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Abstract

The growing number of electric vehicles (EVs) poses a significant challenge for distribution grid op-
erators (DSOs) due to the increased power demand required for EV charging. This surge in demand
raises concerns as it can lead to violations of operational and physical constraints within the grid,
such as voltage levels, line currents, and substation transformer power flows. This thesis addresses
the issue by developing algorithmic solutions to assist DSOs in effectively managing high EV pene-
tration while adhering to operational and physical constraints of the grid. The research focuses on
two main aspects: scheduling EV charging and planning the necessary charging infrastructure. For
scheduling the charge of EVs, the thesis focuses on the development of a unified algorithmic frame-
work capable of accommodating various charging strategies while taking into account operational
constraints of the distribution grid. This framework utilizes an optimal power flow (OPF) formu-
lation, incorporating a linearized model of the grid to ensure convexity and improve computational
efficiency. By employing this framework, different charging strategies, such as uncoordinated charg-
ing, grid-aware coordinated charging (V1G), reactive power support, and vehicle-to-grid (V2G)
interactions, can be compared and analyzed for large penetration of EVs. To plan the charging
infrastructure for large penetration of EVs, a mixed-integer linear programming (MILP) formula-
tion is proposed, extending the proposed scheduling framework. Here the objective is to compute
the number and the location of EV chargers by satisfying EVs’ charging demand and the opera-
tional constraints of the distribution grid. The proposed formulation explicitly models flexibility of
owners in plugging and unplugging their EVs, emphasizing the advantages of cooperative owners
who promptly disconnect after charging completion. Additionally, the planning method considers
the concept of single-port and multi-port chargers, highlighting their significance. Furthermore, an
extension of the method is proposed to encourage PV self-consumption and incorporate V2G func-
tionality. Validation of the proposed deployment plans demonstrates the superiority of optimally
deployed chargers in achieving higher charging levels for EVs compared to uniform deployment
scenarios.
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Résumé en Français

Le nombre croissant de véhicules électriques (VE) représente un défi important pour les gestionnaires
de réseaux de distribution (GRD) en raison de l’augmentation de la demande d’électricité nécessaire
pour la recharge des VE. Cette augmentation de la demande soulève des inquiétudes car elle peut
conduire à des violations des contraintes opérationnelles et physiques au sein du réseau, telles
que les niveaux de tension, les courants de ligne et les flux de puissance des transformateurs des
sous-stations. Cette thèse aborde le problème en développant des solutions algorithmiques pour
aider les GRD à gérer efficacement la forte pénétration des VE tout en respectant les contraintes
opérationnelles et physiques du réseau. La recherche se concentre sur deux aspects principaux :
la programmation de la charge des VE et la planification de l’infrastructure de charge nécessaire.
Pour la programmation de la charge des VE, la thèse se concentre sur le développement d’un
cadre algorithmique unifié capable d’accommoder différentes stratégies de charge tout en prenant en
compte les contraintes opérationnelles du réseau de distribution. Ce cadre utilise une formulation
de flux de puissance optimal (OPF), incorporant un modèle linéarisé du réseau pour assurer la
convexité et améliorer l’efficacité des calculs. En utilisant ce cadre, différentes stratégies de charge,
telles que la charge non coordonnée, la charge coordonnée tenant compte du réseau (V1G), le
soutien de la puissance réactive et les interactions véhicule-réseau (V2G), peuvent être comparées
et analysées pour une grande pénétration des VE. Pour planifier l’infrastructure de charge pour
une grande pénétration des VE, une formulation de programmation linéaire en nombres entiers
mixtes (MILP) est proposée, étendant le cadre d’ordonnancement proposé. L’objectif est ici de
calculer le nombre et l’emplacement des chargeurs de VE en satisfaisant la demande de charge des
VE et les contraintes opérationnelles du réseau de distribution. La formulation proposée modélise
explicitement la flexibilité des propriétaires dans le branchement et le débranchement de leurs VE,
en soulignant les avantages des propriétaires coopératifs qui se débranchent rapidement après la fin
de la charge. En outre, la méthode de planification prend en compte le concept de chargeurs à port
unique et à ports multiples, en soulignant leur importance. En outre, une extension de la méthode
est proposée pour encourager l’autoconsommation photovoltaïque et intégrer la fonctionnalité V2G.
La validation des plans de déploiement proposés démontre la supériorité des chargeurs déployés de
manière optimale pour atteindre des niveaux de charge plus élevés pour les VE par rapport aux
scénarios de déploiement uniformes.
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Chapter 1

Introduction

Résumé en Français

Le chapitre introductif de la thèse donne un aperçu du contexte général et des questions clés qui en-
tourent le sujet. Il aborde les défis liés à l’intégration des véhicules électriques (VE) dans les réseaux
électriques. En outre, il explore le concept émergent de la mobilité autonome et ses implications
pour l’intégration des VE dans les réseaux électriques. En outre, le chapitre présente une analyse de
l’état de l’art, couvrant des sujets importants tels que les modèles de charge des batteries de VE, les
techniques d’écoulement optimal de l’énergie et la modélisation des réseaux électriques. En outre,
le chapitre présente les questions de recherche et les objectifs scientifiques qui guident l’étude, étab-
lissant une direction claire pour la thèse. Enfin, le chapitre conclut en décrivant la structure et les
contributions de la thèse, en soulignant ses perspectives et ses idées uniques, fournissant une base
solide pour les chapitres suivants.

Summary

The introductory chapter of the thesis provides an overview of the general context and key issues
surrounding the subject. It addresses the challenges involved in integrating electric vehicles (EVs)
into power grids. Furthermore, it explores the emerging concept of autonomous mobility and its
implications for EV-grid integration. Additionally, the chapter presents a state-of-the-art analysis,
covering important topics such as EV battery charging models, optimal power flow techniques, and
power grid modeling. Moreover, the chapter presents the research questions and scientific objectives
that guide the study, setting a clear direction for the thesis. Finally, the chapter concludes by out-
lining the structure and contributions of the thesis, highlighting its unique perspectives and insights,
providing a solid foundation for the subsequent chapters.
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1.1. GENERAL CONTEXT AND ISSUES OF THESIS SUBJECT

1.1 General context and issues of Thesis subject

Over the past decade, the world has witnessed the consequences of climate change and global
warming. According to the 2021 assessment report by the IPCC (Intergovernmental Panel on
Climate Change), global temperatures will continue to rise for many decades, primarily due to the
greenhouse gases (GHG) produced by human activities [9]. As global warming has significantly
impacted society, countries worldwide have initiated energy transition programs to reduce GHG
emissions [10]. The climate transition is a key priority for the European Council (EUCO) and the
Council of the European Union (EU). In December 2008, the European Commission published the
climate and energy package to address objectives that ensure the EU achieves its climate targets
by 2020, including a 20% reduction in greenhouse gas emissions, a 20% improvement in energy
efficiency, and a 20% share of renewables in the EU energy mix [11]. The EU has also set a target
to achieve at least a 40% reduction in GHG emissions by 2030 and to lower GHG emissions by
80-95% below the 1990 level by 2050, which aligns with the goals of the Paris Agreement to keep
global warming below 2°C [12]. Although the Covid-19 pandemic resulted in a significant decrease
in emissions from the transport sector, it was reported in [13] that in Europe, 27% of greenhouse
gas emissions in 2017 were attributed to the transport sector. Between 2018 and 2019, the EU’s
domestic transport emissions increased by 0.8%. The transport sector is the only sector in which
emissions have been consistently increasing since 1990. In France, the transport sector accounts for
40% of GHG emissions, with 95% of those emissions originating from road transport [3].

It has been reported in [14] that light-duty vehicles (LDVs) across the world account for 47% of
transport energy usage, and by 2050, the stock of LDVs is projected to reach 2 billion, indicating
a doubling of energy usage. Over the past two decades, the European Union (EU) has successfully
improved the fuel economy rate for LDVs. LDVs primarily use internal combustion engines that rely
on petroleum fuels. While biofuels can be cost-effective, the most promising approach to reducing
greenhouse gas (GHG) emissions from LDVs lies in full hybridization, plug-in hybrids, and eventually
the adoption of electric vehicles (EVs) [14]. Currently, EVs are considered the primary solution to
curtail GHG emissions from road transportation. According to the IEA, with smart charging (see
Section 1.2.3) of EVs, it will be possible to reduce CO2 emissions by 50% with increased consumer
awareness and better policy frameworks [4]. Although EVs have been around for more than 100
years, their history includes several achievements [15]. The market share of EVs is growing rapidly
in France and globally [3]. China is the largest market with 2.6 million EVs, followed by the United
States with 1.1 million EVs [2]. Therefore, the implementation of EVs in the transport sector is
expected to not only reduce CO2 emissions but also decrease dependency on fossil fuels in the future.
Figure 1.1 displays the global distribution of EV stock by region and technology from 2013 to 2019.
The plot demonstrates the increasing popularity and adoption of EV technologies worldwide. The
widespread adoption of electric vehicles will play a central role in decarbonizing road transportation
[2, 16–18]. According to Germany’s Solar Energy and Hydrogen Research Centre (ZSW), there
were 5.6 million EVs on the road by the beginning of 2019 [2]. Currently, there are three main
types of electric vehicles available in the market: fully electric vehicles, fuel cell electric vehicles,
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CHAPTER 1. INTRODUCTION

Figure 1.1: Electric vehicles stock by region and technology during 2013-2019. Source: IEA

and hybrid electric vehicles [19]. In this thesis, we will consider fully electric vehicles. As it will be
discussed more thoroughly later, a concern related to the massive diffusion of EVs is the recharging
process from the power grid, which might overload the existing grid infrastructure. Various charging
methodologies have been discussed by authors in [20], such as fast charging, standard charging,
and slow charging, which impact the charging time of EVs ranging from 20 minutes to 10 hours,
depending on the available charger capacity. To meet the increasing demand for charging electric
vehicle fleets, generating more power from renewable sources, such as wind power and solar power,
can be considered as a solution to reduce CO2 emissions and develop a sustainable transportation
system [15].

The EV technology combines both the transport and energy sectors and acts as a paradigm shift
for them [2]. With the increase in the number of EV owners, the demand for EV charging increases,
which has an impact on the power and energy sector. Recent advancements in EV technologies,
such as charging technologies and shared autonomous driving, within the transportation sector have
created further opportunities for conducting research on EVs, particularly on the charging impacts
of EV integration with modern power systems.

1.2 Challenges of integrating EVs in power grids

1.2.1 Impact of EV charging on the power grid

There are primarily two impacts of EV integration from a grid perspective. Firstly, with an increase
in the number of EV owners, the charging demand of EVs also increases, as it needs to satisfy their
driving demand. Secondly, the increased power demand from EVs affects the operation of the grid
at both the distribution and transmission levels [5]. EVs can be considered as controllable loads for
the power system, and depending on their driving demand, charging patterns, and different charging
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1.2. CHALLENGES OF INTEGRATING EVS IN POWER GRIDS

methods, the power system experiences variability in the overall load profile [15]. One disadvantage
of integrating EVs with the power system is that their charging process requires a significant amount
of power. While charging a small number of vehicles may not significantly affect the power system,
when a large population of EVs is recharged simultaneously, their charging profiles can lead to
overloading, power losses, and wear on grid components, especially in distribution grids.

The impacts of uncontrolled EV charging processes on the distribution network are shown in Fig.
1.2. At the distribution level, distribution system operators (DSOs) are responsible for ensuring

Impacts of uncontrolled EV charging process 

Congestion in MV 
and LV grids

Voltage drop in MV 
and LV grids

Voltage unbalancesHarmonic distortion

Power quality

Overload transformersOverload cables

Figure 1.2: Impacts of uncontrolled EV charging process in the distribution network [1].

efficient and reliable power supply to customers through flexibility services, which mainly involve
four operations: (a) congestion prevention, (b) loss reduction, (c) voltage magnitude regulation, and
(d) voltage unbalance reduction. Through these voltage services, DSOs maximize the integration
of renewable energy sources (RES) to facilitate the EV charging process.

In the literature, it has been summarized that the percentage of peak load increases for different
EV penetration rates1 due to the uncontrolled2 EV charging process at both the transmission and
distribution levels [1]. This makes congestion handling in distribution networks a critical task. In
addition to congestion and adverse voltage effects, high EV penetration also causes power quality
issues, including harmonic distortion and voltage unbalances [1]. Voltage unbalances are common
in the distribution grid as the loads are unequally distributed per phase, and single-phase EV
charging contributes to this imbalance [1]. The location of EV charging is another reason for voltage
unbalances; EVs have a negligible impact on voltage unbalances if connected at the beginning of
the feeder but can have a significant impact if connected towards the end [21]. The EV chargers
have nonlinear characteristics, and with high EV penetration, they cause harmonic distortions that
impose stress on the grid components. This can reduce the lifetime of the grid components and
significantly increase their replacement cost. Therefore, DSOs often need to undertake expensive

1One way to define the penetration rate is the ratio between the number of EVs and the number of houses under
any observed feeder [1].

2Different EV charging strategies are explained in the next section.
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grid reinforcements [1]. In the thesis, power quality issues have not been investigated for the charging
algorithms as it has been assumed that EVs charge at different grid nodes of a balanced medium
voltage (MV) grid (see Chapter 2).

1.2.2 EV charging standards

In the case of EV charging, there are typically two types of power supply: AC or DC. The charging
process involves supplying direct current (DC) to the battery pack. Since electricity distribution
systems provide alternating current (AC) power, a rectifier is required to convert the power to DC
for the battery. EVs can be charged in three ways: (a) conductive charging, (b) inductive charging,
and (c) battery swap [5]. The most common practice for EV charging is the conductive process,
specifically using a wire or charging cable to transfer power from the source to the EV. Conductive
charging can be either AC or DC. In the case of an AC EV charger, the AC power is delivered to the
EV’s onboard charger, which converts it to DC. On the other hand, a DC EV charger performs the
power conversion externally and directly supplies DC power to the battery, bypassing the onboard
charger [5, 22]. Organizations such as SAE (Society of Automotive Engineers), IEC (International
Electrotechnical Commission), and IEEE (Institute of Electrical and Electronics Engineers) develop
EV charging standards that comply with power grids. These standards ensure the interoperability
and compatibility of EV supply equipment for EVs [22]. Understanding these standards is crucial
when differentiating between EV charging levels and charging modes.

SAE defines the power levels of charging outlets and also specifies the supply types, which can be
either AC or DC [1]. Table 1.1 summarizes the specifications for both AC and DC supply levels in
EV charging as defined by SAE-J1772 [8].

Table 1.1: Electric vehicle supply power levels [8].

Supply Type Power level Maximum current

Level 1
AC 1.4 kW 12 A
AC 1.9kW 80 A
DC up to 36 kW 80 A

Level 2
AC 2.4 kW 10 A
AC 3.8kW 16 A
AC 7.7kW 32 A
AC 19.2kW 80 A
DC up to 90 kW 200 A

Level 3
AC ≥ 19.2kW not-yet-defined
DC up to 240 kW 400 A

Charging an EV is possible in four different modes as specified by IEC. These different EV charging
modes describe the safety communication protocol between the EV and the EV charger [1].

5



1.2. CHALLENGES OF INTEGRATING EVS IN POWER GRIDS

• Mode 1: Standard AC charging through a socket without protection, allowing a current of up
to 16 A. The charging can be either in single-phase or three-phase.

• Mode 2: Standard AC charging with protection, allowing a current of up to 32 A. The charging
can be either in single-phase or three-phase.

• Mode 3: AC charging with a dedicated EV charger, allowing 32 A (loose cable) and 63 A
(fixed cable). The charger provides the control pilot signal.

• Mode 4: Wired DC off-board charging, allowing a current of up to 400 A.

1.2.3 EV charging strategies

In general, EV charging strategies can be categorized into three types: (a) uncontrolled or unco-
ordinated or dumb charging, (b) passive charging, and (c) active or smart charging, as shown in
Figure 1.3. In this thesis, the performance of uncontrolled and some smart charging strategies has
been modeled and compared for a large population of EVs charging in a medium voltage (MV) dis-
tribution grid (See Chapter 2). In the case of uncontrolled or dumb charging, EVs start recharging
as soon as they are connected to a charging point, using the rated power of the charger based on
battery conditions such as temperature, state-of-health, and voltage conditions. The implementa-
tion of uncontrolled charging is easy as it does not require active interaction between operators and
EV owners. However, this process can lead to overloading in the power grid. A report suggests
that uncontrolled charging of EVs will result in a 50% increase in investment costs for low-voltage
grids and transformers in Germany by 2035 [23]. In the case of passive charging, EV owners are
encouraged to shift their charging to off-peak hours by utilizing "Time-of-Use" tariffs [1]. During
off-peak hours, electricity prices are lower, which motivates EV owners to charge their vehicles at a
more affordable rate. However, it has been reported in [24] that passive charging can pose a threat
to the successful integration of EVs with the power grid. It can put significant pressure on exist-
ing grid infrastructures, requiring high peak power capacities when all EVs start charging almost
simultaneously during off-peak hours, leading to a sudden increase in demand [1, 24]. As a result,
while passive charging may be a feasible solution for small EV populations, as the market share of
EVs increases, adopting smart charging strategies becomes necessary [1]. The continuous growth of
EV penetration in the power network will render passive charging obsolete in the future, as it will
have a substantial impact due to the rapid increase in load.

In the previous section, it was discussed how the uncontrolled EV charging process can impact
the power grid. To mitigate the impact of uncoordinated charging of multiple EVs, smart charging
strategies have been widely proposed in the existing literature. These strategies aim to distribute
the charging demand of EVs over a longer time horizon, enabling effective congestion management
[2, 19]. Smart charging involves adapting the charging cycle of EVs based on the conditions of
the power system and the preferences of vehicle owners [2]. According to [3], smart charging has
the potential to save approximately 0.9 billion Euros annually in France, and this can be achieved
through a simple form of smart charging. By using advanced smart charging devices, an additional
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Charging of EVs

Uncontrolled/ Dumb 
charging Passive charging Active or Smart 

charging

V1G
(Unidirectional Controlled 

Charging)

V2G
(Vehicle-to-Grid)

V2H/B
(Vehicle-to-Home/Building)

Figure 1.3: Different EV charging strategies [2, 3].

saving of nearly 0.3 billion Euros per year is possible. Ideally, smart charging can be classified into
three types: (a) V1G or unidirectional controlled charging, which modulates the rate of EV charging
by increasing or decreasing it; (b) V2G or vehicle-to-grid or bidirectional charging, where EVs have
the capability to provide power back to the grid. In this scenario, utility or transmission system
operators may purchase energy from customers during periods of peak demand and utilize the EV
battery capacity to offer various flexibility services; and (c) V2H/B or vehicle-to-building or home,
where EVs supply power back to the building or home during power outages or to enhance local
energy consumption. However, advanced smart charging, such as charging management combined
with PV self-consumption with or without bi-directional functionality, further improves flexibility
[3, 25]. Figure 1.4 presents a comparison of CO2 emissions (plotted on the Y-axis) between smart
charging and evening peak charging in major markets, including the EU [4]. It is observed that
the implementation of smart charging in all markets results in nearly a 50% reduction in CO2
production.

The main advantage of active or smart charging processes is their ability to enhance both local
and system flexibility in power systems operations, benefiting distribution system operators (DSOs)
and transmission system operators (TSOs) respectively, as explained below. To improve power
system flexibility, the V1G option, as reported in [25], can be considered. This option involves
controlling the EV charging profiles to adjust the demand during peak hours and provide real-time
balancing services for the power grid. V2G is particularly relevant for slow charging, especially in
areas with a large population of EVs, such as large EV parking areas [2]. With V2G, it becomes
possible to inject electricity back into the power grid. EVs can also provide ancillary services to
TSOs, such as voltage management and emergency power during outages, thereby improving system
flexibility. The two key features of V2G services, namely battery charging and discharging of EVs,
contribute to grid management. In the event of a grid failure, EVs can be utilized as a power source
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Figure 1.4: Impact of smart charging on CO2. Adapted from [4].

to support the grid by discharging their batteries. For example, EVs can participate in demand-side
management by selectively discharging their batteries to "shave-the-peak," as depicted in Fig.1.5,
effectively acting as a micro-grid system. Additionally, the charging schedule during peak hours can
be shifted to off-peak times to avoid grid congestion, thereby improving local flexibility for DSOs.
Reactive power support, along with V2G, provided by traditional EVs, is another means to assist
grid management. Both unidirectional and bidirectional chargers can supply reactive power to the
grid, which can be utilized for local voltage regulation, as demonstrated in [26, 27].

Figure 1.5: EV support for grid balancing. Source:[2]
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Charging point power ratings determine the speed of battery charging, categorized as slow, fast,
or ultra-fast charging. These power ratings can vary significantly depending on the installation
location, such as homes, workplaces, or public areas. Slow chargers typically have power ratings
up to 22 kilowatts (kW) and are commonly found in residential or office settings for EV charging
[25]. It has also been reported in the literature [1, 3] that slow chargers can be rated between
3.7 kW and 7.4 kW. The main advantage of charging EVs from slow chargers is that EV batteries
can remain connected to the grid for a longer period, increasing the potential to provide flexibility
services for power system operations [2]. Fast chargers, on the other hand, are predominantly
used in direct current systems along highways and for street charging, such as Paris’ Belib [2].
Fast chargers typically have power ratings up to 50 kW or higher. Ultra-fast chargers have power
ratings above 150 kW and are often installed on highways or motorways, where power ratings
can reach as high as 350 kW, as reported in [3]. While fast and ultra-fast chargers offer quick
charging to meet EVs’ demands, they have some disadvantages. Firstly, these charging processes
do not allow EVs to remain connected to the grid for an extended period to provide flexibility
services. Secondly, the high power transfer associated with fast and ultra-fast charging can strain
the grid within a short time frame. To mitigate the impact of fast and ultra-fast charging on
the power system, these chargers need to be installed in areas with low demand and congestion
during peak hours of the day [2]. To enhance the flexibility of charging stations near the power
grid, fast charging stations can be combined with slow chargers, battery storage, and renewable
energy sources. Fig.1.6 presents a generic diagram illustrating different charging strategies and
charger typologies, showcasing how system operators can achieve various levels of flexibility for
EV charging. This concept has been integrated within the planning problem context, where the
proposed joint formulation accommodates both slow and fast charging infrastructures in an MV
distribution grid (refer to Chapter 3).

