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Chapter 1

Introduction

Breast cancer is one of the most prevalent forms of cancer worldwide. Ac-
cording to the World Health Organisation [WHO (2022a)], it accounts for
12,5% of all new annual cancer cases globally and in 2022, approximatively
2.3 million women were diagnosed with breast cancer and it resulted in more
than 666,000 deaths worldwide. These statistics underscore the critical need
for ongoing research to improve care strategies. Over the past few decades,
research has made major progress in understanding the biology, risk factors
and the disease’s progression, which have lead to significant improvements
in diagnosis, treatment and patient outcomes. And this has been achieved
with the use of a comprehensive set of information from different domains
and different modalities.

Electronic Health records have revolutionized the landscape of health-
care delivery and clinical research and its integration in clinical practice has
offered multiple advantages that contribute to the improvement of breast
cancer survival rates. In clinical research, it provides a robust infrastruc-
ture for data collection and analysis and real-world data from EHR provide
valuable insights into everyday clinical practice. Many studies have made
use of this information for breast cancer research. One of the primary ad-
vantages of using EHR is their multimodal nature. EHRs integrate various
types of data, including patient history, lab results, imaging, and treatment
strategies, all in one accessible platform. For Breast cancer studies, most of
the papers in the literature has used a combination of structured data and
imaging as these are the most accessible information. For instance, many
robust BC diagnosis tools have been developed using clinical descriptors
or family background and/or breast imaging (mammogram, ultrasound or
MRI). Those tools have make clinicians’ workflow more efficient and allow
them to identify BC that would otherwise been undetectable in its early
stages.

However, up to my knowledge, there are few BC studies that use the com-
bination of structured information from EHR and free-text medical reports.
Yet, it exists a huge amount of meaningful information in biological mea-
surements, clinical information and mostly in patients reports, in a patient
journey that remain unexploited. The main challenge in using unstructured
information such as text that it can contain sensitive patient information,
therefore, it needs to ensure compliance with data protection regulation.
Moreover, the unstructured patient data might be complex to analyze (med-
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ical jargon, abbreviations, variability in terminology etc.). These factors
may result in a greater reliance on structured EHR data and imaging for
BC studies.

In my thesis, we propose to develop and apply machine learning tech-
niques to predict BC outcome (such as recurrence or survival), using a mul-
timodal breast cancer patient data that include medical notes in natural
languages and in french, the outcome of various lab analysis and clinical
descriptors from a vast cohort from the Institut Curie. First, we built and
trained multiple classical machine learning models for different modalities
integration to predict survival endpoint and give first insight about models’
predictive factors. Then, we developed deep learning models that used a
sequential data representation for tabular information in the EHR to pre-
dict BC survival endpoints. After that, we performed the same task with
the sequences of free-text reports throughout the patient trajectory. Finally,
we combined deep learning models built on the different modalities into one.
Altogether, we found features within these different modalities that can be
used to improve breast cancer outcomes.

1.1 Organization and contributions of the thesis

In Chapter 2, I present the background knowledge about breast cancer,
which includes its epidemiology, its intrinsic characteristics, the possible
treatment strategies and its related survival endpoints. I also define im-
portant notions of Electronic Health Records (EHR), its challenges and its
importance and limitations in clinical research.

The Chapter 3 is about the mathematical and ML concepts that un-
derlies this thesis. I provide the general intuition behind methods and tech-
niques that have been used during this Ph.D. All these concepts are specific
to medical multi-modal patient data.

In Chapter 4, I present a challenge that I worked on, prior to the Ph.D
project, called PhysioNet Computing in Cardiology Challenge (2012). I
show in this chapter methods that I develop for mortality rates prediction
in Intensive Care Unit (ICU). The focus on this challenge is due to the
similarity between the challenge’s data and my project’s data.

In Chapter 5, I describe the multimodal cohort used during this the-
sis. It combined structured information from the SEIN database in Institut
Curie and the free-text reports from the ELIOS database for the same pa-
tients. Then, I apply multiple ML models that use different integration
methods to the dataset to predict survival outcome. We compare results
for the different integration methods and we propose a set of important fea-
tures using interpretation methods. This chapter was presented during the
Machine Learning Frontier for Precision Medicine (MLFPM) conference in
Munich in 2022.
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In Chapters 6, 7 and 8, I propose a sequential representation of the
multimodal EHR. I apply transformers-based deep learning models to pre-
dict survival endpoints. I first apply it to tabular patient trajectories, then
to text reports trajectories and I finally combine both models into a mul-
timodal transformers-based model for EHR we called M-BEHRT. I present
the results and discuss about most predictive features from these robust
DL methods. These chapters were presented during the Winter School in
Computer Science and Engineering in Jerusalem in 2023 and during the
Personalized Health Conference in Basel in 2024. They will be subject of a
future publication.
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Chapter 2

General context

Abstract:
Breast cancer treatment remains a significant global health challenge,

necessitating continual advancements in diagnostic, treatment, and manage-
ment strategies. This chapter explores the use of Electronic Health Records
(EHR) to uncover previously unidentified prognostic factors in breast can-
cer. Leveraging the wealth of patient data within EHR, my thesis employs
advanced ML algorithms to analyze complex relationships and patterns, ul-
timately aiming to enhance the accuracy and precision of breast cancer prog-
nosis. In this chapter, I will highlight the general context of my project. It
includes the scientific context, such as several important notions in Breast
Cancer (BC) and Electronical Health records (EHRs), but also the technical
environment in which the project took place.

Résumé:
Le traitement du cancer du sein reste un défi sanitaire mondial impor-

tant, qui nécessite des progrès constants dans les stratégies de diagnostic,
de traitement et de gestion. Ce chapitre explore l’utilisation des dossiers
médicaux électroniques (DME) pour découvrir des facteurs pronostiques
précédemment non identifiés dans le cancer du sein. En s’appuyant sur
la richesse des données des patients contenues dans les DME, cette étude
utilise des algorithmes ML avancés pour analyser des relations et des mod-
èles complexes, dans le but ultime d’améliorer l’exactitude et la précision
du pronostic du cancer du sein. Dans ce chapitre, je mettrai en évidence
le contexte général de mon projet. Il comprend le contexte scientifique tel
que plusieurs notions importantes dans le domaine du cancer du sein (CB)
et des dossiers médicaux électroniques (DME), mais aussi l’environnement
technique dans lequel le projet se déroulera.
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2.1 Introduction to Breast Cancer
In this section, I will present important notions of breast cancer (BC), in-
cluding its statistics and crucial definitions.

2.1.1 Cancer epidemiology

Cancer refers to a large number of diseases characterized by any type of
rapidly growing of cells that spreads throughout the body. It develops when
the body’s normal control mechanisms of cell division stop working. Hence,
it is manifested by the development of abnormal cells that divide uncontrol-
lably and have the ability to infiltrate and destroy normal body tissue. Old
cells do not die and instead grow out of control, forming new, abnormal
cells. These extra cells may form a mass of tissue, called a tumor. Cancer
can occur anywhere in the body. There are more than 200 types of cancers
with various treatments and various prognosis.

Cancer is one of the most common diseases in the world. According to
the GLOBOCAN estimations in 2022 [Bray et al. (2024)], produced by the
International Agency for Research Cancer, there were nearly 20 millions new
cases of cancer in 2022. Per their findings, approximately one in five men or
women develop cancer in a lifetime. Lung cancer was the most commonly di-
agnosed cancer globally, accounting for nearly 2.5 million new cases, i.e, 1 in
8 of all cancers worldwide (12.4%), followed closely by breast cancer (11.6%),
colorectal cancer (9.6%), prostate cancer (7.3%), and stomach cancer (4.9%).
Cancer incidence varies between countries, as shown in Figure 2.1. It is the
second leading cause of death globally, accounting for an estimated 9.7 mil-
lion deaths in 2022 [WHO (2022b)]. Lung cancer retained its status as the
primary cause of cancer-related deaths, claiming approximately 1.8 million
lives (18.7%), trailed by colorectal cancer (9.3%), liver cancer (7.8%), breast
cancer (6.9%), and stomach cancer (6.8%). Lung, prostate, stomach, liver
and colorectal cancer are the most lethal cancer types among men, while
breast, cervical and lung cancer are the most lethal ones among women
(2.2).

Additionally, studying variations in cancer incidence among different de-
mographic groups and geographic regions helps identify disparities and tar-
get interventions to reduce cancer burden and improve outcomes. Regional
disparities were evident, with incidence rates varying considerably, as de-
picted in Figure 2.3. Also, nearly half of all cancer cases (49.2%) and the
majority of cancer-related deaths (56.1%) occurred in Asia. Moreover, in
Asia and in Africa, the disparity between the cancer incidence and mortal-
ity is particularly pronounced. Indeed, cancer incidence and mortality are
correlated with the Human Development Index [Bray et al. (2024)]. Inci-
dence and mortality rates are higher in higher HDI countries.

These figures underscore the pervasive impact of cancer within society.
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transitioning countries site‐for‐site in both men and women, although

the cancer profiles in part reflect the large incidence burden of

specific cancer types in highly populated countries, including China

(e.g., lung), India (oral cavity), and the United States (prostate).

Cancer incidence and mortality rates by sex and world
region

The incidence rate for all cancers combined (including NMSC) was

slightly higher in men (212.5 per 100,000) than in women (186.2 per

100,000) in 2022, although rates varied four‐fold to five‐fold across

world regions (Table 3). Among men, incidence rates ranged from

over 500 in Australia/New Zealand (507.9 per 100,000) to under 100

in Western Africa (97.1 per 100,000) and, among women, rates

ranged from over 400 in Australia/New Zealand (410.5 per 100,000)

to close to 100 in South‐Central Asia (103.3 per 100,000). Sex‐
specific differences in mortality rates were less pronounced than

for incidence (Table 3), with mortality rates per 100,000 persons

ranging from 68.9 in Central America to 159.6 in Eastern

Europe among men and from around 63 in Central America and

South‐Central Asia to 115.7 in Melanesia among women. The

F I GUR E 4 Global maps present the most common type of cancer incidence in 2022 in each country among (A) men and (B) women. The
numbers of countries represented in each ranking group are included in the legend. Nonmelanoma skin cancer (excluding basal cell carcinoma)
is the most common type of cancer in Australia and New Zealand among men and women and in the United States among men; however, it is
excluded when making global maps. Source: GLOBOCAN 2022.

238 - GLOBAL CANCER STATISTICS 2022

Figure 2.1: Most common cancer types by country in 2022. a. Males, b.
Females. Source: GLOBOCAN 2022.

cumulative risk of dying from cancer among women in 2022 tends to

be highest in several regions where many transitioning countries are

located, including Melanesia and Micronesia/Polynesia (11.8% and

10.5%, respectively) and Eastern and Southern Africa (10.7% and

10.4%, respectively). In contrast, the estimated cumulative risks of

cancer death are less than 10 in North America (7.9%), Southern

Europe (8.0%), and Australia/New Zealand (7.5%).

Such regional variations in cancer incidence and mortality

largely reflect differences in underlying exposure to the dominant

risk factors for the major cancers, the distribution of associated

cancer types, and barriers to effective prevention, early detection,

and curative treatment. Below, we examine and discuss the

variations by world region in more depth, assessing the incidence

and mortality patterns for the 10 most frequent cancer types

(Figures 8–20). A focus is on the four leading incident cancers

(lung, female breast, colorectal, and prostate) that, in combination,

are responsible for close to two fifths of the overall incidence and

mortality burden.

Lung cancer

With almost 2.5 million new cases and over 1.8 million deaths

worldwide, lung cancer is the leading cause of cancer morbidity

F I GUR E 5 Global maps present the most common type of cancer mortality by country in 2022 among (A) men and (B) women. The
numbers of countries represented in each ranking group are included in the legend. Source: GLOBOCAN 2022.

BRAY ET AL. - 239

Figure 2.2: Distribution of the mortality rate by country in 2022. a. Males,
b. Females. Source: GLOBOCAN 2022.
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Figure 2.3: Pie chart with distribution of the incidence and the mortality
rate by country in 2022 among A. males and among B. females. Female.
Source: GLOBOCAN 2022.
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The cancer burden continues to grow globally, exerting tremendous physi-
cal, emotional and financial strain on individuals, families, communities and
health systems. Many health systems in low- and middle-income countries
are least prepared to manage this burden, and large numbers of cancer pa-
tients globally do not have access to timely quality diagnosis and treatment.
In countries where health systems are strong, survival rates of many types
of cancers are improving thanks to accessible early detection, quality treat-
ment and survivorship care. Among these, breast cancer stands out as a
prime example of progress in combating this disease. (not sure about this
phrase)

Breast cancer is the most common cancer among women. It affects
around 2 million women each year. In 2022, 2.3 million women received
a diagnosis of breast cancer, resulting in 670,000 deaths [WHO (2022a)].
Breast cancer can affect women in every country worldwide, striking at any
age post-puberty, though its incidence tends to rise notably in later stages of
life. Global estimates highlight significant disparities in the burden of breast
cancer based on levels of HDI. For example, in nations with very high Human
Development Index (HDI) scores, approximately 1 in 12 women will receive
a breast cancer diagnosis during their lifetime, and 1 in 71 will succumb to
the disease. Conversely, in countries with low HDI scores, the likelihood of
a woman being diagnosed with breast cancer in her lifetime decreases to 1
in 27, but the mortality rate remains notable, with 1 in 48 women dying
from the disease [WHO (2022a)].

2.1.2 Definition of BC

Breast cancer is the type of cancer that starts in the breast. It is one of the
most common cancers affecting women worldwide and can also occur in men,
albeit less frequently. Breast cancer is composed of multiple subtypes with
distinct morphologies and clinical implications. It differs greatly among
different patients (inter- tumoral heterogeneity) and within an individual
tumor (intra-tumoral heterogeneity).

Traditional histopathological classification aims to classify tumors into
subgroups to facilitate clinical decisions. Nowadays, recently developed high-
throughput microscopic analyses can provides a more precise understanding
of cancer heterogeneity. This heterogeneity arises from many different fac-
tors, such as the tumor origin, the tumor invasiveness, molecular alterations
etc. Typically, BC forms in either the lobules or the ducts of the breast:
we distinguish ductal BC from lobular BC (Figure 2.4). A breast lobule is
the gland that produces milk whereas a breast duct is the tube that bring
the milk from the breast lobule to the nipple. Moreover, according to the
spreading state, BC can be broken into two other main categories: ‘inva-
sive’ and ‘noninvasive’ (or in situ). In invasive breast cancer, the tumor has
spread outside (metastasized) the breast duct to surrounding normal tissue.
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Figure 2.4: Ductal (left) and lobular (right) invasive carcinoma.

It can include the blood cells or the lymph. Noninvasive breast cancer stays
with the ducts or lobules. Whether the cancer is noninvasive or invasive,
ductal or lobular, will determine your treatment choices and the treatments
response. Breast cancer can also be divided into stages based on how large
the tumor is and its invasiveness. Cancers that are large and/or have in-
vaded nearby tissues or organs are at a higher stage than cancers that are
small and/or still contained in the breast. BC has five (5) main stages (0-5).

In addition to this classification, several studies ( [Perou et al. (2000a)],
[Sørlie et al. (2001)]), have shown, with gene expression profiling, that BC
could also have molecular heterogeneity within these classes. Research ef-
forts are now focusing on how these different molecular subtypes could pro-
vide information on the prognosis and thus, the treatment response, for each
BC type. The general aim being to develop more specific new therapies: it
is the precision medicine advent.

2.1.3 Molecular characteristics of BC

Breast cancer cells have receptors (proteins) that bind with certain hormones
such as progesterone, estrogen and the human epidermal growth factor re-
ceptor 2 (HER2). Those hormones are generally involved in the breast cells
growth. However, in certain breast cancers, those receptors can be more
numerous than in a normal cell. BC cells may have one, both or none of
these receptors. As shown in the figure 2.5, according to the presence of
certain hormonal receptors, several tumor types can also be distinguished:

• The hormone receptor tumor (HR+) is characterized by the pres-
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Hormonal receptors ER PgR HER 2 Molecular subtypes

HR+ + +/- - Luminal A+/- + -
HER2+ + +/- + Luminal B HER2 +
HER2+ - - + HER2+ non luminal
TNBC - - - TNBC / Basal like

Table 2.1: Summary of the different molecular breast cancer types

ence of hormone receptors, estrogen and/or progesterone (ER+ and/or
PgR+). The tumor development is influenced by the presence of one
or of both of these receptors in the cancer cell [You et al. (2018)].
This subgroup is also characterized by the absence of overexpression
of the growth factor HER-2. Also known as Luminal A, the hormone
receptor positive breast cancer has good prognosis.

• The HER-2 positive (HER2+) breast cancer is characterized by an
overexpression for the HER2 receptor. This hormone, also referred to
as HER2/neu proteins is encoded by the gene HER2/neu. Normally,
they help control a healthy breast cells growth and repair. But HER2+
breast cancer, this receptor is overexpressed and promotes the uncon-
trolled growth of cancer cells. When it is combined with the presence
of estrogen receptors (ER+) and/or progesterone receptors (PgR+),
the subtype is called Luminal B HER2 positive, otherwise, when there
is an absence of those receptors, it is called HER2 positive non lumi-
nal. The targeted HER2 therapy has helped improving the prognosis
of cancer overexpressing HER2 receptors.

• The triple-negative breast cancers (TNBC) constitute a hetero-
geneous group characterized by the lack of estrogen receptors (ER+)
and progesterone receptors (PgR+) and the absence of overexpression
of the growth factor HER-2. This breast cancer type is associated with
a more unfavorable clinical profile, with a high risk of early metastatic
relapse because of the aggressive nature of these tumors their partial
response to chemotherapy and the absence of a clear therapeutic tar-
get, allowing to propose a specific treatment.

Some breast cancers are both hormone receptor-positive and HER2-
positive, meaning that estrogen and progesterone can stimulate cell growth
[You et al. (2018)]. These cancers are often referred to as triple-positive
breast cancers. Breast cancers that are estrogen receptor-positive (ER+)
and/or progesterone receptor-positive (PR+) are “fueled” by hormones. They
are different from breast cancers that are HER2-positive [Callahan & Hurvitz
(2011)], in which tumor growth is driven by growth factors that bind to
HER2 receptors on the cancer cells [Akshata Desai (2012)]. The molecular
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Figure 2.5: Molecular Breast Cancer types [Kirkby et al. (2023)].

profile of each BC types is useful in planning treatment and developing new
therapies, in conjunction with the stage and the type of the BC.

2.1.4 BC treatment strategy
Fighting cancer usually requires more than one treatment. In most of the
cases, clinicians adopt a multidisciplinary approach. The type of cancer,
its aggressiveness and the presence or absence of several receptors allow to
define the type of treatment:

• Surgery: During this process the tumor is removed from the patient’s
body by a surgeon. It is often the initial treatment for breast cancer
and may involve either breast-conserving surgery (lumpectomy) or re-
moval of the entire breast (mastectomy). During breast cancer surgery,
the surgeon may also remove one or a few lymph nodes (sentinel nodes)
from the underarm area to check for the presence of cancer cells. If can-
cer cells are found in the sentinel nodes, additional lymph nodes may
need to be removed. Moreover, in some cases, particularly if cancer
has spread to the lymph nodes, a more extensive lymph node dissec-
tion may be performed to remove a greater number of lymph nodes
from the underarm area. Surgery may be used alone or in combina-
tion with other treatments such as radiation therapy, chemotherapy,
hormone therapy, targeted therapy, or immunotherapy, depending on
the characteristics of the cancer and the patient’s overall health.

• Chemotherapy: This cancer treatment works by stopping or slowing
the growth of cancer cells. Chemotherapy drugs can be given orally (in
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pill form) or intravenously (through a vein). The treatment schedule
and duration depend on the specific chemotherapy regimen prescribed
by the oncologist. There are several types of chemotherapy drugs used
to treat breast cancer, including

– Anthracyclines: these drugs intercalate with the DNA of cancer
cells, interfering with DNA metabolism and the production of
RNA, preventing them from multiplying.

– Taxanes: Examples include paclitaxel (Taxol) and docetaxel (Tax-
otere). Taxanes disrupt cell division by stabilizing microtubules,
structures essential for cell replication.

– Platinum-Based Drugs: Examples include cisplatin and carbo-
platin. Platinum-based drugs bind to DNA, causing damage and
cell death.

– Antimetabolites: Examples include 5-fluorouracil (5-FU), capecitabine,
and gemcitabine. Antimetabolites interfere with DNA synthesis,
preventing cancer cells from reproducing.

The choice of chemotherapy regimen depends on factors such as the
stage and subtype of breast cancer, the patient’s overall health, and
their individual treatment goals. Chemotherapy is often used in com-
bination with other treatments such as surgery, radiation therapy, hor-
mone therapy, targeted therapy, or immunotherapy to provide compre-
hensive care for breast cancer patients. It is more generally combined
with a surgery that can be done before or after the chemotherapy:

– Neoadjuvant chemotherapy: the chemotherapy is done in order
to reduce the tumor size before the surgery. This treatment is
widely used for TNBC.

– Adjuvant chemotherapy: the chemotherapy is done after the surgery
to prevent the risk of relapse by destroying remained cancer cells.

• Hormone therapy: It has proven to be an effective and well-tolerated
treatment option for HR+ breast cancer, helping to improve outcomes
and reduce the risk of recurrence. Hormone therapy works by blocking
the effects of estrogen and/or progesterone or reducing their produc-
tion in the body, thereby slowing or stopping the growth of hormone
receptor-positive breast cancer cells. Drugs involved in this therapy
are usually taken orally in pill form, once daily or as prescribed by
the oncologist. The duration of hormone therapy treatment may vary
depending on factors such as the stage and subtype of breast can-
cer, the patient’s menopausal status, and individual treatment goals.
Among drugs used for this treatment, we have different drugs family:
Selective Estrogen Receptor Modulators (SERMs) such as tamoxifen
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or toremifene, Aromatase Inhibitors and the Selective Estrogen Recep-
tors Degraders.

• Targeted HER2 treatment: Targeted therapy drugs specifically
target proteins or genes that contribute to the growth and spread of
cancer cells. They are often used to treat HER2-positive breast can-
cers, which overexpress the HER2 protein. The HER2 is blocked in
order to stop its uncontrolled proliferation. Targeted HER2 therapy
drugs are typically administered intravenously through infusion or in-
jection, although some oral formulations are available. As the other
treatments, schedules and durations may vary depending on the spe-
cific drugs used, the stage and subtype of breast cancer. We count
three (3) main groups of antibodies for targeted HER2 treatment:

– monoclonal antibodies such as trastuzumab (Herceptin), pertu-
zumab (Perjeta), and trastuzumab emtansine (T-DM1 or Kad-
cyla). Trastuzumab and pertuzumab may be used in combination
to enhance their effectiveness.

– Tyrosine Kinase Inhibitor (TKIs) such as lapatinib (Tykerb) and
neratinib (Nerlynx).

– Antibody-Drug Conjugates: such as Trastuzumab emtansine (T-
DM1 or Kadcyla).

• Radiotherapy: Radiation therapy uses high-energy beams to target
and destroy cancer cells. It is commonly used after surgery to eliminate
any remaining cancer cells in the breast or nearby lymph nodes, or
before surgery to shrink the tumor. It is usually administered in a
hospital or specialized radiation oncology center. During treatment,
the patient lies on a treatment table while a machine delivers the
radiation beams to the targeted area.

• Immunotherapy: Immunotherapy is a type of cancer treatment that
works by harnessing the body’s immune system to recognize and at-
tack cancer cells. Drugs used for this treatment are typically adminis-
tered intravenously through infusion, although some may be given as
subcutaneous injections. Imunotherpay is particularly promising for
breast cancer treatment because it offers the potential for long-lasting
responses and fewer side effects compared to traditional treatments
like chemotherapy.

These therapies are often used in combination depending on the charac-
teristics of the breast cancer and the patient’s overall health. Indeed, this
multidisciplary approach can help improve outcomes and reduce the risk of
a cancer relapse.
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2.1.5 BC studies endpoints
Several notions have been introduced to help evaluate the efficacy of a treat-
ment. Among them we can distinguish:

• Overall survival (OS) is the length of time from either the date of
diagnosis or the start of treatment, that patients diagnosed with the
disease are still alive. In a clinical trial, measuring the overall survival
is one of the most meaningful enpoints in oncology because it reflects
the ultimate goal of cancer treatment. It provide a comprehensive
measure on how well a new treatment works. Moreover, OS helps to
identify patient subgroups with better or worse prognosis, thus help
guiding treatments. However it requires long follow-up periods to ob-
tain valuable survival data. The OS is assessed by measuring the
following patients over time and recording the occcurrence and timing
to deaths.

• Disease free survival (DFS) is length of time after primary treat-
ment for a cancer that the patient survives without any signs or symp-
toms of that cancer and is still alive. In a clinical trial, measuring
the DFS is also one way to see how well a new treatment works. It
evaluates the duration of time patients that remain free of disease re-
currence or progression following primary treatment. It is assessed by
measuring following patients over time for any signs or symptoms of
a cancer relapse (distant, local, regional, contralateral, or death).

• Relapse free survival (RFS) and Distant Relapse Free Survival
(DRFS) represent the length of time after the primary treatment for
a cancer ends that the patient survives without any signs or symptoms
of, respectively, local, regional, or contralateral relapse or metastasis.
It is assessed the same way as the DFS but without aknowledging the
death event. The occurrence and timing of relapse events are recorded
to calculate DFS (or DRFS) rates.

• Event-Free Survival (EFS) is similar to DFS but includes addi-
tional events such as a progression of the cancer, the development of a
second primary cancer or discontinuation of treatment due to toxicity.
EFS is assessed by recording the occurrence and timing of the corre-
sponding events (local, regional, metastasis, progression) by following
patients over time.

• Pathological complete response (pCR) is defined as disappear-
ance of all invasive cancer in the breast after completion of a neoadju-
vant setting, typically chemotherapy. Pathologists examine the tissue
samples for residual cancer cells in the breast and lymph nodes using
microscopy techniques. The absence of any residual invasive cancer
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cells confirms the achievement of pCR. Other investigators have de-
fined pCR as a complete response in the breast, irrespective of ax-
illary nodal involvement as well [Buzdar et al. (2005)] [Bear et al.
(2006)] [noa (2001)] [Al-Hilli & Boughey (2016)]. It has been used as
an endpoint for several trials of neoadjuvant therapy for breast cancer.

These endpoints play a major role in guiding treatment decisions and
clinical practice guidelines in BC management. The selection of appropriate
endpoints will depend on the study aims, patient population, and treatment
setting. Existing studies show that Luminal A and B subgroups have better
OS and DFS when it decreased in TNBC and HER2+ subtypes. When
patients with TNBC reach a pCR, the OS and DFS get significantly im-
proved [Abrial et al. (2012)].

2.1.6 Risk factors of BC
A risk factor refers to anything that increase the likelihood of getting a dis-
ease. Various cancers are associated with distinct risk factors. Breast cancer
risk factors include a range of genetic, hormonal, lifestyle and environmen-
tal factors. In fact, having certain genetic mutations, such as BRCA1 and
BRCA2 genes, are widely known to elevate significantly the risk of decelop-
ing breast cancer at a certain stage of a life, especially if there is a family
history of breast or ovarian cancer. Hormonal factors, such as early onset
of menstruations, late onset of menopause, or hormone replacement therapy
can have an impact on developing BC. The other risks comprise chemical or
radiation exposure, alcohol and tobacco consumption, obesity. While age
and genetics can be beyond one’s control, regular screening can play an im-
portant role in reducing the risk an improving the outcomes. It is important
to note that possessing one or more of these risk factors does not guarantee
the development of breast cancer. Many individuals with these factors never
develop the disease, while others without any known risk factors may still
be diagnosed with it.

2.2 Electronic Health Records
In this section, I will delve into the realm of Electronic Health Records
(EHRs), a tool revolutionizing healthcare delivery.

2.2.1 EHR overview
Electronic Health Records (EHRs) are an electronic version of a traditional
patient’s paper chart. They includes an ensemble of patients health infor-
mation throughout their medical journey. EHRs represent an digitalized
approach to medical record-keeping and allows to collect, store, manage
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and easily share patient information to authorized users. Unlike traditional
paper charts, EHR systems are designed to consolidate a patient’s medi-
cal history, including diagnoses, treatments, medications, lab results, etc.
into a single digital platform. This centralization facilitates collaborations
among healthcare providers and thus, reduces errors and enhances the qual-
ity of care. EHRs may also benefit to patients with a greater access to their
health information, fostering a more informed relationship between patients
and clinicians. Moreover, handwritten paper medical records may lack legi-
bility in addition to a healthcare workflow inefficiency, i.e, managing paper
records requires significant manual effort from filing and storing to retriev-
ing and transporting. Consequently, as a result of these good characteristics,
many developing countries have already adopted this approach to enhance
their healthcare systems. However, the implementation of Electronic Health
Records (EHRs) comes with its own set of challenges, particularly concern-
ing privacy and data security. As mentioned in [Sahney & Sharma (2018)],
it requires a coordinated effort from all the involved parties and given the
potential risks associated with information technology, security should be a
priority. Therefore, regulations and incentives have driven the adoption of
EHRs to improve healthcare efficiency and interoperability.

2.2.2 EHR System components

An EHR system represents the integrated system digital platform that in-
clude various different components to create a comprehensive health record
for patients. It comprises multiple key components that work together to
form an useful technology for medical organizations to ramp up their facili-
ties’ productivity and efficiency not just clinically but economically as well.
The major components of an EHR system comprises :

• Patient Demographics: It refers to the information that identifies
and describes a patient. It includes name, address, date of birth, gen-
der, marital status and all the contact details for a defined patient.
This section is a critical component of EHR, as it serves as the basis
for a patient identification. Furthermore, this information is essential
to maintain accurate up-to-date records, coordinating care and ensur-
ing that the healthcare services are delivered to the correct individual.

• Medical History: It includes the patient’s medical information over
time. It encompasses a thorough record of the past and previous
health-related information, such as diagnosis, surgeries, allergies, and
family medical history. This section is important for physicians as it
offers insights into a patient’s medical background, which facilitates
accurate diagnosis, treatment planning, and coordinated care by con-
sidering all relevant factors in a patient’s medical history.



2.2. ELECTRONIC HEALTH RECORDS 19

• Clinical Notes: This section includes physicians’ notes, and other
clinical documentation from the healthcare providers during patient
visits or hospital stays. Clinical notes in an EHR are crucial for care
continuity and communication among healthcare providers. They al-
low different professional to stay informed about a patient’s condition
and treatment. Moreover, they provide a record for quality assurance,
legal purposes, and billing, making accurate and exhaustive clinical
notes an essential component of any EHR system.

• Medication Management: It tracks medication prescription, ad-
ministration instructions, monitoring, and related information like side-
effect reactions or drugs interactions, to ensure safe and effective use
of prescriped medications. This component plays a important role
in maintaining patient safety, optimizing therapeutic outcomes, and
preventing medication errors.

• Lab and Diagnostic Results: It stores the patient’s laboratory test
results, radiology images and other diagnostic findings. This compo-
nent help clinicians to determine the type and severity of a disease. It
can help also to monitor conditions and treatments.

• Decision Support Tools: Theses tools may be part of an EHR
system. It is a feature or system that helps healthcare professionals
to make informed clinical decisions by offering relevant and evidence-
based information, alerts and guidance. They are designed to improve
the quality of care of care and support the overall efficiency of health-
care processes.

• Patient Portals: It is an online platform or website that allows pa-
tients to access various healthcare services and their own health in-
formation. They can schedule appointments, and communicate with
healthcare providers, as well. This component is a key component of
many EHR systems, that helps enhance the overall patient experience
and healthcare outcomes by improving patient engagement, communi-
cation, and involvement in their own care.

• Interoperability and Data Exchange: This component refers to
the capability of different healthcare systems, and organizations to
communicate, share and use health information. Data exchange can
occur in different ways, such as electronic health information exchanges
(HIEs), direct messaging between systems, or through application pro-
gramming interfaces (APIs).

• Security and Privacy: This last component is a fundamental com-
ponent of healthcare, particularly when dealing with EHRs. They
ensure that patient information is protected from unauthorized access,
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theft or loss. In parallel, it needs to respect patients’ rights to con-
trol their own personal health data. This encompasses the measures
and protocols to protect patient data, ensuring compliance with pri-
vacy regulations and data security standards. It exists keys aspect of
privacy in EHR, such as patient consent, information confidentiality,
compliance with regulations (laws like the General Data Protection
Regulation (GDPR) in the European Union set standards for protect-
ing patient privacy and outline patients’ rights regarding their health
information), and patient rights to access.

One important actor in EHR systems is data managers. They play a crucial
role to ensure that all parties have access to the records whenever need
while protecting privacy. There are 2 main types of EHR systems, each
one providing different levels of functionality depending on the capabilities
required by a specific facility.

• Physician hosted: This is the EHR type where the data is hosted
on servers within the physician’s facility. The main advantage in this
type of EHR system is the ability for physicians to directly access
to records which can save time and increase efficiency by eliminating
the need to communicate with other staff members. Moreover, they
have the possibility to choose the optimal combination of hardware
ans software to maximize functionality and interoperability. On the
other hand, in this category, the medical institution requires additional
IT support because it is responsible for the software maintenance and
it have to make significant efforts to prevent data loss. However, it
balances out with the fact that data storage fees won’t have to be
paid to external vendors.

