to study the stability of µ and µ′, one
run comparisons among disjoint sets of utilities (except if µ and µ′ share some common pairs): (umµ(m))m∈M , (ufµ(f))f∈F

for µ, (umµ′(m))m∈M , (ufµ′(f))f∈F for µ′. The fact that µ is v-unstable does not predict anything about the v-stability of µ′.
35With uniform distribution, the probability that a given (full) matching is stable on a market of size n is just the probability

that n i.i.d. uniform random variables are ranked in a specific order, so 1
n! . This converges fast to 0 as n → ∞. By contrast,
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4.4 Blocking pair dynamic and convergence

Closely related to the issue of existence (in the static framework) is the issue of convergence (in a
dynamic framework). The question is: if we let agents on the market rematch in a decentralized way,
what happens on the long run?
Said differently, after addressing the “what” question (“what are the v-stable matchings?”), we want to
address the “how” question (“how does the market reach v-stable matchings?”).

The process
Formally, we define a dynamic blocking pair process as follows:

Definition 5.
A dynamic blocking pair process (DBPP) is a dynamic process (µt)t∈N where:

• A state of the process is a (full) matching µ ∈ Σ.

• The process moves from a state µt to the next state µt+1 in the following way:

– If there is no blocking pair in µt: µt+1 = µt.
– If there is a single blocking pair {m, f} in µt:

µt+1(m) = f, µt+1(f) = m
µt+1(µt(m)) = µt(f), µt+1(µt(f)) = µt(m)
∀ m′ ∈ M − {m, µ(f)} : µt+1(m′) = µt(m′), ∀ f ′ ∈ F\{f, µ(m)} : µt+1(f ′) = µt(f ′)

– If there are multiple blocking pairs, the process picks one of the blocking pairs {m, f} and builds
µt+1 as above.

The interpretation is that we start from a matching and potentially move to a subsequent matching.
There are two different cases. When there is no blocking pair in the current matching, the process
stabilizes on the matching. Whenever there are blocking pairs, the process implements one of the
blocking pairs by forming the pair, and immediately reassigns the former partners of the two blockers
together.36

We illustrate the move associated with a blocking pair {m, f} below:

m

µ(f)

µ(m)

f

µt

m

µ(f)

µ(m)

f

µt+1

FIGURE 2.8: DBPP: Move associated to blocking pair {m, f}

Note that we do not specify a way to select among blocking pairs, in case the matching features
multiple blocking pairs, so that there may be various dynamic blocking pair processes, each associated
with a given (deterministic or stochastic) selection rule.37 We do not specify either an initial matching
µ0 from which the process could start, because we want to characterize the long run outcome of the
process independently of initial conditions.

Convergence definition
We are interested in the asymptotic behavior of the process, in particular in its convergence.38

the same probability in the roommate problem has lower bound
(

4e3

Πn

) 1
2 (Pittel (1993) [50]), which decreases quite slowly

with n.
36The fact that we immediatly reassign the rejected agents together guarantees that the states are always full matchings.
37An example of a natural stochastic selection rule: uniform distribution on the set of all blocking pairs.
38We recall only informally the meaning of convergence and related notions (cycle, closed cycle, open cycle, basin of

attraction) because these are standard definitions. The formal definitions can be found in any maths textbook on dynamic
processes, in the economic and biology literature on dynamic systems (Foster and Young (1990) [22], Kandori, Mailath and
Rob (1993) [37]) or in the dynamic matching literature with perfect information (Knuth (1976) [40], Roth and VandeVate
(1990) [58]).
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A dynamic process is said to converge if after some periods it remains in the same state forever.
Convergence is heavily linked to the existence of cycles of states and their nature. A (blocking pair)
cycle is a finite sequence of matchings such that each matching in the sequence is obtained from the
previous one where we implement a blocking pair. A cycle is closed if, at each stage of the cycle, the
implementation of any of the (potentially multiple) blocking pairs leads to matchings within the cycle.
A cycle is open if there exists at least one matching in the cycle and one blocking pair in this matching,
such that if one implements this blocking pair, the subsequent matching does not belong to the cycle.
The relation between the static notion of existence of a v-stable matching and the dynamic notion of
convergence of a DBPP is straightforward. If there does not exist a (full) stable matching, then no DBPP
can converge. If there exists stable matchings, and there is no blocking pair cycle, any DBPP converges
(to v-stable matchings). If there exists stable matchings, and any blocking pair cycle is open, then any
DBPP equipped with a stochastic selection rule for blocking pairs with full support converges (to stable
matchings). The intuition is that thanks to the full support assumption on the selection of blocking
pairs, there is a strictly positive probability that the DBPP takes the convergence path that gets out of
cycles. Even if this probability is small and potentially after much cycling, in the long run, this path will
be taken for sure. Finally, if there exists v-stable matchings, and a closed blocking cycle, some DBPP
will not converge.39

The notion of convergence defined is a notion of global convergence a la Roth and Vande Vate (1990)
[58], hence demanding. When global convergence fails, it is interesting to characterize local conver-
gence, by studying the size of the basin of attraction of a v-stable matching µ, defined as the set of
matchings such that when we start from one of these matchings and implement blocking pairs, we
reach µ for sure.

The question is: Does a DBPP always converge to stable matchings when they exists? Equivalently:
conditional on existence, are stable matchings attractors of a DBPP?

No convergence

In a world of perfect information, Knuth (1976) [40] first exhibited an example of a cycle.40 Yet
later on, Roth and Vande Vate (1990) [58] showed that any cycle is open, hence some convergence.

For v-stability, we find negative results in both respects as soon as market size is larger or equal to
3:

Proposition 4.
Set a marriage market.

(i) If the size of the market is 1 or 2, then any DBPP converges.

(ii) If the size of the market is n, n ≥ 3, then:

– A DBPP may not converge.

– In addition, the basin of attraction of v-stable matchings may be very small, even empty.

We prove (ii) by exhibiting an example of a closed cycle. To build the example, we consider again
the counter example we used for existence on a market of size 2. We then add a third pair with very
high utilities for both partners, so that these agents are never willing to enter a blocking pair:

39Consider for instance a DBPP starting on a matching within the closed cycle.
40In Knuth (1976) and followers, the definition of the dynamic process differs in that former partners rather stay un-

matched for one period before they are allowed to enter a blocking pair (with anyone). But in the specific counter example
used by Knuth (1976), the process moves only across full or almost-full matchings where the two singles always rematch in
the next stage. The counter example thus works with any of the two definitions of the process.
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1 5
2 6

6 1

5 2

10 10
µa µb

FIGURE 2.9: Example of closed blocking pair cycle µa ↔ µb

The cycle is of minimal length 2. In each of the two matchings, there is a unique blocking pair,
so that there is no concern of blocking pair selection. Any DBBP with initial state µa or µb will cycle
forever.
We can define the rest of the match utilities so that a third matching µ complies with happiness sorting
and is v-stable. µ and µa or µb could differ from each other by just one block, of two pairs. Being one
block away from the v-stable matching does not even guarantee that we move to it - hence the result
on the small-size / empty basin of attraction.

The conclusion, is that, even in case of existence of a v-stable matching, a DBPP may not converge
to it, neither globally, nor locally.

Frequency of no convergence

We run Monte Carlo simulations to assess how frequent the issue of no convergence is. We draw a
set of idiosyncratic utilities. We randomly (uniformly) pick an initial matching. The computer checks
for potential blocking pairs and implement them (with uniform selection rule in case of multiple
blocking pairs), for a finite but large number of periods (up to 300).41 Any time the process stops on
a matching for two successive periods, the computer acknowledges a convergence case. We iterate
multiple times (on the initial matching and on the set of utilities). We report the proportions of
NBPP trials with convergence and the average number of periods before convergence, conditional on
convergence.
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FIGURE 2.10: Proportion of convergence cases and speed of convergence of DBPP with idiosyncratic
preferences

The results show evidence that the no convergence issue arises frequently and that even in case of
convergence, it is significantly slower than with the true utilities.

In total, the prediction from the baseline model is clear. If indeed agents have valuation beliefs,
the market may keep on moving and never stabilize, for two different reasons: lack of existence of a
v-stable matching, and, even in case of existence, lack of convergence of a DBPP.

41When doubling the number of time periods does not change much the number of convergence cases, we consider that
the number of time periods is a good approximation of infinite time horizon.
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5 Model: Valuation and v-stability (mixed)

5.1 Mixed matchings

The continuum marriage market

We consider a two-sided continuum population, and n discrete types of males (M ∈ M) and
females (F ∈ F) of equal mass 1.42 The type summarizes all relevant characteristics for match utilities:
all males of types M matched with females of type F receive the same match utility uMF .

Mixed and behavioral matchings

We define three notions of (full) matchings:

Definition 6.
(i) Pure matching:

µ : M ∪ F → M ∪ F
∀ M ∈ M, µ(M) ∈ F
∀ F ∈ F , µ(F ) ∈ M
µ(M) = F ⇐⇒ µ(F ) = M

(ii) Mixed matching:
p : Σ → [0, 1]
∀ µ ∈ Σ : p(µ) > 0∑
µ∈Σ

p(µ) = 1

(iii) Behavioral matching:
p : M × F → [0, 1]
∀ M ∈ M, ∀ F ∈ F : p(M, F ) > 0
∀ M ∈ M,

∑
F ∈F

p(M, F ) = 1

∀ F ∈ F ,
∑

M∈M
p(M, F ) = 1

A pure43 matching is a standard matching as in section §3, where each type is matched exclusively
to one partner type. A mixed43 matching is a full-support probability distribution over pure matchings
p ∈ ∆(Σ), where p(µ) > 0 is the weight on pure matching µ. A behavioral43 matching is a full-support
measure over pairs of types, where p(M, F ) > 0 describes both the mass of males of type M matched
with females of type F and the mass of females of type F matched with males of type M . We focus on
full matchings where for each pair of a male and a female type, there is at least one pair of individuals
belonging to these types who are currently matched.44

The question immediately arises: are the two representations (mixed and behavioral) equivalent?
The next proposition answers positively.

Proposition 5.
A mixed matching can always be represented as a behavioral matching and conversely.

From now on, we denote P := ∆(Σ), the set of mixed or behavioral matchings.
Once a mixed matching is set, different agents belonging to the same type have different match statuses.
From now on, we call “ex-post” type and denote (M − F ), the pair of an agent’s type and his current
partner’s type. If there are n ex-ante types on each side of the market, and the current matching is full,
there are n2 ex-post types on each side of the market.

42We still denote individuals with small cases m ∈ M , f ∈ F . M(m) (F (f)) denotes the type of individual m (f).
43 The analogy in the vocabulary with strategies in games is made on purpose and will later help in the analysis.
44In section §7.1, we extend the model study v-stability of any mixed or behavioral matchings.
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We illustrate below the notion of mixed / behavioral matching in its mixed version45 on a market
with two ex-ante types (22=4 ex-post types) on each side. Because there are only two full pure
matchings in this environment, a mixed matching is summarized by just one number p ∈ [0, 1], the
weight on the pure matching where {M1, F1}, {M2, F2} are matched (in green).

M2

M1 F1

F2

p

1 − p

(M1 − F1)

(M1 − F2)

(M2 − F2)

(M2 − F1)

(F1 − M1)

(F1 − M2)

(F2 − M2)

(F2 − M1)

FIGURE 2.11: Mixed matching p on a market of size 2

The set of mixed matching P is a subset of Rn. We compute its dimension.

Lemma 1.
The set of mixed or behavioral matchings P on a market of size n has dimension 1 + n − 2n.

Mixed matchings in the literature

Our notion of mixture over matchings is not entirely new. Vande Vate (1989) [66], Rothblum
(1992) [59], and Roth, Rothblum and Vande Vate (1993) [57] define a notion of “fractional” matching
(in our vocabulary: mixed or behavioral matching).
Yet, their motivation is mainly technical: they want to unify the assignment model introduced by Shap-
ley and Shubik (1971) [62] and the marriage model by Gale and Shapley (1962) [25]. With respect to
efficiency, they show that “monogamous marriage is the best”, that is, socially optimal matchings are
necessarily “integral matchings” (in our vocabulary: pure matchings).
The interpretations also differ. Their favorite interpretation is that one type is one individual sharing
her time, as in polygamy or on job markets where workers can hold several jobs. Our interpretation is
that the population is made of multiple agents with the same productive characteristics and preferences
bundled in types.
They do define stability of a fractional matching (strong stability, ex-post stability, fractional stability),
but all the various notions implicitly assume perfect information on the utilities in any integral match-
ing. By contrast, we are interested in belief formation under imperfect information. Specifically, we
argue that valuation beliefs make a lot of sense in a mixed environment.

The information

The information available on the market is such that agents do not have fine access to counterfactual
match utilities, even the ones that involve their own types. If male m of type M is currently matched
to a female f of type F , he can observe uMF , but is ignorant of any uMF ′ , F ′ ̸= F .
Agents perfectly observe the current mixed matching p. This is not very demanding as p is an aggregate

45The associated behavioral matching would be: p(M1, F1) = p(M2, F2) = p, p(M1, F2) = p(M2, F1) = 1 − p.
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specifying the matching in proportions of types resulting from the (potentially unknown) individual
matches.

5.2 The valuation

Valuation in mixed matching

We assume that agents form beliefs on counterfactual utilities in the following way.

Definition 7.
The valuation is a function mapping a male m, a female type F , and a mixed matching p ∈ P to a belief

over the utility uMF that a male m of type M currently assigned to a female of type F ′ would get with any
targeted partner f of type F when the current matching is p:

v : M × F × P → R

vp
mF ∈ (uMF ′ ,

∑
M0∈M

p(M0, F )uM0F ] if F ̸= F ′ (1)

vp
mF = uMF ′ if F = F ′ (2)

On line (1), the valuation of agent m about type F extrapolates from two signals: the utility that he
gets in his current match and a weighted average of the realized utilities of all types of males currently
matched with females of type F . The weights on utilities are given by the true proportions in the
current mixed matching p, so that if F is mostly matched with males of type M , uMF heavily influences
the belief (bound). In other words, to assess how productive a potential partner is, an agent observes
how happy the target’s average current partner is. Line (2) says that the agent perfectly observes his
current utility. In total, the valuation depends on the exact individual m only through his match status.
The emotion associated with this belief formation process is envy, more than the jealousy from section
§3.3. Jealousy is directed towards one fellow male, whereas envy refers to longing for a situation that
is not currently one’s own.

We find this belief formation process very natural and consistent with empirical examples where
people seem to aggregate data in a similar fashion.

Interpretations

There are several ways we can interpret the valuation.
The first story is about a cognitive limitation, which we can term in two different ways. Either the agent
is naive; she cannot understand the link between partners’ types and utilities. Or the agent is coarse;
she cannot finely distinguish between utilities arising from the same targeted type but different agents’
types.
A second story, in the spirit of rational inattention, would argue that if there is a positive search cost to
collect each uMF , one might not want to pay this cost.
A third interpretation (and our favorite one) is about a constraint on the feedback data. Data could be
available only in the form of the aggregate statistics

∑
M∈M p(M, F )uMF

46 and not with whole sample
of (uMF )M∈M. This is often the case on large and centralized markets. In college admissions, students
applying to colleges on an online platform often receive feedback on former students’ satisfactions or
achievements at each college, as measured by employment and wages after college. This data can
be provided either by the platform or available in specialized press. It is almost always presented in
aggregate form, with averages over the whole population of former students from each college. The
fact that students are of different types and that these students’ types partially account for the outcomes
is neglected.

46One example for the marriage market could be that potential partners of type F brag about the aggregate satisfaction
they deliver to their current partner

∑
M∈M p(M,F )uMF . Bragging is often made in a coarse way, focusing on one aggregate

statistic of attractiveness that should speak to anyone on the other side of the market.
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Connection to literature on bounded rationality with aggregation

The agent in the valuation model bears similarities with some of the cornerstone models of bounded
cognition. In particular, a valuation agent can be seen as a naive agent as in the behavioral equilibrium
by Esponda (2008) [20] or as a coarse agent as in the analogy-based expectation equilibrium by Jehiel
(2005) [35].
The behavioral equilibrium is a prior-free approach: in the original example, the buyer forms his belief
about the quality of the good based on observed data on payoff in the case of transaction. She is naive
in the sense that she neglects the link between the quality of the good and the seller’s action. She
therefore sees the observed qualities when there is a transaction as representative of the true quality
distribution. The valuation agent’s naivete is in her failure to appreciate the link between a utility
generated by a target and the target’s current partners’ types.
In the analogy-based expectation equilibrium, coarse players form beliefs on the strategies of other
players by computing an average of the true equilibrium strategies, weighted by the true probabilities
of each state. A valuation agent is coarse because she is unable to finely distinguish between the several
types of partners of a target type.47

The valuation beliefs could also be interpreted as resulting from a wrong causal model (Spiegler (2020)
[64]), which we represent on a directed acyclic graph:

Target’s partners
∀ M, p(M, F0)

Valuation vp
mF

Target FMatching p

FIGURE 2.12: True causal model for valuation of male m about female F in matching p.
The red arrow is omitted in the wrong causal model.

5.3 V-stability

Blocking pairs

The definition of a blocking pair is slightly more subtle in the mixed matching environment. The
question is not only: with whom should one type trade his current partners? It is also: which ones
exactly of the current partners does the type want to trade? A blocking pair is therefore defined both
with respect to the blocking type and to the dropped partners’ types (equivalently, with respect to
ex-post types):

Definition 8.
(i) A strict blocking pair {(M − F ′), (F − M ′)} in a mixed matching p ∈ P is a pair of a male ex-post

type (M − F ′) and a female ex-post type (F − M ′) s.t.:{
vp

mF > uMF ′ , m ∈ (M − F ′)
vp

fM > uF M ′ , f ∈ (F − M ′)

(ii) A weak blocking pair {(M − F ′), (F − M ′)} in a mixed matching p ∈ P is a pair of a male ex-post
type (M − F ′) and a female ex-post type (F − M ′) s.t.:{

vp
mF ≥ uMF ′ , m ∈ (M − F ′)

vp
fM ≥ uF M ′ , f ∈ (F − M ′) , with at least one equality.

47Note that others heuristics could also be in the spirit of analogy. For instance, a very coarse heuristic would say that
male agents only have access to the average happiness of all matched males agents on the market. Abusing vocabulary, the
valuation corresponds to a reasonably fine analogy partition of the set of possible pairs of types where all pairs where the
female type is fixed are in the same class. The average happiness heuristic corresponds to the coarsest analogy partition.
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The u on the right side of the inequalities reflects that an agent of type M currently matched with
a female of type F perfectly observes uMF .
In a weak blocking pair, at least one agent is indifferent between blocking or not.

Dynamic blocking pair process
We define a quadruple as a group of two males and two females types. Quadruples play a major

role in the dynamic blocking pair process defined just below as the local scale of the market where we
check and implement blocking pairs.

Definition 9.
A dynamic blocking pair process (DBPP) is a dynamic process (pt)t∈N where:

• A state of the process is a (full) mixed matching p ∈ P .

• The process moves from a state pt to the next state pt+1 in the following way:

– It draws at random (with full support distribution) a quadruple {M, M ′, F, F ′}.
– If there is no blocking pair in the quadruple {M, M ′, F, F ′}, the matching remains unchanged:

pt+1 = pt.
– If there are some blocking pairs in the quadruple {M, M ′, F, F ′}:

* All strict blocking pairs are implemented until the mass of one ex-post type in pt is ex-
hausted.

* Weak blocking pairs may not be implemented, fully implemented, or partially implemented
(implemented for only part of the mass of the indifferent ex-post type(s)).

This process implements blocking pairs focusing on one quadruple per period. Importantly, indif-
ferent agents are given full flexibility.48

We illustrate one step of the process below. FIGURE 13 is a focus on the quadruple {M, M ′, F, F ′}
within a market of size larger than 2. We represent uneven masses of ex-post types on purpose. The
rest of the market, which does not appear on the figure, compensates so that the mass of any ex-ante
type is 1.
The figure corresponds to a case with one strict blocking pair {M, F} in quadruple {M, M ′, F, F ′} in
pt. The blocking ex-post type (F − M ′) has the lowest mass and forces the block to stop after exactly
this mass of each ex-post type has been reassigned.

M ′

M
F

F ′

(M − F )

(M − F ′)

(M ′ − F ′)

(M ′ − F )

(F − M)

(F − M ′)

(F ′ − M ′)

(F ′ − M)

FIGURE 2.13: A DBPP step where the implemented blocking pair is {(M − F ′), (M ′ − F )}.

48Similarly to the indifference principle in Nash equilibrium, where players may use any mixture when they are indifferent
over actions.
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Steady state
The solution concept is a notion of steady state of the dynamic process. There exists a steady state

of the DBPP if, after some time, the matching remains unchanged forever.

Definition 10.
p ∈ P is v-stable if it is a steady state of the DBPP.

The notion of steady state is quite permissive, in the sense that there exist various ways to achieve
it in the DBPP.
The first, most standard way would be to ensure that there is no blocking pair at all (“stability without
flows”).
But there could also be blocking pairs in a way that ensures that when the blocking pairs are imple-
mented, the measure p is unchanged (“stability without flows”). At the micro, individual level, agents
may switch partners. But at the macro type level, masses of ex-post types remain constant.
When there are flows and blocking pairs are only strict, there is little flexibility on the matching because
the agents willing to block and trade partners must have exactly the same mass (“stability with flows
and only strict blocking pairs”). For instance, on a market of size 2, this constrains p = 1

2 . When a block-
ing pair is rather weak, it gives the possibility that the arbitrary decisions of indifferent agents about
blocking exactly balance the difference in masses (“stability with flows and a weak blocking pair”).

6 Results: v-stable matchings (mixed)

6.1 General result: Existence

Existence
The shift to the mixed matching environment restores existence.