Fl
ex

ib
ili

ty

Charging type

Ultra-fast charging

Fast charging

Slow + Fast charging

Basic smart charging 
(e.g. V1G)

Advanced smart 
charging (e.g. V2X)

Figure 1.6: Flexibility diagram for different charging strategies.

1.2.4 Control architectures for smart charging

In the existing literature, a wide range of algorithms for smart charging control architectures have
been proposed. One such approach is the decentralised unidirectional droop control method pro-
posed in [28], which addresses under-voltage problems by adjusting the EV charging rate based
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on local voltage measurements. This method ensures that the charging process does not cause
voltage drops beyond acceptable limits. Another distributed approach for voltage regulation has
been proposed in [29], which utilizes game theory. This approach employs an iterative algorithm
where all EVs send their charging profiles to an EV aggregator. The aggregator then computes
voltage levels and sends the data back to the individual EVs. The EV aggregator plays a crucial
role in managing a certain number of EVs whose charging profiles can be controlled, enabling the
provision of various flexibility services on their behalf [1]. These proposed control architectures
demonstrate different strategies to enhance voltage regulation and optimize the charging process in
smart charging systems.

Several strategies to address loading issues have been proposed in the literature. One such
strategy is a market-based coordination approach suggested in [30] for congestion management
involving EVs. This approach introduces EV fleet operators (FOs) to enable flexible coordination
between the EV charging process and the power system operator. The coordination between FOs
and DSOs (Distribution System Operators) can be facilitated through the distribution grid capacity
market, which not only helps manage congestion but also maximizes the integration of renewable
energy into the network. In addition to congestion management, demand flexibility (DF) can be
utilized to reduce peak loads in the distribution network [31]. This work also presents the concept
of a transactive energy (TE) system for aggregated EVs. The TE operator serves as a facilitator for
interaction between the DSO and aggregators, enabling effective management of demand flexibility
and promoting a more efficient use of resources.

Figure 1.7 provides an overview of different EV control architectures for smart charging, including
their respective advantages and disadvantages. The three control methods are as follows:

• Centralised: In the case of a centralised smart charging control architecture, a central sched-
uler (e.g., EV aggregator) collects all the required information from each EV using a com-
munication link and provides an optimized solution for scheduling the EV charging profile.
The communication link typically involves a high level of complexity; however, it allows for
the achievement of a highly optimal solution for the objective. Typically, an algorithm is
employed to achieve the objective within the corresponding control area [1, 5].

• Decentralised: The decentralised method is a local control approach where the decision-
making process occurs locally at the individual EV level [1]. In this case, the EV charging
profile is computed using locally measured data without requiring external communication
links, significantly reducing the cost of communication establishment.

• Distributed: The distributed control method is a hybrid approach that combines elements of
both centralised and decentralised control methods. This coordination method is also known
as “Hierarchical” control.
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EV Control architectures
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Figure 1.7: Advantages and disadvantages of different smart charging control architectures for
traditional EVs [1, 5].

1.2.5 The planning of EV charging infrastructures

This section presents the motivation and research gaps identified in the existing literature regard-
ing the planning of EV charging infrastructures. The increasing population of electric vehicles has
driven the need for an expanded charging infrastructure. For instance, in France, it is estimated
that 2 billion euros will be required to deploy 7 million public and private chargers by 2030 [17, 32].
Similarly, in the United States, it is projected that over 2 billion dollars will be necessary between
2019 and 2025 to improve public and residential charging infrastructure in major metropolitan areas
[33]. Simultaneous arrival of a large number of EVs at charging stations can lead to increased power
flows, potentially violating operational constraints of distribution grids, such as voltage levels, line
capacities, and substation transformer ratings. Thus, in addition to the investment required for
developing charging infrastructures, there may be a need for additional investments to upgrade and
reinforce distribution grid infrastructure. This motivates the planning of EV charging infrastruc-
ture, taking into account grid constraints and the driving demand of EV owners, including their
preferences for charging at different locations.

As mentioned in [5], the impact of EV charging on residential grids can be minimized by diversifying
charging locations, such as at workplaces and public parking spots. Another solution to reduce grid
congestion and losses while improving the carbon footprint is to charge EVs using electricity gen-
erated from local renewable sources. The concept of photovoltaic (PV) self-consumption has been
advocated in the literature to integrate more PV into distribution grids, thus delaying the need for
expensive grid reinforcement [34–36]. In this thesis, the idea of PV self-consumption is incorporated
into the planning context to promote the direct utilization of PV power for EV charging. Addi-
tionally, multiple charger typologies and EV owners’ flexibility in plugging and unplugging their
EVs are considered to investigate the charging impacts on the planning process, while promoting
PV self-consumption. The problem of planning the charging infrastructure for EVs has received
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significant attention in recent years. However, certain aspects have been overlooked in previous
works. For example, in [37] and [38], distribution grid and traffic flow models were considered to
identify suitable locations for EV charging stations using a genetic algorithm, but renewable self-
consumption and explicit models of EV owners’ flexibility were not included. In [39], a data-driven
approach was proposed to identify driving demand and charger locations, but grid constraints were
not taken into account. The authors in [40, 41] proposed a two-stage optimization framework to
co-optimize the charging infrastructure of EVs in combination with the operations of the power
and gas networks. However, their work does not specifically address drivers’ flexibility and PV
self-consumption. Similarly, the works in [42, 43] focused on planning the charging infrastructure
without considering grid constraints, PV self-consumption, and EV owners’ flexibility. Another
research study [44] proposes joint planning of EV charging stations and distribution capacity ex-
pansion but does not model EV owners’ flexibility and PV self-consumption. In [45], the authors
modeled the bounded rational charging behavior of EV drivers and applied this behavior model to
solve the planning problem for EV chargers; however, they did not investigate the impact of PV
self-consumption. A multi-objective planning model for EV chargers is developed in [46], which con-
siders renewable generation with wind power but does not explore the impacts of self-consumption
of renewable sources or drivers’ flexibility on the planning. Similarly, in [47], a multi-objective
planning model for the layout of an electric vehicle charging station is proposed, but it does not
consider the operational constraints of the distribution grid or the self-consumption of renewable
sources. Recently, the work in [48] presented a stochastic planning model for EV chargers, including
PV generation; however, it did not investigate the impact of PV self-consumption modeling on the
planning process.

Table 1.2: Optimization approaches and solvers for planning EV charging stations.

Optimization approach Reference Solver/Optimization algorithm

Robust optimization [49] Gurobi
Robust optimization [50] CPLEX
Probabilistic model [46] SG-based MONAA
Probabilistic model [51] Monte Carlo simulation (MCS)/CPLEX

Probabilistic model and queuing theory [52] Gurobi
Probabilistic model [48] MCS
Probabilistic model [48] MOEA/D
Probabilistic model [53, 54] NSGA-II
Deterministic model [55] GAMS
Deterministic model [56] MOEA/D
Deterministic model [7] Gurobi

Table 1.2 provides a summary of different optimization approaches and solvers from the exist-
ing literature. While stochastic models can represent a complex system in a more realistic way,
deterministic models are less complicated and allow for faster execution of simulations.
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1.3 The advent of autonomous mobility

As reported in the literature, autonomous vehicles (AVs) have undergone extensive testing and are
planned to be commercially available in the next decade [57]. It is expected that the emergence
of AVs will provide customers with more leisure time, estimated to be at least 50 minutes a day,
thus improving work efficiency [58]. AVs have the capability to autonomously pick up customers
without the need for parking, optimize their state of charge (SOC), and manage their charging
schedule while ensuring reliable service to users [59, 60]. AVs have the potential to significantly
reduce greenhouse gas emissions, with estimates suggesting a reduction of 87%-94% compared to
current private vehicles in the United States by 2030, and 63%-82% below projected 2030 hybrid
vehicles [61]. In a study by [62], it is mentioned that 53 projects related to autonomous vehicles
are being carried out by 9 shuttle manufacturers in 20 European countries, serving 45 cities. In
comparison to non-autonomous electric vehicles, shared autonomous electric vehicles (SAEVs) can
be more easily controlled and optimized for implementing fast and large-scale demand response [63].
Another significant advantage of SAEVs is their ability to autonomously move to designated charging
stations, allowing for a direct connection to the high voltage (HV) transmission grid at specified
points, without overloading the low voltage (LV) distribution networks [60]. The integration of
autonomous electric vehicles (AEVs) into distribution grids is not yet thoroughly explored in the
existing literature [64]. The charge scheduling problem for AEVs has recently been addressed in [60]
with the aim of minimizing waiting times and electricity costs, but this work does not take network
constraints into account. The planning of charging infrastructure for AEVs has been examined
in [65, 66], considering mobility patterns. However, distribution grids are not considered in these
works.

Considering the differences in charging processes between EVs and AEVs, it will have a further
impact on distribution grid consumption patterns. Therefore, it is important to investigate the
impact of AEV charging on distribution grids in order to identify their consumption patterns.
With the large-scale integration of EVs into power grids, the ability to independently select the
most suitable charging locations, such as those near renewable power plants or energy storage
facilities, due to autonomous driving, will help avoid grid congestion. If future mobility relies on
autonomous vehicles, the grid reinforcements and technological developments currently planned for
non-autonomous EVs may become obsolete. For example, a distribution system operator (DSO)
may prefer to invest in temporary solutions to mitigate congestion, such as battery energy storage
systems, rather than expensive grid reinforcements that may become underused and cost-inefficient
with the introduction of autonomous EVs.

1.4 State-of-the-art

1.4.1 EV battery charging model

The state-of-charge (SOC) of a battery indicates the available capacity resulting from its daily
charging and discharging process. The SOC value ranges from 0 to 100%. A SOC of 100% indicates
that the cell is fully charged, while a SOC of 0 indicates a completely discharged condition [67]. In
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general, the dynamic SOC model of a vehicle v at any given time t can be approximated as follows:

SOCvt = SOCv(t−1) − ϵvt +

(
η · PEV+

vt − 1

η
· PEV-

vt

)
Ts

Ev
. (1.1)

In the above expression, ϵvt represents the self-discharge of vehicle v at any given time t; η denotes
the charging or discharging efficiency of the battery, with a limit of 0 ≤ η ≤ 1. Ts refers to
the sampling time in hours, and Ev represents the nominal battery energy capacity in kWh. The
self-discharge of the battery can be neglected in the case of a Li-ion battery, as it is typically small.

Although Li-ion batteries have some disadvantages for certain grid services [25], they are consid-
ered the most reliable technology in present times, offering a wide range of grid services compared
to other battery technologies. An EV battery pack is categorized by its nominal capacity. With
aging, irreversible chemical processes reduce the energy capacity of the battery pack, which also in-
creases the battery cell resistance. According to ENGIE, bidirectional vehicle-to-everything (V2X)
integration has no impact on battery aging, as concluded after one year of intensive testing in a
laboratory [68].

In Eq. (1.1), the charging (in the case of unidirectional controlled or V1G) and discharging (in
the case of bidirectional or V2G) powers are denoted by PEV+

vt and PEV-
vt , respectively. For example,

in a smart charging problem, the charging and discharging powers are non-negative variables in an
optimization problem and are mutually exclusive in nature, as an EV charger can either charge or
discharge an EV at a given time.

Ignoring the self-discharge, and considering SOCv0 as the initial state-of-charge for unidirectional
charging (i.e., PEV

vt ≥ 0), Eq. (1.1) can be simplified as follows:

SOCvt = SOCv0 +
Ts

Ev

t−1∑
τ=0

(
η · PEV

vτ

)
for all t and v, (1.2)

The model in (1.2), as well as (1.1) assumes constant battery voltage and efficiency: it is commonly
adopted in the literature because it is linear in the recharging power (e.g. [5]), leading to tractable
mathematical formulations. To formulate the scheduling problem, the model (1.2) has been used in
Chapter 2.

1.4.2 Optimal power flow

Optimization algorithms are useful for solving problems associated with smart grids. An extensive
literature review on optimization algorithms has been reported in [69]. The “optimal power flow”
(OPF) tool is mainly used by system operators to solve various problems related to grid operations,
such as scheduling, planning, and security assessment. OPF is particularly popular for addressing
the variability of renewable generation. It allows for the incorporation of different flexibilities in
the problem, enabling system operators to study multi-period problems and compute optimal set
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points for controllable variables (such as energy storage, flexible demand, etc.)[70]. OPF represents
an optimization problem where the goal is to maximize or minimize a cost or objective function while
subject to different constraints that ensure a balance between power production and consumption.
Since OPF is useful for grid operators, they can consider various operational limits and constraints
(such as upper or lower bounds of measured quantities) for devices connected to the distribution or
transmission grid.

Optimal power flow can be of both AC and DC types. In AC optimal power flow, the opti-
mization algorithms consider the full AC power flow equations, whereas DC optimal power flow
refers to the approximations applied to the original non-linear AC power flow equations [70]. The
underlying assumptions for DC load flow are as follows: (a) bus voltage magnitude, i.e., Vmag =
1 p.u. at nominal value, and (b) small angular differences in bus voltage. These assumptions are
valid for lightly loaded grids. DC OPF is widely used in electricity market clearing algorithms in
transmission grids due to its linear characteristics, which ensure tractability for very large-scale
problems and guarantee convergence to a global optimum [71].

The traditional approach to power flow study in a given network involves computing the nodal
active and reactive power flow. The AC power flow equations are nonlinear, as the power depends
on the square of the voltage magnitude. When these nonlinear equations are included as constraints
in an optimization problem, the problem becomes non-convex and high-dimensional. As a result,
solving it can be computationally intensive or even difficult, as there is no guarantee that the solver
will find a global minimum. To address the non-linear power flow equations, various methods have
been reported in the existing literature, including forward/backward sweep, NR method [72, 73],
z-bus matrix construction method [74], loop impedance method [75, 76], and fast-decoupled load-
flow method [77, 78]. Consider a function f(x) and a line joining any two points (a and b) on f(x).
The function f(x) is considered convex based on the following definition:

f

(
a

2
+

b

2

)
≤ 1

2
· f (a) +

1

2
· f (b) , (1.3)

or, in other words, if the set of all function values between two points lies on the line or below it [79].
If a problem is convex, it may not precisely represent the original problem, but it is still possible
to identify an optimal solution. For convex functions, by following slope algorithms (e.g., gradient
descent method), it is possible to find the absolute minimum or maximum of the function. However,
for a non-convex function, following the gradient does not guarantee finding an absolute minimum
or maximum. Heuristic methods (e.g., particle swarm optimization [80], artificial bee colony [81, 82],
differential evolution [83], hybrid tabu search particle swarm optimization [84] algorithms) can be
useful for this purpose. As reported in [85], although heuristics provide a real representation of
the original problem, the use of random search techniques in heuristic algorithms results in long
computation times compared to convex relaxation algorithms. Convex relaxation provides an exact
solution, and an optimal solution is guaranteed.

In the previous years, a lot of work has been done to convert AC-OPF into a convex formulation.
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By defining a convex function around the non-convex function, one can solve a convex optimization
problem and achieve the goal of finding the global optimum. If the obtained optimum is feasible for
the original problem, then it is considered the optimal solution. On the other hand, if the global
optimum lies outside the feasible space, several methods can be applied to identify a feasible solution
as close as possible to the global optimum [71]. The most common convex relaxation algorithms for
power flow equations are quadratically constrained quadratic programs (QCQPs), as reported in
[86, 87]. Both convex relaxations, Semi-Definite Program (SDP) and Second-Order Cone Program
(SOCP), fall under QCQP algorithms and can be exact under certain conditions [88–91]. However,
in the case of high renewable generation, these relaxations can be inexact due to elevated line
losses [92]. In the literature, to solve the optimal scheduling problem in a power grid consisting
of DERs and controllable loads (e.g., EVs), deterministic [93, 94], stochastic [95, 96], and hybrid
[97, 98] approaches have been considered. Stochastic approaches can be used in OPF algorithms to
capture the uncertainties of consumer and generation profiles (e.g., PV and wind production). These
strategies include scenario trees [95, 99] or statistical parameters of the stochastic variables [100, 101].
As mentioned before, although heuristics are advantageous for exact network representation, for the
optimal scheduling of DERs in multi-node distribution grids, quadratic programs (QPs) perform
significantly better in terms of computational time to find the optimal solution [70]. An alternative
to convex relaxations is to linearize the load flow equations around a working point. This approach
is known as the computation of sensitivity coefficients (SCs). In this thesis, sensitivity coefficients
(SCs) have been used to avoid the non-linearity of AC power flow equations. The linearized voltage
and current models are presented in the next section.

1.4.3 The power grid model

We consider a power distribution grid (as shown in Figure 1.8) that interfaces with loads (e.g.,
commercial, residential, and industrial), potentially distributed generation, and EV charging infras-
tructures installed at multiple grid nodes. Distribution grids, both LV and MV, are designed to
accommodate specified levels of power demand. Exceeding these demand levels may result in vio-
lations of the operational requirements of the distribution grids. Distribution grid operators must
ensure that voltage levels remain within statutory limits, line currents stay below cable ampacities,
and power flow at the substation remains within the transformer ratings.

The nodes of the power network are referred to with the index n = 1, . . . , N , where N is the total
number of grid nodes. We use the index t = 1, . . . , T to denote the discretized time intervals, where
T represents the total number of samples. The time horizon (1, . . . , T ) also corresponds to the
recharging horizon for the EVs located at the specified grid nodes. The active and reactive power
nodal injections at node n and time interval t can be written as follows:

P node
tn = P net

tn + P
(EV nodal)
tn (1.4a)

Qnode
tn = Qnet

tn +Q
(EV nodal)
tn (1.4b)

where P net
tn is the net demand (i.e., power demand, P demand

tn minus local renewable generation)
and P

(EV nodal)
tn is the total nodal power demand due to charging of EVs connected at that node.
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Figure 1.8: Topology of the CIGRE European MV distribution network benchmark for residential
system [6].

In Eq. (1.4a) the first term is generally an input of the problem (as it depends on demand and
generations), whereas the latter depends on the charging policy of EVs. To formulate the scheduling
problems (see Chapter 2) and planning problems (see Chapter 3) one can consider nodal injection
of EVs at all nodes as optimization variables. Similar to Eq. (1.4a), the reactive power at each node
can be modelled as in Eq. (1.4b) as the sum of the reactive power injections due to net demand and
EV charging.

The voltage levels at the grid nodes and the current values in the lines (i.e., voltage magnitudes
and line current magnitudes) depend on the grid topology, cable parameters, voltage of the slack bus,
and nodal injections. They can be modeled using load flow equations, which we generically denote
as functions fn (for the voltage magnitudes) and hl (for line current magnitudes). Let vtn and itl be
the voltage magnitude at node n and current magnitude in line l, respectively, during time interval
t. Taking into account the dependencies on the EVs’ charging demand (P (EV nodal)

t ,Q
(EV nodal)
t )

and charging locations (bn), we denote the load flow equations as follows:

vtn

(
P

(EV nodal)
t ,Q

(EV nodal)
t , bn

)
= fn (P1(·), . . . , PN (·), Q1(·), . . . , QN (·), v0, Y ) (1.5a)

itl

(
P

(EV nodal)
t ,Q

(EV nodal)
t , bn

)
= hl (P1(·), . . . , PN (·), Q1(·), . . . , QN (·), v0, Y ) , (1.5b)

Similarly, the complex power absorbed at the single grid connection point (GCP) can be expressed
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as:

St

(
P

(EV nodal)
t ,Q

(EV nodal)
t , bn

)
= g (P1(·), . . . , PN (·), Q1(·), . . . , QN (·), v0, Y ) , (1.5c)

where Y is the admittance matrix of the grid (constructed using the grid topology information
and cable parameters), and v0 is the voltage at the slack bus. Functions f1, . . . , fN , h1, . . . , hL,
and g are nonlinear, and their inclusion in optimization problems leads to non-convexities and low
tractability, as discussed earlier.

Sensitivity is defined as the ratio of a dependent variable to small changes in an independent or
controllable variable [102]. Sensitivity coefficients (SCs) are commonly computed for both trans-
mission and distribution networks. There are three traditional methods for computing SCs. The
first method uses the Gauss-Seidel (GS) formulation, where power flow is performed for a balanced
network considering a small deviation of a single control variable, such as nodal active or reactive
power injections [103]. The second method involves the Newton-Raphson (NR) formulation of the
load flow. The third method is derived from circuit theory, where Tellegen’s theorem is applied in
power networks, and the concept of an adjoint network is used [104–106]. In [107], a method to
compute SCs based on the GS formulation, similar to [103], is proposed. This method is applicable
to both multi-phase and unbalanced distribution networks. It is also valid for a generic number of
slack buses. This approach has been adopted for the linearized power flow models considered in
this thesis. To compute the current SCs, the assumption is made that the lines of the network have
π models. To compute the voltage SCs, the assumption is made that during the perturbation of
voltage independent nodal power injections, there is no change in the power set point for loads and
generators. This way, SCs consider the response of the network in terms of both active and reactive
power variations. By using the concept presented in [107], the voltage and current deviations can
be locally linearized to formulate a convex optimization problem, as follows:

∆vtn = APt ·∆Pn(t) +AQt ·∆Qn(t) +Ant ·∆nn(t) (1.6a)

∆itl = BPt ·∆Pn(t) +BQt ·∆Qn(t) +Bnt ·∆nn(t) (1.6b)

In Eq. (1.6a), APt and AQt are the vectors of voltage sensitivity coefficients (SCs) with respect
to active and reactive power, respectively. Ant represents the vector of voltage SCs with respect to
transformer’s tap positions. ∆Pn(t), ∆Qn(t), and ∆nn(t) denote the adjustments in nodal active
power, reactive power, and on-load tap changer (OLTC), respectively. Similarly, in Eq. (1.6b), BPt,
BQt, and Bnt are the vectors of current sensitivity coefficients.

1.4.4 Conclusions

In conclusion, the state-of-the-art analysis has provided valuable insights into the modeling of EVs
into power grids. The study of battery charging models has revealed the potential of treating
charging and discharging powers as optimization variables, enabling the formulation of various EV
charging strategies. Furthermore, the exploration of OPF techniques has emphasized the crucial
role of optimization algorithms in addressing operational challenges faced by grid operators. Addi-
tionally, the comprehensive power grid modeling has enhanced our understanding of the operational
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requirements of distribution grids. The utilization of convex optimization problems, leveraging SCs,
has been validated as an effective approach in attaining the global optimum within distribution
grids. These findings collectively lay a solid foundation for identifying the research questions and
scientific objectives of the Thesis, which will be discussed further.