• Remotely-hosted: Under these EHR systems’ types, the server is
outside the physician facility, i.e, they are not responsible for storing
and managing the patients’ data. The EHR stytem is stored on third-
party servers owned by EHR vendors. The benefit of this EHR type
is that the medical practitioner only focuses on collecting information
and not about managing the IT system. This type of system allows a
broader range of tools that can enhance clinicians’ efficiency and thus
provide a higher quality care. Unlike physician-hosted EHR systems,
remoted-hosted ones require a smaller IT team due to a reduce number
of technical error within the system, and additionally, the server owner
handles all updates and security issues. Advantages include being more
cost-effective and knowing where your data will be stored in the future.
However, the downside is that this type of system may offer a limited
flexibility for patients, as it has been designed by a data manager
who controls information that can be seen. Remote EHR systems are
generally hosted in the cloud.
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2.2.3 Implementation and Adoption of EHR systems in mod-
ern healthcare

Over the past few decades, Electronic Health Records (EHR) have become
increasingly popular in modern healthcare all around the world, due to their
ability to facilitate patient information management, improve care coordi-
nation, and enhance data accessibility ( [Oza et al. (2017)], [Heart et al.
(2017)], [Liang et al. (2018)], [Oumer et al. (2021)], [Fraser et al. (2022)]).
As depicted in [Woldemariam & Jimma (2023)], EHR is at the forefront of
implementation in healthcare institutions to improve the quality of given
care in high-income and low-income countries alike. This shift from paper-
based records to digital systems has been driven by the need for more effi-
cient healthcare processes and better patient outcomes. EHR systems allow
healthcare providers to have instant access to patient medical information
throughout their medical journey and allow them to consider the whole
medical timeline to take informed decisions quickly, which can be crucial
for emergency cases. Some studies have shown an improved efficiency fol-
lowing EHR implementation, in workflow ( [Nguyen et al. (2014)], [Jha
et al. (2009)], [McAlearney et al. (2010)]), through a time gaining in med-
ical information retrieval ( [Kossman (2006)], [Kossman & Scheidenhelm
(2008)], [Zhang et al. (2012)], [Howard et al. (2013)], [Noblin et al. (2013a)])
and reduction in documentation time ( [Poissant (2005)], [Skinner et al.
(2011a)], [Chao (2016)]). Moreover, EHR systems have shown to enhance
not only communication between providers, but physician-patient commu-
nication as well as the patient’s medical information is centered using EHR
systems ( [Archer et al. (2011)], [Skinner et al. (2011a)], [Goldberg et al.
(2012)], [Zhang et al. (2012)]). However, implementing an EHR system re-
quires to consider several critical steps to ensure its effectiveness. It can be a
tricky process, because it can directly have an impact on an institution med-
ical practices’ workflow and can possibly affect the clinicians’ performance,
which is not insignificant in the medical field. The implementation strategy
will consist of:

• Define the specific needs and preferences of the institution for every
department to be able to choose, or design the most suitable EHR
system that will align with those needs and preferences.

• Select an EHR vendor if the organization wants a remoted-hoted sys-
tem. Different EHR vendors can be evaluated based on cost, function-
ality, interoperability, security and other factors more or less impor-
tant depending on the institution. Contracts are also an important
aspect of the EHR implementation, because they should cover key as-
pects like data ownership, support, and compliance with regulations. If
the institution prefers a local (physician-hosted) system, they defined
specifications according to their requirements and select the competent
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person to develop the EHR system in local.

• Customize and configure the workflow to fit the institution’s needs
and workflow. This step includes setting up user roles, access controls,
data fields and other system parameters.

• Migrate data to the system from existing systems (paper records for
example). This step needs to be done carefully to ensure accuracy and
avoid data loss, but most importantly to maintain the privacy of the
existing EHR in the healthcare institution.

• Train each user to be effective in using the system and to make the
transition smoother [McAlearney et al. (2012)].

• Test the new system for a varying duration before the full-time use, to
check good functionality of each unit of the system and their synergy,
to identify and resolve potential technical issues, or security problems
[Aguirre et al. (2019)]. This step allows to ensure the reliability of the
new system in terms of EHR system quality standards.

• Use of the new EHR system in the healthcare setting and close moni-
toring by either the EHR vendors (in Remoted-hosted ssytems) or the
IT team (in physician-hosted systems).

The transition to the adoption of EHR systems involves many challenges.
In fact, implementing EHR systems require significant financial investments
and technical resources, but most importantly, it needs to prioritize data
security and privacy. Medical institutions invest in robust measures to pro-
tect patient data and to stay compliant with regulations. But still, there
are clinicians and patients that expressed concerns about potential ”infor-
mation leakage” ( [Jha et al. (2009)], [Archer et al. (2011)], [Yau et al.
(2011)], [Priestman et al. (2018)]). On another hand, it exists reviews in the
litterature that shows mixed observations on EHR quality, adoption and sat-
isfaction. In [Lo et al. (2007)] the adoption of an EHR system did not signif-
icantly improved their average time spent in treating patients across all spe-
cialties. Also, when the training is not done properly, EHR implementation
may result in clinicians spending more time to retrieve the correct informa-
tion, and thus impact on their efficiency ( [Skinner et al. (2011b)], [Sockolow
et al. (2012)], [Noblin et al. (2013b)]). Moreover, system inherent problems
(technical issues or slowness of the system) may be challenging barriers for a
efficient EHR system utilization, and impact negatively on the workflow as
well, as mentioned in ( [Alsohime et al. (2019)], [Al-Rawajfah & Tubaishat
(2019)], [Bruns et al. (2018)]). Other important aspects in EHR system
evaluation, such as resources constraints (system updates/maintenance, lim-
ited access, limited network), or related to the lack of administrative/IT
support, etc., can be potential barriers for EHR systems adoption ( [Tsai
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Figure 2.6: Mind map of barriers in the use of EHR systems. Source: [Tsai
et al. (2020)]

et al. (2020)]), as shown in Figure 2.6. But ultimately, by addressing these
challenges and following best practices for EHR implementation, healthcare
facilities can exploit the full benefit of EHR.

2.3 Subject definition
In this section, I will describe the state-of-the-art in multimodal EHR within
medical studies and how their use offers novels perspectives for comprehen-
sive research and improved patient healthcare.

2.3.1 The use of multimodal EHR in medical studies
Clinical research involves developing knowledge that helps in identifying the
best treatments and practices for a wide range of diseases and for different
conditions. It has undergone significant evolution over the past years, from
simple observations to modern large-scale healthcare studies involving large
participant cohorts. Through the years, healthcare scientists continue to
innovate, discovering news methods for screening, preventing, diagnosing,
and treating diseases, as well as refining the manner of healthcare delivery.
This process entails extensive research and methods conducted over years
of dedicated effort, that can be considered as a series of decisive questions
leading to the discovery of facts or information that have improved our un-
derstanding of health and human diseases’ mechanisms. The term ”clinical
research” encompasses a broad spectrum of research questions and method-
ologies. From clinical trials by the pharmaceutical industry to develop and
approve new drugs, to the monitoring of healthcare system by facilities to
monitor the ongoing health conditions and the effectiveness of interventions
over time and provide data for public health decisions, all the clinical re-
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search areas relies on data from medical records which often derive from
multiple modalities.

In recent years, clinical research has undergone a significant shift in its
paradigm with the advent of personalized medicine. In clinical research,
personalized medicine is an approach that tailors medical treatments based
on unique characteristics of each patient. These individualities comprise
genetic variations and biomarkers, lifestyle factors and environmental influ-
ences. They are used to identify predispositions to certain diseases, pre-
dict treatment responses and stratify patients into subgroups with different
prognosis. Therefore, personalized medicine is expected to aid to further
guide decisions-making in the prevention, diagnosis and treatment of dis-
eases, in addition to other medical information. Electronic Health Records
(EHR) have facilitated the development of personalized medicine to revolu-
tionize clinical research. They provide comprehensive and real-time access
to a patient’s medical history, genetic information and treatment response.
This helps enhance the precision of clinical trials, enables the identifica-
tion of patient-specific treatment strategies, and improves the efficiency of
data collection and analysis. Consequently, the convergence of personalized
medicine and EHRs is paving the way for more effective and individualized
healthcare solutions, ultimately transforming patient outcomes and advanc-
ing medical research.

Electronic Health Records represent a rich repository of patient data
that includes various types of information, making them inherently multi-
modal. The multimodality refers to the presence of diverse data types or
data formats (image, text, video, audio, genetics for instance), that can co-
exist for a same patient. These modalities can be divided into two main
types of data: structured and unstructured. Structured data refers to infor-
mation that is organized and easily searchable, such as patient descriptors
and demographics, vital signs, laboratory results, and medication lists. This
data is typically entered into predefined fields and can be efficiently used
for statistical analysis and reporting. Much clinical research has shown
that many features from structured information in EHRs are a major cause
of preventable death around the world. Among them, the use of tobacco
and alcohol has long been known to cause numerous diseases and compli-
cations, including cancer, heart disease, stroke, infections and pregnancy
complications [Ezzati et al. (2002), Doll et al. (1994b), Saracci (1995), Doll
et al. (1994a)]. Also, overweight has been associated to hormones levels al-
terations, and may induce cancer, stroke, cardiovascular disease and type
II diabetes among others [Ezzati et al. (2002), Pati et al. (2023), Ma et al.
(2021), Klein et al. (2022), Powell-Wiley et al. (2021)]. According to pub-
lished studies, the incidence rate of breast cancer significantly varies based
on race, ethnicity, and geographic location [Bray et al. (2024),Youlden et al.
(2014)]. Moreover, patient and cancer information from structured EHR
has allowed to develop widely used prognostic tools for breast cancer such
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as the Notthigham Prognostic Index [Haybittle et al. (1982b)] or Predict-
Breast [Wishart et al. (2010)].

On the other hand, unstructured data includes free-text notes and images.
While this data type may seem richer in information and provide more con-
text, it is more challenging to analyze due to its lack of predefined structure.
Hence the wealth of unstructured data in EHR is often underutilized. Ad-
vances in Natural Language Processing (NLP) and computer vision are now
shifting the trend, enabling the extraction and analysis of this type of data.
Moreover, several studies have demonstrated the value of unstructured data
in clinical research. The first clinical applications for medical reports or im-
ages include assisting healthcare professionals with retrospective studies and
clinical decision making [Cheng et al. (2010), Do et al. (2013), Raciti et al.
(2020), Eloy et al. (2023), Lin et al. (2013)]. Other papers have analyzed
clinical texts in various languages and images to predict survival outcomes
in cancer [Mazo et al. (2022),Harnoune et al. (2021)].

In clinical research, structured and unstructured data can be integrated
for medical investigations. These multimodal EHRs enable a more complex
view of a patient health and deeper insights into disease processed, treat-
ment effectiveness and patient outcomes. Researchers can leverage multi-
modal EHRs to conduct various types of studies, including observational re-
search, comparative effectiveness studies, and translational research [Zhang
et al. (2020)]. For instance, in observational studies, researchers can ana-
lyze general patient descriptors alongside imaging data or gene expression
data to track disease progression or treatment response over time [Yao et al.
(2022a),Rabinovici-Cohen et al. (2020),Rabinovici-Cohen et al. (2022a)]. In
comparative effectiveness studies, multimodal EHRs allow researchers to
compare the outcomes of different treatment approaches based on a combi-
nation of clinical data and patient imaging data [Peeken et al. (2019)].

In conclusion, significant discoveries have been made in clinical research
using EHRs. However, the use of multimodal EHRs has been limited until
now, although it can offer substantial advantages by providing comprehen-
sive health information and enhancing the accuracy and depth of medical
studies. In breast cancer research, there are only few studies [Wang et al.
(2020), Sun et al. (2019),Zeng et al. (2019a)] that have utilized multimodal
EHRs to identify prognostic factors, especially those involving text data.

2.3.2 Challenges in multimodal EHR use in medical studies

While the litterature extensively portrays the potential of Electronic Health
Records (EHR) to revolutionize various aspects of healthcare, it also high-
lights the challenges accompanying it. First of all, the use of multimodal
EHR in medical studies raises significant privacy and security concerns. Pa-
tient health data is highly sensitive, necessitating regulations that govern
its use for research purposes. To protect patient confidentiality and main-
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tain data integrity, researchers must consider these security and privacy
rules. Researchers must adhere to stringent privacy regulations, such as
the General Data Protection Regulation (GDPR) in the European Union
for data protection legislation. However, France has its own data protec-
tion law, the French Data Protection Act (the Act) , which govern the use
and disclosure of protected health information in France. Robust security
measures, including encryption, access controls, and audit trails, are im-
plemented to safeguard EHR data from unauthorized access, breaches, or
tampering [Fernández-Alemán et al. (2013)]. Additionally, researchers must
obtain informed consent from participants, clearly outlining how their data
will be used, shared, and protected. Collaborative research efforts involving
multiple institutions necessitate careful data sharing agreements and proto-
cols to maintain compliance with privacy regulations while facilitating data
exchange. In practice, multiple papers agree on privacy concerns related to
EHR systems, highlighting both technical and ethical limitations [Gariépy-
Saper & Decarie (2021)]. Additionally, inconsistent implementation across
facilities and countries poses significant obstacles to external collaborations.

Using multimodal EHR for medical studies can also be challenging due
to the varying formats of data, which are usually structured differently and
may have different semantics. The integration of diverse data types, such
as text, images or tabular information such as lab results, can complicate
data management and analysis [Zitnik et al. (2019a), Gligorijević & Pržulj
(2015a)]. For instance, gene expression data can be structured as matri-
ces, where each entry represents the expression level of a gene in a sample.
Conversely, free-text reports are unstructured, and each word within these
reports must be analyzed in the context of its surrounding words to gain
deeper understanding of language patterns. Some data modalities present
high dimensionality challenges as well, such as gene expression profiles or a
history of medical reports. All these different challenges make difficult to
define a strong integration method for a multimodal learning study.

Inconsistencies in data entry, arising from variations in terminology, mea-
surement units, and documentation practices, can lead to fragmented or in-
complete datasets. These issues hinder the ability to standardize and harmo-
nize data, which is crucial for accurate analysis and meaningful comparisons
in research. Additionally, the variability in data quality and completeness
across different healthcare facilities and systems further complicates the use
of multimodal EHRs, making it difficult to draw reliable conclusions and
collaborate effectively on a global scale [Häyrinen et al. (2008),Jawhari et al.
(2016)].
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Methodology

Abstract:
The use of multimodal learning in clinical studies involving multimodal

electronic health records (EHRs) represents a notable advancement in scien-
tific research. In my thesis, I use ML techniques to analyze such multimodal
data in the context of breast cancer. The plurality of formats inherent to
multimodal EHR requires using specific machine learning methodologies.

Despite the challenges associated with managing and integrating these
heterogeneous data, these method offer considerable potential for improv-
ing predictive accuracy and personalizing therapeutic approaches. In this
chapter, I give an overview of different machine learning methods applicable
to both tabular and sequential EHR data. Subsequently, I will present the
different families of approaches for integrating these diverse modalities, as
well as techniques for interpreting multimodal learning models, which will
be useful for better understanding model outputs.

Résumé:
L’utilisation de l’apprentissage multimodal dans les études cliniques im-

pliquant des dossiers médicaux électroniques (DME) multimodaux représente
une avancée notable dans la recherche scientifique. Dans le cadre de ma
thèse, j’utilise des techniques d’apprentissage automatique pour analyser ces
diverses données sur le cancer du sein. Les différents formats inhérents aux
DME multimodaux permet de discerner multiples méthodologies d’apprentissage
automatique applicables à l’analyse des DME. Malgré les complexités as-
sociées à la gestion et à l’intégration de données aussi diverses, cette ap-
proche offre un grand potentiel pour améliorer la précision des prédictions
et adapter les stratégies thérapeutiques. Dans ce chapitre, je donne une vue
d’ensemble des méthodes d’apprentissage automatique applicables aux don-
nées tabulaires et séquentielles des DME. Ensuite, je présente les différentes
méthodes d’intégration de ces diverses modalités, ainsi que des techniques
d’interprétation des modèles d’apprentissage multimodaux, qui seront utiles
pour mieux comprendre les résultats des modèles.
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3.1 Foundations of Machine Learning
Machine Learning is a field of Artificial Intelligence (AI) that aims to teach
machines to learn from data and improve with experience. It can be summa-
rized as learning a function f that applies to input variables X. The form of
the function f is unknown and machine learning algorithms allow to approx-
imate the underlying function. Different algorithms make different assump-
tions or biases about the form of the function and how it can be learned. In
particular, we distinguish parametric models from non-parametric models.

A learning model that summarizes data with a set of parameters of fixed
size (independent of the number of training instances) is called a parametric
model. Regardless of the amount of data provided, a parametric model will
not change the number of parameters it requires [Stuart (2015)]. Parametric
algorithms are most appropriate for problems where the complexity of the
model is controlled a priori.

Algorithms that do not make strong assumptions about the form of the
mapping function are called non-parametric machine learning algorithms.
By not making assumptions, they are free to learn any functional form from
the training data. Consequently, they can accommodate a wide variety of
functional forms. Most ML methods are parametric. In this thesis, I use
both parametric and non-parametric machine learning models.

The two main families of problems addressed by ML are supervised and
unsupervised learning. They differ in the nature of the learning process itself,
and the condition of the training data that is required. Each approach
has different strengths, so the task or problem faced by a supervised vs
unsupervised learning model will usually be different. Unsupervised learning
is a type of ML that learns from unlabeled data. Its goal is to analyze itself
the underlying structure of the input data and to discover patterns and
relationships without any explicit guidance. Given a set of N unlabeled
examples ({xi}) where i = 1, ..., N and xi ∈ Rn, the unsupervised machine
learning model will approximate a function f that will describe the best the
inputs set X. Among the well-known unsupervised ML tasks, clustering,
dimensionality reduction and anomaly detection are illustrated in 3.1

Supervised learning involves training model on labeled data to make
predictions, adjusting itself to minimize error These datasets are labeled
for context, providing the desired output values to enable a model to give a
“correct” answer. Given a training set of N labeled samples ({xi, yi}), where
i = 1, ..., N , and xi ∈ Rn is an input vector and yi ∈ Y is the corresponding
output, Y being the set of all possible outputs, the goal of a supervised
learning algorithm is to approximate a function f that best maps the inputs
to the outputs: yi ≈ f(xi). For a regression task, in which the model aims to
predict a continuous value, the output space Y is Y = R. For a classification
task, where the goal of the model is to predict a label in a finite list of K
categories, Y = {1, 2, ...,K}.
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Figure 3.1: Unsupervised Machine Learning algorithms examples
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Figure 3.2: Supervised Machine Learning algorithms examples

Some common supervised learning algorithms include linear or logistic
regression, random forests (regression or classification), support vector ma-
chines (whether for regression or classification) or Naive Bayes, represented
in 3.2

In this thesis all developed models are supervised learning machine learn-
ing models. Indeed, the main task addressed by this thesis is the prediction
of disease free survival (DFS) status using multiple samples of multimodal
EHRs from the Institut Curie, framing it as a classification task. Models
used for this task will be detailed in the next sections.

3.2 Classical Machine Learning models for tabular
data

This section will delve into the main ML methods used for tabular datasets
in this thesis. We will introduce three (3) supervised machine learning al-
gorithms that can be used both for classification and for regression, but for
this discussion we will only focus on classification task, as this is how we
formulated the problem of DFS prediction. For the prediction of DFS status
using multimodal electronic health records, these models will serve as the
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first steps to have a glimpse of the data distribution and the complexity of
the task, before to delve into more sophisticated solutions.

3.2.1 Random Forest Classifier
Random forests are an ensemble learning method widely used in machine
learning tasks. RF models were first proposed by Salzberg and Heath in 1993
[Heath (1993)], then developed further by Ho in 1995 [Ho (1995)]. The cur-
rent version of random forests was introduced by Breiman in 2001 [Breiman
(2001)]. They are defined as a combination of tree predictors such as each
tree depends on the values of a random vector sampled independently from
the data and with the same distribution for all trees in the forests [Breiman
(2001)]. Decision trees are trained in parallel and each tree casts a unit vote
for the most likely class for input X. The random forests output is the mode
of the classes among all the individual trees composed by the random forest
classifier. To gain a better understanding of random forests, it is essential
to first comprehend its basic unit: the decision tree.

Decision Trees Decision trees are simple and work by partitioning the
input space into cuboid regions, whose edges are aligned with the axes,
and then assigning a simple model (for example, a constant) to each re-
gion [Bishop (2006)]. There are, as trees, composed of nodes that represent
features and branches that represent the answer to a question “asked” on
nodes. Each leaf node represent an outcome, as depicted in figure 3.3. In
this example, the root node is the starting point of a decision tree and rep-
resents the entire input space. It is then divided into regions according to
the first given condition: whether X1 > 0.4 or X1 ≤ 0.4 . The input space
is then divided into two regions depending on the condition and each of
these regions will be subdivided according to splitting rules. This process is
repeated on each derived sub-regions in a recursive manner. The recursion
is completed when the leaf nodes, after which, no further splitting helps for
a better performance in the classification task, is reached.

How does a random forest classifier work? During training, random
forests employs random feature selection to ensure that each tree in the
forests brings a unique perspective of the data and that the trees operate
indepedently from each other. A random subset of features is selected to
split the first node. Given a dataset D with N samples, the model with
first generate M bootstrap samples {D1, D2, ..., DM} by sampling with re-
placement. For each random bootstrap sample Di, a decision tree is built by
randomly selecting a subset of features at each split and splitting the node
based on the chosen feature subset either to optimize a criterion. Common
choices of criterion are entropy or Gini impurity, which must be minimized,
and information gain, which must be maximized.
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Figure 3.3: Example of decision tree partition of the predictor space (left)
and the corresponding decision tree (right)

Entropy The entropy is a measure of information that indicates the dis-
order or randomness of the features with the target. In order to determine
the right splitting criteria for each node, the entropy is computed for each
feature and its potential splits. Its value varies between 0 and 1 and the
optimum split is given by the lower entropy. Leaf nodes which have all in-
stances belonging one class would have a entropy equal to 0. The entropy
is calculated using the following formula:

Entropy = −
∑
j

pj .log2(pj) (3.1)

where the pj represents the probability that a randomly selected example
belongs to class j. In the context of the example shown in figure 3.3, the node
entropy is given by the probability of belonging to either of two classes. Let
us assume that in a fictive dataset of 10 samples, with 7 samples belonging
to class 0 and 3 samples belonging to class 1, then the entropy at the root
node will be calculated using p0 = 0.7 and p1 = 0.3.

Information gain Information gain is the change in entropy from children
nodes to the parent node. It measures the reduction in entropy throughout
nodes and provides the amount of information a feature has in relation to
the output. The feature that has a minimum impurity will be considered
as the root node. It is further used to decide which feature to split at
each step in building the tree. The more homogeneous the child node is,
the more the variance will be decreased after each split. Thus Information
Gain is the variance reduction and can be calculated as by how much the
variance decreases after each split. Information gain of a parent node can
be calculated as the entropy of the parent node subtracted entropy of the
weighted average of the child node.
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Information Gain = Eparent −Avg (Echildren) (3.2)

Gini impurity The Gini impurity, or Gini index is another way of split-
ting a decision tree. The Gini index measures the probability for a random
instance at the node to be misclassifed when randomly labeled according to
the distribution of labels at the node. The lower the Gini index, the lower
the likelihood of getting a misclassification. Its values vary from 0 (highest
level of purity) to 0.5 (random classes assignment). In practice, the Gini
index favors larges partitions and performs only binary splits.

Gini = 1−
∑
j

p2j (3.3)

Pruning After completion of decision trees’ building, the model may tend
to overfit data due to noise or outliers present in datasets. The pruning
process is used to remove redundant or unnecessary nodes in trees. During
that step, a whole sub-tree is replaced by a leaf node, when it is established
that the corresponding decision rule leads to a greater error rate than in
a single leaf. Pruning can be done prior to the completion of the full tree
(pre-pruning), or after the tree is finished (post-pruning).

The entropy and the Gini index are better measures than the misclassifi-
cation rate for growing the tree because they are more sensitive to the node
probabilities. Also, unlike misclassification rate, they are differentiable and
hence better suited to gradient based optimization methods. For subsequent
pruning of the tree, the misclassification rate is generally used.

Advantages and disadvantages By combining multiple predictions from
single decision tree, random forests tend to have high performances [Grinsz-
tajn et al. (2024)], and mitigate the risk of overfitting, which is common with
individual classifiers. In fact, with a sufficient number of decision trees in
a random forest, the averaging of uncorrelated trees lowers the overall vari-
ance and prediction error. Thus, the ensemble model learns less noise and
leads to a model with better generalization ability. In addition, by training
each tree on a different subset of data and features, random forest classifiers
capture a more comprehensive view of the data distribution and allow less
biased prediction. They are also more efficient at handling high-dimensional
data, because only a subset of features is considered during the construction
of each decision tree.

In addition, random forests are intuitive models. For “experts” and “non
experts”, they provide a measure of feature importance, which indicates the
contribution of each feature in the prediction. This can be calculated with
the decrease in node impurity (Gini impurity for example) attributed to
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Algorithm 1 Random Forest classifier algorithm
Training Phase:

Given

• D: training set with N instances {(xi, yi)}Ni=1, where xi is a feature
vector of p features and yi is the label

• K: number of classes in target variable
• M : number of decision trees classifier in the RF classifier

Procedure:

For each tree m = 1, 2, ..,M
1. Generate bootstrapped samples DM from the training set D.
2. Grow a tree Tm using a random feature subset from bootstrapped
samples DM . For a given node in the tree:
(i) Randomly select m ≈√p features from the total p features.
(ii) Find the best split features and cutpoints using the random feature
subset based on a splitting criterion (Gini impurity or Entropy).
(iii) Split the node into two child nodes based on the best selected features
and cutpoints.
Repeat (i) - (iii) until stopping rules are met.
3. Construct trained classifiers Cb of M decision trees {Tm}Mm=1 by re-
peating steps 1. and 2.

Testing Phase:

Aggregate the M trained classifiers using a majority vote. For a test
instance x, the predicted label from classifiers CM is given as:

CM (x) = mode {Tm(x) : m = 1, 2, ...,M} (3.4)
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each feature across all trees in the forest (mean decrease in impurity, MDI
method) or using the permutation importance measure also known as the
mean decrease in accuracy (MDA) method, which identifies the average
decrease in acccuracy by randomly permutating the feature values in sam-
ples [Breiman et al. (2017)]. This interpretation method is widely used in
other machine learning models and this will be discussed in detail in Sec-
tion 3.7. This “white box” particularity is valuable to understand the data,
the predictions and for features selection for further models.

Random forests can also handle missing data by using the similarity of
data points to fill in missing values. For instance, missing points can be
imputed by averaging the values of the k-nearest neighbors in the feature
space. Additionally, they can maintain high performances even with missing
values.

However, the ensemble nature of random forest model results in a high
computational cost and memory-intensive usage when building multiple
trees. As shown in Figure 1, the training process involves repeated splitting
and calculation of splitting criteria, which is time-consuming and resource-
intensive. This can also lead to slower predictions, i.e, a prediction using
a large number of trees requires passing the input through all trees in the
model and then make the predictions slower than in a single model. In
real-world applications, that might require a high number of trees to acquire
higher accuracy, run-time performance may be favored and other approaches
would be preferred.

Another important aspect in random forests being the feature impor-
tance, we must be cautious with datasets that contain features with more
levels or higher cardinality, and those with many unique values. These
can lead to bias in feature importance scores generation and to misleading
interpretations [Louppe (2014)].

In conclusion, random forests offer a powerful and flexible approach to
classification tasks with tabular datasets.

3.2.2 Logistic regression

Logistic regression (LR) is a statistical method used to model the probability
of a binary outcome. It was first developed by Pierre François Verhulst
between 1838 and 1847 [Verhulst (1845)], initially as a model of population
growth and named “logistic”. In machine learning, it is used to predict the
probability of a categorical dependent variable, which is a binary variable
that contains data typically coded as 0 ar 1. In other terms, the LR predict
P (Y = 1) as a function of X and parameters θ used to estimate the logistic
model.

hθ(x) = P (Y = 1|x; θ) (3.5)
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Sigmoid function Logistic regression is an extension of linear regression
for classification tasks. Linear regression models the relationship between
continuous dependent variables (inputs) and one or many independent labels
(predictor). It aims to find the best fitting linear function between input X
and the label Y as: Y = θ0+θ1X+ε, with θ being coefficients or parameters
and ε the error term that represents the deviation of the true value from
the predicted values. While linear regression predict continuous outcomes
with a linear function, logistic regression use the logistic (sigmoid) function
to transform a linear combination of input features X into a probability
value ranging between 0 and 1. The sigmoid function, represented by an S-
shaped curve (Figure 3.4), is the essential mechanism of logistic regression
model and effectively maps any values from the input vector to a probability
within the 0 to 1 interval. This model is commonly used in real-world
binary classification problems. For instance, LR is suitable for DFS status
classification using tabular EHR data. The logistic function is given by:

hθ(x) = P (Y = 1|x; θ) = f
(
θ⊤x

)
,with: (3.6)

f
(
θ⊤x

)
=

1

1 + e−θ⊤x
(3.7)

θ being the parameters vector that is determined by minimizing a cost
function. The cost function estimates the likelihood of observing the given
outcomes in the dataset:

Cost(hθ(x), y) =
{
− log(hθ(x)) if y=1
− log(1− hθ(x)) if y=0

(3.8)

In Equation 3.8, when the actual target is 1, the model’s prediction hθ(x)
should be close to 1. In that case, the cost function should increase the
penalty as hθ(x) goes farther away from 1 and towards 0 and the opposite as
the prediction is close to 1. This function is given by − log(hθ(x)). Similarly,
when the label is 0, hθ(x) have to be as close as possible to 0. Therefore,
the cost function should lower the penalty for values closer to 0 and higher
penalty for values farther from 0 and towards 1. The appropriate function
is given by − log(1− hθ(x)). These functions are described in figure 3.5.

During training, the model estimates the parameters that best fit the
data by optimizing the cost function. This is typically done using iterative
optimization algorithms such as gradient descent.

Gradient Descent In machine learning, gradient descent is used to opti-
mize algorithm during the training phase. The idea is to find the values of
a function’s parameters (the sigmoid function in LR), that minimize a cost
function as much as possible. Gradient descent is an iterative algorithm,
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Figure 3.4: Sigmoid function represented here as σ(z), where z = θ⊤x. It
maps any real-values number into a value between 0 and 1.

Figure 3.5: Cost function for logistic regression.
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that test different values of parameters and update them to reach the opti-
mal ones. I refer the reader to Section 3.3.3 of this chapter that detailed the
gradient descent algorithm.

Algorithm 2 Logistic regression algorithm
Training Phase:

Given

• D: training set with N instances {(xi, yi)}Ni=1, where xi is a feature
vector of p features and yi is the label

• α: Learning rate
• max_iter: Number of iterations

Procedure:
Define the cost function (example of the binary cross entropy loss):
J(w, b) = − 1

m

∑m
i=1

[
y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

]
,

where ŷ(i) = σ(w · x(i) + b) is the predicted probability.
repeat

for all training samples {(xi, yi)} do
Compute prediction: ŷ(i) = σ(w · x(i) + b)
Update the weights w as:
w := w− α 1

m

∑m
i=1(ŷ

(i) − y(i))x(i)

Update the bias b as:
b := b− α 1

m

∑m
i=1(ŷ

(i) − y(i))
end for

until convergence or the maximum number of iterations is reached.

Testing Phase:

For each test sample x
(i)
test :

• Compute the predicted probability: ŷ
(i)
test = σ(w · x(i)

test + b)

• Classify x
(i)
test based on a threshold (0.5 for instance):

• ŷ
(i)
test =

{
1 if ŷ(i)test ≥ 0.5

0 if ŷ(i)test < 0.5

Regularization techniques Overfitting is a common problem in all ma-
chine learning models. In order to avoid overfitting, we use additionnal
techniques that include regularization techniques. Those strategies consist
in adding a penalty term to the loss function to control the model complexity
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during the fitting process. Common methods include the L1 regularization
or Least Absolute Shrinkage and Selection Operator (LASSO) regression,
the L2 regularization or Ridge regression and the Elastic Net regularization.

• The Lasso regularization adds the sum of the absolute values of mag-
nitudes of the coefficients as a penalty term to the loss function.

J(θ) + λ
∑
i

|θi| (3.9)

where the J(θ) is the original loss function and λ is the regularization
parameter that controls the strength of the penalty.

• The Ridge regularization adds the squared magnitude of the coeffi-
cients as a penalty term to the loss function.

J(θ) + λ
∑
i

θ2i (3.10)

• The Elastic Net linearly combines both L1 and L2 penalties.

J(θ) + λ1

∑
i

|θi|+ λ2

∑
i

θ2i (3.11)

The main difference between the LASSO and the Ridge regularization meth-
ods is that the LASSO shrinks the less important features’ coefficients to
zero, and thus remove them from the prediction. LASSO can be used in
feature selection for some tasks in case we deal with high dimensional data.
The Ridge regularization creates models with smaller coefficients for those
features and this results to a model that considers all features but with re-
duced importance. The Elastic Net regularization provide a balance between
the sparsity of the L1 and the smoothness of the L2 regularization.

Advantages and disadvantages LR is an easy algorithm to implement
that works well for linearly separable data, and is computationally efficient.
Compared to ensemble models such as random forests described in Section
3.2.1, LR requires less processing and memory. It makes it more appropriate
for large scale datasets and real-worlds applications. LR is interpretable as
well, as its predicted coefficients give inference about the importance of each
feature and make it simple to understand the relationship between predictor
variables and the probability of the outcome. LR is less prone to overfitting
compared to random forests classifiers, especially when dealing with high-
dimensional data. However, to help prevent overfitting, previously presented
regularization techniques can be used during the training process. Starting
from the linearity assumption of LR, this algorithm is not suitable for data
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that are not linearly separable. When LR assumes a linear relationship be-
tween input variables and label, this may not always be true, specially in real
world applications. Therefore, this limits its performance when data truly
follows more complex relationships. In those cases, we may need to man-
ually transform or combine features to better fit the linearity assumption.
This feature engineering requirement can be laborious, necessitate domain
knowledge and add an additional step to using LR. Moreover, unlike RF,
LR does not handle missing values inherently, preprocessing steps that are
involved in handling missing data are necessary.

In this part, we presented the logistic regression model as a simple and
efficient algorithm specifically designed for binary classification problems.