Theorem 1.
There always exists a v-stable matching in P .

Note that the existence would work with any belief continuous in the measure p. It does not
crucially hinge on the functional form of the valuation. The average just stands as the most natural
way of aggregating signals.49

Similarly, the existence result and the set of steady states is robust to the distribution with which the
process draws quadruples (as long as this distribution is full support). The most natural distribution
would draw more often the quadruples that are more frequent in a uniform way.

Lemma 2.
The probability distribution drawing quadruples uniformly according to their frequencies draws each

quadruple {M, M ′, F, F ′} with probability:

X{M,M ′,F,F ′} = p(M, F ) + p(M ′, F ′) + p(M, F ′) + p(M ′, F ′)
n(n − 1)2

Sketched proof
The proof is a standard fixed-point proof. It formalizes the “transformation function” as a set-valued

function F , mapping a former mixed matching pt to new possible matchings pt+1. The transformation
function is built through many auxiliary functions at the local level (for one quadruple {M, M ′, F, F ′}).
We show that the graph of the transformation function is closed, implying by the closed graph theorem
that the function is upper hemi-continuous. We then apply the fixed point theorem by Kakutani (1961)
[36], to prove that there exists a fixed point or steady state of the DBPP.

The fact that we give full flexibility to indifferent agents is key in the proof; it is what closes the
graph of the transformation function.

49In this respect, we also expect the very coarse average happiness heuristic to produce v-stable matching.
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To illustrate this point, we define and plot the transformation function on a market of size 2, where a
matching is summarized by one number p ∈ R so that the graph of the function can be plotted in two
dimensions.

• g : [0, 1] ⇒ {0, 1, 2}2 counts possible blocking pairs in any matching p. An image g(p) has two
coordinates: each one reports the number of blocking pairs in each of the 2 pure matchings.

• kp : {0, 1, 2}2 → [0, 1] starting from a given matching p, maps a number of effective blocking pairs
into a new matching. The transformation amounts to implementing the blocking pairs.

• hp : P
(
{0, 1, 2}2) ⇒ [0, 1] starting from a given matching p, maps a set of numbers of possible

blocking pairs into a set of possible new matchings, consistently with kp. With this function,
we can accommodate cases with weak blocking pairs and treat all the cases depending on how
indifferences resolve.

• f : P ⇒ P with f(p) = hp(g(p)) is the transformation function. It maps a matching to a set of
possible new matchings.

Images of kp can only be 0, 1, p, 1 − p. Images of hp can only be {0}, {1}, {p}, {1 − p}, [0, p], [p, 1], [0, 1 −
p], [1 − p, 1].

Thus, if ]α, β[ is an open interval where there is no indifference point, the graph of f can only be
continuous and linear in p:

1

1

α β

] [
1

1

α β

] [

1

1

α β

]

[

1

1

α β

]

[

FIGURE 2.14: Transformation function f on domains with no indifference

Now consider a mixed matching p∗, where {(M − F ), (F − M)} is a strict blocking pair, and {(M −
F ′), (F − M ′)} is a weak blocking pair because (M − F ′) is indifferent to block with F at p∗. In the
neighborhood of p∗, (M − F ′) is not indifferent. Without loss of generality, we set that for p > p∗

(p < p∗), (M − F ′) is willing (not willing) to block with F . The graph of f in the neighbourhood of p∗

is then:

1

1

p∗

]

[

FIGURE 2.15: Transformation function at indifference point

The flexibility we give to indifferent agents (captured in the definition of hp) is what connects the
two linear curves with the vertical line.
We get that the graph of f , Gr(f) = {(p, f(p)), p ∈ P}, is closed. Consequently, we can apply the
closed graph theorem and Kakutani’s fixed point theorem.
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6.2 Misaligned preferences: Characterization

When preferences are misaligned, matched agents have opposite interests to capture as much as
they can of a fixed surplus: {

uMF = a{M,F }s

uF M = (1 − a{M,F })s

In section §4.2, we have shown that misalignment is a case where no pure matching is v-stable.
In theorem 1., though, it appears that the mixed extension solves the no existence issue. It is there-
fore interesting50 to characterize the v-stable matchings in this case, providing a constructive proof of
existence. For readability, we focus on a market of size 2, with types M1, M2, F1, F2. We simplify the no-
tation a{Mi,Fj} to aij . Our problem has four parameters (the sharing rules): a11, a12, a21, a22 ∈ [0, 1].51

The surplus s does not matter for stability and can be normalized to s = 1.

Proposition 6.
When preferences are misaligned on a market of size 2, v-stable matchings are the following p:
(1) a12 < a21 < a22 < a11

– p = p0 := a21−a12
a11−a12

(with flows, weak BP)

– If 1
2 < p0 : p = 1

2 (with flows, strict BP)

(2) a12 < a22 < a21 < a11

(a) (a22 − a21)(a11 − a12) < (a21 − a12)(a11 − a12)
– p = p1 := a22−a21

a11−a21
and p = p2 := a21−a12

a11−a12
(with flows, weak BP)

– If p1 < 1
2 < p2 : p = 1

2 (with flows, strict BP)

(b) (a21 − a12)(a11 − a12) < (a22 − a21)(a11 − a12)
– p2 < p < p1 (without flows)

(3) a22 < a21 < a12 < a11

– p = p3 := a12−a21
a12−a22

(with flows, weak BP)

– If p3 < 1
2 : p = 1

2 (with flows, strict BP)

(4) a22 < a12 < a21 < a11

– p = p2 (with flows, weak BP)

– If 1
2 < p2 : p = 1

2 (with flows, strict BP)

The characterization shows that all three kinds of stability may arise, depending on the parameters.
In particular, this proves that the flexibility in the treatment of weak blocking pairs is, in some cases at
least, necessary for existence.

7 Discussions and extensions

7.1 Unmatched agents

In section §3 (§5), we have focused on full pure (mixed) matchings. We have consistently defined
the valuation vµ

mf (vp
mF ), positing that both the agent and the target (types) were currently matched in

µ (p). In many real situations, though, agents may consider remaining unassigned.
In this section, we extend all definitions to allow for single agents. We define v-stability of a non-full
matching. We denote Σ̄ (P̄ ), the set of all pure (mixed) matchings. We denote M̄ := M∪∅, F̄ := F ∪∅.

50And also less computational than the general case, as the misalignment divides the number of parameters of the problem
by two.

51In the coming proposition, we fix (without loss of generality) a11 = max
i,j

aij .
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Definition 11.
(i) Pure matching:

µ : M ∪ F → M ∪ F ∪ ∅
∀ M ∈ M, µ(M) ∈ F̄
∀ F ∈ F , µ(F ) ∈ M̄
µ(M) = F ⇐⇒ µ(F ) = M

(ii) Mixed matching:
p : Σ̄ → [0, 1]∑
µ∈Σ

p(µ) = 1

(iii) Behavioral matching:
p : M̄ × F̄ → [0, 1]
∀ M ∈ M,

∑
F ∈F̄

p(M, F ) ≤ 1

∀ F ∈ F ,
∑

M∈M̄

p(M, F ) ≤ 1

We define a notion of v-stability for the most general class of matchings P̄ :

Definition 12.

p ∈ P̄ is almost v-stable if ∃ (pϵ)ϵ ∈ P s.t.:

{
pϵ −→

ϵ→0
p

pϵ is v-stable

We define a small perturbation pϵ of the non-full matching that makes it a full matching. In a full
matching, feedback data about any targeted type is available. We can therefore study the v-stability of
the perturbed matching pϵ using standard definitions.
This approach is in the spirit of the “trembling hands” in perfect Nash equilibrium by Selten (1985)
[60]. The trembling gives feedback data to agents targeting types that are completely unmatched in p.
The data on types that are currently matched with positive mass is little perturbed.

As an example, we may consider a candidate perturbation putting a ϵ weight uniformly on any pair,
and (1 − ϵ) weight on all the pairs as prescribed in p:

pϵ = (1 − ϵ).p ⊕ ϵ.q, where ∀ M, F, q(M, F ) = 1
n

Then, the valuation of a type m of type M about type F in the matching where m is unassigned and F
has zero mass matched is:

vp
mf ∈ (uM∅; 1

n

∑
M0∈M

uM0F ].

If m is rather currently assigned to a female of type F ′ and the targeted type F has positive mass
matched, the valuation of f about M is:

(uMF ′ ;
∑

M0∈M
((1 − ϵ)p(M0, F ) + ϵ

n
)uM0F ]

We can now redefine the DBBP in a more natural way by making rejected partners (agents whose
former partner has engaged in a blocking pair) unassigned before they potentially form new matches.
We would like to show a general existence theorem for almost v-stable matchings. Existence in this
setting does not directly stem from our previous existence theorem 1.. In the cases where existence
rests on “stability with flows”, the flows now transition through a state where some agents remain
unmatched and where potentially new moves could happen.
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7.2 Valuation with bundles of goods

A more general model assumes that a match generates a (multi-dimensional) bundle of goods for
each partner.52 If m ∈ M and f ∈ F are currently matched, male m enjoys bundle xMF ∈ Rn.
The mapping from bundles to utility function is described by individual utility functions: uM , uF : Rn →
R. The index M , F indicates that different types may value the same bundle differently.

Definition 13.
The valuation is a function mapping a male m, a female type F , and a (full) mixed matching p ∈ P to

a belief over the utility uMF that a male m of type M currently assigned to a female of type F ′ would get
with any targeted partner f of type F when the current matching is p:

v : M × F × P → R

vp
mF ∈ (uM (xMF ′),

∑
M0∈M

p(M0, F )uM (xM0F )] if F ̸= F ′ (1)

vp
mF = uM (xMF ′) if F = F ′ (2)

When forming his belief about counterfactual utility umF , male m looks at the bundles that he
enjoys in his match with his partner of type F ′ and at the bundles that current partners of the targeted
type F enjoys in their matches. He integrates these bundles into his own utility function, and then
aggregates in a convex combination.
In this setting, blocking decisions are based on some form of jealousy (in the sense of comparison within
peers), but this jealousy is outcome-based (rather than utility-based). It could be that almost all male
types M matched with type F1 are very happy in their matches because in xMF1 they get much leisure
time, and they value leisure time a lot according to uM . But if m2 ∈ M2 does not value leisure time that
much according to uM2 , it could be that m2 is unwilling to block with F1. At the macro level, jealousy
is not directed towards the same agents anymore.

With some assumptions on preferences or on bundles, we should be able to characterize v-stable
matchings in this more general environment, as the next proposition tentatively does.

Proposition 7.
(i) If preferences are cardinally homogeneous (uM = v, uF = w), then the v-stable matchings are as in

the baseline model.
In particular, a pure matching is v-stable if and only if it satisfies happiness sorting.

(ii) If preferences are ordinally homogeneous (uM (x) > uM (x′) ⇔ uM ′(x) > uM ′(x′)) then:
A pure matching is v-stable if and only if the male who gets the current kth most preferred male bundle
is matched to the female who gets the current kth most preferred female bundle, ∀ k ∈ {1, . . . , n}.

Case (i) fixes the same utility function v for all males. It can be connected to the baseline model by
setting uMF := v(xMF ). Case (ii) assumes that male utility functions are homogeneous only ordinally.
We get the same hierarchical structure as in section §4 where on any subset of two matched pairs on
the market, one should find one pair of non-jealous agents. However, this does not summarize in a
single and easy-to-write macro condition such as happiness sorting due to the cardinal heterogeneity
in preferences.

8 Conclusion

This paper defines a new cooperative solution concept for matching markets that incorporates be-
havioral elements. It models a heuristic belief formation process where agents wrongly project prefer-
ences and characteristics between different agents belonging to the same side of the market. It studies
pairwise stability in this context, in the standard setting of pure matchings and in the more general
environment of mixed matchings.

52Becker [9] gives caricatural examples of typical goods generated in marriage: quality of meals, share of household
work...
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Overall, the value of the results is two-fold.
First, it accounts for empirical puzzles about real-life markets. The happiness sorting condition can be
read as a formalization of the famous maxim in marriage: “You can’t be happier than your wife”, and
by contraposition can account for divorces. The analysis with specific preferences shows how misalign-
ment in preferences maintains instabilities, and how assortativity may arise even more frequently with
imperfect information than with perfect information.
Second, it gives robust predictions about the long-run dynamic on matching markets. The overall pre-
diction says that the market moves significantly more with imperfect information than with perfect
information. The exact prediction differs depending on the granularity of the market, in line with our
model in two levels: pure and mixed matchings. When types are divisible / each agent is virtually
unique in its productive characteristics, the lack of existence of a v-stable matching and the lack of
convergence of a dynamic blocking pair process predict persistent moves. When types are indivisible
/ there are many agents with the same productive characteristics, the general existence of a mixed
v-stable matching predicts that the market will stabilize. The characterization of mixed v-stable match-
ings under misaligned preferences shows that at the steady states, agents may keep on exchanging
partners in a way that does not disrupt the production.

We see many directions for future theoretical work.
We are interested in modeling how agents with different information / belief formation processes inter-
act on a market. As an extreme example, we wonder about stability when some agents on the market
have complete information, some other agents have incomplete information and valuation beliefs.
We also wonder about the behavior of strategic agents who understand the belief formation process.
In the valuation model, if an agent is currently very happy in his match, this makes his current partner
attractive to other agents. This likely results in blocks and the happy agent loosing his partner. Thus,
happy agents have a clear incentive to hide their happiness. This is a challenge for strategy-proofness
of a mechanism that would ask to report happiness levels.
We would also like to introduce a notion of farsightedness and to compute a farsighted stable set with
valuation beliefs. Indeed, agents in the baseline model are myopic in two ways. They are myopic in
the usual sense because when they participate in a blocking pair, they do not anticipate that the new
matching produced might also be blocked and that the series of blocks could finally lead to a matching
that could be worse than the initial one. They are also myopic in a new behavioral sense: they do not
anticipate that their preferences will change in the new match and that they could be better off in the
initial matching according to the new preferences.
We are also interested in the design challenge. The question is: How can one design matching markets
to maximize social objectives, taking into account that participants may form valuation beliefs? In par-
ticular, can we propose a v-stable mechanism - a mechanism such that, when applied to any preference
structure where a v-stable matching exists, it finds this matching? In appendix §B.2 we argue that the
endogeneity in the valuation beliefs creates technical design difficulties. But we show that at least, a v-
stable matching is a fixed point of the following procedure: take a given matching and the preferences
that are induced by valuation beliefs in this matching and naively apply deferred acceptance.
In matching with imperfect information, pairwise and group stability are no longer equivalent. It
would therefore be interesting to study group stability in the valuation setting, potentially producing
even fewer existence cases. The nice feature of the model in this respect is the symmetry of the infor-
mation structure: because all agents have access to the same feedback data on the current matching,
we need not make arbitrary assumptions about how agents share information within coalitions.

Yet, we consider that the most pressing exercise is an empirical test of the theory. In a laboratory
experiment, we could match participants to perform an incentivized task in pairs and provide feedback
information on payoffs. We would then ideally elicit beliefs about counterfactual utilities, and give the
participants the opportunity to be reassigned through blocking proposals. We would test the consis-
tency of the beliefs and blocking decisions with the valuation heuristic and check whether the market
stabilizes on v-stable matchings.
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Appendix A Proofs

Proof of corollary 1.

(NBP )v
µ

{
vµ

mµ(m) = umµ(m)
vµ

mf = (1 − λ)umµ(m) + λuµ(f)f

m unwilling to block with f ⇔ umµ(m) ≥ uµ(f)f .
v-stability is independent of exact v.

Proof of proposition 1.

(NBP )v
µ m willing to block with f : uµ(f)f > umµ(m).

So m is willing to block with f iff he is jealous of µ(f).
So (NBP )v

µ is equivalent to no pair of 2 jealous agents.
We prove that this is equivalent to happiness sorting, in two steps.

– Small market of size 2. We prove separately each direction of the equivalence.

⇐ Suppose we do have happiness sorting as in the figure below (m1 happier than m2, f1 happier
than f2). {um1f1}

{um2f2}

{uf1m1}

{uf2m2}

≥ ≥

Then m1 and f1 are not jealous and do not want to enter a blocking pair with f2, m2 respectively.
One cannot find a pair of jealous agents who would block together.

⇒ We prove this direction by contraposition. Suppose we do not have happiness sorting, as in the
figure below (m2 strictly happier than m1). Then m1 and f2 are jealous and block.

{um1f1}

{um2f2}

{uf1m1}

{uf2m2}
∧ ∨

– Market of any size n.
On a market of size n, blocking pairs could form within any subgroup of size 2 on the market.
So (NBP )v

µ is equivalent to happiness sorting on any subgroup of size 2 on the market.
But imposing happiness happiness sorting on any subgroup of size 2 on the market is equivalent to
imposing happiness sorting on the whole market as in definition 4.
For a formal proof, consider again the two directions of the equivlance:

⇐ Suppose we have happiness sorting at order n: um1f1 ≥ . . . ≥ umnfn
and uf1m1 ≥ . . . ≥ ufnmn

.
Let us consider a subgroup of pairs i and j (i < j). umifi

> umjfj
and ufimi

> ufjmj
.

Hence happiness sorting at order 2.
⇒ Suppose, by contradiction that we do not have happiness sorting at order n: um1f1 ≥ . . . ≥ umnfn

but we do not have uf1m1 ≥ . . . ≥ ufnmn
.

So there must be at least one i ∈ {1, . . . , n − 1} such that ufi+1mi+1 > ufimi
(otherwise, we

could use transitivity to get back to uf1m1 ≥ . . . ≥ ufnmn).
This contradicts happiness sorting at order 2 for subgroup of pairs i and i + 1.

Proof of proposition 2.

1. Full alignement: a{m,f} = a

So:
{

umf = as{m,f}
ufm = (1 − a)s{m,f}

Set µ ∈ Σ.

Denote {mk, fk}, k ∈ {1, . . . , n} the pair generating the kth higher surplus in µ:
{

µ(mk) = fk

sm1f1 ≥ . . . ≥ smnfn

Multiplying the surplus by a positive constant keeps the order:
{

asm1f1 ≥ . . . ≥ asmnfn

(1 − a)sm1f1 ≥ . . . ≥ (1 − a)smnfn

We get:
{

um1f1 ≥ . . . ≥ umnfn

uf1m1 ≥ . . . ≥ ufnmn
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So happiness sorting is verified.
By proposition 1.: Σ ⊆ Σv, Σv = Σ.

2. Full misalignement: s{m,f} = s

So:
{

umf = a{m,f}s
ufm = (1 − a{m,f})s

Set µ ∈ Σ.

Denote m0 (f0) the male (female) with the lowest share of the surplus in µ:


m0 := arg min

m∈M
a{m,f}

f0 := arg min
f∈F

1 − a{m,f}

By definition, m0 and f0 are not currently matched together: µ(m0) ̸= f0.

So:
{

a{m0,µ(m0)} < a{µ(f0),f0}
1 − a{µ(f0),f0} < 1 − a{m0,µ(m0)}

Multiplying the sharing rule by a positive constant keeps the order:

So:
{

a{m0,µ(m0)}s < a{µ(f0),f0}s
(1 − a{µ(f0),f0})s < (1 − a{m0,µ(m0)})s

We get:
{

u{m0,µ(m0)} < u{µ(f0),f0}
u{f0,µ(f0)} < u{µ(m0),m0}

So happiness sorting is not verified.
By proposition 1.: Σv = ∅.

Proof of proposition 3.

1. Homogeneous preferences

∀ i < j ∈ {1, . . . , n},

{
∀ m, m′ : umfi > um′fj

∀ f, f ′ : ufmi
> uf ′mj

• Set µ = µ⊕, ∀ i ∈ {1, . . . , n} : µ⊕(mi) = µ⊕(fi).

By definition of preferences:
{

um1f1 > . . . > umnfn

umnfn > . . . > um1f1

So happiness sorting is verified.
By proposition 1.: µ ∈ Σv.

• Set µ ̸= µ⊕ ∈ Σ.

So ∃ i, i′, j, j′ s.t.
{

µ(mi) = fj , µ(mi′) = j′

i < i′, j > j′

By definition of preferences:
{

umifj < umi′ fj′

ufjmi
> ufj′ mi′

So happiness sorting is not verified ({mi, fj′} blocking pair).
By proposition 1.: µ /∈ Σv.

In total: Σv = {µ⊕}.

2. Heterogeneous preferences

∀ i < j ∈ {1, . . . , n},

{
∀ f, f ′ : umif > umjf ′

∀ m, m′ : ufim > ufjm′

• Set µ = µ⊕, ∀ i ∈ {1, . . . , n} : µ⊕(mi) = µ⊕(fi).

By definition of preferences:
{

um1f1 > . . . > umnfn

umnfn
> . . . > um1f1

So happiness sorting is verified.
By proposition 1.: µ ∈ Σv.

• Set µ ∈ Σ, ̸= µ⊕.

So ∃ i, i′, j, j′ s.t.
{

µ(mi) = fj , µ(m′
i) = j′

i < i′, j > j′

By definition of preferences:
{

umifj
> umi′ fj′

ufjmi < ufj′ mi′

So happiness sorting is not verified ({mi′ , fj} blocking pair).
By proposition 1.: µ /∈ Σv.

In total: Σv = {µ⊕}.

Proof of corollary 2.
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Using counter-example in FIGURE 6 or result in proposition 2., statement 2..

Proof of proposition 4.

(i) Convergence

– Market size 1
There is a unique matching. Any DBPP starts and stays on this matching. If this matching is v-stable,
we trivially have convergence.

– Market size 2
There are two different matchings.
If both matchings are v-stable, the proof is similar to case of market of size 1. Hence convergence.
If only one of the two matchings is v-stable, the DBPP can either start from the v-stable matching (in
which case it converges) or start from the v-unstable matching (in which case, whatever the blocking
pair, we move to the other (v-stable) matching and stay there). Hence convergence.