1.5 Research questions and scientific objectives

Thesis tackles two main problems: scheduling the charge of electric vehicles and planning their
charging infrastructure accounting for the constraints of the existing power distribution grid. In the
context of the scheduling problem, the research questions are as follows:

• Question 1: For large penetration of electric vehicles in a distribution grid, how different
charging algorithms (uncoordinated, V1G, V1G with reactive power support from the chargers,
V2G, and V2G with reactive power support from the chargers) for EVs can be accommodated
under a common settings so that their performances can be compared in terms of their impact
on distribution grids and meeting charging demands?

• Question 2: How to formulate the OPF based charge scheduling problem for the above charging
policies so that information of EVs can be integrated along with the grid information?

• Question 3: What are the roles of constraints related to different electric vehicles charging
policies?

Therefore, the first scientific objective is to develop a unified algorithmic framework based on an
optimal power flow (OPF) problem with the aims of comparing different EV charging ploicies while
respecting the operational constraints of distribution grids and satisfying their driving demand.
Another objective of the thesis is to develop a method that provides Distribution System Operators
(DSOs) with a flexible framework to evaluate, compare, and select from various EV charging strate-
gies, by conveniently inserting or removing specific sets of constraints in the formulation, thereby
enabling an effective analysis of their impact on distribution grids and the ability to meet charging
demands.

In order to develop optimization techniques to site and size charging infrastructure for large pene-
tration of traditional EVs in a distribution grid while respecting the operational distribution grid
constraints and satisfying the charging demand of the EVs, the following research questions have
been identified:

• Question 4: How can chargers for EVs be cost-optimally located and sized at different distri-
bution grid nodes, taking into account the technical constraints of the grid, various charger
typologies, the requirements for charging infrastructure, and scenarios involving drivers’ flex-
ibility to plug and unplug their EVs?

• Question 5: What are the impacts of different charger types, flexibility of EV owners in terms
of capital investment?
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• Question 6: How do different battery sizes (16 kWh and 60 kWh) and planning horizon
influence the planning options for charger installation?

• Question 7: What is the impact of vehicle-to-grid technology on the optimal planning problem?

• Question 8: If planning objective is changed, would this lead to a substantially different
charging infrastructure or whether similar configurations of EV charging infrastructures would
be suitable to accommodate different objectives (e.g. minimize the capital investment while
optimizing the renewable self-consumption)?

All of the above questions are of interest for urban planners or policymakers to identify if an existing
charging infrastructure will soon become obsolete if planning objectives change over time. To
answer these questions, the first scientific objectives of this dissertation is to develop a mathematical
formulation that can incorporate various charger types, flexibility models of EV owners and V2G
technology into one the optimization formulation with an objective to cost-optimally determine the
location, size and type (fast, slow, multi-port chargers, single-port chargers) of EV chargers while
considering power distribution grid constraints. Here, the scientific objective is to model multi-port
charging infrastructures and evaluate their role as the primary autonomous automation layer, aiming
to enhance flexibility in the conventional process of EV charging. This represents a introductory
step toward the development of more sophisticated planning algorithms for autonomous driving of
EVs, explaining the relevance of the doctoral thesis for the EVA project. Modifying non-convex
constraints in the planning formulation our objective is to derive a mixed-integer linear program
that can be efficiently solved with off-the-shelf software libraries while addressing the computational
challenges. Our further objective is to explore problem approximations to enhance tractability when
considering more extensive input information (e.g. 5 days optimization horizons) and large number
of optimization variables.

Finally, in this dissertation the objective is to develop a methodology for validating the results
obtained from solving the optimal planning problem in the context of electric vehicle (EV) charging
scheduling. Here the aim is to evaluate the significance of optimal placement for EV charging
systems and its impact on the performance of scheduling algorithm and overall charge levels of the
EVs population. Therefore, the following research question has been identified:

• Question 9: What will be the effect of strategically allocating chargers based on the results
of the optimal planning problem on EVs’ SOC levels and efficiency of the charging process,
compared to the scenario where chargers are uniformly distributed across medium-voltage
(MV) grid nodes?

1.6 Thesis outline and contributions

The thesis concerns the impact of recharging needs of electric vehicles (for both planning and
scheduling formulations) on distribution grids. The thesis is organized in five chapters including
introduction and conclusion. The main results of the work have been communicated in peer reviewed
articles and conference papers.
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Journal papers:

• Publication A: Biswarup Mukherjee, Fabrizio Sossan. Optimal Planning of Single-Port and
Multi-Port Charging Stations for Electric Vehicles in Medium Voltage Distribution Networks.
IEEE Transactions on Smart Grid, 2022, pp.1-13. (DOI:10.1109/TSG.2022.3204150). (hal-
03779746)

• Publication B: Biswarup Mukherjee, Fabrizio Sossan. Optimized Planning of Chargers
for Electric Vehicles in Distribution Grids Including PV Self-consumption and Cooperative
Vehicle Owners. Energy Conversion and Economics, 2023, 4(1), (DOI:10.1049/enc2.12080).
(hal-03998742)

Peer-reviewed conference papers:

• Publication C: Biswarup Mukherjee, Georges Kariniotakis, and Fabrizio Sossan. "Smart
Charging, Vehicle-to-Grid, and Reactive Power Support from Electric Vehicles in Distribution
Grids: A Performance Comparison." 2021 IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe). IEEE, 2021.

• Publication D: Biswarup Mukherjee, Georges Kariniotakis, and Fabrizio Sossan. "Schedul-
ing the Charge of Electric Vehicles Including Reactive Power Support: Application to a
Medium-Voltage Grid." (2021): 1534-1538.

Technical reports:

• Fabrizio Sossan, Biswarup Mukherjee. Planning of EV charging infrastructure in distribution
grids: a comparison of options. [Technical Report] Mines ParisTech - PSL University. 2022,
pp.1-18. 〈hal-03759268〉

• Fabrizio Sossan, Charitha Buddhika Heendeniya, Biswarup Mukherjee, Vasco Medici. Smart
Charging of Electric Vehicles: an Autonomous Driving Perspective. [Technical Report] MINES
ParisTech - Université PSL; SUPSI. 2022, pp.1-26. 〈hal-03756809〉

Thesis outline and contributions of the individual chapters are summarized below.

In Section 1.2, a comprehensive literature review is presented, focusing on the challenges associated
with recharging electric vehicles from the power grid. This review encompasses various aspects,
including existing EV charging standards, strategies, control architectures, and planning for tradi-
tional EV charging stations. Moving on to Section 1.3, the distinctions between traditional EVs
and autonomous EVs (AEVs) are explained, along with an exploration of the potential integration
impacts arising from their grid-based charging. Subsequently, in Section 1.4, the state-of-the-art
approaches are discussed, specifically addressing the modeling of EVs’ charging requirements from
the power grid. This section provides an overview of the latest advancements in this field, offering
insights into the current research and developments.
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In Chapter 2, various EV charging strategies, such as uncoordinated charging, smart charging, and
vehicle-to-grid (V2G) with reactive power support from EVs, have been modeled based on existing
literature. These charging strategies are implemented within a unified algorithmic framework. The
framework is designed with a common configuration, enabling the resolution of scheduling prob-
lems for a large population of EVs and comparing their performances. The scheduling problems
are derived from a baseline convex optimization problem that takes into account the linearized grid
constraints, including voltage magnitude, line ampacities, and other relevant factors [107]. The
performance of these charging algorithms is compared, and the impact on the CIGRE MV distribu-
tion grid resulting from the scheduling of EVs is analyzed. This chapter incorporates content from
Publications C and D.

In Chapter 3, a planning formulation for EV charging infrastructure is developed. The planning
of the EV charging infrastructure in power distribution grids is developed as an economic cost
minimization problem. The objective is to minimize capital investments required to set up the
EV charging infrastructure at specific distribution grid nodes. This task can be of interest to
urban planners or grid operators. This chapter makes a significant contribution to the state of
the art by quantitatively investigating the sensitivity of the EV charging infrastructure to various
optimization objectives. This includes considering battery packs of two different capacities (16 kWh
and 60 kWh) and incorporating PV self-consumption modeling. Furthermore, the formulation is
extended to incorporate smart charging and V2G features for EV charging. Additionally, different
flexibility scenarios for EV owners are modeled in this chapter. The planning problem is formulated
as a mixed-integer linear program (MILP), where nonlinear grid constraints are approximated using
linearized grid models. The results obtained from the planning problem are compared for both
single-port chargers (SPCs) and multi-port chargers (MPCs), considering proposed flexibility models
for different optimization horizons in the CIGRE MV distribution grid. This chapter includes the
findings and contributions from Publications A and B, providing valuable insights into the planning
of EV charging infrastructure.

In Chapter 4, the contributions from the previous two chapters are consolidated, and a method
is developed to validate the planning formulation. This method utilizes the results obtained from
Chapter 3 to solve a scheduling problem.

Finally, Chapter 5 concludes the thesis, summarizing the main results. At the end of this chapter,
a preview of future work is presented.
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Chapter 2

The scheduling problem for EVs

Résumé en Français

À partir de la littérature existante, ce chapitre présente la modélisation de la charge non coordonnée,
de la charge intelligente, de la charge V2G avec le soutien de la puissance réactive des chargeurs de
VE. Afin de disposer d’un cadre commun pour toutes les différentes stratégies de charge, ce chapitre
propose un cadre algorithmique unifié qui permet de formuler le problème de programmation des VE
comme un problème d’optimisation convexe avec des contraintes de réseau linéarisées. Les perfor-
mances de ces algorithmes de charge sont comparées pour une large population de VE traditionnels
en tenant compte de leur présence à différents nœuds du réseau de distribution MV de CIGRE. En
outre, ce chapitre introduit le concept de formulation du problème de programmation pour les VEA.
Les résultats de deux articles distincts, Publication C et Publication D, sont inclus dans ce chapitre.

Summary

From the existing literature, this chapter presents the modeling of uncoordinated charging, smart
charging, V2G charging with reactive power support from EV chargers. To have a common setting
for all different charging strategies, this chapter proposes a unified algorithmic framework that allows
the formulation of the scheduling problem of EVs as a convex optimization problem with linearized
grid constraints. The performance of these charging algorithms is compared for a large population
of traditional EVs considering their presence at different nodes of the CIGRE MV distribution grid.
Furthermore, this chapter introduces the concept of formulating the scheduling problem for AEVs.
The results of two separate papers Publication C and Publication D are included in this chapter.

2.1 Introduction

This chapter of the thesis focuses on the approaches to solving the scheduling problem of EV charging
and formulating them. In general, scheduling is a procedure required for operating the electric power
system. For example, TSOs use schedulers to determine the power that power plants should produce
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while respecting the grid constraints prior to real-time operations. In the case of EVs, a scheduler
can be used to compute the recharging trajectories of EVs subject to grid constraints in the context
of a smart charging procedure. Solving a scheduling problem for EV smart charging algorithms is
not new and has been addressed in the existing literature. In [108], the scheduling problem of on-
the-move EVs has been addressed in a transportation network based on a graphical game approach
with the objective of minimizing the charging latency of EVs, considering their driving time to EV
charging stations and waiting-and-charging time. Authors in [109, 110] have considered distributed
and hierarchical computing approaches to achieve computational efficiency without considering the
grid model and constraints.

According to [111–113], EVs can provide and consume reactive power at any SOC level without
impacting the life cycle of the batteries. It is reported in [114] that the frequent charging and
discharging of EVs can cause unnecessary damage to the batteries. This work also claims that with
the bidirectional charging capability of EV chargers, it is possible to avoid the grid shock caused
by large-scale EV penetration [114]. Two different frameworks for coordinated charging of EVs
with reactive power support have been proposed in [27]. Here, one framework supports solving the
optimal power flow model at the grid level by DSOs, obtaining different EV-related information
(e.g., socket rating, SOC, etc.) from the EV aggregators. Based on the optimal power flow solution,
upper bounds on active power consumption and reactive power injection at each aggregated node
on the feeder are generated by the DSOs. The same bounds from DSOs are then used to solve
the optimal EV scheduling problem at the aggregation level, ensuring feasible grid operations. The
other coordinated framework involves solving the optimal scheduling problem at the aggregation
level first, and optimal EV charging profiles from each node are sent to the grid control centre to
solve OPF with the objective of minimizing the deviation of EVs’ charging schedule through load
shifting and load curtailment. In [115], the scheduler optimizes the energy flow from the power grid
to the battery of the EV, while in the case of V2G, the scheduler tries to optimize the bidirectional
power flows (i.e., from the grid to the EV battery and from the EV battery to the grid) subject to
multiple constraints.

In light of the existing methods, the main contribution of this chapter is to present the method-
ology and formulation of EV charging algorithms under a common setting, accounting for the
distribution grid’s operational constraints, to enable a comparison among them. The optimization
problems in this chapter are formulated as convex optimization problems. Detailed methodology,
formulation, and case studies of the scheduling problem are presented next.

2.2 Methodology

This section presents the optimal power flow-based methodology for formulating the scheduling
problems for the following EV charging policies: (a) uncoordinated charging, (b) grid-aware coordi-
nated or V1G, (c) grid-aware coordinated charging with reactive power support from the chargers,
(d) grid-aware coordinated bidirectional charging or V2G, (e) V2G with reactive power support
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from the chargers.

The recharging solutions considered in the scheduling problem are shown in Fig. 2.1. The
integrated framework is useful for DSOs as it allows for formulating the scheduling problems at
the grid level with information on EVs for different charging policies. Compared to uncoordinated
charging (shown in the green box), V1G or smart charging strategy (shown in the grey box) can
be formulated by leveraging an optimal power flow where the power flow is unidirectional (from
the grid to EVs). Constraints for reactive power capability can be associated on top of the V1G
algorithm, considering the case when EVs can inject or absorb reactive power through the EV charger
with unidirectional charging feature (shown in the blue box). With the bidirectional capability of
the EV charger, grid-aware coordinated bidirectional charging or V2G can be formulated (shown
in the yellow box). Finally, by incorporating the bidirectional capability and the reactive power
constraints from the EV chargers, V2G with reactive power support can be formulated (shown
in the light orange box). In this case, it is considered that EVs can inject or absorb reactive
power while charging and discharging. The inclusion of bidirectional capability and the reactive
power constraints of EV chargers increases the number of optimization variables for the scheduling
problem. When a large number of EVs are considered in a distribution grid, the formulation of
the problem remains unaltered; however, the change in the number of EVs affects the number of
variables of the problem.
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Figure 2.1: Scheme to formulate EV charging strategies.

Figure 2.2 presents the main components for formulating the optimal power flow-based schedul-
ing problem. The scheduling problem is a decision-making problem where the EV information is
coupled with the grid information. In this thesis, traditional EVs have been explored, and their
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Figure 2.2: The main elements used to formulate the scheduling problem using OPF.

locations are considered fixed based on their parking locations, which serve as inputs for the prob-
lem. Other inputs for modeling EVs include the energy capacity of EV batteries, rated power of the
EV charger, initial SOC (i.e., SOC of EVs upon arrival at respective grid nodes), and their arrival
and departure information. Depending on the charging policies, the EV charging powers serve as
decision variables for formulating the decision-making problem (shown by the light purple box).
The different components for modeling the EVs are shown within the yellow box in Figure 2.2. The
nodal injections can be computed (as shown by the light orange box) using both grid information
(grid’s nodal demand) and the charging demand of EVs located at multiple grid nodes, as discussed
in section 1.4.3. To solve this decision-making problem (as shown by the blue box), an optimal
power flow with linearized grid models based on the literature [19] has been used. The linearized
grid models serve as inputs, while nodal voltage magnitudes and line current bounds serve as con-
straints for the problem. The optimal power flow follows a common baseline structure, where the
constraints can be adapted to represent different charging strategies, as mentioned earlier in this
section. By employing different policies, we investigate how different constraints can be embedded
and enforced in the decision-making problem for EV charging. The formulation of different charging
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policies is presented in the next section.

2.3 Formulation of EVs charging algorithms

2.3.1 Modelling the charging of EVs

We consider total V number of vehicles with index v = 1, . . . , V are charging from the MV distri-
bution grid. The charging power of a vehicle v is limited by the kVA rated power of the converter,
denoted by S

EV
v . Assuming the capability of the charger is independent from the voltage of the AC

grid and of the DC bus, the apparent power limit of the charger for all t and v can be expressed as:

(
PEV
vt

)2
+
(
QEV

vt

)2 ≤ (
S

EV
v

)2
. (2.1)

The above expression characterizes the ideal “capability curve” of a power converter and the same
can be implemented in the EV chargers. In Eq. (2.1), QEV

vt and PEV
vt represent the reactive power

and the active power respectively while a vehicle v charges at time t.

Unidirectional and Bidirectional controlled charging

As mentioned in the previous chapter for unidirectional controlled charging (V1G), the power flows
from the grid to the EVs (i.e., the recharging power) for all t and v can be expressed as PEV

vt ≥ 0.
But, in case of bidirectional controlled charging process (V2G) the positive charging power (a real
variable) can be splitted into two new non-negative variables as below:

PEV
vt = PEV+

vt − PEV−
vt , ∀v, t. (2.2)

The Eq. (2.2) preserves the linearity of the non-ideal-efficiency SOC model, as discussed in section
1.4.1. These non-negative variables in the above expression are mutually exclusive as an EV charger
can either charge or discharge the EV at the same time.

With operators [·]+ and [·]− denoting respectively the positive and negative part of the argument
of EV charging power PEV

vt , the state-of-charge of EV v (as derived from Eq. 1.2 in Chapter 1) can
be modelled as the following function:

SOCvt = SOCv0 +

t−1∑
τ=0

(
η
[
PEV
vτ

]+ − 1

η

[
PEV
vτ

]−) Ts

Ev
, for all t and v. (2.3)

In Eq. (2.3), SOCv0 is the SOC at arrival. This SOC expression is non-linear as it involves the
arguments of EVs’ charging power and determines non-convexity in the OPF formulation. Splitting
the charging power into two non-negative (mutually exclusive) variables as in (2.2), the linear SOC
model reads as:

SOCvt = SOCv0 +
t−1∑
τ=0

(
ηPEV+

vτ − 1

η
PEV-
vτ

)
Ts

Ev
, for all t and v. (2.4)
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2.3.2 Nodal injections due to EVs charging demand and grid model

The link between the nodal injections of EVs, P (EV nodal)
tn , Q

(EV nodal)
tn in (1.4), and the charging of

the single vehicles PEV
vt is given by the locations where the EVs charge. The charging location of

EV v is encoded in the sequence of binary inputs b1v, b2v, . . . , bNv, that contain one 1 in the node
where the EV charges, and N-1 0’s (i.e. where the EV does not charge) at all other nodes.

This way, the nodal EV injections can be expressed as:

P
(EV nodal)
tn =

V∑
v=1

bnv · PEV
vt (2.5)

Q
(EV nodal)
tn =

V∑
v=1

bnv ·QEV
vt , (2.6)

for all n and t. The binary inputs bnv thus represent a matrix of size N ×V and can be interpreted
as the map reporting the recharging locations of all EVs in the power grid. Because the grid
voltage is constrained in a narrow band, we use the approximation that nodal power injections are
voltage-independent.

The dependency between grid quantities (nodal voltage magnitudes vtn, line current magnitudes itl,
and apparent power flow at the substation transformer St0) and the nodal injections are discussed
in section 1.4.3. In a distribution grid, the operational grid quantities should be within prescribed
limits. In other words, the nodal voltage magnitudes should remain within limits (v, v), currents
in the lines must remain below the lines’ ampacities il. Also the power flow at the substation
transformer should be less than its rating S0. These constraints reads as:

v ≤ vtn ≤ v ∀t and n (2.7a)

|itl| ≤ il ∀t and l (2.7b)

St0 ≤ S0 ∀t. (2.7c)

The following section presents how the above constraints can be embedded to model different
EV charging policies.

2.3.3 Modeling different recharging strategies

Uncoordinated charging

This section presents the formulation of the decision-making problem due to uncoordinated charg-
ing of EVs. In the case of uncoordinated charging process, all EVs charge with the objective of
minimizing their respective recharging time at the grid nodes, independent of the state of the grid
and other EVs. Based on this requirement, we can formulate a decision-making problem where the
EVs’ charging power is determined such that all vehicles reach their respective target state-of-charge
level, SOC⋆

v, as quickly as possible. In this case, the chargers, modeled with (2.1), only supply active
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power since not only is reactive power not conducive to recharging the vehicles, but it would also
limit the capability of the charger. The decision-making problem can be written as follows:

arg min
PEV
11 ,...,PEV

V T∈R+

{
T∑
t=1

V∑
v=1

(SOCvt − SOC∗
v)

2

}
(2.8a)

subject to the following constraints:

SOCvt = SOCv(t−1) + η
TS

Ev
PEV
vt for all t and v (2.8b)

0 ≤ SOCvt ≤ 100%, for all t and v (2.8c)

0 ≤ PEV
vt ≤ S

EV
v for all t and v. (2.8d)

The uncoordinated charging problem is separable, because it has no coupling constraints. In
other words, solving this problem (2.8) is equivalent to solving V independent optimization problems
(one per vehicle) with local information only. The uncoordinated charging problem is thus used in
this thesis as benchmark scenario to evaluate the impact of EVs’ charging on grid constraints.