3.2.3 Support Vector Machine
Support Vector Machines (SVMs) are one of the most commonly used ma-
chine learning algorithms for both linear and non-linear classification prob-
lems. They have been first developed at the AT&T Bell Laboratories by
Vladimir Vapnik and colleagues between 1992 and 1996 [Boser et al. (1992),
Cortes & Vapnik (1995), Vapnik (1997)]. Their theory is based on learning
non-linear classifiers by using a method called the kernel trick. This kernel
method aims to find the optimal hyperplane that best separates data points
of different classes in a high-dimensional space.

Kernel trick So far, we have discussed on methods used for in ML that
mostly treat classification problems as linear problems. In SVM algorithm,
the key concept consists in using linear classifiers to solve non-linear prob-
lems using a method called the kernel trick. The kernel trick is a powerful
technique that enables SVMs to find a linear decision boundary in a trans-
formed feature space without explicitly computing the transformation. In
fact, many real-world problems are not linearly separable in their original
feature space. To make them separable, we can transform the data into a
higher-dimensional space where a linear separation is possible. This trans-
formation is achieved through a function known as a kernel function.

For all xi and xj in a original input space χ, we can expressed a function
k(xi, xj) in another space ν. The function k : χ×χ→ R is a kernel function
that calculates the dot product of the transformed data points in a higher-
dimensional space. The kernel trick compute the inner product of data
points without explicitly computing their coordinates in that space, which
can be computationally expensive. Depending on the problem, there will
be different kernel functions that will be best suitable for the case. Among
them, we can count:

• Linear Kernel used when data is already linearly separable:

k(xi, xj) = xi · xj
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• Polynomial Kernel for non-linear problems:

k(xi, xj) = (xi · xj + c)d

• Radial Basis Function (RBF) or Gaussian Kernel used for more com-
plex and non-linear relationships by considering the distance between
data points:

k(xi, xj) = exp
(
−∥xi − xj∥2

2σ2

)
• Sigmoid Kernel, similar to the sigmoid function described in Section 3.2.2:

k(xi, xj) = tanh(αxi · xj + c)

Once data points are separated into a higher dimensional space, it is
possible to have a linear decision boundary that separates different classes in
the feature space: the hyperplane. As shown in Figure 3.6, the hyperplane is
a separation line in higher dimension. Support vectors are the data points
closest to the hyperplane. These points are important as they determine
the position and orientation of the hyperplane. SVM relies on these support
vectors to maximize the margin between classes (cf Figure 3.6)

Advantages and Disandvantages SVMs are efficient for classification
problems especially in high dimensional spaces, i.e, when the number of
dimension exceeds the number of samples. The multiple available choices
of kernel functions make it easier to tailor the model to different data types
and problems complexities, including non-linear relationships in data, unlike
certain other models, such as logistic regression for instance. But, on the
other hand, this ability to use non-linear kernels make them less interpretable
than simpler models like logisitic regression. Regarding memory utilization,
SVMs reduce computational usage by avoiding explicit transformation of
data points into higher dimensional spaces. Moreover, it is memory efficient
for predictions, particularly with large datasets and high-dimensional spaces,
as it uses a subset of training points (the support vectors) in the decision
function. Another important aspect of SVM algorithm is that it requires
careful paramaters tuning to make it effective.
In summary, SVM is a robust and versatile algorithm for classification tasks,
capable of handling both linear and non-linear boundaries through kernel
tricks. This method make it a powerful tool for complex data analysis.

3.3 Deep learning for tabular data
The Feed-Forward Neural Network (FFNN) are fundamental models in ML
and provide a basis for more complex architecture. It is the basic type of
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Figure 3.6: The separating hyperplane (in bold line) separates the positive
and the negative samples. The margin γ is the distance betxeen the hy-
perplane and the nearest data points of each class. During training, the
algorithm identifies the optimal hyperplane that separate the best the dif-
ferent classes by maximizing the margin γ. The model learn a linear deci-
sion boundary in the transformed space, which corresponds to a non-linear
boundary in the original space. The circled points are the support vectors.
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Algorithm 3 Support Vector Machine algorithm
Training Phase:

Given

• D: training set with N instances {(xi, yi)}Ni=1, where xi is a feature
vector of p features and yi is the label

Procedure:
Define the kernel function k(xi, xj)
Define the decision function f(x) =

∑
i αiyik(xi, x) + b with α being the

Lagrange multiplier.
repeat

for all {(xi, yi)}, {(xj , yj)} do
Set the number of changed α to zero.
Compute the Error Ei and Ej with Ei,j = f(xi,j)− yi,j
Optimize∗ values for αi and αj

end for
until the number of changed α is zero or the maximum number of itera-
tions is reached

Testing Phase:

For each test sample x
(i)
test :

• Compute the decision function : f(x
(i)
test) =

∑
i αiyik(xi, x

(i)
test) + b

• Classify x based on the sign of f(x(i)test):

– If f(x(i)test) ≥ x, classify x
(i)
test as a positive class

– If f(x(i)test) < x, classify x
(i)
test as a negative class
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artificial neural networks (ANN) and it is characterized by the direction
of the information flow throughout the layers. The first such network had
a single layer and was proposed by Frank Rosenblatt in 1958 [Rosenblatt
(1958)].

3.3.1 Perceptron

Description

The perceptron [Rosenblatt (1958)] is the simplest architecture for Feed-
Forward Neural Networks (FFNNs).

A perceptron is initially a mathematical representation of a biological
neuron. By analogy, the signal received by the dendrites of an actual neu-
ron is represented by the input xj . The electrical signal received by the
synapses and modulated in different amounts is modeled in the perceptron
by the weighted sum of the input features plus a bias term as shown in
Equation 3.12. Its architecture is illustrated in Figure 3.3.1.

The perceptron is a binary classifier that maps input features x =
(x1, ..., xn) to a binary output y ∈ {0, 1} using:

y(x) = g
(
ω⊤x+ b

)
(3.12)

where ω represent the weights associated with each input xj , that indicate
its importance towards making the prediction and b is the bias, an additional
parameter that helps the model g to adjust the output independently of the
input features. The output of a perceptron is determined by applying an
activation function g. The original perceptron [Rosenblatt (1958)] used the
step function as its activation function. It is defined as:

activation(z) = g(z) =

{
1 if z > 0

0 otherwise
(3.13)

where z = ω⊤x + b is the weighted sum of inputs plus the bias. This
function produces a binary output. Since then, other activation functions
have emerged in more complex neural networks. They will be discussed in
detail in Section 3.3.2.

In what follows, we denote by θ the model parameters: θ = (b, ω). During
training, the perceptron adjusts θ to minimize the errors in predictions.

Given its formulation, a perceptron can only accurately model linearly
separable problems with binary outcomes. But most of the times, the pat-
tern observed in real world data points cannot be separated by a line (or,
in higher dimensions, hyperplane). This limitation has laid the foundations
for the development of more sophisticated models, such as multi-layers per-
ceptrons (MLP) and deep neural networks.
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Figure 3.7: The structure of a perceptron. It is a single layer network with
four parameters: input values, weights and bias, summation and activation
function.

Algorithm 4 Rosenblatt perceptron learning algorithm
Training Phase:

Given
• D: training set with N instances {(xi, yi)}Ni=1, where xi is a feature

vector and yi is the label
• ω ← 0

• b← 0

Procedure:

while not converged do
Compare the true label and the prediction:
errori = yi − g(ω⊤xi + b)
if errori ̸= 0 then

Update the weights and the bias as:
ω ← ω + errori × xi
b← b+ errori

end if
end while
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3.3.2 Multi-layers Perceptrons

Multi-layers percerptrons (MLPs) are an extension of Rosenblatt single layer
perception. By stacking multiple layers of perceptron and by using more
advanced activation functions than the step function, MLPs can solve non-
linear and more complex real world problems (see Figure 3.9 for the MLP
architecture). A few commonly used activation functions are described be-
low.

The Sigmoid Function, as given by Equation 3.7, is the same function
used in logistic regression and detailed in Section 3.2.2. In logistic regression,
the function maps the linear combination of input features to a value be-
tween 0 and 1. But within the framework of multiple layers perceptrons, it
functions as a non-linear activation function that produces a smooth output
between 0 and 1 (see Figure 3.8). Unlike the step activation, it is differ-
entiable, which enables the use of gradient-based optimization (see Section
3.3.3. However, because the derivatives of the sigmoid function are small for
a very high or a very low values of z, its use can cause what’s called gradient
vanishing, which is discussed in Section 3.3.3.

The Tanh function or hyperbolic tangent is also a non-linear func-
tion defined by:

tanh(z) = ez − e−z

ez + e−z
(3.14)

Unlike the sigmoid function, the output of the tanh function ranges
from -1 to 1, i.e, it is zero-centered (see Figure 3.8). This property helps
in centering the data and makes optimization easier, yielding gradients that
are more balanced compared to the sigmoid function.

The Rectified Linear Unit (ReLU) function [Fukushima (1969)] has
become the default activation function for many neural networks because of
its simplicity and its properties. It is defined as:

ReLU(z) = max(0, z) (3.15)

It ranges from 0 to +∞ for positive inputs and is exactly 0 for negative
inputs (see Figure 3.8 ). ReLU promotes sparsity in the network by setting
all negative inputs to 0. This can lead to a more efficient representation
of the data, reduce the likelihood of overfitting and enable computational
efficiency. Nevertheless, one of its main drawback is linked to this sparsity:
when neurons become inactive, that is to say, output zero for all inputs; this
phenomenon is called “dying ReLU”. It happens when weights are updated
in a way to produce only negative inputs for a ReLU unit, which leads to
a general gradient of zero, which prevents further learning. To address this
limitations, several variants of ReLU have been developped: Leaky ReLU
[Maas (2013)], Parametric ReLU (PReLU) [He et al. (2015)] or Exponential
Linear Unit (ELU) [Clevert et al. (2015)].
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Figure 3.8: Some of the most common activation functions: the logistic
(sigmoid) function, the hyperbolic tangent and the Rectified Linear Unit
(ReLU)

3.3.3 Feed-Forward Neural Network
As we described above, the MLP extends the basic perceptron by adding one
or more hidden layers between the input and the output layers, and by using
more complex activation functions. MLPs are specific types of feed-forward
neural networks (FFNNs). FFNNs are merely multi-layer neural network in
which information flows forward, from the input nodes to the output nodes,
while MLPs are fully connected, meaning that each neuron of one layer is
connected to all neurons of the layer before it and of the layer after it. The
first MLP model was released in 1967 [Ivakhnenko & Lapa (1967)].

How do they work?

Training We recall that the aim of training a neural network is to find
the optimal set of parameters θ = (b, ω) that minimizes an error. This
process involves finding the best approximation of a function f∗ into the
parametric space fθ|θ, by adjusting the parameters θ using a training dataset
(xi, yi) and where yi ≃ f∗(xi). The training of a feed-forward neural network
involves two phases: the feed-forward phase and the back-propagation phase.
The calculation done from the input to obtain the output of a FFNN is
known as the feed-forward phase. During this phase, the training dataset
is fed into the network and is propagated forward through the network. At
each hidden layer, the weighted sum of the inputs is calculated and passed
through an activation function. This process continues until the output
layer is reached, and a prediction is made. Once a first prediction is made,
the error between the predicted output and the actual output is calculated,
using a loss function L. Different loss functions are used, depending on the
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Figure 3.9: The structure of a Multi-layer perceptron (FFNN). Each layer is
made up with units known as neurons, the layers interconnected by weights
w, the inputs layer consists of neurons that receive inputs and pass them on
to the next layer. The number of neurons in the input layer is determined
by the dimensions of the input data. The network can have zero or more
hidden layers and they are not exposed to the input or output and can be
considered as the computational engine of the neural network. Each hidden
layer’s neurons take the weighted sum of the outputs from the previous layer,
apply an activation function, and pass the result to the next layer. The final
layer that produces the output for the given inputs. The number of neurons
in the output layer depends on the number of possible outputs the network is
designed to produce. Each neuron in one layer is connected to every neuron
in the next layer, making this a fully connected network. The strength of
the connection between neurons is represented by weights, and learning in
a neural network involves updating these weights based on the error of the
output.
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nature of the task at hand. The most common ones are listed below, where
we denote by yi the actual target, ŷi the predicted value (or fθ|θ), N the
total number of training samples:

• The Mean Square Error (MSE):

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

• The Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|yi − ŷi|

• The BCE:

Binary Cross-Entropy = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

The binary cross entropy loss is used for binary classification tasks. In
the deep learning models developed in this thesis, we used the Binary Cross
Entropy loss as we are dealing with binary classification tasks.

One the loss has been computed, it is then propagated back through the
network, and the weights are adjusted to minimize the loss: this is the back-
propagation phase. The process of adjusting weights is typically done using a
gradient descent optimization algorithm. The process of iteratively passing
the dataset through the network multiple times, and each time updating
the weights to reduce the loss is a form of gradient descent. This process
continues until the network performs well on the training data. But what is
gradient descent and how does it work?

Gradient descent Gradient descent is a method in convex optimization,
which corresponds to using the first order derivatives of the loss function L
to adjust the parameters to be determined, so as to find a local minimum.
The gradient ∇θL (partial derivatives) of the loss function are computed
with respect to each parameter of θ. The resulting gradient indicates the
direction and rate of the steepest increase of the loss function. From here,
the model updates the parameters θ in the direction opposite to that of the
gradient, so as to minimize the loss. The size of this step is controlled by
the learning rate γ ∈ R+:

θt+1 = θt − γ∇θL (3.16)
The term γ∇θL is substracted from the current parameters θt because we

want to take the direction against the gradient, against the local minimum
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of the loss L. This process of computing gradients is repeated and allows
to update the parameters θ until the loss function converges to a minimum
value, or after a predefined number of iterations (epochs) is reached. There
are multiple variants of gradient descent, each of them with defined use
cases and characteristics. They include Batch Gradient descent, Stochastic
Gradient Descent or Mini-Batch Gradient Descent. For a more detailed
description, we refer the reader to the book by Christopher Bishop [Bishop
(2006)].

Challenges of using feed-forward neural networks

Working with neural networks come with various challenges that can affect
the performance or the deployment of the model. We will discuss in this
section few of them that may arise prior, during, or after the training phase.

Data quality and quantity: In general, feed-forward neural networks
require a large amount of data of good quality . Insufficient data can lead
to overfitting, where the model performs well on training data but not on
unseen data. In such cases, alternative machine learning methods should
be considered for tasks and data types that allow it; in addition, one can
explore data augmentation strategies, which consists in generating synthetic
data, if possible.

In addition, poor-quality data may cause poor model performance. This
characteristic is actually common to all machine learning models. Therefore,
we must ensure of the high-quality data before the training phase.

Another challenge related to the dataset is the imbalancedness , when
many more samples belong to one class (the majority class) than the other
(the minority class). In classification problems, the model tends to become
biased towards the majority class and then lead to poor performance for
the minority class. This problem exists in many real-world datasets, includ-
ing EHR datasets. Several approaches have been proposed to address this
issue: We can use resampling techniques such as undersampling or oversam-
pling [Chawla et al. (2002)]; class-weights [Fernando & Tsokos (2022),Rezaei-
Dastjerdehei et al. (2020)] which consist of penalizing the loss of the majority
class more than that of the minority class; or create balanced batches during
training, which allow to sample the same amount of positive than negative
samples during training, to address this problem.

Model Optimization: The optimization phase is a crucial one: the
model parameters are expected to truly minimize its loss. However, the neu-
ral network loss functions are typically non-convex, with many local minima
and saddle points. Optimizers can get stuck in those points, preventing
them from finding the global minimum. Another major problem may occur
when using certain activation functions such as sigmoid functions or hyper-
bolic tangent: the vanishing gradient and exploding gradient phenomena.
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In FFNNs, gradients can become very small (vanishing) or very large (ex-
ploding) during backpropagation. Vanishing gradients make it difficult to
train lower layers, because the parameters are not updating enough any-
more, while exploding can cause numerical instability, with high range of
gradients updates, which then makes the process unstable. Therefore, the
choice of the learning rate is an important step when training a FFNN. A
learning rate that is too high can cause the model to converge too quickly to
a suboptimal solution, while a too low learning rate value lead to a slow opti-
mization process. Adaptative learning rate methods such as Adam [Kingma
& Ba (2014)] can be used to avoid this problem.

Model Generalization: The risk of overfitting (when the model learns
the noise in the training data) is important in FFNNs, due to the possibly
very large number of parameters to learn. We can use regularizations tech-
niques such as L1/L2 regularization as detailed in section 3.2.2, dropout, and
data augmentation to avoid overfitting. Moreover, monitoring the model’s
performance on a validation set and stopping training when performance
starts to degrade is a efficient way to prevent overfitting. This method is
called Early-Stopping. Many of these techniques aim at reducing the com-
plexity of model architectures so as to improve generalization. We will not
give further details about these techniques in this thesis, but we refer the
reader to the book of Christopher Bishop [Bishop (2006)] for more details.

3.4 ML models development and evaluation

Overall, we have seen that developing machine learning models involves
multiples phases, each of them crucial for a reliable and effective model.
Moreover, there are many phenomena associated to those phases that need
to be considered during the model development. Developing a machine
learning involves a systematic approach, starting from problem definition
and data collection to model deployment and maintenance. In this section,
I will depict the whole pipeline to build a supervised model that can be
deployed and used for real-world tasks. I will divide the pipeline into 3
main phases: (i): Prior-to-training phases, (ii) Training phases and (iii)
Post-training phases.

Prior-to-training phases: These phases include significant steps in
the process of building a machine learning model. First, we need to clearly
define the problem, namely the main objectives, and the scope and the
constraints linked to the project. It is essential to understand the task, de-
termine available IT resources, time and data before getting into the model
development. Secondly, we will focus on data-related steps: data collec-
tion, data preprocessing and feature engineering. This is probably
the most important step in this process. After gathering relevant anno-
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tated data, we will evaluate the quality of the data to ensure it is accurate
and complete. Next, data preprocessing can include cleaning steps, such
as handling missing values, outliers or noise, normalize or standardize the
data, encoding techniques for certain features (binarization, one-hot encod-
ing etc.). Moreover, we need to choose a suitable data format for the task.
After that, a feature engineering steps comprises feature selection, which
aims at identifying and selecting the most relevant features for the model,
and feature creation, which consists in generating new features from existing
features. Finally, we will split the cleaned data into three different sets: the
training set, that will be used to train the model, which corresponds to the
highest proportion of the data (around 70% in general), the validation set,
that will be used to evaluate the model during the training and prevent over-
fitting (around 10% of the data), and the test set that will be kept unused
until the end of the training and that will help determine the performance of
the model on until now unseen data (it represents around 20% of the whole
dataset).

By the end of these phases, we must ensure that the data is accurate
and adapted for the task and for the model.

Training phases: As presented in previous sections, the aim of these
phases is to learn patterns within the data, i.e, to find the best approxima-
tion of a function f∗ by adjusting the parameters θ = (b, ω) using and a
training dataset (xi, yi) such as yi ≃ f∗ (xi). We first will need to select a
model by choosing the suitable machine learning model or the appropriate
architecture for deep learning models, based on the problem. We only focus
on some machine learning models in this discussion, but it also applies to
other variants of supervised machine learning models (Gradient Boosting,
Convolutional Neural Networks, Recurrent Neural Networks etc.).

After that, the training phase as described in previous sections is com-
puted with the appropriate IT resources. During that phase, the parameters
θ of the model are optimized, and in parallel we must tune the set of hy-
perparameters of the model.

What are hyperparameters? Until now, we only mentioned the parame-
ters θ that are used to best fit the model to the data. The hyperparameters,
by contrast, are all the parameters whose values can control the learning
process and determine the model parameters. They include the number of
trees, the maximum depth of trees or the criterion for the split, in RF clas-
sifiers, the regularization penalty or the regularization coefficient in LR or
SVM, and the learning rate, the topology of the network, the optimizer or
the regularization for deep learning models. The difference between param-
eters and hyperparameters is that the hyperparameters cannot be inferred
while fitting the model to the data, unlike the parameters. However, most
performance variations can be attributed the the hyperparameters. So, it
is an important step to tune the hyperparameters in order to tweak model
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performance for optimal results.
Several methods have been developed to find the best set of hyperparam-

eters for a given model. Among them, we can use Grid Search [Hsu et al.
(2003)], which is an approach where a predefined set of hyperparameters
and their values are specified, and the model will be trained and evaluated
for all possible combinations. This method is simple to implement, but
computationally expensive because all the combinations will be considered.
Another method is the Random Search [Bergstra & Bengio (2012)]. In this
case, the hyperparameters values are sampled randomly from predefined
distributions and the model is trained and evaluated on random combina-
tions. This method is more efficient in high dimensional hyperparameter
spaces, however, we can miss optimal combinations, since the search is ran-
dom. Finally, the Bayesian optimization method [Osborne et al. (2009)]uses
probabilistic models to model the performances of hyperparameters config-
urations and to select the next set of hyperparameters to evaluate based on
expected improvement. This method is efficient because it can find optimal
hyperparameters with fewer combinations tested, but it is more complex to
implement and computationally intensive. For this thesis, all the hyperpa-
rameters have been tuned using this last method.

These training phases are completed once the best model is chosen, i.e,
we select the model with the optimal parameters and hyperparameters sets
trained on the training set and with the best results with the validation sets.

Post-training phases: In these phases, we evaluate the model on
the unseen set: the test set, in order to determine its ability to generalize
to new data. In Machine Learning, there are multiple metrics that are
commonly used to monitor the performance of the model. In the context
of classifications tasks there are terms used to describe model’s predictions:
a true positive (TP) occurs when the model correctly labels an instance of
the positive class, a true negative (TN) is when the model correctly labels
an instance of the negative class, a false positive (FP) is when the model
incorrectly labels as positive an instance that is actually negative, and a
false negative (FN) occurs when the classifier predicts the negative class
while the instance was actually positive.

The threshold is another important concept in model evaluation. In
deep learning, models predict probabilities of an instance belonging to the
positive class. These probabilities are converted into class using a threshold.
If the predicted probabily is for instance above a given threshold (0.5 by
default), the instance is classified as positive and negative otherwise.

Let us note that the metrics presented here are also used in the hyperpa-
rameter tuning step described in the previous section, but also in all machine
learning models presented in this thesis. I will present few of them used for
classification task, which are the ones mainly used in this thesis.
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Figure 3.10: Confusion matrix

• Precision and Recall: The Precision is defined as the proportion of
true positives among all predicted positives, while recall or sensitivity
is the proportion of true positive among all actual positives. The Pre-
cision score demonstrates the ability of a classifier to correctly predict
positive samples and the recall is intuitively the ability of the classifier
to find all positive samples. The best score for Precision and Recall is
1 and the worst is 0.

Precision =
TP

(TP + FP) (3.17)

Recall(Sensitivity) = TP
(TP + FN)

(3.18)

• F1-score: This metric is the harmonic mean of precision and recall,
and provides a single score that balances both precision and recall.
This metric is suitable for imbalanced datasets.

F1-score = 2× Precision× Recall
(Precision + Recall) (3.19)

• Confusion matrix: It is not by definition a metric, but it is a table
that allows to display the TP, TN, FP and FN proportions. It is
generally in the following format:

• APS and Precision-Recall curve: The Average Precision Score
(APS) is calculated by integrating the precision values over all possi-
ble recall levels. This metric shows the ability of a classifier to correctly
predict accross all possible thresholds. The Precision-Recall curve (PR-
curve) is the graphical representation of the trade-off between precision
and recall for different thresholds. APS is a scalar value that summa-
rizes the PR-curve. Its range is from 0 (bad performance) to 1 (good
performance). APS is suitable for imbalanced datasets where positive
class is rare.
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• AUC-ROC and ROC curve: The Receiver Operating Characteris-
tic (ROC curve) plots the trade-off between the TP rate and the FP
rate. It provides a visual summary of the model’s ability to discrimi-
nate accross different thresholds. The AUC-ROC score (Area Under
the ROC curve) is calculated by integrating the area under the ROC
curve. As previous metrics, it ranges from 0 to 1. A random classifier
has an AUC-ROC of 0.5.

3.5 Deep Learning for sequential data

I now describe in depth deep learning algorithms that can learn from se-
quential data. Although they have typically been developed in the context
of Natural Language Processing for sequences of letters or words, they can
be extended to learn from any sequence, including sequences of DNA base-
pairs or amino acids in bioinformatics, and sequences of medical events in
the context of EHRs.

3.5.1 Key concepts of natural language preprocessing

Before we dive into models for sequential data, we will present some of the
concepts that form the foundation of NLP and that are essential for building
applications that handle sequences effectively.

Tokenization is a the first step in many NLP pipeline. It is the process
of breaking down sequences into smaller units called tokens. These tokens
can be words, subwords, characters, or sentences, depending on the level of
tokenization. Each token will be turned into a vector representation that
are suitable for computational analysis.

Name Entity Recognition (NER) is an NLP method that aims to
identify and classify named entities (e.g people, organizations, locations) in
an unstructured text. It is particularly useful for quickly extract information
from a large amount of unstructured data.

The Stemming and Lemmatization steps aim to reduce the dimen-
sionality of the text data and deal with word variations. The Stemming
method reduces each word to its base or root form by removing suffixes.
The Lemmatization is an alternative, that will use the base form of the
word based on the vocabulary or the morphological analysis.

Stopwords represent most common words that carry little semantic
values (“the” or “and”: for instance). One main step in NLP pipeline is the
stopwords removal. This step reduces noise and focuses on more meaningful
words. Stopwords lists are readily available in public package and in many
languages.

Token embedding or word embedding is a crucial step in sequential
models. It allows to define a meaningful representation for tokens. In the
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context of deep learning models for sequential data, defining a word embed-
ding method enables a representation of word as dense vectors in continu-
ous space, which vector captures the semantic meanings and relationships
between items in the sequence.

3.5.2 Transformers and Attention mechanisms
Until recently, models such as Recurrent Neural Networks (RNN) and Long
Short-Term Memory neural networks (LSTM) have been the state-of-the-art
models for Natural Language Processing (NLP) tasks. These deep learning
methods are popular types of neural network architectures for sequential
data processing. As shown in Figure 3.11 their architecture have directed
circular connections that allow them to maintain the memory of the latest
inputs.

As presented in Section 3.3, training neural networks with gradient based
learning and backpropagation [Hochreiter (1998)] can be challenging for long
sequences due the vanishing gradient phenomenon. In RNNs, this problem
make it difficult for the network to learn long-range dependencies. LSTMs
adress the vanishing gradient problem by leveraging gating mechanisms to
control the flow of information and grandients. As a result, LSTM have
become widely used in different NLP applications. More recently, the use
of encoder-decoder LSTMs methods has started to emerge for certain appli-
cations such as machine translation [Sutskever et al. (2014),Bahdanau et al.
(2014)].

However, the recent advent of more modern deep learning architectures
has revolutionized the NLP field. The “Attention is All You Need” paper
[Vaswani et al. (2017a)] has introduced a novel deep learning architecture in
2017 for NLP tasks: Transformers. Transformers have had a major impact
on NLP and have found applications in various other domains. The model
relies on attention mechanisms to capture the dependencies between words
in a sentence, bypassing the need for recurrent neural networks (RNNs or
LSTMs).

Attention mechanisms The core idea behind Transformers is attention
mechanisms. They allow models to focus on different parts of the input se-
quence when making predictions, rather than treating all inputs equally. In
encoder-decoder based models (RNNs or LSTMs), the model’s final predic-
tion is made based on the final hidden state of the encoder, which may not
greatly capture long-range dependencies in the input sequence. With the
attention mechanism, the model selectively pays attention to certain parts
of the input sequence when generating output. The first applications that
made use of the attention score were natural language transduction tasks, or
sequence-to-sequence (Seq2Seq) tasks. Seq2Seq tasks consist in transform-
ing an input sequence into another output sequence (machine translation
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Figure 3.11: RNN unit (left) combines the input xt with a hidden state ht−1

that captures information about previous inputs at t − 1 in the sequence
through an activation function σ. The LSTM units (right) have a more
complex structure with gates that control the flow of the information. The
key feature in LSTM is the ability to maintain a cell state ct which allows
information to flow unchanged across many time steps. Moreover, we count
many gates, including the input gate it, the forget gate ft and the output
gate ot, that allow to selectively learn information to retain and to discard
over time. We denote ⊙ as an element-wise multiplication. The input xt
is combined with the hidden state ht−1 from the previous input through an
input gate it which controls how much new information from the current
input should be added to the cell state. the same information is given to a
forget gate ft that controls the amount of information retained. The output
is given by the output gate ot and combines the actual input xt and the
information from the cell state ct to generate a activation vector as the
output of the unit. The output represent the hidden state at t.
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for instance). To do so, the most suitable method was the use of an encoder-
decoder architecture to first process and encode the input sequence to fixed-
length context vector and use the decoder to generate the output sequence
from the encoded information. In modern Seq2Seq models, the attention
mechanism is incorporated to allow the decoder to focus on the important
parts of the input sequence at each step of the decoding process, instead
of relying on a single fixed-length context vector. The important parts are
determined by the attention score, which is a numerical value that informs
about the relevance of each specific element in the input sequence. These
methods have significantly improved the performance achieved for Seq2Seq
tasks, especially for longer sequences. In the “Attention is All You Need”
paper [Vaswani et al. (2017a)], the attention mechanism has been reformu-
lated into a general form that can be applied to many NLP task. Its concept
relies on a function that maps a query and a set of key-value pairs to an
output.

Query, key and value and Scaled-dot product Queries Q, keys K
and values V are the three main components used to compute the attention
score. For each item in the input, the model generates these three vectors
Q, K and V .

Queries, keys and values are so named by analogy to retrieval systems.
For instance, when we want to make a scientific search on a search engine,
this latter will map a query (the text put in the search bar) against a set of
keys (article titles, abstract) associated with the most reliable results, and
finally shows the most suitable articles for your research: the values. The
query, key and value vectors for a given input item (typically, a token) x are
obtained as projections of this input: the query vector of dimension dk is
obtained as q = wq · x, the key vector of identical dimension dk is obtained
as k = wk ·x and the value vector of dimension dv (often chosen to be equal
to dk, but not necessarily) is obtained as v = wv · x. The attention weight
between a query qi and a key kj , α(qi, kj), scores the compatibility between
the query and the key.

Let us assume that we want to perform machine translation from French
language to English language of a given sentence. During training, the out-
put sequence is fed to the model to allow the model to learn the translation
between the two languages. At a particular word xi in the English sentence
(represented by the query qi), the keys ki are the representation of all words
xj in French sentence and the values vj are the words to be translated . At
a particular word in the sentence, the attention score computed between the
query qi and the key kj demonstrates the importance of the key to predict
the query in the output sentence. Then, the attentions scores are used to
weigh the values vj , which represents words to be translated. The higher
the score is, the more that word is important for the output.
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Figure 3.12: Scaled dot-product (left) and Multi-Head Attention module
(right) [Zhou et al. (2019)]. Attention scores are computed using the scaled
dot-product. Multi-head attention involves applying the scaled dot-product
attention mechanism in parallel across multiple attention heads The outputs
of each head are concatenated and linearly transformed to produce the final
output.

By definition, the attention score represents a weighted sum of the at-
tention values [Bahdanau et al. (2014)].

Attention(q, k, v) =
∑
i

α(q, ki)Vi (3.20)

In the [Vaswani et al. (2017a)] paper, the weights αi are determined by
a compatibility function between the query and the corresponding key, and
can all be computed simultaneously in matrix form: 3.21.

Attention = softmax
(
QK⊤
√
dk

)
V (3.21)

This function calculates attention weights between all pairs of input to-
kens in parallel. Each element in an input sentence would be attributed its
own query, key, and value vectors, generated by multiplying the encoder’s
representation of the specific element under consideration with three differ-
ent weight matrices WQ,WK and W V that would have been learned during
training.

Is it interpretable? Attention scores can be visualized (see Figure 3.13).
They can be further inspected to provide insights into the model’s decision-
making process. By examining which part of the input sequence the model
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Figure 3.13: Attention scores between tokens of two sentences in a transla-
tion task. The brighter the square is the higher the score is between the two
corresponding tokens [Bahdanau et al. (2014)].

has focused to output the prediction, we can infer important parts within
the input for a given task (text classification, sentiment analysis, etc.). In
this example of machine translation 3.13, we can tell which words in the
source sentence the model is attending to for each word generated in the
predicted translated sentence.

In addition, attentions scores can be used to analyze model errors by
looking at the model’s focuses with incorrect predictions. It can give in-
sights on the model behavior and its potential biases. Thus, it can help
researchers to better refine and improve the model. Attention scores pro-
vide some degree of transparency in model outputs, which can be crucial
for certain applications, such as healthcare research. However, according
to certain researchers, attention is not necessarily associated to importance,
and attention scores can even be inconsistent and noisy predictors [Jain &
Wallace (2019),Wiegreffe & Pinter (2019), Serrano & Smith (2019),Pandey
et al. (2022)]. They often do not correlate with other measures of feature im-
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portance, such as gradient-based methods [Jain & Wallace (2019),Serrano &
Smith (2019)]. In these studies, the authors did experiments that show that
removing features considered as being important by the attention scores lead
to less decision flip in the model than the features described as important by
gradient-based models [Jain & Wallace (2019),Serrano & Smith (2019)].Ad-
ditionally, in certain cases, various attention distributions will still have the
same output predictions [Jain & Wallace (2019)]. In another study [Bai et al.
(2020)], the authors demonstrates that, in NLP tasks, attention mechanism
can focus on uninteresting tokens because of an effect they called ”combina-
torial effect”. Nonetheless, attention scores can offer a form of explanation
for the model’s output in certain NLP taks. Attention mechanisms usually
provide faithful explanations in syntax-related tasks, such as Part-of-speech
task or syntactic annotation [Clark et al. (2019),Vig & Belinkov (2019)]. On
the other hand, Zhang and al. [Zhang et al. (2018)] agree to the ability of
attention scores to capture the importance of abstract features when dealing
with images. In all cases, attention scores should be combined with other
interpretability methods to ensure a comprehensive understanding.

Finally, we have to admit that interpretability remain a pressing concern
for many NLP models (details on 3.7), especially as modern deep learning
models become increasingly complex, despite their high performances.