(ii) No convergence

– Market size 3
Using counter-example in FIGURE 9.

Proof of proposition 5.

• Set p mixed matching.
Define:

∀ M, F : p(M, F ) :=
∑

µ|µ(M)=F

p(µ)

Then:

∀ M :
∑

F

p(M, F ) =
∑

F

∑
µ|µ(M)=F

p(µ)

=
∑

µ

p(µ)

= 1

∀ M :
∑
M

p(M, F ) = 1 (by symmetry)

• Set p behavioral matching.
Define:

∀ µ : p(µ) = 1
n(n − 1)!

∑
M,F |µ(M)=F

p(M, F )

Then: ∑
µ

p(µ) =
∑

µ

1
n(n − 1)!

∑
M,F |µ(M)=F

p(M, F )

= 1
n(n − 1)!

∑
M,F

(n − 1)!p(M, F ) ((n − 1)! pure matchings where M and F are matched)

= 1
n

∑
M

∑
F

p(M, F )

= 1
n

∑
M

1

= 1

Proof of lemma 1.
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• Notations
There are n pairs of types (M, F ).
The weights are constrained by a system of 2n equations, each involving n terms:

∀ M ∈ M,
∑

F

p(M, F ) = 1

∀ F ∈ F ,
∑
M

p(M, F ) = 1

Let us number the types M = {M1, Mn}, F = {F1, Fn} and denote pij = p(Mi, Fj).
The system writes:

∀ i ∈ {1, . . . , n},
∑

j

pij = 1 (Mi)

∀ j ∈ {1, . . . , n},
∑

i

pij = 1 (Fj)

• Induction formula
Let us fix pi1, i ∈ {1, . . . , n − 1} (n − 1 variables). This fixes by (F1): pn1 = 1 −

∑n−1
i=1 pi1.

The system now writes:

∀ i ∈ {1, . . . , n},

n∑
j=1

pij = 1 − pi1 (Mi)

∀ j ∈ {2, . . . , n},

n∑
i=1

pij = 1 (Fj)

Let us fix p1j , j ∈ {2, . . . , n − 1} (n − 2 variables). This fixes by (M1): p1n = 1 −
∑n−1

j=1 p1j .
The system now writes:

∀ i ∈ {2, . . . , n},

n∑
j=2

pij = 1 − pi1 (Mi)

∀ j ∈ {2, . . . , n},

n∑
i=2

pij = 1 − p1j (Fj)

So, by fixing (n − 1) + (n − 2) = 2n − 3 variables, we get to as system of 2n − 2 = 2(n − 1) equations with
n − 1 terms, just as on a market of size (n − 1)2.
So:

dim(Pn) = dim(P(n−1)2) + 2n − 3

• Induction proof
We iterate on n and get the explicit formula:

dim(Pn) = dim(P2) +
n∑

k=2
(2k − 3)

With n = 2, the system writes: 
p11 + p12 = 1
p21 + p22 = 1
p11 + p21 = 1
p12 + p22 = 1

If we set a single variable, this fixes the three other variables.
So: dim(P2) = 1
We get:

dim(Pn) = 1 + 2
n∑

k=2
k − 3(n − 2)

= 1 + 2(n(n + 1)
2 − 3) − 3(n − 2)

= 1 + n(n + 1) − 3n

= 1 + n − 2n
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Proof of theorem 1.

Set market parameters: market size n, and match utilities uMF , uF M , ∀ M, F .

1. PRELIMINARIES

• Notations and vocabulary

– Matchings:
p: Mixed matching.
PM×F : Set of mixed matchings.
Q: Quadruple {M, M ′, F, F ′}.
“Local”= Restricted to quadruple Q.
pQ: Local mixed matching.
PQ: Set of local mixed matchings.
µa, µb: Pure local matchings (µa(M) = F, µa(M ′) = F ′ and µb(M) = F ′, µb(M ′) = F ).

– Subsets:
P(E): Set of subsets of E.

– Blocking pairs:
“Strict blocking pair”: Both agents strictly want to block.
“Weak blocking pair”: At least one agent is indifferent between blocking or not.
“Possible blocking pairs”: Any set of blocking pairs that contains all strict blocking pairs and
potentially some weak blocking pairs.
“Possible matchings”: Matching obtained after implementing blocking pairs taking into account
all strict blocking pairs and potentially some weak blocking pairs.
“Effective blocking pairs”: Set of blocking pairs, once ties are broken and weak blocking pairs
are considered as effectively blocking or not.
“Effective matching”: Matching obtained after implementing blocking pairs taking into account
effective blocking pairs.

• Remark

– When we examine a blocking pair locally, we do not specify the identity of the pair. We only
specify to which pure matching the blocking pair applies. The transformation will be the same
whatever the exact blocking pair.

2. TRANSFORMATION FUNCTION

• Local functions

(g) Counting blocking pairs in a local matching.
Set-valued function mapping a local matching to sets of possible numbers of blocking pairs.

gQ : PQ ⇒ {0, 1, 2}2

p 7→ E

Where:
If there are si ∈ {0, 1, 2} (wi ∈ {0, 1, 2}) strong (weak) blocking pairs in µi: E = {(xa, xb)|si ≤
xi ≤ si + wi}.
Set E contains l + 1 elements that count zero / some / all weak blocking pairs, plus always all
strict blocking pairs.
Special cases, where the set E is a singleton:

* No blocking pairs (si = wi = 0): E = {(0, 0)}.

* Only strict blocking pairs (wi = 0): E = {(sa, sb))}.

(k) Local transformation given effective blocking pairs.
Single-valued function mapping a number of local blocking pairs to a new local matching.

kQ : {0, 1, 2}2 → PQ

e 7→ r

Where:

* If same number of blocking pairs in both local pure matchings (ea = eb):
eg.: no blocking pairs in quadruple (ea = eb = 0).
eg.: one blocking pair in each pure matching (ea = eb = 1).
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Then: kQ implements the blocking pairs until the lowest mass ex-post blocking type is ex-
hausted. In total, the local matching remains the same:

r = pQ

* If imbalance in the number of blocking pairs in the two pure matchings (set ea > eb):
eg.: one blocking pair from µa to µb (ea = 1 > eb = 0).
eg.: two blocking pairs from µa to µb, one from µb to µa (ea = 2 > eb = 1).
Then: kQ implements the blocking pairs until the lowest mass ex-post blocking type is ex-
hausted. In total, the local matching is modified in the following way:

· If p(M, F ′) ≤ p(M ′, F ), then


r(M, F ) := pt(M, F ) + pt(M, F ′)
r(M ′, F ′) := pt(M ′, F ′) + pt(M, F ′)
r(M, F ′) := 0
r(M ′, F ) := pt(M ′, F ) − pt(M, F ′)

· If p(M, F ′) ≥ p(M ′, F ), then


r(M, F ) := pt(M, F ) + pt(M ′, F )
r(M ′, F ′) := pt(M ′, F ′) + pt(M ′, F )
r(M, F ′) := pt(M, F ′) − pt(M ′, F )
r(M ′, F ) := 0

(h) Local transformations given possible blocking pairs.
Set-valued function from the set of possible numbers of local blocking pairs to new possible local
matchings.

hp
Q : P

(
{0, 1, 2}2)⇒ PQ

E 7→ R

* If set E is a singleton (|E| = 1, E = {e}), then: R = {kQ(e)}
* If set E contains more than one element (|E| > 1), then: R contains all convex combinations

of the elements in E.

(f) Local transformations from a matching to possible matchings.
Set-valued function mapping a local matching to a set of new possible local matchings. By
composition:

fp
Q :PQ ⇒ PQ

fp
Q(pQ) = hp

Q(gQ(pQ))

• Integral functions

– Global transformations from a matching to possible matchings with changes only in one
quadruple.
Set-valued function mapping a matching to a set of new possible matching obtained after imple-
menting the blocking pairs in quadruple Q.

FQ : PM×F ⇒ PM×F

p 7→ R

Where:

R(M0, F0) =
{

fp
Q(p)(M0, F0) ∀ M0, F0 ∈ Q

{p(M0, F0)} if M0 or F0 /∈ Q

– DBPP with random draws of the quadruple.
At each step, the DBPP randomly draws a quadruple Q and transform the matching according to
FQ.

3. FIXED POINT THEOREM

(a) The graph of FQ is closed
The condition for (M − F ′) being willing to block with F writes:

vp
mF > uMF ′ ⇐⇒

∑
M0∈M

p(M0, F )uM0F > uMF ′

Due to the linearity, the space PM×F is divided into regions where an agent is willing to block,
unwilling to block, and a sub-space of dimension [1 + n − 2n] − 1 = n(n − 2) where he is indifferent.
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Suppose, for instance, that at a given point in the indifference sub-space p∗, (M − F ′) is indifferent
to block with F . In a neighbourhood of p∗, (F − M ′) is willing to block with M (and other pairs do
not block).
By definition of our auxiliary functions:

gQ(p∗
Q) = {{0, 1}, {0, 0}}

kQ({{0, 1}}) = r (as above)

kQ({0, 0}) = p∗
Q

hp∗

Q ({{0, 1}, {0, 0}}) = {λ.r + (1 − λ).p∗
Q, λ ∈ [0, 1]}

fp∗

Q (p∗
Q) = {λ.fp∗

Q (p1) + (1 − λ).fp∗

Q (p2), λ ∈ [0, 1]}
where at p1 (p2), (F − M ′) is willing (unwilling) to block with M

So the set Gr(fp
Q) = {(p, fp

Q(pQ)), p ∈ PQ} is closed.
The integral function FQ is defined as doing the changes in quadruple Q as in fp

Q and nothing in
other quadruples.
So the set Gr(FQ) = {(p, FQ(p)), p ∈ PM×F } is also closed.
In summary, the definition of hp

Q for a value E s.t. |E| > 1 allows for full flexibility. At the local
level, an indifferent individual in a weak blocking pair can be allowed to block or not to block. At the
macro level, any proportion of the indifferent type can form a blocking pair. This closes the graph of
FQ.

(b) F is upper hemi-continuous
Closed graph theorem
If Γ : A ⇒ B is an upper hemi-continuous set-valued function with closed domain and closed values
if and only if the graph of Γ is closed.
We apply the closed graph theorem with Γ = FQ, A = B = PM×F .
So FQ is upper hemi-continuous.

(c) Kakutani theorem applied to FQ

Kakutani fixed point theorem
Set S a non-empty, compact, convex subset of Rm.
ϕ : S ⇒ upper hemi-continuous set-valued function with the property that ϕ(x) is non-empty, closed
and convex for all x ∈ S.
We apply Kakutani fixed point theorem with m = n, S = PM×F , ϕ = FQ.
We conclude that FQ has a fixed point.
By definition 10., this fixed point is a v-stable matching.
Conclusion: There always exists a v-stable matching.

Proof of lemma 2.

The mass of a quadruple {M, M ′, F, F ′} is given by the sum of the measures of the pairs in this quadruple:

S{M,M ′,F,F ′} := p(M, F ) + p(M ′, F ) + p(M, F ′) + p(M ′, F ′)

A uniform distribution draws quadruples according to their S.
To get a probability distribution, we need some normalization:

X{M,M ′,F,F ′} =
S{M,M ′,F,F ′}

C

We equalize the sum of the probabilities to 1 - In the sum, each pair {M, F} appears exactly (n − 1)2 times.∑
{M,M ′,F,F ′}

X{M,M ′,F,F ′} = 1
C

∑
M,F

(n − 1)2p(M, F )

= 1
C

(n − 1)2
∑
M

∑
F

p(M, F )

= 1
C

(n − 1)2n

1
C

(n − 1)2n = 1 ⇐⇒ C = 1
n(n − 1)2
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Proof of proposition 6.

We write the blocking pairs conditions for the whole market:

{M1, F2}
{

a11 < pa22 + (1 − p)a12
1 − a22 < p(1 − a11) + (1 − p)(1 − a12)

{M2, F1}
{

a22 < pa11 + (1 − p)a21
1 − a11 < p(1 − a22) + (1 − p)(1 − a21)

{M1, F1}
{

a12 < pa11 + (1 − p)a21
1 − a21 < p(1 − a11) + (1 − p)(1 − a12)

{M2, F2}
{

a21 < pa22 + (1 − p)a12
1 − a12 < p(1 − a22) + (1 − p)(1 − a21)

We rewrite inequalities as a function of p and determine for each p ∈ [0, 1] what are the blocking pairs.
We get:

(1) a12 < a21 < a22 < a11

0 1
{M2, F1}
{M1, F1}

{M2, F1}
p0

(2) a12 < a22 < a21 < a11

(a) (a22 − a21)(a11 − a12) < (a21 − a12)(a11 − a12)

0 1

{M1, F1} {M1, F1}
{M2, F1} {M2, F1}p1 p2

(b) (a21 − a12)(a11 − a12) < (a22 − a21)(a11 − a12)

0 1

{M1, F1}
{M2, F1}p2 p1

(3) a22 < a21 < a12 < a11

0 1
{M2, F1}

{M2, F2}
{M2, F1}p3

(4) a22 < a12 < a21 < a11

0 1
{M2, F1}
{M1, F1}

{M2, F1}p2

Proof of proposition 7.

(i) We set uMF := v(xMF ) and we are back to the case in section §4.

(ii) The ordinal preferences enable to define an order on realized bundles. So we do exactly the same proof
than in the proof of proposition 1., except that we compare realized bundles instead of realized match
utilities.

Proof of proposition 9.

(i) By u-stability of DA.
(See u-stable matching constructive existence proof in Gale and Shapley (1962) [25]).

(ii) Set µ ∈ Σv.
So µ satisfies happiness sorting:

∀ i ∈ {1, . . . , n}, µ(mi) = fi, with
{

um1f1 ≥ . . . ≥ umnfn

uf1m1 ≥ . . . ≥ ufnmn
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– The valuation preferences (≻ [V ]µ) are ordinally homogeneous:
{

m1 ≻f . . . ≻f mn

f1 ≻m . . . ≻m fn

Indeed: ∀ m ∈ M, i < j ∈ {1, . . . , n} : umifi
> umjfj

=⇒ vµ
mf > vµ

mf ′ =⇒ fi ≻m fj .

– DA applied to homogeneous preferences has a unique solution, the unique stable matching: the
positive assortative matching µ⊕ (and terminates in n rounds).
Precisely, in (male-proposing) DA: In round 1, all males m1, . . . , mn propose to f1, f1 accepts m1, and
rejects all other males.
In further round i ≥ 2, all males mi, . . . , mn propose to the same female fi, fi accepts mi, rejects all
other males.

– Here, by definition of valuation preferences: µ⊕ := µ.
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Appendix B Additional content

B.1 Valuation with memory

Memory and dynamic process
We extend the model introducing some memory in the dynamic. Agents keep memory of past experience:

they know about match utilities they enjoyed in the past, even after changing partners. The motivation for this
extension is two fold. First, it seems very reasonable to assume that agents learn, especially in the closed cycles
of the DBPP identified in section §3.4 where agents explore the same matchings infinitely often. Second, with
memory the valuation becomes less sensitive to the current matching and more sticky over time; hence some
hope that memory could restore existence of / convergence to v-stable matchings.

The memory puts weights on matchings that were explored in the past according to their historical frequen-
cies. Formally, it is a probability distribution over matchings: α ∈ ∆(Σ). In this context, the valuation definition
naturally extends:

Definition 14.
The valuation is a function mapping a male m ∈ M , a female f ∈ F and a memory α ∈ ∆(Σ) to a belief of male

m over a targeted partner f when the current matching is µ:

v : ∆(Σ) × M × F × Σf → R

vα
mf =

∑
µ∈Σ

α(µ)uµ(f)f

The valuation of agent m about target f under memory α is given by the aggregate satisfaction of f ’s historical
partners.

We again define a dynamic process based on blocking pairs:

Definition 15.
A memory dynamic blocking pair process (MDBPP) is a dynamic process st where:

• A state of the process st is given by a matching µt ∈ Σ and a memory αt ∈ ∆(Σ).
• The process moves from a state st = (µt, αt) to another state st+1 = (µt+1, αt+1) in the following way:

– Matching:

* If there is no blocking pair in µt: µt+1 = µt

* If there is a blocking pair {m, f} in state µt: µt+1(m) = f, µt+1(f) = m
if µt(m) ̸= ∅, µt+1(µt(m)) = µt(f), if µt(f) ̸= ∅, µt+1(µt(f)) = µt(m)
∀ m′ ∈ M − {m, µ(f)} : µt+1(m′) = µt(m′), ∀ f ∈ F − {f ′, µ(m)} : µt+1(f ′) = µt(f ′)

– Memory: αt+1 = t
t+1 αt + 1

t+1 µt+1

The moves of the matching are defined just as in the standard DBPP. Each time we move to a new matching,
the history stores one more matching, and the memory updates.

Steady states
The solution concept is a notion of steady state of the dynamic process. There exists a steady state of the

MDBPP if after some time, the pair of the memory and current matching remains unchanged.

For illustration, we characterize this steady state on a market on size 2. On this market, there are only two
possible matchings µ and µ′ so that memory can be described by just one scalar α (the weight on µ). This is
summarized on the following graph:

a1 b1

a2 b2

µ[α]
x1 y1

x2 y2

µ′[1 − α]

FIGURE 2.16: Memory in a market of size 2

For example, m1 is willing to block with f2 in matching µ under memory α if his current utility a1 is strictly
lower than the convex combination αa2 + (1 − α)x1.
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No existence
We can use this small dimension framework to show that non existence of a steady state is generic:

Proposition 8.
A steady state of the MDBPP does not always exist.

The proof uses the following counter-example:

6 2

5 3

µ(α)
2 5

3 6

µ′(1 − α)

FIGURE 2.17: Counter-example for existence of steady state of the MDBPP

Consider µ. m1 gets the highest utility a male can achieve so never blocks.53 Conversely, f1 receiving the
lowest possible utility always block.54 The only possibility for a blocking pair is {m2, f1}. m2 compares 5 to
a convex combination between 6 and 2. So he blocks only if α is very high, close to one (the threshold is 3

4 ).
Conversely, in µ′, {m1, f1} is a blocking pair if α is low (the threshold is 1

4 ). For intermediate memory levels,
there is no blocking pair. The next figure summarizes blocking pairs for different levels of memory:

α = 0 1
1
4

3
4

BP {m2, f1} in µBP {m1, f1} in µ′

FIGURE 2.18: Blocking pairs as a function of the memory in the counter example from FIGURE 17

Suppose we start from an initial state s0 = (µ, 1). Because for α = 1, there is a blocking pair in µ, the process
moves to state s1 = (µ′, 1

2 ). Because for intermediate α, there is no blocking pair in µ′, the process moves to
state s2 = (µ′, 1

3 ), then to s3 = (µ′, 1
4 ) then to s4 = (µ′, 1

5 ). When α = 1
5 , there is a blocking pair in µ′, so that

the process moves to s5 = (µ, 1
3 ), again in the intermediate memory region, where there is no blocking pair in µ.

In the next states, the matching is µ, and the memory increases, until it crosses the 3
4 threshold. Memory cycles

between the two extreme regions, including in the limit t → ∞.
This is the case for any the initial starting point. The limit cycle is similar to the no convergence cases in fictitious
play (Shapley (1964) [61]). Due to the memory accumulation (no discount, no stop), the process spends more
and more time on the same matching before switching.

The conclusion is that memory does not induce v-stability of a pure matching. This further motivates the
shift to the general mixed framework.

B.2 V-stable mechanism

From a design perspective, the main challenge is to find a v-stable mechanism: a mechanism, such that, when
applied to any preference structure where a v-stable matching exists, it finds this matching (or it reports that no
stable matching exists as in Irving (1985) [34] for the roommate problem).
The difficulty in this task comes from the fact that beliefs are endogenous to the state of the market. Thus, if
the mechanism operates with rounds and tentative matchings, it would make sense to let agents revise their
valuations at each new tentative matching. Hence the possibility for regret: some agents would rather go back
to the previous round and propose / accept differently.55 Our intuition is that it should be possible to prove an
impossibility result as in Kloosterman and Troyan (2020) [39].

A closely related question is: what happens if a market designer naively applies a u-stable mechanism, such as
deferred acceptance, to preferences that have been formed given an initial (pure, full) matching and a valuation
belief-formation process? The next proposition answers this question.

53We materialize this on the figure with the cross.
54We materialize this on the figure with the circle.
55Oppositely, the standard constructive proof in perfect information uses the fact that in Deferred Acceptance, there can

be no regret.
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Proposition 9.
Set µ ∈ Σ, and denote ≻ [v]µ the induced ordinal preferences.

Apply the Deferred Acceptance mechanism (Gale and Shapley (1962) [25]) to the ≻ [v]µ preferences.
Denote DA(≻ [v]µ) the resulting matching.
Then:

(i) DA(≻ [v]µ) = µ′, µ′ u-stable with respect to preferences vµ

(ii) µ v-stable =⇒ DA(≻ [v]µ) = µ (n rounds)

Statement (i) is a direct implication of the fact that DA is a u-stable mechanism.
Statement (ii) says that if the initial matching µ is v-stable, DA delivers exactly the same matching µ, and is quite
quick (n rounds). The proof recalls that valuation beliefs always generate homogeneous ordinal preferences.
And by proposition 3., the outcome of DA on homogeneous preferences is the unique stable matching, in this
case, µ.
So a v-stable matching is a fixed point of this procedure. The contraposition provides us with a test for v-
stability that can be even quicker to implement than checking happiness sorting. We run DA, keeping valuation
preferences fixed. If the resulting matching is different from the initial one, this signals that the initial matching
was v-unstable.
Ideally we would like to be able to predict the outcomes or more standard mechanisms (such as variants of
deferred acceptance as in Antler (2015) [1]).





