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Résumé

Les objectifs de la thèse sont de développer des méthodes et des cadres d’analyse de

la posture humaine 3D en environnement de travail pour l’ergonomie.

L’ergonomie est une discipline qui consiste à comprendre le fonctionnement du

corps lorsqu’il travaille pour l’objectif de préserver la santé des opérateurs tout en

permettant l’atteinte de la qualité attendue. Les postures des opérateurs au poste

de travail sont un des facteurs d’apparition des maladies professionnelles, et la car-

actérisation d’une posture est une étape du pré-diagnostic d’une situation de travail.

Les méthodes d’intelligence artificielle autour de l’estimation 3D de la pose humaine

pour détecter les postures inadaptées au travail peuvent ainsi aider l’ergonome à

établir son diagnostic sur un grand nombre de données.

Cette thèse propose trois travaux autour de l’estimation de pose humaine 3D pour

s’attaquer aux difficultés de mise en œuvre en environnement non contraint tels que

les postes de travail.

La première contribution propose un algorithme synthétique de génération de

poses humaines en 3D. Nous abordons le problème de l’écart de domaine selon lequel

les scénarios de travail a plus de variété d’actions et d’environment que les données

de recherche publique. Ce travail présente un algorithme qui permet de générer des

squelettes humains 3D synthétiques pendant l’entraı̂nement de réseau des neurons,

suivant une distribution de type arbre de Markov qui évolue au fil du temps pour créer

des nouvelles postures. Ce travail propose également un processus d’entraı̂nement

multi-vues sans échelle basé sur des données purement synthétiques générées à partir

de quelques postures initiales. Nous évaluons notre approche sur les deux ensembles

de données de référence et obtenons des résultats prometteurs dans une configuration

sans aucune donnée réelle.

Le deuxième travail propose un cadre de création d’annotations 3D du corps en-

tier à partir d’images multi-vues ainsi qu’un benchmark construit sur la base de ce

cadre. Les données couramment utilisées ne comportent normalement qu’une ving-

taine d’articulations, ce qui n’est pas suffisant pour qu’un ergonome puisse mesurer

certains aspects comme les angles de supination-pronation, c’est pourquoi nouw pro-
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posons un squelette du corps entier compte 133 articulations, capables de contenir

les informations nécessaires. Le cadre de création d’annotations contient 3 étapes

allant de la reconstruction géométrique 3D multi-vues à la completion des squelettes

incomplets, et enfin au raffinement main/visage par diffusion. Avec ce cadre, nous in-

troduisons 3 ensembles de données en tant qu’extensions des ensembles de données

Human3.6M, CMU-Panoptic et MPI-INF-3DHP existants avec des annotations de

points clés 2D et 3D du corps entier pour le corps, le visage et les mains. Un bench-

mark de trois tâches est proposé sur la base de l’extension du corps entier de Hu-

man3.6M.

Le troisième travail propose un algorithme qui permet une prediction continue des

poses humaines à travers le temps avec des images d’entrée très limitées pour aborder

des séquences vidéo potentiellement corrompues dans un environnement sans con-

trainte où les travailleurs ne sont pas toujours observés ou même à l’écran en raison

de leurs mouvements. Ce travail propose une nouvelle approche qui modélise le mou-

vement humain comme une fonction continue mise en œuvre par un réseau neuronal,

semblable à des représentations neuronales implicites. Nous effectuons une com-

paraison complète de cette approche avec des méthodes de prédiction de mouvement

de pointe sur trois ensembles de données populaires, démontrant des améliorations

significatives par rapport aux lignes de base dans la plupart des cas.

Enfin, nous avons réalisé un démonstrateur qui effectue une estimation de la pose

humaine en 2D et 3D, ainsi qu’une détection des poses critiques pour une analyse

ergonomique, capable d’analyse rapide même sur un ordinateur équipé uniquement

d’un CPU.



iv

Abstract

The objectives of the thesis is to develop the methods and frameworks to analysis 3D

human postures in the working environment for ergonomic propose.

Ergonomics is a discipline which consists of understanding body work with the

objective of preserving the health of operators while allowing achievement of the

expected quality. The postures of operators at work stations are one of the factors

in the appearance of occupational diseases, and the characterization of a posture is a

step in the pre-diagnosis of a work situation. Artificial intelligence methods using 3D

human pose estimation to detect unsuitable postures at work could help ergonomist

to establish their diagnosis on a large quantity of data.

This thesis proposes three works on 3D human pose estimation to attack the dif-

ficulties of unconstrained environment such as work stations.

The first work proposes a synthetic 3D human pose generation algorithm for

training 2D to 3D human pose lifting. We tackle with the domain gap problem be-

tween public research data which have constrained environment plus limited number

of action and unconstrained working environment data with much more variety of ac-

tions. This work presents an algorithm which allows to generate synthetic 3D human

skeletons on the fly during the training, following a Markov-tree type distribution

which evolve through out time to create unseen poses. This work also proposes a

scaleless multi-view training process based on purely synthetic data generated from a

few initial poses. We evaluate our approach on two benchmark datasets and achieve

promising results in a zero shot setup.

The second work proposes a framework of making 3D wholebody annotations

from multi-view image data as well as a few datasets and a benchmark built based on

this framework to tackle with the skeleton model capability problem. Public research

data normally only has around 20 keypoints which is not enough for ergonomist

to measure certain aspects like supination-pronation angles, while the wholebody

skeleton has 133 keypoints, capable for obtaining the necessary information. The

annotation-making framework contains 3 steps from multi-view 3D geometry re-

construction, to incomplete skeleton completion, and finally hand/face refinement
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through diffusion. With this framework, we introduce 3 datasets as extensions of

existing Human3.6M, CMU-Panoptic and MPI-INF-3DHP datasets with wholebody

2D and 3D keypoint annotations for body, face, and hands. A benchmark of three

tasks is proposed based on Human3.6M wholebody extension: 3D whole-body lift-

ing from complete 2D keypoints, from incomplete 2D keypoints, and from monocular

images.

The third work proposes an algorithm which allows a continuous estimation of

human poses through time with very limited input frames to tackle potential cor-

rupted video sequences in unconstrained environment where the workers are not al-

ways observed or even in the screen due to their movements. This work proposes a

novel approach that models human motion as a continuous function implemented by

a neural network, akin to neural implicit representations. We conduct a comprehen-

sive comparison of this approach with state-of-the-art motion prediction methods on

three popular datasets, demonstrating significant improvements over the baselines in

most cases.

Finally, we made a demonstration that perform 2D and 3D human pose estima-

tion, as well as critical pose detection for ergonomic analysis, capable of fast pro-

cessing even on a CPU-only computer.
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Résumé étendu

Introduction

Les objectifs de la thèse sont de développer des méthodes et des cadres d’analyse

de la posture humaine 3D en environnement de travail pour l’ergonomie.

L’ergonomie est une discipline qui consiste à comprendre le fonctionnement du

corps lorsqu’il travaille pour l’objectif de préserver la santé des opérateurs tout en

permettant l’atteinte de la qualité attendue. Ceci est plus critique pour les personnes

qui effectuent un travail physique pénible. Une façon de détecter de tels dommages

potentiels sur leur corps consiste à suivre la posture de l’opérateur, ce qui permet

une analyse plus profondre de son corps et de ses actions. Le développement rapide

de l’intelligence artificielle et les progrès significatifs de la vision par ordinateur ont

permis la réalisation d’une détection et d’une analyse automatiques dans un environ-

nement complexe. Un tel algorithme de détection et d’analyse est appelé Estimation

de la Posture Humaine. Cependant, même si l’estimation de la posture humaine est

un problème bien connu et largement développé en vision par ordinateur, il reste un

problème complexe dont les solutions existantes ne répondent pas à tous les besoins

de cette thèse.

Système choisi pour le problème des environnements contrôlés et naturels

Notre thèse nécessite la capacité d’être utilisé dans l’environnement de travail,

qui contient à la fois des scénarios intérieurs et extérieurs, que l’on peut appeler ’nat-

ural’ comme dans la vraie vie, alors que la plupart des méthodes plus récentes sur

l’estimation de la posture humaine en 3D sont basées sur des scénarios intérieurs

capturées dans un environnement contrôlé avec les arrière-plans limité et les types de

postures prédéfini en raison d’une limitation matérielle. Afin d’obtenir des positions

précises de posture humaine en 3D, un processus spécifique appelé ’capture de mou-

vement’ (Motion Capture) est appliqué pour enregistrer les mouvements humains.

Grâce à un ensemble de capteurs installés sur le corps des acteurs, les positions 3D
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de ces capteurs peuvent être enregistrées par l’ordinateur. Une telle mesure peut être à

la fois précise et en temps réel, mais le processus de capture de mouvement nécessite

un espace, un matériel et un logiciel spécifiques pour permettre le processus, ce qui

en fait un outil adapté uniquement dans un laboratoire, est ce n’est pas approprié pour

un système compatible avec les scénarios extérieurs dont nous avons besoin.

Pour résoudre ce problème, l’ensemble du système se décompose en 3 étapes

consécutives qui s’appliquent les unes après les autres.(Voir Figure 1).

Figure 1: Un exemple de l’apparence des résultats entre chaque étape. A partir d’une

image, l’estimation de posture 2D, l’augmentation de posture 2D à 3D et le cal-

cul géométrique fourniront respectivement les résultats affichés dans les images suc-

cessives. Source des images: football: [Kreiss et al., 2021] OpenPifPaf:Composite

Fields for Semantic Keypoint Detection and Spatio-Temporal Association, angles

pied/main: Template squelette 3D v2 13012021.pptx de Ergonova Conseil.

1. Premièrement, le système utilise une seule image 2D capturée par la caméra

comme entrée et renvoie les coordonnées 2D des articulations de chaque hu-

main dans l’image. Cette étape correspond à l’estimation de la posture hu-

maine 2D à partir d’une image.

2. Ensuite, pour chaque humain dans l’image, le système prend en entrée les co-

ordonnées 2D des articulations et renvoie leurs coordonnées 3D dans l’espace

de la caméra. Cette étape correspond à l’estimation de la posture humaine

3D à partir de la posture humaine 2D.

3. Enfin, pour chaque ensemble de coordonnées 3D correspondant à un même in-

dividu, le système calcule les angles. Cette étape est appelée calcul géométrique,

La raison pour laquelle nous effectuons d’abord une estimation de la posture hu-

maine en 2D, puis augmenter la posture humaine 2D en 3D est due au fait qu’enregistrer

des coordonnées précises de la posture humaine en 2D est beaucoup plus simple,
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aussi simple que de cliquer manuellement sur l’image pour indiquer quel pixel cor-

respond à un articulation du corps. En effet, il existe déjà plusieurs ensembles de

données extérieurs ’naturels’ de postures humaines 2D avec annotations de coor-

données. En revanche, augmenter la posture humaine 2D en 3D ne nécessite que

les calculs entre les coordonnées 2D et les coordonnées 3D, ce qui signifie que

l’environnement d’arrière-plan n’affecte pas cette étape. Donc, en divisant l’estimation

de la posture humaine 3D en deux étapes, nous réussissons à éviter la limite de

l’environnement contrôlés causé par des ensembles de données 3D existants.

Première contribution pour le problème des actions simples et professionnels

A part de la grande diversité des environnements dans différentes conditions de

travail, il existe également une grande diversité d’actions différentes que les indi-

vidus effectuent au cours du travail. De la posture générale debout, assise ou al-

longée au sol, aux actions des mains allant du levage, de l’opération devant la tête

ou de l’affaissement naturel, ces actions peuvent être diverses selon le type de tra-

vail. Malheureusement, la plupart des ensembles de données existants sont basés

sur les actions simples les plus fréquentes, et aucun de ces ensembles de données ne

couvre pas les postures humaines de différents emplois professionnels. Nous avons

encore besoin d’une forte généralisation de notre système pour couvrir les différentes

actions.

Pour résoudre ce problème, nous proposons notre première contribution, qui

propose un algorithme synthétique de génération de postures humaines en 3D et

l’entraı̂nement des réseaux de neurones. (Voir Figure 2)

L’algorithme de génération contient les idées suivantes. Selon la nature d’un

corps humain, nous supposons que la position d’une articulation (appelée enfant)

dépend de la position de l’articulation qui lui est directement connectée mais plus

proche du corps central au sens géodésique (appelée ’parent’). Nous définissons

donc l’articulation du bassin comme articulation de base et une structure d’arbre est

appliquée pour générer les articulations une par une. Nous générons l’articulation

enfant dans un système de coordonnées sphériques local centré sur son articula-
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Figure 2: L’idée générale de notre méthode de génération synthétique: utiliser un

arbre probabiliste hiérarchique et sa distribution par joint pour générer des postures

humaines synthétiques 3D réalistes.

tion parent car chaque branche du corps humain a une longueur fixe quel que soit

le mouvement, donc la nouvelle position de l’articulation enfant peut être paramétrée

avec l’angle polaire et angle azimutal. Notre système de coordonnées sphériques lo-

cal est également entièrement bijectif avec le système de coordonnées cartésiennes

global, permettant la transformation simple entre l’espace de coordonnées sphériques

de génération et l’espace de coordonnées cartésiennes commun.

Désormais, générer une posture humaine dans notre système de coordonnées

sphériques local équivaut à générer un ensemble d’angles. Nous proposons de choisir

ces valeurs à partir d’une distribution qui se rapproche de celle de postures humaines

réelles. Nous limitons l’interval d’angles pour chaque articulation en fonction de ce

qui est en moyenne biologiquement réalisable. Puisque la probabilité que chaque

angle de l’enfant ne puisse pas rester la même lorsque le parent la valeur com-

mune change, car ce dernier indiquant normalement une action différente, nous pro-

posons de choisir les valeurs d’angle par rapport à une distribution conditionnelle

P(Xen f ant |Xparent). Cela produit une arbre de Markov pour les angles.

L’étape suivante consiste à estimer une distribution qui peut se rapprocher de la

distribution réelle des postures humaines 3D et à partir de laquelle notre modèle peut

choisir les angles. Sous la contrainte de ne touche pas des données réelles 3D et

purement 3D synthétiques, nous avons choisi d’utiliser un nombre limité de postures

réelles 2D et en les augmenter ’manuellement’ en 3D pour estimer notre distribution.

Nous choisissons une procédure en 3 étapes pour obtenir notre distribution. Nous

choisissons 10 postures 2D avec une grande variance comme une base. Nous les
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augmentons semi-automatique de 2D en 3D, et créons la distribution initiale à partir

de ces postures. Nous diffusons les probabilités à l’intérieur du graphe de distribution

comme la diffusion de chaleur pour augmenter la variété de génération.

Le modèle d’entraı̂nement du réseau est dans la Figure 3. Nous évaluons notre

approche sur les deux ensembles de données de référence et obtenons des résultats

prometteurs dans une configuration sans aucune donnée réelle.

Figure 3: Notre processus d’entraı̂nement avec des données synthétiques. Notre

générateur g génère une pose humaine 3D suivant les distributions données P. Il est

appliqué avec plusieurs r générés aléatoirement pour projeter dans différentes vues

des caméras. Le projecteur W les projet en coordonnées 2D et ce sont les entrées du

réseau. Les poses 3D estimées en sortie sont appliquées avec une loss de supervision

3D L3D, ainsi qu’une loss de reprojection 2D à vue croisée L2D.

Deuxième contribution pour le problème de la capacité du modèle squelette

La capacité du modèle squelette représente la quantité d’informations que nous

pouvons dériver du squelette que nous choisissons, qui est liée au calcul géométrique

dans l’étape suivante. Cependant, les méthodes courantes de l’état de l’art présentent

deux inconvénients. Premièrement, ils n’utilisent qu’une vingtaine d’articulations

qui représentent uniquement les articulations les plus critiques du corps humain.

Bien que ces articulations soient capables de calculer l’angle comme la flexion et

l’extension, elles ne sont pas capables de calculer l’angle de supination-pronation,

ce qui rend ces conceptions de squelette moins préférables dans cette thèse. Le

deuxième inconvénient est que les méthodes les plus récentes traitent le visage et

les mains indépendamment. Ils apprennent à reconnaı̂tre séparément les articulations

du corps, des mains et du visage, puis à les combiner en une seule humaine, mais

nous préférons une structure combinée de toutes les informations pour faciliter le
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calcul. Nous devons donc trouver une disposition de squelette adaptée à notre projet.

Pour résoudre ce problème, nous proposons notre deuxième contribution, qui

propose un cadre de création d’annotations 3D du corps entier avec 133 articula-

tion à partir d’images multi-vues ainsi qu’un benchmark construit sur la base de

ce cadre. Le modèle squelette que nous choisissons et qui combine toutes les par-

ties du corps en un existe déjà en 2D (mais pas en 3D avant notre travail), appelé

COCO-Wholebody1, qui fournit une disposition de 133 articulations, composé de 17 1 [Jin et al., 2020]

Whole-Body Human Pose Estimation

in the Wild

articulations du corps, 6 articulations des pieds, 68 articulations du visage et 42 artic-

ulations des mains. Et le travaux existant, Openpifpaf2, disposent déjà d’un modèle 2 [Kreiss et al., 2021]

OpenPifPaf:Composite Fields for Se-

mantic Keypoint Detection and Spatio-

Temporal Association

et de poids bien pré-entraı̂nés pour la détection de pose du corps entier en 2D, ce qui

facilite le début de notre travail.

Nous exécutons un détection des corps entier en 2D par OpenPifPaf sur les 4 vues

de caméra différentes à partir d’images multivues. Comme les caméras sont bien cal-

ibrées, nous pouvons reconstruire les articulation en 3D à l’aide d’un algorithme de

géométrie multi-vues. Malheureusement, le détecteur OpenPifPaf ne predit pas des

articulations en raison d’occlusions (mains, pieds) ou de points de vue défavorables

de la caméra (face vers l’arrière). Cependant, la configuration à 4 vues nous permet

de récupérer certains articulation manquants dans un vue mais visible dans les autre,

et d’obtenir une pose complète du corps entier en 3D, à condition que chaque articu-

lation apparaisse dans au moins deux vues non opposées. En utilisant cette méthode,

nous avons obtenu 11,426 postures 3D complètes du corps entier avec les 133 ar-

ticuations et 26,333 postures 3D incomplètes du corps entier où tous les points clés

apparaissent dans au moins une vue, ce qui donne un total de 37,759 postures 3D du

corps entier avec chaque articulation au moins vérifiable en 2D.