Transfomers’ architecture Transformers are composed of encoder and
decoder stacks, where each layer consists of multi-head self-attention and
feed-forward neural networks, followed by layer normalization and residual
connections, as depicted in Figure 3.14

The multi-head attention mechanism extend to attention mechanism
(heads) by running multiple heads in parallel (Figure 3.12). Each head oper-
ates independently. The final model’s output is the concatenation followed
by a linear transformation for each head’s output, given by Equation 3.22
and 3.12. It allows the model to focus on various parts of the sentence
simultaneously, improving its ability to understand context.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
0,where

headi = Attention(QWQ
i ,KWK

i , V W V
i )

(3.22)

The cross-attention module extend the capabilities of traditional trans-
former architectures to handle multiple modalities of data, in a unified
framework. In a cross-attention module, the attention mechanism computes
weights between the elements of the query sequence and the key-value pairs
of another sequence. The formula for cross-attention is similar to that of
self-attention but applied across different sequences.

Training transformers Training steps are the same as training a basic
deep learning model (FFNN) as described in Section 3.3.
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Figure 3.14: Transformers architecture as proposed in [Vaswani et al.
(2017a)]. This model consists of an encoder and a decoder. The encoder lay-
ers (left) includes multi-head self attention mechanism and a FFNN, while
the decoder layer (right) includes a additional multi-head attention mech-
anism over the encoder’s output. Let us recall that an encoder-decoder
architecture is used for Seq2Seq tasks. For classification task, the encoder
part is only considered.
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Advantages and Disadvantages Transormers have outperformed many
languages modeling approaches, mostly in applications such as Seq2Seq mod-
els and classification tasks. Their architecture offers a significant advantage
for the NLP field. The scalability and parallelism of transformers make
them highly efficient for training on large datasets. In fact, they can pro-
cess mutliple parts of a sequence at the same time. Since its introduction,
the transformer architecture has become the basis for many state-of-the-art
models in natural language processing, including Google’s BERT (Bidirec-
tional Encoder Representations from Transformers) [Devlin et al. (2018)]
and OpenAI’s GPT (Generative Pre-trained Transformer) series [Radford
et al. (2018), Radford et al. (2019), Brown et al. (2020)]. But despite their
impact on the NLP field, transformers still struggle with many aspects. First,
transformers require large amonts of data to train effective models. For in-
stance, the well known chatbot ChatGPT was trained on a massive corpus of
text data, around 570GB of datasets, including web pages, books, and other
sources. Additionnally, training and running transformers models need a
great amont of computational requirements that are often inaccessible for
most of the facilities and make it difficult to democratize modern AI.

3.5.3 Pretrained Models

All machine learning models that have been previously trained on a large
dataset and can be used as a starting point to a downstream task are called
pretrained models. Pretrained models are common in certain fields such as
NLP, computer vision or speech recognition. For this thesis, we will focus
only on the NLP field. Pretrained models facilitate transfer learning by al-
lowing users to leverage the knowledge caputred during the pretraining task.
Pretrained models demonstrate enhanced transfer learning capabilities,
that make them more adaptable to new tasks.

How does it work? In the pretraining process, a model is trained typ-
ically on a large dataset to learn general features of the data. The aim is
to expose the model to a wide variety of context and the language patterns.
The idea is to leverage a large amount of unlabeled data to learn mean-
ingful representations that can be further adapted to other tasks further.
The model is trained in an unsupervised or self-supervised manner, mean-
ing that it has to learn from the data itself without any other information
(labels for instance). Outputs are dense vector representations of words,
phrases, or sentence. Those embeddings capture semantic information from
the input, learned from the pretraining. Common techniques that include
Masked Language Modeling (MLM) or the Next Sentence Prediction (NSP)
will be discussed in detail in Sections 3.5.3 and 3.5.3.
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Figure 3.15: BERT architecture consists of a n stacked encoders blocks. n
= 12 for Bert_base and n = 24 for Bert_Large.

Why do we pretrain? Pretraned models provide a meaningful founda-
tion for many NLP tasks. First, by starting the fine-tuned task with already
adjusted weights learned during the pretraining, rather than from scratch,
it allow a gain of training time and performance, and a computational re-
sources savings. Pretraining allows downstream models to be optimized
quickly and it tend to facilitate generalization to new tasks. Moreover, the
downstream task require less labeled data to converge and to make it effi-
cient in performance.

Bidirectional Encoder Representations from Transformers (BERT)
The BERT (Bidirectional Encoder Representations from Transformers) have
been introduced in 2018 by researchers in Google AI [Devlin et al. (2018)].
BERT is a transformers based deep learning model that was designed to
pretrain deep bidirectional representations of words by jointly conditioning
both left and right context. It has achieved state-of-the-art results on a
variety NLP applications and represent in recent language method one of
the most powerful approach. The BERT model has been pretrained on un-
supervised tasks (MLM and NSP) on a large corpus of 800M words called
BooksCorpus [Zhu et al. (2015)] and the English Wikipedia (2500M words).
BERT is an open source model and its architecture is shown in 3.15

Bidirectionality Most of the NLP models that preceded BERT were
unidirectional, meaning that the model processes sequences in a single di-
rection (right to left or left to right) . The BERT model considers both
preceding and following words to form the context of a word. This leads to
a broader view of input context and a deeper understanding of the language
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Figure 3.16: BERT input representation. The input embeddings are the
sum of the token embeddings, the segment embeddings and the position
embeddings.

patterns.

BERT input representation The input representation for BERT is
obtained using many embedding layers. A visualization of the input is shown
in 3.16

The first layer is the input sequence. It refers to the input token sequence
that can either contains one sequence or two sequences packed together in
Seq2Seq models. The [CLS] (stands for classification) token always begin a
sentence. The [CLS] token is an important token, as its final hidden state
is used to represent the aggregated sequence for classification tasks [Devlin
et al. (2018)]. [SEP] is another BERT special token that separates successive
sentences. The second embedding layer is called segment embedding. It
reflects the alternation of representations throughout sentences. Also called
token_type_ids embeddings, this layer contain a vector : [0, 0, ..., 0,
1, 1, ..., 1, 0, 0, .., 0] where the first sequence of tokens with the
token type ID = 0 corresponds to sentence A, and the second with the
token type ID = 1 corresponds to the sentence B. These two token type ID
distinguish two following sentences. The position embeddings as its name
shows the position of the sentence within the whole sequence. For several
reasons related to computational efficicency and model architecture, that
will be detailed in the chapter 6, BERT is designed to handle a maximum
input sequence of 512 tokens. Therefore the position embedding is a defined
by a sequence that starts at 0 up to 511.

Masked Language Modeling MLM is the first pretraining phase
used in BERT. This concept was used in earlier litterature with the name
Cloze procedure, a tool that measures the effectiveness of communication
[Taylor (1953)]. In this pretraining task, the model is trained to predict
masked words using the context provided by the remaining words around
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the masked words. The final hidden state output vector that contain masked
tokens is fed to a softmax over the entire corpus vocabulary to retrieve the
masked words. As a result, we obtain a probability distribution over the
vocabulary. In BERT, 15% of the words are randomly masked in each input
sequence. The selected tokens are replaced with the BERT special token
[MASK] with a probability of 80%, other tokens are swapped with another
random token with a probability of 10% and the remaining tokens are kept
unchanged.

Next Sentence Prediction The second pretraining task aims to learn
latent representations of sentences in the context of the corpus. It takes
as input a pair of sentences of the corpus. Some of these sentences are
consecutive in a text and are labeled “IsNext”, others are random pairs
from the corpus and are labeled “NotNext”. The model is trained to predict
whether the second sentence in the pair follows the first in the original
text. It is formulated as a binary classification task. During training, for
each input sample, 50% of the time the second sentence is the actual next
sentence in the text and 50% it is a random sentence from the text.

Fine-tuning BERT After pretraining phases, BERT can be fine-tuned
on specific tasks. During the fine-tuning phase, the model is trained end-
to-end, updating the pretrained weights based on the downstream task.
BERT’s transformers-based architecture allows for easy adaptation to many
downstream tasks, including classifcation, named entity recognition, ques-
tion answering, and more. In tasks such as sentiment analysis, topic classi-
fication or Q&A tasks on datasets such as SQuAD (Stanford Question An-
swering Dataset) , BERT has new achieved state-of-the-art results [Devlin
et al. (2018)] , as it benefits from the pretraining’s contextual understanding,
unlike the other methods.

Advantages and disadvantages While BERT offers multiple ad-
vancements in NLP tasks, including its ability to capture bidirectional con-
text, and its pretrained language model approach, which allowed improved
performance and efficiency for several tasks thanks to fine-tuning to spe-
cific downstream tasks, it also come with multiple challenges. First, BERT
requires significant computational resources. The model’s complexity and
size lead to high memory usage and longer training times, which limits its
deployment on devices with not enough resources. We also count among
limitations the token limitation, as mentioned in Section 3.5.3, which can
affect performance on tasks that require full-document understanding. An-
other limiting aspect is that BERT requires domain adaptation. We need to
fine-tune the pretrained model on specialized applications in order to have
optimal results. For instance, to solve NLP tasks in specialized domains
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such as breast cancer reports related corpora, we will need to fine-tune the
model to the new corpora to have better performance. This additional step
can be time-consuming and require the availability of enough computational
resources. However, researchers continue to explore improvements and al-
ternatives to address these limitations for a broader deployment in various
applications.

BERT derivatives Since its release in 2018, many models inspired by
the BERT model have emerged in the NLP community. Each new variant
and extension of the model aims to specialize in certain other aspects of
language modelling. First, we have BERT extensions that have been pre-
trained again with more data and longer sequences, to add more contextual
understanding to the model, such as RoBERTa (Robustly Optimized BERT
Pretrained Approach [Liu et al. (2019a)]). We also have BERT models that
aim to reduce the number of parameters, or to make the model smaller and
lighter, which is more suitable for many facilities with not enough compu-
tational resources. They include for example ALBERT (A Lite BERT [Lan
et al. (2019)]), DistiBERT [Sanh et al. (2019)], or TinyBERT [Jiao et al.
(2019)]. Moreover, the original BERT has been pretrained on a corpus
written in English. Therefore, BERT was only adapted to tasks on En-
glish written texts. Therefore, models pretrained on other languages corpus
have also been developed, for instance, MultiLingual BERT (pretrained on
a large mutlilingual corpus of 104 languages), Chinese BERT [Devlin et al.
(2019a), Devlin et al. (2019b)] (developed by Google among other language
variants BERTs, alongside the original English BERT), or FlauBERT [Le
et al. (2019)] and CamemBERT [Martin et al. (2019)] exclusively pretrained
on French corpora.

Other BERT-like models have been developed for specific domains and
using specific corpora instead of general text data. They include Clinical-
BERT [Huang et al. (2019)], pretrained on the MIMIC III clinical database
[Johnson et al. (2016)], which aims to improve performance on healthcare
related NLP tasks such as clinical text classification or Q&A in the clini-
cal domain. SciBERT [Beltagy et al. (2019)] is another specific BERT-like
model pretrained on scientific publications and allows to enhance perfor-
mance on paper classification task or relation extraction within scientific
literature for instance.

Another notable example derived from BERT is the BEHRT model [Li
et al. (2020a)].Rather than sequences of words, it considers sequences of
medical events and uses longitudinal patients electronic health records for
pretraining and aims to predict future medical events. BEHRT has been
a pionner among BERT models in using longitudinal patients records to
perform medical-specific tasks, paving the way for subsequent models in
this domain: Med-BERT [Rasmy et al. (2021)], CEHR-BERT [Pang et al.
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(2021a)], ExBEHRT [Rupp et al. (2023)] etc. In this thesis, I developed a
model called M-BEHRT, which is an adaptation of BEHRT, tailored to the
specific data and task of my research as fully described in Chapter 5 5.

3.6 Integration methods for different data modali-
ties

Multimodal machine learning is an approach that offers a powerful way to ex-
tract deeper insights from data by combining different data types. In clinical
research, it enables more accurate results by integrating the different infor-
mation from medical images, patient tabular records and clinical notes, for
example. These different modalities are expected to be complementary. For
instance, in oncology, a patient state is characterized by a whole spectrum
of information from different modalities, ranging from radiology or genomics
to clinical reports. For a given patient, multimodal EHR can be character-
ized by the patient’s demographic data (name, age, gender, etc.) that will
give general description of the patient, questionnaires that provide baseline
information about the patient health, laboratory results, MRI results and
clinical notes during the patient’s stay in the hospital, which indicate their
ongoing health state. These different information allow to form a compre-
hensive view of the patient status when doing clinical research. However,
the heterogeneity associated with multimodality remains a challenge when
developing integrative models. First of all, the data have different formats
and require different types of processing. For instance, the demographic
data or biological tests are structured as matrices, whereas clinical notes are
unstructured, in a free text format. In addition, even modalities that have
similar formats (for instance, different types of medical images, or tabular
data encoding different type of information) are not straightforward to com-
bine. Therefore, integrating the different data modalities is for multimodal
machine learning is not straightforward. Multiple integration methods have
been proposed to be able to combine these different modalities [Gligorijević
& Pržulj (2015b),Zitnik et al. (2019b)]. In this section, we will present three
main categories of methods that are currently used for mulitmodal learning:
the early, intermediate and late fusions (see Figure 3.17).

3.6.1 Early integration

In early integration, or feature-level integration, the fusion between the dif-
ferent modalities is done at an early stage 3.17.a. They are combined at
the input level before being fed into the multimodal learning model. This
combination usually takes the form of a concatenation or merging into one
single input representation.

Formally, let us denote the input in each modality i as the-d(i) dimen-
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Figure 3.17: Illustration of early (a), intermediate (b) and late (c) integra-
tion methods.

sional input vector x(i) where i = 1, ...,m and m is the number of modalities.
Early integration is the most straightforward approach, where the input is
a single input vector : x = (x(1), x(2), ..., x(m)), which is a

∑m
i=1 d

(i) dimen-
sional vector. The model is trained with this input vector as input [Alpaydin
(2018)]. Applications of early integration for multimodal learning model in-
clude integration of similar modalities such as multiview ultrasound images,
or MRI data and PET scans, for cancer detection [Qian et al. (2021),Le et al.
(2017)], treatment planning [Lipkova et al. (2019)] or survival prediction [Nie
et al. (2019), Captier et al. (2023)]. The main advantage of this method is
the simplicity of its implementation. In addition, it offers the possibility for
the model to leverage all the mixed information from the beginning and to
learn a combination of patterns. However, concatenating the data may lead
to a high-dimensional feature vector as input. The classifier becomes more
complex with a high number of features, and contains more parameters to
fit. For that reason, it may need a high number of samples as well, if we do
not want the model to overfit.This is not always possible, patient data being
difficult to acquire, and will also require more computational resources.

Early integration also requires all the modalities to be present at the
same time, whereas data can often be missing in one or more modalities for
certain patients. We must therefore consider effective imputation strategies
tailored for each data modalities. Additionally, it will be important to ad-
dress the difference in units and scales of the different modalities within the
input. In fact, the joint space defined by the concatenation of the different
modalities may be difficult to compute for a model.Overall, we can think of
using an early integration approach in scenarios where the concatenation of
the different modalities does not result in an excessively high-dimensional
representation, or where capturing feature-level interactions between modal-
ities is crucial for the task In other cases, other integration methods may be
more suitable.
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3.6.2 Late integration

Late or decision-level integration merges predictions from separate learn-
ers trained with the corresponding representation of each input for each
modality. In other words, each modality is processed independently, and
their outputs are combined at a latter stage 3.17.c. The aggregation can be
achieved using the average of all individual predictions, a majority vote, or
Bayes-based rules [Ramanathan et al. (2022)].

In late integration, each model i makes its predictions for each modality
i: ŷ(i) = f(i)(x

(i))|θ(i), independently and in parallel. The final prediction
among all the m modalities is given by the choosen aggregation method F ,
where, ŷ = F (f(1)(x

(1))|θ(1), f(2)(x(2))|θ(2), ..., f(m)(x
(m))|θ(m)).

There are examples of late fusion in the litterature, used for cancer pre-
diction, with the fusion of MRI images and PSA-blood tests [Reda et al.
(2018)], for survival prediction, with the combination of genomics and his-
tology profiles [Chen et al. (2022)], or for the response to chemotherapy
treatment, with the fusion of MRI or CT scans and EHR [Joo et al. (2021)].

The main advantages of using late integration are that it allows separate
optimization of each modality, it is more flexible with missing data, and it
offers a relatively more suitable dimensionality in input vectors. However,
late integration might lose some correlations between modalities that could
be captured if they were fused earlier. In addition, the final prediction may
be heavily influenced by the modality that is the most dominant modality.
In general, late integration approach can be used when there is no major
interdependencies between modalities.

3.6.3 Intermediate integration

Middle or intermediate integration combines aspects of both early and late
integration 3.17.c. It merges features at an intermediate level of the model,
embedding the different modalities in a common feature space. In deep
learning models, each modality is first processed separately, and their indi-
vidual representations/embeddings are combined into a joint representation
in further layers of the networks. Multiple multimodal learning models that
use an intermediate integration have been proposed, such as multiple ker-
nel learning (MKL) [Lanckriet et al. (2003)] or multimodal cross-attention
mechanisms [Aiello et al. (2023)], among others. In oncology, intermediate
integration has been used for example to combine different imaging modali-
ties for cancer detection [Sedghi et al. (2020),Kumar et al. (2020)] or diverse
multi-omics data for cancer subtyping [Liang et al. (2015)] or survival pre-
diction [Lai et al. (2020)].

Intermediate integration balances the benefits of both early and late in-
tegration, by capturing interactions between modalities while allowing some
independent processing. However, it is more complex to design and to im-
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plement.

3.7 Interpretation of machine learning models

Interpreting machine learning models means extracting insights from the
model’s behavior so as to gain understanding of the underlying relationships
in the data and the features that drive the model’s predictions. Interpre-
tation is important for multiple reasons: (i) it helps with machine learning
model transparency and makes them more understandable to stakeholders;
(ii) it can uncover potential biases in the model, and therefore, allows de-
velopers to debug more easily, (iii) it outlines features that contribute the
most to the model’s prediction, thus providing valuable insights into the un-
derlying mechanisms of the studied outcome, (iv) it allows domain experts
to validate the model’s prediction against their domain knowledge.

Some models are intrinsically interpretable, such as logistic regression
3.2.2 for instance. There are known as white box models. They are designed
to be already transparent and provide visibility into the decision making
process. Applications that require high accountability and trust will most
favor white box models. However, black box models can model more complex
relationships, which can make them preferable. The particularity of these
models is their lack of transparency, i.e, they output results based on the
data, but do not clarify how the predictions are made. The main example
include all deep-learning models and boosting models, among others. For
deep learning models, we cannot easily leverage knowing the the network
parameters to understand relationships between features, and their impact
on the prediction, as they are too numerous. Interpretation methods dis-
cussed in this section will only involve black box models. There are various
techniques for interpreting machine learning models, which can be catego-
rized into model-agnostic interpretations methods and specific interpretation
methods. We review these two categories in detail below.

3.7.1 Model-agnostic interpretation methods

Model-agnostic methods consist in using a separate model to provide ex-
planations. Model-agnostic methods can be applied to all type of models,
regardless of their architecture or complexity. These are post-hoc techniques
that explain predictions without inspecting the internal model parameters.
They often create interpretable approximations or surrogate models that
capture the behavior of the original model to explain, in a more transparent
way. We distinguish global from local model-agnostic methods. Global meth-
ods provide explanations for the average behavior of the model, while local
methods provide explanations for a specific prediction. Local explanations
can also be aggregated into global methods, as detailed in Section 3.7.3.
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Global model-agnostic methods

Global methods are able to describe the average behavior of the machine
learning model to explain. They can output which features were important
in the model construction. Examples of global model-agnostic interpretation
techniques include:

• Partial dependence plots (PDP) [Friedman (2001)], which are a
features effect plot that show the dependence between the expected
prediction and a set of inputs when all other features are marginalized
out.

• Accumulated local effect plots [Apley & Zhu (2020)] are similar to
partial dependence plots but can be used when featuress are correlated.

• Permutation feature importance [Altmann et al. (2010)] measures
the contribution of each feature as the increase in model error when
the feature is perturbed by permutations.

• Global surrogate models approximate the predictions of a black
box model with a simpler but more interpretable model.

Local model-agnostic methods

In contrast to global interpretation techniques, local model-agnostic inter-
pretation techniques provide explanations for a specific prediction of the
model. The general intuition for local model-agnostic interpretation meth-
ods is that the ML predictions in a neighborhood of a given instance can be
approximated by a white box interpretable model. This local model must
mimic the behavior of the original model within a small region around the
instance of interest. The main local model-agnostic methods used for inter-
pretation are LIME and SHAP, which we detail below.

LIME LIME (Local Interpretable Model-agnostic Explanations) was in-
troduced in 2016 [Ribeiro et al. (2016)]. This method can explain individual
predictions of any model by approximating an intrinsically white-box local
surrogate model. The aim of LIME is to understand how the machine learn-
ing model changes when we perturb data samples. It works by generating
a new dataset, consisting of perturbed samples and their corresponding pre-
dictions from the original black box model. It then trains the interpretable
model on this new data samples and weights each instance by its proximity
to the sampled instances. This surrogate model approximates the behavior
of the black-box model locally. The surrogate interpretable model can be
a sparse linear regression model, such as LASSO [Tibshirani (1996)], or a
decision tree. It should be a good approximation of the black box model
predictions locally.
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Mathematically, local surrogate models with interpretability constraint
can be expressed as follows:

ξ(x) = arg min
g∈G

L(f, g, πx) + Ω(g) (3.23)

Where the explanation ξ(x) for an instance x is the model that minimizes
the loss L(f, g, πx) called locality-aware loss in the original paper [Ribeiro
et al. (2016)], which is a measure of how unfaithful the function g is to ap-
proximate f in the neighborhood πx, while keeping the the surrogate model
complexity Ω(g) low. In other terms, it measures how far the explanation
can be compared to the prediction for the instance x of the original model
fIn practice, LIME only optimizes the loss part. The user has to determine
the complexity, by selecting the maximum number of features that the lin-
ear regression model may use for instance, or the depth of the tree if the
explanation model is a decision tree.

SHAP Like LIME, the SHAP (SHapley Additive exPlanations) [Lundberg
& Lee (2017)] is a method for explaining individual predictions. Different
from LIME coefficients, SHAP for feature contributions do not directly come
from a local regression model. Instead, they explain the prediction of an
instance by computing the contribution of each feature to the prediction.
SHAP is based on Shapley values. As shown on Figure TODO, Shapley
values are a concept in cooperative game theory. They provide a way to
fairly distribute the total gains among players based on their individual con-
tributions to the overall outcome. Shapley values are useful in situations
where the outcome is the result of a collaboration between multiple players.
In theory, it measures the value of the contribution of each player in a coali-
tion, and the sum of the individual Shapley values equals the total payoff for
the whole coalition. In the context of model interpretation, players corre-
spond to features, games to making predictions, and payoffs to predictions
(or, more accurately, to differences between a prediction and the average
prediction).

The Shapley value is defined via a value function v of players in S, S
being a coalition of players, corresponding for model interpretation to a
subset of the features used in the model. For a game with n players, the
Shapley value for player i is the contribution payout, weighted and summed
over all possible feature value combinations:

ϕi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)] (3.24)

where N is the set of all players, S is a subset of N not including player
i, and |S| is the number of players in subset S. This contribution can be
interpreted as:
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Probability Order of arrival A’s marginal contribution B’s marginal contribution C’s marginal contribution
1
6

first A then B then C :
ABC

v({A}) = 40 v({A,B}) - v({A}) = 30 v({A,B,C}) - v({A,B}) = 30

1
6

first A then C then B:
ACB

v({A}) = 40 v({A,B,C}) - v({A,B}) = 30 v({A,C}) - v({A}) = 20

1
6

first B then A then C:
BAC

v({A,B}) - v({B}) = 40 v({B}) = 30 v({A,B,C}) - v({A,B}) = 30

1
6

first B then C then A:
BCA

v({A,B,C}) - v({B,C}) = 50 v({B}) = 30 v({B,C}) - v({B}) = 20

1
6

first C then A then B:
CAB

v({A,C}) - v({C}) = 40 v({A,B,C}) - v({A,B}) = 30 v({C}) = 20

1
6

first C then B then A:
CBA

v({A,B,C}) - v({B,C}) = 50 v({B,C}) - v({C}) = 30 v({C}) = 20

ϕi(v) =
1

number of players
∑
S

marginal contribution of i to S
Number of coalitions excluding i of this size

(3.25)

Let us consider an example of a simple game with three players A, B, and C
where the value of the coalitions is given by v({A,B,C}) = 100, v({A,B}) =
70, v({A,C}) = 60, v({B,C}) = 50, v({A}) = 40, v({B}) = 30, v({C}) =
20, and v(∅) = 0.

To find the Shapley value for player A, we calculate the marginal contri-
butions for all possible coalitions without A. Next, we average the marginal
contributions, weighted by the number of permutations of the coalition sizes.
We perform similar calculations for players B and C, we get their respec-
tive Shapley values. This ensures that the total value (100 in this case) is
distributed fairly among the three players.

With 3 players, the Shapley value is calculated by considering all the
possible orders of arrival of players and give a marginal contribution:

ϕA(v) =
1

6
(40 + 40 + 40 + 50 + 40 + 50)

ϕB(v) =
1

6
(30 + 30 + 30 + 30 + 30 + 30)

ϕC(v) =
1

6
(30 + 20 + 30 + 20 + 20 + 20)

(3.26)

LIME or SHAP? LIME and SHAP are both popular techniques for in-
terpretring models. The choice between them depends on many aspects
including the desired robustness of explanations. Indeed, despite its multi-
ple advantages such as its simplicity or its flexibility, its explanations have
been shown to be unstable, i.e, explanations greatly differ in a small neigh-
borhood [Alvarez-Melis & Jaakkola (2018)]. LIME works by perturbing the
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input data and observing the changes in the model’s output. Those per-
turbations can lead to variations in the local approximation model. Differ-
ent perturbation samples for neighboring points result in different surrogate
models, which can produce different explanations. SHAP ensure more consis-
tency and fairness in explanations, but is still not very robust for non-linear
model [Lakkaraju et al. (2020)].

3.7.2 Model-specific interpretation methods
In contrast to agnostic methods, model-specific interpretation tools are lim-
ited to specific types of model. By definition, the interpretation of intrin-
sically interpretable models is a model-specific interpretation method; the
analysis of regression weights is specific to linear model, for instance. Many
tools have been designed to improve neural networks explicability, such
as DeConvNets (for convolutional neural networks) [Zeiler et al. (2011)],
Guided back-propagation [Springenberg et al. (2014)], Deeplift [Shrikumar
et al. (2017)] or Integrated Gradients (IG) [Sundararajan et al. (2017)]. In
this discussion we will only focus on Integrated Gradients methods, which
we further use in this thesis for interpretation.

The IG method is designed to attribute the prediction of a neural network
to its input features. They are based on computing the gradients of the
output with respect to the input, integrated over a path from a baseline
input to the actual input. We denote by f : Rn → [0, 1] the function that
represents a neural network for a binary classification problem. Here x ∈ Rn

is an input data point to the neural network, and x′ ∈ Rn is a baseline input.
The baseline x′ usually represents the absence of features, or an input that
is expected to have no predictive power for the model to interpret. A zero-
vector is commonly used for the baseline input. We consider a segment
that links x to x′, which is represented by the set of all interpolated inputs
points along the straight line path from x to x′. The idea is now to calculate
gradients of the model f for each interpolated input with respect to the
input x. These gradients indicate how changes in the input would change
the output of the model:

IGj(x) = (xi − x′j)×
∫ 1

α=0

∂f(x′ + α(x− x′))

∂xi
dα, (3.27)

where j represents the index of the input features, α controls the position
of the interpolated point between x and x′, and ∂f(x)

∂xj
is the gradient of

the model output with respect to feature j. In practice, this integral is
approximated by computing m interpolated inputs xαk = x′ + αk(x− x′).

To summarize, IG follow 4 main steps:

• Choose a baseline input x′.

• Generate m interpolated inputs xαk = x′ + αk(x− x′)
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• Compute the gradient for each xαk

• Approximate the integral by summing all the interpolated inputs’ gra-
dients for each xαk

The final value IGj(x) represents the attribution of feature xj to the model
output y.

The IG method is widely used in neural network interpretation. It stands
out from other interpretation methods for neural networks for its sensitivity,
meaning that a variation in the input leads to a proportional variation in
the output. It also provides consistent attributions values regardless of the
neural network architecture and implementation details. All it all, it is
a robust method and helps to make the black box neural networks more
transparent [Sundararajan et al. (2017)].

3.7.3 Aggregation of local interpretations
In this thesis, we will use three main interpretation methods: LIME in the
LIME library [Ribeiro et al. (2016)], SHAP in the SHAP library [Lund-
berg & Lee (2017)] , and the Integrated Gradients tool implemented in the
CAPTUM library [Kokhlikyan et al. (2020)]. All these methods are local
interpretation methods: they provide explanations for a specific prediction.

In order to gain more general insights into the models developed during
this thesis, we also used methods that are able to aggregate all individ-
ual explanations into a comprehensive global explanation. Those meth-
ods are known as GALE for Global Aggregation of Local Explanations
(GALE) [van der Linden et al. (2019)]. They involve combining the fea-
ture importances from multiple local explanations.

We count two main approaches for GALE, decribed in the original pa-
per [van der Linden et al. (2019)] and used in this thesis: Global LIME
importance and Global Average importance.

Global LIME Importance: In order to provide a global explanations
of ML models, the authors of LIME have developed a tool that aims to
select the main features that contribute to the global behavior of the model
[Ribeiro et al. (2016)]. They propose a global feature importance denoted
ILIME
j and defined as follows:

ILIME
j =

√√√√ N∑
i=1

|Wij |, (3.28)

where Wij is the attribution value of the feature j for instance i. With
this method, features with high attributions are expected to have a bigger
global impact on the model’s predicitions than features with low attributions
values.



78 CHAPTER 3. METHODOLOGY

Moreover, features that occur more often are expected to have a higher
effect on the global attribution. This is particularly problematic when fea-
tures are sparse, which is the case for text inputs where features correspond
to words. Therefore, we expect the global LIME attribution to be biased
towards most common features in the text. To overcome this situation, the
authors of GALE [van der Linden et al. (2019)] also propose a variant called
Global Average Importance.

Global Average Importance: Global Average Importance allows fea-
tures to have similar effect in all of their occurrences. The average impor-
tance denoted as IAVG

j is defined as follows:

IAVG
j =

∑N
i=1 |Wij |∑
i:Wij ̸=0 1

(3.29)

The global LIME importance is averaged over the features occurrences in
the dataset. Local explanations from the cited model-agnostic interpretation
methods (SHAP, LIME and IG) can be aggregated using these methods to
provide global insights into the model’s behavior.

3.7.4 Interpretation of transformers-based models

The interpretation of transformers-based models such as BERT has become
a crucial area of research given their widespread use. Different methods can
be used to this end:

• Attention mechanisms: These are the core item of transformers-based
models. As described in Section 3.5.2, to this date, there are debates
about the ability of attentions mechanisms to provide reliable model
explanations. However, for many NLP tasks, they can help by giving
insights into which part of the input sequence the model has focused
for the defined task.

• Gradient-based methods: As mentioned in Section 3.7.2, they can be
applied to any neural network model, including transformers based
models such as BERT.

• Feature Attribution methods: Methods such as LIME and SHAP (cf
Section 3.7.1) can be adapted to interpret transformer models. In-
deed, they are mode-agnostic. For instance, the lime package (https:
//lime-ml.readthedocs.io) has a submodule called LimeTextEx-
plainer which can be used for any text inputs, including BERT; TransSHAP [Kokalj
et al. (2021)] is a variant of SHAP developed specifically for text.

https://lime-ml.readthedocs.io
https://lime-ml.readthedocs.io
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3.8 Conclusion
This chapter presents different machine learning models that can be used
in particular to perform binary classification of disease-free survival (DFS)
status. Among them, I included more “classical” machine learning methods,
such as random forests, support vector machines or logistic regression, as
well as more recent models such as transformers-based models.

In this thesis, I use the “classical” models as baselines, as detailed in
Chapter 5 . Furthermore, I have proposed and implemented BERT-based
models adapted for the task of DFS status prediction on EHRs from Institut
Curie. More specifically, I have provided a method for learning from mul-
timodal events in the patient journey, suitable for multimodal tabular data
as presented in Chapter 6, for free-text reports in the EHR as presented in
Chapter 7, and their combination as a final multimodal EHR model, pre-
sented in Chapter 6.

I also use some of the methodology depicted in this chapter for a chal-
lenge I reproduced during the first part of my ph.D: The PhysioNet CinC
challenge.
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Chapter 4

PhysioNet challenge

Abstract:
PhysioNet is an online platform established in 1999 and managed by

members of the MIT laboratory for Computational Physiology. Its mission is
to help improving biomedical research and education, by offering free access
to large collections of physiological and clinical data. Furthermore, Phys-
ioNet crowdsources solutions on unsolved clinical problems by providing an
annual series of challenges, in collaboration with the annual Computing in
Cardiology conference. The PhysioNet CinC challenge 2012 [25] was about
Intensive Care Unit (ICU) patient’s mortality prediction with time series
data, and it took place in August 2012.

Résumé:
PhysioNet est une plateforme en ligne créée en 1999 et gérée par des

membres du laboratoire de physiologie computationnelle du MIT. Sa mission
est de contribuer à l’amélioration de la recherche et de l’enseignement dans
le domaine biomédical en offrant un accès gratuit à de vastes collections
de données physiologiques et cliniques. En outre, PhysioNet propose des
solutions à des problèmes cliniques non résolus en organisant chaque année
une série de défis, en collaboration avec la conférence annuelle ”Computing
in Cardiology”. Le défi PhysioNet CinC 2012 (REF), qui s’est déroulé en
août 2012, portait sur la prédiction de la mortalité des patients des unités
de soins intensifs (USI) à l’aide de données chronologiques.