Smart charging

In the case of smart charging, the charging process is scheduled in such a way that the EVs’
charging demand does not cause violations of the grid constraints. Let quantities v and v denote
the admissible voltage magnitude, il denote the line ampacity, and S

2
0 denote the power flow at

the substation transformer. Grid constraints are modeled in problem (2.9) using the linearized grid
models discussed in 1.4.3. The scheduling problem can be formulated as follows

arg min
PEV
11 ,...,PEV

V T∈R+

{
T∑
t=1

V∑
v=1

(SOCvt − SOC∗
v)

2

}
(2.9a)

subject to the following constraints:

SOC model and constraints (2.8b), (2.8c) for all t and v (2.9b)

0 ≤ PEV
vt ≤ S

EV
v for all t and v (2.9c)

Nodal injections (1.4a), (1.4b), and (2.5) for all t and n (2.9d)

Linearized grid models (1.5) for all t, n and l (2.9e)

v ≤ vtn ≤ v for all t and n (2.9f)

|itl| ≤ il for all t and l (2.9g)

P 2
t0 +Q2

t0 ≤ S
2
0 for all t. (2.9h)

Compared to (2.8), problem (2.9) features coupling constraints, given by the grid model, which
requires the information on all nodal injections. This formulation requires gathering all the vehicles’
information and the grid in a single (centralized) optimization problem. Centralized formulations of
this kind can be used to derive signals to incentive or disincentivize the charge of EVs and achieve
a form of indirect control (e.g., [30]).
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Smart charging with reactive power support

We extend problem (2.9) by allowing chargers to inject/absorb reactive power with the objective of
controlling the nodal voltages of the grid1. The decision variables, are in a vector with dimension
of 2× V × T denoted by:

x =
[
PEV
11 , . . . , PEV

V T , Q
EV
11 , . . . , QEV

V T

]
. (2.10)

The decision-making problem for both EV chargers’ active and reactive power can be formulated
as:

arg min
x

{
T∑
t=1

V∑
v=1

(SOCvt − SOC∗
v)

2

}
(2.11a)

subject to the following constraints:

SOC model and constraints (2.8b), (2.8c) for all t and v (2.11b)(
PEV
vt

)2
+
(
QEV

vt

)2 ≤ (
S

EV
v

)2
for all t and v (2.11c)

P
(EV)
vt ≥ 0 for all t and v (2.11d)

Nodal injections (1.4a), (1.4b), (2.5), and (2.6), for all t and n (2.11e)

Linear grid models (1.5) for all t, n and l (2.11f)

v ≤ vtn ≤ v, for all t and n (2.11g)

|itl| ≤ il, for all t and l (2.11h)

P 2
t0 +Q2

t0 ≤ S
2
0 for all t. (2.11i)

Vehicle-to-grid problem

In the vehicle-to-grid (V2G) problem EVs are allowed to discharge if this is conducive to alleviate
the grid constraints. To formulate the V2G problem we consider charging power, discharging power,
and the reactive power as decision variables. Although both the discharging power and the reactive
power do not contribute to recharge the EVs directly (indeed, reactive power does not appear in
(2.3)), their contribution might be useful to alleviate network congestions, ultimately allowing other
EVs to recharge and improving the global charging time across the population.

In this case, the decision variables are:

w =
[
PEV+
11 , . . . , PEV+

V T , PEV-
11 , . . . , PEV-

V T

]
(2.12)

y =
[
QEV

11 , . . . , QEV
V T

]
. (2.13)

The decision-making problem for both EV chargers’ active and reactive power is:

arg min
w,y

{
T∑
t=1

V∑
v=1

(SOCvt − SOC∗
v)

2 + k

T∑
t=1

V∑
v=1

(
PEV+
vt + PEV−

vt

)}
(2.14a)

1Where the reactance of the lines’ longitudinal components may be dominant over the resistance, reactive power
control can be an effective way to provide voltage regulation
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subject to the following constraints:

SOC model and constraints (2.8b), (2.8c) for all t and v (2.14b)(
PEV+
vt − PEV-

vt

)2
+
(
QEV

vt

)2 ≤ (
S

EV
v

)2
for all t and v (2.14c)

Nodal injections (2.5), (2.6), (2.2),(1.4a), (1.4b) for all t, n and v (2.14d)

Linear grid models (1.5a)-(1.5b) for all t, n and l (2.14e)

v ≤ vtn ≤ v, for all t and n (2.14f)

|itl| ≤ il, for all t and l (2.14g)

P 2
t0 +Q2

t0 ≤ S
2
0 for all t. (2.14h)

The problem (2.14) refers to the V2G scheduling problem with reactive power support. The
reactive power support can be excluded either by forcing y to zero with equality constraints or by
removing the associated decision variables from the problem and constraints. In the cost function
(2.14a), we introduce a second term, weighted by the coefficient k, which aims to promote mutually
exclusive charging and discharging power. As the second term of the cost function corresponds to
the SOC’s model relaxation and does not have a specific physical meaning, k should be small to not
significantly alter the original cost function. The impact of k on the algorithm performance and on
the original problem objective is small, as presented under the results section.

2.4 Case study and Results

2.4.1 Power grid and EVs

This dissertation considers the CIGRE benchmark European version of the MV grid from [6] as the
case study. The topology of the grid is shown in Fig.1.8 (refer to the previous chapter for details).
According to [6], LV grids are connected to different grid nodes of the CIGRE MV grid, which are
modeled in terms of their aggregated contributions. It is assumed that there are no violations of
grid constraints in each LV grid. The MV grid is modeled with a single-phase equivalent, assuming
a balanced grid with transposed conductors. The per unit active power demand at each node
used to model nodal injections is shown in Fig.2.3, and it can be observed that the demand peaks
during the evening hours. The nodal apparent power, power factors, and the number of parked
EVs at each node of the CIGRE MV grid are reported in Table 2.1. The reactive power demand is
modeled as the product of the active power and the tangent of the arc-cosine of the power factor in
Table 2.1. The statutory voltage levels of the MV grid are 1 ± 3% per unit values. Line ampacities
are determined based on the conductor diameter. To compute sensitivity coefficients for the linear
grid models, nominal active and reactive nodal injections are required for the linearization. We use
the same nodal power injections as the demand (P demand

nt and Qdemand
nt in (1.4)) from the CIGRE

specifications for this purpose. At this stage PV injections at the grid nodes are not considered2.

2It is worth noting that PV generation could be accounted by altering the net demand (input of the problem),
thus detracting no value from the general applicability of the formulation.
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The input information related to EVs charging at multiple grid nodes will be discussed in the next
paragraph.
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Figure 2.3: Profile of the net active power demand from CIGRE specifications[6].

Table 2.1: Nodal nominal demand per node and number of EVs

Node Apparent Power Power factor Number of EVs
[kVA]

1 15’300 0.98 0
3 285 0.97 68
4 445 0.97 106
5 750 0.97 178
6 565 0.97 134
8 605 0.97 144
10 490 0.97 116
11 340 0.97 81
12 15’300 0.98 0
14 215 0.97 51

In [114], 200 EVs have been considered in a 33-node distribution grid that hosts 5 EV charging
stations, where EVs are allocated according to the peak load of the grid nodes assuming that
the charging stations can meet the charging demands of EVs. For a 5 MVA MV residential grid,
a total of 2,340 EVs have been considered in [116], implying a case with intense loading due to
the recharging of EVs in an the grid. In [64], a total of 98 EVs have been considered for an LV
distribution grid, where the EVs are allocated to respective grid nodes considering the nodal power.
A similar approach has been considered to study the scheduling algorithms in this dissertation to
accommodate EVs in the MV grid nodes. As reported in [5], the number of EVs per household
can range between 0-3, with an average number of 1.1 (see Table 2.2). Additionally, the work in
[117] considers an average of 1.3 EVs per household. In this thesis, for the CIGRE MV (1 MVA
base) residential grid, nearly 1.4 EVs per household and a total of 878 EVs have been considered
(estimated by dividing the nominal nodal power by an estimated single-phase household contractual
power of 6 kVA), which is in line with existing literature. In Table 2.1, nodes 1 and 12 are less
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Figure 2.4: Distribution of EVs’ initial state-of-charge used in the case

critical for grid constraint violations as they are located near the upper grid’s connection point, and
thus they have been excluded from considering EV charging stations. This also reduces the number
of variables in the scheduling problem.

Similar to [118, 119], the departure times and initial SOCs of EVs are sampled using the following
distributions: Weibull (scale 7.67, shape 21.83) and Gaussian (mean 0.49, standard deviation 0.04)
distributions, respectively, as shown in Fig. 2.4. The energy capacity of the EV batteries, the
chargers’ rated power, efficiency, and power factor are assumed to be constant across their population
and are 16 kWh, 3.6 kVA, 0.9, and 1, respectively. It is considered that the target SOC levels are
uniform across the population of EVs and assumed to be 100%.

Table 2.2: Number of vehicles per household [5].

Number of EVs 0 1 2 ≥ 3

% of households 18.21 53.65 24.75 3.39

In this dissertation, both simultaneous and distributed arrival of EVs has been considered. The
principles of charging for these different cases are summarized below:

• Simultaneous arrivals: This scenario assumes that all EVs are available to be recharged
together at 16:00 at different grid nodes with an initial SOC (see Fig. 2.4) derived from the
Gaussian distribution discussed earlier. They recharge at the rated power of the charger over
the optimization horizon.

• Distributed arrivals: This scenario considers that the arrival hours of EVs are desynchro-
nized over time. Their arrival times are sampled using the generalized extreme value inverse
distribution function with the following values: shape (-0.06), scale (0.85), location (17.3),
from the Test-an-EV experiment [118, 119]. If the arrival hours fall within the optimization
hours, the EVs recharge at the rated power of the EV charger. If their arrival hours are beyond
the optimization hours, they do not participate in the charging process.

For both of the above scenarios, comparative studies have been performed to explore their impact
on the grid due to uncoordinated charging of EVs, as discussed in the following sections.
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2.4.2 Optimization results

For the scheduling problems presented under section 2.3.3, the results of five cases are compared
in this section. The five cases are as follows: (A) uncoordinated charging - for both simultaneous
and distributed arrival of EVs; (B) smart charging - without reactive power support; (C) smart
charging with reactive power support; (D) V2G without reactive power support; (E) V2G with
reactive power support.

We consider a sampling time of 1 hour and set the scheduling horizon from 16:00 to 7:00 of the next
day. The power flow at the HV/MV substation transformer is not considered in the case study. The
scheduling problems are implemented in MATLAB and solved using Gurobi on an Intel processor.
Under these settings the optimization problems take nearly an hour to converge.

The voltage profiles

Fig. 2.5 shows the nodal voltage magnitudes due to uncoordinated charging of EVs for both
simultaneous and distributed arrival of the EVs (as described in 2.4.1). The green shades denote
the quantile of the voltage magnitude across the nodes. It is observed that, in both cases the voltage
magnitudes fall below the lower bound as the uncoordinated charging process does not take into
account the grid constraints.

It is observed from Fig. 2.5a that between 16 h and 17 h voltage limits are violated, whereas in
Fig. 2.5b between 16 h and 17 h, voltage limits are respected. This is expected as distributed arrivals
of EVs induces a natural smoothing of the total charging demand because EVs arrive at different
hours which "desynchronize" their charging process. From Fig. 2.5b it is also seen that during the
evening hours, voltage limit violations are more severe (as compared to Fig. 2.5a) because the EV
charging demand overlaps with the peak hours of conventional demand of the CIGRE MV grid as
reported in [6].

Fig. 2.6a shows the voltage levels due to coordinated or smart charging of EVs; while Fig. 2.7a
shows the voltage levels due to V2G charging of EVs. For both these cases, the effect of reactive
power support from the EV chargers have been analyzed and are shown in Fig. 2.6b Fig. 2.7b. As
seen, in case of coordinated and V2G charging of EVs the voltage magnitudes are respected as the
grid constraints are implemented in the scheduling problem. The differences in magnitudes between
these plots are prominent due to handling differently the active and reactive powers by the chargers
over the optimization horizon.
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(a) with arrival time at 16h for all vehicles
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(b) with distributed arrival of vehicles

Figure 2.5: Nodal voltage magnitudes over time due to uncoordinated charging. The shaded bands
denote different quantile intervals across the nodes. Voltage bounds are within 1 ± 3% pu values.
The dashed lines indicate the lower voltage limit.
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(a) Smart charging without reactive power support.
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(b) Smart charging with reactive power support.

Figure 2.6: Nodal voltage magnitudes over time and with distributed arrival of vehicles due to
coordinated charging policies. The shaded bands denote different quantile intervals across the
nodes. Voltage bounds are within 1 ± 3% pu values. The dashed lines indicate the lower voltage
limit.
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(a) V2G without reactive power support
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(b) V2G with reactive power support.

Figure 2.7: Nodal voltage magnitudes over time and with distributed arrival of vehicles due to V2G
charging policies. The shaded bands denote different quantile intervals across the nodes. Voltage
bounds are within 1 ± 3% pu values. The dashed lines indicate the lower voltage limit.
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Impact on line currents

For all five charging policies, the per unit currents over time are plotted in Fig. 2.8. Although
the uncoordinated charging process of EVs does not consider current constraints, it is observed
that the line current limits are not violated. Furthermore, it is observed that in the case of smart
charging and V2G, the current constraints are respected without significant impacts due to the
charging process of 878 EVs. Similar results are observed in the case of smart charging and V2G
with reactive power support from the chargers.
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(b) uncoordinated - distributed arrivals
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(c) coordinated - distributed arrivals
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(d) V2G - distributed arrivals
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(e) coordinated - distributed arrivals
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(f) V2G - distributed arrivals

Figure 2.8: Line currents over time due to different charging policies. The shaded bands denote
different quantile intervals across the nodes. Current bounds are within 1 pu values.
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Impact of modeling reactive power support
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(a) Case: smart charging with reactive power support.
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(b) Case: V2G charging with reactive power support.

Figure 2.9: Voltage magnitude computed by assuming the same active power demand but reactive
power contribution from the EVs forced to zero. Voltage bounds are within 1 ± 3% pu values. The
dashed blue lines are the lower voltage limit.

This section exhibits the notion of modeling reactive power support from the EV chargers on the
grid performance, validated by solution obtained from the scheduling problem as discussed in the
previous section. Fig. 2.9 shows the voltage magnitudes obtained from a (linearized) load flow but
with the reactive power contributions from the chargers when forced to zero for the two following
cases: smart charging and V2G charging.

Both the cases, Fig. 2.9a and Fig. 2.9b feature the same active power demand (as in smart charging
with reactive power support); interestingly it is observed that voltage constraints are violated for
both the cases when reactive power is forced to zero, implying reactive power for both the cases are
fundamental to improve voltage levels in the MV feeders. The same results and conclusions have
been found by changing the target SOC levels to lower values (90% and 80%).
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Impact on the recharging speed of EVs
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Figure 2.10: Average SOC across the EVs population for different charging policies.

Over the optimization horizon the mean SOC across the EV population is plotted in Fig. 2.10.
As observed from the black line, in case of uncoordinated charging the targeted SOC is achieved
in quickest recharging time; however, this is achieved at the price of violating grid constraints as
shown earlier (see Fig. 2.5b). This solution is thus not viable in practical grid applications. In case
of smart charging (cyan trace) and V2G (green trace) it is seen that the targeted SOC is achieved
in slowest recharging time. This denotes that, though the voltage limits are respected by the V2G
charging policy, it does not conduce to improve overall system performance. A difference between
the steady-state average SOC values are observed after 23 h between the smart charging and V2G
policy; this is due to the modelling relaxation of the SOC. In particular, due to the modified cost
function for the V2G problem in (2.14), there is a trade off between the cost associated to EVs’
charging power and cost associated towards achieving the target SOC that determines the steady-
state SOC error. The same steady-state SOC error is observed between the smart charging and
V2G with reactive power support (blue and red traces respectively). These errors can be reduced
by decreasing the value of k in the cost function of (2.14a).

For a fine comparison of the recharging speed we proceed as follows. For any optimization problem,
evaluation of the cost function provides an immediate interpretation of the performance of the
scheduler over the optimization horizon. Based on it, the metric in 2.15 is computed for all the
schedulers and performance is reported in Table 2.3. It is observed that for uncoordinated charging
the metric achieves the lowest value (21.4714). V1G and V2G achieve nearly the same value; with
reactive power support V1G and V2G achieve nearly the same value.

Metric =

T∑
t=1

V∑
v=1

(SOCtv − SOC∗
v )

2 (2.15)

Thus, it can be seen from Fig. 2.10 that the best-performing schedulers are smart charging and
V2G with reactive power support that eventually allow more EVs to recharge over the optimization
horizon; however, in this case V2G does not help to minimize the charging times.
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Table 2.3: Metric performances for different policies. ’Q’ is the reactive power support.

Recharging policies V1G V1G with Q V2G V2G with Q
Metric values 27.7098 24.0421 27.8987 24.1896

2.5 Solving scheduling problem for AEVs

Charging location of AEVs

This section briefly discusses how the former scheduler can be extended to autonomous EVs or
AEVs. To formulate the scheduling problem, in section 2.3.2, the nodal injections due to traditional
EVs have been presented where it is said that the charging location of an EV is known and encoded
as input for the problem with a set of binary inputs. In case of AEVs, they are no longer an input for
the scheduling problem as autonomous EVs can pick independently a charging station to accelerate
their recharging process and reduce the impact of charging on the grid.

For AEVs, bnv (as in section 2.3.2) no longer represent the binary inputs (as they no longer represent
fixed parking spots of EVs), but the binary variables with bnv ∈ {0, 1} are now optimization variables
of the decision making problem. Thus the scheduling problem for AEVs becomes a MIP (mixed
integer programing) problem that determines the charging spots for AEVs. Also in this case we need
to ensures that each vehicle is charging at one location maximum. This requirement is modelled by
enforcing an additional constraint, also known as the non-multilocation constraint that reads as:

N∑
n=1

bnv ≤ 1. (2.16)

Modeling nodal injections for AEVs

To compute the nodal injection for AEVs, similar set of equations as in traditional EVs in section
2.3.2 can be written with bnv.

At each node of the grid the active and reactive power demand can be modelled as the sum of the
net demand3 and the aggregated charging demand of all the AEVs charging from a node. With bnv

as optimization variables, the nodal injection model (1.4a) at a grid node n and at time t can be
updated as:

P node
tn (Pt1, ..., PtV , bn1, ..., bnV ) = P net

tn +
V∑

v=1

bnvP
(EV)
vt . (2.17)

The net demand P net
tn is an input of the problem as it is in case of traditional EVs. The charging

demand from an EV v is contributed to the nodal injection by the decision making problem when

3Net demand is the conventional power demand minus distributed generations
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the binary variable bnv is activated. Following expressions collect all the variables from (2.17) in
the vectors when the scheduling problem is solved for AEVs:

λ =
[
P

(EV)
11 , . . . , P

(EV)
V T

]
(2.18)

bn =
[
bn1, . . . , bnV

]
. (2.19)

In Eq. (2.17) the second term comprises products between decision variables (as collected in Eq. (2.18)
and Eq. (2.19)), thus introduces a bi-linear formulation. To linearize this expression the Mc-
Cormick’s relaxation [120] can be used. Analyzing the impact of AEVs on the MV or LV distribution
grid is beyond the scope of this dissertation. The notion presented above for AEVs has been ex-
plored within the context of the EVA project as a contribution towards the following conference
publication.

F. Sossan, B. Mukherjee and Z. Hu, "Impact of the Charging Demand of Electric Vehicles
on Distribution Grids: a Comparison Between Autonomous and Non-Autonomous Driv-
ing," 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies
(EVER), 2020, pp. 1-6, doi: 10.1109/EVER48776.2020.9243122.

2.6 Conclusions

This chapter presents the formulation of different charging strategies for traditional EVs based on
the existing state-of-the-art. In the modeling context, the following charging policies have been
considered: uncoordinated charging, smart charging, V2G with and without reactive power support
from the EV chargers. The problem formulation of all the schedulers is derived from a common
(convex) optimization framework accounting for (linearized) power grid constraints (nodal voltage
magnitudes, line currents etc.), charging/discharging efficiency, and 4-quadrant (and 2-quadrant
unidirectional) chargers, that allow an efficient comparison among the charging policies. The ap-
plicability of this contribution is envisaged in the context of an urban planner or DSO willing to
compare the performance of different charging strategies. The scheduling problems (2.8) and (2.9)
feature linearized models and constraints. When the cost function is formulated linearly, these prob-
lems can be effectively solved as linear programming (LP) models. When the constraints (2.11c) and
(2.14c) accounting for the capability of EV chargers are included in the problem formulations (2.11)
and (2.14), respectively, due to their second-order cone characteristics, the scheduling problems can
be solved as convex nonlinear programming (NLP) problems. Nodal apparent power limits, which
are quadratic in nature for the apparatus at the substation, were not taken into account as con-
straints in the scheduling problems discussed in this chapter. However, in the next chapter, these
constraints have been included in the optimization problem, and it will be demonstrated how they
can be approximated as linearized constraints.

Finally, this chapter presents the key findings from comparing the performance of different EV
charging strategies on the residential MV grid in the presence of a large population of EVs. It
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is observed that in the case of uncoordinated charging of 878 EVs at different nodes of the Eu-
ropean CIGRE MV grid, the grid’s voltage constraints are violated during the afternoon/evening
periods. In this context, smart charging proves to be effective in reducing congestion during the af-
ternoon/evening periods. From the scheduling problem (2.14), it is evident that the V2G feature is
never activated. However, the reactive power support from the EV chargers is valuable in reducing
voltage congestion, enabling more EVs to charge and shortening the overall charging time to achieve
a target SOC. When considering the charging of AEVs in the power grid, as presented in section
2.5, the problems for different charging policies can be formulated under a common framework, as
proposed in this thesis. However, this imposes a computational burden due to the increased number
of variables (mainly due to the variables 2.19) in the optimization problem.
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Chapter 3

Planning of EV charging stations in MV
grid

Résumé en Français

L’objectif de la planification de l’infrastructure de charge dans un réseau de distribution d’électricité
MV est de situer et de dimensionner les chargeurs de VE à différents nœuds du réseau, en tenant
compte des contraintes techniques du réseau, des multiples typologies de chargeurs (rapides, lents,
chargeurs à ports multiples, chargeurs à port unique) et des scénarios impliquant la flexibilité des
conducteurs à brancher et à débrancher leurs VE. La méthode proposée dans ce chapitre vise d’abord
à minimiser l’investissement en capital de l’infrastructure de charge et, ensuite, à minimiser con-
jointement l’investissement en capital tout en maximisant l’autoconsommation photovoltaïque. Le
problème de planification optimale a été formulé comme une optimisation économique basée sur un
programme linéaire mixte (MILP). La méthodologie présentée utilise l’approche du flux de puissance
optimal (OPF) et peut être intéressante pour les opérateurs de systèmes de distribution intégrés
(DSO) et les urbanistes. L’étude de cas synthétique présentée dans ce chapitre analyse les impacts
des infrastructures de recharge à port multiple et à port unique, y compris les modèles de flexibilité
des conducteurs. Les résultats de deux documents distincts, la publication A et la publication B,
sont inclus dans ce chapitre.