Afin de compléter les 26,333 postures incomplètes du corps entier en 3D, nous

développons un réseau de complétion comme dans la Figure 4. Nous utilisont l’architecture

Transformer3 car ils peuvent facilement gérer les dépendances conditionnelles in- 3 [Vaswani et al., 2017]

Attention is all you needtroduites par la topologie du squelette via le masquage. Puisque chaque squelette

comporte toujours exactement 133 articulation, qui peuvent être considérés comme

133 jetons avec 3 valeurs. Les valeurs des jetons sont étendues de 3 coordonnées à

3×16 = 48 à l’aide du codage de Fourier. Nous utilisons un codage positionnel ap-
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Figure 4: Le réseau de complétion se compose d’une couche d’entrée linéaire, de 4

blocs d’encodeurs de transformateur (chacun d’eux contenant 2 couches d’encodeurs

de transformateur) et d’une couche de sortie linéaire. À la fin de chaque bloc

d’encodeur, les valeurs sont décodées par la couche de sortie dans une stratégie cur-

riculaire.

prenable puisque chaque articuation est identifié de manière unique. Nous entraı̂nons

le réseau de complétion sur les 11,426 squelettes complets en utilisant une stratégie

d’encodeur automatique masqué 4 où les articulations manquants sont masqués en4 [He et al., 2022b]

Masked autoencoders are scalable vi-

sion learners

entrée et seront prédits à l’aide des points clés non masqués. La stratégie de masquage

est la suivante: avec 50% de chances, nous effectuons un masque par articulations où

chaqu’un a 15% de chance d’être masqué, et avec les 50% de chances restantes, nous

effectuons un masque par blocs dans lequel soit le corps, la main gauche, la main

droite, la partie gauche ou droite du visage sont masqués avec une probabilité uni-

forme. Pour faciliter le processus d’apprentissage, nous introduisons une approche

curriculaire. Nous calculons la loss à différents niveaux en suivant une hiérarchie

où les premiers niveaux considèrent uniquement les articulations plus proches de la

corps, tandis que les niveaux ultérieurs considèrent les articulations plus déformables

qui dépendent fortement de leurs parents. Les résultats du réseau de complétion sur

les parties du corps manquantes sont visuellement réalistes. Cependant, comme le

réseau de complétion ne s’appuie pas sur le contenu de l’image, sa sortie ne s’aligne

pas toujours sur l’image et peut refléter uniquement les poses les plus courantes.

Pour corriger le problème d’alignement, nous proposons un autre réseau de neu-

rones qui raffine la position 2D des articulation sur le visage et les mains. Nous nous

appuyons sur des modèles de diffusion conditionnelle 5 récents. Pendant l’entraı̂nement,5 [Ho et al., 2020]

Denoising diffusion probabilistic mod-

els

nous ajoutons du bruit gaussien aux postures de vérité terraine avec une variance

croissante de 5 à 25 pixels, et les annotons comme étape t = 1...5 (l’étape t = 0 est la
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vérité terraine). Le réseau apprend à prédire la pose à l’étape t étant donné l’image et

l’étape la plus bruyante t +1 avec une loss de supervision 2D (Voir Figure 5). Nous

exécutons les réseaux de raffinement entraı̂nés sur les projections 2D des postures 3D

prédites par notre réseau de complétion. Pour chaque squelette 3D, nous le projetons

dans les 4 vues différentes. Nous recadrons ensuite les régions autour des mains et

du visage et débruitons les prédictions correspondantes en utilisant le réseau de raf-

finement avec 10 itérations pour obtenir postures 2D raffinées dans chacune des 4

vues. On pratique une autre reconstruction géométrique pour soulever en 3D. Grâce

à cette méthode, on obtient 151,036 triplets de points clés 3D du corps entier, image

correspondante et points clés projetés en 2D à partir de l’ensemble d’origine. (Voir

Figure 6)

Figure 5: Réseau de raffinement et du processus d’entraı̂nement. Un bruit gaussien

est ajouté aux coordonnées de vérité terrain avec une variance croissante, et le réseau

est entraı̂né de manière itérative pour récupérer les coordonnées les moins bruyantes.

Les inférences convergent presque vers les emplacements corrects en 5 itérations.

Figure 6: L’ensemble de nos données contient 133 annotations des articulations du

corps entier en 3D ainsi que leurs projections respectives en 2D.

Avec ce cadre, nous introduisons 3 ensembles de données en tant qu’extensions

des ensembles de données Human3.6M, CMU-Panoptic et MPI-INF-3DHP existants
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Nous effectuons une comparaison complète de cette approche avec des méthodes

de prédiction de mouvement de pointe sur trois ensembles de données populaires,

démontrant des améliorations significatives par rapport aux lignes de base dans la

plupart des cas.

Un prototype qui combine tout

Enfin, nous avons réalisé un prototype qui effectue une estimation de la posture

humaine en corps entier 2D et 3D, ainsi qu’une détection des postures critiques pour

une analyse ergonomique, capable d’analyse rapide même sur un ordinateur équipé

uniquement d’un CPU.

Nous utilisons un réseau entraı̂né pour estimer le corps entier 2D à partir d’une

image, puis un autre réseau entraı̂né pour augmenter un corps entier 2D incomplet

vers un corps entier 3D complét, et ils calculent les angles et les comparent aux

zones de sécurité introduites par les ergonomes. L’interface ressemble à Figure 8

et l’ensemble de l’algorithme fonctionne sur un ordinateur sans GPU à environ 1,3

image-par-second.

Figure 8: Un exemple d’écran de démonstration capturant l’auteur de cette thèse et

restituant le squelette 2D et 3D sur l’interface. On voit que même la partie inférieure

du corps n’est pas dans une image 2D ainsi que le squelette 2D, l’algorithme parvient

quand même à prédire le squelette 3D complet à droite. Les corps sont rendus en

rouge parce que l’auteur penche le corps vers l’avant, et maintenir cette pose n’est

pas bon pour la colonne vertébrale, un problème existe pour de nombreuses personnes

qui sont toujours assises et travaillent devant l’ordinateur.
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10 CHAPTER 1. INTRODUCTION

Ergometry is a discipline that studies the measurement of the physical work of

the body, in order to make such work more sustainable and keep the body in good

health. This is more critical for people who perform heavy physical labor, as they

often suffer from bodily illnesses due to poor working conditions and unscientific

behaviour during work. (See Figure 1.1) One way to detect such potential damage

Figure 1.1: Many works that

require people to maintain the

same posture for a long time can

be a harmful factor to the body

after a long period of time. Im-

age source: [Mejean, 2020] Les

operateurs n’ont peut-etre pas

raison mais ils ont leurs raisons.

to their body is to track the operator’s posture, which allows for a more in-depth

analysis of their body and actions. In this context, the characteristic of a human

posture is defined as the relative positions of each body part in space at one moment

during the work, which can be simply captured in an image with a camera, or even

more complex, with specific motion capture equipment with sensors installed on the

operator’s body. Although the latter method is not viable for ordinary people because

it requires special equipment and environment, the former is more likely to be applied

in everyday life. The critical data includes body angles, arm and leg supination and

pronation, actions over time, and more. On the other hand, the fast development of

artificial intelligence and recent significant progress in computer vision have enabled

the realization of automatic detection and analysis in a complex environment. One of

the biggest examples of such a system is autonomous car driving, in which AI detects

and decides the direction and speed of the car. As for ergometry, such a detection and

analysis algorithm is called Human Pose Estimation (See Figure 1.2).

Figure 1.2: ”Pose estimation is a

computer vision task where the

goal is to detect the position and

orientation of a person or an ob-

ject. Usually, this is done by

predicting the location of spe-

cific keypoints” Image source:

[paperswithcode, 2020] Pose es-

timation

Human pose estimation is a topic that has been deeply studied in computer vi-

sion, mainly thanks to the rapid development of deep neural networks. The use of

a human pose estimation algorithm to facilitate ergometric study is very promising,

as it allows fast and systematic analysis of a huge amount of existing data. In fact,

such automatic analysis of human poses in the working environment over a signifi-

cant period of time (e.g. a full week of work) would make it possible to have reliable

measures of the difficulty or inadequacy of the work environment to the required task

and would give the ergonomist the opportunity to make a judgment based on a solid

set of observations.

However, even though human pose estimation is a well-known problem in com-

puter vision, it remains a complex problem whose existing solutions do not meet the
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needs of this thesis.

On the one hand, we must distinguish between 2D human pose estimation, where

the coordinates of the joints of the human body are given as corresponding pixels

in the image, and 3D human pose estimation where the coordinates are data in a

real world coordinate system. Today, 2D human pose estimation is a nearly solved

problem for images in a wide range of different scenarios. However, since joint an-

gles are determining factors for working conditions in the context of ergonomics,

2-dimensional analysis does not make it possible to recognize problematic postures.

Human pose estimation in 3D is a much more complex problem because this is in-

trinsically an ill-posed problem in the case of a single image source. In reality, there

is a natural ambiguity in estimating depth from a single image (like a hand leaning

forward or backward can have the same 2D projection on the image).

The second major limitation is that these methods require training labels asso-

ciated with the predictions (supervised learning) and for which it was necessary to

set up a very complex recording system (for example a motion capture system with

markers, see Figure 1.3).

Figure 1.3: ”A dancer wear-

ing a suit used in an optical

motion capture system.” Light

dots are the markers installed on

her cloth to captured the coordi-

nates, allowing the synthetic re-

construct in the computer space

shown in the back. Image

source: [wikipedia, 2003b] Mo-

tion capture

Therefore, the most recent data is only captured in a very constrained environ-

ment. However, we are more interested in an unconstrained framework because we

want to perform analysis while avoiding the background impact of working condi-

tions as much as possible. The neural network model must therefore be able to adapt

to this environment without constraint.

To obtain an estimation of the 3D human pose with high precision, we therefore

propose to decompose the whole task into several steps and to combine the strengths

of each of them individually. First of all, we propose to perform a 2D human pose

estimation from an image, because it is already well performing in an unconstrained

environment. Then, starting from a 2D human pose, we take it to 3D with another

neural network. Since this step only uses keypoint coordinates rather than images,

the environment is no longer a performance-degrading factor. To alleviate the ambi-

guity problem, we propose using the joint distribution prior or using a more complex

model, both of which can increase the prediction accuracy.

In the following chapters, we first make a brief explanation of the related works
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in Chapter 2, as well as the state of the art under different categories of estimation

of the human pose. Then, in chapter 3, we explain our problem in detail, as well

as our general methodology. From chapter 4 to chapter 7, we present our 3 different

research projects, including Decanus to Legatus: Synthetic training for 2D-3D hu-

man pose lifting [Zhu and Picard, 2022], which proposes an algorithm that generates

synthetic 3D human skeletons on the fly during training to create new poses outside

of common datasets, H3WB: Human3.6M 3D WholeBody Dataset and Bench-

mark [Zhu et al., 2023b], which proposes a framework for creating full-body 3D

annotations from multi-view images along with a few datasets and a benchmark built

based on this framework to increase the capacity of the skeleton model, and PIUS:

Pose Interpolation at extremely low and Uneven framerate [Zhu et al., 2024]

which proposes an algorithm that models human movement as a continuous function

over time to deal with total human occlusion by obstacles in video sequences, as well

as a real-time demonstration working on a CPU-only computer. In chapter 8 we give

our conclusion.



Chapter 2

Related works

13



14 CHAPTER 2. RELATED WORKS

In this chapter, we provide a brief introduction to how ergonomic studies have

been combined with deep learning as well as the deep neural network structures com-

monly used for human pose estimation, the state-of-the-art methods developed for

human pose estimation, and several less developed topics on human poses that are

related to our works.

2.1 Background

2.1.1 Ergonomic and deep learning

In recent years, the study of ergonomics has been greatly improved with the help

of computer algorithms, and then extended to deep learning methods. Two great

examples of domain interaction between ergonomics and deep learning are human-

machine interaction and the study of musculoskeletal disorders.

Applying deep learning to human-machine interaction for ergonomics is a natu-

ral idea. The machine must improve its algorithm to adjust its positioning for user

comfort, with deep learning methods being a very good choice for observing and

optimizing these parameters. For example, Gholami et al.1 proposed a framework to1 [Gholami et al., 2021]

Quantitative physical ergonomics as-

sessment of teleoperation interfaces

analyze both usability of online measurements of human body configurations, applied

on a teleoperated robot with the Mocap 3D mouse system as user interface. Yazdani

et al.2 proposed Differentiable Upper Limb Assessment (DULA) to predict risk as-2 [Yazdani et al., 2021a]

DULA: A differentiable ergonomics

model for postural optimization in

physical HRI.

sessment from 10 upper body keypoints using a deep neural network, and maintain

the same level of accuracy with the traditional rapid upper limb assessment (RULA)

on the same task. They proposed in their later work3 Differentiable Entire Body3 [Yazdani et al., 2022]

Differentiable ergonomic risk models

for postural assessment and optimiza-

tion in ergonomically intelligent pHRI

Assessment (DEBA) which extend DULA functionality to entire body. Based on

DULA system4, they introduced a framework allowing robotic arms to perform tele-
4 [Yazdani et al., 2021b]

Ergonomically intelligent physical

human-robot interac- tion: Pos-

tural estimation, assessment, and

optimization

operations with postural estimation and optimization. Cvetkovic et al.5 studied the

5 [Cvetković et al., 2023]

Explaining human body responses in

random vibration: Effect of motion di-

rection, sitting posture, and anthropom-

etry

effect of random vibrations on the human body by having 35 experiment participants

sit in a car seat with disturbance, showing that the direction of the disturbance and

the kinematics of the body segments are the main factors leading to the peak trans-

lations of the signal. Shafti et al.6 used an RGB-D camera to capture human posture

6 [Shafti et al., 2018]

Real-time robot-assisted ergonomics
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and optimize the robot’s parameters to maintain optimal ergonomics for humans. All

these works show the great utility of using deep learning to control robot for better

interaction with humans.

On the other hand, musculoskeletal health7, according to World Health Organi- 7 [WHO, 2022]

Musculoskeletal-conditionssation, ”refers to the performance of the locomotor system, comprising intact mus-

cles, bones, joints and adjacent connective tissues. Musculoskeletal conditions are

typically characterized by pain (often persistent) and limitations in mobility and dex-

terity, reducing people’s ability to work and participate in society.” The use of deep

learning methods to study work-related musculoskeletal disorders (WMSD), or work-

related body fatigue for short, in ergonomics is also very common, which is also the

aim of study of this thesis. Such a study must be quantified with numbers to allow

researchers to analyze the observed human. There are two main ways to obtain this

digital data, including sensor-based methods such as motion capture (Mocap), inertial

measurement units (IMU), electromyogram (EMG) sensor which places sensors on

the human body to directly measure data, as well as vision-based methods by captur-

ing images or videos and using deep learning algorithms to obtain the necessary data.

Normally, sensor-based methods are more accurate, while vision-based methods are

cheaper and easier to generalize.

Some examples of sensor based methods are: Ma et al.8 proposed a framework 8 [Ma et al., 2011]

A framework of motion capture system

based human behaviours simulation for

ergonomic analysis

in 2011 to use Mocap to capture real human motion, then combining with a given

digital human model as well as a physics engine, their system allows the simula-

tion of human motion in a virtual physical environment and mainly studied the case

of muscle fatigue. Lorenzini et al.9 proposed to study WMSDs using an online ap- 9 [Lorenzini et al., 2021]

An online multi-index approach to hu-

man ergonomics assessment in the

work place

proach to monitor kinematic and dynamic quantities on workers. These quantities are

based on the positions and orientations of each individual joint relative to the pelvis

joint. The proposed framework is then studied under 3 different actions including

object lifting/lowering, drilling and painting with a tool. Mudiyanselage et al.10 eval- 10 [Mudiyanselage et al., 2021]

Automated workers ergonomic risk as-

sessment in manual material handling

using semg wearable sensors and ma-

chine learning

uated the ability of a surface EMG-based system to detect harmful body movements

during material handling. 4 different machine learning methods were compared and

showed that decision tree beats support-vector machine, K-nearest neighbor and ran-

dom forest in terms of harm risk prediction accuracy with a small margin. Gelaw et
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with experience E.”

In practice, the entire learning procedure can be generally formulated as an ap-

proximation problem with a model represented as a function F follows the equation

y = F (x) with x ∈ X is the collection of input data, and y ∈ Y is the collection of the

expected output data, called groundtruth. We want to improve F through learning

so that the predicted value from learnt F (x) should be as close to the groundtruth y

as possible. The size, shape and range of values of x or y can be varied depending on

the task.

It is the same case for deep learning, but F is now a neural network with learn-

able parameters. Thus, choosing an appropriate form of network structure for F is

an important factor for the performance of any method. Here we briefly introduce

common network structures dealing with different input data structures.

Layers

A deep learning network is normally composed of several structures called layers,

with each layer taking as input the data produced by the previous layer, calculating

some type of transformation, and passing its output to the next layer. Layers can be

separated into two types: linear and non-linear layers. Since two successive linear

operations are equivalent to a single linear operation, alternating between linear and

nonlinear layers ensures that a subpart of the network is not equivalent to a large linear

layer, allowing the network to approximate much larger and more difficult functions.

A commonly used linear layer is Fully connected layer (FC layer), in which each

value of the input of this layer is connected to each value of the output of this layer.

The FC layer can be used on any type and dimension of vector data, allowing the

transformation of data into any form we need. The disadvantage is that the number

of parameters to learn is the product of the dimension in the input vector and the

dimension in the output vector, which makes the calculation expensive in terms of

number of operations when the data size is large.

Another commonly used linear layer is Convolutional Layer (Conv Layer) whose

input vector is convolved with a learned kernel. The Conv Layer requires significantly

fewer parameters to learn than a typical FC layer and also maintains the translation
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choice of network structure for human pose estimation from an image or video.

RNN, LSTM and GRU

A neural network that recurrently pass the output from some neurons as part of the

subsequent input to the same neurons is called a recurrent neural network (RNN).

This “memory” capability makes RNN a popular choice for processing sequential

data such as time series and text. However, the ’memorized’ values will rapidly

been ignored with smaller and smaller factor after more iterations , which is called

vanishing gradient problem, makes it difficult for the network to have a long memory.

To address this problem, a special type of RNN, called long short-term memories

(LSTM)22, is introduced, which uses gates to control which values to keep (cell state),22 [Hochreiter and Schmidhuber,
1997]

Long Short-Term Memory

which value to forget (forgotten gate), which value to learn (input gate) as well as

the values to return (output gate). The cell state is the long term memory and the

combination of the other 3 gates forms the short term memory. However, LSTM

has a rather complicated structure and that is why a gated recurrent unit (GRU)2323 [Cho et al., 2014]

Learning Phrase Representations using

RNN Encoder-Decoder for Statistical

Machine Translation

is proposed, which is cheaper to compute while providing similar performance to

LSTM. It replaced the multiple gates in LSTM by only reset-gate and update-gate,

thereby reducing the number of calculations.

These RNN structures, due to their ability to process sequential data, become

good choices for processing videos or sequences of human poses.

2.2 3D Human pose estimation

2.2.1 3D human pose estimation from image

In recent years, monocular 3D human pose estimation has been widely explored in

the community. The models can be mainly categorized into generative models which

fit 3D parametric models to the image, and discriminative models which directly

learn 3D keypoint positions from images . Generative models try to fit the shape

of the entire body and as such are great for augmented reality or animation purpose.