81
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4.1 Introduction
This chapter delves into the exploration of a parallel challenge that shares
similarities in data structure and characteristics with the main project in
this thesis. The decision to participate in this challenge was driven by the
aim to not only benchmark the proposed methodologies but also to leverage
insights gained from a broader context. The comparative challenge serves
as a valuable opportunity to validate the robustness and generalizability of
the developed models, as well as to unearth potential nuances that may
influence performance.

PhysioNet is an online platform established in 1999 and managed by
members of the MIT laboratory for Computational Physiology. Its mission
is to help improving biomedical research and education, by offering free
access to large collections of physiological and clinical data. Furthermore,
PhysioNet crowdsources solutions on unsolved clinical problems by providing
an annual series of challenges, in collaboration with the annual Computing
in Cardiology conference. The PhysioNet CinC challenge 2012 [PhysioNet
(2012)] was about Intensive Care Unit (ICU) patient’s mortality prediction
with time series data, and it took place in August 2012.

4.2 Challenge characteristics
Several ICU scoring systems that are widely used as clinical decision systems.
Acute Physiology and Chronic Health Evaluation (APACHE II), Simplified
Acute Physiology Score (SAPS II) and Sequential Organ Failure Assessment
(SOFA) were designed to provide a score that will indicate an ICU patient
status through the time. Each score is punctual and related to a mortality
rate. However, these scores are more appropriate to account for populations
differences in studies aiming to compare how medications, care guidelines,
surgery, and other interventions impact mortality in ICU patients. The
aim of the PhysioNet Computing in Cardiology challenge was to predict
the in-hospital mortality rate in an ICU population, in a more specific way.
Features used for that purpose are not only the parameters used to compute
the acuity scores listed above, but also other observations including time
series physiological measurements. The particularity will be to take into
account the dynamic of these features, which is not done for to the current
acuity scores.

4.3 Datasets presentation
4.3.1 Data characteristics
The challenge dataset is extracted from the Multiparameter Intelligent Moni-
toring in Intensive Care (MIMIC) II clinical database [Saeed et al. (2011)]. It
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Figure 4.1: Features distribution according to the outcome.

contains 12,000 records from ICU stays. All the patients were adults (>16yo)
who were admitted in different specialized ICU (cardiac, medical, trauma
and surgical) for at least 48hours. Patients with DNR (do not resuscitate)
or CMO (comfort measures only) order were included to the dataset [Silva
et al. (2012)]. The dataset has been splitted by the organizers into 3 sets
(training set a, open test set b and hidden test set c that will be used to
evaluate challengers’ models and rank participants). It describes all the
physiological states during the first two days of each patient stay.

4.3.2 Available features

Up to 42 features have been collected at least once for the patients. Among
them, six are vitals measurements and 37 are time series physiological mea-
surements. Each of these physiological measurements has an associated
timestamp which represents the elapsed time between the measurement and
the patient ICU arrival. A timestamp of 24:20 for a measure means that the
measurement was collected 24 hours and 20 minutes after the ICU admis-
sion.

General descriptors

Time-series data

Outcome

The task is a binary classification aimed at predicting in-hospital death.
The outcome is skewed to the negative class (survivor), which is common
when working with clinical data. All the models will be trained taking into
account this imbalance.
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Figure 4.2: General descriptors.

Figure 4.3: Time series data.

Figure 4.4: Binary outcome
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Figure 4.5: Outcome distribution

Figure 4.6: An example of ICU stay data used for the challenge [Silva et al.
(2012)]
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Model Score References
Bayesian Ensemble 0.5353 [Johnson et al. (2012)]
Cascaded SVM-GLM 0.5345 [Citi & Barbieri (2012)]
Logistic Regression 0.5009 [Vairavan et al. (2012)]
Linear Bayes 0.4928 [Macaš et al. (2012)]
Neural network 0.4923 [Xia et al. (2012)]

Table 4.1: Scores on the PhysioNet challenge

This dataset has been chosen because of its multimodality and the simi-
larity with the data from Institut Curie that will be the focus of this thesis
starting from Chapter 5. It contains vitals and biological time series data
such as the Institute Curie dataset.

4.3.3 Scoring criteria
The aim of the challenge was to predict from these biological analysis results
the in-hospital death. The scoring is based on 2 metrics: the sensitivity
(recall) and the positive predictive (precision) which are dependent on the
number of true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN). The scoring for the challenge is given by:
Score = min(Se, P+) : the minimum of the sensitivity and the positive
predictivity with:
Se: the fraction of correct predictions of in-hospital deaths
P+: the fraction of in-hospital deaths that are predicted

Se =
TP

TP + FN
(4.1)

P+ =
TP

TP + FP
(4.2)

The challengers’ ranking is set up with the set c. The highest ones (see
Table 4.1) reached around 50% of good classification. This threshold is due,
on the one side, to the wide variety of life- threatening conditions among pa-
tients. Similar physiological values can lead to different outcomes depending
on prior or post-collect conditions. This can be observed in Fig. 10, where
several points close to each other in the space still have different outputs.
On the other hand, there is a high number of missing values and/ or outliers
for some features that can be potentially important for the prediction.

Moreover, several patients with DNR (do not resuscitate) and CMO
(comfort measures only) requirements have been kept in the dataset. In



88 CHAPTER 4. PHYSIONET CHALLENGE

fact, patients with DNR directives could have had a good prognosis but
made the decision not to receive cardiopulmonary resuscitation (CPR) if
their heart stops beating. On the opposite, patients with CMO directives
may have been in a dying process, but still survive because of the “comfort
care” given. This has made the prediction more complex.

Finally, the features used was collected for the 48 first hours of the ICU
stay. The data are not exhaustive enough to describe the overall health
trend of a specific patient. All the scores that I obtained were compared to
these highest scores.

4.4 Related word
4.4.1 Features extraction
In Machine Learning, feature extraction is a process by which the initial
data set is used to derive meaningful other features that can provide hid-
den information. It is one of the main steps of machine learning algorithms.
It has many advantages such as accuracy improvements and the overfit-
ting/underfitting risk reduction, among others. Different feature extraction
techniques exist (supervised or unsupervised). They can be used differently
according the dataset and the task.

For our case, I extract several statistical features, for each temporal
measurement: the minimum, the maximum, the mean value, the variance,
the kurtosis, the skewness, the frequency of collection, the maximum rate
of change, daily trends and the entropy. Other features that can probably
have a statistical meaning were also included such as the ORI (Out of range
index) and the number of alarms. The ORI represents the differences of
a physiological measurement’s amplitude within its normal range and the
time the normal range goes out of normal range (see Fig. 14). The ORI is a
clinically intuitive measure as clinicians believe that the amount of time that
a physiological variable is out of normal range or in a dangerous zone is as
important as the number of times that it surpasses the normal limits [Sejdic
(2018)]. Furthermore, it has been used for prediction with clinical time series
data and the results have shown it as an excellent predictor of outcome [Jalali
et al. (2013)]. The number of alarms will indicate the number of times that
a measurement has crossed the normal range threshold.

Furthermore the Body Mass Index (BMI = weight/height2) is included
as a new feature and ages have been splitted into groups:
1 : < 30 ; 2 : [30-40]; 3: [40-50]; 4 : [50-60]; 5 : [60-70]; 6 : [70- 80] and 7 :
> 80.
In final, twelve (12) features have been extracted from the time series data
for all the records, over and above the five (5) remained general descriptors
(RecordID, age_bins, gender, BMI and ICUType).



4.4. RELATED WORD 89

Figure 4.7: Out of range index (ORI) for the RespRate feature

4.4.2 Data preprocessing

The data processing is an important step in machine learning where raw data
is transformed into a cleaned and understandable format. For this purpose,
I used the z-score method to detect outliers for certain features such as the
height, the weight etc. Those outliers are removed by removing the involved
observation. I handle the missing data for the mean value, the minimum and
the maximum by imputing them with the mean, minimum and maximum
in the normal range [Sejdic (2018)] of each feature. All the other statistical
features are imputed by zero (0). The categorical features (ICUType and
Gender) are handled in a more specific way. I used an iterative imputer
[Little (2002)] which will impute a value according to the values of the other
features. The categorical features will be imputed depending the pattern
of the remained features. I performed the BMI imputation with the mean
value by gender.

4.4.3 Models

I have set up several models for the prediction of in-hospital death. They will
be used as baselines for my own data in order to predict cancer treatment
response 5. The models used for this challenge, namely logistic regression
and random forests are detailed in chapter 3. Another model have been
built based on random forest classifier.

Random forests classifier with physiological knowledge

In this algorithm, I used an algorithm tested on ICU data in [PhysioNet
(2012)]. Clinical physiological knowledge has been integrated by the authors,
in order to provide a more accurate decision support. In this case, the model
apprehends the mortality prediction by grouping the different features into
their belonging organ. The authors have used a deep learning algorithm:
neural network and the different organ as first layer of the network.
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Organ Features
Heart MAP, DiasABP, SysABP, NISysABP, NIDiasABP, NIMAP, HR, K, choles-

terol
Neuro GCS, glucose, MAP, SaO2
Lung FiO2, RespRate, SaO2, PaO2, PaCO2, pH, MechVent, HCO3
Liver Bilirubin, Albumin
Kidney Creatinine, BUN, K, Lactate, Urine
Infection WBC, Temp

Table 4.2: Organ classification for ICU mortality prediction

Based on expert clinical physiological knowledge, the authors have di-
vided the features as shown on Table 4.2.

The table shows the organ and their respective associated features de-
fined by clinicians [Sejdic (2018)]. Grouping the features into organs allows
us to describe the state of each organ according to the value of the features.
For my model, I set up a classifier for each organ instead of a neural net-
work. Each organ has a classifier that will return the probability of having
a positive outcome (in-hospital death). The final outcome will be a con-
sensus vote between the different classifiers. The authors have added the
infection case because it is common in ICUs. As the basic random forest,
the hyperparameters that gave the best F1-score have been chosen. I used
the balanced class_weight which put more emphasis on the minority class
and class_weight tuned manually.

4.4.4 Results
For any binary classifier with imbalanced data, it is preferable to have high
prediction score for the minority class, while maintaining a good accuracy
for the majority class. To evaluate all the models developed, I will compare
the precision, the recall, the f1-score and the AUC score of the minority
class 4.3.

I also compared the built models scores with the highest scores in the
challenge.

4.4.5 Conclusion
I presented five different models for the in-hospital death prediction with
ICU time series data. All the models put more weights on the minority
class, either automatically with a balanced class weight and/or by choosing
the best weight for the minority class manually. Thus, they penalize more
heavily on misclassifying the minority class (in- hospital death). Logistic re-
gression model, which is the only linear model, has shown better recall for the
minority class, but the lowest precision. Random forests (with physiological
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Model Precision Recall f1-score AUC score
Logistic Regression 0.29 0.67 0.41 0.77
Random Forests
class_weight : balanced 0.35 0.61 0.41 0.77

Random Forests
class_weight : {0:1, 1:7} 0.29 0.66 0.41 0.77

RF + Physiological knowledge
class_weight : balanced 0.34 0.51 0.41 0.74

RF + Physiological knowledge
class_weight : {0:1, 1:7} 0.31 0.54 0.40 0.73

Table 4.3: Performance comparison across models

Models min(Se, P+)
Logistic regression 0.29
Random Forests
class_weight : balanced 0.35

Random Forests
class_weight : {0:1, 1:7} 0.29

RF + Physiological knowledge
class_weight : balanced 0.34

RF + Physiological knowledge
class_weight : {0:1, 1:7} 0.31
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knowledge or not) have shown better precision with reasonable recalls. Com-
pared to the highest performance in the challenge (0.5353), all the models
did not reach the expected scores yet 4.3. However, the increasing precision
score while adding physiological knowledge is encouraging. Following this
challenge, I explore machine learning models using the Institut Curie breast
cancer dataset to classify DFS status.



Chapter 5

Multi-modal machine
learning models to predict

breast cancer endpoints

Abstract:
Breast cancer is a complex disease that affects millions of people and is

the leading cause of cancer death worldwide. There is therefore still a need to
develop new tools to improve treatment outcomes for breast cancer patients.
Moreover, it exists a huge amount of meaningful information in medical re-
ports, biological measurements and clinical information in a patient journey
that remain mostly unexploited. In that context, I propose to develop in my
thesis, several machine learning models that use the multi-modal EHR to
predict prognosis endpoints. In this chapter, I will first present the cohort
that have been used for this thesis, then I will present ML models developed
with different integration methods and finally I will provide results about
the model interpretation.

Résumé:
Le cancer du sein est une maladie complexe qui touche des millions de

personnes et constitue la principale cause de décès liés au cancer dans le
monde. Il est donc toujours nécessaire de développer de nouveaux outils
pour améliorer les résultats du traitement des patientes atteintes d’un can-
cer du sein. De plus, il existe une énorme quantité d’informations significa-
tives dans les rapports médicaux, les analyses biologiques et les informations
cliniques dans le parcours des patientes qui restent pour la plupart inex-
ploitées. Dans ce contexte, je propose de développer dans ma thèse plusieurs
modèles d’apprentissage automatique qui utilisent le DME multimodal pour
prédire les caractéristiques du pronostic. Dans ce chapitre, je présenterai
d’abord la cohorte qui a été utilisée pour cette thèse, puis je présenterai
les modèles d’apprentissage automatique développés avec différentes méth-
odes d’intégration et enfin je fournirai des résultats sur l’interprétation des
modèles.
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In this chapter, I present different machine learning models applied to
multimodal EHR using different integration methods. I also give insights
about models’ behavior and which features was found to be the most pre-
dictive.

5.1 Introduction

As detailed in chapter 2, breast cancer is the most commonly diagnosed
cancer among women (almost 2.3 million cases worldwide in 2022) and the
leading cause of cancer death [fer (2024)]. In order to enhance prognosis, its
treatment strategies should be tailored to a patient’s specific diagnosis and
needs. Among the various treatment options, adjuvant chemotherapy is pro-
posed after first-line surgery to lower the chance that the cancer will return.
However, recurrence or death are still possible. Accurately identifying the
patients most likely to relapse is therefore important to inform both treat-
ment selection and future research to propose better therapeutic options. In
healthcare delivery, predicting breast cancer relapse using machine learning
techniques is a critical area of research that can be very useful for clinicians
in order to better manage and treat breast cancer patients. Moreover, Elec-
tronical Health Records (EHRs) serve as a valuable source of data of patient
data. They contain a wealth of meaningful information, from pathological
reports to biological measurements, that remains unexploited. The more
recent improvements in machine learning models allow us to come up with
innovative and efficient methods to use this information to improve patient
care.

In fact, through the years, multiple machine learning tools have been
developed to improve breast cancer patients’ treatments outcome. Among
those, models that use one or multiple modalities within electronic health
information. Some works focused on building machine learning models that
are capable of detecting almost all true positive regarding breast cancer
relapse. By using patient’s clinical information and ensemble methods (Ad-
aBoost and cost-sensitive learning) [Yang et al. (2021)] achieved a high sen-
sitivity rate at 94.7% with a cohort of 1061 breast cancer patients from Shin
Kong Wu Ho-Su Memorial Hospital between 2011 and 2016. For [Alzu’bi
et al. (2021)], the use of a bagging classifier allows to reach a sensitivy of
92.3%. These models can serve as a supportive aid during follow-up visits
for both early-intervention and advanced treatments, contributing to the
reduction of cancer mortality rates.

Over the years, other modalities have been included into these studies,
with the intention of combining different information for a better prediction
performance. [Yao et al. (2022b)] integrated in a multi-modal deep learning
prediction model histopathological image, clinical information and gene ex-
pression data for 196 breast cancer istances from the Cancer Genome Atlas.
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Their method acheived a AUC score of 75% and was capable of capturing
the multimodal aspect of EHR.

However, these modalities are not always available for all patients treated.
For this reason, other authors have taken advantage of the considerable in-
formation present in medical reports that constitute the Electronic Health
Records of patients [Zeng et al. (2019b), González-Castro et al. (2023a)].
[Zeng et al. (2019b)] developed a support vector machine to identify breast
cancer local recurrences using concepts extracted from text reports by MetaMap,
and the number of pathological reports recorded for each patient. Indeed,
there is a need of using a multimodal approach to predict breast cancer
relapse, combining clinical, pathological and molecular information. Their
model achieved a high AUC of 93% in cross-validation. For [González-Castro
et al. (2023b)], medical concepts are also extracted from reports to consti-
tute features that will be combined to clinical information. In the 5-year
cancer recurrence their best model (eXtreme Gradient Boosting) reached a
great AUC of 80.7%.

Ongoing research continues to develop machine learning models to en-
hance our understanding of breast cancer mechanisms and improve prognos-
tic models, and ultimately aiming to provide more effective care for patients.
Data scientists use multimodality into their studies more and more, as it
makes it possible to have a broader view of the disease mechanism. How-
ever, few studies combine structured information from EHR and medical
records in a free-text format. In that context, I propose, in this thesis the
integration of those information (clinical data, biological measurements and
free-text reports) in multimodal machine learning models to predict prog-
nosis. In this chapter, I present the data from Institut Curie that I have
been working with, as well as multimodal models based on classical machine
learning approaches. The following chapters will present deep learning mod-
els. I also propose predictive factors from these models interpretation that
can be considered as potential multimodal prognostic factors after more
investigations.

5.2 Construction of a data set of breast cancer pa-
tients for breast cancer disease free survival
prediction

5.2.1 Data sources

In this work, we used databases extracted from the Electronical Health
Records (EHR) system from Institut Curie in Paris (France). All data col-
lected were pseudonymized. Additionally, individuals under 18 years of age,
with a history of previous cancer, under guardianship, or unable to provide
consent were excluded from this cohort. Every patient included in the study
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has completed and signed a research informed consent form. The study was
approved by the Breast Cancer Study Group of Institut Curie and was con-
ducted according to institutional and ethical rules concerning research on
tissue specimens and patients.

The first database (SEIN database) contains patient-level biological and
clinical longitudinal information, for patients treated with adjuvant chemother-
apy for breast cancer from 2005 to 2012. It contains 15 150 unique patients,
male and female. More specifically, the SEIN database includes, for each
date at which they were measured, tumor markers used to monitor treat-
ment, namely levels of cancer antigens (CA15-3 and CA19), prostate specific
antigen (PSA), cytokeratine fragment (CYFRA), angiotensin-converting en-
zyme (ACE) and neuroson-specific enolase (NSE). It also contains other im-
mune markers, such as counts of lymphocytes (LYMP), monocytes (MONO),
leukocytes (LEUK), neutrophils (PN), basophils (PB) and eosinophils (PE),

Moreover, it contains general descriptors of patients (such as age, sexe, or
weight), medical background, as well as diagnosis and treatment information.
Finally, the patients are annotated with survival and recurrence information.
The clinical information includes 162 features in total.

In this work, we focus on disease-free survival (DFS) as a binary endpoint.
At a given time after surgery, DFS is defined as the absence of either death,
loco-regional recurrence or distant recurrence. 90.7% of the patients in the
SEIN database have a positive DFS status, making it a highly imbalanced
data set to work with.

In addition, free-text visits notes for all admissions in Institut Curie are
stored in a EHR system. This data refers to unstructured narrative descrip-
tions or notes entered by healthcare professionals. Unlike the structured
data, which is organized into predefined fields, free text allows healthcare
providers to input progress reports and relevant patient information recorded
during patient journey, in a more natural manner. Free text reports from cy-
topathology or radiology also capture key information from medical images,
as captured by experts. Those medical reports comprise free-text clinical
notes for consultations, as well as free-text reports of cytopathology, radiol-
ogy, surgery, and blood tests. All reports are written in French. For this
study, we selected medical reports from the patients of the SEIN database,
hence creating a retrospective cohort containing both structured information
and free text for each patient.

5.2.2 Ethics

This study was conducted in accordance with institutional and ethical rules,
and French regulations, regarding the use of patients data for scientific re-
search purposes. The study was reviewed and approved by the Institutional
Review Board of Institut Curie (Paris, France). The patients/participants
provided their written informed consent to participate in this study.
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Figure 5.1: Example of procedure timeline for a patient

As already mentioned, all the used data are pseudonymised under the re-
sponsability of The Institut Curie’s Data department. The patient/identifier
correspondence table is built and stored by the same department. Moreover,
the Data department provides a secure space, which can be upgraded accord-
ing to the needs of the study, in terms of environment, power and tools made
available.

Finally, the study was authorized by the French data protection agency
(CNIL, under declaration number 1023665)

5.2.3 Data preprocessing and Data engineering

Clinical features

Clinical features are already in a tabular format, a suitable format for clas-
sical machine learning models. One of the main challenge in medical data
remain the missingness in values for certain features. In this study, within
the 162 features, we only kept the ones with less than 30% of missing values,
which corresponds to 36 features.

The preprocessing steps applied to the clinical features from the SEIN
database include the removal of redundant information and duplicate rows,
the creation of new features (BMI for instance), the imputation of missing
values for the remaining features, and the correction of outliers for contin-
uous features (height for instance: 1766cm to 176cm). First the duplicate
rows, the redundant features (according to prior knowledge and to a correla-
tion matrix) and dates are dropped from the data. Then, we perform feature
categorization for multiple features (tumor size into clinical and pathologi-
cal T stages, number of lymph nodes into clinical and pathological N stages,
the Body Mass Index (BMI) into 5 classes: 1, ≤18.5|2, 18.5-24.9|3, 25-29.9|4,
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30-34.9|5, ≥35). The following step is to handle the remained missing values.
We built different imputation strategies depending on the features type. For
categorical features, we impute the missing values with an aberrant value
999. In fact, in medical data, missingness can be random, when for example
a information is missing due to a technical error. It can be caused by an
unobserved data itself, when the patient change facility in the middle of
the care journey. Sometimes, the missingness also provide an information,
when for instance PSA (prostate specific antigen) is only measured for men.
Therefore, imputing with an aberrant value give an information about the
feature and the sample. The continuous features are imputed with the mean
value (age at menarche, clinical and histological tumor sizes). The missing
BMI are filled with the BMI mode class according to the gender. Regarding
the menopausal age, I replace missing values by the mode value (50) if the
menopausal status is positive and 999 otherwise. The final input for machine
learning models will be a table of 25 cleaned features and 15150 samples.

Biological features

As clinical data, biological features are in a structured format. We also kept
features that have at most 30% of missing values, which corresponds to 3 fea-
tures: CA15-3, LEUK, MONO as shown in Figure 5.2. Biological features
are time-stamped measurements, that is to say, they are sequential features.
In order to integrate them in a machine learning model, we computed sta-
tistical features from the remaining features: the mean value, the maximum
value, the minimum value, the variance, the number of measurements, the
number of alerts, the ORI feature (I refer the reader to Chapter 4 for more
details about the Out of Range Index feature), the entropy, the skewness,
the kurtosis and the maximum delta (dmax). The number of alerts refers
to the number of times the feature value is out of the normal range (defined
as in Table 5.1). The entropy provides a measure of uncertainty of a distri-
bution. The kurtosis describes the shape of the distribution’s tails and the
skewness measures the asymmetry of a distribution.

The preprocessing pipeline applied to biological features starts by dupli-
cates removal. I fill missing values of the mean, min and max features with
respectively the mean, min and max values from the normal range interval
of each feature. We assume that the absence of values for biological features
is related to the lack of necessity for measurement. Therefore, we fill the
missing values with their supposed normal values. For the remained features
(the number of measurements, the number of alerts, the ORI feature, the
entropy, the kurtosis, the skewness and the maximum delta), we impute
with 0.

The biological input for the models will be a table of 45 features for 8998
samples.
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Figure 5.2: Percentages of collection for each feature

Feature Normal range Mean value ± std missing
CA15-3 (U/mL) N < 30 19.73± 27.84 1 236

LEUK (g/L) 4 < N < 10 6.81± 2.94 92

LYMP (g/L) 1.4 < N < 4 1835.19± 644.91 8 126

MONO (g/L) 0.2 < N < 1 42.81± 144.48 88

ACE (µg/L) N < 3.4 2.99± 16.75 7 092

PN (g/L) 1.7 < N < 7 4 391.71± 2 161.66 8 126

PE (g/L) N < 0.5 136.84± 123.81 8 126

PB (g/L) < N < 0.2 29.22± 18.65 8 126

CA125 (U/mL) N < 35 22.78± 49.62 8 290

CA19 (U/mL) N < 35 75.79± 681.22 8 879

HCG (ng/mL) N < 10 255.30± 2 836.84 8 879

CYFRA21 (ng/mL) N < 3 1.39± 1.40 8 956

NSE (ng/mL) N < 15 13.67± 3.88 8 976

PSA (ng/mL) N < 4 3.07± 3.62 8 992

Table 5.1: Normal ranges for the biological features
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Free-text reports

Free-text reports represent unstructured textual descriptions of medical in-
formation recorded by medical experts. They can be clinical notes, that is
to say, information recorded during patient encounters with clinicians, or
reports made by specialists (laboratory biologists, radiologists, histopathol-
ogists) to interpret the results of medical exams. Unlike tabular data, that
is recorded in a standardized way at least within a hospital, medical reports
are highly variable, as they allow each healthcare provider to be distinctive
in format, style, or terminology.

The semantic related to the medical field is complex, using abbreviations,
acronyms, and medical jargon [Grossman Liu et al. (2021)]. Therefore, in
addition to common NLP preprocessing steps (normalization, removal of
noisy entities, adverbs, stopwords and text delimiters), the Text BEHRT
preprocessing pipeline includes steps that are specific to medical reports,
such as removing proper nouns or correct abbreviations among others.

Removing proper nouns is one of the key step of the preprocessing
pipeline. This is important as specific doctor names may serve as proxy
for the DFS classification, for example, when a doctor mostly handles se-
vere cases. Patient names are already excluded from the reports, which had
been anonymized before we accessed them. The first stage of this process
consists in using part-of-speech tagging to remove proper nouns tags that
follow titles such as Dr, M. (“Mr” in English), Mme (“Mrs” in English).
However, proper nouns may appear without a title. We thus further con-
structed a list of proper nouns to remove from the text. We first built a
list of names of Institut Curie’s health practicioners, obtained through the
public directory of practicioners [Cur (1 30)] as retrieved in 2023, and there-
fore only partially matching practicioners that were involved in the care of
patients in the 2005–2012 period covered by our cohort). We additionally
considered surnames given at least 30 times in France from 1891 to 2000
(n=218 912) and first names given at least 20 times from 1946 to 2022 in
France (n=36 964), as provided by Institut National de La Statistique et
des Etudes Econonomiques (INSEE) ( [Ins (1 30)], [INS (1 30)]). We then
removed from this list the proper names that correspond to disease names,
such as Paget.

One other main difficulty that occur with free-text reports is the high
number of typos. To address this issue, we used the pyspellchecker spell
checking algorithm [Barus (2023)] which identifies, for each word of the
corpus that is not found in a given dictionary, the most likely correct re-
placement for this presumably misspelled word. More specifically, the spell
checker generates, for each word of the corpus that is not found in a given
dictionary, a list of candidate words based on the Levenshtein Distance [Lev-
enshtein (1966)] (based on single-character edits calculations: insertions,
deletions, replacements, or transpositions) which are potential corrections
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for the unknown word. Finally, the spellchecker selects the candidate word
that is both within an acceptable Levenshtein Distance and has a higher
frequency of occurrence in the language, thus increasing the likelihood of
providing the correct replacement for the misspelled word. For effective
spellchecking, it is crucial to have a rich dictionary that contains medical
jargon. Therefore, we augmented the French vocabulary from OpenSubti-
tles [Lison & Tiedemann (2016)] (implemented by default in pyspellchecker)
with the contents of the French open dictionary Usito [ush (1 30)], as well
as the 3 184 words from a French online medical dictionary [Thomsen (1
30)], the CAS corpus of French clinical cases [Grabar et al. (2018)] which
contains over 397 000 word occurences, a list of drug names in French [vid (1
30)], and two lists of French medical abbreviations specific to oncology [moz
(2020),Poletto (2023)]. If, following this step, any words from the dictionary
remain unidentified, we replaced them with the most likely correct spelling
suggestion from Wikipedia [wik (1 30)].

The full text preprocessing pipeline is described on Figure 5.3.

• Normalize  

La patiente a EtE reçue 
pour un test au labo

la patiente a ete recue 
pour un test au labo

• Remove URLs, dates, phone
numbers, special characters
and multiple whitespaces

appel au 06-12-34-56-
78   et rdv au xxx.com

appel au et rdv sur 

• Remove Dr names and
other proper nouns

dr Maguette et l 
anesthesiste Mbaye

dr et  l anesthesiste

• Remove adverbs 

la patiente a ete 
finalement evacue

la patiente a ete 
evacue

• Construct specific
vocabulary and correct
misspelled words

la patiete a ete evaceu 

la patiente a ete 
evacue

…
Conclusion
patiente a revoir

• Remove ‘conclusion’ 
and ‘corps du 
document’

…
patiente a revoir

• Numbers and units
into one word

patiente de 45 kg et de 
1m 69

patiente de 45kg et de 
1m69

• Merge certain words

ca 15 3 est mesure ce 
jour 

ca153 est mesure ce 
jour 

• Remove french 
stopwords

le rdv est reporte

rdv reporte 

MEDICAL 
REPORT

Figure 5.3: Medical text preprocessing pipeline

For the DFS prediction task, using multimodal data, we derive vectors
from the free texts using the TF-IDF (Term Frequency-Inverse Document
Frequency) of bi-grams and tri-grams. Bi-grams and tri-gras are respectively
groups of 2 and 3 consecutive words taken from the text. If we consider the
sentence : “The cat sat on the mat”, the bi-grams are: (“The”, “cat”),
(“cat”, “sat”), (“sat”, “on”), (“on”, “the”), (“the”, “mat”) and the tri-grams
are: (“The”, “cat”, “sat” ), (“cat”, “sat”, “on”), (“sat”, “on”, “the”), (“on”,
“the”, “mat”),. We used bi-grams and tri-grams instead of single words
(unigrams) because it can capture more context and meaning from the text.
For instance, it allows to capture the meaning “not good” that the individual
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words as independent entities “not” and “good” cannot capture. The next
phase of the free-text vectorization is the use of the TF-IDF method. This
method is used to evaluate the importance of a word in a document relative
to a collection of documents (a corpus). In other terms, by using the TF-
IDF for the free-text reports, we assign for each sample, a score to each
word of each report relative the whole free-text information of the sample
throughout the patient journey. TF-IDF is defined by two components:
the Term Frequency (TF) which measures how frequently a term appears
in a document and the Inverse Document Frequency (IDF) defined as the
measure of the importance of a word within the entire corpus.

TF (t, d) =
Number of times term t appears in document d

Total number of terms in document d
(5.1)

IDF (t,D) = log
(

Total number of documents in corpus D

Number of documents containing term t

)
(5.2)

TF -IDF (t, d,D) = TF (t, d)× IDF (t,D) (5.3)

For the text modality, we thus obtain as final input a table of 1756
features representing the total number of unique bi-grams and tri-grams in
the whole corpus, for 15 150 samples.

Moreover, we derived from the free-text reports a fourth modality that
we called “Frequency_of_events”, describing, for each possible medical pro-
cedure, how often it appears in the patient’s history. The procedure’s name
is available in every medical reports’ headers. This new dataset counts for
each sample the occurrences of the unique procedure. We have a table of
123 procedures as events for the 15 150 patients for the machine learning
models.

We assess two binary classification tasks: disease free survival (DFS) 3
years after surgery (called T1) and 5 years after surgery (called T2), using
patient history up to one year after first surgery and starting from 6 months
before the breast cancer diagnosis is made as shown in figure 5.4. This
choice of one year after the first surgery as an index data ensures that we
use as much of the patient’s history as possible, without capturing an actual
relapse. We removed patients who relapsed before the index date, as well
as patients censored before 3 (resp. 5) years after the first surgery. This
test set contains 520 patients, with a proportion of positive samples similar
to that of the whole dataset: 6.1% and 11.9% samples with negative DFS
status, respectively. We used a cross validation to assess the performance of
models, typically the k-Fold Cross Validation method with k = 5. The best
cross-validation APS allows to choose the best model during the Random
Search in the hyperparameter tuning.
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Figure 5.4: Index date definition

5.3 Machine learning methods
5.3.1 Models
Models that are used in this chapter are machine learning models described
in 3. These are random forests (RF)and FFNN.

To address class imbalance, we used sampling methods in combination
with Random Forests, such as the Synthetic Minority Over-Sampling Tech-
nique (SMOTE) [Chawla et al. (2002)] which is a popular method used for
generating synthetic samples from the minority class to balance the class dis-
tribution, and Balanced Random Forests methods [Chen & Breiman (2004)],
which is an adaptation of the Random Forest algorithm that aims to handle
imbalancedness by balancing the classes in each bootstrap sample before
training the tree. Moreover, we used two different integrations methods for
these multimodal data 3.6: early integration, where all the modalities are
concatenated and used as one input for the 3 models, late integration, where
the modalities are modeled separately and a weighted majority vote is used
to set the final prediction. We choose to use early integration to evaluate
how the model capture relationships between different modalities, and late
integration to allow the different models to be tailored to each modality’s
unique characteristics. We can compare these two strategies to see which
method fits the most. Importantly, these two different approaches allow to
find a balance between model complexity and model efficiency.

5.3.2 Interpretation methods
We defined a set of predictive features using the feature importance scores
from the Random Forests models. These methods offer a global interpre-
tation of models. We also used SHAP values which provides the impact
measure of each feature of individual predictions.
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The top features identified using these different techniques are provided,
and their impact is evaluated through the Area Over the Perturbation
(AOPC) score. This score measures how well a feature contributed to the
model’s predictions by removing them and observing the impact on the
model’s performance. It is defined as follows: Let us note the original per-
formance of the model on the test set as Score(X), where X is the original
dataset. We identify the top-k features based on their importance scores.
For each j in the range from 1 to k:

• We perturb the top-j important feature to create a new dataset Xj .
We can perturb it by changing its value to 0 or to an aberrant value.