Summary

The objective of planning the charging infrastructure in an MV power distribution grid is to site
and size EV chargers at different grid nodes, accounting for the technical constraints of the grid,
multiple charger typologies (fast, slow, multi-port chargers, single-port chargers), and scenarios in-
volving drivers’ flexibility to plug and unplug their EVs. The method proposed in this chapter aims
to first minimize the capital investment of the charging infrastructure and secondly, to jointly min-
imize the capital investment while maximizing PV self-consumption. The optimal planning problem
has been formulated as an economic optimization based on a mixed-integer linear program (MILP).
The presented methodology utilizes the optimal power flow (OPF) approach and can be of interest
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to integrated distribution system operators (DSOs) and urban planners. The synthetic case study
presented in this chapter analyzes the impacts of both multi-port and single-port charging infrastruc-
tures, including models of drivers’ flexibility. The results from two separate papers, Publication A
and Publication B, are included in this chapter.

3.1 Introduction

While Enedis in France is planning to accommodate charging stations at the location of street
lamps1 along the road, many other companies are also planning to set up charging infrastructures
for EVs. According to [121], in a power distribution network, the EV charging system connected to
the street lamps does not require any additional work, except for the installation of an electricity
meter and its long-term operation. An EV owner primarily considers home charging (using a slow
charger) [121, 122]. When home charging is unavailable, people consider charging at public places
or the workplace. At the workplace, charging stations are set up either for employees using personal
electric vehicles or for companies’ electric fleets [121]. In 1.2.5, the primary motivation behind
the development of an extended EV charging infrastructure and the literature review on existing
methods to address the problem of charging infrastructure planning have been explored.

In light of the current state-of-the-art, the main contribution of this chapter is to formulate
the optimization problem with the objective of siting and sizing EV chargers in a distribution grid
while accounting for grid constraints, multiple charger typologies such as fast and slow chargers,
as well as single-port chargers (SPCs) and multi-port chargers (MPCs). The proposed method in
this chapter also models EV owners’ flexibility in plugging and unplugging their EVs to and from
public charging stations. This last consideration is reasonable to achieve better utilization of the
charging columns, which eventually impacts the deployment of chargers throughout the distribution
grid. This chapter also presents a quantitative investigation into the sensitivity of the EV charging
infrastructure to different optimization objectives, including photovoltaic (PV) self-consumption.
The widely advocated PV self-consumption paradigm from the literature has been considered herein
to reduce grid congestion and grid losses. With the integration of local renewable generation (e.g.,
PV power) into the existing distribution grid, the recharging process of EVs can benefit from direct
recharging using these local renewable sources. The proposed method in this chapter enables the
direct utilization of PV power to recharge EVs and promotes the integration of more PV power
into existing distribution grids. This integration helps to reduce grid congestion while satisfying the
charging demand of EVs.

This chapter delves into the question of whether different planning objectives would result in sig-
nificantly distinct charging infrastructures or if similar infrastructure configurations can be adapted
to accommodate various objectives. This inquiry is particularly relevant for integrated distribution
system operators (DSOs), urban planners, and policymakers who must anticipate potential obsoles-
cence of charging infrastructure as objectives evolve over time. To address this question, we propose

1The number of streetlights in France is approximately ten million units [121].
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an adaptable mathematical optimization model that facilitates this analysis. The planning formu-
lation presented here, takes the form of a constrained economic optimization problem, employing
a mixed-integer linear program (MILP) approach that can be efficiently solved with off-the-shelf
optimization libraries.

3.1.1 Modeling principles and optimization problem

Figure 3.1 presents all the modeling elements required to formulate the optimal planning problem.
In Fig. 3.1, at the top, the black box computes the SOC evolution in time of all EVs as a function
of the EVs’ driving demand (as presented by the yellow box). For EVs to remain in a functional
condition and satisfy the driving requirements by the EV owners, their SOCs should be within the
physical ranges (e.g., between 10% and 100%, or any other configurable limit).

The planning problem computes the EVs’ recharging decision or when to recharge them (as shown
by the red box) over the optimization horizon, and this depends upon the following constraints:
charge an EV while it is plugged into a charger (first blue box from the top). This is possible only
when an EV is parked (this information is available from the input variables pnvt, as discussed in
the next section). The plugged-in state of an EV does not only depend on its parking state, but
also on i) availability of a charger and ii) availability of an EV owner to unplug a charged EV
and plug in an EV that needs to be recharged. For example, it is unlikely that an EV is plugged
into a charger in the early morning hours as its owner might sleep: this flexibility of the owner is
specifically modeled with a dedicated set of constraints, as explained later in section 3.3.2.

Some additional set of constraints related to the operational limits of the grid are shown by
the green box to ensure the charging an EV do not violate them. The parking location of the EVs
establishes the link between the EVs’ recharging demand and the power demand at respective grid
nodes, allowing to model nodal power injections.

After the charging schedules for all the EVs are determined (grey boxes, related to cost function
model), the information is then processed to estimate the number of charging infrastructures at dif-
ferent locations of the grid to satisfy the recharging demand. The objective function of the problem
minimizes the total cost of the infrastructure based on the total number of charging infrastructures.
As denoted by the last blue boxes (for SPCs or MPCs) are the additional set of constraints to model
whether SPC or MPC infrastructures are allowed in the optimization problem. The whole problem
of Fig. 3.1 is formulated as a MILP program, allowing for a compact formulation of all constraints
and economic optimization. The methodology to formulate the planning problem is presented next.
The economical cost minimization problem of charger deployment is solved with and without PV
self-consumption modeling.
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Figure 3.1: The main elements used in the planning problem.

3.2 Methodology

3.2.1 Input information to the problem

It is assumed that the parking locations of the EVs over the time at the distribution grid nodes are
known; this information has been considered as an input of the planning problem. We encode EVs’
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parking locations in the following input binary parameters:

pnvt =

1, if EV v is connected to node n at time t

0, otherwise.
(3.1)

The subscript “nvt”, as well as other subscripts introduced in this thesis, denotes quantities for grid
node n and vehicle v at time interval t, and not the product among these indexes. It is illustrative
to mention that because a vehicle can be parked at one node only at a given time, the following
holds:

N∑
n=1

pnvt ≤ 1 ∀t and v. (3.2)

We denote the energy storage capacity of the EVs by Ev and the discharging power of EV
batteries by pEV-

vt . The discharging power depends primarily on the driving/transportation demand,
but also on other factors, such as driving style and regenerative breaking, auxiliaries’ consumption
(e.g., [123]), battery self-discharge, and battery state in general. Because this discharging power is
an input quantity, the method proposed herein is independent from the specific way it is computed.
For example, it can be computed by way of transport simulations (e.g., [124]), or estimated from
experimental measurements or statistics (e.g., [22, 119, 125]).

3.2.2 Modeling connection and charging state

To define whether the EV is plugged into a fast or a slow charger, for each vehicle v and time
interval t, we define the binary variables fplugged

vt and splugged
vt respectively. As an EV cannot be

connected to a fast and slow charger simultaneously, it holds that fplugged
vt and splugged

vt cannot be
active at the same time; moreover, as an EV can be plugged only when parked, fplugged

vt and splugged
vt

can remain active only if at least one pnvt among all nodes remain active. These two requirements
can be formalized in the following inequality constraint:

fplugged
vt + splugged

vt ≤
N∑

n=1

pnvt ∀t and v. (3.3)

We consider two additional binary variables per vehicle and time interval, denoted by f charge
vt , scharge

vt ,
indicate whether a vehicle v is charging from a fast or a slow charger at time t. As EVs can charge
only when plugged into a charger2, it holds that:

f charge
vt ≤ fplugged

vt ∀t and v (3.4a)

scharge
vt ≤ splugged

vt ∀t and v (3.4b)

Thus, the quantities fplugged
vt , splugged

vt , f charge
vt , scharge

vt are the variables of the optimization prob-
lem; based on these variables, the charging power of the EVs, as well as the needs for fast and slow
chargers are determined, as explained next.

2Indeed, being connected to a charger does not necessarily imply that an EV is recharging.

49



3.2. METHODOLOGY

Extension to V2G

This paragraph presents how the above formulation can be extended to model vehicle-to-grid (V2G)
support from the EVs with bidirectional chargers. For brevity, this is demonstrated for slow chargers
only. For fast chargers, similar expressions can be derived by replacing the corresponding variables.

Similarly to the binary variable scharge
vt that denotes if an EV is recharging or not, a new binary

variable, sdischarge
vt , is introduced that indicates whether an EV is discharging. Because an EV can

either be charged or discharged at the same time, and can be discharged only when plugged, the
following two constraints must hold:

sdischarge
vt + scharge

vt ≤ 1, ∀t and v (3.5)

sdischarge
vt ≤ splugged

vt , ∀t and v. (3.6)

3.2.3 Modeling of EV charging power

With the above definitions in place, the charging power of a vehicle v and time t is:

pEV+
vt = f charge

vt · F̄ · cosϕF + scharge
vt · S̄ · cosϕS , (3.7a)

where input parameters F̄ and cosϕF are the kVA rating and power factor of the fast charger,
respectively, and similarly S̄ and cosϕS for the slow charger. The reactive power associated to this
charging demand is:

qEV+
vt = f charge

vt · F̄ · sinϕF + scharge
vt · S̄ · sinϕS . (3.7b)

It is worth highlighting that, here, chargers are assumed to operate in an on-off manner, meaning
that the recharging power cannot be modulated in intensity. However, the recharging power of
all chargers can be modulated over time, ultimately achieving power intensity modulation at the
aggregated level and enabling grid congestion management. Modulation of the charging power at
the level of the single charging station is illustrated in the next paragraph.

Case of smart charging

In the case of smart charging, the output power of an EV charger can be modulated. For brevity,
this section presents the formulation for slow chargers only. For fast chargers, similar expressions
can be derived by replacing the corresponding variables.Assuming the charger works at a constant
power factor (regardless of its power output), the previous models in (3.7) can be modified as:

0 ≤ pEV+
vt ≤ scharge

vt · S̄ · cosϕ ∀t and v, (3.8a)

qEV+
vt = pEV+

vt · tanϕ ∀t and v. (3.8b)

3.2.4 EVs’ state-of-charge (SOC) model

The evolution of the vehicles’ SOC depends on the charging power pEV+
vt , given by (3.7a), and the

discharging power pEV-
vt , which is an input of the problem. The SOC of vehicle v at time t is modeled
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as:

SOCv(t) = SOCv(0) +
Ts

Ev

t−1∑
τ=0

(
η · pEV+

vτ − pEV−
vτ

)
, (3.9)

where SOCv(0) is the initial SOC (a problem decision variable, as it is discussed later), Ts the
sampling time in hours, Ev the nominal energy capacity of the EV’s battery (in kWh), and η is the
charging efficiency. It is worth highlighting that since the discharging power is assumed estimated
directly from the vehicles’ SOCs, it is not weighted by the efficiency in (3.9).

Model (3.9) is linear in the charging power. This model, commonly adopted in the literature
(e.g. [5]), assumes constant battery’s voltage and efficiency. These assumptions, which trade-off
accuracy for increased model tractability, can be considered acceptable in a planning problem with
sparse temporal resolution (e.g., 1 hour). The vehicles’ SOCs should be within a feasible range,
denoted by (SOC, SOC). This constraint reads as:

SOC ≤ SOCv(t) ≤ SOC. (3.10)

Extension to V2G

To model V2G support from the EVs with bidirectional chargers, the SOC model in (3.9) needs to
account for the discharging power too. The updated model reads as:

SOCv(t) = SOCv(0) +
Ts

Ev

t−1∑
τ=0

(
ηpEV+

vτ − pEV−
vτ − 1

η
pV2G
vτ

)
∀v (3.11)

In 3.11, for slow chargers only V2G power can be expressed as:

pV2G
vt = sdischarge

vt · S̄ · cosϕS . (3.12)

3.2.5 Identifying the need for charging infrastructure

This section describes how we can identify the number of chargers and their locations in a distribu-
tion grid based on the modeling information introduced above. Based on the number of chargers,
the capital investment of the charging infrastructure can be computed. In this Thesis, modeling
of both single-port chargers (SPCs) and multi-port chargers (MPCs) have been considered in the
planning context to evaluate the techno-economic benefits of each other, or a combination of both.
The distinction between these two charger typologies is that SPCs have a plug for each charging
column, whereas MPCs have a centralized AC/DC power conversion stage and multiple ports to
enable the connection of multiple EVs.

Modeling the single-port chargers

Single-port chargers feature an equal number of plugs and chargers (see Fig. 3.2). The following
explanation refers to fast chargers; for slow chargers, the principles are identical and not repeated.
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Figure 3.2: Single-port chargers (SPCs) on the left, and multi-port chargers (MPCs) on the right.

The modeling principle used to determine the number of chargers to install involves evaluating
the maximum number of EVs connected to a charger at a given grid node and time interval (this
information is given by the variables fplugged

vt and splugged
vt explained in section 3.2.2). For instance,

if at node 2, a maximum of 10 vehicles are simultaneously plugged into a charger throughout the
planning horizon, then 10 chargers will be required to meet the demand at this node. This modeling
principle is now formalized.

The number of fast chargers in use at a specific grid node can be evaluated by coupling the in-
formation in fplugged

vt (telling whether an EV is plugged into a charger) and pnvt (the EV parking
location). More specifically, the number of fast chargers in use at time interval t at node n is the
sum over all vehicles of the product between pnvt and fplugged

vt . The maximum value over time of this
expression is the required number of fast chargers to be installed at node n, denoted by F chargers

n .
Formally, it is:

F chargers
n = max

t

{
V∑

v=1

pnvt · fplugged
vt

}
, n = 1, . . . , N. (3.13a)

Because SPC chargers have one plug per charger by design, the number of available plugs must
match the number of chargers. Say F plugs

n is the number of plugs, then the following equality
constraint must hold:

F plugs
n = F chargers

n . (3.13b)

For slow chargers, similar expressions hold:

Schargers
n = max

t

{
V∑

v=1

pnvt · splugged
vt

}
, n = 1, . . . , N (3.13c)

Splugs
n = Schargers

n . (3.13d)

where Schargers
n and Splugs

n are the number of chargers and of plugs, respectively.

Modeling the multi-port chargers

Differently than a SPC, a single MPC can have multiple plugs. The numbers of plugs and chargers
now follow from different models, as explained hereafter.
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The number of fast chargers is calculated considering the variables f charge
vt , which tell, for a given

time t, how many vehicles are recharging at the same time, so providing information on the rated
power required to meet the realized recharging demand. Following the same principle discussed
above for SPCs, coupling this information with pnvt enables to locate this power demand in the
grid. Formally, the number of fast and slow MPCs is:

F chargers
n = max

t

{
V∑

v=1

pnvt · f charge
vt

}
, n = 1, . . . , N (3.14a)

Schargers
n = max

t

{
V∑

v=1

pnvt · scharge
vt

}
, n = 1, . . . , N. (3.14b)

The number of plugs for, e.g., fast chargers is instead calculated considering the variables fplugged
vt ,

which provide the information of how many vehicles are connected to a charger at the same time.
Formally, the numbers of plugs for fast and slow chargers are:

F plugs
n = max

t

{
V∑

v=1

pnvt · fplugged
vt

}
, n = 1, . . . , N (3.14c)

Splugs
n = max

t

{
V∑

v=1

pnvt · splugged
vt

}
, n = 1, . . . , N. (3.14d)

It is worth to highlight that the planning problem for MPCs is a generalization of the one of
SPCs. This is because, if the solution of the MPCs’ problem is such that f charge

vt = fplugged
vt and

scharge
vt = splugged

vt for all v and t, then formulations in (3.14) and (3.13) are the same and the two
problems would have the same solution.

Investment costs for the charging infrastructures

Based on the required numbers of plugs and chargers, we can estimate the capital cost of the EV
charging infrastructure. The total investment cost is denoted by J(·), where notation (·) refers to
the dependency of J on the problem decision variables fplugged

vt , splugged
vt , f charge

vt , and scharge
vt , which

is not explicitly reported for compactness. It reads as:

J(·) = JF
plugs + JF

chargers + JS
plugs + JS

chargers (3.15a)
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where JF
plugs, J

F
chargers are the cost of fast-charging plugs and stations, and JS

plugs and JS
chargers are

the cost of slow-charging plugs and stations. The components of (3.15a) are as follows:

JF
plugs =

N∑
n=1

F plugs
n · costFplugs (3.15b)

JS
plugs =

N∑
n=1

Splugs
n · costSplugs (3.15c)

JF
chargers =

N∑
n=1

F chargers
n · costFchargers (3.15d)

JS
chargers =

N∑
n=1

Schargers
n · costSchargers (3.15e)

where costFplugs, costFchargers, costSplugs, costSchargers are the unitary cost of plugs and chargers for fast
and slow charging.

3.2.6 Nodal injections due to EVs charging demand and grid model

The nodal injections of EVs, P (EV nodal)
tn , Q

(EV nodal)
tn connected to node n in (1.4), can be computed

by coupling the information on the charging power of the individual EVs (pEV+
vt and qEV+

vt ) in (3.7),
with their parking location, pnvt. Formally, they read as:

P
(EV nodal)
tn =

V∑
v=1

pnvt · pEV+
vt ∀t and n (3.16a)

Q
(EV nodal)
tn =

V∑
v=1

pnvt · qEV+
vt ∀t and n. (3.16b)

If the local PV generation is taken into account at any node, the active power injection in
Eq (1.4a) can be expressed as follows:

P node
tn = P demand

tn − PPV
tn + P

(EV nodal)
tn , (3.17)

where PPV
tn represents the PV generation (taken with a negative sign because it is generation). PV

plants are assumed to operate at a unit power factor, so the reactive power contribution of PV
plants is not required to appear in Equation (1.4b).

Since the grid voltage is constrained within a narrow band, we make the approximation that nodal
power injections are independent of voltage. The dependency between grid quantities (nodal voltage
magnitudes vtn, line current magnitudes itl, and apparent power flow at the substation transformer
St0) and the nodal injections is discussed in Section 1.4.3. When planning the charging infrastruc-
tures in a distribution grid, it is crucial to ensure that the operational grid quantities remain within
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prescribed limits. Therefore, the following operational grid constraints can be considered:

v ≤ vtn ≤ v ∀t and n (3.18a)

|itl| ≤ il ∀t and l (3.18b)

St0 ≤ S0 ∀t. (3.18c)

where, v, v respectively define lower and upper limits nodal voltage magnitudes; upper limits of
lines’ ampacity il; rating of power flow at the substation transformer S0.

In addition to these constraints, to solve the optimal planning problem we need to consider that
the nodal injections remain below the apparent power limit of the node, Sn (i.e., the rated power
of the MV/LV transformer):

(P node
tn )

2
+ (Qnode

tn )
2 ≤ (Sn)

2. (3.18d)

The constraint (3.18d) is useful in the case of apparatus with apparent power limitations connected
at the nodes, such as nodes hosting substation step-down transformers. Later in 3.2.8 it is explained
how this constraint can be approximated to solve the optimal planning problem.

Extension to V2G

To model V2G support from the EVs with bidirectional chargers, the nodal injections model (1.4a)
can be modified to include the contribution of V2G. This reads as:

P node
tn =

∑
v∈V

pnvt ·
(
pEV+
vt − pV2G

vt

)
+ P net

tn . (3.19)

3.2.7 The optimal planning problem

Planning without PV self-consumption

In this section we propose the methodology of planning the EV recharging infrastructure without
consideration of local PV generation. The problem here consists of the following binary variables:

x = [f charge
11 , . . . , f charge

V T , fplugged
11 , . . . , fplugged

V T ] (3.20)

y = [scharge
11 , . . . , scharge

V T splugged
11 , . . . , splugged

V T ] (3.21)

that minimize the capital investment for the EV charging infrastructure while respecting the grid
constraints.

To ensure that the problem solution does not depend on the initial SOC values in (3.9), we
choose to designate them as problem variables, denoted by:

z = [SOC1(0), . . . , SOCV (0)] ∈ RV . (3.22)

Besides, the final SOC should be larger than or equal to the initial one to avoid benefiting from the
initial energy stock:

SOCv(T ) ≥ SOCv(0), for all v. (3.23)
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In this way, the planning problem accounts for the charging demand of the vehicles, regardless
of their specific initial conditions. The planning problem is formulated as a constrained economic
optimization. Its formulation reads as:

min
x,y∈{0,1}V ×T ,z∈RV

{J(·)} (3.24a)

subject to the following constraints:

Plugged-in only if parked constraints (3.3) ∀t and v (3.24b)

Charge only if plugged-in constraints (3.4) ∀t and v (3.24c)

EV charging power (3.7) ∀t and v (3.24d)

SOC model and constraints (3.9), (3.10), (3.23) ∀t and v (3.24e)

Nodal injection models (3.16) and (1.4) ∀t and n (3.24f)

Linear grid models (1.5) and constraints (3.18) (3.24g)

Chargers and plugs number model:

(3.13) for SPCs, or (3.14) for MPCs (3.24h)

Planning with PV self-consumption

In this section, we propose a methodology for jointly planning the EV recharging infrastructure while
maximizing the PV self-consumption of EVs. One potential solution to reduce grid congestion and
improve the carbon footprint of the recharging process is to utilize electricity generated from local
Photovoltaic (PV) sources to recharge EVs. This approach, known as PV self-consumption, has been
extensively discussed in the literature as a means to integrate more PV electricity into distribution
grids [35, 36].

PV self-consumption of EVs at the power grid nodes can be promoted by incentivizing EVs to
consume more power during time intervals when there is local PV production and vice-versa. This
is modeled by minimizing the following objective function:

JPV =
N∑

n=1

T∑
t=1

1

PPV
tn + ϵ

P
(EV nodal)
tn , (3.25)

where, t is the index of the time interval with total number of intervals T and n is the index of the
distribution grid nodes with total N nodes. PPV

tn represents the PV generation at node n at time t,
which is an input of the optimization problem. The coefficient ϵ is a small quantity and it is added
to avoid dividing EV nodal injections (P (EV nodal)

tn ) by zero when there is no PV generation at time
t. In case of planning with PV self-consumption we extend the cost function in (3.15a) as below:

J total = J(·) + k · JPV (3.26)
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where, k is an input coefficient. The value of k determines how one wants to weight one or the other
term. Thus, with the new cost (3.26) charging infrastructure planning is performed by jointly min-
imizing the total investment (J total) while maximizing the PV self-consumption subject to several
constraints.