Chapter 3

ROBUST INCOMPLETE INFORMATION

STABILITY
In matching markets without monetary transfers

Laure GOURSAT* – December 2023 – [Preliminary version]

We thank Francis BLOCH, Olivier COMPTE, Philippe JEHIEL, Andrew POSTLEWAITE, George MAILATH,
Larry SAMUELSON, Olivier TERCIEUX for helpful comments and conversations.
We thank the European Research Council (Philippe JEHIEL’s advanced grant 2018-2022 LTCSEI) and
Ecole Nationale des Ponts et Chaussées (doctoral funding contract n°20/092) for financial support.

Abstract: We consider a matching market with no transfers and incomplete asymmetric informa-
tion - on one side, agents do not observe types of potential partners; they just observe the type of their
current partner. The model can represent civil servants’ job markets where wages are regulated and
where employers have trouble learning about workers’ productivity prior to hiring. We apply the defi-
nition of incomplete-information stable matchings by Liu, Mailath, Postlewaite, and Samuelson (2014)
- a pair is blocking if both partners strictly want to block under any reasonable beliefs they may have
using their private information and common knowledge of stability. Even under monotonic payoffs, the
incomplete-information stable set may be large - it depends finely on the market structure and the prior
belief support. If the unknown workers’ type function is a bijection, the stable sets with complete and
incomplete information perfectly coincide (to include only positive assortative matchings). We show,
using examples, that the robust approach can reach precise predictions even beyond the monotonic
case.

Keywords: Matching markets, incomplete information, belief formation, pairwise stability.

JEL codes: C78, D91.

*Ph.D. candidate at Paris School of Economics (PSE) - 48 boulevard Jourdan, 75014 Paris, France (Office R6-41) -
laure.goursat@psemail.eu

105

mailto:laure.goursat@psemail.eu


106 Chapter 3. Robust Incomplete Information Stability

1 Introduction

Motivations: Incomplete asymmetric information and ban on monetary transfers

"Matching" problems study the formation of productive partnerships, with numerous empirical ap-
plications: marriage, labor, housing, college admissions, organ donation, and many more. In most
real-life matching markets, there are no monetary transfers and there is incomplete information.

The ban on monetary transfers is often motivated by ethical or fairness reasons. The ban can mean
two different things in practice. Prices are either absent. In developed economies, it is forbidden to buy
or sell organs, and brides do not offer dowry when they get married. Or prices can be set in advance. In
social housing, rents are fixed. In civil servants’ job markets (for the assignment of teachers to schools,
of doctors to hospitals), wages are functions of qualification and experience and cannot be negotiated.
In college admissions, students cannot bargain on tuition fees.

Incomplete information (on one’s own preferences and payoffs) often arises due to a lack of experi-
ence. Formations of the kind of partnerships we have in mind are rare events, and the same partnerships
are maintained over long time horizons. At the extreme, some people get married, go to college, re-
ceive an organ only once, and occupy only a few different houses or job positions in their whole lives.
The standard learning premise from game theory that players can repeatedly play the same game until
they reach a perfect understanding of the game structure, in particular of the payoffs, cannot hold.
This implies that agents should be able to assess the outcome of a given unrealized match ex-ante.
Before effectively being married / hired, they should be able to tell how happy they would be in each
match. But intuition suggests guessing about one’s happiness ex-ante is a complex multi-dimensional
theoretical problem. Reciprocally, once two agents are matched, the matching experience enables them
to collect data on their partner and to directly observe their own satisfaction from the match.
In two-sided markets where the two sides are not exactly of the same nature, the incomplete informa-
tion often has an asymmetric structure. Typically, one side is informed, and the other side is uninformed
or only partially informed about the characteristics of agents on the other side. In civil servants’ job
markets, the hospitals / schools know reasonably well about the teachers; they have centralized ac-
cess to data about their skills and performance, whereas doctors / teachers have little clue about the
working experience in each unit before starting there. In school choice, colleges receive exhaustive
applications with vitae, certificates, and letters, whereas students cannot really guess how successful or
satisfied they would be before effectively engaging in the educational track.

Research question: Stability and stable matchings

Most of the theoretical matching literature (both with transferable utilities (TU) and with non-
transferable utilities (NTU)) assumes perfect information.1 This is for tractability, and as emphasized
above, is quite unrealistic.
The central solution concept there is pairwise stability.2 A matching is pairwise stable if no matched
agent would prefer to be single (individual rationality) and if there is no pair of two matched agents
who would both prefer to rematch together rather than stay with their current partners (no blocking
pairs).
Pairwise stability has a strong descriptive value as the long-run outcome in both decentralized and
centralized markets. For decentralized markets, Roth and Vande Vate (1990) [16] have shown that the
dynamic process of rematchings converges to stable matchings. In centralized markets, Roth (1984)
[14], using data from markets for doctors in the US, have found that regions that used stable mech-
anisms turned out to be successful while other mechanisms turned out to be heavily criticized by the
public / candidate blocking pairs and to break down.
In a cornerstone paper, Gale and Shapley (1962) [7] have shown that with complete information,

1See Roth and Sotomayor (1990) [15] for a review of this literature.
2The focus on pairwise stability with complete information is without loss of generality: the sets of pairwise stable

matchings and the core matchings (matchings that are immune to blocking by coalitions of size larger than a pair) always
coincide.
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there always exists a stable matching. In the constructive proof for existence, they introduce the stable
Deferred Acceptance mechanism.

In this paper, we are interested in pairwise stability3 with incomplete asymmetric information and
transferable utilities. We face a major conceptual challenge: the definition of stability with complete
information does not immediately translate to the incomplete information setting. We need to define
how uninformed agents form beliefs; there could be as many stability notions as belief formation
processes. Hence a two-fold research question: With incomplete information - What does it mean
for a matching to be pairwise stable? What are the pairwise stable matchings?

The robust approach in the TU case

Liu, Mailath, Postlewaite, and Samuelson (2014) [11] (henceforth "LMPS") have developed a highly
interesting approach for markets with TU. Their motivating example is a job market where workers have
common knowledge about the firms’ productive types, but a firm does not observe the workers’ pro-
ductive types (except for the type of the worker she is currently matched to).
In their model, firms make inference about the unknown workers’ types based on common knowledge
that the observed matching is stable.4 A firm is considered willing to block if she strictly wants to block
under any belief she may have about the workers’ types, given this knowledge.
Their main result5 says that: When the workers’ values and the surpluses are strictly increasing and
super-modular in types (sufficient condition), the set of incomplete-information stable outcomes6 coin-
cide with the set of complete-information stable outcomes (hence efficiency).7

Summary: Model and results

In this paper, we apply a similar approach to incomplete-information stability, but forbidding mone-
tary transfers. We adopt the setting of LMPS except that firms make no side payments to workers when
they match. We use their definition of stability and follow the same agenda.

We find that an incomplete-information stable matching always exists. Under monotonic payoffs,
some inference happens, and the stable set can be quite small (it may include only positive assortative
outcomes). How small depends on the support structure (whether the worker type function is bijective,
injective, or surjective).
Interestingly, the mechanic behind is quite different from LMPS. In our NTU setting, the absent pay-
ments cannot play the signaling role they have in LMPS. A worker wants to block if and only if the firm
has a higher type than his current partner, so that blocking proposals do not signal anything about the
workers’ types. Our inductive proof is simpler in that respect.
We also argue, through examples, that robust stability is able to give a precise prediction with more
general (non-common) preferences. This again contrasts with LMPS, where robust stability has no bite
once we relax the super-modularity assumption.

Outline of paper

The rest of the paper is structured as follows. Section §2 reviews the literature, in particular, the
handful of papers that directly proceed from LMPS. Section §3 defines incomplete-information stability,
through an illustrative example and a formal definition, translating LMPS’ concept to a NTU market.

3The focus on pairwise stability with incomplete information is with loss of generality. Allowing coalitions of size larger
than a pair could potentially dismiss more matchings than when we consider uniquely blocking pairs. We stick to pairwise
stability to remain as objective as possible: we would like to avoid making arbitrary assumptions about what information
is shared within coalitions). More fundamentally, we think that in the applications we have in mind, the obvious blocking
coalition is the pair: doctors or teachers cannot communicate with their peers and decide to exchange partners.

4In the authors’ view, common knowledge that a matching is stable arises from the repeated observation of this matching.
5PROPOSITION 3 in LMPS.
6The outcome is the matching in type. Payments at stable outcomes may still differ from the complete information

benchmark.
7We treat in details the main example from LMPS in section §4.2.
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Section §4 gives the main analytical result, under monotonic match values. It also argues for the value
of this approach for different preference structures. Section §5 concludes.

2 Literature review

Liu, Mailath, Postlewaite, and Samuelson (2014)

We emphasize three key forces in the original paper that we would like to preserve in our own
analysis.

The notion of incomplete-information stability is robust in the sense that the inference made by firms
just restricts the support of the beliefs over workers’ types. "Reasonable beliefs" are beliefs consistent
with common knowledge of stability. The definition does not make arbitrary assumptions about how
firms might select specific beliefs in the support.8 As a consequence, the results rely only on the
structure of the economy and the hypothesis of stability. In addition, little restrictions are made on
workers’ types function (except that it has discrete values).

The concepts and proofs are very elegant. The paper defines an iterative belief formation reminis-
cent of rationalizability (Bernheim (1984) [2] and Pearce (1984) [12]) in games, where knowledge of
stability at increasing order dismisses wrong beliefs. In the proof for the main result (PROPOSITION 3),
it is very clear how the super-modularity in payoffs helps the inference. With super-modular payoffs,
high types of workers can afford to accept lower blocking payment proposals. Because payments are
continuous and types are discrete, there always exists a level of blocking payment that enables the firm
to separate the worst case belief about a worker’s type from the more favorable beliefs, making the firm
willing to block. The proof is by induction, starting from the lowest types.

Finally, the definition of blocking pair in LMPS is very conservative. To be considered willing to
block, a firm needs to strictly benefit from blocking under any reasonable belief. Their favorite inter-
pretation is that firms do not effectively maintain a set of admissible beliefs but rather hold a posterior
distribution over the belief support. They still view firms as expected profit maximizers. The goal
of using the distribution-free approach is simply to characterize the outcomes that are immune to
prudent inference of the firms. This approach is expected to produce few blocks and therefore, a large
incomplete-information stable set. But it reaches a surprisingly precise prediction. In the super-modular
case, the stable set is minimal (and the only belief reasonable at any order is the true belief).

On the weaker side, the analysis of the NTU case is really lacking. Even in the original example
from LMPS of a job market, it can be argued that many job markets feature fixed wages, such as the
markets for civil servants (accounting for more than 20% of the working population in many developed
economies). And public economics provides many more examples of allocation problems where money
is banned in practice.
In addition, the paper gives no clue about what could be the stable set with non super-modular payoffs.9

Our guess is that the stable set is very large, even maximal, because the inference by firms cannot even
start. The super-modularity is really what makes blocking proposals at certain prices signals of the
workers’ types.10

Followers on LMPS

Several papers have extended, refined or questioned the robust approach in the TU case.

Liu (2020) [10] reformulates the model from LMPS. A matching function maps workers’ types into
a pair of a matching and a transfer scheme. Borrowing vocabulary from non-cooperative game theory,

8Similarly to iterated elimination of never-best responses in non-cooperative games.
9Or non sub-modular payoffs, as the paper also investigates this case. They get that under monotonic and sub-modular

payoffs, every incomplete information stable matching outcome is negative assortative. But a stable outcome could be ineffi-
cient due to too many matched agents.

10See section §4.2 for the argument.
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the paper distinguishes between on-path beliefs (formed when based on knowledge that no one blocks
the matching) and off-path beliefs (beliefs conditional on counterfactual pairwise deviations). This
reformulation makes it easier to answer the classical question in the economics of uncertainty: How
do agents compute posterior beliefs? The main refinement proposed in the paper requires that a firm’s
belief is updated using Bayes’ rule from the prior belief conditional on what the firm observes and
knows. The paper analyzes the differences between pairwise stability, the core, efficiency, competitive
equilibrium in this setting.
Chen and Hu (2020) [5] generalize LMPS by allowing firms to have heterogeneous information about
workers’ types that do not necessarily derive from private observation of the current partner’s type. A
firm’s information is described by a profile of partitions over possible type profiles of the workers. They
show that in the more general setting, the robust approach becomes very permissive.
Pomatto (2022) [13] models the proposal and acceptance game and proposes a forward-induction
logic. In case a player makes an offer, the offer is interpreted according to the highest degree of strategic
sophistication that can be ascribed to its proponent. The main result is an equivalence between this
notion and robust incomplete-information stability.

Bikhchandani (2017) - NTU and continuous workers’ types

Bikhchandani (2017) [3] locate in a LMPS environment, except for two major differences: monetary
transfers and a continuous support of possible workers’ types (W = [w, w] ⊂ R).
The main result is that even under monotonic payoffs, the set of stable matchings a la LMPS (or the
set of "ex-ante stable matchings" in their vocabulary) is large (maximal). The problem is that the worst
possible belief w always qualifies as reasonable, and prevents any firm from blocking.
They conclude that "ex-ante stability has little predictive power". We find this conclusion a little unfair
because of the continuous workers’ types. This is a deviation from the original framework, and it fully
drives the negative results. Actually, the robust approach in the TU case would reach a similar negative
conclusion if it used continuous types rather than discrete types. In the proof in LMPS, it is obvious that
firms need a discrete gap between the premuneration values of two workers facing the same type. The
firm can then make a blocking proposal at a price in this gap to disentangle between the two workers’
types.
We believe the assumption of continuity of workers’ types is mostly a way11 to motivate the alternative
(non-robust) notion of "Bayesian stability "defined in the second part of the paper. A pair is considered
to be a "Bayesian blocking pair" if the worker strictly increases his payoff in the block, and the firm
has a higher expected payoff in the block, where the expected payoff is computed with the Bayes
rule on the set of reasonable beliefs (in their vocabulary "admissible beliefs"). The stable set is again
defined with iterations: for a matching µ, the probability distribution over workers’ types is updated by
eliminating types that would create Bayesian blocking pairs. Under monotonic payoffs, Bayesian stable
matchings exist. Under even stronger conditions (super-modularity), stable matchings are assortative
and efficient.

In many ways, the present paper is more faithful than Bikhchandani (2017) to LMPS. We show
that assortativity and efficiency can be reached in imperfect information with discrete types and no
transfers, putting less structure on how firms compute posterior than what is needed with continuous
types. Overall, our work provides evidence that the ban on transfers does not threaten the precision of
the prediction from the robust stability - the continuous support assumption does.

Incomplete information stability with NTU

A few papers propose different approaches to pairwise stability in incomplete information.
Lazarova and Dimitrov (2013) [9] focus on the question of convergence: can we reach a complete-
information stable outcome in a decentralized way when information is imperfect? They model the

11Whether types in real life are discrete or continuous is a different question. It depends on the application one has in
mind, in particular, on the size of the market.
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interaction between dynamic blocking and learning behaviors. Another difference from LMPS is that
the type defines the value to the partner but not the preferences, so that two agents with the same type
may have different preferences.
Chakraborty, Citana, and Ostrovsky (2010) [4] model college admissions where colleges infer the val-
ues of students based on what they observe of the current matching and awareness of selection effects.
They show that when colleges observe the full matching, stable mechanisms do not usually exist. A
stable mechanism exists when colleges observe only their own matches and students have common
preferences.
Goursat (2023) [8] studies a marriage market with incomplete symmetric information where agents
infer their unknown preferences through a heuristic based on realized utilities in the current matching.
The heuristic completely neglects the selection effect. In this sense, this is the polar case from LMPS
where there is common knowledge of preferences and firms guess about workers’ types based on how
the workers select among the firms.

This paper also belongs to the literature on the core with incomplete information, initiated by
Wilson (1978) [17] and surveyed in Forges, Mertens, and Vohra (2002) [6].

3 Model: Matching with incomplete information and no transfers

3.1 The market

We define a two-sided, agent-agent, one-to-one matching market, without monetary transfers, often
summarized in the literature under the words "marriage market". To be consistent with our motivating
example and with the LMPS benchmark, we rather consider the market as a (wage-regulated) job
market.

There is a finite set of workers (firms) I (J). An individual worker (firm) is denoted i ∈ I (j ∈ J).
We use male (female) pronouns for workers (firms).
Each agent has a cardinal type, which summarizes his or her productive characteristics. The finite set
of workers’ (firms’) possible types is denoted W ⊂ R (F ⊂ R). A function w : I → W (f : J → F )
maps each worker’s (firm’s) index into a worker (firm) type.
A matching is a function µ : I → J ∪ ∅, where µ(i) = j ⇐⇒ µ−1(j) = i. We allow workers to be
unemployed (µ(i) = ∅) and firms to hire no worker (µ−1(j) = ∅).
When a worker of type w ∈ W and a firm of type f ∈ F are matched, the worker (firm) receives a match
value vwf ∈ R (ϕwf ∈ R). These values summarize the net utility from the match (after the potential
payment of a fixed wage from the firm to the worker). Because the market is without transfers, the
payoffs and the values perfectly coincide.
If a worker of type w ∈ W (a firm of type f ∈ F ) is unmatched, he (she) receives a payoff that we
normalize to zero vwf(∅) = 0 (ϕw(∅)f = 0).

This defines a matching game. An outcome (µ, w, f) specifies realized types (w, f) and matching
µ.

3.2 The information

Firm’s indices and the firm type function f are common knowledge. The current matching µ in
indices is also common knowledge. Workers’ indices are common knowledge, but the worker type
function w is unknown, with two exceptions: each worker i ∈ I knows his own type w(i), and each
firm j observes the type of her own partner w(µ−1(j)). This models situations where the workers
observe firms’ types while the firms do not observe workers’ types except for the worker who currently
works in the firm.
The worker type function w is drawn from some distribution with support Ω ⊂ W I . The support will
play a role in the analysis, while the distribution will not - we leave the distribution unspecified.
The value functions v and ϕ are common knowledge. The consequence is that a matched agent observes
his or her own realized payoff, but does not observe the payoffs of other matched agents (because the
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agent misses the worker’s type argument in the value function). An agent always knows his or her
payoff from the outside option vwf(∅) = ϕw(∅)f = 0.

The next figure summarizes the information structure from the point of view of a firm j at the local
level of two pairs (j and her current partner i, and a potential targeted worker i′ and his partner j′):12

j′j

f f ′

w ?
i i′

FIGURE 3.1: Local interim information from the point of view of firm j

We add a last element to the firm’s knowledge: common knowledge of stability. By definition, a
stable matching is a steady state of the market: once the matching is established, it persists unchanged
over time. Thus, if the current matching is stable, agents repeatedly observe the same matching. After
many time periods, they reach common knowledge that the observed matching is indeed stable.

3.3 An example

Before defining robust incomplete-information stability, we first work on an example to illustrate
the simple mechanics behind the concept.

We set a market with |I| = |J | = 3 workers and firms, and possible types W = F = {1, 2, 3}. The
match values are additive and symmetric ∀ w, f ∈ {1, 2, 3} : vwf = vwf = w + f . All types of firms are
realized f(J) = F = {1, 2, 3}. The prior belief support Ω on the worker type function is made of any
bijection from J to F . Suppose that the current matching µ is as on the next figure:

j2j1 j3

1 3 2

1 2 3
i1 i2 i3

FIGURE 3.2: Current matching and candidate blocking pair

The question is: should we consider this outcome as stable? In particular, is the pair (j2, i3)
(complete-information blocking pair) blocking under incomplete information?
Worker i3 has perfect information. He knows that rematching with firm j2 would increase his payoff by
1, so he wants to block.
Firm j2 does not observe worker i3’s type. She just observes that her current partner is of type 2, and

12All figures in the paper share the same design: we write all workers (firms) indices and types below (above), we draw
plain lines for the current matching and dashed lines for candidate blocking pairs.
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because the support Ω includes only bijections, she therefore knows that worker i3 is of type either 3
(the true type w(i3) = 3) or 1 (a wrong type w′(i3) = 1). If worker i3 is of type 1 (3), firm j2 would
increase (decrease) her payoff by blocking. It is unclear whether firm j2 effectively blocks or not.
We can go deeper into the wrong scenario. Under belief w′, the outcome would be as follows:

j2j1 j3

1 3 2

3 2 1
i1 i2 i3

FIGURE 3.3: Counter-factual outcome under belief w′(i3) = 1.

In this outcome, (i1, j3) would be a blocking pair. Worker i1 would observe that firm j3 is of type
2, higher than 1. Firm j3 would believe that worker i1 is of type 2 or 3 and would strictly benefit from
blocking under any of those beliefs.
The existence of a blocking pair (i1, j3) under belief w′ would contradict firm j2’s knowledge of stability.
Firm j2 should be able to dismiss this belief w′ and to focus on the true belief w(i3) = 1, under which
she blocks with i3. In total, (i3, j2) should be considered as a blocking pair and the outcome in FIGURE

2 is unstable.

3.4 Complete information stability

We first recall the definition of pairwise stability with complete information:

Definition 1. [Gale and Shapley (1962) [7]]
An outcome (µ, w, f) is complete-information stable if:

(IR) Individual rationality:

∀ i ∈ I, vw(i)f(µ(i)) ≥ 0
∀ j ∈ j, ϕw(µ−1(j))f(j) ≥ 0

(NBP ) No blocking pairs:

∄ (i, j) ∈ I × J s.t.:


vw(i)f(j) > vw(i)f(µ(i))
and
ϕw(i)f(j) > ϕw(µ−1(j))f(j)

An outcome is individually rational if any matched agent receives a weakly positive value, hence
higher than the outside option of remaining unmatched. Because matched agents always observe their
payoffs and know about the zero payoffs when unmatched, the individual rationality condition is the
same for complete and incomplete information. An outcome has no blocking pairs if we cannot find
a pair of a worker and a firm who would both prefer to be matched together rather than to stay with
their current partners.