• We measure the new model’s performance Score(Xj) on the perturbed
dataset.

• We calculate the performance drop for perturbing the top-j features
is ∆Scorej = Score(X)− Score(Xj).

The AOPC score is then the average performance drop over all pertur-
bation steps:

AOPC =
1

k

k∑
j=1

∆Scorej

5.4 Results
5.4.1 Model performance
Early integration

The first presented plot, Figure 5.5, illustrates the comparative performance
of a random forests classifier, SMOTE random forests, Balanced Random
Forests and the FFNN.

We compared the random forests classifiers with the different sampling
methods with the best FFNN in the following table 5.2. Among the differ-
ent sampling strategies and the random forest classifier, the random forest
classifier shows the highest performance in terms of f1-score. The synthetic
minority class samples used for the SMOTE RF did not provide more valu-
able information and diversity within the minority class. Moreover, the
FFNN showed lower scores than the remained models, which demonstrates
the robustness of random forests classifiers over neural network for data and
this given task.

The AUC scores are similar across all the random forests classifiers. How-
ever, as it is reflecting with the other metrics, the Random forests classifiers
outperform the neural network. For further experiments, we will use the
balanced random forest as the best early integration for T1 and T2, as it
achieves the highest validation APS.
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Figure 5.5: ROC-AUC scores for random forests models (with different sam-
pling methods) using early integration method, compared with the best
FFNN.

Late integration

Regarding the Late Integration method, we built the previously described
models for each of the modality. We aggregated the best model predictions
from each modality. The model with the higher validation APS is used
to perform late integration. For task T1, those models are the Balanced
Random Forests for biological and text features, random forests classifiers
used on over-sampled training set (SMOTE) for the clinical data and the
random forests classifier for the frequency of procedures modality. Regarding
the task T2, they include random forests for biological and text features,
balanced random forests for the frequency of events data and random forests
for over-sampled (SMOTE) clinical data. The higher the validation APS is
for a model, the higher its prediction will be weighted for the majority vote
to find the final prediction (see table 5.3). Scores for each modality are
shown in figure 5.6 and their aggregation are shown in figure 5.7.

Overall, clinical and text related features (medical reports and frequency
of procedures) lead to the best performance compared to biological data.
The late integration scores are shown in Table 5.4; ROC curves are plotted
on Figure ?? in the appendix. When combining the different modalities, the
score have slightly improved when compared to the each separate modality’s
model. By allowing each model to contribute with its corresponding weight,
the late integration leverages the strenghts of each modality more effectively.

We compare the performance of the different integration methods. In
terms of AUC scores, both of the methods achieve the same performance 5.8,
while in terms f1 score, the late integration method performs better than
the early integration method 5.5. Globally, the comparable AUC scores
suggest that the core predictive information is being leveraged similarly in
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Scores for T1
Models Precision Recall f1 score
Baseline = RF 0.5707 0.579 0.574
SMOTE RF 0.538 0.642 0.548
Balanced RF 0.703 0.573 0.559
FFNN 0.617 0.536 0.463

Scores for T2
Models Precision Recall f1 score
Baseline = RF 0.591 0.616 0.600
SMOTE RF 0.570 0.604 0.579
Balanced RF 0.617 0.577 0.577
FFNN 0.551 0.530 0.433

Table 5.2: Scores comparison for early integration for T1 and T2

Modalities Biological features Clinical features Frequency of events Text data

T1
Best model Balanced Random Forests SMOTE + RF Random Forests Balanced Random Forests

Validation APS 0.133 0.227 0.222 0.218
Weights 0.17 0.28 0.28 0.27

T2
Best model Random Forests SMOTE + RF Balanced Random Forests Random Forests

Validation APS 0.173 0.273 0.315 0.290
Weights 0.16 0.26 0.3 0.28

Table 5.3: Late aggregation weights for each modality for T1 and T2.

Scores for T1
Models Precision Recall f1 score
Biological data 0.538 0.509 0.412
Clinical data 0.534 0.603 0.543
Text data 0.647 0.550 0.517
Procedures occurrences 0.591 0.562 0.571

Scores for T2
Models Precision Recall f1 score
Biological data 0.528 0.532 0.534
Clinical data 0.530 0.563 0.529
Text data 0.584 0.593 0.588
Procedures occurrences 0.618 0.573 0.565

Table 5.4: Scores comparison for the best model of each individual modality
for both tasks T1 and T2.
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Figure 5.6: ROC-AUC scores for each modality and for each model for T1
and T2 (top and down respectively)

both methods. Moreover, multi-modal models’ performance are better than
all the individual models’ performance for each modality taken separately,
which indicates that integrative models take advantage of the complemen-
tarity of the different modalities. When combining multiple modalities, we
can capture more comprehensive information about the DFS status predic-
tion. This uses various aspects of the patient’s EHR, and helps the model
to discern patterns that might not be evident when using single modalities.
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Figure 5.7: AUC scores per modality, for their late integration and their
late integration weighted by their validation APS
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Figure 5.8: AUC scores for individual modalities and early vs late integra-
tion, for T1 and T2. Each modality model is mentioned in 5.4.1
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Scores for T1
Models Precision Recall f1 score AUC
Late integration 0.616 0.660 0.633 0.742
Weighted Late integration 0.620 0.689 0.645 0.749
Early integration 0.703 0.573 0.559 0.735

Scores for T2
Models Precision Recall f1 score AUC
Late integration 0.588 0.607 0.595 0.661
Weighted Late integration 0.5917 0.615 0.600 0.665
Early integration 0.617 0.577 0.577 0.659

Table 5.5: Performance of early integration and late integrations for T1 and
T2. Models used for the different integration methods are detailed in 5.4.1
and 5.4.1.

5.4.2 Interpretation

Early integration

We display the random forest’s most predictive features using early inte-
gration method for both tasks T1 and T2 in Figure 5.9. It highlights key
insights derived from the feature importance analysis. First, by comparing
the feature importance across modalities, we see that most of the features
in the most predictive ones are from the clinical data modality. This is
in line with the individual modality performance, where models for clinical
data have outperformed the model for the other modalities. Specifically, we
find that the features that have the highest importance scores among the
clinical features are related to well documented clinical prognosis factors,
namely ’nbggpos’ which correspond to the number of affected lymph nodes,
’grade_3cl’ which is the tumor grade, and ’histo_size’ and ’tclin’, which are
features related to the tumor size.

On the other hand, we find bi-grams and tri-grams such as ’antecedents
carcinologiques’ (carcinological history), ’scintigraphie osseuse’ (bone scan)
or ’suites operatoires simples’ (simple operating sequences) from the textual
features that give insights on the patient clinical and pathological condition.
For instance, the bone scintigraphy is part of the standard work-up follow-
ing diagnosis of a breast lesion but may also be requested for surveillance
purposes, or in response to suspicious pain or elevated markers. Familial
cancer history is also been shown to be a significant prognosis factor for
breast cancer outcomes [Song et al. (2017),Lafourcade et al. (2018)].

Regarding the frequency of events and the biological data, no feature
have been found to be predictive for the random forests model.

For the next interpretation results, I use SHAP to compute global ex-
planations for all the samples of the test set. Figure 5.10 shows the 20
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Figure 5.9: Predictive Features according to the Random Forests’ Feature
Importance method for Early integration method (T1 and T2)

most important features given by the SHAP interpretation model. Overall,
we find common features that are outputted by the Random forest feature
importance method: ’grade_3cl’ , ’nbggpos’, ’histo_size’, ’antecedents car-
cinologiques’, ’suites operatoires simples’ or ’scintigraphie osseuse’.. More-
over, we have features such as ’mitotique faible’ (low mitotic) for T1 or the
frequency of ’consultation libre adulte’ (adult consultation) for T2, that high-
light respectively a slower growth rate and a favorable prognostic factors in
various types of cancers and a potential correlation between the number of
consultations with the severeness of the breast cancer.

To give global insights on the most important features given by the early
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Figure 5.10: Top 20 most important features from SHAP for both tasks T1
(top) and T2 (down) for early integration.

integration method, I plot common important features from both interpre-
tation method in Figure 5.11.

Late integration

We output the most important features for each modality’s model used to
perform late integration. Those features from the Random Forest feature
importance method are shown in the section A.2 in the appendix. We com-
pute the most important features across the separated results using their
attribution values for the different interpretation methods. The top 20 are
shown in figure 5.12 for the Random forest feature importance method and
in figure 5.13 for the SHAP method.

Unlike the early integration most important features, the most impor-
tances features given by the different interpretation methods include biolog-
ical features (MONO, LEUC and CA15-3 ). Abnormal values factors can
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Figure 5.11: Early integration: Top features across the different interpreta-
tion methods. From top to down: features and attributions from the random
forest feature importance method, features and attribution from SHAP and
their mean.

be assimilated to a post-surgical complications or infections. We also find
factors that are already mentioned in the early integration method (nbggpos,
histo_size, tclin or grade_3cl).

To give global insights on the most important features given by the
late integration method, I also plot common important features across both
interpretation methods in Figure 5.14.

Early and Late integration

We gather the top features given by all the interpretation method for both
early and late integrations. We find respectively six (6) and four (4) features
that have been found predictive using both methods and for both integration
methods for T1 and T2 (see Figure 5.15). For T1, clinical features play an
important role in predicting early relapse, while for T2, models used features
related to post-treatment conditions such as the number of consultations
from the frequency of events modality or recu dr which also refers to an
occurrence of consultations.
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Figure 5.12: Predictive Features according to the Random Forests’ Feature
Importance method for Late integration method (T1 and T2)

Area Over the Pertubation Curve - AOPC

AOPC is measured using the top features for T1 and T2. We compared the
results with baselines that removed random features to perturb the data.
Removing the top features predicted by SHAP and RF feature importance
method degrades performance. This means that these features do indeed
have a non-negligible impact on the model. Therefore, these approaches
seem to indeed find relevant features that explain the model.

5.5 Conclusion
We used different integration methods using four modalities of EHR to pre-
dict DFS status. In general, the different fusion methods perform simi-
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Figure 5.13: Predictive features according to SHAP for the late integration
method (T1 and T2)

larly. They both manage to combine valuable information from the different
modalities at their different level to achiveve the prediciton task. Moreover,
the top features are reliable from a medical point of view and will require fur-
ther investigations or more complex data representation to have a broader
view of the explanations.

In the next chapter, I will introduce another way to represent multimodal
patient data that better reflects the EHR nature: a sequential representation.
This data will be used with deep learning models that are efficient with
sequential represented data: transformers.
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Figure 5.14: Late integration: Top features across the different interpreta-
tion methods. From top to down: features and attributions from the random
forest feature importance method, features and attribution from SHAP and
their mean.
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Figure 5.15: Top features from all methods and using Early and Late inte-
gration methods for T1 (top) and T2 (down).
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Figure 5.16: Evaluation of the interpretation methods used with the early
integration models for T1 and T2. We used the 15 most important features
that are common for both interpretation methods.



Chapter 6

Tabular BEHRT: Pre-trained
transformers models for

tabular EHR

Abstract:
Classical machine learning techniques have shown their ability to predict

cancer outcome such as disease free survival status (DFS status) for multi-
modal breast cancer patient data. During my thesis, I also explore more
complex machine learning models: transformers based models. I developed
Tabular BEHRT which is a readaption of a deep neural sequence transduc-
tion for electronical health records called BEHRT using as input data the
sequential information through the patient journey. The BEHRT model
is inspired by one the most powerful transformer-based model in Natural
Language Processing: BERT. In this chapter, I will present the readapta-
tion of medical events into a sequential format. Then I will present whole
pipeline of Tabular BEHRT. And I will finally give insights on the model
interpretation.

Résumé:
Les techniques classiques d’apprentissage automatique ont montré leur

capacité à prédire les résultats d’un cancer tels que le statut de survie
sans maladie pour les données multimodales des patientes atteintes d’un
cancer du sein. Au cours de ma thèse, j’ai également exploré des mod-
èles d’apprentissage automatique plus complexes : les modèles basés sur les
transformers. J’ai developpé Tabular BEHRT, qui est une adaptation d’un
modèles basé sur l’architecture des transformers et utilisé pour des dossiers
medical electroniques (DME) appelé BEHRT. Ce modèle s’inspire de des
modèles les plus puissants dans le domaine du traitement du langage naturel:
BERT. Dans ce chapitre, je présente la réadaptation des dossiers patients en
séquence d’évènements. Ensuite je présente le pipeline de Tabular BEHRT
et enfin je montrerais des résultats d’interpretation du modèle
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In this chapter, I present Tabular BEHRT, a BEHRT-based model ap-
plied to tabular information form Electronic Health Records. Contrary to
the previous chapter, I explore representations of the tabular patient data in
a sequential format that depicts the patient journey over time. More specif-
ically, I show how to adapt specific features as sequences of events, and how
to train transformers-based models using such data.

6.1 Introduction

In breast cancer research, accurately identifying the patients that are most
likely to relapse is important to inform both treatment selection and future
research to propose better therapeutic options. One of the most commonly
used prognostic tool for breast cancer is the Nottingham Prognosis Index
(NPI), which uses a combination of three clinical features (tumor size, tumor
grade, and number of lymph nodes) and was proposed in 1982 [Haybittle
et al. (1982a)]. Since then, many authors have used statistical and machine
learning algorithms to build breast cancer relapse predictors from clinical
features; however NPI still seems to be the most robust criterion [Phung
et al. (2019)], despite its limitations.

In addition to the NPI or the classical machine learning models such
as those presented in the previous chapter, recent methodological develop-
ments in deep learning have opened the way to developing new tools to use
EHR data to improve patient care. Indeed, deep learning techniques have
proven useful to model complex patient trajectories based on multimodal
EHR data [Amirahmadi et al. (2023)]. In these models, information about
different time points in the patient trajectory are flattened together. By
contrast, a growing body of literature is taking advantage of the sequential
nature of EHRs, using deep learning architectures such as long short-term
memory (LSTM) networks to capture patient trajectories as a sequence of
ordered time-stamped events [Liu et al. (2018),Amirahmadi et al. (2023)].

Among those, transformer-based models inspired from BERT (Bidirec-
tional Encoder Representations from Transformer) [Devlin et al. (2019c)], an
architecture that has significantly outperformed previous methods on a large
variety of natural language processing tasks ands continue to drive advance-
ments in the field (see Chapter 3), have recently gathered a lot of interest.
Their superiority is explained by the use of self-supervised pretraining tasks,
such as masked language modeling and next sentence prediction, which al-
lows them to learn better representations of the data. These architectures
have been successfully transposed to patient trajectories by seeing them as
sequences of medical events rather than of words [Li et al. (2020b), Pang
et al. (2021b), Rasmy et al. (2021), Rao et al. (2022), Li et al. (2023b)]. To
the best of our knowledge, however, none of these have considered cancer-
related clinical outcomes, possibly because they are typically applied to very
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Feature Normal range Mean value ± std missing
CA15-3 (U/ml) N < 30 63.39± 484.44 6 390

LEUK (g/l) 4 < N < 10 6.99± 6.82 2 525

PN (g/l) 1.7 < N < 7 718.85± 1 789.66 9 419

LYMP (g/l) 1.4 < N < 4 289.63± 714.26 9 448

MONO (g/l) 0.2 < N < 1 33.29± 123.59 3 675

Table 6.1: Normal ranges for the biological features

large cohorts of millions of patients.
In this chapter, we present a new transformer architecture for binary

classification from multimodal EHR data, which combines biological mea-
surements, therapies, and medical reports into a sequence of medical events
describing a patient’s trajectory. We evaluate our proposed method on two
classification tasks: the prediction of relapse after 3 and 5 years, respectively.
We pretrain the models on the equivalent of a masked language model.

6.2 Materials and Methods

6.2.1 Data description

The data used in this work is from the cohort described in the previous
chapter; I refer the reader to the Section data in chapter 5. However, features
used for this model are described in the following table.

6.2.2 Data preprocessing

From biological measurements, we only kept features that have less than 30%
of missing values: MONO, LEUK, LYMP, PN and CA 15-3. Transformers
require categorical inputs; hence all numerical values have to be discretized.
We binarized biological measurements into two values: 1 if the value is
outside the normal range for the biological measurement, and 2 otherwise.
Figure 6.1 shows the distribution of biological measurements; the medical
normal range of these biological features can be found in Table 6.1.

In addition, we also computed the differences ∆t = vt − vt−1 between
the current visit’s biological value vt and the previous visit’s value vt−1. We
then discretized the ∆ values by dividing them by ten and rounding. This
captures more subtle variations in biological measurements evolution than
the mere abnormal/normal values.

From the clinical information, we included both longitudinal and non-
longitudinal features: age, undergone therapies, and tumor size on the
one hand, tumor grade and number of nodes involved at diagnostic as
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Figure 6.1: Binarization of biological features into 1 and 2. For each of
the 5 biological features, the dashed red lines delineate the normal range,
highlighted in red, and mapped to 2, from the abnormal range, highlighted
in green, and mapped to 1

well as breast cancer molecular subtypes (Luminal, TNBC, HER2+/RH-,
HER2+/RH+) on the other. Age is computed at each visit and discretized
by rounding to the nearest integer. Descriptive statistics of the age, breast
cancer subtype, grades, number of lymph nodes involved, tumor size and
biological measurements are given in Table S1 in the appendix.

We combined tumor size, tumor grade and the number of lymph nodes in-
volved into the Nottingham Prognosis Index (NPI) [Haybittle et al. (1982a)],
a commonly used, clinically relevant and robust prognostic tool [Phung
et al. (2019)]. The NPI is computed as NPI = 0.2 × tumor_size (cm) +
tumor_grade + lymph_nodes_stage, where the lymph nodes stage is com-
puted as 1 (0 nodes), 2 (1 to 3 nodes) or 3 (> 3 nodes). The lower the score,
the higher the chance of survival 5 years after surgery. The tumor size is
measured at various points in the cancer journey. We kept for this study
the clinical tumor size (clinical_ts) assessed at diagnosis when the tumor is
palpable, and the pathological tumor size (pathological_ts) which is the his-
tological size of the tumor extracted at the surgery. The NPI is recalculated
with each new tumor size measurement, hence termed as the dynamic NPI
(dNPI). For patients with at least one available feature among the three
required for calculating the dNPI, we imputed missing tumor sizes using
the mode value among samples of the same clinical or pathological tumor
stage (TNM) status. The number of involved lymph nodes is the sum of the
number of affected sentinel nodes and axillary nodes. We imputed missing
number of nodes to zero and missing tumor grade to G2 (grade 2), based on
the most frequent values in our data. The higher the dNPI, the lower the
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Therapies Sub-therapies

Surgery

Lumpectomy
Mastectomy
Axillary node dissection
Sentinel node biopsy

Radiotherapy

Axillary irradiation
Internal mammary chain irradiation
Mammary gland/chest wall irradiation
Supra/sub-clavicular irradiation

Hormone therapy
Tamoxifen
Aromatase
LHRH agonist

Anti-HER2 therapy
Trastuzumab
Pertuzumab
Lapatinib

Table 6.2: List of possible therapies and sub-therapies in our data.

chance of survival. Following Blamey et al. (2007) [Blamey et al. (2007)], we
categorized dNPI into six groups: Excellent Prognostic group (EPG) (NPI
≤ 2.4), Good (GPG) (2.4 < NPI ≤ 3.4); Moderate I (MPG I) (3.4 < NPI
≤ 4.4), Moderate II (MPG II) (4.4 < NPI ≤ 5.4), Poor (PPG) (5.4 < NPI
≤ 6.4) and very poor (VPG) (NPI > 6.4). We display the survival curves
according to the value of clinical and pathological NPI in the figures 6.2

Therapies are inferred by considering the occurrence date for the surgery,
the start and end dates for hormone-therapy, chemotherapy and anti-HER2
treatment, and the number of doses administered for the radiotherapy. This
inference incoporates the therapeutic protocol of Institut Curie (see Figure
6.3). Subtherapies, also inferred from this protocol, provide additional in-
formation about the specific molecules given in the case of chemotherapy or
anti-HER2 therapy, radiation types in the case of radiotherapy, and specific
surgical procedures including both breast and axillary surgeries. A list of all
possible values for the “therapies” and “subtherapies” field is given in Table
6.2.

Because Tabular BEHRT can handle missing values (see Section 6.2.3),
we did not impute missing values for longitudinal features. However, for the
baselines, we opted to impute the tumor size, number of nodes, grades and
cancer subtype by an aberrant value of 999. Using an aberrant value allows
the model to explicitly indentify and differentiate imputed values from the
actual data, by analogy with not locating a token within a sentence when
using M-BEHRT.
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Figure 6.2: Survival curves showing the number of surviving patients at
successive time points following breast cancer diagnosis for the different
NPI groups (clinical NPI on the left and pathological NPI on the right),
in the SEIN cohort (N=15150). The y-axis represents the probabilty of
survival, ranging from 0 to 1, while the x-axis represents time. The worst
NPI prognosis group reflects the curve that drops more quickly (VPPG
group for both), which indicate a higher rate of the event: the Disease Free
Survival here
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Figure 6.3: Institut Curie Therapeutic Protocol

Finally, medical visit department and procedure names are available
within the headers of free-text reports. They represent the hospital’s depart-
ment from which the report is written, such as consultations, consultation
génétique or imagerie (consultations, genetic consultations and imaging in
English), and the procedure stands for the type of event that the report is
about, for example réunion de concertation pluridisciplinaire, information
or échographie (multidisciplinary consultation meeting, medical information
and ultrasound in English). Thus, this information is used to describe the
events that occur during each visit, and is extracted from each report for
every patient. We normalized department and procedure names by remov-
ing accents, punctuation and special characters. We merged synonyms into
a single word: for example, anapath, anatomopathologie and anatomo-cyto-
pathologie are merged into anatomo-cyto-pathologie (anatomical cytology in
English). To do so, we sifted through the corpus vocabulary, identifying and
unifying synonyms and/or differently written terms to enhance coherence of
the medical history. We also removed words that appear fewer than 100
times in the whole corpus.

We defined two classification tasks: the prediction of DFS 3 years (T1)
and 5 years (T2) after surgery, as depicted in Figure 6.4, which are the same
tasks as the previous chapter 5. We kept patients that had at least 3 visits
in their medical history. For pre-training tasks (see Section 3.5.3), we used
all patients and their full history.

This results in 8 089 patients for T1 and 5 192 for T2, with respectively
6.2% and 17.1% of negative DFS status.
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Figure 6.4: Flowchart of study inclusion and exclusion.
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6.2.3 Tabular BEHRT

Information retrieved from EHR are generally time stamped events. As in
Natural Language Processing, EHR can be transformed into sequences of
tokens, where each token represents a unit of information from the EHR
rather than a linguistic unit. These sequences can then be fed into lan-
guage models such as transformers [Vaswani et al. (2017b)]. This was first
proposed by [Li et al. (2020b)], who proposed BEHRT (BERT for EHR),
an architecture based on that of BERT (Bidirectional Encoder Representa-
tions from Transformers) [Devlin et al. (2019c)] to predict future conditions
from a sequence of diagnoses. Here we propose Tabular BEHRT, which is
a transformer-based deep learning model whose architecture is inspired by
BEHRT’s. Tabular BEHRT considers that each medical visit is described
using structured data: the department in which it took place, the corre-
sponding procedure, as well as clinical and biological measurements avail-
able at this time. Like BERT and BEHRT, Tabular BEHRT combines a
pre-training task (Masked Language Model) with a downstream task (the
classification task), but applies it to a multimodal tabular EHR dataset.

Patient trajectory representation from structured EHR

By analogy with Natural Language Processing data, a patient’s history can
be seen as a document, where visits serve as sentences, and the events within
the visits act as tokens. In our final data, the medical sequence consists of
a sequence of visits that are chronogically ordered.

We used dates from the medical reports to construct medical chrono-
logical sequences. Each visit is described by the specific department and
procedure from which the report originates, which contextualizes additional
features, which are incorporated as available.

By analogy with Natural Language Processing data, a patient’s history
can be seen as a document, where visits serve as sentences, and the events
within the visits act as tokens. In our final data, the medical sequence
consists of a sequence of visits that are chronogically ordered.

As illustrated on Panel C of Figure 6.5, each visit is therefore described
by at most 12 features: 5 biological measurements, the medical department
where the visit took place, the type of procedure the visit corresponded to,
the therapy and sub-therapy administered, the patient’s age, the dNPI and
the breast cancer subtype (which is static but repeated at each visit).

A separate modality layer indicates what kind of feature each measure-
ment corresponds to. Generally speaking, this could be set to simply in-
dicating the modality (biological, clinical, visit), but here we chose to be
specific and encode the feature name. This allows us in particular to deal
with missing values, which can simply be skipped as the modality layers
provides the information of what feature is at each position. The modality
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layer allows the algorithm to treat each modality differently.
As in BERT and BEHRT, a sequence of visits starts with the special

token CLS, and visits are separated with the special token SEP.
Whereas BEHRT captures temporal information by including the age of

the patient in a separate layer, we kept age as other clinical descriptors in the
main input layer, but added another special embedding layer that represents
the delay between the next visit and the previous. We discretized delays,
as in Pang et al. 2021 [Pang et al. (2021b)], into W0-3 (under 1, 2, 3, or 4
weeks) for delays shorter than 4 weeks, M1-12 (under 1 month up to under
12 months) for delays shorter than a year and LT (long term) for delays
longer than a year.

One of the notable constraints in BERT-like models is token capacity:
they process tokens in fixed-size sequences of at most 512 tokens. While this
size is arbitrary and varies depending on the exact BERT architecture and
implementation, it cannot take much larger values, as it is linked to the mem-
ory usage of the self-attention mechanism of BERT, which grows quadrati-
cally with the number of tokens (each token being attentive to every other
token). There is therefore a tradeoff between the number of features/tokens
used to describe each visit, and the number of visits that can be considered
by Tabular BEHRT. This is alleviated by the exclusion of both missing val-
ues and biological delta values equal to zero (corresponding to an absence of
change in measurement), which is possible as the modality layer informs the
architecture as to the kind of feature each token corresponds to. In practice,
if the patient trajectory still exceeds 512 tokens, we only consider the first
512 tokens, which represent the initial interactions of the patient with the
healthcare system, and inform about initial diagnostic visits and treatment
decisions. Figure S4 in appendix shows how much information is excluded
from patient trajectories due to restricting data to the 512 first tokens.

Panel C of Figure 6.5 illustrates the representation of each patient’s
sequence of visits that will be fed to Tabular BEHRT.

Model

Tabular BEHRT uses the transformers architecture to model temporal de-
pedencies in the built sequence. Its architecture can be broken down into
three (3) key components.

The Input layer as depicted on panel C of Figure 6.5 represents the sum
of multiple embedding layers. Let E be the embedding matrix for medical
events, i.e, the token embedding or input embedding have each unique event
ei, converted into a dense vector. The modalities embedding M represents
a list of learnable dense vectors for each modality token mi. The same is
seen for each delay token di for the delay embedding, denoted D. Each visit
or encounter is assigned an unique embedding to distinguish different visits
in the Segment Visits embedding S and the position of each token within
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Figure 6.5: Tabular BEHRT architecture. Tabular BEHRT considers as
input patient trajectories extracted from multimodal EHR (panel A) and
represented as sequences of medical events where each event is characterized
by tabular (or structured) data (panel B). Panel C shows an example of
patient trajectory embedding. Panel D shows the architecture of Tabular
BEHRT.
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the visit sequence is encoded by P , to capture temporal order.
For a patient trajectory {e1, e2, ..., en} across different visits, the input

representation xi for each token is given by:

xi = E(ei) +M(mi) +D(di) + S(vi) + P (pi) (6.1)

where mi and di denote respectively the modality and the delay at that
index, vi denotes the visits’ index and pi denotes the position index within
the visit.

In the original BERT [Devlin et al. (2019c)] and BEHRT [Li et al.
(2020b)] papers, the position embedding layer allows to capture the location
of an entity in the input embedding layer so that each position is assigned a
unique representation. Transformers use a smart positional encoding scheme
where each index is mapped to a vector where for a given position pi. There-
fore, the output of the positional encoding layer is a matrix where each row
represents an encoded object of the sequence summed with its positional in-
fomation. Suppose we have an input sequence of length L, for the ith object
within the sequence, the position embedding P is computed as follows:

P (k, 2i) = sin
(

k

m2i/d

)
(6.2)

P (k, 2i+ 1) = cos
(

k

m2i/d

)
, (6.3)

where k is the position of an object in the input sequence (0 ≤ k < L/2), d
is the dimension of the output embedding space, P (k, j) is the embedding
mapping position k in the input sequence to index (k, j) of the positional
matrix, m is a scalar defined by the user (m = 10 000 by default in the
original paper [Vaswani et al. (2017b)]) and i is used for mapping to column
indices 0 ≤ i < d/2. The even positions are mapped using a sine function
and the odd positions using a cosine functions. Sine and cosine functions
are periodic, which allows the model to generalize the relative positions
to tokens and to capture both absolute and relative positional information.
The denominator m2i/d scales the position p differently for each dimension
allowing the model to learn to attend to different positions.

Each transformer encoder layer processes the input representation through
self-attention, as in Chapter 3 and a feed-forward network. Various aspects
of the model architecture of the transformers and the training process are
optimized through a hyperparameters tuning process using Bayesian opti-
mization. The hyperparameters that have been chosen for the final model
are the most that achieve the best validation performance in terms of average
precision score (APS). Details are shown in the Appendix.

The final hidden states from the last transformer layer are used for pre-
diction; this is the output layer. For a binary classification task such as DFS
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prediction for instance, the sigmoid function is applied to the final state
corresponding to the CLS token.

ŷ = σ(h[CLS].W + b) (6.4)

Pretraining task To improve the embeddings of patient trajectories built
from structured data, we follow the example of BEHRT and pre-train a
Masked Language Model (MLM) on the representations described in Sec-
tion 6.2.3. As in Natural Language Processing, the MLM is designed to
predict missing or masked tokens within a patient’s history, using the bidi-
rectionaly context provided by the surrounding tokens. Its goal is to learn
contextual representation of the medical events in the patient’s history. For
this purpose, in this pre-training phase Tabular-BEHRT uses the whole co-
hort of 15 150 patients and the entire sequence of events for each patient,
from the date of diagnosis to the date of death or censorship, with a length
average of 506(±466) tokens (Figure xx shown in appendix). We randomly
replaced 15% of the tokens with a special MASK token. We swapped an-
other 2% with another token at random; this adds a limited amount of noise,
encouraging the model to learn a more robust and generalizable representa-
tion of patient trajectories. As shown in panel D of Figure 6.5, the MLM
part of Tabular BEHRT is a transformer-based architecture that generates
probabilities for each token in the vocabulary, computed using softmax over
the model’s output logits, as a multilabel learning task.

We first split the dataset into a training (90%) and a validation set
(10%) in order to prevent overfitting. Then, all the embeddings from the
training set are randomly initialized and fed to the MLM. We use Bayesian
optimization to find the best set of hyperparameters, with precision as a
criterion.

For robustness, we run the model five times with five different random
seeds for the sequence masking, and use as final token embeddings for the
downstream classification tasks the mean values of standardized embeddings
from these five runs.

Implementation details for the pretraining task In this thesis,
I implemented BEHRT as a custom BERT model, following the BERTOn-
lyMLMHead implementation from HuggingFace [Wolf et al. (2019)]. The
BERT model is as already described in chapter 3, a stacked encoders layer
that take as inputs the embeddings vectors from Equation 6.1. The encoded
information from the BERT model serve as an input the the MLM module.
It consists of a linear layer to map the hidden states to a vocabulary-sized
vector, followed by a normalization layer to normalize the hidden state and
a softmax activation to produce a probability distribution over the vocabu-
lary. The MLM is trained by minimizing the Cross Entropy Loss. Formally,
the MLM can be written using the following ingredients:
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1. Input Sequence: Let X = (x1, x2, ..., xn) be the input token sequence.

2. Masked Sequence: Let X̃ = (x̃1, x̃2, ..., x̃n) be the masked sequence,
where some tokens xi are replaced by MASK.

3. Hidden layers intermediate output computation :

zi = Whhi + bh

4. Hidden layer output computation via Layer Normalization [Ba et al.
(2016)]:

z′i = LayerNorm(zi)

5. Softmax:
P (yi|X̃) = softmax(Whhi + bh)

where hi is the hidden state corresponding to the i-th token position,
and Wh and bh are the weights and bias of the output layer.

6. Loss Function:

LMLM = −
∑
i∈M

logP (yi = xi|X̃)

where M is the set of masked token positions.

We used Bayesian optimisation to choose the best set of hyperparameters
for the model. The evaluation of the MLM is done using the precision of
the model, i.e, the percentage of correctly predicted masked tokens.

DFS prediction In this study, we assessed two binary classification tasks:
disease-free survival (DFS) 3 years after surgery (prediction task T1) and 5
years after surgery (prediction task T2). We used the same test set than the
previous machine learning models that remained untouched throughout the
whole model development process with number of samples N = 520. We
randomly split the remaining data into a training (90%) and a validation
set (10%). We used Bayesian optimization to find the optimal set of hyper-
parameters during the training phase, using Average Precision Score (APS)
on the validation set, as a performance criterion.

Implementation details for DFS prediction For the classification
task, I used the same BERT architecture as for the MLM task. As shown
on Figure 6.5, only the last layer is different between pre-training and fine-
tuning: here the patient history embeddings are fed to a single feed-forward
layer. This layer maps the encoded information to a 2D vector appropri-
ate for binary classification. The training starts by loading the pretrained
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weights from the MLM. We obtain logits from the classification layer. The
loss used to compute the loss between the predicted logits and the true label
is the a Binary Cross Entropy With Logits Loss (BCEWithLogitsLoss).

More formally, let X = (x1, x2, ..., xn) be the input token sequence. It
is fed to the BERT-like model which returns as output h[CLS], which is the
hidden state corresponding to the CLS token. The model then applies a
logit classification layer to h[CLS]:

logits = W · h[CLS] + b (6.5)

where W is the weight matrix and b is the bias vector. The best parameters
are found by minimizing the BCEWithLogitsLoss:

BCEWithLogitsLoss(logits, y) = mean(ℓ(σ(logits), y)) (6.6)

with:

ℓ = − 1

N

N∑
i=1

[yi log(P (y = 1|inputi)) + (1− yi) log(1− P (y = 1|inputi))]

where N is the number of samples, yi is the true label (0 or 1), and inputi
is the input sequence.