However, they tend to be less precise than discriminative models. On the other hand, a

difficulty that the discriminative models have is that depth information is hard to infer
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from a single image when it is not explicitly modeled by body constraints, and thus

additional bias must be learned using 3D supervision, multiview spatial consistency

or temporal consistency.

Discriminative models can also be categorized into one stage models which pre-

dict directly 3D poses from images and two stage methods which first learn a 2D pose

estimator, then lift the obtained 2D poses to 3D.

One stage methods

The problem of one-stage 3D human pose estimation from an image can be formally

defined as follows: given an RGB image, the network must directly predict the 3D

poses of humans in the image without intermediate 2D supervision.

Since one-stage methods are end-to-end, they don’t have intermediate supervi-

sions and more often requires data that already contains 3D information for supervi-

sion, such as multiview images. For example, Mehrizi et al.24 used multiview data 24 [Mehrizi et al., 2018]

Toward marker-free 3d pose estimation

in lifting: A deep multi-view solution

to enhance the 3D human pose estimation result. Rhodin et al.25 proposed to use

25 [Rhodin et al., 2018]

Learning monocular 3d human pose es-

timation from multi-view images

multiview-consistent 2D reprojection supervision and few shot 3D label supervision,

together with a regularization to penalizes predictions that drift too far away from

the initial prediction during training. Luvison et al.26 proposes to estimate 3D co-
26 [Luvizon et al., 2022]

Consensus-based Optimization for 3D

Human Pose Estimation in Camera Co-

ordinates

ordinates in absolute values as well as a consensus-based optimization algorithm to

estimate the unknown camera intrinsic and extrinsic parameters for reprojection con-

sistency. Sengupta et al.27 takes as input a group of images of the same person but 27 [Sengupta et al., 2021]

Probabilistic 3d human shape and pose

estimation from multiple unconstrained

images in the wild

without pose or camera constraints, optimized jointly with the SMPL model using a

probabilistic pose and shape model. Pavlakos et al.28 propose a fine discretization of

28 [Pavlakos et al., 2017]

Coarse-to-fine volumetric prediction

for single-image 3d human pose

3D space and prediction of per-voxel probabilities for each joint, as well as a coarse-

to-fine prediction scheme that allows iterative refinement. Benzine et al.29 proposed

29 [Benzine et al., 2020]

PandaNet : Anchor-Based Single-Shot

Multi-Person 3D Pose Estimation

a top-down method predicting human bounding boxes and 2D/3D poses with the help

of pre-defined anchors which are the basic complete 3D poses from which the net-

work practice refinement and avoid occlusion problems, and then also proposed a

bottom up method3031 which simultaneously predicts 2D heatmaps and occlusions 30 [Benzine et al., 2019]

Deep, Robust and Single Shot 3D

Multi-Person Human Pose Estimation

from Monocular Images

31 [Benzine et al., 2021]

Single shot 3D multi-person human

pose estimation in complex images

robust pose maps for 3D coordinates for each joint, and regroup joints into persons

according to their embedding values for single shot multiperson prediction task.
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the 3D human pose.

3D human pose estimation from 2D human pose The problem of lifting 2D hu-

man poses to 3D can be formally defined as follows: Given a 2D human pose, the

network must predict the corresponding 3D poses.

Lifting 2D pose to 3D is somewhat of an ill-posed problem because of depth

ambiguity. But the larger quantity and diversity of 2D datasets as well as the much

better performance already obtained in 2D human pose estimation provide a strong

argument for many researchers, including us, to focus on the lifting of 2D human

poses to 3D. One simple baseline of such task is done by Martinez et al.40, who use 40 [Martinez et al., 2017c]

A simple yet effective baseline for 3d

human pose estimation

a small MLP to realize 2D to 3D human pose lifting (see Figure 2.5).

Figure 2.5: A very simple 4 layer MLP doing 2D-3D lifting task. Image source:

[Martinez et al., 2017c] A simple yet effective baseline for 3d human pose estimation

One classic method to help improve lifting performance is to use the human

body’s built-in priors that are commonly agreed upon, such as the order of the human

body’s kinematic tree as well as left-right symmetry. For example, Chen et al.41 pro- 41 [Chen et al., 2021]

Estimation of 3d human pose using

prior knowledge

posed combining bone length and camera parameters with 2D coordinates as input,

as well as adding a direction loss for each human branch. Park et al.42 divide the 42 [Park and Kwak, 2018]

3d human pose estimation with rela-

tional networks

human body into 5 parts and extract the features of all combination of pairs of two of

these parts. Biswas et al.43 proposed to use the same lifting network architecture to
43 [Biswas et al., 2019]

Lifting 2d human pose to 3d
back-project the estimated 3D pose into 2D to allow for weak supervision, as well as

the need to combine the symmetric bone length constraint. Hardy et al.44 argue that, 44 [Hardy et al., 2022]

Optimising 2d pose representation: Im-

prove accuracy, stability and generalis-

ability within unsupervised 2d-3d hu-

man pose estimation

in an unsupervised adversarial lifting task, using an independent two-branched model

of the torso and legs is the best 2D representation to learn. Wei et al.45 based on the

45 [Wei et al., 2019]

View invariant 3d human pose estima-

tion

baseline method, proposed to add a view-invariant hierarchical correction network

that transforms both the predicted 3D pose and the ground truth into a fixed view,

and judged with a discriminator. Mehta et al.46 transferring features from 2D pose
46 [Mehta et al., 2017]

Monocular 3d human pose estimation

in the wild using improved CNN super-

vision
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estimation to 3D pose estimation task, as well as multi-model 3D pose prediction and

fusion.

Another common practice is to find another representation of the data instead of

joint coordinates in order to facilitate learning. For example, Noguer et al.47 pro-47 [Moreno-Noguer, 2016]

3d human pose estimation from a single

image via distance matrix regression

posed using a distance matrix between joints to represent both 2D and 3D human

pose instead of coordinates, as well as using an MDS algorithm to convert the dis-

tance matrix back to 3D human pose coordinates. Kang et al.48 proposed grid con-48 [Kang et al., 2023]

3d human pose lifting with grid convo-

lution

volution. By using a binary assignment matrix that maps the graph pose to a grid

pose, it allows the network to perform convolution to raise the 2D pose to 3D, which

is normally unreasonable with just coordinate values. Zhang et al.49 proposed to49 [Zhang et al., 2021]

Deep monocular 3d human pose esti-

mation via cascaded dimension-lifting

keep the contextual information extracted from the 2D pose estimation network to

the lifting network, as well as learn the 3D position heatmap from the 2D heatmaps

and context information. Krishna et al.50 proposed using quaternions to represent 3D50 [Krishna et al., 2021]

Signpose sign language animation

through 3d pose lifting

human pose in order to avoid the constraints of bone lengths with 3D coordinates or

discontinuities and singularities with Eular angles or axis-angles. Xu et al.51 propose51 [Xu and Takano, 2021]

Graph stacked hourglass networks for

3d human pose estimation

graph stacked hourglass networks that estimate human skeleton models from a com-

plete skeleton to a simplified 4-joint skeleton, performing coarse-to-fine estimation

through intermediate layers. Wandt et al.52 propose to estimate the 3D human pose52 [Wandt et al., 2021]

Canonpose: Self-supervised monocular

3d human pose estimation in the wild

under the canonical space and the camera which transforms from the canonical space

to the camera space corresponding to the input image.

In addition to using a network to learn to lift, some researchers use a predefined

model to adapt the 3D pose and shape to the image as well as 2D pose. SMPL53 is53 [Loper et al., 2015a]

SMPL: A skinned multi-person linear

model

one of the recent most popular model and its fitting algorithm SMPLify from Bogo

et al.54 (see Figure 2.6), which uses a CNN to predict the location of 2D joints and54 [Bogo et al., 2016]

Keep it SMPL: automatic estimation of

3d human pose and shape from a single

image

then fits a 3D parametric body model to estimate the shape and pose of the 3D body

by minimizing the error between the projected 3D model joints and the detected 2D

joints. Based on this, Kissos et al.55 proposed to use a full perspective projection55 [Kissos et al., 2020]

Beyond weak perspective for monocu-

lar 3d human pose estimation

camera model instead of weak perspective camera model in SPIN algorithm 56 and

56 [Kolotouros et al., 2019]

Learning to reconstruct 3d human pose

and shape via model-fitting in the loop

combine it with SMPLify algorithm to regress directly from image to 3D pose and

shape.

There are also researchers which deal with multiview 2D poses, like Chen et al. 57

57 [Chen and Ramanan, 2017]

3d human pose estimation = 2d pose es-

timation + matching
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needs to predict 3D poses for one or all images.

Compared to 3D human pose estimation from a single image, this task contains

additional information about the images before and after the one to be predicted,

allowing to improve the prediction accuracy using temporal coherence across time

periods assuming the human cannot move a lot in a very short time (typically ≤

1s). For example, Choi et al.63 proposed to separately predict the pose of the cur-63 [Choi et al., 2021]

Beyond static features for temporally

consistent 3d human pose and shape

from a video

rent frame from past features, future features, and all features, and then integrate

the predictions to improve the temporal consistency of pose and shape. Kanazawa

et al.64 proposed to predict both a past pose and a future pose as well as a current64 [Kanazawa et al., 2019]

Learning 3d human dynamics from

video

pose with a adversarial prior loss to ensure the validity of the predictions, as well as

a hallicinator that attempts to learn the same feature but only from a single current

image. Sometimes this temporal consistency allows some self-supervision between

successive data, allowing learning without the entire sequence or without 3D annota-

tions. Such methods may be more generalizable to many more data sequences. For

example, Takahashi et al. 65 process videos from unsynchronized and uncalibrated65 [Takahashi et al., 2018]

Human pose as calibration pattern; 3d

human pose estimation with multiple

unsynchronized and uncalibrated cam-

eras

cameras using a relaxed reprojection error based on a confidence map, and jointly

optimize the temporal offset between videos, camera parameters, and 3D poses. Li et

al.66 proposed to use a 3D trajectory optimization algorithm on a 3D pose sequence66 [Li et al., 2019]

On boosting single-frame 3d human

pose estimation via monocular videos

predicted from a pre-trained network to create a pseudo-supervision label. Einfalt

et al.67 use a transformer network and padding a sparse 2D pose sequence with a
67 [Einfalt et al., 2022]

Uplift and upsample: Efficient 3d hu-

man pose estimation with uplifting

transformers

learnable upsampling token to realize a monocular temporally sparse 2D pose se-

quence up to a temporally dense 3D pose estimation. Luvison et al.68 jointly estimate

68 [Luvizon et al., 2020]

Multi-task Deep Learning for Real-

Time 3D Human Pose Estimation and

Action Recognition

2D/3D poses and action recognition from a pose sequence with a multi-task pyramid

structure.

Due to the large variation in human position in the image sequence, some sort

of data normalization is necessary to facilitate learning. For example, Tekin et al.6969 [Tekin et al., 2015]

Direct prediction of 3d body poses from

motion compensated sequences

proposed using a CNN to move image windows to a centralized human in each image

and then another CNN to regress the 3D pose from the concatenated 3D features.

Wang et al.70 proposed a motion loss based on the movement of points centered on70 [Wang et al., 2020]

Motion guided 3d pose estimation from

videos

a root joint. Zell et al.71 learn new 3D poses from linear combinations of a set of

71 [Zell et al., 2017]

Joint 3d human motion capture and

physical analysis from monocular

videos

base poses learned by principle component analysis (PCA) on motion sequences.
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task. For example, Martinez et al.73 proposed to use a sequence-to-sequence RNN73 [Martinez et al., 2017a]

On human motion prediction using re-

current neural networks

model, which feeds the ground-truth to the encoder, and the error is calculated on the

decoder which feeds its own predictions. Zhu et al.74 proposed dynamics maps that74 [Zhu et al., 2023a]

A data-efficient approach for long-term

human motion prediction using maps of

dynamics

encode spatial or spatio-temporal motion patterns as environmental features for long-

term multi-model motion prediction. Mao et al.75 proposed to use graph convolu-

75 [Mao et al., 2019a]

Learning trajectory dependencies for

human motion prediction

tional networks along with a discrete cosine transform to train in the trajectory space

to avoid the temporal convolution filter. Sun et al.76 proposed to iteratively refine

76 [Sun and Chowdhary, 2023]

Towards accurate human motion pre-

diction via iterative refinement

the motion prediction between pose space and frequency space with a discrete cosine

transform. Guo et al.77 proposed to use MLP structure along with discrete cosine

77 [Guo et al., 2022]

Back to mlp: A simple baseline for hu-

man motion prediction

transform to transform data from coordinate space to trajectory space. Katircioglu et

al.78 introduces a pairwise attention mechanism to model the mutual dependencies

78 [Katircioglu et al., 2021]

Dyadic human motion prediction

of two objects to reason about the interactions, so as to apply the pose estimation of

two dancing people. Yasar et al.79 proposed to follow a curriculum learning by first

79 [Yasar and Iqbal, 2021]

Improving human motion prediction

through continual learning

learning the rough topological organization of the human body and then adjusting for

accurate prediction.

In addition to temporal and spatial coherence, some works take advantage of the

context of each movement to facilitate network learning. For example, Corona et

al.80 proposed to use RNN to simultaneously perform motion prediction and context80 [Corona et al., 2020]

Context-aware human motion predic-

tion

understanding, which is achieved by using past object position, class, and human

joints to predict interactions and context. Tanke et al.81 predict symbolic labels to81 [Tanke et al., 2019]

Human motion anticipation with sym-

bolic label

represent human intention, to facilitate the human motion prediction. Kiciroglu et

al.82 suggest predicting only a few key poses, which are normally the turning pose on82 [Kiciroglu et al., 2020]

Long term motion prediction using key-

poses

the long term, such that interpolating the intermediate frames is sufficient for more

accuracy. Sun et al.83 used LSTM as the backbone of the prediction network and
83 [Sun et al., 2021]

Action-guided 3d human motion pre-

diction

reinforced with an action classifier as well as an action memory bank to store the

movement dynamics for each category.

Some researchers also take into account the uncertainty of motion human and

use variational model or noises to simulate them to improve performance. For ex-

ample, Gopalakrishnan et al.84 used a Verso-Time Label Noise RNN model that can84 [Gopalakrishnan et al., 2018]

A neural temporal model for human

motion prediction

learn the noise process and future motion, as well as a loss of derived information.

Aliakbarian et al.85 proposed to make stochastic motion prediction using the root of85 [Aliakbarian et al., 2020]

A stochastic conditioning scheme for

diverse human motion prediction
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variations to add stochastic noise to past data. Cheng et al.86 trained an offline RNN 86 [Cheng et al., 2018]

Human motion prediction using adapt-

able neural networks

for motion prediction, and then adopts a recursive least-squares parameter adapta-

tion algorithm for online parameter adaptation and uncertainty estimation. Xu et

al.87 extends the deterministic motion prediction network into a Bayesian network, 87 [Xu et al., 2021]

Probabilistic human motion prediction

via A bayesian neural network

enabling uncertainty calculation and avoiding forced dangerous actions of the robot

when dealing with unseen motions. Ding et al.88 proposed uncertainty-aware motion 88 [Ding and Yin, 2021]

Uncertainty-aware human motion pre-

diction

prediction network by predicting the mean and variance of the keypoint instead of

the coordinates.

2.2.4 Human pose synthesis and training

While previous works are mainly developed and validated on benchmark datasets

consisting of real samples of human images and poses captured by camera or sensors,

real datasets normally suffer from limitation of scenarios and contexts of different

poses due to the finite number of data samples against diversity of human appear-

ances and viewpoints in real life. Thus, some works propose to synthesize data that

resembles a real image or human pose, but has greater variation and show that train-

ing with these synthetic datasets achieves as good or even better performance than

only with real data. Synthetic training has long been a popular option for estimating

human body pose in 3D 89. 89 [Shotton et al., 2011]

Real-time human pose recognition in

parts from single depth images

A simple way to synthesize new human pose data is to augment the data on ex-

isting real data with some kind of variations, such as cropping part of the image data

or changing the value of the pose data. (see Figure 2.8). These data augmentations

do not require a generator to learn the distributions and characteristics of different

poses. For example, for image data, Noghre et al.90 use a 2D human detector on a 90 [Noghre et al., 2022]

Adg-pose: Automated dataset genera-

tion for real-world human pose estima-

tion

very high resolution image, then crops these areas semi-randomly to form new image

data. Huang et al.91 proposed using random erase and cutout for single-area infor-
91 [Huang et al., 2020]

How to train your robust human pose

estimator: Pay attention to the con-

straint cue

mation dropping, as well as hide-and-seek (random block mask) and grid mask for

multi-area information dropping on training images for training sample augmenta-

tion. These augmentations modify the input images while the target pose label are

unchanged.

For pose data, however, ground-truth 3D label can also be augmented. For ex-
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Another way to generate a new training image sample for 3D human pose estima-

tion from image is the synthesis of another view, which given a person in one view as

well as one pose in another view, the network generates the image of the same person

in the given new view while keeping the texture alignment with the input image. For

example, Zhang et al.103 take an image, its input pose and a target pose. First they103 [Zhang et al., 2020a]

Human pose transfer by adaptive hier-

archical deformation

use an analysis generator to transfer the body part information with hierarchical de-

formation, then an image generator is used to synthesize the final image. Rochette et

al.104 synthesize new views of a human by practicing 3D pose estimation, then trans-104 [Rochette et al., 2021]

Human pose manipulation and novel

view synthesis using differentiable ren-

dering

fer the pose to a new view and render the Gaussian primitive model and appearance to

synthesize the final image. Wu et al.105 separately encodes an image and input/target
105 [Wu et al., 2022]

Pose guided human image synthesis

with partially decoupled GAN

poses with the transform module into style features and parser map, and merges to

decode into a new human image in the target pose. Ma et al.106 only needs an input

106 [Ma et al., 2017]

Pose guided person image generation

image as well as a target pose, first roughly generates a human in the target pose and

then refines it to fit the style examined by a discriminator. Tang et al.107 divide the
107 [Tang et al., 2021]

Structure-aware person image genera-

tion with pose decomposition and se-

mantic correlation

input and target pose into subgroups and calculate the local flow fields to see how

the pose changes, then move on to the features extracted by the images for local de-

formation, and finally a global fusion of different parts is used to the final generated

image. Balakrishnan et al.108 take the image, input and target pose, then segment108 [Balakrishnan et al., 2018]

Synthesizing images of humans in un-

seen poses

them into subgroups and uses spatial transformation to synthesize the foreground as

well as the background obscured by the silhouette, synthesizes the new background

to form the final generated image. Varol et al.109 propose to estimate 3D human shape109 [Varol et al., 2021]

SURREACT: Synthetic Humans for

Action Recognition from Unseen View-

points

and augmenting motion, color and viewpoint to realize synthetic training.