The problem formulation consists of minimizing the cost function in (3.15a) over the decision
variables y and z:

min
y∈{0,1}V ×T ,z∈RV

{
J(·) + k · JPV} (3.27a)

subject to the following constraints:

Plugged-in only if parked constraints (3.3) ∀t and v (3.27b)

Charge only if plugged-in constraints (3.4) ∀t and v (3.27c)

EV charging power (3.7) ∀t and v (3.27d)

SOC model and constraints (3.9), (3.10), (3.23) ∀t and v (3.27e)

Nodal injection models (3.16), (3.17), (1.4b) ∀t and n (3.27f)

Linear grid models (1.5) and constraints (3.18) (3.27g)

Chargers and plugs number model:

(3.13) for SPCs, or (3.14) for MPCs. (3.27h)

In this thesis, the optimization problem (3.27) with PV self-consumption is specifically solved for
single-port slow chargers. Therefore, the constraint for the number of chargers and plugs (3.27h)
needs to be updated with (3.13c). The decision to intentionally deactivate the deployment of fast
chargers is based on the optimization results, as discussed in the next section (3.5.1), while solving
3.24. Since the fast chargers were never activated or required, this consideration is reasonable. It
should also be noted that deactivating the number of fast chargers effectively reduces the number
of binary variables in 3.27.

Joint minimization of investment and operational costs with time-of-use electricity
tariffs

To jointly minimize the investment and operational costs considering a time-of-use electricity tariff,
the optimization problem (3.24) can be updated by incorporating the following cost function:

J total = J(·) + α ·
N∑

n=1

T∑
t=1

PEV
nt · ct (3.28)

where ct is a time-of-use electricity tariff at time t (assumed the same across the all grid) and the
coefficient α. The discount rate is here neglected because it is not of primary interest in the results
comparison. The coefficient:

α =
Service-life of chargers
Optimization horizon

(3.29)

is a scale factor to make the two costs comparable in the considered optimization horizon.
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3.2.8 Problem properties and approximations

Problems (3.24) and (3.27) are nonlinear due to the set maximum in (3.13)-(3.14), the point-wise
maximum in (3.32d) (a new constraint, explained in the next section), and the quadratic expression
in (3.18d). Suitable reformulations or approximations of these constraints are now discussed to
render the problem linear. The set maximum, here denoted by v̄ = max{vt, t = 1, . . . , T} for
convenience, is replaced by T linear inequalities v̄ ≥ vt for all t. As the problem (3.24) entails
minimizing expressions of the same kind as v̄, this reformulation holds as exact. The point-wise
maximum, a+ = max(a, 0), is replaced by 2 inequalities, a+ ≥ a and a+ ≥ 0 and can be used to
replace convex constraints in the form of max(a, 0) ≤ ā with linear ones [79].

Finally, the apparent power constraint in (3.18d), now denoted by P 2 +Q2 ≤ S2 for simplicity,
is approximated by replacing the reactive power with an upper bound Q = S · sinϕ; since Q ≤ Q,
it follows that:

P 2 +Q2 ≤ P 2 +Q
2 ≤ S2 (3.30a)

P 2 ≤ S2 −Q
2
= S2 − S2 · sin2ϕ = S2cos2ϕ (3.30b)

P ≥ −S · cosϕ and P ≤ S · cosϕ. (3.30c)

In summary, while solving the problems in (3.24) and (3.27), the original quadratic constraint is
replaced by two linear inequalities as in (3.30c), with cosϕ as a lower-bound estimate of the load
power factor of the nodal injection at node n. We thus have the following linear expression3:

− S̄n · cosϕn ≤ P node
tn ≤ S̄n · cosϕn. (3.31)

With this equivalent formulations and approximation, it is possible to write the optimization prob-
lem as a mixed integer linear program (MILP) that introduces better computational performance
than the original one.

3.3 Modeling EV connection and disconnection preferences of EV
owners

As stated, the variables fplugged
vt and splugged

vt (indicating whether an EV is plugged into a charger)
can only be active when an EV is parked. However, there is more. Because plugging an EV into a
charging column is an operation performed by the EV owner (or driver), their availability to plug
and unplug an EV should also be modeled. For example, a person driving home in the evening and
using a public charging column might prefer to plug their EV at the arrival rather than queuing
for a charger to become available. To model this preference, we introduce additional constraints on
fplugged
vt and splugged

vt to capture two scenarios of EV owners’ flexibility for plugging and unplugging
their EVs. To explain these constraints, we refer to the case study analyzed in this thesis, which is
a home-work commute where EVs are used in the morning, parked in the central part of the day,
used again in the afternoon, and finally parked overnight (as encoded in the input parameters pnvt).
The constraints to model EV owners’ flexibility are discussed in the rest of this section.

3Piecewise linearization could also be considered in this context.[126]
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3.3.1 Modeling connection to and disconnection from chargers

Before describing the EV owners’ flexibility scenarios, the models of connection-to-a-charger and
disconnection-from-a-charger events are explained. For fast chargers, let binary variables cfvt, d

f
vt

denote the events when EV v is connected to and disconnected from a charger, respectively, and
similarly for slow chargers, with variables csvt and dsvt. In these variables, the logical state “1” denotes
a connection or a disconnection event, and 0 no event. Connections and disconnections are modeled
by detecting rising and falling edges of fplugged

vt and splugged
vt (Fig. 3.3). Formally, this is as (with

max as the point-wise maximum):

cfvt = max
(
fplugged
vt − fplugged

v(t−1) , 0
)

∀t and v (3.32a)

dfvt = max
(
fplugged
v(t−1) − fplugged

vt , 0
)

∀t and v (3.32b)

csvt = max
(
splugged
vt − splugged

v(t−1) , 0
)

∀t and v (3.32c)

dsvt = max
(
splugged
v(t−1) − splugged

vt , 0
)

∀t and v. (3.32d)

Disconnected stateConnected state

EV Charger
State 1

State 0

Connection event Disconnection event

  0    1    2     3     4     5    6    7     8     9    10   11  12  13  14   15  16 
 Time (hour of the day) 

Figure 3.3: Example of the connection-state variable (fplugged
vt or splugged

vt ) and connection and
disconnection events (blue and red arrows), corresponding to the raising and falling edges of the
plugging state, respectively.

3.3.2 EV owners’ (drivers) flexibility scenarios

Let the time interval (τ (1)v , τ
(2)
v ) denote the overnight parking stay, and (τ

(3)
v , τ

(4)
v ) the parking stay

during the central hours of the day for vehicle v. The two EV owners’ flexibility scenarios are as
follows.

Scenario A (forgetful EV owners): In both parking intervals, drivers plug their EVs to a
charger only at the arrival time, and unplug them only at the departure time. In other words, drivers
let their vehicles plugged into a charger whenever their EVs is parked. Formally, this is implemented
by enforcing no connection outside the initial parking time interval (for both fast and slow chargers)
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cfvt ≤ 0 for all t except t = τ (1)v and t = τ (3)v (3.33a)

csvt ≤ 0 for all t except t = τ (1)v and t = τ (3)v , (3.33b)

and no disconnection outside the final parking time interval

dfvt ≤ 0 for all t except t = τ (2)v and t = τ (4)v (3.33c)

dsvt ≤ 0 for all t except t = τ (2)v and t = τ (4)v . (3.33d)

Scenario B (cooperative EV owners): For overnight parking, drivers plug their EVs to
a charger only at the arrival time; when parking in the central part of the day, drivers allow one
disconnection. In the central part of the day, drivers allow one disconnection to give to others the
possibility of using that charging spot. This is implemented by enforcing no connection outside the
initial parking time for the overnight time interval

cfvt ≤ 0 for all t except t = τ (1)v (3.34a)

csvt ≤ 0 for all t except t = τ (1)v , (3.34b)

and up to one disconnection in the central parking hours

τ4∑
t=τ3

dfvt ≤ 1, (3.34c)

τ4∑
t=τ3

dsvt ≤ 1. (3.34d)

3.3.3 Implementing flexibility scenarios

Scenarios are implemented by adding either (3.33) or (3.34) to the optimization problems (3.24) and
(3.27). A comparative analysis of these 2 scenarios is performed in the results section to evaluate
the impact of EV owners’ flexibility on the problem solution and charging infrastructure.

3.4 Case study

This section presents the case study adopted to exemplify the operations of the proposed optimal
planning method. The case study presented here is reasonably guessed to reproduce a real possible
scenario. The input information used for the case study can be modified or tuned according to
the specific situation to model, on the basis of, for example, information from the distribution grid
operator and urban planner.
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3.4.1 The distribution grid

The European version of the 14-bus CIGRE benchmark grid [6] for medium voltage (MV) systems
has been considered herein for the case study. The description and topology of the grid is the
same as presented in section 2.4.1. The sensitivity coefficients for the linearized grid model are
computed once for the nominal demand profiles, similarly, as done in the Chapter 2, one could
compute successive linearizations to improve the linear estimates.

To solve the planning problem, a home-work commute of EV owners has been considered, where
the parking and charging locations of EVs correspond to different nodes of the 14-bus MV grid. As
mentioned before, EVs are utilized by their owners in the morning and remain parked during the
central hours of the day. In the afternoon, they are used again and parked overnight at the origin
node. In Fig. 3.4, the residential nodes are indicated as the purple nodes, where EVs are parked
overnight i.e. “Cluster 1”, whereas the destination nodes are the green nodes i.e. “Cluster 2” (see
Table 3.1).

Load

Switch/CB

Cluster -1 

Cluster -2

Transformer

Bus

Figure 3.4: Topology of the CIGRE European MV distribution network benchmark for residential
system with two Clusters [6, 7].

Demand and PV generation

The nodal demand, P demand
nt and Qdemand

nt in (1.4), is simulated considering the 1-day long load
coincidence factor described in [6], rescaled for the kVA nominal power of the nodes and then split
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into the active and reactive components with the nominal power factor of the nodes. Table 3.1
reports the PV generation capacity installed at the various nodes of the grid. A total of 400 kWp
of PV generation is installed in the network and connected to nodes 6, 10, and 11, corresponding to
nodes where EVs are parked during the daytime. PV generation is simulated with first-principles
models starting from irradiance time series as described in [127], considering clear-sky conditions
and PV panels with tilt and azimuth optimized to guarantee the largest yield over the year.

Table 3.1: Nodal nominal demand and power factors

Node Apparent Power [kVA] Power factor Cluster PV Gen [kW]

3 285 0.97 1 0
4 445 0.97 1 0
5 750 0.97 1 0
6 565 0.97 2 150
8 605 0.97 1 0
10 490 0.97 2 200
11 340 0.97 2 50
14 215 0.97 2 0

Nodal electricity tariff

The time-of-use retail electricity tariff is approximated with the day-ahead electricity prices obtained
from [128] and shown in Fig. 3.5 for 24 hours. This 1-day-long profile is replicated 5 times to obtain
the profile of the 5-day-long optimization horizon adopted in the optimization.

1 3 5 7 9 11 13 15 17 19 21 23
0.3

0.35

0.4

0.45

Time (hour of the day)

e
/k

W
h

Figure 3.5: Cost of the electricity in the month of July in France.
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3.4.2 Number of EVs and driving demand

Total 878 EVs have been considered herein4. The number of EVs parked during the night and central
hours are shown in Fig. 3.6a and 3.6b, respectively. The EVs’ morning departures and arrivals are
sampled from uniform distributions with values between hours 5-8 and 8-11, respectively; evening
departures and arrivals are sampled from uniform distributions with values between hours 14-18
and 17-21. Based on this information, variables pnvt (input for the problem) are built. The origin
and destination nodes of the EVs are assigned randomly and uniformly to all nodes hosting EVs.
To generate pnvt other methods can be used, including using real data.

The duration of the daytime parking intervals of the EVs could impact the results of the planning
problem and PV self-consumption. In particular, longer daytime parking hours would allow charging
more EVs in the central part of the day, coinciding with PV generation. In order to evaluate
the sensitivity of the results to the duration of the daytime parking intervals, two scenarios are
considered:

• Base case parking stay: EVs are parked between 8 AM and 4 PM.

• Extended parking stay: EVs are parked between 5 AM and 8 PM.

The total energy demand for driving is estimated using data from [119]. The discharging power
pEV-
vt , necessary to model the SOC evolution in (3.9), is a positive constant quantity when a vehicle

drives, and zero when the vehicle is parked. The discharging power is such that its total energy
demand amounts to the quantity estimated above.

To illustrate the impact on the planning results, two different values for the EV battery’s energy
capacity are considered: 16 kWh and 60 kWh, under the same driving demand. The EVs’ charging
efficiency, η, is 0.95.

3.4.3 Chargers ratings and prices

We consider fast and slow chargers with kVA ratings of 20 kVA and 2.4 kVA, respectively, and power
factors of 0.9. Their costs is 20’000e and 1’500e, inspired from the existing technical literature
[129–131] (although some price volatility might exist due to different regions, operators, and need
for labor). The price of the charging plugs is assumed to be 15% of the price of a single-port charger.

3.4.4 Optimization horizon for the case study

The planning horizon refers to how many temporal samples are considered in the optimization prob-
lem, indicated by the parameter T . As the number of variables of the optimization problem increases
linearly with T , and the complexity of the NP-hard MILP problem increases exponentially with the
number of variables, it is necessary to limit the value of T to retain tractability of the problem. In

4This number is estimated by dividing the nominal nodal power by the single-phase household contractual power
6 kVA assuming nearly 1.4 EVs per household (see Chapter 2)
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Figure 3.6: Number of EVs’ parked at different grid nodes under two clusters during the day and
night hours.

this thesis, T is set to 24 samples (i.e., 1 day with samples each hour) for the 16 kWh battery and to
120 (i.e., 5 days) for the 60 kWh battery, assuming that this interval represents a worst-case scenario
of the driving demand or a pattern that regularly occurs throughout the charging infrastructure’s
service life. Future work will consider scenario reduction or decomposition methods to attain a
tractable formulation of the optimization problem that decomposes the temporal dimension of the
problem. A similar scalability issue will be encountered when extending to distribution grids with
a more significant number of nodes, as this will require increasing the number of EVs involved in
the problem. This aspect will be investigated in future works. The longer optimization horizon
for larger batteries is because EVs with larger energy capacity can make multiple trips on a single
charge and may not require daily charging, which can stagger the charging process and help avoid
grid overloading. The 1-day demand profiles are replicated five times to obtain the input time series
for the 5-day planning period.

3.5 Results and discussion

The results presented herein are first for the small-battery EVs, and next, the analysis is extended
to the EVs with larger battery packs. The MILP problem was implemented in MATLAB and solved
using Gurobi.
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3.5.1 Planning without PV self-consumption

Results reported in this section do not consider PV productions at the grid nodes: 6, 10 and 11.
For both 1 day and 5 days optimization horizons results are summarized below. First, the results
are presented for the small-battery (16 kWh) EVs to illustrate some of the formulation’s properties.
The analysis is further extended to the EVs with larger batteries (60 kWh).

Results for one day horizon

The optimization problem with 1 day horizon for the small-battery (16 kWh) EVs was solved in
about 90 minutes on an Intel i7 machine with a duality gap setting of 10%.

Fig. 3.7 is presented to illustrate the meaning of the variables splugged
vt and scharge

vt for ten sample
EVs in Scenario A and MPCs. The figure demonstrates that: (i) vehicles are mostly connected to
the chargers, aligning with the definition of Scenario A where EVs are connected whenever parked,
and (ii) the planning algorithm optimizes the charging of plugged EVs. This optimization ensures
compliance with grid constraints, maintains the EVs’ correct state of charge (SOC) throughout
the day, and minimizes investment costs according to the problem’s cost function. Therefore, we
can infer that arbitraging the charge is beneficial to reducing the number of chargers, as explained
hereafter.
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Figure 3.7: Variables splugged
vt (a) and scharge

vt (b), showing the connection and charging state, respec-
tively, for 10 sample EVs. Grey filling is 1, white filling is 0.

The number of required chargers and plugs for SPCs, MPCs, and the two driver’s flexibility scenarios
A and B are reported in Table 3.2 for 1 day horizon. For SPCs, the number of plugs is not indicated
as it is the same as the number of chargers. Findings are as follows:
Finding 1. Fast chargers are not required; (cheaper) slow chargers are enough to satisfy the
charging demand of EVs.
Finding 2. Moving from forgetful (Scenario A) to cooperative EV owners (Scenario B) attains
smaller numbers of chargers and plugs for both SPCs and MPCs. This is because increasing the
availability of the EV owners to plug/unplug their EVs leads to better utilization of the charging
infrastructure, ultimately requiring fewer chargers to satisfy the same charging demand.
Finding 3. Implementing MPCs requires less chargers (and more plugs) than SPCs; because the
MPCs problem is a generalization of the SPCs’ and the problem aims at finding the economic
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Table 3.2: Number of slow chargers and plugs (878 EVs, 16 kWh battery).

Forgetful (Scenario A) Cooperative (Scenario B)
Node MPCs SPCs MPCs SPCs

Chargers Plugs Chargers Chargers Plugs Chargers
3 35 109 96 34 104 18
4 70 195 200 50 166 90
5 127 302 270 87 244 144
6 35 78 50 62 78 176
8 84 203 225 75 193 101
10 24 41 1 32 38 125
11 25 53 23 42 47 67
14 2 6 13 8 10 46

Cluster1 316 809 791 246 707 353
Cluster2 86 178 87 144 173 414

Total 402 987 878 390 880 767

minimum, we can infer that MPCs are conducive to lower infrastructure costs. Fig. 3.8 summarizes
the cost achieved by the various cases for EVs with battery capacity 16kWh charging at different
grid nodes during 1 day optimization horizon. It is observed that MPCs achieve higher cost savings
than flexible drivers. Thus choosing MPCs over SPCs attains a cost reduction of 45% and 40% in
Scenario A and B; whereas implementing flexible drivers (Scenario B) achieve a cost reduction of
13% and 5% for SPCs and MPCs, respectively. This implies that the technological solution (MPCs
over SPCs) is able to achieve a better cost reduction than a change of consumer behavior.
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Figure 3.8: Cost of the four cases with 1 day horizon.

Finding 4. Different scenarios and charger typologies (MPCs/SPCs) lead to a different spatial
distribution of the chargers. In almost all cases, more chargers are placed in Cluster 1, where
vehicles are parked overnight. This is attributed to longer parking durations, which provide a greater
opportunity for optimizing the charging process among a larger group of vehicles. Consequently,
this leads to a more efficient utilization of the charging infrastructure.

Fig. 3.9 shows the distribution quantiles (in different shades of green) and median values (thick
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green line) of the injections of active power (conventional demand plus EVs) across the nodes over
time. Nodal injections are scaled by the rated power of each node, so that one per unit (denoted by
the horizontal dashed lines) corresponds to the maximum power flow at that node. Nodal injections
and power transformer limits in (3.18d) were found to be the active constraints of the planning
problem. In all the cases, the nodal injections hit the limit value in the evening hours. This is due
to the combination of the evening’s conventional demand and the EVs’ charging demand. With
SPCs, the grid is mostly loaded in the day’s central hours, whereas with MPCs, the grid is mostly
loaded in the afternoon and evening hours. This denotes that MPCs tend to shift the charging
demand from the central part of the day to the afternoon and evening hours.

V2G results

To evaluate whether V2G leads to lower development costs of the charging infrastructure, results
are presented in this section for 1 day optimization horizon. For a fair comparison with the former
case, the cost of V2G chargers is assumed to be the same as the one-directional chargers. Table 3.3
shows the number of V2G chargers and plugs obtained by solving the planning problem. Comparing
tables 3.3 and 3.2, it can be seen that V2G achieves a slightly smaller number of total chargers,
between 6% (Scenario A, MPCs) and 0.5% (Scenario B, SPCs).

Table 3.3: Number of slow chargers and plugs with V2G.

Forgetful (Scenario A) Cooperative (Scenario B)
MPCs SPCs MPCs SPCs

Chargers Plugs Chargers Chargers Plugs Chargers
370 884 878 370 855 763

Table 3.4: Total EV charging demand versus V2G injections.

Forgetful (Scenario A) Cooperative (Scenario B)
SPCs MPCs SPCs MPCs

Charging demand (kWh) 16451 9380.9 9398.2 9335.5
Discharging demand (kWh) 1719.4 416.8 168.4 375.8

As the cost of the charging infrastructure is proportional to the number of chargers, the cost
savings of V2G are also proportional. However, because the cost savings are comparable to the
MIP gap setting adopted to solve the optimization problem (i.e., 10%), this gain is deemed as
not specially significant. Table 3.4 shows the total charging and discharging energy of the EVs,
calculated as

∑
v,t p

EV+
vt and

∑
v,t p

V2G
vt , respectively. The total discharging demand is a small

fraction of the total charging demand, between 2% and 10%, denoting limited use of V2G. Overall,
we can conclude that using V2G leads to marginal improvements in this case study.
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(c) Scenario B - SPC
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(d) Scenario B - MPC

Figure 3.9: Distribution quantiles and median values of the active power injections across the various
nodes of the grid over time for the EVs with 16 kWh batteries.

Results for five days horizon

The optimization problem with 5 days horizon was solved with a duality gap of 15% to reduce the
computation time. In these settings, the optimization problem was solved in around 5 hours. In
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Table 3.5 the numbers are reported for 5 days optimization horizon.

Finding 5. It is observed that for both the scenarios and charging infrastructures, fast chargers are
not required to be installed and slow chargers are enough to satisfy the charging demand of EVs.
Finding 6. In Table 3.5 it is observed that the number of installed chargers/plugs are the same for
MPCs and SPCs, as it was in former case with smaller batteries of 16 kWh, where significant gap
exists between these two numbers. This is because EVs with larger battery take longer to recharge,
assuming the same charging power and initial state-of-charge. Due to longer recharging times and
the fact that chargers tend to be in operation whenever an EV is plugged in, the feature of swapping
among several EVs (thanks to MPCs or increased driver flexibility) falls unused, without leading to
more optimal use of the charging infrastructure.
Finding 7. The number of chargers (or plugs) required for the 60 kWh EVs is smaller than for
the 16 kWh EVs. This is because EVs with smaller batteries need to be recharged more often,
possibly at different nodes, thus requiring the installation of more chargers. Instead, EVs with
larger batteries and more driving autonomy can perform multiple travels on a single charge and
stagger the recharging process.

Table 3.5: Number of slow chargers and plugs (878 EVs, 60 kWh battery).