Gale and Shapley (1962) [7] have shown that a complete-information stable outcome always exists.
They have also provided a method to reach a stable outcome with the famous Deferred Acceptance
mechanism.
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3.5 Robust incomplete information stability

We define pairwise stability when the worker type function is unknown. We recall what a firm
knows: the current matching, the types of all firms, the prior distribution of workers’ types, the realized
type of her current worker, and common knowledge of stability.

We adapt the definition of incomplete-information stability from LMPS to our no transfer setting:

Definition 2. [Liu, Mailath, Postlewaite, Samuelson (2014) [11]]
(i) Fix a non-empty set of individually rational matching outcomes Σ. An outcome (µ, w, f) ∈ Σ is

Σ-blocked if:

∃ (i, j) ∈ I × J s.t. :
(1) vw(i)f(j) > vw(i)f(µ(i))

(2) ϕw′(i)f(j) > ϕw′(µ−1(j))f(j), ∀ w′ ∈ Ω s.t. :
(a) (µ, w, f) ∈ Σ
(b) w′(µ−1(j)) = w(µ−1(j))
(c) vw′(i)f(j) > vw′(i)f(µ(i))

(ii) An outcome (µ, w, f) ∈ Σ is Σ-stable if it is not Σ-blocked.

(iii) Let Σ0 be the set of all individually rational outcomes.
For k ≥ 1, set: Σk :=

{
(µ, w, f) ∈ Σk−1 : (µ, w, f) is Σk−1-stable

}
.

(iv) The set of incomplete-information stable outcomes is given by: Σ∞ :=
∞⋂

k=1
Σk.

Inequality (1) on line (i) requires that worker i strictly benefits from blocking with firm j. Inequality
(2) requires that firm j expects to strictly benefit from blocking with worker i under any reasonable
belief w′ that she might have about the workers’ type function. To be reasonable, a belief must be
in the support Ω and must satisfy conditions (a), (b) and (c). Condition (b) demands that the belief
w′(µ−1(j)) about the type of firm j’s partner is correct. This is a consistency condition saying that
the firm uses her observation of her partner’s type. Condition (c) is condition (1) rewritten for any
reasonable belief about the targeted worker’s type w′(i). This is a consistency condition asking that
worker i blocks only if he has an incentive to do so. Through condition (c), the firm can draw inference
about the type of the worker she faces just because this worker is willing to block with her, and not
all types would be willing to do so. Condition (a) just says that the belief must be consistent with
outcomes already in Σ. That is to say, the Σ-blocking test can only get rid of outcomes in Σ. This sets
the foundations for the iterative definitions in the next lines.
Line (iii) defines a weakly decreasing sequence of sets of outcomes. Line (iv) defines the limit of the
sequence.13

To illustrate the iterative argument, we make a formal treatment of the example from FIGURE 2.
Belief w′ is a reasonable belief at the first order (it does not contradict the premise that µ is individually
rational), but it is not reasonable at second order (it contradicts the premise that there are no blocking
pairs in µ). So (i3, j2) is a Σ1 blocking pair and (µ, w, f) /∈ Σ2, /∈ Σ∞.

Proposition 1.
(i) The set of incomplete-information stable outcomes is a superset of the set of complete-information

stable outcomes.

(ii) For each type assignment (w, f), there exists an incomplete-information stable matching µ.

The proof for (i) shows that the true belief w will always be kept as reasonable in the iterative
inference. Statement (ii) uses the existence of a stable matching in complete information (Gale and
Shapley (1962) [7]).

13The sets Σk, k ∈ N, Σ∞ depend on the support of beliefs Ω, so that the explicit notation should be Σk(Ω), k ∈ N,Σ∞(Ω).
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4 Results: Robust stable matchings

4.1 Common preferences

The notion of incomplete-information stability from definition 2. uses a conservative notion of
blocking pairs, likely to result in few blocks. The definition is quite permissive, and in the general case,
it is expected to produce a large set of incomplete-information stable outcomes.
Yet, under natural assumptions on the match values and the support of the prior distribution, the
prediction becomes surprisingly precise.

Assumptions

We list three assumptions on the market structure. When we give the main results, we will make
clear why those assumptions are needed.

Assumption 1.
(M) v (ϕ) is strictly increasing in f (w).

(SM) The match surplus v + ϕ is super-modular in w and f .

With assumption (M), match values are strictly increasing in the partner’s type.14 This defines
common ordinal preferences: all agents from a given side agree on the ranking of agents on the other
side. All workers (firms) prefer to be matched with firms (workers) of higher cardinal type. Becker
(1973) [1] has shown that under this assumption, there is a unique stable matching with complete
information: the positive assortative matching, where the kth most preferred worker is matched to the
kth most preferred firm, for any k.
Assumption (SM) sets super-modular match surpluses: the increase in the match surplus of a pair from
changing the worker to a higher type is larger the higher the type of the firm (and conversely).

We note that with monotonic preferences, condition (c) from definition 2. never binds. Whether a
blocking is incentivized for a worker only depends on the firms’ types so that a blocking proposal does
not reveal anything about the worker’s type. In FIGURE 1, i′ wants to block with j if and only if f > f ′.
Whether f > f ′ is observed by j, so that there is nothing that f can learn.15

Assumption 2.
(I) Ω is the set of injections from I to W .

(S) Ω is the set of surjections from I to W .

(B) Ω is the set of bijections from I to W .

Assumption 2. restricts possible worker types functions in 3 possible ways. (I) imposes that each
worker has a different type. (S) imposes that all the possible types have at least one representative
worker with this type. (B) is equivalent to (I) and (S): firms perfectly know the set of (non-replicable)
worker types they face. They just do not know which worker has which type, and consider that any
permutation can happen.

Assumption 3.
(N’) |f(J)| = |J |

(N) |I| ≤ |J + 1|.

(N ′) says that different firms have different types. (N) is an assumption on the congestion on the
market: there is at most one more worker than firms. We denote ∆ := |J | − |I| ≥ −1 the difference in
the number of firms vs workers.

14This is just a convention. With strictly decreasing payoffs, we get the same results.
15As a consequence, cardinality does not play any role in the results. We could produce the same model and results with

ordinal preferences and types. We stick to the cardinal framework, though, to ease the comparison with LMPS.
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Main results

To state the main results and to write the proof, we borrow the definition of assortativity at
various orders from LMPS. To this end, we order the set of possible types: W = {w1, . . . , wK},
F = {f1, . . . , fL}, with types increasing in the exponents w1 < . . . < wK , f1 < . . . < fL. To deal
with unmatched agents, we also introduce the notation w(∅) = w0, f(∅) = f0.

Definition 3.

(i) [Liu, Mailath, Postlewaite, Samuelson (2014) [11]]
A matching outcome (µ, w, f) is kth-order worker assortative (k ≥ 1) if:

∀ w > wk, ∀ i, i′ ∈ I|w(i), w(i′) ∈ {w1, . . . , wk, w} : w(i) > w(i′) =⇒ f(µ(i)) ≥ f(µ(i′))

(ii) A matching outcome (µ, w, f) is positive assortative if:

∀ i, i′ ∈ I : w(i) > w(i′) =⇒ f(µ(i)) ≥ f(µ(i′))
∀ j, j′ ∈ J : f(j) > f(j′) =⇒ w(µ−1(j)) ≥ w(µ−1(j′))

(iii) A matching outcome (µ, w, f) is maximal if only |∆| agents are unmatched.

kth-order worker-assortativity requires both that the k lowest worker types w1, . . . , wk are matched
with firms assortatively, and that any worker with a higher type w > wk is matched with a firm of
(weakly) higher type. kth-order worker assortativity is defined in terms of the grand set of all ex-ante
possible worker types W , not with respect to the ex-post realized types. For example, if no worker is
effectively of type w1, 1st-order worker assortativity is trivially satisfied. 1th-order worker assortativity
just means that workers of types w1, if any, are matched to the lowest types of firms (or unmatched).
Assortativity as in (ii) is the usual positive assortativity as in Becker (1973) [1].

Proposition 2.
Set an incomplete information matching market with assumptions (M), (N) and (N ′).
Then:

(1) Under assumption (B), incomplete-information stable outcomes are the assortative outcomes.

(2) Under assumption (I), incomplete-information stable outcomes are the kth-order worker assortative
outcomes, where k + 1 is the first omitted worker type in the realized types.

(3) Under assumption (S), the incomplete-information stable outcomes are the maximal outcomes.

This proposition shows that under monotonic values, the robust approach can lead to maximally
small / large stable set. The size of the set depends finely on the assumption about the worker type
function.

The proof of statement (1) is by contradiction and induction.16

In the initial step, we show that if an outcome is not assortative for the lowest worker type w1, the usual
blocking pair from complete information (between the worker (firm) matched with the lowest type of
(firm) worker) is also blocking with incomplete information. Indeed, the firm in this pair, observes her
current partner’s type w1. Due to the bijection assumption, she then knows that the target partner she
faces is of strictly higher type w > w1. Although this firm holds many reasonable beliefs, she wants to
block under any of those beliefs. So only 1st-order worker assortative outcomes can survive this kind of
block. We illustrate this argument below:

16With a preliminary step dealing with unmatched agents: showing that stable outcomes are maximal, and that the
unmatched agents are the lowest types.
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j2j1

2 1

1 2
i1 i2

FIGURE 3.4: (Local) non 1st-order worker assortative outcome
If W = {1, 2, 3, 4} and (B) hold, j1’s reasonable beliefs w′ are s.t.: w′(i2) ∈ {2, 3, 4}

(i2, j1) is a Σ0 blocking pair

At the inductive step k, only matchings that are worker assortative at kth-order remain as candi-
date stable outcomes. In practice, this means that agents have common knowledge that the observed
matching must satisfy kth-order worker assortativity. So whenever a firm observes a firm type above k,
she knows the partner of this firm is also a type above k. This enables to build blocking pairs in any
outcome that would not be (k + 1)th-order worker assortative. We illustrate the argument below, using
again FIGURE 2:

j2j1 j3

1 3 2

1 2 3
i1 i2 i3

FIGURE 3.5: (Local) 1st-order but not 2nd-order worker assortative outcome
If W = {1, 2, 3, 4} and (B) hold, j2’s reasonable beliefs w′ are s.t.: w′(i3) ∈ {3, 4} > 2

(i3, j2) is a Σ1 blocking pair.

Statement (1) can be interpreted as an ex-post validation of the mainline matching literature. The
complete information assumption can be seen as a technical shortcut to the environment with incom-
plete information, leading to the same market outcomes. But whether the (B) assumption holds in
practice remains unclear.

For statement (2), we assume only (I) and not the stronger (B). Some possible workers’ types may
not be realized, and firms know this. Starting from the lowest possible types, as long as all possible
types are realized (so that the injection behaves locally as a bijection), the induction from the (B) case
works the same. However, as soon as one possible type w is not realized, the possible belief of candidate
blocking firms includes w, under which there is no incentive to block. The induction stops at this point.
We illustrate this argument below:
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j2j1 j3

1 3 2

1 3 4
i1 i2 i3

FIGURE 3.6: (Local) 1st-order and 2nd-order worker assortative outcome
If W = {1, 2, 3, 4} and (I) hold, j2’s reasonable beliefs w′ are s.t.: w′(i3) ∈ {2, 4}

(i3, j2) is not a Σ1 blocking pair.

The prediction from statement (2) is that assortativity applies on the lowest types first. This may
match stylized facts about real-life markets, where we observe that low-skilled workers are matched
with low-status job positions, but where the success of the intermediate to high-skilled workers seems
more variable. This paper proposes an explanation: firms fear that targeted workers could be of some
unrealized low types.

For statement (3), we assume only (S) and not the stronger (B). It can be that two different workers
have the same realized type. This prevents the very first step of the induction. The possible beliefs of a
firm matched to a worker with the lowest realized type w1 include the belief that a targeted worker is
also of type w1, hence no strict incentive to block.17

The next figure illustrates this point:

j2j1

2 1

1 2
i1 i2

FIGURE 3.7: (Local) non 1st-order worker assortative outcome
If W = {1, 2, 3, 4} and (S) hold, j1’s reasonable beliefs w′ are s.t.: w′(i2) ∈ {1, 2, 3, 4}

(i2, j1) is not a Σ0 blocking pair.

Statement (3) is a negative result. Incomplete-information stability only restricts the matching of the
lowest types, who are necessarily the unmatched agents. The issue is that firms may believe the whole
market is made of the same very low type. The theoretical implication is that the complete-information
framework cannot be seen as a reduced-form model of the incomplete-information framework. The
practical implication is that incomplete information disrupts the market outcome a lot.

Statements (2) and (3) bridge the gap with Bikhchandani (2017) [3], working with continuous
workers’ types. The interval of workers’s types W = [w, w] in Bikhchandani (2017) can be seen as the

17A slight modification of the definition of a blocking pair could solve this issue and make the initial step operational: a
firm would be considered as willing to block if it strictly wants to block under all reasonable beliefs except one, under which
she is indifferent. However, this definition would not restore the inductive step in the proof, as w1 would still survive as a
reasonable belief of any firm about a targeted worker.
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limit case of (I) where an infinity of possible types are not realized, or the limit case of (S) where any
type may be replicated an infinite number of times. In this sense, Bikhchandani (2017) locates in a
large market environment.

Necessity of assumptions on payoffs and market structure

We explain in details why we need assumptions (M), (N) and (N ′).

Assumption (M) implies that all agents want to match with the highest types. Due to the asymmetric
information structure, where workers perfectly observe firms’ types, only firms with high types will
succeed in matching with workers of high types. Firms are aware of this, so that they reach common
knowledge that the matching must be assortative.

Assumption (N) says that different firms have different types. If this were not the case, the assorta-
tivity condition would leave some flexibility on the exact assignment of workers within groups of firms
with similar types. So, a firm considering rematching with a targeted worker matched to a firm whose
type has multiple replicas would be confused. She would hold multiple reasonable beliefs about the
target’s type. The worst of those beliefs (still not contradicting assortativity) would give an incentive to
block. We illustrate this point below:

j2j1 j3

1 2 1

1 2 3
i1 i2 i3

FIGURE 3.8: (Local) 1st-order and not 2nd-order worker assortative outcome - (N) does not hold
If W = {1, 2, 3, 4} and (B) holds, j reasonable beliefs w′ are s.t.: w′(i3) ∈ {1, 3, 4}

(i3, j2) is not a Σ1 blocking pair.

Assumption (N ′) demands that there are at most one more worker than firms. This is a technical
condition to ensure that the preliminary part of the proof (dealing with unmatched agents) works. If
there are two more workers than firms, at least two workers remain unmatched. Then we face a similar
issue to the one in FIGURE 8 (where we can replace the types 1 for firms by ∅). The candidate blocking
firm j2 pools the two unmatched workers. Reasonable beliefs about worker i3’s type include the worst
reasonable belief w′(i3) = 1.
If there are significantly more firms than workers, many firms remain unmatched, but this is not an
issue. Because workers have perfect information, they do not need to make inference about firms’ types
based on the firms’ current partners’ types.

Efficiency

With yet a little more structure on match values, we are able to comment on the efficiency of the
stable outcomes, where an outcome is efficient if it maximizes the sum of all match values.

Corollary 1.
Set an incomplete-information matching market with assumptions (M), (SM), (N), (N ′), and (B).

The incomplete-information stable outcomes coincide with the efficient outcomes.
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We add assumption (SM) to the set of assumptions from proposition 2: match surpluses are super-
modular. Having as few unmatched agents as possible and assortativity for the matched agents (as
predicted by proposition 2) is what maximizes the sum of the surpluses.
Under assumptions (I) or (S), incomplete-information matchings are not necessarily efficient. The
market designer could consider taking action to restore efficiency. The straightforward way would be
to give more information to agents. In the (I) case, revealing only which types are not realized on the
market would solve the issue on FIGURE 6. Under assumption (S) though, giving information about
which types are realized several times would not solve the issue in FIGURE 7 - only full information
would.

4.2 Comparison with LMPS

To illustrate the differences between our work and robust stability in its original model, we take an
example from LMPS.

In the TU case, an outcome (µ, p, w, f) also includes a payment scheme p associated with the match-
ing µ. The payment scheme specifies a payment from a firm to the worker piµ(i) ∈ R for each i ∈ I,
pµ−1(j)j ∈ R for each j ∈ J .
Suppose that the current outcome is as follows:

j2j1 j3

1 5 4

1 2 3
i1 i2 i3

0 p0 4

FIGURE 3.9: Candidate stable outcome in the TU case

Match values are given by: vwf = ϕwf = w × f , hence symmetric, strictly increasing in the agent’s
and the partner’s types. The values and the match surpluses are super-modular in types. Because of the
transfers, payoffs aggregate the values and the payments. For example, worker i3 (firm j3) currently
gets as a payoff: 4 × 3 + 4 = 16 (4 × 3 − 4 = 8).

We do not specify the payment p0 because different blocking pairs arise depending on p0.
For the first case, we consider (as in LMPS) a payment reasonably close to 0: p0 = −2 and the candidate
blocking pair (i3, j2) at price p:

j2j1 j3

1 5 4

1 2 3
i1 i2 i3

0 −2 4p

FIGURE 3.10: Outcome from FIGURE 9 and candidate blocking pair with p0 = −2
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Worker i3 by rematching with firm j2 would get 15 + p. So he wants to block iff: 15 + p > 16 ⇐⇒
p > 1. What firm j2 gets by rematching with worker i3 depends on the type of worker i3 and the price
p. For example, if i3 is of type 2, firm j2 wants to block iff: 10 − p > 12 ⇐⇒ p < −2. Whether different
types of workers (other than type 3) want to block at each possible price matters for firm j2’s inference.
We summarize all willingnesses to block of the pair (i3, j2) on a line for possible blocking prices below:

−7 −2 1 32

j2 :

i3 : w(i3) = 3w(i3) ∈ {2, 3}w(i3) ∈ {1, 2, 3}

w′(i3) = 3w′(i3) ∈ {2, 3}w′(i3) ∈ {1, 2, 3}

FIGURE 3.11: Willingnesses to block in pair (i3, j2) as a function of blocking price p

The blocking price p = 1 + ϵ, ϵ > 0 small, will make (1) Only a worker i3 of type 3 willing to block
(2) The firm j2 willing to block with a worker i3 of type 3. We have built a blocking pair.
In practice, firm j2 makes inference from a blocking proposal at a given price. If a worker i3 makes a
proposal at price p = 1 + ϵ, this signals that he is of the best type 3.

For the second case, consider a lower payment p0 = −4 and a candidate blocking pair (i2, j3) at
price p:

j2j1 j3

1 5 4

1 2 3
i1 i2 i3

0 −4 4p

FIGURE 3.12: Outcome from FIGURE 9 and candidate blocking pair with p0 = −4

The graph of willingnesses to block is the following:

−4 −3 −2 −1 0 4

j3 :

i2 : w(i2) = 3 w(i2) ∈ {2, 3} w(i2) ∈ {1, 2, 3}

w′(i2) = 3w′(i2) ∈ {2, 3}w′(i2) ∈ {1, 2, 3}

FIGURE 3.13: Willingnesses to block in pair (i2, j3) a function of blocking price p

The blocking price p = −2 + ϵ, ϵ > 0 small, will make (1) Worker i2 of type 2 willing to block
with firm j3 (2) Firm j3 willing to block with a worker i3 of type at least 2. We have built a blocking pair.
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In both cases, we find that the outcome from FIGURE 9 is unstable.
LMPS show that this is general: in any matching that is not assortative, they can construct at least
one blocking pair. Just as in complete information, there are two kinds of blocking pairs: if current
payments are close to being neutral, the blocking pair gathers high types. If current payments are very
much in favor of the high types, the blocking pair gathers low types. Supermodularity in values ensures
that we always fall in one of the two cases.

The nature of the inference made by firms differs significantly between the TU and NTU cases. In
LMPS, firms make inference from blocking proposals. A proposal at a given blocking price signals that
a type is at least as good as a reference type. This restricts the set of reasonable beliefs by dismissing
the worst beliefs, making firms willing to block. There always exists a blocking price that enables this
kind of inference. This price (characterized by LEMMA 2 in LMPS) is such that it gives an ϵ benefit
to the highest workers’ types in the block. Super-modularity says that the benefit for a worker from
rematching with a higher type is higher the higher the worker type. It therefore implies that the blocking
price from LEMMA 2 in LMPS will be unattractive to any lower types. This suggests that cardinality of
types and super-modularity of values is key in the NTU case, and that the analysis cannot be extended
in a non super-modular world.

By contrast, the inference made by firms in the TU case has simpler, ordinal, and more general
mechanics. It does not rely on any assumption about complementarity in the match values. From
observing that a targeted worker is matched with a quite good type of firm, a firm infers that this worker
is quite a good type as well, at least above her own partner’s type. Otherwise, the current partner of
the targeted worker would already have formed a blocking pair with another worker matched with a
very low type of firm.
The inductive aspect of the proof is similar in both the TU and NTU cases.

4.3 Other preference structures

Another central difference with the TU case is that the robust approach in the NTU has bite even
when preferences are not common (match values are not monotonic in the partner’s type). We explain
the general principle and propose examples.

When preferences are not common (but they are still common knowledge), blocking proposals
disclose information about workers’ types. In FIGURE 1, the fact that worker i′ proposes to block with j
reveals that i′ is one of the workers who value type f more than type f ′, hence a restriction on the set
of reasonable beliefs about i′’s type.

Suppose, for instance, that preferences are cyclical and symmetric as follows:18

w1 w2 w3

1st choice f1 f2 f3

2nd choice f2 f3 f1

3rd choice f3 f1 f2

f1 f2 f3

1st choice w1 w2 w3

2nd choice w2 w3 w1

3rd choice w3 w1 w2

We also assume that the belief support for workers types function is made of bijections from I to
W = {w1, w2, w3}.