Many of these methods also provide a synthetic dataset with their proposed method

for generation to help the community, like Sminchisescu et al. 110 render synthetically110 [Sminchisescu et al., 2006]

Learning joint top-down and bottom-up

processes for 3d visual inference

generated poses on natural indoor and outdoor image backgrounds. Ghezelghieh et

al. 111 use 3D graphics software and the CMU Mocap dataset to synthesize humans111 [Ghezelghieh et al., 2016]

Learning camera viewpoint using CNN

to improve 3d body pose estimation

with different 3D poses and viewpoints. Pumarola et al. 112 created 3DPeople, a

112 [Pumarola et al., 2019]

3DPeople: Modeling the Geometry of

Dressed Humans

large-scale synthetic dataset of photorealistic images with a wide variety of human

subjects, activities, and outfits. Varol et al.113 propose to use sequences of 3D human

113 [Varol et al., 2017]

Learning from Synthetic Humans

(SURREAL)

motion capture data to render synthetically-generated but realistic images of people.

For our work, since 2D pose estimation already has rich collection of datasets, we



2.3. OTHER HUMAN POSE RELATED TOPICS 33

are only interested in generating realistic 3D poses as a set of keypoints in order to

train a 3D lifting neural network. As such, we do not need to render visually realistic

humans with meshes, textures and colors for this much simpler task.

2.3 Other human pose related topics

2.3.1 Human pose prior.

Due to the human body being highly constrained, it can be exploited as an induc-

tive bias in pose estimation and pose synthesis, and is already widely used in recent

research. For example, Bregleret al.114 use a kinematic chain human pose model 114 [Bregler and Malik, 1998]

Tracking people with twists and expo-

nential maps

that follows skeletal structure, extended by Sigal et al.115 with interpenetration con-

115 [Sigal et al., 2011]

Loose-limbed people: Estimating 3D

human pose and motion using non-

parametric belief propagation

straints. Chow et al.116 introduced the Chow-Liu tree, the maximum spanning tree

116 [Chow and Liu, 1968]

Approximating discrete probability dis-

tributions with dependence trees

of all the pairwise mutual information tree to model pairs of joints that exhibit high

information flow. Lehrmannet al.117 use a Chow-Liu tree that maximizes an entropy

117 [Lehrmann et al., 2013]

A non-parametric bayesian network

prior of human pose

function based on nearest neighbor distances and learn local conditional distributions

from data based on this tree structure. Akhter et al. 118 learn joint angle limits be-

118 [Akhter and Black, 2015]

Pose-conditioned joint angle limits for

3d human pose reconstruction

forehand under local coordinate systems of 3 human body parts like torso, head and

upper legs.

2.3.2 Human wholebody

3D Body, hand and face pose estimation. While human pose estimation normally

focuses mainly on the body and branches, there are also studies to estimate hand

poses or facial expression. These two tasks are equally important because estimating

hand pose can help study human-object interactions, while estimating facial expres-

sion allows the computer to study and analyze human emotions, thereby improving

human-machine interaction performance. 3D hand pose estimation methods share

similar approaches to body estimation methods, with one-stage and two-stage meth-

ods. First group of works estimate the hand pose from a single RGB image by directly

regressing the key points of the 3D hand , mesh vertices , and parameters of paramet-

ric 3D hand models. Second group of works rely on intermediate 2D representations

such as 2D keypoints and feature maps. Similarly, predominant 3D face pose estima-
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tively.

2.3.3 Human pose completion

The problem of human pose completion can be formally defined as follows: given

an incomplete human pose with missing values, the network must complete it by lo-

cating the missing keypoints. This task is very useful because, in reality, detected

humans are often partially occluded by other objects, leading to incomplete human

pose detection. To deal with this problem, Carissimi et al.126 propose a network of 126 [Carissimi et al., 2018]

Filling the gaps: Predicting missing

joints of human poses using denoising

autoencoders

variational denoising autoencoder to fill the missing key points in 2D pose comple-

tion. Bautembach et al. 127 select a small subset of poses from a database based
127 [Bautembach et al., 2018]

Filling the joints: Completion and re-

covery of incomplete 3d human poses

on their distance from an incomplete 3D pose, and replaces missing keypoints with

the corresponding averaged keypoints in the subset. Although being essential for

real-world scenarios, pose completion has not been sufficiently explored.

2.3.4 Implicit Neural Representations of Human Motion

Implicit neural representations have gained significant attention following seminal

works such as NeRF128 and AtlasNet129. The core concept of implicit neural rep- 128 [Mildenhall et al., 2020]

NeRF: Representing Scenes as Neural

Radiance Fields for View Synthesis

129 [Groueix et al., 2018]

AtlasNet: A Papier-Mache Approach to

Learning 3D Surface Generation

resentations involves the use of a continuous function that maps spatial or temporal

coordinates to represent a continuous surface. This notion has found applications

in human motion, as seen in NeMF130, which introduces a generative neural motion

130 [He et al., 2022a]

NeMF: Neural Motion Fields for Kine-

matic Animation

field parameterized in spatial-temporal space and express human poses depending on

time and feature.
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In this chapter, the technical objective of this entire thesis is detailed again. The

general framework proposed to achieve the objective is presented, followed by the

analysis of each intermediate part, as well as the difficulties, which lead to the work

and contributions of this thesis in the following chapters.

3.1 Recall technical target

As briefly explained in the introduction, the technical objective of this thesis is to

realise an autonomous analysis system which allows users to detect the risks of pain

and potential injuries of people during their working time with only one photo. The

analysis need to get the 3D relative positions of the limb joints of each person in the

image, which allows calculating the angle of rotations in each direction, leading to

the detection of over-twisted limbs whose angle is not in a comfortable zone.

3.2 System backbone

To achieve the objective of the thesis, the entire system is broken down into 3 con-

secutive steps which are applied one after the other (see Figure 3.1).

Figure 3.1: Here shows an example of how the results look before and after each

step. Starting from a single image, 2D pose estimation, 2D to 3D pose lifting and

geometric calculation will respectively provide the results shown in successive im-

ages. Image source: soccer: [Kreiss et al., 2021] OpenPifPaf:Composite Fields for

Semantic Keypoint Detection and Spatio-Temporal Association, foot/hand angles:

Template squelette 3D v2 13012021.pptx from Ergonova Conseil.

1. First, the system will use a single 2D image captured by the camera as input

and return the 2D coordinates of each human’s joints in the image. This step

correspondents to 2D human pose estimation from image.
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2. Then, for each human in the image, the system will take a set of corresponding

2D coordinates as input and return their 3D coordinates in camera space. This

step correspondents to 3D human pose estimation from 2D human pose.

3. Finally, for each set of 3D coordinates corresponding to the same individual,

the system calculates the angles, as the length of limbs are fixed through time,

which is not our concern. This step is called Geometric computation.

By combining all three steps, the system should be able to convert an image into

pose and angle information. Even though each step has been extensively studied

in the respective communities, there are still some difficulties that this work must

resolve in order for the system to function properly. The biggest problems are listed

below.

3.3 Problems to solve

3.3.1 Controlled environment vs ’In-The-Wild’

Although there is already a lot of promising work on monocular 3D human pose

estimation, which can take a single 2D image as input and directly predict the 3D

coordinates of human joints in 3D space, the reason for which we separate it into

2D pose estimation and 3D pose lifting is due to the high variation in environmental

conditions that we need in this work. Our work requires the ability to be used in the

working environment, which includes both indoor and outdoor scenarios, which can

be called ”in the wild”, while most current state-of-the-art methods on monocular

3D humans Pose estimation is based on indoor scenes captured in a controlled en-

vironment with limited background type and predefined poses type due to hardware

limitation. In order to obtain accurate human pose positions in 3D, a specific process

called Motion Capture is applied to record human motions. With a set of sensors in-

stalled on the bodies of the actors, the 3D positions of these sensors can be recorded

by the computer. While such measurement can be both accurate and in real time,

the motion capture process requires specific space setting, hardware and software to

enable the process, making it a tool suitable only for one-time installation in a labo-
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3.3.4 Real time demonstration

With the previous two works, we made a real-time demonstration that uses a com-

puter camera to take an input image in real-time and perform 2D and 3D human pose

estimation as well as critical (dangerous) pose detection. The detailed process and

algorithm will be presented in chapter 6.

3.3.5 From pose to motion

While previous works are based on single image analysis, we would like to extent

into motions where successive poses are temporally related. Unlike the most popular

way of incorporating temporal information which is to use the sequence of images

(video) as data to be fed into the system instead of a single image, we want to process

motion sequences of which only a few frames are given, in order to recover missing

intermediate poses, simulating recovery after data corruption when capturing data

in real-world scenarios (For example, the case where the human motion inside the

intermediate frames are completely occluded and unobserved, and we want to recover

with the beginning and end frames where the human is still observable). With this

motivation, we develop an algorithm that allows continuous interpretation of human

poses over time with very limited input images, which is introduced in chapter 7.
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In this chapter we present our project of Synthetic Training for 2D-3D Human

Pose Lifting, an algorithm which generates infinite synthetic 3D human skeletons on

the fly during the training of the 2D-to-3D human pose lifter from just a few initial

handcrafted poses. (see Figure 4.1).

Figure 4.1: The main idea of our synthetic generation method: use a hierarchic prob-

abilistic tree and its per joint distribution to generate realistic synthetic 3D human

poses.

4.1 Synthetic human pose generation model

4.1.1 Basic skeleton model

Without loss of generalization, we use Human3.6M skeleton layout shown in Fig-

ure 4.3 (a) in this chapter, which covers the most useful joints of human body, includ-

ing, the body vertebrae, arms, legs, and head orientations, allowing the visualisation

of human poses and actions. This allows us to compare our results with the literature.

For the reason of simplification, we set the pelvis joint (denoted joint 0) as root joint

and the origin of the generation Cartesian coordinate system. After the generation of

the poses, a non-zero value assigned to the root joint (as well as added to the other

joints) is considered as the displacement of the whole human in the 3D coordinate

space.





48CHAPTER 4. SYNTHETIC TRAINING FOR 2D-3D HUMAN POSE LIFTING

tem is entirely bijective with global Cartesian coordinate system, allowing the simple

transformation between generation spherical coordinate space and practical Cartesian

coordinate space.

One point worth noting is that the shown axis in Figure 4.3 (d) in the generation

space are defined based on the direction of the parent branch, meaning that 3 axis

shown in the image here are not exact x,y,z-axis in the global Cartesian space which

are horizontal or vertical. This setting allows that the biological achievable interval

of ρ and θ of the children will not change no matter how its parent branch rotate.

4.1.3 Hierarchic probabilistic skeleton sampling model

Generating a human pose in our local spherical coordinate system is equivalent to

generating a set of (ρ ,θ ,φ ). We thus propose to sample these values from a distribu-

tion that approximate that of real human poses. To retain plausible poses, we limit the

range of (ρ ,θ ,φ ) for each joint based on what is on average biologically achievable.

Since body joints follow a tree-like structure, even though the biological achiev-

able interval of ρ and θ of the children will not change no matter how its parent

branch rotate, the probability of each angle inside the interval of the child P(xchild)

can not still remains the same when the parent joint value changes, which the latter

normally indicates a different action. It is unlikely that sampling each joint indepen-

dently of the others leads to realistic poses. Instead, we propose to sample the ρ , θ

, φ values with respect to a conditional distribution P(xchild |xparent). This produces a

Markov chain2 indexed by a tree structure which we denote as a Markov Tree, More2 [wikipedia, 2002]

A Markov chain is a stochastic model

describing a sequence of possible

events in which the probability of each

event depends only on the state attained

in the previous event

formally, denoting a child joint c and its parent p(c) following the tree structure, we

have:

(ρc,θc,φc)∼ P((ρ,θ ,φ)|(ρp(c),θp(c),φp(c))) (4.1)

Please note that the tree structure used for accounting the dependencies between

joints as shown on Figure 4.3 (c) is slightly different than the kinematic one. We

found in practice that it is better to condition the position of one shoulder on the posi-

tion of the same side hip, and to condition symmetrical shoulder/hip on their already

generated counterpart rather than on their common parent. Intuitively, this seems to
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better encode global consistency.

To facilitate modeling distribution P((ρ,θ ,φ)|(ρp(c),θp(c),φp(c))), we make fur-

ther assumption that all 3 components only depend on their parent counterparts, or

formally:

ρc ∼ P(ρ|ρp(c)), θc ∼ P(θ |θp(c)), φc ∼ P(φ |φp(c)) (4.2)

This allows us to model each distribution with a simple non-parametric model

consisting of a simple 2D histogram representing the probability of sampling3, In 3

For example, θ le f t f oot knowing the

value of θ le f t knee

practice, we quantize each value into 50 bins histograms, totalling to 3×16 = 48 2D

histograms of size 50× 50. When there is no ambiguity, we use the same notation

P(·|·) for the histogram and the probability.

4.2 Pseudo-realistic 3D human pose sampling

Once we set up a Markov chain model to allow the generation of the skeleton, next

step is to estimate a distribution that can approximate the real 3D pose distribution,

and from which our model can sample, so that the generated poses look like real hu-

man actions. Under the constraint of zero-shot 3D real data and purely 3D-synthetic,

we choose to make breakthrough by looking at limited amount of 2D real poses and

’manually’ lift them into 3D to make our distribution. However, it is impossible for

us to tell the exact depths of keypoints from an image with our eye, and it is also

a huge amount of work to do if we check a lot of images one by one. Instead, we

choose a 3-step procedure to get our handcrafted 3D pose, which are:

1. Choosing high-variance 2D poses as seeds

2. Semi-automatic 2D to 3D seed pose lifting

3. Distribution diffusion
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4.2.1 Choosing high-variance 2D poses as seeds

This step is to choose a few 2D samples with high variance allowing it to represent as

many as different poses as possible. We randomly sample 1000 sets, each of which

contains 10 different 2D-human poses from a real dataset4. We then compute the4

For example, Human3.6M total variance for each set and pick the sets with largest variance as our candidates.

This ensure our initial pose set has high diversity.

4.2.2 Semi-automatic 2D to 3D seed pose lifting

This step is to achieve quasi-accurate 3D human poses as 3D seeds from previous 2D

seeds. Since previous steps picked out only 10 poses in each set as seeds, manual-

helped lifting work becomes doable. Here, we use a semi-automatic way to lift 2D

seeds to 3D.

The idea is as follows: from an image for which we already know the 2D dis-

tances between connected joints, and if we can estimate the 3D length of each branch

who connects the joints as well as the proportion λprop between the 2D length in the

image (in pixel) and the 3D length (in centimeter), which in general can be consid-

ered as an equivalence of a camera’s focal length, we can estimate the relative depth

between connected joints using Pythagorean theorems under the assumption that the

camera produces an almost orthogonal projection. The ambiguity about the sign of

these depths, which decide if one joint is in front of or in the back of its parent joint,

can easily be manually annotated.

To estimate the 3D length, we define a set of fixed value representing branch

lengths (||c− p(c)||2,∀c except the root joint)5 of the human body based on biologi-5

For example, c=left foot means this is

the branch between left foot and left

knee, thus the left calf

cal data. While one may argue that different human individual should have different

branch lengths of their bodies, since we later calculate under a proportionality as-

sumption between 3D and 2D, we only need it to roughly represent the proportional-

ity between different human bone length. We also manually annotate signc for each

keypoint c, denoting if it is relatively further or closer to the camera compared to its

parent joint p(c).

The 2D-3D size proportion λprop is calculated under the assumption that the 3
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Algorithm 1 Sampling algorithm

Require: True distribution Pt , empirical distribution Pe;

bins← where Pt > 0 and Pe ≤ Pt

b∼U (bins)
return Random sample from b

Algorithm 2 Pose generation algorithm

Require: True distribution Pt , empirical distribution Pe, Markov tree structure T ,

sampling algorithm S

X ← 0(J,3) ▷ 3=ρ,θ ,φ
for i ∈ ρ,θ ,φ do ▷ root joint

X [0, i]← S( Pt(X0),Pe(X0))
end for

for (p,c) in T do ▷ parent-child relations in T

for i ∈ ρ,θ ,φ do

X [c, i]← S(Pt(X(c,i)|X(p,i)),Pe(X(c,i)|X(p,i)))
Update Pe(X(c,i)|X(p,i))

end for

end for

return X in Cartesian coordinates

Regarding the projection of the batch into 2D, we propose to sample a set of

batch-wise rotation matrices R1,...,N , mostly rotating around the vertical axis, to sim-

ulate different viewpoints. Then, the rotated 3D skeletons are just simply: X3D,i =

RiX3D,0, i ∈ {1, . . . ,N}, with X3D,0 being the original skeleton in global Cartesian

coordinates. To simulate the cameras, we use a scaleless orthogonal projection:

X2D,i =
WX3D,i

∥WX3D,i∥F

, W =







1 0 0

0 1 0






, (4.5)

where W is the orthogonal projection matrix and ∥ · ∥F is the Frobenius norm. Nor-

malizing by the Frobenius norm allows us to be independent of the global scale of

X2D,i while retaining the relative scale of each bone with respect to each other. In

practice, we found that uniformly sampling random rotation matrices at each batch

renders the training much more difficult. Instead, we sample views with a small

noise around the identity matrix and let the noise increase as the training goes on to

generate more complex views at later stages.

Finally, to train the network, we leverage several losses. First, since we have the
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3D ground-truth associated with each generated skeleton:

L3D =
1

N
∑

i=1..N

∥

∥

∥

∥

X̂3D,i

∥X̂3D,i∥F

−
X3D,i

∥X3D,i∥F

∥

∥

∥

∥

1

, (4.6)

with X̂3D,i = lw(X2D,i) being the output of the lifter lw, and ∥ · ∥1 the ℓ1 norm. 3D

skeletons are normalized before being compared because the input of the lifter is

scaleless and as such it would make no sense to expect the lifter to recover the global

scale of X3D. Then, we use the multiple views generated thanks to Ri to enforce

a multiview consistency loss. Calling X̂2D,i, j = WR jR
−1
i X̂3D,i the projection of the

lifted skeleton from view i into view j, we optimize the cross-view projection error:

L2D =
1

N2

N

∑
i=1

N

∑
j=1

∥

∥

∥

∥

X̂2D,i, j

∥X̂2D,i, j∥F

−
X2D, j

∥X2D, j∥F

∥

∥

∥

∥

1

(4.7)

The global synthetic training loss we use is the following combination:

L = L2D +λ3DL3D (4.8)

4.4 Experiments

4.4.1 Datasets

We use two widely used dataset Human3.6M8 and MPI-INF-3DHP9 to quantitatively8 [Ionescu et al., 2014a]

Human3.6m: Large scale datasets and

predictive methods for 3d human sens-

ing in natural environments

9 [Mehta et al., 2017]

Monocular 3d human pose estimation

in the wild using improved CNN super-

vision

evaluate our method.