Because the labeled data is typically imbalanced (see Section 3.3.3), we
also implemented a stratified batches strategy to ensure that the the model
learns to recognize all classes more effectively and does not become biased
towards the majority class. This technique consists in loading the same
proportion of positive and negative samples for each batch, with replacement
for the positive instances (the minority class), during training.

I also implemented other techniques to address class imbalance during
this thesis, such as the “class weights” technique, which consists in adjust-
ing the loss function to weigh samples from the minority more heavily. By
penalizing the majority class, the model is ensured to have enhanced perfor-
mance on minority classes. However, this technique did not show as good
validation performances as balanced batches in practice.

I also experimented with various techniques to represent delays. They
included encoding the delay embedding layer using the Time2Vec [Kazemi
et al. (2019)] encoding method. This method, similar to the positional en-
coding described above, is designed for temporal sequential information. It
has been particularly effective in multiple applications that involve temporal
data [Kazemi et al. (2019), Ozair et al. (2020), López-Andreu et al. (2023)],
and for various neural network architectures (LSTM, GRU or Tranformers).
It is defined as follows:

Given a time point t, the Time2Vec representation t2v(t) is computed
using a combination of a linear term and periodic terms:

t2v(t) = [w0t+ b0, sin(w1t+ b1), cos(w2t+ b2), . . . , sin(wd−1t+ bd−1)]
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where wi and bi are learnable parameters, the first term w0t+ b0 is a linear
component and the remaining terms are periodic components (sine and co-
sine functions) that capture cyclical patterns. However, this technique has
failed to improve the classification task.

Comparison baselines

To evaluate Tabular-BEHRT’s effectiveness, we developed baselines that
served as benchmarks for gauging M-BEHRT’s performance in a DFS status
classification task. Those are standard machine learning methods: random
forests classifiers (RF), logistic regression (LR), and support vector machines
(SVM) (see chapter 3). Moreover, we used the NPI measured at the date of
diagnosis, which is a tool that has helped clinicians to determine prognosis,
as another benchmark. Machine learning models (RF, LR and SVM) used
the same features used for Tabular-BEHRT presented in a structured rep-
resentation (Table B.2 in appendix). For patient trajectories, sequence of
events are transformed into occurrences of events for certain features (pro-
cedure and department names, and biological measurements in or outside
of the normal range). Clinical features (age, therapies, tumor size, tumor
grade, breast cancer molecular sub-type and number of nodes) are kept as
static clinical features in the table.

6.3 Results
6.3.1 Events’ embedding
The optimal hyperparameters we identified for the MLM are 5 hidden layers
with 12 attention heads, a hidden size of 144, an intermediate layer size of
133, a training duration of 120 epochs, using Adam optimizer with a learning
rate set to 1e-3 and a batch size of 64.

To assess the performance of the MLM, we ran the model five times
with five different random seeds for the sequence masking. We also com-
pute a baseline by running the MLM on a data set in which tokens have
been randomly reordered within each sequence. This approach disrupts the
inherent sequential structure of the data, and creates a scenario where the
model should not be able to rely on contextual relationships between tokens.
Hence, comparing the MLM’s performance on shuffled sequences against its
performance on original sequences offers a benchmark for assessing the im-
pact of contextual information on the model’s predictive capabilities. The
precision of these models (proportion of correctly predicted masked tokens)
on the held-out validation set is shown on Figure 6.6.

The MLM is able to predict masked tokens with a precision of 72% on
the validation set, a performance that is not significantly different from the
one on the training set, highlighting the absence of overfitting. In addition,
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Figure 6.6: Precision scores for the Masked Language Model. The baseline
scores are obtained from the MLM ran on shuffled sequences.

this precision is significantly higher than the precision of 55% obtained when
shuffling the sequences, which shows that the MLM does indeed capture con-
textual information. We also note that the precision of the MLM of BEHRT
reported by [Li et al. (2020b)] on sequences of diagnoses is of 66%. While it
is difficult to compare this performance to ours due to the different nature
of the tasks, it indicates that the MLM provides embeddings of sufficient
quality to perform supervised learning in a second stage.

We further evaluate embeddings generated by the MLM by visualizing
token embeddings through two-dimensional plotting along the first two com-
ponents of a t-distributed Stochastic Neighbor Embedding (t-SNE) as shown
on Figure 6.7. This figure shows how the MLM capture semantic relation-
ships between tokens and contextual information. Tokens belong to the same
modality (therapies, variation in biological features, breast cancer subtypes)
tend to cluster together, with the exception of procedures and departments,
which tend to be mixed together. This is however unsurprising, as some
procedures and departments are tightly linked; for example, panel F shows
that the embedding of the “nuclear medicine” service is quite close to the
embeddings of “radiology”, “scanner” and “MRI” procedures, while panel D
shows that the embedding of the “radiotherapy” service is quite close to the
embeddings of several procedures all relating to the proposal, prescription,
initiation, unfolding and ending of treatment by radiotherapy.
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Figure 6.7: t-SNE of Tabular BEHRT tokens embeddings as learned by the
Masked Language Model. Panels A through F zoom in on specific section
of the plot. Panel A corresponds to a cluster of deltas in biological measure-
ments. Panel B shows that age tokens cluster together. Panel C shows that
therapy token, on the one hand, and breast cancer subtypes, on the other,
cluster together. Panel D and F show two different clusters of procedures
and departments. Panel E show that dNPI tokens cluster together, as well
as BERT special tokens.
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Figure 6.8: ROC curves for baselines and Tabular BEHRT, for predicting
disease-free survival 3 years (T1, left) or 5 years (T2, right) after surgery.

6.3.2 Classification task results

Comparison to state-of-the-art predictive algorithms

We determined the best set of hyperparameters on the validation sets and
evaluated the best-performing model on the held-out test set. For T1, we
trained Tabular BEHRT for 5 epochs, using Adam optimizer with a learning
rate of 10−4 and a batch size of 16. For T2, we trained Tabular BEHRT
for 20 epochs, using Adam optimizer with a learning rate of 3.10−4 and a
batch size of 32. We then evaluated the performance of Tabular BEHRT on
the until now untouched test set, using Receiver Operating Characteristic
(ROC) curves. APS performances can be found in the appendix. For direct
numerical comparison, we also report the Area Under the ROC Curve (AUC-
ROC).Figure 6.8 compares the performance of Tabular BEHRT with the
baselines presented in Section 6.2.3.

Tabular BEHRT outperforms all comparison partners. All methods per-
form significantly better than random classifier. However predicting DFS
after 5 years (T2) is more difficult than after 3 years.

Tabular BEHRT with small size datasets

While BEHRT and its variants have been trained on millions on samples,
focusing on a specific disease (here breast cancer) for a single moderately-
sized hospital (here Institut Curie) drastically reduces the number of samples
available for training. To put to the test the ability of Tabular BEHRT to
learn from small training sets, we experimented with reducing the size of the
training set even further. To this end, we created smaller training sets by ran-
domly selecting subsets of the training data, starting from 10 samples, and
compared on the test set the performance of Tabular BEHRT and classical
machine learning algorithms trained on these small training sets. Figure 6.9
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Figure 6.9: APS (top) and AUC-ROC (bottom) on the test set for M-
BEHRT, random forests, support vector classifier, and logistic regression
trained on dataset of increasing sizes (x-axis).

shows that Tabular BEHRT clearly outperforms the classical machine learn-
ing algorithms, especially random forests, in the few-shot learning setting
(when training set sizes are very small), achieving better-than-random per-
formance with as little as 10 training samples and outperforming NPI with a
few hundred training samples. We attribute this performance to the ability
of the pretraining phase to learn meaningful representations of patient tra-
jectories. While Tabular-BEHRT remains above the others, the gap between
methods narrows as sample sizes increase.

Ablation study

In order to better understand the contribution of each modality to the per-
formance of M-BEHRT, we performed an ablation study, in which we eval-
uated how the model performs when removing some of the modalities. As
shown on Figure 6.10, dNPI contributes the most to the performance. How-
ever, the addition of the other features, in particular the remaining clinical
features (including age and more notably therapies), increases performance
significantly. This is in line with observations from other studies, in which
clinical features are the one providing the most information towards the
prediction of breast cancer relapse [Perou et al. (2000b),Dent et al. (2007)].
Biological features contribute the least to performance, although they still
contain information, as they allow for better-than-random prediction. How-
ever, it seems that this information is redundant with that captured by the
other features. However, early experimentations with including a quantized
version of the variation between biological measurements did not improve
performance (results not shown). Moreover, therapies administrerded for
breast cancer ofrten serve as a proxy for a wealth of information about
the tumour characteristics, and those characteristics are mostly correlated
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Figure 6.10: Ablation studies AUC-ROC on the test set for Tabular BEHRT.
We present results for the full model (Tabular BEHRT), then using only
one of the 4 modalities (dNPI, clinical features, biological features, medical
visits), two modalities (dNPI+clinical or biological+visits), then removing
one of the 4 modalities. Here “medical records” stands for features extracted
extracted from the medical record headers, that is to say, visit department
and procedure. Performance scores are presented on the test set.

xwith the patient’s prognosis. There are therapies choices that are made
in more advanced or aggressive tumors, such as adjuvant or neo-adjuvant
chemotherapies, which generally indicate a poorer prognosis. On another
hand, treatments such as hormone-therapy are mainly used for early stage
or less aggressive tumors, which may foreshadow a better prognosis. Per-
formance also drops substantially if information about the nature of the
medical visit (department and procedure) is omitted. These observations
are consistant across both tasks.

Tabular BEHRT performance per cancer subtype

Figure 6.11 presents the AUC-ROC of Tabular BEHRT on the test set,
stratified by patient age, tumor grade, molecular subtype, or node status.
Tabular-BEHRT is better at predicting DFS at three years on older patients,
with at least one affected lymph node. Stratification of results by NPI range
is available in the appendix.

Model interpretation

I perform interpretation for Tabular BEHRT using the IG method imple-
mented in the CAPTUM python library [Kokhlikyan et al. (2020)] (see sec-
tion 3.7). I show, in following figures (6.12, 6.13), interpreted sequences for
3 different samples that have different prognosis groups in both tasks T1
and T2. In these sequences, the ’white’ tokens do not have an impact on
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Figure 6.11: AUC-ROC stratified by patient age, cancer grade, molecular
subtype and node status, for tasks T1 (prediction of DFS 3 years after
surgery, top) and T2 (prediction of DFS 5 years after surgery, bottom).
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the model prediction, the tokens in ’green’ have an impact on the positive
endpoint (influence on the relapse), and the tokens in ’red’ have an impact
on the negative impact (influence on the non-relapse status). First, it be-
comes evident that the model heavily relies on the well-defined prognostic
groups for making its decisions. The bad NPI groups (VPPG and PPG)
have high attributions towards the positive group (relapse) while the good
NPI group (GPG) have high attributions towards the negative group (non-
relapse). These examples are only showing TP samples. Therefore, NPI
tokens are mainly used by Tabular BEHRT for the poor prognosis groups
(VPPG and PPG). Regarding the good and moderate prognosis groups, to-
kens that provide critical insights into the aggressiveness and progression
of the disease, have been used by Tabular BEHRT to accurately predict re-
lapse. They includes a high number of ’RCP’ (multidisplinary consultation
meetings), a high number of ’consultations’ (auscultations), a second surgi-
cal procedure or abnormal value for the CA15-3 and the LYMP biological
markers. Moreover, Tabular BEHRT uses well-documented factors in the
litterature to predict a positive DFS status such as age. Delays sequences
have also been explored in the interpretation step, however I did not find a
reliable explanations for the model predictions.

Additionally, we gather the most frequent events with higher attribution
across all the samples. We output features that have been predictive for at
least 10% across samples. The result include ’CLS’ token, ’consultations’
tokens and ’rcp’ token. The CLS token’s primary function is to capture a
summary representation of the entire input sequence for the purpose of clas-
sification tasks, which explain its high influence to prediction. Consultations
tokens cover ’consultation during treatment’, ’consultations’, ’adult consul-
tation’ and ’announcement consultations’. From a medical point of view,
these events are not specifically linked to cancer prognosis. The ’rcp’ token
can however give insights on the cancer severeness. We plot survival plots
to visualize time to relapse for different patient groups with varying ’rcp’
numbers post-surgery 6.14. The number of ’rcp’ is not necessarily linked to
prognosis, but it indicates the difficulty level of treating the cancer.

6.4 Conclusion

In this chapter, we proposed Tabular BEHRT, a deep learning architecture
which considers structured data to describe each medical event. Our work
is motivated by applications to oncology, and applied to the prediction of
disease-free survival for breast cancer patients. In Tabular BEHRT, we
chose to perform early integration of the different modalities in the tabular
data describing medical events by concatenating the corresponding features
in a single input layer. However, an additional modality embedding layer
keeps track of which modality each feature comes from and modulates the
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Figure 6.12: Interpretation examples for true positive samples in T1, from
a bad prognostic group (VPPG), to a good prognostic group (GPG) (top to
bottom).



144 CHAPTER 6. TABULAR BEHRT

Figure 6.13: Interpretation examples for true positive samples in T1, from
a bad prognostic group (PPG), to a good prognostic group (GPG) (top to
bottom).
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contribution of each modality to the final model, allowing the model to treat
each modality differently.

In this approach, there is a tradeoff between the number of visits that
can be considered and the amount of information that can be used to de-
scribe each visit, because the underlying BERT architecture is limited to
processing 512 tokens. This number is arbitrary, but constrained by the
memory usage of the self-attention mechanism. We have found this num-
ber to be sufficient for the DFS prediction tasks at hand and the available
features and modalities. However, this might be too small for other appli-
cations, in which case one might want to use approaches that approximate
the self-attention matrices so as to reduce their memory footprint, such as
Big Bird [Zaheer et al. (2020b)] or Nyströmformer [Xiong et al. (2021)].

To the best of our knowledge, this is the first study predicting breast
cancer endpoints from sequences of EHR data, whether considering solely
multimodal dynamic tabular data, solely the contents of free-text reports,
or combining both. Our results underscore the usefulness of such data for
future research on prognosis modeling, and outline the importance of inte-
grating medical information collected over time to gain previously unknown
insights into the understanding of breast cancer evolution.

Tabular BEHRT achieve AUCs on a held-out data set of 0.75 for the
prediction of DFS 3 years after surgery and 0.68 for the prediction of DFS
5 years after surgery. Predicting DFS 3 years after surgery seems much
easier than 5 years after surgery (AUC of 0.77 vs 0.69). This is in line
with previous observations that earlier events are easier to predict than
long-term ones [Witteveen et al. (2015)]. Their time-dependent prognostic
tool, designed to estimate the yearly risk of locoregional recurrence in early
breast cancer patients showed an AUC of 0.84, 0.77, 0.70 0.73 and 0.62,
respectively, for each successive year after the primary treatment. This
decline in performance over time might stem from the influence of by more
subtle and/or complex effects on long-term DFS. Moreover, there may be
factors than have not been captured in the input sequence up to 1 year after
surgery that could have more impact on long-term DFS.

Intuitively, deep-learning methods, specially transformers-like models,
are better to fit data if the training size is sufficient (in the range of 10K
at least). In comparable transformer models that analyze EHR, [Li et al.
(2020b)] introduced a model that was trained and evaluated on nearly 1.6
million samples. Indeed, many other studies use high number of samples:
Med-BERT [Rasmy et al. (2021)] has been pre-trained using more than 28
millions patients EHR and fine-tuned on different prediction tasks using
from 29,405 to 672,647 samples. In a similar approach, [Pang et al. (2021b)]
fine-tuned CEHR-BEHRT with high numbers of samples, which range from
97 758 to 590 578 for their different downstream tasks. Unlike these studies,
our model is constrained by a smaller sample size: about 15 000 patients
for pretraining, and 5 000 to 8 000 patients for fine-tuning. And despite its
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smaller scale, this dataset serves as a valuable resource for DFS prediction in
breast cancer. The possibility to apply such methods to much smaller data
sets is very encouraging for future research, as many studies, especially on
very specific diseases and endpoints, only have access to a limited number of
patients. Keeping the same pretrained model, we experimented with further
reducing the number of patients used for training the classifier. While per-
formance was of course degraded, the models learned with Tabular BEHRT
using only 100 samples had much better AUC than their classical machine
learning counterparts, which performed close to random. This highlights
the importance of pretraining in this context.

The primary goal in this study is to predict DFS using the longitudi-
nal information from the different modalities throughout the patient medi-
cal trajectory. Tabular BEHRT performances underscore the capability of
transformer architectures to capture event dependencies across the entire
sequence, a practice actually comparable to clinicians’ considerations when
predicting potential breast cancer evolution for individual patients. Our re-
sults also highlight the limitations of relying solely on clinician predictions
at specific time points, NPI for example, as these may lead to miss relevant
information. Additionally, NPI’s utilization of only three clinical features,
albeit important, appears insufficient to capture the entirety of predictive
factors. Notably, [Kim et al. (2012)] and [Wu et al. (2017)] report a lower
performance for NPI (AUC of 0.70 and 0.751, respectively) compared to
their prognosis models’ performances (respectively, an AUC of 0.85 with a
SVM and an AUC of 0.807 with a Cox Regression analysis) for recurrence
prediction at 5 years after breast cancer surgery. These models incorporated
other clinical features in their process in addition to those already used by
NPI, such as lymphovascular invasion (LVI), ER status, and metastatic
lymph node.

We stratified the data based on features that are expected to define
patients with similar prognoses (age, grade, number of lymph nodes involved,
molecular subtype). We found that the prediction ability of Tabular BEHRT
varies depending on subgroups and that the model works better on older
patients with more aggressive disease (at least one lymph node involved).
In addition, Tabular BEHRT is better at predicting relapse after 5 years
than after 3 years for luminal tumors, suggesting that it correctly identifies
predictive factors with long term influence for these tumors that tend to
recur later than others [Ignatov et al. (2018)].

In this chapter, we have only used tabular information to describe each
medical visit. In the next chapter, we will show a similar architecture to
learn from free text describing the visits instead.
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Chapter 7

Text BEHRT: Pre-trained
transformers models for

Free-text reports

Abstract:
Prognosis prediction in breast cancer research is particularly crucial for

patient management. And many work have been done to leverage machine
learning tolls to enhance de reliability and the accuracy of those predictions
and EHR have been a major part of that process. In this thesis, I explore the
integration of free text medical reports with advanced deep learning methods
such as transformers for DFS status prediction. I developed Text BEHRT, a
transformer-based models that use the sequence of free text reports through
the patient journey, to assess its efficacity in DFS status prediction. As
the previous chapter, Text-BEHRT is inspired by the BERT model. In this
chapter, I will present the whole pipeline that: (i) processes french free-text
medical reports into valuable information, (ii) readapt them into sequences
of free text trajectories and that (iii) models this information through Text-
BEHRT.

Résumé:
La prédiction du pronostic dans la recherche sur le cancer du sein est par-

ticulièrement cruciale pour la gestion des patients. De nombreux travaux
ont été réalisés pour exploiter les outils d’apprentissage automatique afin
d’améliorer la fiabilité et la précision de ces prédictions, et les dossiers médi-
caux électroniques ont joué un rôle majeur dans ce processus. Dans cette
thèse, j’explore l’intégration de rapports médicaux en texte libre avec des
méthodes avancées d’apprentissage profond telles que les transformers pour
la prédiction de la DFS. J’ai développé Text BEHRT, un modèle basé sur
un transformers qui utilise la séquence de rapports en texte libre tout au
long du parcours du patient, afin d’évaluer son efficacité dans la prédiction
de la DFS. Comme dans le chapitre précédent, Text-BEHRT s’inspire du
modèle BERT. Dans ce chapitre, je présenterai l’ensemble du pipeline qui :
(i) traite les rapports médicaux en texte libre en informations utiles, (ii) les
réadapte en séquences de trajectoires en texte libre et qui (iii) modélise ces
informations par le biais de Text-BEHRT.
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In this chapter, I also present a BEHRT-based model but applied to the
text data present in medical reports. The medical reports are treated in a
chronological order through a free-text patients trajectories and I learn a
transformers based models using that data.

7.1 Introduction

The previous chapter showed a new transformer-based architecture for learn-
ing from EHRs where each visit is represented by tabular data. However, as
discussed in Chapter 5, we also have free-text reports available for each of
these visits.

Many other works had taken advantage of the considerable information
present in text reports. [Zeng et al. (2019b)] developed a support vector
machine to identify breast cancer local recurrences using concepts extracted
from text reports by MetaMap, and the number of pathological reports
recorded for each patient. there is a need of using a multimodal approach to
predict breast cancer relapse, combining clinical, pathological and molecular
information. Their model acheived a high AUC of 93% in cross-validation.
For [González-Castro et al. (2023a)], medical concepts are also extracted
from reports to constitute features that will be combined to clinical infor-
mation. In the 5-year cancer recurrence their best model (eXtreme Gradient
Boosting) reached a great AUC of 80.7%.

In this chapter, we present a transformer architecture for DFS status
prediction from free-text reports, applied to the SEIN database. As Tabu-
lar BEHRT, Text BEHRT is evaluated on T1 and T2, namely, 3 and 5 years
after surgery relapse, respectively.

7.2 Materials and Methods

Data description

The data used for this study is the same than in the chapter 5. Therefore, I
refer the reader to the Data section in that chapter for the free-text reports
data description.

Data preprocessing

The preprocessing steps that have been applied to the free-text data is de-
tailed in the section 5.2.3 in the chapter 5.
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7.2.1 Text-BEHRT

Patient trajectory with free-text report

In addition, we assume that important information is contained within the
text itself of the free-text reports. We therefore build a sequence of free-text
reports, ordered chronologically from the date of the diagnosis until the index
date (one year after the first surgery). As shown in Table B.1 in the chapter
5, the number of reports per patient and the length of each report are such
that these create very long documents (on average 34 reports, averaging 159
words each, for a total of more than 5 000 words per patient history, See
appendix for words histogram). However, while BERT has proven to be
highly effective in capturing contextual relationships and semantic nuances
in text, it can only process sequences of at most 512 tokens, due to the
memory footprint of the self-attention mechanism.

This constraint again poses challenges when dealing with lengthy docu-
ments such as a sequence of medical reports [Gao et al. (2021)]. Using trans-
formers to classify long documents is still a topic of open research [Park
et al. (2022)]. The most straightforward approach consists in truncating
inputs to fit within the allowed number of tokens, typically by using the
first, last or middle tokens. However, limiting patient history to 512 tokens
may result in major information loss and hence produce incomplete repre-
sentation of medical reports. Other approaches such as Big Bird [Zaheer
et al. (2020b)] or Nyströmformer [Xiong et al. (2021)] use sparse or low-rank
approximations of the self-attention matrices. However, existing pretrained
models typically do not handle more than 4 096 tokens, which is still too
short for some of the patients in our data set. In addition, they have only
been trained on English corpora whereas our medical notes are in French.
Nevertheless, our corpus is much too small to train a transformer model from
scratch. Finally, many approaches consist in dividing long text into chunks
smaller than 512 tokens and combining their embeddings, whether through
an additional layer of self-attention in a hierarchical model [Pappagari et al.
(2019)] or by pooling [Li et al. (2023a)].

In the absence of a clear consensus on which of these strategies is likely
to perform best [Park et al. (2022), Li et al. (2023a)], we chose to test two
methods: CLS pooling, by using token embedding that starts every report,
as the representation for the whole medical report, as it has been defined
to contain the most information of the sequence report, and a simple ag-
gregation strategy. However, by comparing results in downstream tasks,
the simple aggregation pooling have shown to be more efficient for the task,
therefore we will only discuss on that method for the rest of the discussion.

More specifically, we construct the embedding of every report by sum-
ming the embeddings of all tokens it contains, and construct sequences not
of token embeddings, but of reports embeddings. We compute token em-
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beddings from the three following models: word2vec CBOW [Mikolov et al.
(2013)], word2vec skipgram [Mikolov et al. (2013)], and DrBERT [Labrak
et al. (2023)].

• CBOW or Continuous Bag Of Words, a word embedding technique as
part of the Word2Vec framework [Mikolov et al. (2013)], designed to
learn words representations by predicting a target word based on its
context words within a given window size (see Figure 7.1)

• Skip-Gram, another word embedding technique from the Word2Vec
framework, which predicts surrounding context words from a target
word to learn words embeddings.

• DrBERT [Labrak et al. (2023)], a state-of-the-art pre-trained trans-
former model, based on the RoBERTa architecture [Liu et al. (2019b)]
and trained on a French biomedical corpus which contains 7GB of
clinical data from multiple sources.

We can then train a BERT model on the sequences of reports embeddings.

Figure 7.1: CBOW and Skipgram training model illustration adapted from
[Mikolov et al. (2013)]. The task is iterated over the whole corpus, word by
word)

To account for temporality, we add an embedding layer of delays be-
tween reports. Finally, we use BERT special tokens: CLS for the start of
a medical history and SEP to separate reports from different visits. This
representation is illustrated on panel B of Figure 7.2. In Text BEHRT, we
didn’t run a MLM task, as running MLM on the whole corpus would require
more computational resources than available.
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Figure 7.2: Text BERT architecture

The architecture of Text BEHRT is illustrated on Panel D of Figure 7.2.
It is again a transformer-based model, which uses report embeddings ob-
tained through the aggregation of DrBERT embeddings as described in Sec-
tion 7.2.1. The same sampling strategy as the one depicted in the previous
section is used for this task.
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Binary classification

Text BEHRT is again a transformer-based model, which uses report embed-
dings obtained through the aggregation of the best word embedding model as
described in Section 7.2.1. The tasks are the same than in Tabular BEHRT:
disease-free survival (DFS) 3 years after surgery (prediction task T1) and
5 years after surgery (prediction task T2). The same test set will be used
for evaluation and the same sampling strategy as the one depicted in the
previous section is used for this task. We also used Bayesian optimization
to find optimal set of hyperparameters using the best validation Average
Precision Score (APS).

Implementation details The implementation of Text BEHRT is similar
to that of Text BEHRT. During training, the optimization is done by min-
imizing a Binary Cross Entropy With Logits Loss. We also used stratified
batches to load the same number of negative than positive samples during
training.

Comparison baselines Machine learning models (RF, LR and SVM) and
the NPI are used as benchmarks to evaluate Text BEHRT’s performance.
As inputs, the ML model used flattened reports embeddings, from a vector
of 768 dimensions to a table of 768 features for each report. We imputed
missing values with zero (0) for missing values in the inputs.

7.2.2 Results

Words embeddings

Embeddings generating by CBOW, Skipgram and DrBERT are evaluated
through the measure of the quality of the embedding based on downstream
tasks (T1). We perform T1 and T2 using the different embeddings methods.
The Figure B.6 in the appendix shows the different ROC-curves for both
tasks. The DrBERT method has shown better results and will be used for
Text BEHRT.

Medical reports embeddings

We first evaluate the quality of the medical reports embeddings obtained
by pooling tokens embeddings extracted from DrBERT by visualizing them
after their projection into a 2D space using t-SNE. The proximity of re-
ports within this space corresponds to their semantic similarity. As shown
in Figure 7.3, this visualization provides a comprehensive overview of the
clustering patterns, demonstrating the potential of DrBERT embeddings in
representing French medical text data.
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Figure 7.3: t-SNE of Text BEHRT medical reports embeddings. Each panel
correspond to a different departments’ reports with similar information, clus-
ter together.

This figure shows clusters of reports written in the same departments.
Additionally, it displays promixity between clusters that arise from similar
departments. The Panel A groups all reports associated with radiology,
including “mammography”, “MRI”, “ultrasound”, or “scintigraphy”. The
same pattern is observed in Panel D, which contains the “generic” reports as
those related to “discharge”, “external care” or “information”, and in Panel
B, with clusters relating to cytology (“anatomocytopathology”, “cytology”).
Lastly, Panel C displays reports from various departments positioned closely
together.
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Figure 7.4: ROC curves for baselines and Text BEHRT, for predicting
disease-free survival 3 years (T1, left) or 5 years (T2, right) after surgery.

DFS classification

Comparison with state-of-the art predictive algorithms We identi-
fied the optimal hyperparameters for Text BEHRT that yield to the highest
performance for the validation set. For T1 and T2, Text BEHRT was trained
using Adam optimizer with a batch size of 32, and a learning rate of 5.10−4

and 1.10−3 respectively. The number of epochs is respectively equal to 99
and 94.

Figure 7.4 shows how Text BEHRT performs on the test sets for these two
tasks, in comparison to baseline ML models (random forests, SVM and logis-
tic regression) trained on report embeddings as described in Section 7.2.1.

Text-BEHRT clearly outperforms all the baselines in terms of ROC
curve.

Model interpretation We also attempted to interpret Text BEHRT us-
ing the IG method in the CAPTUM library [Kokhlikyan et al. (2020)]. The
example shown in Figure 7.5 shows a list of reports, colored in green, that
the model has used to predict a negative DFS status. The reports in red
have been predictive for a positive DFS status. The remaining reports in
white are not predictive for the model. The example belongs to a patient
with a moderate prognostic group (I) (NPI=MPGI), aged between 80 and
85 years old.

Overall, the model mostly relied on the entire sequence of the reports
from the diagnosis to the index date (1 year after the fisrt surgery) to make
its prediction, which is represented by the CLS token. In fact, this interpre-
tation pattern have been found in many true positive (TP) samples for both
of the tasks.

Moreover, the model relies on other specific reports contents to predict
the relapse, including an echography that classify the initial cancer class
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Figure 7.5: Interpretation example for a true positive (TP) sample in T1

Figure 7.6: Report from the “mammography” procedure in the “radio. in-
terv” department, index=6

based to the BI-RADS classification scheme to ACR5 (see report in Fig-
ure 7.6), that corresponds to a malignant tumor according to the medical
images. In fact, the model relies on reports that shows information regard-
ing the characterisation of a suspicious tumor, but this is not in and of itself
indicative of a future relapse.

The model has also acknowledged an attribution from two of the patient’s
last reports (Figure 7.7), indicating another BI-RADS cancer classification
post surgery to ACR3/ACR4. These correspond to a presence of a mass
in the breast for which short-term monitoring is recommended, possibly
suggesting that the surgery was not sufficient to remove the entire tumor.
This report also depicts two surgical operations within a 3 months delay,
which may potentially mean a more severe cancer. While this information,
in and of itself, is not strongly indicative of a future relapse, it could, in
conjunction with other reports highlighted by the model, indicate a case
that is more difficult to treat.

In order to try to gain global understanding of the model, we investigated
the most predictive reports for a positive DFS and for a negative DFS. We
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Figure 7.7: Report from the last “consultation” procedure in the “consulta-
tions” department.

set a threshold regarding the given attribution for each medical report. We
collect all the reports with an attribution above this threshold. This yielded
921 reports that are predictive for DFS negative in the entire corpus, and
1 720 reports that are predictive for DFS positive. For each reports collection,
we determine the 30 most frequent sequences (of 3 to 9 words) for both of
the cohorts. We then choose to test the most frequent sequences for the
DFS negative cohort that are not found in the DFS positive cohort. We
ended up with the following sequences of words, some of which have been
obtained with the overlapping resulting sequences:

• “sein en involution adipeuse partielle avec contingent glandulaire in-
ferieur a 50”, (breast in partial adipose involution with less than 50%
glandular contingent)

• “Traitement anterieur par hormone de croissance extractible non fac-
teurs de risque de transmission de la mcj”, (Previous treatment with
extractable growth hormone without risk factors for mcj transmission)

• “[avec] lymphadenectomie axillaire”, (with axillary lymphadenectomy)

• “syndrome de masse”, (mass syndrom)

• “[j1] solumedrol 80mg”, (solumedrol 80mg)

• “lovenox 0 4 ml”, (lovenox 0 4 ml)

We then plotted 7.8, 7.9, 7.10, 7.11 and 7.12, survival curves to compare
the patients that have reports containing these sequences and the patients
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Figure 7.8: Survival plots for the sequence: “sein en involution adipeuse
partielle avec contingent glandulaire inferieur a 50”, Present or Absent in
patients reports

that do not, using the entire cohort. DFS is the event and the log-rank test
is used to compare the populations. Only significant results are displayed.

These survival plots depict the disease-free survival probabilities over
time for patients that have one of the given sequences in their reports and
for patients that do not. The log-rank test indicates a statistically significant
difference between the two groups (< 0.05).

For the first example (Figure 7.8), the figure suggests that patients with
this feature are most likely to relapse than the other population. Until now
this feature has not been defined as a prognostic factors by clinicians. In
fact, this feature defines a specific state of breast tissue where the glandular
tissue is replaced by adipose tissue. This process naturally occurs with aging
and after menopause. When it is partial, the process is not complete yet
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Figure 7.9: Survival plots for the sequence: “sein en involution adipeuse
partielle avec contingent glandulaire inferieur a 50”, Present or Absent in
patients reports, associated with the feature “age”

and the glandular contingent percentage refers to the portion of the breast
tissue made up with the glands and ducts. This feature can have an impact
on DFS simply because it is related to the patient’s age, which is already a
prognostic factor. However, when compared with 2 age groups (Figure 7.9),
it added more information on the survival than just > 50yo and < 50 yo.
Young patients with this feature represent the worst prognostic groups.

The second plot (Figure 7.10) compared a population with the feature
“lymphadenectomie axillaire” and a population without. This feature in-
volves removing lymph nodes from the armpits. This information is asso-
ciated with the potential affection of axillary nodes, which is found to be
predictive for BC relapse.

The last survival plots concerns the features “syndrome de masse” (Fig-
ure 7.11) and “Lovenox” (Figure 7.12). The mass syndrom reflects the devel-
opment of a lesion of any kind that leads to the compression of neighboring
structures. The presence of a mass syndrom can be linked to a presence
of a tumor or to other affections. The presence of a mass syndrom is not
necessarily a cause of cancer relapse but it can indicate resistance to treat-
ments as it could be a remaining mass that has resisted chemotherapies or
radiotherapies.