Proposition 3.
There is a unique incomplete-information stable outcome, where the worker of type wk is matched with

the firm of type fk, k ∈ {1, 2, 3}, so that every agent is matched with his or her favorite partner.

We propose a sketched proof in two steps. Suppose first that a local matching is such that:

18Without loss of generality, we work directly with ordinal preferences instead of cardinal utilities and with non-cardinal
types.



122 Chapter 3. Robust Incomplete Information Stability

j2j1

f2 f1

w1 w2
i1 i2

FIGURE 3.14: (Local) non 1st-order worker assortative outcome

Worker i2 is matched with his worst choice, so he is willing to block with firm f2. Firm j1 does
not observe worker i2’s type, but observes her current partner’s type w1. So reasonable beliefs about
i2’s type only include w′(i2) ∈ {w2, w3}. Under any of those beliefs, firm j1 is willing to block with
i2. So (j1, f2) is a Σ0 blocking pair. Thus, in an incomplete-information outcome, we cannot have
two pairs of "adjacent" types in the preference tables mk, ml, fk, f l that would be crossed matched
(µ(mk) = f l, µ(ml) = fk).

Consider now an outcome as follows:

j2j1 j3

f3 f1 f2

w1 w2 w3
i1 i2 i3

FIGURE 3.15: 1st-order but non 2nd-order worker assortative outcome

Worker i1 of type w1 is matched with his worst choice. He prefers to rematch with firm j2 of type
f1. Firm j2 has reasonable beliefs w′(i1) ∈ {w1, w3}. Firm j2 is of type f1 is not willing to block under
belief w′(i1) = w3. So (i1, j2) is not a Σ0 blocking pair. But belief w′(i1) = w3 implies w′(i3) = w1.
Then the local outcome on the sub-market {i2, i3} × {j2, j3} would be exactly as in FIGURE 14. There
would be a blocking pair, contradicting the premise of stability. So w′(i1) = w3 is not a reasonable
belief. (i1, j2) is a Σ1 blocking pair.
The conclusion is that at a stable outcome, there cannot be a cycle in the types matched as in FIGURE

15.
In total, this forbids any matching different from the one described in proposition 3..
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5 Concluding comments

In this paper, we apply the robust stability approach to a market with non-transferable utilities.
Compared to TU markets, NTU markets stand as an environment that is equally and increasingly rel-
evant for economics. The present paper shows it is also richer in terms of predictions about stable
outcomes.

LMPS had envisioned robust stability in the NTU case in these terms: "A marriage model is a special
case of our model in which there are no transfers. (1) The absence of transfers would make it more
difficult for an agent to convey information through a proposed block, precluding results analogous to
LEMMA 2.19 Hence, we should expect (2) the set of incomplete-information outcomes to be relatively
large, but (3) the structure of the analysis remains unchanged."
Our paper answers in the following way: statement (1) is true under monotonic match values only.
Statement (2) is wrong in general, especially when the uniformed side’s belief support includes only
bijections. Statement (3) is wrong as, even when we find results that look similar to LMPS (in particular
when the complete and incomplete-information stable sets coincide), the mechanics of the inference
behind differ.

From an applied perspective, our results mean that strong inference by the uniformed side of the
market about productive types on the other side may happen. The extent of this inference depends
finely on the patterns of productive types. Targeted information provision may be enough to close the
gap and reach the complete-information stable outcomes.

Deepening the analysis under non-common preferences is the primary direction for future research.
Secondary directions include a generalization to many-to-one matching and a study of stability when
deviations by coalitions larger than a pair are allowed.
Finally, beyond the "what?" question (what is stable?), we are interested in the "how?" question (how
does the market get to what is stable?). The convergence question is a challenging one in an incomplete
information environment where preferences are endogenous to the current matching.

19This is the lemma saying that there is always a blocking price that allows a high-type firm to disentangle between
different workers’ types.
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Appendix A Proofs

Proof of proposition 1.

Set a type assignment (w, f). By Gale and Sapley (1962) [7], there exists a stable matching in complete
information.
We denote the set complete information stable outcomes when the true workers types function is w Σ({w}),
and one element in this set µ ∈ Σ({w}).
Because µ is stable, it is individually rational, so: (µ, w, f) ∈ Σ0.
Set k ∈ N, (µ, w, f) ∈ Σk. By definition, w is a reasonable belief in Σk. Because µ is stable, it has no blocking
pair under belief w. So for each pair, either the worker does not want to block ((1) is not satisfied) or the firm is
not willing to block under at least one reasonable belief w′ = ω ((2) is not satisfied). So (µ, w, f) ∈ Σk+1.
By induction: ∀ k ∈ N, (µ, w, f) ∈ Σk.
So (µ, w, f) ∈ Σ∞. This proves (i)
µ is an incomplete-information stable matching for type assignment (w, f).
We conclude, that, whatever the type assignment, there always exists a stable matching ((ii)).

Proof of proposition 2., statement (1)

We first prove how incomplete information stability restricts the outcome for (potentially) unmatched agents.

• CLAIM A - (µ, w, f) ∈ Σ1 =⇒ Only |∆| agents are unmatched.
PROOF - By contradiction, suppose that more than ∆ agents are unmatched.
So there exists an unmatched worker and an unmatched firm. Denote them i and j respectively.
vw(i)f(∅) = 0 < vw(i)f(j), i wants to block with j.
By condition (b) in definition 2., at any reasonable belief w′: w′(∅) = w(∅) = ∅.
So ∀ w′ reasonable : ϕw′(∅)f(j) = 0 < ϕw′(i)f(j), j wants to block with i.
(i, j) is a Σ0 blocking pair.
(µ, w, f) is Σ0-blocked, /∈ Σ1.
More than ∆ agents are unmatched =⇒ (µ, w, f) /∈ Σ1.
BY contraposition, this proves CLAIM A.

• CLAIM B - (µ, w, f) ∈ Σ1 =⇒ Unmatched agents are the lowest types.
PROOF

– Case ∆ = −1 (one more worker than firms).
Set an outcome (µ, w, f) ∈ Σ1.
By CLAIM A, there is exactly one unmatched worker. Denote this worker i.
Suppose he is not the lowest type w(i) > w1.
By B, there is another (matched) worker who is the lowest type. Denote this worker i′: w(i′) = w1.
vw(i)f(∅) < vw(i)f(µ(i′)), i wants to block with µ(i′).
By condition (b) in definition 2., at any reasonable belief w′: w′(i′) = w(i′) = w1.
By (B), w′(i) > w1.
So ∀ w′ reasonable : ϕw′(i′)f(µ(i′)) = 0 < ϕw′(i)f(j), µ(i′) wants to block with i.
(i, µ(i′)) is a Σ0 blocking pair.
(µ, w, f) is Σ0-blocked, /∈ Σ1.
Unmatched worker is not the lowest type =⇒ (µ, w, f) /∈ Σ1.
By contraposition, this proves CLAIM B.

– Case ∆ ≥ 1 (more workers than firms).
Set an outcome (µ, w, f) ∈ Σ1.
By CLAIM A, there are exactly ∆ unmatched firms.
Suppose they are not the lowest types of firms.
∃(j, j′)|µ−1(j) = ∅µ−1(j′) ̸= ∅, f(j) > f(j′).
By (M): vw(µ−1(j′))f(∅) < vw(µ−1(j′))f(j), µ−1(j′) wants to block with j.
By condition (b) in definition 2., at any reasonable belief w′: w′(µ(j)) = w(∅) = ∅.
So ∀ w′ reasonable : ϕw′(∅)f(j) = 0 < ϕw′(µ−1(j′)f(j), j wants to block with µ−1(j′).
(j, µ−1(j′)) is a Σ0 blocking pair.
(µ, w, f) is Σ0-blocked, /∈ Σ1.
Unmatched firms are not the lowest types =⇒ (µ, w, f) /∈ Σ1.
By contraposition, this proves CLAIM B.

We now characterize how incomplete information stability restricts the outcome for matched agents.
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• We first set ∆ = 0.
INDUCTION PROOF

Induction hypothesis: H(k) : Σk(Ω) ⊆ {(µ, w, f) kth-order worker assortative}.

– Initial step k = 1.
Suppose (µ, w, f) ∈ Σ1 is not 1st-order worker assortative.

Then, there exists i, i′ ∈ I s.t.
{

w(i) = w1 < w(i′)
f(µ(i)) > f(µ(i′)) .

But then, by (M):
vw(i′)f(µ(i)) < vw(i′)f(µ(i′)), so i′ wants to block with µ(i).
By definition 2., condition (b), reasonable beliefs w′ of firm µ(i) are s.t.: w′(i) = w(i) = w1.
By (B), w′(i) > w1.
So: ∀ w′ reasonable : ϕw′(i)f(µ(i)) < ϕw′(i′)f(µ(i)), so µ(i) wants to block with i′.
So (i′, µ(i)) is a Σ0 blocking pair.
So (µ, w, f) /∈ Σ1.
By contraposition: (µ, w, f) ∈ Σ1 =⇒ 1st-order worker assortative.
So: Σ1 ⊆ {(µ, w, f) 1st-order worker assortative} − H(1)

– Inductive step
Set k ≥ 1 and H(k).
Set (µ, w, f) ∈ Σk.
By H(k), (µ, w, f) is kth-order worker assortative.
Suppose it is not (k + 1)th-order worker assortative.

Then, there exists i, i′ ∈ I s.t.
{

w(i) = wk+1 < w(i′)
f(µ(i)) > f(µ(i′)) .

But then, by (M):
vw(i′)f(µ(i)) < vw(i′)f(µ(i′)), i′ wants to block with µ(i) .
By definition 2., condition (a), reasonable beliefs are in Σk, so by H(k), reasonable beliefs w′ include
only outcomes that are kth-order worker assortative.
In addition, by condition (b): w′(i) = w(i) = wk+1.
By (B), w′(i) > wk+1.
So: ∀ w′ reasonable ϕw′(i)f(µ(i)) < ϕw′(i′)f(µ(i)), µ(i) wants to block with i′.
So (i′, µ(i)) is a Σk blocking pair.
So (µ, w, f) /∈ Σk+1.
By contraposition: (µ, w, f) ∈ Σk+1 =⇒ (k + 1)th-order worker assortative.
So: Σk+1(Ω) ⊆ {(µ, w, f) (k + 1)th-order worker assortative}.
We have proven H(k + 1).

– We conclude: ∀k ∈ {1, . . . , |I|}: H(k) is true.
In particular: H(|I| − 1): Σ|I|−1(Ω) ⊆ {(µ, w, f) (|I| − 1)th-order worker assortative}.
Due to (B), (|I| − 1)th-order worker assortativity is equivalent to assortativity.
Going to the limit we get that Σ∞ ⊆ {(µ, w, f) assortative }.

– In the proof of proposition 1., we have proven that Σ({w}) ⊆ Σ(Ω), w ∈ Ω.
Under assumption (M), by Becker (1973) [1], complete-information stable outcomes are the assor-
tative outcomes.
So assortative outcomes are also incomplete-information stable.
We conclude: Σ∞ = {(µ, w, f) assortative}.

• If ∆ = −1, CLAIM B already sets the matching for type w1.
We do the same proof as above for the case ∆ = 0 on the submarket where we remove w1.
We get |I| − 2th-order worker assortativity.
Both results combined give assortativity.

• If ∆ ≥ 1, CLAIM B fixes that there are ∆ unmatched firms, and that they are the lowest types.
We do the same proof as above for the case ∆ = 0 on the submarket where we remove the ∆ lowest type
of firms.
We get |I| − ∆ − 1th-order worker assortativity.
Both results combined give assortativity.

Proof of proposition 2., statement (2)

We do a similar proof as for statement (1).
If all lowest possible types are realized, the injection behaves locally as a bijection.
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The induction works until one of the possible worker types is not realized.
FIGURE 6 in the main shows on an example how the inductive step fails at the k + 1 stage, where k is the first
unrealized worker type.

Proof of proposition 2., statement (3)

The kind of proof that we did for statement (1) does not work.
FIGURE 7 in the main shows how the initial step fails.

Proof of corollary 1.

By proposition 2., under (M), (N), (N ′), and (B), the set of incomplete information stable outcomes
coincide with the set of positive assortative outcomes.
In addition, under supermodular values ((SM)), the set of efficient outcomes is the set of positive assortative
outcomes - The proof is omitted.
So the set of incomplete information stable outcomes coincide with the set of efficient outcomes.

Proof of proposition 3.

In the main.
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1 Introduction

Motivations

Matching refers to the formation of productive partnerships. In most matching problems, by default,
agents do not know about their own preferences over potential partners. Or rather, the amount of
available information depends on the nature of the preferences. If the preferences include a common
component, reflecting that some characteristics in a targeted partner are valued by any agent, objective
information about this common component may be available on the market. In all likelihood, the
market operator has gained knowledge about the common component in the course of operations and
is willing to reveal the information to participants, in a concern for efficiency. Yet in most real-life
matching markets, preferences also include a private component, reflecting that different agents may
value the same targeted partners differently so that there is a notion of “fit” on the market. Then, it is
very unlikely that information about the private components is freely available. Even a market operator
with the best intentions would be unable to gather information about the private components because
it involves individual tastes. Only each participant individually could collect information on the private
aspect of her preferences. Even for the participant, collecting this information on private preferences
could prove to be a hard task.

This is especially true in college admissions, where students start with bad or imprecise guesses on
how they would be satisfied studying in each college. Our favorite interpretation of the bad guess is that
it is hard to assess the outcome of a match before effectively experiencing it. Students usually attend
college only once in their lives, so they cannot accumulate any experience. Fortunately, students often
have the possibility to acquire information on their preferences before participating in the centralized
allocation mechanism. Due to the centralization, applications are coordinated in time so that the
application deadline is generally known much in advance. Students can use their time and resources
to invest in information acquisition before the deadline. Indeed, we observe that they (jointly with
their parents) do go to visit campuses, seek advice from former students, and make tailored searches
online. The issue is that, in general, information acquisition is either costly (because it involves some
effort) or capacity-constrained (because of the time constraint). In this context, we expect information
acquisition to remain partial as well as heterogeneous among different students and colleges.

The empirical literature supports that intuition. Hoxby and Avery (2012) [12] report that most high-
achieving, low-income high school students do not apply to selective colleges. They argue that these
students’ low ambitions result from a lack of information in connection with a high cost of information
acquisition; the students in question live in small districts where it is unlikely to encounter a teacher
or schoolmate from an older cohort who attended a selective college. In the same line, Hastings and
Weinstein (2008) [10] and Hoxby and Turner (2013) [11] in a respectively lab and field experiments
show that providing students with information about colleges’ fees and outcomes raises the number
of high-achieving low-income students’ applications to top colleges. Dustan, De Janvry, and Sadoulet
(2017) [6] show that information on colleges’ values is by nature limited because of high uncertainty
on the outcome at college through possible dropout.
The theoretical matching literature mainly1 assumes exogenous information on preferences, most often
perfect information (at least on ordinal preferences).2 It, therefore, completely abstracts from the
information acquisition problem. This is mainly for tractability reasons but at the expense of realism.
Exogenous information models are unfit to describe real-life college admissions. They are bound to
produce incorrect predictions in terms of matching and welfare, and biased design recommendations.

Research question

In this paper, we jointly model the information acquisition problem with the usual matching stage.
The question is: How does the possibility for endogenous information acquisition shape the learning,

1Exceptions (mostly very recent papers) are discussed in section §2.
2This contrasts with Roth (1989) [18] early on identifying modeling of information as the priority next step in the analysis

of matching markets.
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the applications, the admissions, and the welfare?

We are particularly interested in two elements: the strategic interactions within students and the
heterogeneity of students and colleges.
Incentives to acquire information for different students are intertwined. Indeed, the fact that a student
acquires information modifies her expected application, expected match, and admission chances of all
lower-priority agents. At equilibrium, students best-respond to (private) learning of higher-priority stu-
dents.
In our model, both the students and the colleges are heterogeneous: students are ordered by their
rank in priorities, and colleges are ex-ante ordered by their common component. Our main contribu-
tion to the literature on information acquisition is that we fully address the two-sided heterogeneity.
Computing the learning equilibrium strategies amounts to answering the question: “Who learns about
what?”. One nested question is whether, at equilibrium, there is some monotonicity in learning with
higher-priority students applying to colleges with higher common attributes. The final aim should be
to characterize how the matching and welfare are distorted with respect to the full information bench-
mark. In this perspective, our model is especially relevant to study (in)equity in college admissions.

Preview of model and results

The baseline model sets a stylized college admission problem with n students and colleges and unit
capacities at colleges. Preferences are hybrid and additive: they include a common component and a
private component. The common components are common knowledge. The private components are
unknown ex-ante, but students can freely and perfectly observe the private component at one college.
Priorities are common and common knowledge. The matching occurs through a standard Deferred
Acceptance (DA) mechanism.
At Bayes-Nash equilibrium, we find that student 1 learns about college 1 or 2. Student i ∈ {1, . . . , n}
learns about college i + 1, and the value of this information equals the sum of the values from learn-
ing about all ex-ante better colleges. Student n may learn about any college and has zero value of
information. There is thus monotonicity in learning in the sense that higher-priority agents explore
ex-ante better colleges. Characterizing how this affects matching and welfare involves heavy ongoing
combinatorial computations.
The more general model should include non-unit learning constraints and college capacities and com-
pare learning under different mechanisms (general mechanism).

Outline of paper

The rest of the paper is structured as follows. Section §2 reviews the related literature. Section §3
sets and motivates the baseline model. Section §4 formally characterizes equilibrium learning, ranking
strategies, and values of information. Proofs for the most immediate (respectively advanced) results
are in the main body of the article (resp. in the appendix §A). Section §5 discusses implications for
matching and welfare and the more general models.3 Section §6 concludes.

2 Literature review

Pre-Matching Information Acquisition

An interesting literature has recently emerged on pre-matching information acquisition. Artemov
(2021) [1] is probably the closest related paper. It sets a continuum matching model with a continuum
of students of mass 1 and 3 schools, A, B, and C, with respective capacities q, q, and 1, with q ≤ 1

3 .
Utilities at schools A and B are fixed to 1 and 0, but utility at school B is random 1

2 + ϵi, E[ϵi] =
0. The default ranking over schools is therefore ABC. Students can privately observe ϵi at a cost
c(i), so that the optimal ranking at the interim stage may become BAC or ACB. The allocation is
made through DA. Artemov (2021)’s interest is in the externality that the learning from one student

3Results in section Section §5 are currently only partial or stated in intuitive terms.
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exerts on other students: when students are non-informed (informed), they rely on a common ex-
ante criteria, competition is strong (weak), and the fit between matched students and colleges is bad
(good). Because of the externalities, at equilibrium, too few students acquire information, resulting in
a significant welfare loss. The paper proposes policy interventions in the spirit of affirmative action. It
also compares incentives for learning under Deferred Acceptance (DA) vs Immediate Acceptance (IA).
It runs simulations for the case with more than three schools.
The externalities described in Artemov (2021) are also at play in our model. Yet, there are several key
differences between this paper and our paper. In Artemov (2021), students are ex-ante identical, with
random priorities, whereas in our model, students differ by their commonly-known rank in priority.
Therefore, our analysis can characterize learning as a function of the priority. We also consider more
sophisticated preferences, where all colleges’ values are uncertain, and all colleges’ orders are possible
at the ex-post stage. We solve the model for any number of colleges and students.

Chen and Hu (2022) [5] are interested in the incentives to learn cardinal preferences beyond ordinal
ones. They define a game in three stages. First, each student decides to invest α ∈ [0, α] to acquire
information on their ordinal preferences. The signal is perfect with probability α (and with probability
1 − α, the student does not observe anything). After the signal is realized, students decide to invest
β ∈ [0, β] to acquire information on their cardinal preferences. The cost of information is a function
of the sum α + β. Then, allocation occurs through the DA or IA mechanisms. In the most interesting
development of the original model, students can also acquire information (δ ∈ [0, δ]) on other students’
preferences after learning about their own preferences. The paper finds that under both DA and IA, a
Bayes-Nash equilibrium exists and α∗ > 0. Under DA, β∗ = 0, δ∗ = 0, for any preference and for any
α∗, whereas under IA potentially β∗ > 0, δ∗ > 0. This directly comes from DA (IA) being strategy-proof
(non strategy-proof). In the paper, they also evaluate the welfare effects of endogenous information
acquisition and of some information provision policies.
Just as in Artemov (2021), in Chen and Hu (2022), students are ex-ante identical and do not know
priorities when entering the mechanism. This is very unrealistic for college admissions, where students
have privileged access to their grades. This is especially inconsistent with the modeling of a pre-
matching stage where students engage in information acquisition on preferences. Students could take
advantage of this time period to also investigate the priorities, with positive benefits expected under
non-strategy-proof mechanisms such as IA.

At the other extreme, Bucher and Caplin (2021) [4] set a model with 3 students and 3 colleges
with unit capacities. Priorities are common and common knowledge. Preferences are described by a
vector of colleges’ values and are unknown ex-ante. The prior over the vector of values is exchangeable,
meaning that all permutations of values across colleges are equally likely. In a first stage, students can
choose any arbitrary information structure on the vector of values and pay a cost that is linear in the
entropy reduction. Equivalently, students solve a rational inattention problem (Matejka and McKay
(2015) [16], Mackowiak, Matejka, and Wiederholt (2023) [15]). In the second stage, the allocation
occurs with DA. The analysis solves for students’ posteriors after the first stage, the probabilistic match-
ing, and the welfare. Technically speaking, the proof applies the already known solution of the general
symmetric rational inattention problem from Matejka and McKay (2015) [16] inductively. It finds that
student 2 attains a lower fraction of the full information surplus than student 1. The reason is that
student 2 suffers from diluted incentive to acquire information. The conclusion is that endogenous
information acquisition further distorts the allocation in favor of high-priority students.
Many forces driving the incentives to learn as a function of the priority rank in Bucher and Caplin
(2021) also apply in our model. However, we find the assumption of exchangeable prior highly un-
realistic. It implicitly means that preferences are fully idiosyncratic and completely unknown ex-ante.
Before exerting costly effort to acquire information, students have no idea that, in general, Harvard is
preferred to the district college. This notably implies that low-ranked students expect higher-ranked
students to apply uniformly to all colleges. The assumption is key in the proof techniques as it makes
the rational inattention problem symmetric at every stage of the induction. All in all, our view on
Bucher and Caplin (2021) is that the paper is mostly an elegant application of the general rational
inattention model rather than a credible description of college admission markets.