We only use our generated synthetic samples for training and evaluate on S9 and

S11 of Human3.6M and TS1-TS6 on MPI-INF-3DHP with their common protocols.

In order to compare the quality of our generated skeletons with real 2D data, We also

use the COCO10 and MPII11 datasets to check the generalizability of our method with
10 [Lin et al., 2014]

Microsoft coco: Common objects in

context

11 [Andriluka et al., 2014]

2d human pose estimation: New bench-

mark and state of the art analysis

qualitative evaluation.

4.4.2 Evaluation metrics

For the quantitative evaluation on both Human3.6M and MPI-INF-3DHP we use

MPJPE, i.e. the mean euclidean distance between the reconstructed and ground-

truth 3D pose coordinates after the root joint is aligned (P1 evaluation protocol of
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Human3.6M dataset). Since we train the network with a scaleless loss, we follow

Canonpose12 and scale the output 3D pose’s Forbenius norm into the ground-truth 12 [Wandt et al., 2021]

Canonpose: Self-supervised monocular

3d human pose estimation in the wild

3D pose’s Forbenius norm in order to compute the MPJPE. We also report PCK,

i.e. the percentage of keypoints with the distance between predicted 3D pose and

ground-truth 3D pose is less or equal to half of the head’s length.

4.4.3 Implementation details

We use a batch-size of 32 and we train for 10 epochs on a single 16G GPU using

Adam optimizer and a learning rate of 10−4. We set the number of views N = 4 and

the total number of synthetic 2D input samples for each epoch is the same as the

number of H36M training samples to make a fair comparison. The distribution diffu-

sion coefficient αxc
is a joint-wise loss dependent value, set to 10−5×10|δL |/(10×N)

where δL is the joint-wise difference between loss of the last batch and the current

batch, and the rotation R are sampled with a noise that increases in 1
2×#batch

after each

step, with #batch the number of elapsed batches in the current epoch. For the loss,

λ3D = 0.1 is set empirically. To account for the variation due to the selection of the

2D pose using total variance, we keep the 10 sets with highest variance and show

averaged results. Our method trains on about 100k generated samples per hour on a

V100 GPU, whereas inference time for lifting is negligible.

4.4.4 Comparison with the state-of-the art

We compare our results with the state-of-the-art methods with synthetic supervision

for training in Table 4.1. We present several weak supervision methods which also

do not use real 3D annotations, and instead use other sort of real data supervision

whereas we do not. We can see that our method outperforms these synthetic training

methods and achieves the performance on par with weakly supervised methods on

H36M, while never using a real example for training.

We show qualitative results on the COCO dataset on Figure 4.9. It worth notice

that the COCO layout is different from that of H36M, we use a linear interpolation of

existing joints to localize the missing joints. We can see that our model still achieves

good qualitative performances on zero shot lifting of human poses in the wild (first
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H36M 3DHP

MPJPE↓ MPJPE↓ PCK↑

Weak supervision

[Iqbal et al., 2020] 67.4 109.3 79.5

[Mitra et al., 2020] 120.95 - -

[Wandt et al., 2021] 65.9 104.0 77.0

Synthetic training

[Li et al., 2020] 106.8 - -

[Ghezelghieh et al., 2016] ≥ 78.13 - -

[Du et al., 2016] 126.47 - -

[Varol et al., 2017] 111.6 - -

Ours

10 sets 95.4±13.5 148.4±7.6 57.7±2.3

best run 60.8 132.8 61.9

Table 4.1: Comparison of our results with the state-of-the-arts under the common

protocol 1 on Human 3.6M and MPI-INF-3DHP. The value before and after± symbol

are mean and standard deviation values.

2 rows). Failed predictions (last row) tend to bend the legs backward even when the

human is standing still, which may be a bias of the generator.

Figure 4.9: Example of zero shot lifting in the wild on images from the COCO

dataset. The first row are visually correct prediction, while the last row presents

’failure’ cases, mostly due to right leg learnt a bias of leaning backward.

4.5 Details studies

4.5.1 Synthetic poses realism

We want to see how similar our synthetic skeletons are to real skeletons. Qualita-

tively we compare our distribution after diffusion with the distribution of the whole
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lifted initial poses for each seed.

4.5.2 Effect of diffusion

We want to see why the diffusion process is essential to our method. We take respec-

tively 1, 10, 100, 1000 and 10000 samples of 3D poses on the Human3.6M dataset

as an initial seed to create distribution graphs and apply our 2D precision recall test

after the diffusion process. The result is shown in Figure 4.11. We can see that dif-

Figure 4.11: Precision and recall evaluated with 5k generated samples and 5k real 2D

samples from h36m.

fusion generally increase recall value at the cost of precision value. The distribution

using 1 samples as seed is much worse with the others in recall, meaning it can only

cover around 60% of samples from a real dataset even with diffusion process, while

the distribution using 100 or more samples are close in performances. The diffusion

process can reduce the gap between the distribution using 10 samples as seeds and

those using 100 or more samples, which is important to us considering we want to

avoid handcrafting a lot of initial poses.

4.5.3 Layout adaptation

We show that our synthetic generation and training method also work on a different

keypoint layout by applying the whole process on a newly defined hierarchic Markov
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tree based on 24 keypoints of SMPL model14 and evaluating on 3DPW dataset15. 14 [Loper et al., 2015a]

SMPL: A skinned multi-person linear

model

15 [von Marcard et al., 2018b]

Recovering accurate 3d human pose in

the wild using imus and a moving cam-

era

We use 24 samples from its training set (one frame from each video) using our 2D

variance based criterion for seeds. Since our training method is scaleless, we rescale

the predicted 3D poses by the average Forbenius norm of the 24 samples in the seed.

The average MPJPE of 10 different seeds is shown in Table 4.2. The close results

validates the generalization capability of our method.

Method Labeled training data MPJPE↓
[Li et al., 2022] H36m + 3DHP + COCO + MPII + 3DPW 52.8

[Guan et al., 2022] H36m + 3DPW 65.5

ours 24 samples from 3DPW 61.09 ± 2.16

Table 4.2: Results on the 24-keypoint SMPL model, compared to the state-of-the-art

4.5.4 Semi-automatic lifting

We want to see if our ’semi-automatic’ pose lifting can be replaced with a fully-

automatic algorithm, where we do not need to manually check the depth of each joint

relative to its parent joint. We design an algorithm, which decides whether a joint

is further or closer to the camera than its parent joint, based on the orientation of

the current 2D pose (facing or back to the camera), values of the parent joint and a

random seed generated for each joint. We compare the following 4 possible different

ways of getting 3D poses from same 2D sample set of our seed:

1. directly take the correspondent 3D groundtruth poses’ value of the 2D pose

2. using a pretrained lifter network using method from Canonpose16 16 [Wandt et al., 2021]

Canonpose: Self-supervised monocular

3d human pose estimation in the wild3. Our semi-automatic lifting algorithm

4. Our full automatic algorithm, with a conditional probability for a joint being

forward or backward of its parent joint

And the MPJPE distance between each pairs are shown in Table 4.3. It shows

that if we want to avoid using 3D data from a real dataset, using a pretrained net-

work can be a solution, but we can still argue that the pretrained network itself has

learned the prior from the real data. Oh the other hand, manual part of deciding for-

ward/backward of a joint is important for us to make our seeds without any 3D real
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We also investigate whether starting the diffusion process before training the lifter

may improves the results. The idea is that otherwise, the network might overfit the

first initial poses because of the lack of diversity and end up stuck in a bad local

minimum, unable to further train for the full diversity of the diffused distribution, but

according to Figure 4.13 and Table 4.4 the benefit does not seem to be significant.

Training variables H36m eval MPI-INF-3DHP

strategy size pre-step MPJPE PCK MPJPE PCK

random H36M 3D 100 0 105.1 77.0 174.7 55.5

1000 106.0 76.1 180.4 53.6

10000 115.2 74.0 181.4 53.1

random H36M 3D 10 0 121.6 71.9 191.3 51.7

1000 124.1 70.9 192.9 51.1

10000 126.6 67.9 194.5 50.4

random H36M 2D 100 0 91.6 84.1 128.1 70.9

1000 91.4 84.8 128.5 71.0

10000 91.5 84.3 128.0 71.2

random H36M 2D 10 0 103.0 78.7 141.5 66.9

1000 103.9 79.3 141.6 67.0

10000 105.6 78.4 140.7 67.3

fixed H36M 2D 10 0 74.9 88.5 143.1 65.6

1000 74.4 87.8 140.5 66.6

10000 78.5 87.0 140.7 66.4

handcraft 10 0 80.0 89.6 144.2 65.2

1000 70.1 91.1 140.4 65.8

5000 78.4 88.8 142.4 65.8

10000 81.8 89.6 141.6 67.0

Table 4.4: Comparing different pre-diffusion step with different initial distribution

with diffusion speed of 10−5.

The results of the two graphs show that, a diffusivity coefficient that is too large

will bring the distribution towards uniform too fast and less specifically on poses

close to the initial poses, thus will lower the performance on H36M but increase

performance on 3DHP. A diffusion coefficient around 10−5 seems to be the most

balanced. On the other hand, a pre-diffusion of 1000 appeared to be the best choice,

which neither overfit the initial 10 poses, nor diffuse too much that the network can

not learn well at the beginning.

4.6 Limitations

Even though we have achieved considerable results, there are still a few limitations

of our method that we would like to address in the future:

• Our model is built based on Human3.6M 17 joint skeletons, which do not con-

tain some information like eyes and ears. So in order to apply our method on
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datasets and only use a small limited amount for 2D human poses from real dataset to

build up initial distribution. We use a K-NN based precision-recall evaluation metric

to demonstrate how similar our generated skeleton is to real human poses. Based on

the generated synthetic skeleton, we propose a scaleless multiview training process

based on purely synthetic skeletal data generated from a few handcrafted poses. We

evaluate our approach on the two benchmark datasets and achieve promising results

in a zero-shot setup.
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In this chapter we present our project of H3WB: Human3.6M 3D WholeBody

Dataset and Benchmark, including a methodology to get accurate 3D wholebody

annotations from multi-view images with only algorithms and no other devices, as

well as several datasets making exploring 3D wholebody possible for the community.

5.1 Wholebody model

In the past, keypoint based 3D whole-body pose estimation has not been fully ex-

plored in the literature due to the absence of a representative and accurate benchmark.

Existing 3D whole-body methods either rely on specific datasets and models for dif-

ferent body parts, leading to complex training pipelines and heterogeneous evalua-

tions, or utilize parametric models that prioritize shape capture over highly precise

keypoints. In addition, unified methods vary significantly in terms of keypoint lay-

out definition, number of keypoints and distribution of keypoints across body parts

(see Table 5.1). These significant dataset disparities and the absence of a standard

benchmark make it challenging to compare methods fairly.

However, the work of combining all body part into a whole has already exist in

2D, with COCO-Wholebody1 provided a layout of 133 keypoints (see Figure 5.1)1 [Jin et al., 2020]

Whole-Body Human Pose Estimation

in the Wild

, consists of 17 body keypoints, 6 foot keypoints, 68 face keypoints and 42 hand

keypoints. Also existing work Openpifpaf2 already has well pretrained model and2 [Kreiss et al., 2021]

OpenPifPaf:Composite Fields for Se-

mantic Keypoint Detection and Spatio-

Temporal Association

weights for 2D wholebody pose detection.

Dataset Size Keypoints Body Hand Face

Human3.6M [Ionescu et al., 2014a] 3.6M 17 17

3DPW [von Marcard et al., 2018b] 51k 24 24

LSP [Johnson and Everingham, 2010] 10k 14 14

3DHP [von Marcard et al., 2018b] >1.3M 17 17

Panoptic [Joo et al., 2015] 1.5M 15 15

MTC [Xiang et al., 2019] 834K 20 20

InterHand2.6M [Moon et al., 2020] 2.6M 21 21

FreiHAND [Zimmermann et al., 2019] 37k 21 21

RHD [Zimmermann and Brox, 2017] 44K 21 21

MTC [Xiang et al., 2019] 111K 21 21

TotalCapture [Joo et al., 2018] 1.9M 127 21 16+16 74

ExPose [Choutas et al., 2020] 33K 144 25 15+15 89

H3WB 100k 133 23 21+21 68

Table 5.1: Overview of datasets for 3D human pose estimation.
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Figure 5.2: The H3WB dataset has 133 whole-body keypoint annotations in 3D as

well as their respective projections in 2D.

5.2 The H3WB dataset

In short, the H3WB dataset building process is as follows: First, we use an off-the-

shelf 2D whole-body detector combined with multi-view reconstruction to obtain an

initial set of incomplete 3D whole-body keypoints. Next, we implement a completion

network to fill in the keypoints missed by the multi-view geometric approach. Then,

we develop a refinement method for the hands and the face to obtain more accurate

keypoints. Finally, we perform quality assessment to select 3D whole-body poses

with high confidence.

Without loss of generalization, we still use Human3.6M as our example dataset

to present our 3D wholebody annotation making algorithm in this section.

5.2.1 Initial 3D whole-body dataset with OpenPifPaf

We run the 2D whole-body detector from OpenPifPaf6 on all 4 different camera views6 [Kreiss et al., 2021]

OpenPifPaf:Composite Fields for Se-

mantic Keypoint Detection and Spatio-

Temporal Association

from the training set of Human3.6M7. Since the cameras of Human3.6M are well

7

Subjects S1, S5, S6, S7 and S8, 1 image

per 5 frames

calibrated, we can reconstruct keypoints in 3D using a multi-view geometry.

The multi-view geometry algorithm does the following thing: For each adjacent

pair of camera views (noting sub index 1 and 2), if a keypoint has been detected in

both views, saying (u1,v1) and (u2,v2) respectively (shape 2× 1), and we know the

respective camera intrinsic matrices K1 and K2 of the views (shape 3× 3), as well

as relative rotation matrix R (shape 3× 3) and translation matrix T (shape 3× 1)

from camera 2 to camera 1, we then have two depth scalar values d1,d2 and two

3d coordinate X1,X2 (shape 3× 3) in two camera space, as well as three camera

projection or transformation equations to solve them:
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d2 = K2X2 (5.1)

X1 = RX2 +T

Placing first two equations, the 3D-to-2D camera projection matrices into the

third equation, we have:
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which are both known variables of

shape 3×1 (3 rows, 1 column matrix), same as T , the equation becomes:

Ad1 +T = Bd2 (5.3)

Since we will never know if Equation 5.3 always have an exact solution for every

data sample, we choose to find the value d1,d2 to minimize the norm ||Ad1 + T −

Bd2||2, which leads to the new equations:


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
=−







AT T

BT T






(5.4)

with AT and BT transpose matrices of A and B respectively, and all AT A, AT B, BT B,

AT T and BT T are 1×1 scalar. Its solution is:
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d1 =
BT B×AT T −AT B×BT T

AT B×AT B−AT A×BT B

d2 =
AT B×AT T −AT A×BT T

AT B×AT B−AT A×BT B
(5.5)

Back projecting into Equation 5.2, we can obtain 3D coordinates X1 and X2, as

well as computing the coordinates X under global coordinate system. After taking

the average between all pair of camera views, we obtain the initial 3D whole-body

annotations.

Still there are some drawbacks. The OpenPifPaf 2D whole-body detector can

miss keypoints due to self-occlusions (hands, feet) or unfavorable camera viewpoints

(face backward). However, the 4-view setup allows us to recover missing keypoints

and obtain a complete 3D whole-body pose, provided each keypoint appears in at

least two non-opposing views. An example of this process is shown in Figure 5.3.

Using this method, we obtained 11,426 fully complete 3D whole-body poses with

Figure 5.3: OpenPifPaf detects most of the non-occluded keypoints inside the image

(orange keypoints). The occluded or undetected keypoints (cyan keypoints) are re-

projections after 3D multi-view reconstruction. Notice that these reprojections do not

always align with the images, like the right hand in the last view, which is probably

due to OpenPifPaf not being perfectly accurate.

all 133 keypoints and 26,333 incomplete 3D whole-body poses where all keypoints

appear in at least one view, resulting in a total of 37,759 3D whole-body poses with

each keypoint appearing in at least one view.
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5.2.2 Completion network

In order to complete the 26,333 incomplete 3D whole-body poses, we develop a

completion network as shown in Figure 5.4. We design our completion network us-

ing Transformer architecture8 as they can easily handle the conditional dependencies 8 [Vaswani et al., 2017]

Attention is all you needintroduced by the skeleton’s topology through masking. Since each skeleton always

has exactly 133 keypoints, which can be considered as 133 tokens of 3 coordinate

values. Token values are expanded from 3 coordinates to 3× 16 = 48 features us-

ing Fourier encoding. We use learnable positional encoding since each keypoint is

uniquely identified.

Figure 5.4: The completion network consists of one linear input layer, 4 transformer

encoder blocks (each of them containing 2 transformer encoder layer with d model =
64 and n head = 1), and a linear output layer. At the end of each encoder block, the

features are decoded by the output layer into a predicted position in a curriculum way

where later blocks decode more keypoints.

We train the completion network on the 11,426 complete skeletons using a masked

auto-encoder strategy9 where the missing keypoints are masked at the input and will 9 [He et al., 2022b]

Masked autoencoders are scalable vi-

sion learners

be predicted using the unmasked keypoints. The masking strategy is as follows:

• With a 50% chance, we perform a keypoint wise mask where each keypoint

has 15% chance of being masked,

• with the remaining 50% chance, we perform a block wise mask in which either

the body, the left hand, the right hand, the left or the right part of the face are

masked (uniform probability).

To ease the learning process and take into account the causal link between some

keypoints10, we introduce a curriculum approach. We compute the loss at different 10

For example, the tip of a finger depends

on the position of its parent phalanges
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levels following a hierarchy where early levels consider only keypoints closer to the

root, while later levels consider more deformable keypoints which highly depend on

their parents. We illustrate the completion network and learning process in Figure 5.4.

The loss function is

L (X ,Xgt3D,Xgt2D) =L3D(X ,Xgt3D)

+αL2D(X ,Xgt2D)

+βLsym(X), (5.6)

where L3D is an ℓ1 loss of 3D coordinates, L2D is an ℓ1 loss of 2D projection of

the 3D coordinates if we have the 2D annotation from OpenPifPaf, and Lsym is a

symmetric loss which is applied to make sure the left part and right part of the human

have the same length on corresponding body parts.

We show an example output from our completion network in Figure 5.5. The

completion network results on missing body parts are visually realistic and appealing.

However, since the completion network does not rely on the image content, its output

does not always align with the image and may only reflect the most common poses

of the training set.

5.2.3 Hands and face 2D refinements

In order to correct the alignment problem, we propose another neural network that

refines the 2D position of keypoints on the face and the hands. Previous studies

have explored and demonstrated the effectiveness of 2D human pose refinement using

an iterative error feedback framework11. Motivated by this, we build upon recent11 [Carreira et al., 2016]

Human pose estimation with iterative

error feedback

conditional diffusion models12 and we consider the prediction from the completion

12 [Ho et al., 2020]

Denoising diffusion probabilistic mod-

els

network as noisy such that the refinement network denoises it to conditionally fit the

image.