Forgetful (Scenario A) Cooperative (Scenario B)
Node MPCs SPCs MPCs SPCs

Chargers Plugs Chargers Chargers Plugs Chargers
3 57 57 57 58 59 57
4 110 110 110 110 118 110
5 188 188 187 190 190 188
6 117 117 118 115 115 117
8 124 124 125 132 132 130
10 65 65 64 57 57 59
11 76 76 76 76 76 76
14 20 20 20 19 19 20

Cluster1 479 479 479 490 499 485
Cluster2 278 278 278 267 267 272

Total 757 757 757 757 766 757

Fig. 3.10 summarizes the cost for 878 EVs with battery capacity 60kWh charging at different grid
nodes over the 5 days optimization horizon. In this case we observe that the costs are nearly same
for all four cases this refers that with 5 days horizon a technological solution will not be necessary
with the change in driving behavior.

Finally, Fig. 3.11 shows the distribution quantiles of the nodal injections over the 5 days planning
horizon. Compared to the case with smaller batteries which featured significant differences among
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Figure 3.10: Cost of the four cases with 5 days horizon.

the nodal injections for different chargers and drivers’ flexibility, nodal injections in the various
cases are now similar.

3.5.2 Planning results with PV self-consumption

The planning results obtained by optimizing for PV self-consumption are illustrated and compared in
this section for SPCs, considering only the slow chargers as the fast chargers were never required (as
seen from the without PV self-consumption results presented in previous section). The optimization
problems were solved with a MIP gap of 5% to decrease the computation time. Under this setting,
it took nearly one hour to solve in a computer with an Intel Xeon processor.

At first the impact of different values of k in the cost function is illustrated; as a reminder from
the previous sections, the coefficient k in (3.26) trades charging infrastructure costs for optimal
planning problem when PV self-consumption is modeled.

In Fig. 3.12 the values of the two components of the planning problem’s cost function in (3.26) is
plotted for different values of k, forgetful/cooperative EV owners, and base case/extended parking
intervals. The two cost components on the plot axis are the capital investments required for the
resulting charging infrastructure (Jchargers) and the achieved PV self-consumption (JPV). The lower
values of JPV denote improved PV self-consumption. Sub-figures are now discussed as follows. From
Fig. 3.12(a) it is observed that, higher values of k attains lower values of JPV (thus improving self
consumption) but higher the infrastructure costs Jchargers. This trend, found also in the remaining
plots of Fig. 3.12, is to be expected because larger values of k in the cost function (3.26) gives
more weight to PV self-consumption, and less to decreasing infrastructure costs. Fig. 3.12(b) shows
the evolution of the costs when introducing flexible drivers. Compared to Fig. 3.12(a), it can be
seen that capital investment are marginally decreased, especially for k > 0. Fig. 3.12(c) shows
the evolution of the costs with extended duration of the daytime parking intervals for forgetful EV
owners. By comparing this figure against Fig. 3.12(a), it can be observed that that:

• Extending the daytime parking intervals leads to better PV self-consumption JPV, as visible
for k = 0.
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(c) Scenario B - SPC
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(d) Scenario B - MPC

Figure 3.11: Distribution quantiles and median values of the active power injections across the
various nodes of the grid over time for the EVs with 60 kWh batteries.

• The value of the costs components in Fig. 3.12(c) is not as sensitive to variations of k values
as in Fig. 3.12(a).

Finally, in Fig. 3.12(d) the evolution of the costs with extended duration of the daytime parking
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Figure 3.12: Change in PV self-consumption JPV (lower values denote better PV self-consumption)
with the cost of the recharging infrastructure Jchargers, for increasing values of k in different scenarios:
(a) forgetful EV owners, (b) cooperative EV owners, (c) forgetful EV owners with extended daytime
parking intervals, and (d) cooperative EV owners with extended daytime parking intervals.
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intervals and flexible EV owners is shown. Compared to Fig. 3.12(b), it can be seen that increased
flexibility of the EV owners leads to a (marginal) improvement of both the self-consumption and
the infrastructure cost.

Table 3.6: Total number of chargers and distribution among clusters for different values of k, base
case daytime parking intervals, and forgetful EV owners.

Node k = 0 k = 1 k = 10 k = 100 k = 1000
3 55 68 69 72 80
4 109 92 102 99 117
5 187 134 141 160 144
6 121 216 220 225 220
8 123 63 57 44 60
10 69 217 219 219 219
11 77 118 117 118 118
14 22 29 33 27 33

Total 763 937 958 964 991
Cluster 1 62% 38% 39% 39% 40%
Cluster 2 38% 62% 61% 61% 60%

Table 3.7: Total number of chargers and distribution among clusters for different values of k, base
case daytime parking intervals, and forgetful EV owners for modulated charging power.

Node k = 0 k = 1 k = 10 k = 100 k = 1000
3 53 53 53 54 54
4 108 81 83 83 82
5 189 113 114 114 115
6 114 217 223 226 222
8 122 32 42 40 51
10 68 218 223 222 222
11 76 116 117 120 118
14 22 22 22 22 23

Total 752 852 877 881 887
Cluster 1 63% 33% 33% 33% 34%
Cluster 2 37% 67% 67% 67% 66%

Tables 3.6 and 3.7 report the total number of installed chargers with the base case daytime parking
intervals, forgetful EV owners, and increasing values of k when the recharging power of the chargers
is on-off and modulated (equations (3.7a) and (3.8a)), respectively. It can be seen that the number
of chargers generally increases with larger values of k, inline with the former discussion. More
interestingly, the two tables denote that the distribution of the chargers among clusters 1 and 2
changes between k = 0 and k > 0. In particular, with k = 0, chargers are mostly installed in Cluster
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1 (where EVs are parked overnight), whereas with k > 0, chargers are mostly installed in Cluster
2 (where EVs are parked during the daytime). This denotes that promoting PV self-consumption
from EVs requires developing a more pervasive charging infrastructure in those nodes where EVs
are parked during the daytime.

Finally, it is also important to highlight that Tables 3.6 and 3.7 feature similar values and trends,
denoting that on-off or continuous modulation does not make a significant difference. This can be
explained by the fact that at the aggregated level, modulating on-off a large number of vehicles
will still achieve efficient congestion management and that continuous modulation might not be
required.

Table 3.8: Total number of chargers and distribution among clusters for different values of k,
extended parking intervals, and forgetful EV owners.

Node k = 0 k = 1 k = 10 k = 100 k = 1000
3 5 1 1 3 4
4 48 42 44 42 44
5 24 22 23 24 27
6 214 219 221 220 222
8 1 1 0 2 2
10 136 135 139 151 187
11 116 130 129 130 134
14 56 60 61 59 57

Total 600 610 618 631 677
Cluster 1 13% 11% 11% 11% 11%
Cluster 2 87% 89% 89% 89% 89%

Table 3.9: Total number of chargers and distribution among clusters for different values of k,
extended parking intervals, and cooperative EV owners.

Node k = 0 k = 1 k = 10 k = 100 k = 1000
3 2 5 5 5 5
4 49 42 42 42 42
5 24 22 24 24 23
6 214 218 220 220 220
8 2 2 1 2 2
10 135 134 139 148 187
11 115 129 129 129 129
14 59 56 56 56 56

Total 600 608 616 626 664
Cluster 1 13% 12% 12% 12% 11%
Cluster 2 87% 88% 88% 88% 89%
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Table 3.8 and 3.9 show the total number of chargers and distribution between clusters 1 and 2
under the condition when the parking intervals are extended for both forgetful and cooperative EV
owners, respectively, for increasing values of k. It can be seen that, in both these cases, the charging
infrastructure is nearly entirely developed in Cluster 2, where EVs are parked for a longer duration
during the daytime and where PV is available. Compared to the cases in Table 3.6 and 3.7, here
it can also be observed that, for increasing values of k, first, it does not significantly impact the
distribution of the chargers among the clusters, and second, it does not significantly impact the
total number of required chargers to be installed. The fact that the properties of the charging
infrastructure are similar for different values of k denotes that an EV charging infrastructure that
is optimized for minimizing the investment cost is also capable of delivering “good performance” in
terms of PV self-consumption.

3.5.3 Joint optimization of capital and operational costs

The planning results, obtained by jointly optimizing for capital and operational costs, are presented
in this section.
Table 3.10 reports the number of chargers and their distributions for both normal and extended
parking intervals and cooperative and forgetful EV owners. The following observations can be
derived:

• For the normal parking interval, chargers are predominantly present in Cluster 1, similarly to
the case k = 0 in the former tables. However, the number of chargers in this case is much
higher than in the previous tables (approximately twice as much). This can be explained by
the fact that the planning problem finds it beneficial to install more chargers in Cluster 1
(where EVs are parked overnight) in order to access lower electricity costs.

• For extended daytime parking intervals, where cars are parked longer in Cluster 2 and less in
Cluster 1, chargers tend to be installed more in Cluster 2 than in Cluster 1. This is expected
because installing chargers in Cluster 2 will enable access to lower electricity prices.

3.5.4 Comparison among all cases

This section compares all the aforementioned cases for SPCs. Fig. 3.13 compares the percentage of
chargers installed in Cluster 1 versus the total number of chargers for all the considered cases (for
PV self-consumption, only the case for k = 100 is considered). It can be seen that the difference
between cooperative and forgetful drivers is negligible when the other features are the same. Thus,
this factor does not affect the charging infrastructure requirements in this case study.

It can be observed from Fig. 3.13 that the case with extended parking intervals and PV self-
consumption requires the smallest charging infrastructure, mostly developed away from Cluster 1
(i.e., in Cluster 2). The remaining cases feature a charging infrastructure that is more similar with
respect to each other, so we can conclude that it is more robust against possible changes of the
planning objective as it features a more similar distribution and a total number of chargers.
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Table 3.10: Distribution of number of chargers for different parking intervals (878 EVs, 60 kWh
battery, 5 days horizon, with service life factor).

Normal interval Extended interval
Node Forgetful Cooperative Forgetful Cooperative

chargers chargers chargers chargers
3 107 107 47 47
4 168 168 109 109
5 243 243 185 185
6 215 215 215 215
8 196 196 153 153
10 205 205 196 196
11 103 103 115 115
14 48 48 62 62

Total 1285 1285 1082 1082
Cluster 1 56% 56% 46% 46%
Cluster 2 44% 44% 54% 54%
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Figure 3.13: Distribution and number of chargers in Cluster 1 for two optimization problems. Data
obtained for the optimization with PV self-consumption are plotted for k = 100.

3.6 Conclusions

A methodology is presented in this chapter for cost-optimally allocating EV chargers across the grid
while considering the constraints of the power distribution grid, various charger types (slow, fast,
single-port, and multi-port), and the vehicle-to-grid feature. The chapter also introduces flexibility
modeling for EV owners to optimize the usage of the charging infrastructure. Additionally, the
formulation is extended to minimize capital investments and maximize local PV self-consumption.
By modifying nonlinear constraints, a mixed-integer linear formulation of the optimal planning
problem is derived and efficiently solved using off-the-shelf software libraries.
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The methodology is applied to a 14-bus MV network with 878 EVs, considering two battery sizes
(16 kWh and 60 kWh). To ensure the tractability of the optimization problem, it is crucial to
limit the number of temporal samples. As the number of variables in any optimization problem
increases linearly with temporal samples, and the complexity of the MILP problem exponentially
increases with the number of variables, careful consideration is required. For the case study, two
sets of samples were utilized. Firstly, for the 16 kWh battery (i.e., a low-capacity EV battery),
the optimization horizon was set to 24 samples, representing a 1-day horizon with hourly samples.
Secondly, for the 60 kWh battery (i.e., a higher-capacity EV battery), the optimization horizon
consisted of 120 samples, representing a 5-day horizon. The decision to opt for the longer time
interval for larger battery EVs is based on the assumption that such EVs might not require a daily
recharge. This choice is made under the consideration that this time interval either represents a
worst-case scenario of the driving demand or a pattern that frequently occurs during the lifespan
of the charging infrastructure.

The results indicate that multi-port chargers (MPCs) and cooperative EV owners contribute to
reducing the required number of chargers for EVs with smaller batteries. However, for EVs with
larger batteries, EV owners’ flexibility and the use of MPCs result in similar planning options as
forgetful EV owners and single-port chargers (SPCs). The case study demonstrates a preference
for slow chargers over fast chargers. Sensitivity analysis demonstrates that shorter daytime parking
intervals require more chargers to improve PV self-consumption, increasing infrastructure costs.
Conversely, extending daytime parking hours reveals that a charging infrastructure at nodes where
EVs are parked during the day is adequate to meet the total recharging demand, resulting in lower
EV charging infrastructure costs and improved PV self-consumption.

The intermittent nature of PV generation will certainly introduce variations in the configuration
of charger distribution, thereby influencing the planning results. Furthermore, minimizing nodal
EV charging prices produces different outcomes, leading to higher costs for charger installation. As
a future research direction, it is recommended to integrate all sources of uncertainty into a single
optimization problem, aiming to develop a robust charging infrastructure capable of withstanding
uncertainty. Additionally, future research should focus on formulating problem approximations to
enhance tractability when incorporating more extensive input information. This research contributes
to the advancement of efficient, cost-effective, and resilient EV charging infrastructure planning for
distribution grids.
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Chapter 4

Validation of Planning results by
Scheduling problem

Résumé en Français

Ce chapitre vise à valider les résultats obtenus lors de la résolution du problème de planifica-
tion optimale du chapitre 3. A cette fin, il propose une méthodologie pour formuler un problème
d’ordonnancement qui utilise l’approche du flux de puissance optimal (OPF) et prend les résultats
de la planification optimale comme données d’entrée pour résoudre le problème de prise de décision.
Le problème de programmation est formulé sous la forme d’un programme mixte en nombres entiers
(MIP). Le problème MIP est résolu en considérant que les VE se chargent à partir de chargeurs
répartis de manière optimale et uniforme sur les nœuds du réseau MV. Dans le cas d’une infrastruc-
ture distribuée de manière optimale, le nombre de chargeurs à chaque nœud de la grille est connu tel
qu’il est obtenu en résolvant le problème de planification optimale ; d’autre part, pour les chargeurs
distribués de manière uniforme, le nombre total de chargeurs obtenu en résolvant le problème de
planification optimale est réparti de manière égale entre les nœuds de la grille. En utilisant le réseau
CIGRE MV pour l’étude de cas, nous montrons empiriquement que la population de VE atteint des
niveaux de charge plus élevés dans le premier scénario que dans le second.

Summary

This chapter aims to validate the results obtained in solving the optimal planning problem of Chapter
3. For this purpose, this chapter proposes a methodology to formulate a scheduling problem that uses
the optimal power flow (OPF) approach and takes the optimal planning results as input to solve the
decision-making problem. The scheduling problem is formulated as a mixed-integer program (MIP).
The MIP problem is solved by considering EVs charging from both optimally distributed and uni-
formly distributed chargers across MV grid nodes. In the case of optimally distributed infrastructure,
the number of chargers at each grid node is known as it is obtained, solving the optimal planning
problem; on the other hand, for uniformly distributed chargers, the total number of chargers obtained
solving the optimal planning problem is equally distributed across the grid nodes. Using the CIGRE
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MV grid for the case study, we empirically show that the EV population achieves higher charge levels
in the first scenario than in the second one.

4.1 Introduction

To effectively accommodate the charging needs of EVs, DSOs must carefully plan the deployment
of charging infrastructure across the grid to avoid overloading the system and causing violations of
grid constraints on nodal voltage magnitudes and line currents.

In Chapter 3, we proposed a formulation for planning charging infrastructures in distribution grids
accounting the technical constraints of the grid, multiple charger typologies and EV owner’s flexibil-
ity scenarios to plug and unplug their EVs. To justify our proposed formulation, we must investigate
whether the charger deployment configuration obtained from solving the planning problem in the
previous chapter is sufficient for scheduling operations by DSOs, or whether a different configu-
ration of chargers across the grid would be more ideal for meeting the charging demand of EVs
while avoiding violations of grid constraints on nodal voltage magnitudes, line currents and nodal
apparent power limits.

To this end, in this chapter, we will conduct case studies to evaluate the effectiveness of the opti-
mized charger deployment configuration in meeting the charging demand of EVs and compare their
performances with alternative deployment configurations. Through this investigation, we hope to
justify our proposed formulation and provide insights into effective strategies for managing EV
charging in distribution grids.

4.1.1 Modeling principles and optimization problem

In Figure 4.1, the salient components for formulating the optimal power flow-based scheduling
problem to validate the planning results are presented. The results obtained from solving the
optimal planning problem (indicated by the top yellow box) serve as inputs for the formulated
scheduling problem, including the locations and number of EV chargers. The driving demand and
parking locations of EVs over time, as discussed in Section 3.2.1, are reused for the scheduling
problem. The light grey box represents the components for modeling EVs. The inputs include the
energy capacity of EV batteries, rated power of the EV charger, and their initial SOC. The SOC
evolution in time of all EVs is computed as a function of the EVs’ driving demand. The charging
policies determine the charging power of EVs, which serve as decision variables in the optimization
problem (indicated by the light purple box). Therefore, constraints for the charging power can be
enforced based on the selected policy. This chapter focuses only on the V1G policy for EVs. To
solve the optimization problem, nodal injections are computed (as shown by the light orange box)
using both grid information (net nodal active and reactive power demands, which are inputs for
the optimization problem) and the charging demand of EVs parked at different grid nodes. Similar
to previous chapters, the optimal power flow with linearized grid models from existing literature is
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Figure 4.1: The main elements used to formulate the scheduling problem to validate planning results.

considered. The linearized grid models used to solve the optimal planning problem are the same as
those used for solving the formulated scheduling problem, while nodal voltage magnitudes and line
current bounds serve as constraints in the optimization problem. Finally, the scheduling problem
can be solved, as shown by the blue box.

The key difference between the current scheduler and the one presented in Chapter 2 is that, here,
the number of vehicles that can simultaneously charge should be less or equal than the available
number of chargers. This constraint (described later in Eq. (4.5)) is the link between the optimal
planning problem in Chapter 3 and the scheduling problem in Chapter 2.
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4.2 Methodology

4.2.1 EVs’ state-of-charge (SOC) model

For V1G policy, with an input initial state-of-charge SOCv(0), the SOC of vehicle depends on the
discharging power pEV-

vt and the charging power PEV
vt (as discussed in the next section). The SOC

of a vehicle v at time t is expressed as:

SOCv(t) = SOCv(0) +
Ts

Ev

t−1∑
τ=0

(
η · PEV

vτ − pEV−
vτ

)
. (4.1)

As discussed in previous chapter the discharging power pEV-
vt , is estimated directly from the vehicles’

SOCs and it is not weighted by the efficiency in (4.1). The discharging power computed while
solving planning problem is now an input for the scheduling problem.

For EVs to remain in a functional condition and satisfy the driving requirements by the EV owners,
the vehicles’ SOCs should be within a feasible range, between 0 and 99% denoted by (SOC, SOC)

respectively. Therefore, the SOC constraint reads as:

SOC ≤ SOCv(t) ≤ SOC. (4.2)

4.2.2 Modeling the charging power and constraints

Assuming the EV chargers operate on and off during the scheduling process, the active (PEV
tv ) and

reactive (QEV
tv ) power demand of EVs can be modeled as a function of a binary variable pcharging

tv .
Assuming the EV charger operating at a constant power factor cosϕ and kVA rating S̄, the active
and reactive power read as:

PEV
vt = pcharging

vt · S̄ · cosϕ, ∀t and v (4.3a)

QEV
vt = PEV

vt · tanϕ, ∀t and v (4.3b)

The binary variable pcharging
vt , introduced in (4.4) is activated only if an EV v is charging at any

time interval t and else it remains deactivated. In case of V1G, the EV charging power can be
modulated. Hence, the capability of a EV charger to modulate its output power read as:

0 ≤ PEV
vt ≤ pcharging

vt · S̄ · cosϕ ∀t and v (4.4)

We now model the availability of chargers. In case the binary variable pcharging
vt is active, (i.e.,

the vehicle v charging at time t) the number chargers serving the EVs at any grid node n over time
interval t should always be less or equal to the total number of installed chargers (S∗

n) at node n.
S∗
n is the input for the scheduling problem and it can be either from the optimal planning problem

of Chapter 3 or from uniform distribution of charging infrastructure. This constraint is expressed
as:: ∑

v

pcharging
vt · pnvt ≤ S∗

n ∀t and n (4.5)

82



CHAPTER 4. VALIDATION

4.2.3 Nodal injections due to EVs’ charging demand

Coupling the input binary parameters pnvt with the charging powers of the individual EVs, nodal
active (P (EV nodal)

tn ) and reactive (Q(EV nodal)
tn ) powers injected due to EVs’ recharge at the grid nodes

over time horizon can be computed as:

P
(EV nodal)
tn =

V∑
v=1

pnvt · PEV
vt ∀t and n (4.6a)

Q
(EV nodal)
tn =

V∑
v=1

pnvt ·QEV
vt ∀t and n. (4.6b)

in (4.6), PEV
vt and QEV

vt are the active and reactive powers respectively as specified in (4.3), associated
to this charging demand of a vehicle v and time t.

For the smart charging problem, the charging demand of EVs is scheduled in such a way that their
charging process does not cause violations of the grid constraints on nodal voltage magnitudes, line
currents. These operational grid constraints have been considered:

v ≤ vtn ≤ v ∀t and n (4.7a)

|itl| ≤ il ∀t and l (4.7b)

where, v, v respectively define lower and upper limits nodal voltage magnitudes; upper limits of
lines’ ampacity il. In addition to these constraints, for smart charging problem it is considered that
the nodal injections remain below the apparent power limit of the node, Sn:

(P node
tn )

2
+ (Qnode

tn )
2 ≤ (Sn)

2. (4.7c)

As mentioned previously, the constraint (4.7c) proves to be valuable when considering appara-
tus with apparent power limitations connected at specific grid nodes, such as MV/LV step-down
transformers. In Section 4.2.5, we will delve into the explanation of how this constraint can be
approximated to effectively address the optimal planning problem.

4.2.4 The scheduling problem

In this section, we present the formulation of the scheduling problem for validation. The objective
of the scheduling problem is to minimize the recharging time of each individual EV at the grid
nodes. This objective is independent of the state of the grid and other EVs. The problem involves
the following decision variables which are vectors of V × T can be denoted by:

w =
[
pcharging
11 , . . . , pcharging

V T

]
(4.8)

x =
[
PEV
11 , . . . , PEV

V T

]
(4.9)

y =
[
QEV

11 , . . . , QEV
V T

]
(4.10)
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Additionally, in order to prevent any advantage gained from the initial energy stock, it is crucial for
the final state of charge (SOC) to be greater than or equal to the initial SOC. This is represented
by the following constraint:

SOCv(T ) ≥ SOCv(0), for all v. (4.11)

By imposing constraint (4.11), the formulation ensures that the charging demand of the vehicles is
properly accounted for, regardless of their initial conditions.