Chapter 4. Pre-Matching Information Acquisition 133

Similarly to us, most papers are motivated by the college admission application.
Overall, the most consistent finding in this literature regards the complexity of the problem. All papers
explicitly report this complexity as a major challenge. To maintain tractability, they are forced to sim-
plify the problem in various ways: looking at a small dimensional problem with only a few students and
colleges, posing a symmetric framework where colleges play the same role ex-ante, setting restrictive
preferences, fixing small capacities at colleges. Setting a continuum of students is also a way to avoid
dealing with numerous cases in the analysis.
With the present paper, our main contribution to the literature is a study of information acquisition
with heterogeneous students and heterogeneous colleges. We wonder: “What student learns about
what college?”. By contrast, Artemov (2021) wonder: “How much one student learns?” Bucher and
Caplin (2021) wonder: “How much each student learns?” Chen and Hu (2022) wonder: “About what
aspect of preferences one student learns?”.

General mechanism design with endogenous information acquisition

A few papers explore mechanism design with endogenous information acquisition.
Bade (2015) [2] considers a housing problem where agents have unknown preferences. In the first
learning stage, each agent chooses a partition of the set of possible vectors of the values of houses at
some cost. She is revealed in what subset of this partition her true vector of values lies. In the second
stage, a direct mechanism is used to allocate the houses. The equilibrium concept is Perfect Bayesian
Equilibrium with truthful revelation of interim beliefs in the second stage. The main theorem says that
(unlike what happens in the full information benchmark) there is a unique ex-ante Pareto-optimal,
strategy-proof, and non-bossy allocation mechanism: serial dictatorship.
In a school choice context, Immorlica, Leshno, Lo, and Lucier (2020) [13] define “regret-free stability”
as optimal information acquisition from students and no blocking pair at the interim stage. They show
that regret-free stable outcomes always exist and that the stable outcomes are fully characterized by
market-clearing cutoffs, where a college cutoff is defined by the lowest priority of students admitted
to the college. They also show an impossibility theorem for mechanism design: no mechanism is
regret-free stable for general economies (equivalently, no mechanism leads to price discovery). This
is because students are trapped in “information deadlocks” where students need information to know
which information they should efficiently gather. This suggests that only policy interventions aimed at
providing information about (historical) cutoffs could help achieve regret-free outcomes.

Pre-Auction information acquisition

The present paper is also related to information acquisition in auctions. In particular, in Bobkova
(2021) [3], bidders are uncertain about their valuation for the object. Their valuation consists of a
common component and a private component. A bidder can choose which component to learn. The
paper identifies conditions under which bidders only learn about their private component in the second-
price auction, so that we stay in an independent value framework, ensuring efficiency.

Cardinal preferences, imperfect information, and ordinal mechanism

This paper is also part of a wider questioning that we have develop in several recent papers Goursat
(2023) [8] and Goursat (2023) [14]. All these papers look at situations where information on pref-
erences or priorities is imperfect, and the centralized allocation mechanism or decentralized blocking
pair process is fully ordinal. In spite of this ordinality, the cardinality in the preferences and priorities
always matters for the final allocation (through the belief formation on possible orders).
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3 Model

3.1 The college admission problem

We model a college admission problem. There are n ∈ N students and colleges. A student (college)
is denoted i ∈ {1, . . . , n} (j ∈ {1, . . . , n}).

Preferences are defined as follows. The value of college j to student i, denoted vi
j , is made of two

additive4 components: vi
j := xj + yi

j .
xj is a common component, hence only indexed by the college j. It models the part of the college value
that is the same among all students, for instance, the value of the degree in terms of employability
and expected wage after college. We fix the order between the common components: x1 > . . . > xn -
college 1 (n) is the best (worst) college when we take into account only the common component. We
also assume that xn > 1

2 and ∀ , j ∈ {1, . . . , n − 1} : xj − xj+1 < 1
2 .5

yi
j is a private component, hence depending both on the college j and on the student i. It models the

part of the college value that different students can value differently: the resources put in the different
fields, the teaching styles, the living conditions on campus. We assume all yi

j are i.i.d. across students
and colleges. The prior is given by a continuous distribution with cdf F , pdf f on support [−1

2 , 1
2 ]. We

assume f is symmetric around 0. Symmetry means that the patterns of good and bad surprises are
similar in terms of frequencies and magnitudes.
When student i is admitted to college j, she gets as payoff the value vi

j . We normalize the payoff from
the outside option to 0.

Priorities are common, meaning that there is an objective ranking over students: ∀ j ∈ {1, . . . , n} :
1 ≻j . . . ≻j n - student 1 (n) is the best (worst) student. An underlying cardinal score, such as SAT
score, may determine this ranking.

3.2 Information and learning

We assume the vector of common components (xj)j∈{1,...,n} is common knowledge. The idea is that
students can freely access information about employability and wages after college from objective data
available in the press. Priorities are also common knowledge.

The private components (yi
j)i,j∈{1,...,n} are unknown ex-ante. But, before the matching stage, stu-

dent i can privately acquire information on the private components in her own preferences (yi
j)j∈{1,...,n}.

Learning is modeled as perfect and free: if i decides to learn about j, she directly observes yi
j . How-

ever, learning is capacity-constrained: student i can observe at most K ∈ {0, . . . , n} components yi
j .6 A

learning strategy li consists in specifying K college indices in {1, . . . , n}.
Our favorite interpretation is that a student willing to learn about a given college can visit the campus
or attend the open days of the college. Talking with teachers and students there will give the student
a very good clue about how satisfied she would be studying in the college. The capacity constraint can
model a time constraint or a logistical constraint. Indeed, there is limited time for exploration before
the allocation stage begins. For instance, if students live far away from the colleges’ campuses, travel-
ing there will take a lot of time. In the meantime, students involved in the admission process need to
work hard at high school to obtain high grades. The logistical constraint could be that some colleges
organize their open days on the same days, forcing students to choose between colleges to visit. K is
not indexed by i because students all face the same constraints.
For simplicity, we also denote the possibility that a student remains uninformed about her private com-
ponents as an additional strategy li∅.

4The additive functional form implicitly assumes there is no interaction effect between the two components.
5We bound the gap between two colleges’ common values to ensure that the gap does not always fully dominate the noise

introduced by the private components.
6There are thus two extreme case: K = 0 (K = n) corresponds to no (full) information about the private components.
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3.3 Matching

After the information acquisition stage, the allocation occurs through a centralized Deferred Accep-
tance (DA) mechanism (Gale and Shapley (1962) [7]). A ranking strategy ri consists of submitting
a rank-ordered list of the n colleges for each possible learning strategy li that student i could have
adopted and for each possible realized signal that she can receive.
Because priorities are common, DA is equivalent to a dictatorship mechanism. Student 1 always gets
her top choice; student 2 gets her top choice if it is different from student 1’s top choice, otherwise, she
gets her second choice; and so forth. The outcome of DA for player i is denoted µi.

3.4 Bayesian Game

This sets a game of incomplete information. The timing of the game is as follows: Nature draws
private components (yi

j)i,j∈{1,...,n}. (1) Each student i chooses a learning strategy li. Then, the perfect
signals are realized: each student i privately observes the yi

j for the j ∈ li. She forms a posterior
distribution over her preferences. (2) Each student i submits a rank-ordered list ri((yi

j)j∈li). Then, the
allocation is made through DA. Each student i receives her payoff, equal to vi

j , the value of college j if
she is assigned to this college (µi = j), equal to zero if she is unassigned (µi = 0). A strategy profile is
denoted (L, R), and the payoff to student i is ui(L, R).

What a student learns impacts the posterior belief and the submitted ranking of the student. Hence,
it ultimately affects the final allocation. This imposes externalities on other students through the ad-
mission chances. We call these externalities “strategic uncertainty”. Due to the dictatorship mechanism
in the second stage, strategic uncertainty goes only in one direction from high to low-priority students.
The payoff effectively depends only on strategies of higher-priority students and of the student herself.
Formally, if we denote Li := (l1, . . . , li) and Ri := (r1, . . . , ri) the truncated strategy profiles, the payoff
simplifies as: ui(L, R) = ui(Li, Ri).

4 Results

We compute the Bayes-Nash equilibrium of the game described in the previous section §3.7

4.1 Preliminaries

Equilibrium ranking

We begin with a characterization of the rank-ordered lists submitted in stage (2) of the game.
Because serial dictatorship is a strategy-proof mechanism, agents submit truthful rank-ordered lists.
The order of colleges in the ranking is given by the order of the colleges’ expected values in the posterior
distribution. The expected value of college j in the posterior distribution of student i is equal to the
true value vi

j if student i has learned on college j (j ∈ lij); otherwise (j /∈ lij), it is equal to the prior
expectation E[vi

j ] = xj .
The default ranking, defined as the one submitted absent any information about the private component,
is given by the ex-ante order over common components: r∅ := (1, . . . , n).

Equilibrium learning: gross analysis

Unlike in the ranking stage, in the learning stage, students are strategic. A student best-responds to
what higher-ranked students decide to learn and rank; they fully internalize the strategic uncertainty.
The only exception is student 1. Because he is the dictator, he bears no strategic uncertainty and faces
a decision problem.

Learning about the private components improves a student’s knowledge of her own preferences.
The informed student will, therefore, submit a ranking that better reflects the true preferences. This

7Equilibrium strategies are denoted with stars ⋆.
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should translate in higher probabilities of being assigned to the preferred college, so in the end, into
higher payoffs. The values of the information associated with each learning strategy capture this payoff
increase.
In the first stage of the game, students acquire cardinal information by learning some colleges’ values.
But, in the second stage, students submit a ranking in an ordinal mechanism. Information has value in
the first stage if and only if it changes the ranking in the second stage. We thus expect that students
want to learn about colleges to which they have high chances of being admitted. The equilibrium prob-
abilities that college j is still available when it is student i’s turn in the dictatorship mechanism, denoted
pi

j must matter in the analysis. The pi
j are equilibrium variables: their values will be characterized, if

not computed, in the main proof.8

In the meantime, information has a large value if and only if it is information about a college that
a student values a lot. We thus expect that students want to learn about colleges with high ex-ante
expected values, equivalently with high common components xj .
There is tension between the two objectives (learning about safe colleges and learning about the best
colleges). For low-ranked students, the tension is bound to be maximal.

4.2 The case K = 1

In the rest of the section, we focus on the case where K = 1. K = 1 means that each student
can visit only one campus. A learning strategy specifies only one index in {1, . . . , n}. We denote lij the
strategy for student i visiting college j.
K = 1 is a natural benchmark case. When K = 1, the learning trade-off described in the previous
section §4.1 resolves in a very mechanical and intuitive way.

We denote U i
j := E[ui(L(i−1)⋆, lij , Ri⋆(L(i−1)⋆, lij))] the ex-ante expected payoff for student i as-

sociated with learning strategy lij , given that she will play the optimal ranking strategy, and fix-
ing that higher-priority students play according to the equilibrium strategies. We denote U i

∅ :=
E[ui(L(i−1)⋆, li∅, R(i−1)⋆(L(i−1)⋆), ri

∅)] the ex-ante expected payoff for student i when she has no informa-
tion about her private components, so that she plays the default ranking, still fixing that higher-priority
students play according to the equilibrium strategies.

Ranking with K = 1
Learning about just one college gives partial and limited information on the preferences. We write

a series of lemmas stating how this influences ranking strategies. The lemmas are quite immediate; we
omit the formal proofs and give the arguments in the main.

Lemma 1.
(i) Learning about college l or learning about college k ̸= l are equally informative on the true order

between vi
l and vi

k.

(ii) Learning about college j gives (partial) information on the pairwise orders between college j and any
other college.

Statement (i) will prove helpful to determine equilibrium strategies for student 1. It directly relies
on the symmetry of the distribution of private components. Statement (ii) says that the posterior
distribution over the rest of the preference orders between colleges other than j is unchanged and
equal to the prior. The only perturbation regards j’s position in this order.
This directly characterizes possible ranking strategies after learning about college j.

Lemma 2.
After learning strategy lij , the ranking ri(lij) can only preserve the ex-ante order over colleges other than j
and move college j in this order.

8Because student 1 is the dictator: p1
j = 1, ∀ j ∈ {1, . . . , n}.
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Consequently, there are only n possible rankings after learning strategy lij .

For the next lemma, we locate at an interim stage of the dictatorship mechanism, where some
colleges have already been assigned. The lemma characterizes optimal ranking strategies for fixed
colleges’ capacities and fixed preferences. In particular, it emphasizes that a student may be indifferent
between several rankings, depending on the pattern of remaining seats at colleges, when it is her turn
to choose in the dictatorship mechanism.

Lemma 3.
(i) If there is at most one available seat in a subset of colleges C, then a student is indifferent between

the ranking strategies that would differ only in the orders within set C.

(ii) If there is at least one available seat in the subset of her most preferred k colleges, then the optimal
rankings rank the k colleges first and differ only in the orders within the set of the (n − k) other
colleges.

In statement (i), the student understands that which college she can be allocated in set C depends
only on the remaining capacities. The ranking of colleges within C has no influence on the outcome.
In statement (ii), the student understands that she should rank her preferred colleges first and that she
will be allocated a college within this set so that the rest of the ranking does not matter. In the induction
proof for our main result, it will appear clearly that all students are in these (i) and (ii) situations.
Whenever we want to emphasize that a student is indifferent locally in her ranking strategy, we use
brackets. For instance, ranking strategy ({1, 2}, 3) represent both lists (1, 2, 3) or (2, 1, 3) with indiffer-
ence. When we know that a student will be allocated a college in the top tier of a list, we only describe
the relevant part of the list. For example, (1, 2, _) represents any list where college 1 is ranked first,
college 2 is ranked second, and conditional on submitting this list, student i will be assigned college 1
or 2 for sure. For example, suppose that we are in the context of statement (ii) and denote C the set
of the k most preferred colleges of the student where there is at least one seat. Statement (ii) says that
the student should submit any ranking represented by ({C}, _).

For the next lemma, we will need the following vocabulary.

Definition 1.
(a) A college j is safe for student i if pi

j = 1.

(b) A set of colleges is collectively safe for student i if there is exactly one seat available in these colleges
when it is i’s turn to choose in the dictatorship mechanism.

We emphasize that collective safety in item (b) means that there is exactly one seat available and
not more. If a set of college C is collectively safe for student i, this implies:

∑
j∈C pi

j = 1, but collective
safety is a stronger condition than just the probabilities summing up to one. It also says something
about the dependence between admission events: if student i is admitted to a college j ∈ C, she is
rejected at any other college in the set j′ /∈ C.
We will also need the following assumption in the induction.

Definition 2.
(Ai) For student i ∈ {1, . . . , n − 1}:

– Colleges j ∈ {1, . . . , i} are collectively safe.

– Each college j ∈ {i + 1, . . . , n} is a safe college.

We denote rk := (1, . . . , k), k ∈ {1, . . . , n} (rn = r∅) the truncated list of colleges in the ex-ante
order. By lemma 3., the default ranking submitted by an uninformed student i under assumption (Ai)
writes ({ri}, _).

We are finally able to characterize optimal rankings after any learning strategy and signal in the
environment of assumption (Ai).
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Proposition 1.
If i ∈ {1, . . . , n − 1}, assumption (Ai) is verified, and student i learns about college j, then:

(i) If 1 ≤ j ≤ i, student i submits:

– ri(lij) = ({ri}, _) with probability F (xj − xi+1)

– ri(lij) = ({ri\{j}}, i + 1, _) with probability 1 − F (xj − xi+1)

(ii) If i + 1 ≤ j ≤ n, student i submits:

– ri(lij) = ({ri}, _) with probability F (xi − xj)

– ri(lij) = ({rk}, j, _) with probability F (xk − xj) − F (xk+1 − xj), ∀ k ∈ {0, . . . , i − 1}9

When student i learns about college j, two cases arise.
In the first case, 1 ≤ j ≤ i, so that college j is part of the default ranking. If, after learning about
college j, student i observes a high or intermediate yi

j , this modifies the interim preferences. This
does not modify the ranking strategy, due to assumption (Ai) combined with lemma 3., statement (i)
(moving j within ri would have no influence on the final allocation). The probability F (xj − xi+1) is
the probability that vi

j > E[vi
i+1] = xi+1. But if student i observes a very low yi

j , she excludes college
j from the relevant part of the list ri and simply appends the next ex-ante best college, college i + 1.
By assumption (Ai), this is a safe college, hence (by lemma 3., statement (ii)) no need to specify the
ranking further. This sub-case happens with the complement probability 1 − F (xj − xi+1), that is, the
probability that vi

j < E[vi
i+1] = xi+1.

In the second case, i + 1 ≤ j ≤ n, so that college j is not part of the default ranking. If after learning
about college j, student i observes an intermediate or low yi

j , she sticks to the default ranking. If she
observes a high yi

j , she pushes college j to the top part of the ranking. Where exactly depends on the
exact yi

j: F (xk − xj) − F (xk+1 − xj) is the probability that E[vi
k+1] = xk+1 < vi

j < E[vi
k] = xk. By

assumption (Ai), college j is safe. By lemma 3., statement (ii), the ranking can stop at j. It need not
include the colleges that were in the default ranking but that are interim less attractive than j.
The fact that assumption (Ai) is indeed verified for any student i at equilibrium will emerge in the
induction proof of our main result.

Learning with K = 1

Proposition 1. characterizes optimal rankings. From this, we can get interim expected payoff after
each potential signal realization. For example, the interim expected payoff for student i after learning
about college 1 ≤ j ≤ i (case (i)) and after observing vj

i > xi+1 (vj
i < xi+1) is pi

jvi
j +

∑
l∈ri\{j}

pi
lxl

(pi
jxi+1 +

∑
l∈ri\{j}

pi
lxl).

We are, therefore, equipped to compute ex-ante payoffs and the value of information associated with
each learning strategy. The value of information for strategy lij of student i given that higher-priority
students play the equilibrium strategies is denoted V i

j . It is defined as the increase in ex-ante payoff
from learning about j with respect to not learning V i

j := U i
j − U i

∅.
The next proposition gives concise formulas for the values of information associated with any possible
learning strategy of student i ∈ {1, . . . , n}.

Proposition 2.
If assumption (Ai) is verified:

(i) If 1 ≤ j ≤ i:

V i
j = pi

j

∫ 1
2

xj−xi+1
(xi+1 − xj + y)f(y)dy

9We abuse notations and set: x0 := xj + 1
2 .



Chapter 4. Pre-Matching Information Acquisition 139

(ii) If i + 1 ≤ j ≤ n:

V i
j =

i−1∑
m=0

∫ xm−xj

xm+1−xj

[ ∑
l∈ri\rm

pi
l(xj − xl + y)

]
f(y)dy

The proof (available in appendix §A) integrates the interim expected payoffs for all possible values
of the private components y, computes the difference with the benchmark payoff from the default no
information case, and simplifies. The symmetry of the distribution of y is key.

The next theorem compares the values of information across all colleges within each student.

Theorem 1.

(i) If assumption (Ai) is verified: ∀ i ∈ {1, . . . , n − 1} :
{

V i
i+1 =

∑i
j=1 V i

j (1)
V i

i+1 > V i
k , ∀ k ∈ {i + 2, . . . , n} (2)

(ii) If assumption (An) is verified: ∀ j ∈ {1, . . . , n} : V n
j = 0

The proof (available in appendix §A) just plays with the formulas from proposition 2..
We give a short intuition. Recall that under assumption (Ai), colleges Ci := {1, . . . , i} are collectively
safe, each college j ∈ Si := {i + 1, . . . , n} is safe for student i. The student cannot influence what
college in the set Ci she could get. So what matters for her is to be able to rank correctly each college
in Ci with respect to each college in Si, or colleges within Si. Because of the capacity constraint on
learning, the student can learn about the order between one college and the rest of the colleges. The
only benefit from learning about a college j ∈ Ci is that it (partially) reveals the order between j and
i+1. The information revealed on the orders between j and any j′ ∈ {i+2, . . . , n} is irrelevant because
after learning about j, the student’s posterior belief is still that i + 1 is better than i + 2, and i + 1 is
safe. Conversely, there are various benefits from learning about college i + 1: it (partially) reveals all
pairwise orders i + 1 vs j ∈ {1, . . . , i}. Hence the summation result (i)(1). Learning about a college
k ∈ {i + 2, . . . , n} (partially) reveals all pairwise orders k vs j ∈ {1, . . . , i}. But the ex-ante probability
that college k is better than some colleges j is smaller than with college i + 1, leading to less frequent
pairwise preference orders reversals and lower value of information. Hence the strict inequality (i)(2).
Finally, when it is student n’s turn in the dictatorship mechanism, there is exactly one seat left in the
whole set of n colleges. Student n endures all higher-priority students’ choices and cannot influence
her final outcome at all. She is fully indifferent between any ranking that ranks all colleges ex-ante,
and also interim, after any learning strategy. Learning has no stakes, hence no value ((ii)).
Statement (i)(1) could be interpreted as follows: for the generic student, the strict unit capacity con-
straint on learning is not too tragic. By learning about the right college, they can still capture much of
the relevant information.