We train separate refinement models for the face and the hands, while keeping the

same network architecture and the same training strategy. We used a simple MLP and

found it to be effective, preventing the need to explore more complex architectures.

We illustrate the refinement process in Figure 5.6. During training, we add Gaussian
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Figure 5.5: Example outputs of the completion network. The orange color denotes

the keypoints that were detected by OpenPifPaf. The cyan color shows the missed

keypoins by OpenPifPaf but completed by our completion network. The left hand

is detected in only 1 view by OpenPifPaf and thus fully predicted by the completion

network.

noise to the groundtruth poses with an increasing variance from 5 to 25 pixels, and

annotate them as step t = 1...5 (step t = 0 is the groundtruth). The network learns

to predict the pose at step t given the image and the noisier step t + 1 with a 2D

supervision loss.

Figure 5.6: Refinement network architecture and training process. Gaussian noise

is added to the groundtruth coordinates with increasing variance, and the network is

iteratively trained to recover the less noisy coordinates.

We build two small datasets, each consisting of 22,000 non-occluded faces and

hands respectively, with their corresponding OpenPifPaf predictions. Each image is

resized to 384×384 pixels. We use a random crop of size 224×224 pixels to have the
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face and hands located in diverse regions of the images during the training. We split

the datasets into training and validation sets with 20,000 images and 2,000 images,

respectively.

Quantitatively, the face predictions achieve an average error less than 3 pixels and

the hand predictions achieve an average error less than 7 pixels on the validation sets.

We show example qualitative results in Figure 5.7.

Figure 5.7: Example outputs from the face (top row) and hand (bottom row) refine-

ment networks during inference time. We observe that the predictions almost con-

verge to the correct locations in 5-iteration.

Finally, we run the refinement networks on the 2D-projections of the 3D poses

predicted by our completion network. For each 3D skeleton, we project it into the 4

different views. We then crop the regions around the hands and face and denoise the

corresponding predictions using the refinement network with 10 iterations to obtain

refined 2D poses in each of the 4 views.

Although the refinement network is not always correct due to its training on non-

occluded faces or hands, we only need 2 non-opposing views to perform geometric

reconstruction. Since bad refinements tend to collapse all keypoints into the same

location, we select the two non-opposing views with the highest variance in keypoint

positions to avoid disruptions caused by occlusions. Using this method, we obtain

151,036 triplets of 3D whole-body keypoints, corresponding image, and 2D projected

keypoints from the original set. Examples of resulting 3D whole-body skeletons

and their image-aligned 2D counterparts are shown in Figure 5.8 and Figure 5.9,

respectively.
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Figure 5.8: Examples of the 3D whole body skeleton. They are visually realistic humans. The strange looking faces (fatter or thinner) in different

views are due to viewing artifacts of the default perspective projection.

Figure 5.9: Examples of the 3D whole-body skeleton projected in 2D onto their corresponding images. They are visually accurate, though still there

are small errors in detail which we do not expect to overcome due to the initial resolution and ambiguity of the images.

5.2.4 Quality assessment

To select the most accurate triplets from our dataset, we reuse the refinement net-

works and employ a multi-crop strategy that accounts for the variance of the predic-

tion. We project each 3D whole-body skeleton onto all 4 views, and produce four

cropped images for each region of interest around the face and hands. The refine-

ment network is run on these 4 crops, and the resulting predictions are aligned with

the original prediction to compute the 2D error compared to the original 2D projec-

tion. We score the 3D skeletons by averaging the errors of all 4 projected views, and

select the 5k lowest error skeletons from each subject of Human3.6M (S1, S5, S6, S7,
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difficult task, and leads to a benchmark which we believe will not be saturated until

methods reach around 35mm.

Steps # keypoints available 3D error (mm)

All Body Face Hand

Geometry 48127 14.87 17.72 13.29 15.87

+ Completion 79800 29.31 25.57 26.02 36.67

+ Diffusion 79800 16.98 18.63 15.08 19.16

Table 5.2: Quantitative analysis of each intermediate step in our pipeline.

We also check the distribution of pose per action for H36M and H3WB using

the original action labels is shown in Figure 5.11. Apart from SittingDown, they are

about the same. Quantitatively, we show the standard deviation in mm on average

(bold) and for each of the original 17 body joints in Table 5.3 which shows H3WB

has slightly lower diversity than H36M, but no collapse.

Figure 5.11: Distributions of Human3.6 and H3WB datasets per action class

H36M 602.7 540.0 576.3 569.3 578.7 512.8 513.3 527.7 545.3 551.3 552.8 556.5 525.7 518.9 534.8 584.5 624.1 637.4

H3WB 518.8 437.9 433.5 444.3 428.9 453.6 422.3 473.1 427.5 505.0 440.2 519.1 419.9 456.1 430.5 462.6 440.3 473.1

Table 5.3: Standard deviation in mm on average (1st column) and for each of the original 17 body joints.
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5.2.5 Generalization to other datasets

We run the same dataset making methods with minor differences on videos from

CMU Panoptic dataset14 and MPI-INF-3DHP dataset15 which provide us another 16k14 [Lab, 2001]

Motion capture database

15 [Mehta et al., 2017]

Monocular 3d human pose estimation

in the wild using improved cnn super-

vision

and 26k 3D whole-body skeletons respectively, each of two dataset we use 8 camera

views. However, due to the high manual cost for manual-annotated quality assess,

we do not do the same quality assess as subsection 5.2.4. Throughout the process,

we observe that the things to which we need to pay attention while implementing our

dataset making algorithm to different dataset are:

• Different number of camera views, as well as how each dataset store their

camera parameters

• The completion network and the diffusion network needs to be fine-tuned to fit

the new dataset, even though the pretrained weight from producing H3WB can

achieve quite realistic skeletons.

Other than these different points, the remaining code can be the same for different

dataset. This shows the strong generalization ability of our method.

5.3 The H3WB benchmark

We use the H3WB dataset to propose a benchmark and the associated leaderboard.

We split the dataset into training and test sets. The training set contains all samples

from S1, S5, S6 and S7, including 80k {image,2D,3D} triplets. The test set contains

all samples from S8, including 20k triplets. The test set labels are retained to prevent

involuntary overfitting on the test set. Evaluation is accessible only by submitting

results to the maintainers. We do not provide a validation set. We encourage other

researchers to report 5-fold cross-validation average and standard deviation.

The corresponding benchmark has 3 different tasks:

1. 3D whole-body lifting from complete 2D whole-body skeletons, or 2D→3D

for short.



5.3. THE H3WB BENCHMARK 81

2. 3D whole-body lifting from incomplete 2D whole-body skeletons, or I2D→3D

for short.

3. 3D whole-body skeleton prediction from image, or RGB→3D for short.

For each task, we report the following MPJPE (Mean Per Joint Position Error)

metrics:

• MPJPE for the whole-body, the body (keypoint 1-23), the face (keypoint 24-

91) and the hands (keypoint 92-133) when whole-body is centered on the root

joint, i.e. aligned with the pelvis, which in our case is the middle of two hip

joints,

• MPJPE for the face when it is centered on the nose, i.e. aligned with keypoint

1,

• MPJPE for the hands when hands are centered on the wrist, i.e left hand aligned

with keypoint 92 and right hand aligned with keypoint 113.

To create baselines on each task, we adapt popular methods from the literature

by changing the number of keypoints to that of our whole-body dataset. Notice that

we keep the training recipes of the original works to avoid over-fitting to this new

benchmark. In practice, we perform model selection and hyper-parameters tuning

using 5-fold cross-validation.

5.3.1 3D whole-body lifting from complete 2D whole-body keypoints

(2D→3D)

This task is similar to the standard 3D human pose estimation from 2D keypoints but

using whole-body keypoints. The training set contains 80k 2D-3D pairs. The test set

contains only a half of all the test samples, i.e. 10k 2D poses16. 16

The other half is reserved for the task

I2D→3D to prevent access to the miss-

ing keypoints.

We evaluate 6 methods on this task. SimpleBaseline17 is a well-established

17 [Martinez et al., 2017c]

A simple yet effective baseline for 3d

human pose estimation

model, consisting of a 6-layer MLP. We propose a modification, replacing the net-

work architecture with an 8-layer MLP, which we call Large SimpleBaseline inspired

by CanonPose18. CanonPose is trained only with 2D supervision. We also adapt

18 [Wandt et al., 2021]

Canonpose: Self-supervised monocular

3d human pose estimation in the wild

CanonPose to work with additional 3D supervision by manually creating 3 fixed
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camera views and rotating the 3D skeletons into the corresponding view before pro-

jecting them into 2D, training it with multi-view weak-supervision. Jointformer19 is a19 [Lutz et al., 2022]

Jointformer: Single-frame lifting trans-

former with error prediction and refine-

ment for 3d human pose estimation

recent transformer-based method. Finally, we report results for the parametric model

SMPLify-X20 by running optimizations on each input sample.
20 [Pavlakos et al., 2019]

Expressive body capture: 3D hands,

face, and body from a single image

We train SimpleBaseline models using their official training setting. The inputs

and targets are normalized by subtracting the mean and dividing by the standard de-

viation. Similarly, we train CanonPose models following their official training setup

where the inputs and targets are centered on the pelvis and scaled by the Forbenius

norm. We train the Jointformer model in the two stages as described in their work.

SimpleBaseline and CanonPose models output normalized whole-body keypoints

which requires re-scaling at inference. We use statistics from the training set to adjust

the test predictions. We calculate a scaling factor using the ratio of 3D to 2D bound-

ing boxes. The formula is: Xfinal = Xunit×σ3d ×
σ2d

σ2d
, where Xunit is the normalized

prediction, σ3d is the average size of the 3D training boxes, σ2d is the size of the

current 2D box, and σ2d is the average size of the 2D training boxes.

Since SMPLify-X has 144 keypoints with a different layout, we use interpola-

tion to transform between the WholeBody skeleton and SMPL-X and run SMPL-X’s

optimization for 2,000 iterations (4 minutes/sample).

Method All Body Face / aligned† Hand / aligned‡

SMPL-X [Pavlakos et al., 2019] 188.9 166.0 208.3 / 23.7 170.2 / 44.4

CanonPose [Wandt et al., 2021]∗ 186.7 193.7 188.4 / 24.6 180.2 / 48.9

SimpleBaseline [Martinez et al., 2017c]∗ 125.4 125.7 115.9 / 24.6 140.7 / 42.5

CanonPose [Wandt et al., 2021] w 3D sv.∗ 117.7 117.5 112.0 / 17.9 126.9 / 38.3

Large SimpleBaseline [Martinez et al., 2017c]∗ 112.3 112.6 110.6 / 14.6 114.8 / 31.7

Jointformer [Lutz et al., 2022] 88.3 84.9 66.5 / 17.8 125.3 / 43.7

Table 5.4: Comparing different methods for 2D→3D on H3WB. Results are shown

for the MPJPE metric in mm. Methods with ∗ output normalized predictions. Results

of normalized methods are re-scaled using our scaling formula. All results are pelvis

aligned, except † and ‡ show nose and wrist aligned results for face and hands, re-

spectively. Sv. is supervision.

We present the results in Table 5.4. SMPLify-X performs the worst, showing

that parametric models struggle more than discriminative approaches. SimpleBase-

line21 is a solid method, and Large SimpleBaseline improves its performance fur-21 [Martinez et al., 2017c]

A simple yet effective baseline for 3d

human pose estimation

ther. CanonPose22 can be improved with additional 3D supervision, but still performs

22 [Wandt et al., 2021]

Canonpose: Self-supervised monocular

3d human pose estimation in the wild
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worse than Large SimpleBaseline. CanonPose also predicts the camera view, and the

uncertainty in this prediction can lead to more error. Jointformer23 achieves the best 23 [Lutz et al., 2022]

Jointformer: Single-frame lifting trans-

former with error prediction and refine-

ment for 3d human pose estimation

results among all methods, but still has room for improvement. All methods perform

worse on our benchmark than on Human3.6M due to pelvis centering, which creates

higher numerical error on extremities like hands and face, the parts that contain most

of the whole-body keypoints.

5.3.2 3D whole-body lifting from incomplete 2D whole-body keypoints

(I2D→3D)

We propose a second task where we want to obtain 3D complete whole-body poses

from 2D incomplete pose. This task aims to simulate the more realistic case with

occlusions and the 2D whole-body detector outputs an incomplete skeleton. We do

not provide masks for the training skeletons to allow for online data-augmentation.

Instead, we propose a masking strategy as follows:

• With 40% probability, each keypoint has a 25% chance of being masked,

• with 20% probability, the face is entirely masked,

• with 20% probability, the left hand is entirely masked,

• with 20% probability, the right hand is entirely masked.

The second half of the test set (10k 2D) is devoted to this task. The masking strategy

is applied only once on the 2D poses of the test set, which are directly provided as

incomplete 2D skeletons for fair comparison between methods.

Method All Body Face / aligned† Hand / aligned‡

CanonPose [Wandt et al., 2021]∗ 285.0 264.4 319.7 / 31.9 240.0 / 56.2

SimpleBaseline [Martinez et al., 2017c]∗ 268.8 252.0 227.9 / 34.0 344.3 / 83.4

CanonPose [Wandt et al., 2021] + 3D sv.∗ 163.6 155.9 161.3 / 22.2 171.4 / 47.4

Large SimpleBaseline [Martinez et al., 2017c]∗ 131.4 131.6 120.6 / 19.8 148.8 / 44.8

Jointformer [Lutz et al., 2022] 109.2 103.0 82.4 / 19.8 155.9 / 53.5

Table 5.5: Comparing different methods for I2D→3D on H3WB. Results are shown

for the MPJPE metric in mm. Methods with ∗ output normalized predictions. Results

of normalized methods are re-scaled using our scaling formula. All results are pelvis

aligned, except † and ‡ show nose and wrist aligned results for face and hands, re-

spectively. Sv. is supervision.
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The results for the I2D→3D task are shown in Table 5.5. All methods perform

worse than in the 2D→3D task. SimpleBaseline24 has low capacity and uses batch24 [Martinez et al., 2017c]

A simple yet effective baseline for 3d

human pose estimation

normalization that struggles with missing data, resulting in poor performance. The

Large SimpleBaseline model, without batch normalization layers, achieves good re-

sults for the task’s complexity. CanonPose25 performs poorly due to errors in camera25 [Wandt et al., 2021]

Canonpose: Self-supervised monocular

3d human pose estimation in the wild

rotation prediction, which are magnified since most of the 133 keypoints are on the

face and hands. The addition of 3D supervision partly solves this problem. The

transformer-based Jointformer26 method outperforms others.26 [Lutz et al., 2022]

Jointformer: Single-frame lifting trans-

former with error prediction and refine-

ment for 3d human pose estimation
5.3.3 3D whole-body pose estimation from a single image (RGB→3D)

This task is the standard monocular 3D human pose estimation task extended to

whole-body pose estimation. We provide a script to split the original Human3.6M

videos into images with our indexing in order to establish image-3D correspondences.

The training set contains 80k {image paths,3D} pairs, as well as the 2D bounding box

of the human in the image. The test set contains all the test samples, including 20k

image paths and their 2D bounding boxes. 2D coordinates are not given in order to

avoid collisions with 2D→3D and I2D→3D.

For this task, we run 2 two-stage models and 1 single-stage model. Our first two-

stage model uses a Stacked Hourglass Network (SHN)27 to predict 2D whole-body27 [Newell et al., 2016]

Stacked hour-glass networks for human

pose estimation

keypoints and then SimpleBaseline28 takes 2D keypoint predictions as input and lifts

28 [Martinez et al., 2017c]

A simple yet effective baseline for 3d

human pose estimation

them to 3D coordinates. Similarly, the second two-stage model utilizes Cascaded

Pyramid Network (CPN)29 to output 2D keypoints and then Jointformer30 lifts the 2D

29 [Chen et al., 2017]

Cascaded pyramid network for multi-

person pose estimation

30 [Lutz et al., 2022]

Jointformer: Single-frame lifting trans-

former with error prediction and refine-

ment for 3d human pose estimation

predictions to obtain 3D whole-body poses. For our single-stage model, we modify

the last layer of Resnet5031 to directly output the 3D whole-body keypoints. We

31 [He et al., 2015]

Deep residual learning for image recog-

nition

regress the 3D whole-body keypoint coordinates using L1 loss.

Results in Table 5.6 show the two-stage CPN + Jointformer model obtains the

best results. Our simple single-stage method performs better than the two-stage SHN

+ SimpleBaseline model. Learning 2D whole-body keypoints is challenging for SHN

as very close keypoints on face and hands may introduce noise to the predicted key-

point heatmaps. The error in the 2D keypoints then makes the lifting task much

more challenging. Surprisingly, RGB→3D seems to be harder that the I2D→3D
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Method All Body Face / aligned † Hand / aligned‡

RGB→2D+2D→3D:

SHN [Newell et al., 2016]+SimpleBaseline∗ 182.5 189.6 138.7 / 32.5 249.4 / 64.3

CPN [Chen et al., 2017]+Jointformer [Lutz et al., 2022] 132.6 142.8 91.9 / 20.7 192.7 / 56.9

RGB→3D:

Resnet50 [He et al., 2015] 166.7 151.6 123.6 / 26.3 244.9 / 63.1

DOPE [Weinzaepfel et al., 2020] 191.3 199.7 187.3 / 66.0 193.3 / 78.2

Table 5.6: Comparing different methods for RGB→3D on H3WB. Results are shown

for the MPJPE metric in mm. Methods with ∗ output normalized predictions. Results

of normalized methods are re-scaled using our scaling formula. All results are pelvis

aligned, except † and ‡ show nose and wrist aligned results for face and hands, re-

spectively.

task. Although there are also missing body parts due to self occlusion, RGB→3D

contains more contextual information that should allow to better disambiguate the

pose. Compared to 2D→3D and I2D→3D, direct prediction of 3D whole-body pose

from images remains thus as a challenging task which we hope this benchmark can

help improve over time.

In order to show the importance of training body parts jointly, we evaluate DOPE32 32 [Weinzaepfel et al., 2020]

DOPE: distillation of part experts for

wholebody 3d pose estimation in the

wild

on our benchmark. Unfortunately, it fails to address occluded body parts only pre-

dicts the whole-body keypoints for 35% of the test set. For each missing keypoint, we

use the (topological) nearest predicted joint as a proxy. Even so, a disjointed model

like DOPE fails to achieve significant accuracy.

5.3.4 Qualitative result

Here we show some qualitative in Figure 5.12 outputs obtained by Large Simple-

Baseline 33 and Jointformer34. Despite slight mis-alignments, the predicted skeletons 33 [Martinez et al., 2017c]

A simple yet effective baseline for 3d

human pose estimation

34 [Lutz et al., 2022]

Jointformer: Single-frame lifting trans-

former with error prediction and refine-

ment for 3d human pose estimation

are realistic.