Lovenox is a medication used to prevent and treat thromboembolic com-
plications in patients that undergo surgery. It belongs to the low molecular
weights heparin (LMWH) class of anticoagulant. Its survival plot depicts
a better long-term prognosis for the patients for which this anticoagulant
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Figure 7.10: Survival plots for the sequence: “lymphadenectomie axillaire”,
Present or Absent in patients reports.
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have been administrated. As Lovenox is used to treat thromboembolic com-
plications, it has been shown that the occurrence of these complications
can be an indicator of a more aggressive disease, which can lead to short-
term relapse [Zhang et al. (2016)]. On the other hand, its survival plot
depicts also a better long-term prognosis for the patients for which this
anticoagulant have been administrated. In fact, some studies have shown
improved survival rates in cancer patients receiving anticoagulants such as
Lovenox [Zhang et al. (2016), Akl et al. (2008)]. All in all, we need more
research to explore the underlying mechanisms by which Lovenox adminis-
tration may affect tumor progression.

7.3 Conclusion

As previously described, although BERT-based models can be very power-
ful, one of their keys limitations is the restriction on the maximum number
of tokens it can process in a single pass. Limiting the sequence length to 512
tokens helps to manage the model’s computational efficiency and memory
usage. This limitation makes handling sequences of medical reports really
impractical, as a single report can exceed 512 tokens. We could have used
models designed to handle longer sequences such as Longformer [Beltagy
et al. (2020a)] or Big Bird [Zaheer et al. (2020b)]. However, the maxi-
mum number tokens for those models, albeit superior to BERT, are still not
enough for situation such as sequences of reports. Despite this, Text BEHRT
outperforms both NPI and classical ML baselines, which suggests it ability
to capture the structure of EHR data.

To the best of our knowledge, ours is the first study to use entire free text
medical reports (in a language other than English) for breast cancer prog-
nosis. There are several limitations to our approach. First, we used token
embeddings learned on French clinical text that are not specific to breast
cancer; it is possible that pretraining on breast cancer clinical text could
improve the performance of our model. However, this requires considerable
resources, both in terms of amount of clinical records available and comput-
ing power. Second, we build medical records embedding by simply pooling
all token embeddings of a record, which is likely not be optimal for captur-
ing the information contained in a report. Several authors have proposed
using convolutional neural networks (CNN) or bidirectional long-short term
memory architectures (Bi-LSTM) on top of token embeddings [Gao et al.
(2021), D’Costa et al. (2020), Hui et al. (2020)], which typically helps cap-
turing the structure of text documents and could be an interesting future
direction to explore for this research. Despite these shortcomings, our results
demonstrate the ability of Text BEHRT to capture relevant information, as
it performs on with Tabular BEHRT. In terms of interpretability, it is dif-
ficult to output a general behavior behind Text BEHRT. In some studied
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examples (see appendix), the model relies mainly on reports that contain
symptoms related information or reports from imagery. When it occurs be-
fore the first surgery, these information are normal, as we are studying a
BC treated cohort. If it is not the case, these insights can be further studies
in more investigations. They can, in conjunction with other reports, have
a impact on the relapse. Moreover, the pooling embedding method that
we have used to derive reports embeddings from the reports’ content does
not help with interpretability, as it does not allow to pinpoint specific parts
of a medical report. On another hand, several potentially interesting text
features have been found to have a impact on the DFS. Even though these
results require more investigations to confirm them as prognostic factors,
they seem promising, as shown in survival plots.

In the next chapter, we will discuss how to combine Tabular BEHRT
and Text BEHRT into a single multi-modal model.



Chapter 8

Multimodal BEHRT:
Transformers for multimodal
EHR to predict BC prognosis

Abstract:
Electronic Health Records contains a wealth of information accross var-

ious modalities, including structured data and unstructured data. The in-
tegration of multimodal data can capture the complexity of patient health
status. After Tabular BEHRT that provides a comprehensive view of struc-
tured EHR information for DFS status prediction, Text BEHRT that used
the full spectrum of information avalaible in free-text medical notes, we ag-
gregate these two models through a Multimodal transformer-based model
called M-BEHRT (Multimodal-BEHRT). In this chapter, I will present M-
BEHRT and its value-added for our task.

Résumé:
Les dossiers médicaux électroniques contiennent une multitude d’informations

issues de différentes modalités, dont des données structurées et non struc-
turées. L’intégration de données multimodales permet de saisir la complexité
de l’état de santé du patient. Après le modèle Tabular BEHRT, qui fournit
une vue complète des informations structurées des DME pour la prédiction
de la DFS, et le modèle Text BEHRT, qui utilise tout le spectre des informa-
tions disponibles dans les notes médicales en texte libre, nous agrégeons ces
deux modèles à travers un modèle basé sur un transformers pour les données
multimodales appelé M-BEHRT (Multimodal-BEHRT). Dans ce chapitre, je
présenterai le M-BEHRT et sa valeur ajoutée pour notre tâche.
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In this chapter, I propose M-BEHRT, which models multimodal patient
trajectories as a sequence of medical visits, which comprise a variety of
information ranging from clinical features, results from biological lab tests,
medical department and procedure, and the content of free-text medical
reports.

8.1 Introduction
As discussed in previous chapters, many studies on cancer prognosis predic-
tion have integrated multi-modal data, including in deep learning models.
However, to the best of my knoweldge, few studies have combined clinical /
biological information with free-text medical reports. This can be explained
by the limited access to comprehensive multi-modal datasets, namely, much
of the EHR data may not readily available for research, as well as the lim-
ited sample sizes, which can affect the performance or the generalizability
of models.

In this chapter, we present a model that combines clinical, biological
and free-text clinical notes in a ensemble model that will combines the pre-
dictions of Tabular BEHRT and Text BEHRT through a meta-learner to
get predictions from all the different modalities. We called this model M-
BEHRT. We evaluate M-BEHRT on the same tasks as Tabular BEHRT and
Text BEHRT: DFS status prediction 3 and 5 years after the first surgery,
respectively T1 and T2.

8.2 Relapse classification
The final stage of this thesis is to combine information derived from the
two models: Tabular BEHRT and Text BEHRT, which aim to harness the
complementary strengths from the the diverse modalities used, thus poten-
tially enhancing the predictive power and robustness of our approach. After
training Tabular BEHRT and the Text BEHRT , we integrate the two dis-
tinct modules and Text BEHRT using a cross-attention module [Chen et al.
(2021)] (see section xx in chapter 3).

As show on Figure 8.1, logits from structured data trajectories and the
text trajectories are computed using their respective models. The cross-
attentions layer calculates attentions with one model’s logits as key, and the
other model’s logits as value and query. We recall that words embeddings
used for Text BEHRT model are provided by DrBERT pretrained model,
which have embedding size set to 768. Moreover, afterthe hyperparameters
tuning step, the most suitable hidden size for Tabular BEHRT input vector
is 144. To compute cross-attentions scores, all models’ logits must have same
size, therefore, logits from Text BEHRT are fed through a single feed-forward
layer to obtain an embedding of the same size as logits from Tabular BEHRT.
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8.2.1 Implementation details

For the multi-modal transformer based model M-BEHRT, the integration
of the Tabular BEHRT and Text BEHRT have been done through a cross
attention module, as depicted in Figure 8.1. Logits from Text BEHRT
with the are projected into a Query space Q, while logits from Tabular
BEHRT are porjected into a key K and value V spaces. The attention score
is computed for each pair of modalities as specified in Chapter 3: Aij =

softmax
(

QiK
⊤
j√

dk

)
Vj with dk being the dimensionality of the key vectors K.

The attention score are then fed to a FFNN before to be applied to a Softmax
to ensure a probability distribution.

8.2.2 Comparison baselines

To assess the M-BEHRT performance, we compared its performance to ma-
chine learning models performance for the same input. In fact, we have
define benchmarks models for Tabular BEHRT and Text BEHRT. These
models are agregated from both modalities. Outputs from tabular data
baselines and from text data baselines (specifically their logits) constitute
inputs to a secondary model (meta-model) which makes the final prediction.

8.3 Results

8.3.1 Comparison with state-of-the-art predictive ML algo-
rithms

Bayesian optimization of the hyperparameters on the validation set for the
combined model M-BEHRT led us to select the M-BEHRT model trained
with a learning rate of 1.10−3 and a batch size of 64 using Adam Optimizer,
for both tasks. Specifically, for T1, the model have been trained with 6
epochs, while for T2, M-BEHRT have been trained with 18 epochs. The
figure 8.2 shows that all models perform significantly better than a random
classifier (AUC-ROC of 0.5). Moreover, M-BEHRT outperforms all compar-
ison machine learning models.

8.3.2 Comparison of Tabular BEHRT, Text BEHRT and M-
BEHRT

Figure 8.3 compares the ROC curves of Tabular BEHRT, Text BEHRT and
their combination M-BEHRT on the test sets for the two DFS prediction
tasks.

Although they use different information, Tabular BEHRT and Text BEHRT
achieve similar performance on both tasks, highlighting that Text BEHRT
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Figure 8.2: ROC Curves comparing M-BEHRT against baselines machine
learning models on tasks T1 (left) and T2 (right).

Figure 8.3: ROC Curves comparing Tabular BEHRT and Text BEHRT
against their combined model M-BEHRT on tasks T1 (left) and T2 (right).



8.4. CONCLUSION 173

df_5y_2  = pd.read_csv('/Users/maguette/Downloads/df_test_5y_2.csv')
df_5y_2['n'] = df_5y_2['n'].apply(lambda x: str(x))

import matplotlib.pyplot as plt

fp.forestplot(df_5y_2,  # the dataframe with results data
              estimate="AUC",  # col containing estimated effect size 
              ll="ll", hl="hl",  # lower & higher limits of conf. int.
              varlabel="label",  # column containing the varlabels to be 
              capitalize="capitalize",  # Capitalize labels
     #       pval="p-val",  # column containing p-values to be formatted
              annote=["n", "est_ci"],  # columns to report on left of plo
              annoteheaders=["N", "AUC score (95% Conf. Int.)"],  # ^corr
          #    rightannote=["groups"],  # columns to report on right of p
          #    right_annoteheaders=["Variable group"],  # ^corresponding 
          groupvar="groups",  # column containing group labels           
              xlabel="AUC scores",  # x-label title
              xticks=[0.,0.25, 0.5, 0.75, 1.0],  # x-ticks to be printed
         #     sort=True,  # sort estimates in ascending order
              table=True,  # Format as a table
            #   color_alt_rows=True,  # Gray alternate rows
              # Additional kwargs for customizations
              **{"marker": "D",  # set maker symbol as diamond
                 "markersize": 35,  # adjust marker size
                 "xlinestyle": (0.5, (10, 5)),  # long dash for x-referen
                 "xlinecolor": "#808080",  # gray color for x-reference l
                 "xline":0.5,
                 "xtick_size": 12,  # adjust x-ticker fontsize
                }  
              )

<Axes: xlabel='AUC scores'>

 In [ ]:

Figure 8.4: AUC-ROC of M-BEHRT stratified by patient age, cancer grade,
molecular subtype and node status, for tasks T1 (left) and T2 (right).

can capture relevant information in unstructured medical reports. The com-
bination of both models through cross-attention slightly improves their re-
spective performance, demonstrating the synergistic effect of integrating the
strengths of both Tabular and Text BEHRT into a single unified model.

8.3.3 Performance of M-BEHRT per cancer subtype
Figure 8.4 presents the AUC-ROC of M-BEHRT on the test set, stratified
by patient age, tumor grade, molecular subtype, or node status. M-BEHRT
is better at predicting DFS at three years on older patients, with at least
one affected lymph node. Stratification of results by NPI range is available
as Supplementary Figure S5.

8.4 Conclusion
In this thesis, we proposed several novel deep learning architectures inspired
by BEHRT to model patient trajectories using multimodal data extracted
from Electronic Health Records. As the original BEHRT model, Tabu-
lar BEHRT considers structured data to describe each medical event. In
addition, it considers multiple modalities (biological lab results, clinical in-
formation, department and procedure names) simultaneously. By contrast,
in Text BEHRT each visit is described via the content of free text medical
reports. Finally, M-BEHRT combines both models through cross-attention.
Our work is motivated by applications to oncology, and applied to the pre-
diction of disease-free survival for breast cancer patients.

M-BEHRT uses a cross-attention module to perform the multimodal
fusion between the two models. This approach allows the contextual in-
tegration of information from both transformers, i.e, that each model can
attend information from the other model, and thus enable a better exploita-
tion of the complementarity between each inputs. Although the reduction of
the report embedding dimensionality from 768 (as provided by DrBERT) to
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144 through a linear layer to accommodate the cross-attention module may
result in a reduction of available information, the fusion of Tabular BEHRT
and Text BERT slightly improves the overall performance. Compared to
classical machine learning methods, M-BEHRT is therefore able to capture
the sequential aspect of patient data throughout their medical journey, re-
sulting in improved performance.

Using very different information, Tabular BEHRT and Text BEHRT
achieve AUCs on a held-out data set of 0.75 for the prediction of DFS 3
years after surgery and 0.68 for the prediction of DFS 5 years after surgery.
Combining them in M-BEHRT slightly increases predictive power, reaching
AUCs of 0.77 and 0.69 for these same tasks. Overall, our study highlights
the potential to predict DFS using solely longitudinal sequence of medical
visits and evolution of clinical information and biological measurements.

Perhaps surprisingly, we do not see the same drastic increase in perfor-
mance between Tabular BEHRT and M-BEHRT as others have observed
in multimodal prediction of breast cancer prognosis when augmenting clin-
ical data with imaging data [Rabinovici-Cohen et al. (2022b), Han et al.
(2024a)], although Text BEHRT leverages medical reports from radiologists
or cytopathologists, which are based on medical images. Although this could
be due to the aforementioned limitations of Text BEHRT, this could also
be because Tabular BEHRT already achieves much better performance than
models based solely on static clinical data.

To date, most of the multimodal prognosis models for breast cancer use
various types of medical images, as well as sometimes genetics data, com-
bined or not with tabular information (biological measurements, clinical
features). Moreover, endpoints vary between studies: DFS, but also overall
survival or recurrence (sometimes separated between local, regional and dis-
tant); which can be measured 3 or 5 years after surgery as in the present
work, but also at different time points. Finally, different studies use differ-
ent criteria inclusions. All in all, this makes comparing our performance to
other studies challenging. However, we note that M-BEHRT achieves bet-
ter performance for the prediction of DFS after three years than the recent
work of [Han et al. (2024b)], which uses ultrasound and mammography im-
ages combined with clinical, pathological and radiographic characteristics
and reports an AUC of 0.739 on a held-out test set. In addition, the perfor-
mance of M-BEHRT is in the same ballpark as that of [Rabinovici-Cohen
et al. (2022b)], which predict recurrence at five years in patients who receive
neo-adjuvant chemotherapy (AUC of 0.75 on a held out data set) using clin-
ical features, immunohistochemical markers, and multiparametric magnetic
resonance imaging, or [González-Castro et al. (2023a)], which achieve an
AUC of 0.807 also for predicting recurrence at five years, but considering all
cancer patients and using clinical features, immunohistochemical markers,
and descriptors of clinical history such as the number and type of therapies.

As previous models, we stratified the data based age, grade, number
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of lymph nodes involved, molecular subtype. We found that as Tabular
BEHRT, M-BEHRT is better at predicting relapse on older patients with
more aggressive disease (at least one lymph node involved). Moreover, M-
BEHRT is better at predicting relapse after 5 years than after 3 years for
luminal tumors, suggesting that it correctly identifies predictive factors with
long term influence for these tumors that tend to recur later than others [Ig-
natov et al. (2018)].

There are some limitations to our study. In particular, our findings
are restricted to a very specific cohort of patients who received adjuvant
chemotherapy. We also have not been able to validate our findings on an ex-
ternal validation group, due to privacy concerns limiting the access to EHR
of other centers; it is very possible that our models have captured idiosyn-
crasies of Institut Curie that do not apply to patients from other hospitals.
However, our work shows that it is possible to learn from multimodal patient
trajectories built from dynamic tabular data and the content of free-text re-
ports written by practicioners at each medical visit, and paves the way for
future research in understanding breast cancer prognostic factors.
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Chapter 9

Conclusion and perspectives

In my thesis, I explored the application of different multimodal machine
learning models to the prediction of breast cancer relapse. My main goal
was to leverage the rich and diverse information available in electronic health
records (EHRs) to improve the accuracy and reliability of Breast Cancer
relapse prediction. This opens up opportunities to explore more advanced
algorithms and address to many challenging questions.

9.1 Results of the thesis
In Chapter 2, I provided a general context about breast cancer, its nega-
tive impact on global health, its characteristics and its different treatments
strategies. This highlighted the pressing need to find a solution for better
managing the disease. I also introduced important notions in EHRs, and
discussed the challenges that arise when working with them. In spite of
these challenges, it remains necessary to continue to dig into these EHRs to
search for prognostic factors or treatment responses that will be helpful for
BC management. Most recent studies in personalized medicine, immunother-
apy, early detection and so forth have made great strides in understanding
the disease mechanisms, but BC is a complex disease and the EHR remains
definitely unexploited. Further investigations in that direction was needed.

In Chapter 3, I gave an overview of the mathematical and ML knowl-
edge that underlie this thesis. I presented the machine learning models that
I have used to predict DFS status, including both the more “classical” ML
models and the more “complex” deep learning models such as transformers-
based models. As I have used these models to work with multimodal data,
I presented the various possible methods to combine those modalities. Fi-
nally, I also described the methods used to understand the model behavior
(interpretability), which is important when dealing with this kind of data.

Chapter 4 was about the PhysioNet/Computing in Cardiology chal-
lenge, which aimed to predict mortality of ICU patients given a multimodal
health data. I worked on this challenge during the first year of this PhD,
and it has helped me to understand EHRs characteristics, specially when
sequential data is involved.

In Chapter 5, I built machine learning models that integrated clinical
features, sequential biological information and textual reports. I performed
early and late integration to integrate these different modalities. First, the
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multimodal models outperform unimodal models. This demonstrates the
value of integrating diverse patients information types. Second, the early
integration method performs better than the late integration method, which
leads us to say that the interaction between the different modalities is more
efficient in our situation for this given task. Finally, I presented a set of
features that have been found to be predictive for the DFS status. Those
features come from the different modalities, highlighting again the usefulness
of combining different modalities, which contain complementary information.
Furthermore, some of them have already been shown to be prognostic in the
litterature, which gives us confidence in our model; in addition, others were
new, and can be used for further investigations.

In the following chapters (6, 7, 8), I used a different, sequential represen-
tation of EHRs with the aim of detecting new pattern within the patient tra-
jectory. Moreover, transformers-based models having shown great promise
in medical applications, I adapted a BERT-based model for learning from
patient trajectories and applied it to the prediction of DFS status. This
makes it possible to detect the events, or reports in the medical history,
that have been somehow related by the model to a relapse event.

9.2 Future work and Perspectives

Overall, we were able to make use of the available EHRs data for relapse
prediction. We presented different models and 2 main approach to tackle
this task.

While classical multi-modal ML models perform well in integrating the
clinical, biological and textual information, M-BEHRT has been able to
take account the natural sequential representation of EHR. We showed the
efficiency of our model compared to baselines and we were able highlighted
several predictive features for DFS.

Future research could focus on the transformers-based models, namely
Tabular BEHRT and Text BEHRT. First, the integration method used in
Tabular BEHRT is an early integration method. The different tokens from
the different modalities are merged together in the same input sequence,
which leads to a long sequence in terms of number of tokens. Knowing
the BERT number of tokens’ limitation, a late integration method can be
applied to the input. It will lead to using shorter sequences, and thus, the
ability to take account most of the patient history while doing the prediction.
In addition, this could also open the possibility to add new features such as
the different components of the NPI separately to the description of each
visit, which could also improve the model.

Secondly, we have found that the biological markers were not strongly
related to the DFS prediction. We assume that it is due to their coarse
representation, which is unsufficient to clearly define a DFS positive or DFS
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negative. For certain of the features (CA15-3 or LEUK for instance), where
the normal range contains patients with both positive and negative DFS sta-
tus. In further investigations, these markers could be categorized depending
on statistical features (quantiles, median for instance), or using key point in
their distribution curve, that split the best the two classes.

Third, regarding Text BEHRT, the reports embeddings have been calcu-
lated using an available open source pretrained model: DrBERT. DrBERT
has been pretrained on a large French medical corpus, which is not special-
ized in oncology. An important step for the model improvement will be to
fine-tune the DrBERT pretrained model on a specialised corpus (the Institut
Curie reports database for instance). This can make the reports embeddings
more accurate and then lead to better performances.

Moreover, when dealing with sequences of reports, the biggest limitation
in Text BEHRT was the number of tokens. In our task, it is important to
consider the whole trajectory (or most of it) to make the prediction. On the
other hand, we are aware that some sections of the reports do not contribute
to the task. It will therefore be interesting to build a method to assess im-
portant sections in reports. This can be achieved through automatic text
summarization methods, but the evaluation of such tasks on a corpus this
size might be tricky. We could also use information extraction methods
to build more specific summaries; for instance extracting medical concepts
such as symptoms, medications or medical procedures, through medical spe-
cialized named entity recognition (NER) algorithms. We could then build a
model that will select the neighboring words around the most important ex-
tracted concepts. This can also been done using a prior “white box” method
that will use words vectors as inputs (TF-IDF for example) to perform the
tasks (T1 and T2) with a subset of the corpus. Finally, the most important
features (words) from this model can be used to derive reports’ summary
in the remained subset of the corpus. Such a strategy will allow to only
acknowledge important parts in patients trajectories and thus have shorter
sequences. Their length might be of more than 512 tokens, but might be
small enough that we can consider using BERT-based models adapted for
longer sequences such Longformer [Beltagy et al. (2020b)] or Big Bird [Za-
heer et al. (2020a)]. And the main adjustment that derive from this strategy
is the use of word embedding instead of reports embedding, which will make
the model more efficient.

And Finally, we can think of validating the developed models with di-
verse patient populations, that is to say, with one or more other cohorts,
coming from different clinics. This could still be difficult to achieve, as
EHRs are characterized by many ethical considerations. We would also
need to validate the features found to be predictive with further tests.

Altogether, further investigations can turn M-BEHRT into a practical
clinical application, potentially improving breast cancer patients outcomes
through early detection and more personalized treatment strategies.
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A.1 ROC-Curves for the different integration meth-
ods

We evaluate the different machine learning models for the same test set for
the different integration methods.

Figure A.1: ROC curves for the different models used for the early integra-
tion method for T1 (left) and T2 (right).

We observe on the ROC curves that the Balanced Random Forests out-
performs the other models with an AUC of 0.74 for T1 and 0.66 for T2. In
contrast, the neural network has an AUC of 0.59 and 0.57 (respectively for
T1 and T2), which make it less effective for our tasks. For further experi-
ments, we will use the Balanced Random Forests for both tasks.

Figure A.2: ROC curves for the best model of each modality and their late
integration for T1 (left) and T2 (right)

For the late integration method, the weighted integration method shows
better AUC for both tasks (T1 and T2). Moreover, we failed to predict DFS
status using biological features’ models for all tasks, while clinical data’
models outperform other modalities. Globally, this suggests that clinical
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data contains more information that allow to distinguish between positive
and negative DFS status.

Figure A.3: ROC curves for early and late integration methods (T1 and
T2).)

Figure A.3 shows ROC curves for the different integration methods for
T1 and T2. Overall, AUC scores are similar accross the different integration
methods.

A.2 Separated modalities’ top features
We perform interpretation of models built for the different modalities using
the random forests features importance. The top 10 features are displayed.

A.2.1 Biological data
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Figure A.4: Top 10 features from biological data’ best model

A.2.2 Clinical data
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Figure A.5: Top 10 features from clinical data’ best model

A.2.3 Frequency of events
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Figure A.6: Top 10 features from the frequency of events modality best
model

A.2.4 Text data
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Figure A.7: Top 10 features from the text data modality best model
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Features Entire dataset T1 dataset T2 dataset
Mean ± std N Mean ± std N Mean ± std N

Age < 50
58 ± 12

3 982
56 ± 12

2 493
55 ± 13

1 725

≥ 50 11 168 5 596 3 467

BC subtype

Luminal 9 979 4 866 2 930

TNBC 1 041 642 446

HER2+/HR+ 681 587 482

HER2+/HR- 480 415 330

Grades
I 3 473 1 688 1 016

II 5 911 3 057 1 941

III 3 119 2 044 1 462

Nodes N0
0.93 ± 2.49

9 463
1.07 ± 2.74

4 899
1.18 ± 3.01

3 132

N+ 4 045 2 405 1 597

Tumor size
(mm)

Clinical 16.89 ± 12.70 17.36 ± 12.97 17.78 ± 13.18

Pathological 15.04 ± 12.75 15.63 ± 12.90 16.17 ± 12.94

Biological
values

CA 15-3 (U/ml) 63.39 ± 484.44 8 760 62.85 ± 535.76 3 826 75.34 ± 617.09 2 256

LEUK (g/l) 6.99 ± 6.82 12 625 6.90 ± 7.49 6 419 6.75 ± 3.60 3 916

PN (g/l) 718.85 ± 1789.66 5 731 976.17 ± 2007.52 2 385 1105.76 ± 2093.81 1 365

LYMP (g/l) 289.63 ± 714.26 5 702 405.84 ± 820.08 2 373 463.92 ± 862.37 1 375

MONO (g/l) 33.29 ± 123.59 11 475 37.54 ± 131.79 5 821 33.29 ± 123.59 3 489

Medical
reports

visits 46 ± 33 25 ± 10 25 ± 10

reports 62 ± 50 34 ± 15 34 ± 15

words/report 172 ± 41 159 ± 37 159 ± 37

Table B.1: Descriptive statistics of the data sets used in this study, for the
full cohort of 15 150 patients, as well as the data set of patients uncensored
after 3 years (T1) and 5 years (T2).

B.1 Tabular BEHRT
B.1.1 Datasets

In the next table B.1, we present the different statistics of features used to
build the Tabular BEHRT sequences for the pretrained model (MLM) and
the classification tasks (T1 and T2).

The following figure B.1 shows the distribution of tokens in tabular se-
quences for Tabular-BEHRT. We also displayed the number of samples that
have more than 512 tokens, which represent 859 samples in T1 and 610 in
T2, which correspond to around 10 visits lost for the classification tasks.

We used as datasets for baselines, occurrences of tabular sequences’ to-
kens in each sample B.2.

B.1.2 Relapse classification
In the next figure B.3, we show the APS performance for Tabular BEHRT
for T1 and T2. Regarding the APS, Tabular BEHRT still outperform the
baselines models and the NPI for both tasks. The next figure B.4 shows
the APS performance on the test set for Tabular BEHRT when removing
some of the modalities. We present the Tabular BEHRT’s APS and other
modalities’ APS (dNPI, clinical features, biological features and medical
reports). As the AUC, this plot shows the highest contribution of clinical
data. And on another hand, the biological features do not contribute much
to the overall performance.
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N = 859 Meannum_visits = 10 ± 8 N = 610 Meannum_visits = 10 ± 8 

Figure B.1: Distribution of the number of tokens in tabular trajectory for
T1 (left) and T2 (right).

Figure B.2: Baselines dataframes

Figure B.3: APS for Binary classification
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Figure B.4: APS in Tabular BEHRT ablation studies

B.2 Text BEHRT
In figure B.5, we show the distribution of reports which go from 5 to 284
reports and each report contains from 126 to 21301 tokens. This figure
shows the potential high length of free-text reports’ sequences. BERT-like
models have a tokens limitations to 512 tokens, which lead us to use pooling
embedding methods to use the entire text trajectory.

The following figure B.6 shows the ROC curves for Text BEHRT used
with the three different words embedding methods for T1 and T2. These
performance has lead us to the use of DrBERT embeddings for Text BEHRT.

The following figures B.7 and B.8 show statistical analysis that indicates
that there is no significant difference in survival between the groups being
compared. These features ’cystosteatonecrose’ and ’transmissions pour vpa’
are part of the most frequent sequences within the negative DFS predictive
reports according to Text BEHRT. These figures allow us to say that these
features has no impact regarding the DFS.

B.3 Multimodal BEHRT
In figures B.9 and B.10, we present the AUC-ROC of M-BEHRT on the test
set stratified by the prognosis group. These plots show that M-BEHRT pre-
dicts well clearly defined prognosis groups (GPG for T1 and T2) as Tabular
BEHRT relies a lot on the clinical information to output its predictions.
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Figure B.5: Distribution of reports in the cohort (top) and the distribution
of tokens per report (down).

Figure B.6: ROC-curves for the three different embedding methods for T1
and T2.
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Figure B.7: Survival plots for the reports samples that contain the feature
’cystosteatonecrose’ and samples that do not have the feature.
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Figure B.8: Survival plots for the reports samples that contain the feature
’transmission pour vpa’ and samples that do not have the feature.



B.3. M-BEHRT 195

Figure B.9: M-BEHRT performance stratified by the NPI group for T1.

Figure B.10: M-BEHRT performance stratified by the NPI group for T2.
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MOTS CLÉS

Cancer du sein, Apprentissage automatique, Données multimodales, Dossiers médicaux électroniques

RÉSUMÉ

Le cancer du sein est l’un des cancers les plus fréquents dans le monde, représentant 12,5 % des nouveaux cas annuels.
En 2022, environ 2,3 millions de femmes ont été diagnostiquées, avec plus de 666 000 décès. Bien que les dossiers médi-
caux électroniques (DME) aient révolutionné la recherche clinique en fournissant des données précieuses, les études sur
le cancer du sein exploitent rarement les rapports médicaux en texte libre, qui contiennent pourtant des informations cru-
ciales. Cette thèse propose de développer des modèles d’apprentissage automatique et profond pour prédire les statuts
de survie du cancer du sein en utilisant des données multimodales (rapports textuels en français, résultats de laboratoire
et descripteurs cliniques) d’une vaste cohorte de l’Institut Curie. Des modèles ont été construits pour analyser séparé-
ment puis conjointement ces modalités. Les résultats montrent que l’intégration des données textuelles et structurées
améliore la prédiction des statuts de survie des patientes. De plus, l'analyse des facteurs predictifs des statuts de survie
des patients ouvre de nouvelles perspectives pour une meilleure compréhension des méchanismes du cancer du sein et
par conséquent, l’amélioration des soins.

ABSTRACT

Breast cancer is one of the most common cancers worldwide, accounting for 12.5% of new cases each year. In 2022,
around 2.3 million women were diagnosed, with over 666,000 deaths. Although electronic health records (EHRs) have
revolutionized clinical research by providing valuable data, breast cancer studies rarely exploit free-text medical reports,
which nonetheless contain crucial information. This thesis proposes to develop machine and deep learning models to
predict breast cancer outcomes using multimodal data (French text reports, laboratory results, clinical descriptors) from a
large Institut Curie cohort. Models were built to analyze these modalities separately and then jointly. Results show that
the integration of textual and structured data improves the prediction of patients' survival status. Moreover, the analy-
sis of predictive factors for patients' survival status opens up new perspectives for a better understanding of underlying
mechanisms in breast cancer, and thus, for improving care.

KEYWORDS

Breast Cancer, Machine learning, Multimodal data, Electronic Health Records


	Acknowledgement
	List of Figures
	List of Tables
	List of abbreviations
	Introduction
	Organization and contributions of the thesis

	General context
	Introduction to Breast Cancer
	Cancer epidemiology
	Definition of BC
	Molecular characteristics of BC
	BC treatment strategy
	BC studies endpoints
	Risk factors of BC

	Electronic Health Records
	EHR overview
	EHR System components
	Implementation and Adoption of EHR systems in modern healthcare

	Subject definition
	The use of multimodal EHR in medical studies
	Challenges in multimodal EHR use in medical studies


	Methodology
	Foundations of Machine Learning
	Classical Machine Learning models for tabular data
	Random Forest Classifier
	Logistic regression
	Support Vector Machine

	Deep learning for tabular data
	Perceptron
	Multi-layers Perceptrons
	Feed-Forward Neural Network

	ML models development and evaluation
	Deep Learning for sequential data
	Key concepts of natural language preprocessing
	Transformers and Attention mechanisms
	Pretrained Models

	Integration methods for different data modalities
	Early integration
	Late integration
	Intermediate integration

	Interpretation of machine learning models
	Model-agnostic interpretation methods
	Model-specific interpretation methods
	Aggregation of local interpretations
	Interpretation of transformers-based models

	Conclusion

	PhysioNet challenge
	Introduction
	Challenge characteristics
	Datasets presentation
	Data characteristics 
	Available features
	Scoring criteria

	Related word
	Features extraction
	Data preprocessing
	Models
	Results
	Conclusion


	Multi-modal ML
	Introduction
	Data set
	Data sources
	Ethics
	Data preprocessing and Data engineering

	Machine learning methods
	Models
	Interpretation methods

	Results
	Model performance
	Interpretation

	Conclusion

	Tabular BEHRT
	Introduction
	Materials and Methods
	Data description
	Data preprocessing
	Tabular BEHRT

	Results
	Events' embedding
	Classification task results

	Conclusion

	Text BEHRT
	Introduction
	Materials and Methods
	Text-BEHRT
	Results

	Conclusion 

	M-BEHRT
	Introduction
	Relapse classification
	Implementation details
	Comparison baselines

	Results
	Comparison with state-of-the-art predictive ML algorithms
	Comparison of Tabular BEHRT, Text BEHRT and M-BEHRT
	Performance of M-BEHRT per cancer subtype

	Conclusion

	Conclusion and perspectives
	Results of the thesis
	Future work and Perspectives

	Classical ML
	ROC-Curves for the different integration methods
	Separated modalities' top features
	Biological data
	Clinical data
	Frequency of events
	Text data


	M-BEHRT
	Tabular BEHRT
	Datasets
	Relapse classification

	Text BEHRT
	M-BEHRT