At equilibrium, given what higher-ranked students have learned and ranked, each student chooses
the learning strategy with the highest value. So equilibrium strategies are immediate from theorem 1..

Theorem 2.
At Bayes-Nash equilibrium of the college admission problem with information acquisition and K = 1.

(i) Student 1:

(l1) learns about colleges 1 or 2
(r1) submits rankings:

- (1, _) with probability F (x1 − x2)
- (2, _) with probability 1 − F (x1 − x2)

(µ1) is assigned to college 1 or college 2

(ii) Student i ∈ {2, . . . , n − 1}:

(li) learns about college i + 1
(ri) submits rankings:

- ({ri}, _) with probability F (xi − xi+1)
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- ({rk}, i + 1, _), k ∈ {0, . . . , i − 1} with probability F (xk − xi+1) − F (xk+1 − xi+1)
(µi) is assigned to a college in {1, . . . , i + 1}

(iii) Student n:

(ln) learns about any college j ∈ {1, . . . , n}
(rn) submits as ranking any permutation of ({rn})
(µn) is assigned to a college j ∈ {1, . . . , n}

Statement (ii) is a direct consequence of statement (i) in 1. for the learning part (and proposition 1.
for the application part). We have described the general intuition above. Statement (i) also comes
from statement (i) in theorem 1.. Taken with i = 1, we get V 1

1 = V 1
2 > V i

k , ∀ k ∈ {3, . . . , n}, hence
indifference between l11 and l12. Intuitively, student 1 as a dictator will always get the object she submits
first in her ranking. For her, the problem simplifies to learning what is her most preferred college and
applying to this college. The most likely preferred colleges are colleges 1 and college 2, so student 1
wants to learn about the pairwise order between the two. To this end, and by lemma 1., statement (i),
learning strategies l11 or l12 are equivalent. Both strategies lead to applying either college 1 or to college
2 depending on the signal. Statement (iii) directly comes from statement (ii) in theorem 1..
In the proof, we construct an induction argument, showing that any student i knows that she will be in
the situation described by assumption (Ai) when it is her turn to choose in the dictator mechanism.

This result predicts a strong monotonicity in learning: higher-priority students learn about the ex-
ante best colleges.

5 Work in Progress

5.1 Matching and welfare in the baseline model

Theorem 2. fully characterizes the learning strategies and the ranking strategies. With respect to
the allocation, the theorem only specifies the set of possible allocations at equilibrium. Equivalently, in
the proof of the theorem, we only characterize whether the probabilities of admission pi

j are positive or
zero. However, the theorem does not specify the probability distribution over the possible allocations.
Equivalently, in the proof, we do not characterize the values of the probabilities of admission pi

j .
This step of the analysis is ongoing. It is again an induction proof, but not immediate. In the inductive
step, it is not enough to keep track of the probabilities of admission of all higher-ranked students in
the college. We need the full description of rankings submitted by all higher-ranked students. The
combinatorial computations involved in the proofs are intricate.

Characterizing the matching is a necessary step towards a welfare analysis. The questions are: (1)
What is the absolute value of information? To answer this one, we need to explicitly compute the
probabilities of acceptance pi

j and to input them into the formulas from proposition 2.. (2) What is the
relative value of information - equivalently, what share of the payoff difference between no and full
information does a student capture by learning about just one college? Under no (full) information,
students submit rankings consistent with the common components (rankings that perfectly reflect their
true preferences). (3) How do the absolute and relative values of information vary with the student
priority rank?
In the full information benchmark, we know there is some monotonicity. Higher-priority students
capture higher values of information, because they do not suffer from strategic uncertainty. Lower-
ranked students suffer from strategic uncertainty: there is always the possibility that ranking colleges
in a more appropriate way leads to no payoff improvement because the colleges in question are already
full with higher-priority students.
Under capacity-constrained learning, the answer is not as obvious, even considering the absolute value
of information. The equilibrium strategy of a low-priority (high-priority) student enables him to learn
partially about many (few) pairwise orders. At the extreme, student 1 only learns about the pairwise
order between colleges 1 and 2. This effect could offset the strategic uncertainty effect.
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We emphasize the stakes of the welfare analysis. If the possibility for information acquisition improves
more the situation of lower-ranked (higher-ranked) agents, learning is a force towards equity (inequity)
on the market. It alleviates (adds up to) the existing discrimination performed by the priority order. A
market designer keen to keep control over the amount of discrimination on the market could consider
information regulation interventions.

5.2 Larger capacities at colleges

In the baseline model, each college offers one seat on the market. In practice, though, the same
college offers multiple replica seats. Ultimately, we should be able to switch to a model of many-to-one
matching if we really want to accommodate the college admissions application.

We give an overview of the model and equilibrium computation when we relax the capacities at
colleges. We set that each college j ∈ {1, . . . , n} offers cj seats. There are

∑n
j=1 cj students on the

market.
All students i ∈ {min(c1, c2)} iteratively face the same problem as student 1 in the baseline model.
They know that higher-priority students learn about college 1 or 2 and apply to colleges 1 or 2. They
also know that capacities cannot be exhausted at any college yet so that all colleges remain individually
safe. These students i ∈ {min(c1, c2)} all keep on learning about college 1. When it is student i =
min(c1, c2)’s turn, some capacities could be exhausted. Student i knows that (1) capacities could be
exhausted at one of the colleges 1 or 2, in which case she would be in the same situation as student 2
in the baseline model and should learn about college 3. But potentially, (2) there are seats remaining
at both colleges 1 and 2, in which case student i would be again in the situation of student 1 in the
baseline model and should learn about college 1 or 2. Whether student i learns about colleges 1, 2 or 3
depends on the probabilities of case (1) vs case (2). These probabilities directly depend on capacities,
and indirectly on other parameters of the game through the equilibrium probabilities of application of
higher-priority students.
The (provisional) conclusion is that with larger capacities in colleges, the equilibrium structure is little
robust. Comparative static analysis may become interesting.

5.3 Larger learning capacities

The obvious next step in the analysis consists of relaxing the capacity constraint on learning and
allowing students to visit several colleges.

Baseline model with relaxed learning capacities

In a first extension, we can set K = 2, with students allowed to visit two colleges k, l. This enables
them to learn partially about all orders involving k and l and to reveal fully the order between colleges
k and l.
The case K = 2 is already very computationally intense, even for player 1, for mainly two reasons:
the large size of the action space (made of any set of two college indices in {1, . . . , n}, hence cardinal
n(n−2)

2 ), and the comparison between multiple stochastic variables. Restricting the number of colleges
to n = 3, as common in the literature, solves the first issue, but not the second one. For example, after
learning strategy l11 = {1, 2}, student 1 applies to college 1/2/3 if and only if v1 > v2, x3 / v2 > v1, x3 /
x3 > v1, v2. The interim expected payoffs write with double integrals, and the ex-ante payoff formulas
are extremely big.
Yet, some intuitions from the baseline model with K = 1 may help. With K = 2, a student can learn
about multiple pairwise orders. Student 1 is mostly interested in the pairwise orders involving good
ex-ante colleges, with low indices. l11 = {1, 2} would perfectly (partially) reveal the order 1 vs 2 (1 vs 3
and 2 vs 3). l11 therefore appears as student 1’s optimal strategy. Student 1 applies to and is assigned to
a college in 1, 2 or 3. As a consequence, when it is student 2’s turn to choose in the mechanism, there
are exactly two seats left in colleges 1, 2 and 3. All colleges j ≥ 4 are individually safe. learning about
some colleges in {1, 2, 3} should be considered because there are not only one seat available in this set,
but two seats. It remains possible that ranking colleges correctly in this set can matter.



142 Chapter 4. Pre-Matching Information Acquisition

In the general model with relaxed capacities, the trade-off between the expected values of the col-
leges and the equilibrium acceptance chances appears. It cannot be simplified with any equivalent to
assumption (Ai) from the baseline model. The equilibrium will likely differ for different parameters
(common components’ values, private components’ distributions).

Model with two tiers of colleges

One way to simplify the model to be able to accommodate the relaxed capacities would be to intro-
duce tiers of colleges. Colleges belonging to the same tier would share the same common component.
For instance, we can consider two tiers, a top tier T , made of colleges T1 and T2 with common com-
ponent xT and a bottom tier made of colleges B1 and B2 with common component xB. The values
of colleges to students write: vi

Tj
= xt + yi

Tj
or vi

Bj
= xt + yi

Bj
. Private components yi

Tj
, yi

Bj
are

i.i.d. distributed according to some continuous distribution on [1
2 , 1

2 ], symmetric around 0. We denote
∆ := xT − xB the ex-ante gap in value between a college from the top tier and a college from the
bottom tier. We bound ∆ < 1

2 , to make sure that learning about one college could flip some pairwise
orders. When ∆ → 0, the 4 colleges have the same role. When ∆ → 1

2 , top colleges remain better than
bottom colleges even at the interim stage if the student learns about just one college, or about colleges
belonging to the same tier;

In the case K = 1, the model is just a limit case of the baseline model, setting n = 4 and x2 → x1,
x4 → x3. The action space simplifies to specifying a letter T (B)10 if the student wants to learn about
a top (bottom) college.11

At equilibrium, student 1 learns about a top college and is assigned with uniform probability to college
T1 or T2. Student 2 learns about a bottom college, and the value of information from this strategy
equals twice the value of information from learning about a top college. Indeed, learning about one
Bj gives a good clue about the pairwise orders between this Bj and any of the Tls. learning about
one Tj gives a good clue about the pairwise orders between this Tj and any of the Bls. But there is
always a one-half chance that knowing these orders is useless because Tj would have accepted student
1 already and would not be available anymore. For student 2, ranking colleges within tiers is never
helpful because the allocation within T is fully set by student 1’s choice, and because she will never
rank the two bottom colleges, she will always put the unexplored top colleges first. Student 2 can be
assigned to any college. Student 3 also learns about a bottom college. Indeed, learning about one Tj

enables one to rank Tj against the bottom colleges, but this is helpful only if Tj is still available, which is
quite unlikely. Learning about one Bj enables one to rank Bj within B, which is helpful if both bottom
colleges are still available, and to rank Bj against top colleges, which is helpful if Bj is still available.
Student 3 can be allocated to any college. Finally, student 4 is indifferent between any learning and
ranking strategies.

When we set K = 2, the action space is made of only 3 actions: T := {T1, T2}, B = {B1, B2} and
H := {Tj , Bl} (the “hybrid” action, where the student learns about one top and one bottom college).

5.4 Other mechanisms

The baseline model fixes the allocation mechanism to be the famous DA mechanism. Although most
college admission markets use some version of DA, it would be interesting to know what happens with
other widely-used mechanisms.

In the Immediate Acceptance (IA) mechanism, each college’s acceptance decision is final. The
strength of DA is in its incentive property: DA is strategy-proof for both sides, whereas the strength
of IA is in the efficiency: IA is Pareto-efficient (conditional on truthful reporting by the students). IA,
though, is not strategy-proof: A student may put an intermediate college in her top choice, dreading
that this intermediate college may accept a student in the first rounds.

10Because colleges within the same tier are ex-ante the same, a student is indifferent between which college precisely he
learns about, and this is random.

11This model is different from the baseline model with relaxed capacities at colleges from section 5.2, because the private
components differ across different colleges within the same tier, so that students separately learn about each.
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Because our model uses a capacity constraint on learning rather than a cost function, the results from
Artemov (2021) [1] and Chen and Hu (2022) [5] (Bucher and Caplin (2021) [4]) that IA induces more
(more equal) information acquisition is irrelevant.12 Yet, it could change the equilibrium ranking and
learning strategies. Student i is no longer indifferent between rankings that differ only in the order
within set {1, . . . , i}. And IA basically increases the stakes of the first rounds of the mechanism. There
is a stronger incentive to learn about the ex-ante best colleges.

On real-life college admission markets, mechanisms are almost always truncated (as reported by
Pathak (2016) [17]), meaning that students are allowed to rank only a limited number of colleges.
One reason could be that there are operational costs associated with reviewing many applications.
Unfortunately, the truncated version of DA is no longer strategy-proof (Haeringer and Klijn (2009)
[9]). The preference manipulation consists of including safe colleges in the list. In our setting, a
truncation of order t should have no impact on the highest priority students i ≤ t − 1, because they
submit rankings shorter than t anyway. For the lowest-priority students, the learning strategy should
also remain unchanged. But the ranking strategy could change. Indeed, if student i ≥ t sticks to the
ranking strategy that is just the truncation of the equilibrium strategy from the baseline model, she has
a positive probability of remaining unassigned. It may be profitable for her to rather include the best
safe college i + 1 at the t rank in the list.

6 Provisional conclusion

In this note, we answer a simple but empirically relevant question: If each student has time to visit
one college to learn about how she values the college before participating in a centralized matching
mechanism, what college does she visit? The analysis shows that learning strategies are monotonic,
with higher-priority students learning about the ex-ante better colleges. By optimally learning about
her best safe college, a generic student manages to learn partially about all relevant pairwise orders.
Consequences in terms of matching and welfare are still to be explored.

The long-run project is far more ambitious. The plan is to enrich the model with relaxed capacities
at colleges, relaxed capacity constraint on learning, and mechanism design, while keeping the het-
erogeneity in students and colleges. The analysis should solve the student trade-off between learning
about high-value colleges or learning about safe colleges.
The general framework stands as the most appropriate model to explore the effects of endogenous
information acquisition of (in)equity in matching markets.

12Except for student n, who now captures a positive value of information.
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Appendix A Proofs

Proof of proposition 2.

Consider a student i who learns about college j.
(i) 1 ≤ j ≤ i

We summarize below, the possible signal realizations, and the associated optimal rankings (from proposi-
tion 1.) and interim expected payoffs:

Signal Ranking Payoff
vi

j > xi+1 ⇐⇒ yi
j > xi+1 − xj ({ri}, _) pi

jvi
j +

∑
l∈ri\{j}

pi
lxl

vi
j < xi+1 ⇐⇒ yi

j < xi+1 − xj ({ri\{j}}, i + 1, _) pi
jxi+1 +

∑
l∈ri\{j}

pi
lxl

We compute the ex-ante payoffs integrating the interim expected payoff with respect to the signal y on the
whole support [− 1

2 , 1
2 ]:

U i
j =

∫ 1
2

xi+1−xj

(
pi

j(xj + y) +
∑

l∈ri\{j}

pi
lxl

)
f(y)dy +

∫ xi+1−xj

− 1
2

(
pi

jxi+1 +
∑

l∈ri\{j}

pi
lxl

)
f(y)dy

U i
∅ =

∫ 1
2

− 1
2

(
pi

j(xj + y) +
∑

l∈ri\{j}

pi
lxl

)
f(y)dy

The value of information is just the difference. The terms corresponding to the default ranking cancel out:

V i
j =

∫ xi+1−xj

− 1
2

[(
pi

jxi+1 +
∑

l∈ri\{j}

pi
lxl

)
−
(
pi

j(xj + y) +
∑

l∈ri\{j}

pi
lxl

)]
f(y)dy

=
∫ xi+1−xj

− 1
2

[
pi

j(xi+1 − xj − y)
]
f(y)dy

=pi
j

[
(xi+1 − xj)

∫ xi+1−xj

− 1
2

f(y)dy −
∫ xi+1−xj

− 1
2

yf(y)dy
]

=pi
j

[
(xi+1 − xj)

∫ 1
2

xi+1−xj

f(y)dy +
∫ 1

2

xi+1−xj

yf(y)dy
]

(by symmetry of f)

=pi
j

∫ 1
2

xi+1−xj

(xi+1 − xj + y)f(y)dy

(ii) i + 1 ≤ j ≤ n
We follow the same steps:

Signal Ranking Payoff
vi

j < xi ⇐⇒ yi
j < xi − xj ({ri}, _)

∑
l∈ri

pi
lxl

k ∈ {1, . . . , i − 1}: xk+1 < vi
j < xk ⇐⇒ xk+1 − xj < yi

j < xk − xj ({rk}, j, _)
( ∑

l∈ri\rk

pi
l

)
vi

j +
∑
l∈rk

pi
lxl

U i
j =

∫ xi−xj

− 1
2

(∑
l∈ri

pi
lxl

)
f(y)dy +

i−1∑
k=0

∫ xk−xj

xk+1−xj

[( ∑
l∈ri\rk

pi
l

)
(xj + y) +

∑
l∈rk

pi
lxl

]
f(y)dy

U i
∅ =

∫ 1
2

− 1
2

(∑
l∈ri

pi
lxl

)
f(y)dy

V i
j =

i−1∑
k=0

∫ xk−xj

xk+1−xj

[( ∑
l∈ri\rk

pi
l

)
(xj + y) +

∑
l∈rk

pi
lxl −

∑
l∈ri

pi
lxl

]
f(y)dy

V i
j =

i−1∑
k=0

∫ xk−xj

xk+1−xj

[ ∑
l∈ri\rk

pi
l(xj − xl + y)

]
f(y)dy
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Proof of theorem 1.

(i) 1 ≤ i ≤ n − 1
– Preliminary

By proposition 2., statement (ii), with i + 1 ≤ j ≤ n:

V i
j =

i−1∑
k=0

∫ xk−xj

xk+1−xj

[ ∑
l∈rj\rk

pi
l(xj − xl + y)

]
f(y)dy

=
i−1∑
k=0

∑
l∈rj\rk

pi
l

∫ xk−xj

xk+1−xj

(xj − xl + y)f(y)dy

=
i∑

r=1
pi

r

r−1∑
q=0

∫ xq−xj

xq+1−xj

(xj − xr + y)f(y)dy

=
i∑

r=1
pi

r

∫ 1
2

xr−xj

(xj − xr + y)f(y)dy

– Taking j = i + 1 above gives:

V i
i+1 =

i∑
r=1

pi
r

∫ 1
2

xr−xi+1

(xi+1 − xr + y)f(y)dy

=
i∑

j=1
V i

j (1)

– In addition for i + 1 ≤ j ≤ n:

V i
i+1 − V i

j =
i∑

r=1
pi

r

[ ∫ 1
2

xr−xi+1

(xi+1 − xr + y)f(y)dy −
∫ 1

2

xr−xj

(xj − xr + y)f(y)dy
]

=
i∑

r=1
pi

r

[ ∫ 1
2

xr−xj

(xi+1 − xj)f(y)dy +
∫ xr−xj

xr−xi+1

(xi+1 − xr + y)f(y)dy
]

=
i∑

r=1
pi

r

[(1
2 + xi+1 − xr

)
(xi+1 − xr) +

∫ 1
2

xr−xi+1

yf(y)dy −
(1

2 + xj − xr

)
(xj − xr) −

∫ 1
2

xr−xj

yf(y)dy
]

=
i∑

r=1
pi

r

[(1
2 + xi+1 − xr

)
(xi+1 − xr) −

(1
2 + xj − xr

)
(xj − xr) +

∫ xr−xj

xr−xi+1

yf(y)dy
]

xi+1 > xj =⇒
(1

2 + xi+1 − xr

)
(xi+1 − xr) >

(1
2 + xj − xr

)
(xj − xr)

xr − xj > xr − xi+1 > 0 =⇒
∫ 1

2

xr−xj

yf(y)dy > 0

V i
i+1 − V i

j > 0 (2)

(ii) i = n
When it is student n’s turn in the dictatorship mechanism, there is exactly one seat left in the whole
set of n colleges.
From lemma 3., statement (i), student n is indifferent between any ranking. So whatever the learning
strategy, student n cannot increase her payoff by adapting her ranking strategy to the signal.
So ∀ j ∈ {1, . . . , n} : V n

j = 0

Proof of theorem 2.

• 1 ≤ i ≤ n − 1
(Strong) induction
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– Induction hypothesis
H(i) : (Ai) is verified and li, ri, µi are as in theorem 2..

– Initial step
(A1) means that all colleges are safe for student 1. Because student 1 is the dictator, it is trivially
verified.
l1 follows from theorem 1. (i), and the maximization of the value of information.
r1 follows from proposition 1., (i) and (ii). It says that student 1 applies to college 1 or college
2. Because student 1 is the dictator, whenever he applies to a college, he gets it. So µ1 is also
characterized.
So H(1) is verified.

– Inductive step
Set i ∈ {1, n − 2}. Suppose that ∀ l ∈ {1, . . . , i}, H(l) is verified.
The ranking strategies from H(l), l ∈ {1, . . . , i} say that each student l’s rankings include colleges
{1, . . . , l + 1}.
Because rankings always include either the whole set of collectively safe colleges {1, . . . , l} or include
the safe college l + 1, any student l will be assigned to a college.
In total only the (l + 1) colleges in {1, . . . , i + 1} receive applications from students in {1, . . . , i}. l out
of the (l + 1) colleges are allocated a student.
Given the ranking strategies from H(l), l ∈ {1, . . . , i}, the remaining seat can be at any college.
Suppose, for instance, that student 1 applies to college 2 and all students l ∈ {2, . . . , i} apply only
to their safe colleges. Then college 1 remains available after all students in {2, . . . , i} have been
allocated.
This gives that colleges {1, . . . , i} are collectively safe, college i + 2 is safe for student i + 1 - (Ai+1).
li+1 follows from theorem 1. (i), and the maximization of the value of information.
ri+1 follows from proposition 1., (ii).
Combining ri+1 with (Ai+1), we get that student i+1 can be assigned to any college in {1, . . . , i+2}.
So µi+1 is also characterized.
In total, this proves H(i + 1).

– Conclusion: ∀ i ∈ {1, . . . , n − 1}, H(i) is verified.

• i = n
By the same argument than above, ∀ l ∈ {1, . . . , n − 1}, H(l) implies (An).
Theorem 1. (ii), implies both ln and rn.
Student n will be allocated to the residual college: by (An), it can be any college. So µn is also character-
ized.
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