We also show some examples in Figure 5.13 of a model trained on our H3WB

benchmark for the task I2D→3D and applied on COCO dataset35 with their incom-

35 [Jin et al., 2020]

Whole-body human pose estimation in

the wild

plete 2D wholebody skeleton annotations as input. We can see that even when there

are missing points in the 2D input, the model still can predict the 3D wholebody pose

accurately. This validates the usefulness of the I2D→3D in real world scenario.
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Figure 5.12: Example predictions from Large SimpleBaseline model for 2D→3D

(1st row) and I2D→3D (2nd row) tasks. 3rd row shows predictions from Jointformer

for RGB→3D task. Colored skeletons correspond to predictions and gray skele-

tons correspond to groundtruths. First two columns show almost-aligned successful

front/side predictions, and the last column shows slightly mis-aligned predictions.

5.4 Limitations

Even though we have achieved promising results, there are still a few limitations of

our method that we would like to address in the future:

• The three datasets on which to build our 3D wholebody annotation, Human3.6m36,36 [Ionescu et al., 2014a]

Human3.6m: Large scale datasets and

predictive methods for 3d human sens-

ing in natural environments

CMU Panoptic dataset37 and MPI-INF-3DHP dataset38 are mainly indoor dataset.

37 [Lab, 2001]

Motion capture database

38 [Mehta et al., 2017]

Monocular 3d human pose estimation

in the wild using improved cnn super-

vision

To increase the generalization in the wild setups, we need to apply our dataset

creation algorithm to outdoor scenarios.

• To use our dataset creation algorithm, camera calibration parameters must be

correctly provided. Our annotation algorithm does not work with a handhold

Figure 5.13: Visual examples of lifting on COCO. The labels on the images are the

incomplete inputs.
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device and taking several pictures for different views.

• The results we get from running benchmarks from normal 3D human pose es-

timation are not good enough, which means new models needs to be developed

for 3D wholebody tasks to perform better.

5.5 Conclusion

We introduce the H3WB dataset, which extends the Human3.6M dataset with 2D and

3D keypoint annotations for body, face, and hands, containing 100k images with 133

keypoints with an average accuracy error of 17mm. We propose three tasks based

on this dataset: 3D whole-body lifting from complete 2D keypoints, 3D whole-body

lifting from incomplete 2D keypoints, and 3D whole-body prediction from monocu-

lar images. We evaluate several baselines on these tasks and demonstrate promising

accuracy, but with room for improvement. Lifting from incomplete 2D skeletons and

direct estimation from monocular images remain challenging, and we hope that our

dataset and benchmark will spur future research in these areas.
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In this short interlude, we introduce how we use our previous works to make a

prototype, including all steps we claimed in section 3.2, and run it in real time on a

computer without a GPU.

6.1 Algorithm

6.1.1 From image to 2D wholebody

The algorithm is run on a computer, we choose to use the computer’s own camera as

the image captor. In order to increase the performance and make the algorithm run

fast, we need to reduce the image to a fairly small size of 192× 192 pixels before

feeding it into our deep learning network.

Even though in chapter 5 we have trained several backbone networks for tasks

from image to 3D, these training datasets are all indoor constrained scenarios and

can be problematic if we use them directly in unpredictable real-time scenarios.

Thus, we choose to use the pre-trained openpifpaf network1 to predict 2D whole-1 [Kreiss et al., 2021]

OpenPifPaf:Composite Fields for Se-

mantic Keypoint Detection and Spatio-

Temporal Association

body skeleton from the input image, which where trained on in-the-wild images. We

used the pretrained weight ’shufflenetv2k16-wholebody’ instead of the default weight

’shufflenetv2k30-wholebody’, trading a few pixel2 performance loss with double the2

less than 5 pixel running speed.

6.1.2 From 2D to 3D wholebody

As expected, the openpifpaf network only returns the observed keypoints, which

means that the 2D wholebody skeleton we obtained is mostly incomplete. In order to

lift it into 3D, we choose to use a model trained on task I2D→ 3D.

However, we considered real-time scenarios that there are many cases where peo-

ple enter or exit the camera screen resulting in only part of their body being in the

screen and only this part inside the camera screen can be fed into the network. So

during training, we add another masking strategy which has a 50% chance of being

used, which randomly chooses between vertical or horizontal, and with a proportion

randomly valued between 20% to 80% of the 2D skeleton will be cropped out, leav-
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Figure 6.7: The angles around the body, or more precisely, the vertebrae, is defined

by: (1) the lateral flexion angle is π− the projection of ∠GKL′′ on the plane FHK;

(2) the twist angle is π
2
− the angle between the plane GG′′K and the plane KLM; (3)

the flexion and extension angle is π− the projection of ∠GKL′′ on the plane GG′′K

Figure 6.8: The angles around the foot is defined by: (1) the flexion angle is the angle

between the plane PP′Q and the plane PP′N′′; (2) the supintion and pronation angle

is π
2
− the projection of the angle PP′′N′′ onto the plane PP′N′′; (3) the abductiona

and adduction angle is the angle between the plane PP′N′′ and the plane NN′P′′

skin, X ′ is on the ’inner-side’ of the body skin, and X ′′ is the center of rotation of the

keypoint. To simplify the calculation, we suppose X ′′ is the middle point between

X and X ′. The computed angles are listed on Figure 6.3, Figure 6.4, Figure 6.5,

Figure 6.6, Figure 6.7 and Figure 6.8 3. 3

Images source: Template squelette

3D v2 13012021.pptx from Ergonova

Conseil.

After obtaining the angles, we compared them to a list of safety zones defined

according to data provided by professionals from Ergonova to see if these angles are

still safe for the worker in this pose for a long time, and we put those angles that are

not in a warning list.

The currently used safe zones are shown in Table 6.1

Part Angle Min(rad) Max(rad) Min(degree) Max(degree)

Elbow supination/pronation − 5π
6

−π
6

-150 -30

Elbow flexion/extension 0 2π
3

0 120

Shoulder abduction/adduction - π
4

- 45

Shoulder antepulsion/retropulsion −π
9

4π
9

-20 80

Head torsion −π
4

π
4

-45 45

Vertebrae flexion/extension −π
9

π
3

-20 60

Table 6.1: The table of roughly safe zones we defined according to the data provided

by ergonomists from Ergonova.
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6.1.5 Render output onto screen

Finally, in order to see the result, we divide the output screen into two, each of which

is 480×480 pixels. On the left is the input image as the background and render the 2D

prediction on it to show that the 2D prediction is aligned with the image and correct.

On the right is the wholebody skeleton lifted in 3D but projected in 4 different views,

showing that our lifting is actually in 3D. However, plotting angle numbers on the

screen is very ugly, so we choose to use a different color on the skeleton, red color

indicating angles in the warning zone and green color indicating angles in safe zone .

6.2 Performance

The whole algorithm runs on a computer with only a CPU at around 1.3 fps. We

choose to keep a small skeletal movement that maintains the momentum of speed

between previous poses to make the whole performance look smoother. An example

screen is shown in Figure 6.9. The algorithm can actually predict and render multi-

Figure 6.9: An example screen capturing the author of this thesis and rendering the

2D and 3D skeleton on the interface. We can see that even the lower part of the body

is not in a 2D image as well as the 2D skeleton, the algorithm still manages to predict

the complete 3D skeleton on the right. The bodies are rendered in red because the

author bends the body forward, and maintaining this pose is not good for the spine, a

problem exists for many people who always sit and work in front of the computer.

person case when there are multiple people on the camera screen. However, the right

side will be full of 3D poses which might be a bit chaotic and difficult to study and

are therefore not shown here.
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Here, t represents any real number within the interval of the sequence, where t ∈

{1,2...,N} ideally corresponds to the exact coordinate of that time frame in the

ground truth Xt . The notation X̂ denotes the predicted pose, contrasting with the

ground truth X . This formula is employed during both training and evaluation of our

methods.

The main motivation of separate the network F and G instead of giving both

X p1, ...,XpM
and t as input to a single network is that in our model, once the input

frames X p1, ...,XpM
are encoded into z, G becomes a function of the single variable

t, allowing the expression of the whole movement by only varying the time.

7.1.2 Network design

To maintain simplicity in our model, we propose employing a Multi-Layer Percep-

tron (MLP) for F as the encoder. In practice, F receives as input a batch of

M× (K× 3)+ 1 coordinates, where M is the number of input frames and K is the

number of keypoints in the skeleton. The +1 corresponds to the temporal encoding

of input timeframe index. These coordinates are flattened into a vector. Following

the approach in siMLPe1, we utilize 48 residual blocks with the following structure: 1 [Guo et al., 2023]

Back to mlp: A simple baseline for hu-

man motion prediction
Zl+1 = Zl +LN(WlZl +bl) (7.2)

Here, Zl represents the output of block l, W,bl are the parameters of layer l over

temporal dimension of dimension M, and LN() signifies LayerNorm normalization2 2 [Ba et al., 2016]

Layer normalizationover spatial dimension of dimention (K×3)+1

For the network G , we also opt for an MLP. However, to prevent t from being

directly incorporated into a linear function and potentially overshadowed by the much

larger feature z, we choose to encode t through linear interpolation of the inputs

Xp1
,Xp2

, ...,XpM
. This encoding of t, denoted as Y (t), represents the 3D pose at time t

using basic linear interpolation to predict the pose. Mathematically, this is expressed

as a continuous function:

Y (t) = Xpi
+

t− pi

pi+1− pi

(Xpi+1
−Xpi

), (pi ≤ t < pi+1) (7.3)
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To simplify the formula, we assume p1 = 1 and pM = N in this work, ensuring that

we only need to perform interpolation and not extrapolation for times outside the

input interval.

Rather than directly approximating Xt , the ground truth at time t, our approach

involves predicting the residual between Xt and Y (t), the 3D pose derived from linear

interpolation. The overall formulation of our method can be re-expressed as:

G (Y (t),F (Xp1
, ...,XpM

))+Y (t) = X̂t (7.4)

7.2 Training with sequence data

During training, Y (t) and F (Xp1
, ...,XpM

) are simply concatenated during the for-

ward pass. We supervise all N frames in the sequence, defining the supervision loss

as:

Lsup =
1

N
∑

t∈1,...,N

|X̂t −Xt | (7.5)

Here, we compute the ℓ1 loss between our prediction at time t and the residual be-

tween the ground truth of frame t and the linear-interpolated pose Y (t) for each indi-

vidual frame.

As we are predicting a continuous function, we have observed that the continu-

ous curve itself can exhibit high-frequency oscillations between the sampled frames,

rather than being smooth. To mitigate this effect, we incorporate a regularization loss

term Lreg based on the velocity, defined as:

Lreg =
1

N−1
∑

t

|(X̂t+1− X̂t)− (Xt+1−Xt)| (7.6)

Combining the two components, the final loss is formulated as:

L = Lsup +αLreg (7.7)

Here, α is a constant coefficient set to 0.1 during training.
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7.3 Experiments

In this section, we dive into the implementation details and provide an overview of

the experimental setups and results.

7.3.1 Datasets and metric

Human3.6M dataset3: Human3.6M is a widely used benchmark comprising mil- 3 [Ionescu et al., 2014b]

Human3.6m: Large scale datasets and

predictive methods for 3d human sens-

ing in natural environments

lions of frames of 3D human poses captured from 7 different actors/actresses per-

forming 15 actions with motion capture equipment. We adhere to the protocols of

HisRepIt4, utilizing S1, S6, S7, S8, and S9 as the training set, and S5 as the test set 4 [Mao et al., 2020]

History repeats itself: Human motion

prediction via motion attention

with 256 test samples per action. Training and testing are conducted on 25 fps videos,

equivalent to 1 sample per 2 frames from the original source video.

AMASS dataset: The Archive of Motion Capture as Surface Shapes (AMASS)

dataset is a collection of human motion data that amalgamates various motion capture

datasets such as CMU Mocap and TotalCapture5. AMASS adopts SMPL6 style data. 5 [Trumble et al., 2017]

Total capture: 3d human pose estima-

tion fusing video and inertial sensors

6 [Loper et al., 2015b]

SMPL: A skinned multi-person linear

model

In our case, we adhere to the practices of HisRepIt and siMLPe7, utilizing SMPL-H

7 [Guo et al., 2023]

Back to mlp: A simple baseline for hu-

man motion prediction

but only incorporating 18 keypoints from the body keypoints while excluding hand

information. The train-test split follows the same approach as theirs.

3DPW dataset: The 3D Human Pose in The Wild (3DPW)8 is a dataset featur-

8 [von Marcard et al., 2018a]

Recovering accurate 3d human pose in

the wild using imus and a moving cam-

era

ing precise 3D annotations for scenarios in the wild, presenting a more challenging

environment for the networks. In alignment with HisRepIt, we exclusively utilize the

test set of 3DPW with 18 points to evaluate the model trained on the AMASS dataset,

assessing the generalization ability of our method.

Evaluation metric: We utilize the Mean Per Joint Position Error (MPJPE) on

3D joint coordinates as the evaluation metric, a common measure in 3D human pose

benchmarks. MPJPE calculates the average distances of different joints between the

prediction and ground truth. In accordance with standard protocols, we report scores

for all datasets with root joint alignment of the prediction and ground truth poses,

typically the pelvis joint.

Additionally, we evaluate the standard deviation of the error, along with the mini-

mum (best case) and maximum (worst case) errors among all the test sequences. The



100 CHAPTER 7. CONTINUOUS HUMAN MOTION PREDICTION

minimum (respectively maximum) is computed by considering the sequence that has

the minimum (respectively maximum) error as averaged over its predicted poses. It

is important to note that this sequence can be different for each method. This analysis

provides insights into the consistency of each method across different scenarios and

sequences. Examining the best and worst cases helps to understand the difficulty of

the most complex sequence and the potential improvement over linear interpolation

for such specific scenarios.

7.3.2 Implementation details

In our practice, we primarily focus on few-shot long-term sequences. Specifically,

we set M = 5 and N = 100, indicating that we have only 5% of known frames within

a 4-second sequence sampled at 25 fps. To intensify the task difficulty, we also

consider a setup where the remaining M−2 known frames, Xp2
, ...,XpM−1

, have non-

fixed timestamps. The values of p2, ..., pM−1 are randomly chosen during training.

Similarly, during testing, they are randomly selected but with a fixed seed to ensure

consistently during evaluation. We employ the Adam optimizer with a learning rate

of 10−5 and train for 100,000 batches with a batch size of 128. Throughout training

and testing, all poses are centered on their root joint. This means the network solely

processes the relative position of each joint concerning the root joint to facilitate

learning.

For the AMASS and 3DPW datasets, we follow established procedures and dis-

regarding the global rotation in the SMPL model.

7.3.3 Results

This section presents the experiments we conducted to show the effectiveness of our

proposed method.
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Baseline

The baseline method we use for comparison is the linear interpolation introduced in

subsection 7.1.2. This baseline predicts the pose as follows:

X̂t = X pi +
t− pi

pi+1− pi

(Xpi+1
−Xpi

), (pi ≤ t < pi+1) (7.8)

The baseline method performs well when the motion itself involves small move-

ments or when the interval between two known frames is small, as observed in an

alterntive M = 10,N = 50 setup with equal space between input frame, achieving

an average error of only 7.7mm. However, in cases where M << N and the input

frames become unevenly distributed in the sequence, and if the variation of poses is

significantly larger, linear interpolation fails to provide accurate results.

Furthermore, since the methods predict residuals over the linear interpolation,

this allows for a clearer assessment of the improvements they bring.

State-of-the-art methods

Given the extreme nature of our setup in terms of deviation from the input, we have

chosen and adapted methods from the motion prediction literature for our compari-

son.

The first model we consider is from siMLPe9, an multilayer perceptron originally 9 [Guo et al., 2023]

Back to mlp: A simple baseline for hu-

man motion prediction

designed for future motion prediction. Given its sequence-to-sequence prediction na-

ture, with an output sequence of the same length as the input sequence, it is agnostic

to whether the target sequence is in the future or interpolated between the input se-

quence, allowing it being directly used for our task.

The second model, inspired by ’History Repeats Itself’10, employs a graph con- 10 [Mao et al., 2020]

History repeats itself: Human motion

prediction via motion attention

volution network. However, since it adopts an auto-regressive prediction strategy, we

only use the graph convolution network part to predict all the missing poses simulta-

neously.

In addition, we propose a simple transformer encoder as another baseline. The

transformer encoder is trained as a masked auto-encoder11. The masking enables it 11 [He et al., 2021]

Masked autoencoders are scalable vi-

sion learners

to regress the to-be-predicted poses from the observed ones.
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For all these methods, we opt to provide the linear-interpolated sequence Y (t)

as input, inspired by the approach in a unified framework12. For the transformer,12 [Duan et al., 2022]

A unified framework for real time mo-

tion completion

this choice allows us to avoid providing hard positional encoding for the known M

frames. Additionally, both of the other two methods output a sequence of the same

length as the input, requiring a complete length N sequence as input. Empirically, we

found that filling missing points with 0 was less appropriate than feeding the model

with linear-interpolated values Y (t). As for the output, all three methods perform

residual prediction over the linear-interpolated input Y (t) to approximate the ground

truth Xt .

Human3.6M Result The results of the test on the Human3.6M dataset are pre-

sented in Table 7.1. Notably, our model exhibits the smallest average error and stan-

dard deviation on this dataset among all methods, indicating its overall superior per-

formance. In the best-case scenario, the transformer achieves the best prediction, but

in such a simple motion scenario, even linear interpolation attains excellent perfor-

mance.

In the worst-case scenario, all methods struggle to surpass the performance of

linear interpolation, although our method still achieves the best score. In this com-

plex motion scenario, the regularity of linear interpolation proves advantageous, a

characteristic that our velocity regularization function prediction also benefits from.

Human3.6M AMASS 3DPW

Methods mean std min max mean std min max mean std min max

Linear interpolation 71.8 31.7 4.7 229.4 78.8 37.4 0.6 367.5 58.3 31.4 5.0 205.7

siMLPe [Guo et al., 2023] 66.5 33.7 4.1 271.2 73.3 34.2 1.0 330.5 52.6 24.4 5.5 180.7

Transformer [He et al., 2021] 70.5 33.2 3.6 263.0 78.9 37.2 0.7 322.1 58.5 31.2 5.5 198.4

HisRep [Mao et al., 2020] 67.6 31.2 4.8 281.1 77.7 35.0 1.9 318.7 58.3 29.7 6.0 203.0

PIUS (ours) 64.0 30.2 4.5 222.1 73.5 34.4 1.2 301.7 55.4 27.3 6.1 184.7

Table 7.1: Quantitative comparison with the state-of-the-art methods on Human3.6M

[Ionescu et al., 2014b], AMASS [Mahmood et al., 2019] and 3DPW [von Marcard

et al., 2018a] datasets. Models are trained by sampling 5 random frames out of 100.

Results are presented on the MPJPE metric in mm. min (respectively max) score

corresponds to the sequences with the lowest (respectively highest) average error.

Best results are boldfaced, as well as second best results are underlined.

AMASS and 3DPW Result The results of the test on the AMASS dataset and

3DPW dataset are displayed in Table 7.1. Our method demonstrates competitiveness



7.4. DETAILS STUDIES 103

among all methods. While all methods are closer to linear interpolation, indicating

that the sequences may contain easier motions compared to the Human3.6M datasets,

our approach remains robust. Notably, for the worst sequence, we are able to achieve

a significant improvement over the baseline.

7.4 Details studies

7.4.1 Other Scenarios

In addition to the main result section, where we predominantly introduce our method

in a few-shot random frame setup with M = 5 and N = 100, we also explored two

different setups to assess their impact on performance.

Uniform Sampling In this scenario, instead of randomly sampling the input frames,

we opt for equally distributing the interval between input frames to assess its impact

on performance. Intuitively, this should be an easier task, as it minimizes the chances

of losing complex motion between distant input frames without any a priori knowl-

edge about the moment in time when such motion occurs. In this setup, among the

100 total frames, the 5 input frames are fixed at frames 1, 25, 50, 75, and 100.

Human3.6M AMASS 3DPW

Methods mean std min max mean std min max mean std min max

Linear interpolation 57.0 26.4 3.9 186.7 73.6 38.3 0.6 266.3 51.8 31.7 4.3 196.2

siMLPe [Guo et al., 2023] 48.6 25.6 3.9 199.3 56.9 33.7 0.8 267.7 38.9 22.2 4.2 187.4

Transformer [He et al., 2021] 57.0 26.4 3.9 186.7 73.6 38.2 0.7 266.3 51.8 31.7 4.3 196.2

HisRep [Mao et al., 2020] 53.0 24.7 4.1 192.3 57.8 29.7 1.1 264.9 44.3 22.5 5.4 192.4

PIUS (ours) 47.9 24.4 3.7 195.6 52.0 35.4 1.3 265.8 40.4 23.1 4.7 194.5

Table 7.2: Quantitative comparison with the state-of-the-art methods on Human3.6M

[Ionescu et al., 2014b], AMASS [Mahmood et al., 2019] and 3DPW [von Marcard

et al., 2018a] datasets. Models are trained by sampling 5 fixed frames out of 100.

Results are presented on the MPJPE metric in mm. min (respectively max) score

corresponds to the sequences with the lowest (respectively highest) average error.

Best results are boldfaced, as well as second best results are underlined.

The corresponding results on Human3.6M are presented in Table 7.2. As ob-

served, the task is indeed easier, with the linear interpolation baseline achieving a

significantly better average. Nonetheless, our method is able to surpass that baseline

by more than 10mm.
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Human3.6M AMASS 3DPW

Methods mean std min max mean std min max mean std min max

Linear interpolation 44.9 22.4 3.5 162.6 53.5 29.1 0.5 194.9 39.8 25.2 2.9 166.7

siMLPe [Guo et al., 2023] 38.5 19.5 2.3 174.0 34.0 21.3 0.6 205.5 30.3 19.2 2.5 180.6

Transformer [He et al., 2021] 42.9 21.9 2.0 171.3 53.2 29.9 0.5 235.5 38.3 25.1 3.1 173.2

HisRep [Mao et al., 2020] 43.3 21.5 2.6 171.4 51.0 27.6 0.5 201.9 37.7 23.8 3.3 169.6

PIUS (ours) 38.1 20.2 2.7 181.4 50.5 27.4 0.8 220.3 37.5 24.0 2.5 184.3

Table 7.3: Quantitative comparison with the state-of-the-art methods on Human3.6M

[Ionescu et al., 2014b], AMASS [Mahmood et al., 2019] and 3DPW [von Marcard

et al., 2018a] datasets. Models are trained by sampling 10 random frames out of

100. min (respectively max) score corresponds to the sequences with the lowest (re-

spectively highest) average error. Results are presented on the MPJPE metric in mm.

Best results are boldfaced, as well as second best results are underlined.

Surprisingly, it appears to be challenging to improve over the linear interpolation

baseline for the most difficult sequence in this setup as it is significantly improved

over the random sampling setup, showing that the randomness is indeed having an

big impact of the difficulty of some sequences.

The results for AMASS and 3DPW are displayed in Table 7.2. On AMASS, the

task does not seem significantly easier than in the random sampling setup. However,

while our method struggled to improve over the baselines in the random sampling

case, here, it outperforms linear interpolation by a significant margin. These results

hold on 3DPW, even though the model was trained on AMASS only (zero-shot set-

ting).

Longer Input Length The second setup involves a random frame arrangement but

with more input frames, i.e., with M = 10 instead of M = 5. Intuitively, this should

be an easier task, as linear interpolation becomes more challenging to beat when the

chances of capturing complex motion between two input frames are reduced.

The corresponding results for Human3.6M are presented in Table 7.3. Indeed, the

linear interpolation baseline shows a significant improvement over the M = 5 setup,

indicating that shorter timespans are indeed easier to predict. However, our method

still manages to outperform all others by more than 6mm. Surprisingly, the worst

sequence appears to be better predicted by linear interpolation, suggesting that in this

case, learning methods may hallucinate oscillations.

The results for AMASS and 3DPW are displayed in Table 7.3. In this setup, all

methods perform similarly, with the notable exception of siMLPe, which is able to
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times the original frequency (250fps).

The resulting 3D trajectories are shown in Figure 7.3. As observed, the base-

line linear interpolation produces jagged motion, whereas our interpolation provides

much smoother trajectories. This is particularly noticeable for extremities like the

hands or feet.

Note that the choice of the resampling frequency is arbitrary, and we could re-

sample to over 100 fps if needed. However, we found the difference with 25 fps to

be difficult to demonstrate on paper.

7.5 Operator valued kernel strategy

Before setting on the current solution, we also experimented with a network F that

can directly predict the parameter of the function G instead of predicting a feature z

passed to G , leaving G truly a function that only depends on time t. This strategy is

called operator valued kernel13. We test this strategy on a future motion prediction 13 [Kadri et al., 2016]

Operator-Valued Kernels for Learning

from Functional Response Data

scenario, which the model structure is shown in Figure 7.4.

In this future motion prediction scenario, the last known frame pM is not the last

frame of the sequence N, which we need to do extrapolation into future. However,

most studies of future motion prediction take into account of all frames in the past,

and we use a commonly studied setup for motion prediction, which N = 75, M = 50

and p1, ..., pM = 1...50

Figure 7.4: The operator valued kernel model structure. An encoder network F takes

the observed past M frames as input, and directly predicts the parameter θG of the

network G . Network G takes only the time t as input and outputs the corresponding

pose X̂t at time t.
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Under this setup, the network F has to deal with much more data than motion

interpolation task, and we therefore set it to 48 layers instead of 6. On the other hand,

in order to prevent the output layer of F to overload due to predicting too many

values, G has to be small, and we set it to a single 2 layer MLP: the input time t

is sinus-encoded into 32 dimensions, and the first layer transform 32 parameters to

128, and the second layer transform 128 parameters to K× 3 with K the number of

keypoints. We use the same training loss as motion interpolation task, except we

supervise the whole sequence of N frames, including both the past and future frames,

expecting the network can both reconstruct the past and predict the future, as well as

maintaining continuity over time.

The scores are shown in Table 7.4. This method fails to improve our best models

for predicting the future. However, we apply the same evaluation metric but on t =

−49, ..,−1,0, the past 50 input frames, and we obtained that the average MPJPE loss

is 7.4 mm on all these input frames, which means they are overfitted. Visually we

plot the graphs of such movements and we can see examples in Figure 7.5.

MPJPE(mm)↓
Times(ms) 80 160 320 400 560 720 880 1000

Res-RNN [Martinez et al., 2017b] 25.0 46.2 77.0 88.3 106.3 119.4 130.0 136.6

convSeq2Seq [Li et al., 2018] 16.6 33.3 61.4 72.7 90.7 104.7 116.7 124.2

LTD-50-25 [Mao et al., 2019b] 12.2 25.4 50.7 61.5 79.6 93.6 105.2 112.4

LTD-10-10 [Mao et al., 2019b] 11.2 23.4 47.9 58.9 78.3 93.3 106.0 114.0

Hisrep [Mao et al., 2020] 10.4 22.6 47.1 58.3 77.3 91.8 104.1 112.1

MSR-GCN [Dang et al., 2021] 11.3 24.3 50.8 61.9 80.0 - - 112.9

ST-DGCN-10-25 [von Marcard et al., 2018c] 10.6 23.1 47.1 57.9 76.3 90.7 102.4 109.7

siMLPe [Guo et al., 2023] 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

Ours 14.5 27.7 52.2 62.8 80.1 92.9 103.3 110.9

Table 7.4: Future motion prediction result on Human3.6M dataset.

To avoid overfitting on the past frames we propose to steer the prediction towards

a ’groundtruth’ model obtained on the entire sequence.

We first want to check if such groundtruth model exist. For each test sequence, we

use an optimization algorithm to overfit parameter of G on each sequence containing

both the past and future frame, and we called it θ ∗P+F , the optimal weight of G on

’P’ast and ’F’uture. We show in Table 7.5 that the optimal θ ∗P+F with 100k iteration

of optimization can reach single-digit error, thus such θ ∗P+F exist.

We then calculate this θ ∗P+F model for each training sequence during the training
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Figure 7.5: The first row contains 2D samples and the second row contains the cor-

responding 3D samples. The orange poses are pose X0 at t = 0. The light blue curves

are the groundtruth movement curve from t =−49 to t = 0, while the dark blue curve

is our prediction from the past reconstruction. We can see the dark blue curves almost

cover the light blue curves of the image, in both 2D and 3D.

MPJPE(mm)↓
Times(ms) 80 160 320 400 560 720 880 1000

θ ∗P+F (50k iter) 39.7 51.0 70.2 77.1 88.5 99.3 110.7 122.5

θ ∗P+F (100k iter) 6.1 7.0 7.5 7.6 7.4 6.7 5.7 13.8

Table 7.5: Test if optimal θ ∗P+F exist

as target and see if F can learn θ ∗P+F . With a lot of tunings, unfortunately, the score

is not better at all, shown in Table 7.6.

MPJPE(mm)↓
Times(ms) 80 160 320 400 560 720 880 1000

θ ∗P+F sup. 15.4 28.1 54.4 66.7 84.5 98.3 108.6 115.4

Table 7.6: Best score we get with supervision of θ ∗P+F

We then study whether learning to predict optimal weight from coordinates is too

difficult, and whether it might be easier to learn from one weight to another weight.

We calculate θ ∗P , the optimal weight of G only optimized on the past, for each train

and test sequence, and we modify F to predict θ ∗P+F from θ ∗P .

Since G has two layers of weight of size 32×128 and 128×(K×3) respectively,
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the optimal weight θ ∗P and θ ∗P+F are are stored in a matrix of size 128× (32+K×3).

Considering that alternating order between the neurons in the hidden layer of size 128

will not affect the output, we can practice a matching strategy on θ ∗P+F on the first

dimension to make it easier to learn from θ ∗P . As such, we use the python package

lapsolver (Linear Assignment Problem solver) as matching algorithm to match each

row of θ ∗P+F to the closest θ ∗P . Once the matching is done, we carry out a utility

analysis of the matching. We use linear interpolation between θ ∗P and θ ∗P+F to obtain

50 intermediate θ , and use them as G to see how error varies. The result is shown in

Figure 7.6 where clearly the matched weight has smaller error in between, leading to

a weight θ ∗P+F potentially easier to learn.

Figure 7.6: The error score (in mm) using the interpolated weight before (left) and

after (right) matching. Since alternating order between the neurons in the hidden

layer will not affect the output, the scores are the same at both extremities, which

mean θ ∗P and θ ∗P+F . However, the one with matching shows a lower intermediate

error in between, shown an potentially easier path to go from θ ∗P to θ ∗P+F .

We also calculate θ ∗P and θ ∗P+F , and examine the nearest neighbor of each θ ∗P

before and after matching, to see if the corresponding θ ∗P+F is always the closest to

θ ∗P . We plot the nearest neighbor in a heatmap shown in Figure 7.7, clearly showing

each pair of (θ ∗P,θ
∗
P+F) has closest distances within the pairs after matching, whereas

they are not before matching.

We thus train a network F to learn to predict matched θ ∗P+F from θ ∗P . The best

score is shown in Table 7.7

Unfortunately, running optimization algorithm to obtain θ ∗P and θ ∗P+F , as well as

matching strategy are all very time consuming. Without much progress in terms of

score and results, we choose to postpone this direction, hoping that it can be resumed
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Figure 7.7: The nearest neighbor heatmap before (left) and after (right) matching on

approximately 4000 sequences in test dataset. A clear pattern is that it is chaotic

before matching, but almost diagonal after matching, meaning the nearest neighbor

of θ ∗P among all θ ∗P+F in the dataset is always it matched correspondent one.

MPJPE(mm)↓
Times(ms) 80 160 320 400 560 720 880 1000

θ ∗P → θ ∗P+F 22.5 39.4 61.0 68.4 82.7 97.1 104.7 109.7

Table 7.7: Best score achieved by training F predicting θ ∗P+F from θ ∗P

once we have some breakthrough ideas.

7.6 Limitations

We list here the limitations of our method that we would like to address in the future:

• Our model does not always achieve the best score among all different setups

and datasets, which means a better model needs to be adapted in order to further

increase the performance, otherwise we cannot say that we are better than other

methods based on qualitative results.

• Even though the network G is designed as a function depending on time t with

sinus encoding, which should be relatively smooth over time, the predictions

can still be full of twists. This can be partly solved by tuning the sinus encod-

ing numbers or frequencies, but we do not having a perfect solution for this

problem yet.

• We did not explore additional constraints or tasks to facilitate motion inter-

polation, such as action class conditioning, incomplete motion completion, or
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noisy motion denoising. These tasks might be helpful to each other.

7.7 Conclusion

We address the challenge of motion interpolation in an extremely low frame rate,

where only 5% of the input poses are provided. Additionally, we consider the sce-

nario in which the given input poses are randomly sampled to account for the varying

computation time of a pose estimation method producing these inputs. To address this

problem, we propose a novel approach that models human motion as a continuous

function implemented by a neural network, akin to neural implicit representations.

We perform a comprehensive comparison of this approach with state-of-the-art

motion prediction methods on three popular datasets, demonstrating significant im-

provements over baselines in most cases. The visualizations illustrate that our method

generates smooth trajectories compared to simple linear interpolation, without intro-

ducing exaggerated motion.
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What we did

3D human pose estimation is indeed a subject widely researched across different

models and scenarios, and yet many new things can still be explored. Since this topic

is related to humans, it means that it also has a wide potential area of application.

In this thesis, we first design an algorithm which allows to generate synthetic 3D

human skeletons on the fly during the training of 2D to 3D human pose lifting task,

following a Markov-tree type distribution which evolve over time to create new un-

seen poses. The K-NN based precision-recall evaluation metric shows the similarity

of our generated skeleton with real human poses. We show that the parent-child an-

gles under our designed spherical coordinate system have a clear distribution pattern

according to real datasets, which is a potential practical utility for further studies.

We then introduce the H3WB dataset, which extends 2D and 3D keypoint anno-

tations for body, face, and hands with 133 keypoints, as well as three tasks for 3D

wholebody pose estimation based on this dataset: from complete 2D keypoints, from

incomplete 2D keypoints, and from a single image. We argue that the proposed task

for 3D wholebody pose estimation from incomplete 2D wholebody human pose best

fits the real world scenario, in which many cases of occlusions may occur. We also

find that the wholebody annotation allows wider areas of application, not only for

the angle calculation that our thesis requires, but also potentially to help dealing with

body action, hand action and facial expression as a whole for real world interactions.

We also address the challenge of motion interpolation at extremely low frame

rate, by proposing a new approach that models human motion as a continuous func-

tion implemented by a neural network, akin to neural implicit representations. By

expressing motion as a function of time, we allows the interpretation of the whole

motion at any fps in a smooth manner. We expect this to be practical for analyzing

human poses in video, where human motion detected in video can be jagged and

inconsistent.

We finally implement a real time prototype of 3D wholebody pose estimation

from camera-captured real-time image, running on a CPU-only computer. We use a

pretrained 2D wholebody estimation model as well another 2D to 3D lifting model
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trained from incomplete 2D wholebody data. The estimated 3D skeleton is then

transformed into the Ergonova skeleton model to perform angle computation and

dangerous detection.

To go further

In order to dive into 3D human pose estimation further, we can try to improve the per-

formances in our current projects by dealing with limitations of each project. There

are also quite a few things we can do by merging the ideas derived from previous

works.

In short term, Synthetic wholebody generation can be an interesting subject.

Since now we have a well constructed 3D wholebody skeleton dataset, we can take

design a markov tree to define the relationship tree between the keypoints from the

wholebody skeleton, and use the distribution according to the distribution graphs to

generate more accurate wholebody 3D poses for synthetic training. However, the de-

sign of such hierarchical markov tree should be carefully finetuned since they are not

as straight as simple skeletons with around 20 keypoints. Other than this, Wholebody

motion interpolation can be easily studied just by replacing the simple skeletons to

wholebody skeleton. The advantage of using wholebody skeleton is that motion inter-

polation should be easier with the wholebody skeleton, since there are now more con-

straints on the keypoints with each other. Unfortunately, linear interpolation methods

does not work at all for wholebody skeleton, especially on the hands and face, making

the realistic motion interpolation more essential for wholebody skeleton model.

In long term, we can study on Motion interpolation with other auxiliary tasks.

For motion interpolation, incorporating body constraints as auxilary tasks could be

explored, ensuring that the interpolated trajectory preserves certain body invariant

(e.g., bone length, symmetry). Apart from this, motion action recognition can be per-

formed simultaneously with motion interpolation, which also provide constraints to

the learnt motion sequence. These all need some big modification of current struc-

ture. However, this topic has already been studied by many existing works like using

diffusion model1 or using large language model2, making it a very competitive but 1 [Tevet et al., 2023]

Human Motion Diffusion Model

2 [Jiang et al., 2023]

MotionGPT: Human Motion as a For-

eign Language

hot topic. We also want to Improve our prototype. The current prototype we have
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made is still a lab version, which is far from being used or published. We may have

a few update ideas: Algorithmically, we need a more precisely-defined safe zone for

the angles instead of our roughly estimated safe zone. A possible way is to use the

distribution graphs of angles synthesized from the parent-child relation maps to de-

cide the safe zone. Other than that, we still want to improve the prediction speed, and

also make it run as an application on handphones, a real tool to help daily working

people, which we need a lot works to do.
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