Based on the requirement we can formulate a decision-making problem where the EVs’ charging
power is such that all vehicles reaches the respective target state-of-charge level, SOC⋆

v as fast as
possible. Its formulation reads as:

arg min
w∈{0,1}V ×T ,x,y∈R+

{
T∑
t=1

V∑
v=1

(SOCvt − SOC∗
v)

2

}
(4.12a)

subject to the following constraints:

SOC model and constraints (4.1), (4.2), (4.11) ∀t and v (4.12b)

EV charging power and constraints (4.3), (4.4) ∀t and v (4.12c)

Constraints for nodal chargers (4.5) ∀t and v (4.12d)

Nodal injections (4.6) and (1.4) ∀t and n (4.12e)

Linearized grid models (1.5a)-(1.5b) ∀t, n and l (4.12f)

Linear grid constraints (4.7a), (4.7b) and (4.7c). (4.12g)

The constraint (4.7c) has been considered in the scheduling problem to limit the nodal injections
below the apparent power limit of the node, Sn. These constraints are important for the apparatus
with apparent power limitations connected at the nodes, such as nodes hosting substation step-down
transformers.

4.2.5 Problem properties and approximations

The problem (4.12) is nonlinear (quadratic MIP) due to its objective function and the apparent
power constraint in (4.7c). This quadratic constraint can be replaced by two linear inequalities as
in (4.13), with cosϕ as a lower-bound estimate of the load power factor of the nodal injection at
node n. For the problem (4.12) we thus have the following linear expression:

− S̄n · cosϕn ≤ P node
nt ≤ S̄n · cosϕn. (4.13)

By employing this equivalent approximation and implementing a linear cost function, the optimiza-
tion problem (4.12) can be transformed into a mixed-integer linear program (MILP). This modifi-
cation will significantly improve computational performance compared to the original formulation,
enabling more efficient problem solving.
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4.2.6 Optimization horizon for the case study

In MIP, the number of optimization variables increases with an increase in temporal samples. How-
ever, this growth depends on the specific formulation of the problem and how temporal aspects
are integrated. The time complexity of solving MIP problems is typically exponential in the worst
case, as MIP problems are generally NP-hard. Therefore, efficient solution techniques and algo-
rithmic improvements are crucial for addressing the computational challenges associated with MIP
problems, especially as problem size grows. In this chapter, the case study focuses on EVs with low-
capacity batteries (specifically, 16 kWh) and considers a 24-sample configuration. This corresponds
to a 1-day optimization horizon with samples taken at hourly intervals.

4.3 Case study and Results

4.3.1 Power grid and EVs

For the case study, the previously described 14-bus European CIGRE benchmark grid for medium
voltage (MV) systems has been utilized. The outputs of the optimal planning problem serve as
inputs for the scheduling problem. Therefore, in the case study, the optimization problem is solved
for the same number of EVs as considered in the previous chapter, which is 878 EVs. The parking
locations of the EVs at the distribution grid nodes over time are also identical to those used in the
planning problem. This consistency ensures that the scheduling problem is based on the same set
of EVs and their respective locations, enabling a meaningful comparison and analysis of the results.
Finally, the scheduling problem is solved, considering a smart charging policy for EVs, under two
different charging infrastructure scenarios as specified below:

• Uniformly distributed chargers: In this scenario, the total number of chargers obtained
by solving the optimal planning problem is evenly distributed across all MV grid nodes.

• Optimally distributed chargers: In this scenario, chargers are distributed across MV grid
nodes based on the results obtained from the optimal planning problem.

These two scenarios allow for a comparison of the scheduling outcomes and the evaluation of the
performance of the charging infrastructure in each case. In the comparative analysis of the two
scheduling problems with the aforementioned charging infrastructure, several assumptions are made.
Firstly, it is assumed that all 878 EVs in the grid start charging from their specified locations with an
initial state of charge (SOC) derived from a Gaussian distribution. The mean of the distribution is
set at 0.49, and the standard deviation is 0.04. Additionally, the energy capacity of the EV batteries,
the rated power of the chargers, their efficiency, and power factor are assumed to be constant across
the entire EV population. Specifically, the battery energy capacity is set at 16 kWh, the charger’s
rated power is 3.6 kVA, the efficiency is 0.9, and the power factor is 1. Moreover, the target SOC
levels for all EVs are assumed to be uniform, with a set value of 99%. These assumptions establish a
standardized basis for comparing the scheduling problems and analyzing their respective outcomes.
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4.3.2 Optimization results

For the scheduling problem 4.2.4 presented above, results are presented herein for both uniformly
and optimally distributed charging infrastructure. For both cases the charging policy remains the
smart charging with reactive power support from the EV chargers. The input information and the
number of chargers used for the case was SPCs/Scenario A.
The scheduling problems are implemented in MATLAB and solved using Gurobi on an Intel machine
with 15% duality gap. Under these settings the optimization problems take nearly two hours to
converge.

Results: the impact of the spatial distribution of chargers on SOC profiles

Figure 4.2 shows the average SOC of the EV population over the 1-day optimization horizon in
per- unit values. It can be seen that optimally distributed chargers achieve faster recharging times
than uniformly distributed chargers, thus featuring better performance. Figure 4.3 shows the same
comparison but for a second scheduler with a driving demand increased by 20%, resulting in an
increase of the recharging demand of 20% (for the same level of attained SOC); this is done with the
objective of analyzing the sensitivity of the performance of the charger distribution on the results.
It can be seen that the optimal distribution of chargers still achieves faster recharging times than
uniformly distributed chargers, as denoted by the steeper ramps.
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Figure 4.2: Comparison of mean SOC across the EVs population for different charging infrastruc-
tures for original discharging power of EVs.

Performance evaluation

The cost function serves as a crucial metric for assessing the performance of the scheduler in an
optimization problem. By analyzing the cost function, one can obtain valuable insights into how
well the scheduler operates and achieves its objectives over the entire optimization horizon. This
allows us to make an informed evaluation of the scheduler’s performance. Based on it, the metric
in (4.14) is computed and performance is reported in Table 4.1.
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Figure 4.3: Comparison of mean SOC across the EVs population for different charging infrastruc-
tures with 20% higher demand than Fig 4.2.

Metric =
T∑
t=1

V∑
v=1

(SOCvt − SOC∗
v )

2 (4.14)

Table 4.1: Metric performances for different charging infrastructures with smart charging.

EV’s discharging power
Original 20% higher than original

Optimal distribution 19.08 20.43
Uniform distribution 28.29 29.86

Based on the observations from Table 4.1, it can be concluded that in the case of optimally
allocated infrastructure, the metric shows lower values for both the original discharging power of
EVs and the 20% higher discharging power caused by driving demand. On the other hand, for
uniformly allocated infrastructure, the metric yields higher values in both scenarios, indicating that
the scheduler performs better with optimal distribution.

Impact on grid constraints

Upon solving the scheduling problem for both uniform and optimal distribution of charging in-
frastructure, it was observed that the grid constraints were respected. This outcome aligns with
expectations since the scheduler implements grid constraints.

4.4 Conclusions

In conclusion, this chapter presents a methodology for validating the results of the optimal plan-
ning problem in the context of EVs charging scheduling. The proposed approach formulates the
scheduling problem as a mixed-integer program (MIP) and utilizes the optimal power flow (OPF)
technique. The MIP problem considers two scenarios: optimally distributed chargers and uniformly
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distributed chargers across medium-voltage (MV) grid nodes. The empirical study conducted on
the CIGRE MV grid case study demonstrates that the first scenario, where chargers are optimally
distributed based on the results of the optimal planning problem, yields higher charge levels for the
EV population compared to the second scenario with uniformly distributed chargers.

These findings emphasize the importance of considering optimal infrastructure placement for
EV charging systems. By strategically locating chargers based on the results of the optimal plan-
ning problem, it is possible to shorten the charging times (as observed from the performance of
the scheduler) and overall SOC levels of the EV population. It was also shown that the optimal
deployment still achieve better results (shorter recharging times) with higher recharging demand.
This information is critical for stakeholders involved in designing and implementing EV charging
infrastructure, as it ensures effective and optimized operation. Additionally, it is important to note
that this investigation did not consider nodal electricity prices. Future work should focus on in-
vestigating which charger deployment configuration is suitable while charging AEVs, taking into
account nodal electricity prices. This aspect is crucial for optimizing the cost-effectiveness of charg-
ing strategies and maximizing the benefits of AEVs in the power grid. By incorporating pricing
mechanisms into the optimization framework, it will be possible to determine the most cost-efficient
charger deployment scenarios, considering both the grid constraints and the economic aspects of EV
charging. Overall, the proposed methodology and its empirical validation contribute to advancing
the field of EV charging scheduling and offer valuable insights for decision-makers to enhance the
performance and sustainability of future transportation systems.
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Chapter 5

Conclusions and future work

5.1 Conclusions

The conclusion chapter marks the culmination of this thesis, bringing together the key findings
and insights obtained from the preceding chapters. Furthermore, this chapter provides a critical
evaluation of the research outcomes. In Chapter 1, a thorough literature review was conducted.
This comprehensive review served as the foundation for identifying research gaps, formulating the
research objectives, and finally the methodological contributions presented throughout this thesis.

The Chapter 2 of this chapter covers the methods of charge scheduling for following EV charging
policies: uncoordinated charging, smart or grid-aware coordinated or V1G charging, grid-aware
coordinated bidirectional charging or V2G with (and without) reactive power support from the
EV chargers. An integrated algorithmic framework is proposed in this chapter to formulate the
scheduling problem at the grid level that facilitate integrating information of EVs. For all sched-
ulers, formulation of scheduling problem is derived from a common (convex) optimization framework
accounting for linearized power grid constraints (i.e. nodal voltage magnitudes, line currents etc.),
charging/discharging efficiency, and 4-quadrant (and 2-quadrant unidirectional) chargers, that allow
an efficient comparison among the charging policies. Through extensive investigations on a large
population of EVs charging at different MV distribution grid nodes, valuable insights were obtained.
The findings revealed that uncoordinated charging resulted in voltage constraint violations during
the afternoon/evening periods, while smart charging showed effectiveness in reducing grid conges-
tions during those periods. Interestingly, although the bidirectional charging (V2G) feature was
not activated in the studied scenarios, the presence of reactive power support from EV chargers
proved beneficial in reducing voltage congestions, allowing for increased EV charging and shorter
charging times to achieve the desired state of charge. The insights gained from evaluating different
charging policies provide valuable guidance for distribution system operators (DSOs). Furthermore,
this thesis also highlighted the challenges associated with incorporating autonomous EVs (AEVs)
into the power grid. The formulation of charging problems for different policies under a common
framework was presented, acknowledging the increased computational burden due to the higher
number of variables involved.
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Chapter 3 of the thesis focuses on optimization methods for cost-optimal planning of EV charging
infrastructure, taking into account the constraints of the distribution grid. The chapter explores
various strategies to determine the optimal siting and sizing of chargers for EVs, considering factors
such as charger types, vehicle-to-grid capabilities, and the flexibility of EV owners in plugging
and unplugging their vehicles. To make the problem computationally tractable, the nonconvex
constraints in the formulation are suitably modified to derive a mixed-integer linear programming
(MILP) formulation. This allows the problem to be solved with off-the-shelf optimization libraries
within a reasonable time frame. The method is applied to a 14-bus medium-voltage (MV) network
with a population of 878 EVs and two different battery sizes (16 kWh and 60 kWh). The results
demonstrate that for EVs with smaller batteries, multi-port chargers and cooperative EV owners
contribute to reducing the number of chargers required. However, for EVs with larger batteries, the
impact of EV owners’ flexibility and multi-port chargers on the planning options is similar to that
of forgetful EV owners and single-port chargers. The preference for slow chargers over fast chargers
is observed in the proposed case study. The number of variables in the planning problem depends
on the optimization horizon and the number of vehicles, and the computational time increases
significantly with the number of decision variables. Thus, careful selection of the optimization
horizon and input information is necessary to achieve manageable computation times. Another
aspect explored in the chapter is the joint minimization of capital investments for EV charging
infrastructure and maximization of self-consumption of local photovoltaic (PV) generation. The
formulation considers operational constraints of the distribution grid, EV recharging demand, and
the flexibility of EV owners. To examine the impact of various factors on the planning results,
sensitivity analysis was performed. The results of the sensitivity analysis indicate that the duration
of daytime parking has a significant impact on the planning of charging infrastructure and PV self-
consumption. When daytime parking intervals are shorter, it is necessary to install a larger number
of chargers in order to enhance PV self-consumption. However, this leads to higher infrastructure
costs. On the other hand, extending the duration of daytime parking reveals a different outcome. In
this case, a charging infrastructure focused on the nodes where EVs are parked during the day proves
to be sufficient to meet the overall recharging demand. Consequently, this approach reduces the
costs associated with EV charging infrastructure while also improving PV self-consumption. These
findings highlight the importance of considering the duration of daytime parking when designing and
planning charging infrastructure, as it can have a significant impact on both the financial aspects
and the integration of renewable energy sources like PV. Additionally, when the objective is to
minimize nodal EV charging prices, different results are obtained, albeit with higher installation
costs for chargers. Overall, methods developed in Chapter 3 contributes to the efficient integration
of EVs into the distribution grid while considering grid constraints, flexibility of EV owners, and
renewable energy sources.

The Chapter 4 introduces a methodology for validating the results obtained from solving the opti-
mal planning problem. The presented approach in this study formulates the scheduling problem as
a mixed-integer program (MIP) and leverages the optimal power flow (OPF) technique. The MIP
problem considers two scenarios: one with optimally distributed chargers and another with uni-
formly distributed chargers across medium-voltage (MV) grid nodes. By utilizing the results of the
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optimal planning problem as input, the scheduling problem was efficiently solved, thereby offering
valuable insights for decision-making purposes. An empirical study conducted on the CIGRE MV
grid case study demonstrates that the first scenario, where chargers are optimally distributed based
on the outcomes of the optimal planning problem, leads to higher SOC levels for the EV population
compared to the second scenario with uniformly distributed chargers. These findings emphasize the
importance of considering optimal infrastructure placement when designing EV charging systems.
By strategically locating chargers based on the optimal planning problem’s results, the recharging
times the EV population was significantly improved. This information is crucial for stakeholders
involved in the design and implementation of EV charging infrastructure, as it ensures effective and
optimized operation. In summary, the proposed methodology, along with its empirical validation,
contributes to the advancement of the field of EV’s charging station planning.

5.2 Future work

Based on the presented work several potential avenues for future research is discussed in this section.
In future works, the consideration of voltage-dependent power injections, as proposed in [132], will
be explored and integrated into the linearized grid model. This enhancement aims to capture the
influence of voltage variations on power injections and further improve the accuracy and realism
of the model. Further work in this area could concentrate on refining the optimization models to
accommodate additional factors. This may include the incorporation of more intricate charging
patterns, such as stochastic charging behaviors and the influence of dynamic electricity pricing
schemes. Furthermore, the integration of renewable energy sources and storage systems within
the optimization model can enhance the sustainability and grid integration aspects of EV charging
infrastructure. By addressing these aspects, future research can contribute to the development of
more advanced and comprehensive optimization models for EV charging infrastructure.

Considering real-time information in the decision-making process can improve the responsiveness
and adaptability of EV charging infrastructure. Therefore, future work could investigate the in-
tegration of real-time data, such as grid conditions, electricity demand, and EV availability, into
the optimization model. This would enable more dynamic and optimized charging strategies that
respond to current system conditions.

As the scale of EV adoption continues to increase, it becomes essential to develop scalable and
tractable optimization algorithms that can handle larger networks and a higher number of decision
variables. Therefore, future research can explore novel solution approaches or problem approxi-
mations that strike a balance between computational efficiency and solution quality. When EV
charging infrastructure and smart grid technologies converge, there is an opportunity for synergistic
optimization, leading to improved efficiency and effectiveness in managing both the charging of
EVs and the operation of the electrical grid. So, future research in this area can explore how EV
charging can be seamlessly integrated with advanced grid control mechanisms, demand response
programs, and energy management systems. By integrating these technologies, it becomes possible
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to develop coordinated and intelligent control strategies for EV charging. Such strategies can op-
timize the timing and distribution of charging loads based on real-time grid conditions, electricity
demand, and available renewable energy resources. The integration of EV charging with advanced
grid control mechanisms enables a more dynamic and flexible charging environment. For example,
during periods of high electricity demand or when renewable energy generation is plentiful, the
grid can intelligently direct EV charging to occur at optimal times, reducing strain on the grid and
maximizing the utilization of clean energy sources.

In this Thesis, methods to plan charging infrastructures for autonomous EVs and assessing their
impact on the MV grid have not been explored. Utilizing methods such as OPF, location opti-
mization can ensure efficient planning of the charging infrastructure while minimizing the impact
on the MV grid and advancing the transition towards a greener and more sustainable transporta-
tion system. Lastly, comprehensive studies on the long-term impacts of EV charging infrastructure
deployment are needed. Future research can focus on evaluating the scalability and resilience of
charging infrastructure under different scenarios, including varying EV adoption rates, changes in
energy generation mix, and grid upgrades. Understanding the long-term implications will help
policymakers, utility companies, and stakeholders make informed decisions regarding investments,
infrastructure planning, and policy development.
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Accuracy of the linearized grid models

The accuracy of the linearized grid model can be evaluated by comparing the linear estimates
with the corresponding ground-truth quantities. As the linear grid models use approximations,
they inherently introduce errors. In the linear grid model, we consider day-ahead forecasts of the
demand and renewable generation as the linearization points. It is worth mentioning that, this
consideration does not incorporate any injections from EVs. In the next section, a case study is
presented in which the accuracy of the linearized grid models is evaluated. Similarly, for the other
case studies presented in Chapter 2 and Chapter 4, the accuracy of the linearized grid models can
be measured.

Case study

We consider the case study from the Chapter 3, where the optimal planning problem was solved
without considering the PV self consumption (see section 3.5.1). Specifically, we chose the case for
Scenario A with single-port and multi-port chargers, solved with 1-day optimization horizon.

Nodal injections

The computation of nodal injections is done using Eq. 1.4. In the context of the case study, Fig.A.1
illustrates the active power injections over the time horizon at various MV grid nodes, which serve
as the selected linearization points/working points. It is important to note that the power injections
in Fig. A.1, solely represents the demand profile and do not incorporate the injections attributed
to EVs recharge. Through the solution of the optimization problem, the nodal power contributions
from EVs are determined over the time horizon. With this, perturbed nodal injections are computed,
as shown in Fig. A.2. Subsequently, by computing the nodal injections, the ground-truth quantities
of the grid model can be obtained through the execution of a nonlinear load flow analysis. From
the plots, it can be observed that the nodal per-unit injection values are zero at grid nodes 2, 7, 9,
and 13. The injection values at nodes 1 and 12 are high compared to other injections due to their
proximity to the GCP, but they are not shown here as EVs are not connected to those nodes. The
following section will address the errors in the voltage and current models.
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Figure A.1: Injections at different MV grid nodes serving as the selected linearization points for the
case study.
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Figure A.2: The perturbed injections at different MV grid nodes for the case study.

Errors in linearized grid models

The linear estimation method relies on the utilization of SCs and the perturbed injections, as
explained in the previous section. The histogram of the errors of the linear voltage and current
estimations for the referred case study are shown in Figures A.3 and A.4, respectively. In this case
study, the active constraints of the problem were the nodal injections in (3.18d). It was verified that
grid’s voltage and current constraints were not violated even when accounting for the estimation
errors of the linear model. However, in order to (conservatively) hedge against these modeling errors,
one could add back-off terms to voltage and current constraints in (3.18a) and (3.18b) considering,
for example, worst-case modelling errors from these histograms.
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Figure A.3: Errors of the linear estimates of the nodal voltage magnitudes (in per unit of the base
voltage).
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Figure A.4: Errors of the linear estimates of the lines’ current magnitudes (per unit obtained by
rescaling by the larger current observed in the grid).
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RÉSUMÉ

Le nombre croissant de véhicules électriques (VE) représente un défi important pour les gestionnaires de réseaux de distri-
bution (GRD) en raison de l’augmentation de la demande d’énergie nécessaire à la recharge. Cette thèse aborde le problème
en développant des solutions algorithmiques pour aider les gestionnaires de réseaux de distribution à gérer efficacement
la forte pénétration des véhicules électriques. La recherche se concentre sur deux aspects principaux : la programmation
de la charge des VE et la planification de l’infrastructure de charge nécessaire. Pour la programmation de la charge des
VE, la thèse se concentre sur le développement d’un cadre algorithmique unifié capable de prendre en compte différentes
politiques de charge tout en considérant les contraintes opérationnelles du réseau. Ce cadre utilise une formulation OPF,
incorporant un modèle linéarisé du réseau pour assurer la convexité et améliorer l’efficacité des calculs. Cette approche
permet de comparer et d’analyser les performances de différentes stratégies de tarification. Pour planifier l’infrastructure
de recharge en cas de forte pénétration des VE, une formulation MILP est proposée, étendant le cadre d’ordonnancement
proposé. L’objectif est ici de calculer le nombre et l’emplacement des chargeurs de VE en satisfaisant la demande de charge
des VE et les contraintes opérationnelles du réseau de distribution. La formulation proposée modélise explicitement la flexi-
bilité des propriétaires dans le branchement et le débranchement de leurs VE. En outre, la méthode de planification prend en
compte le concept de chargeurs à port unique et à ports multiples, en soulignant leur importance. En outre, une extension de
la méthode est proposée pour encourager l’autoconsommation photovoltaïque et intégrer la fonctionnalité V2G. La validation
des plans de déploiement proposés démontre la supériorité des chargeurs déployés de manière optimale pour atteindre des
niveaux de charge plus élevés pour les VE par rapport aux scénarios de déploiement uniforme.

MOTS CLÉS

Véhicules électriques, Réseaux de distribution, Flux de puissance optimal, Programmation optimale, Planifica-
tion optimale, Chargement intelligent, Véhicule-to-réseau, Stations de charge, Autoconsommation PV

ABSTRACT

The growing number of electric vehicles (EVs) poses a significant challenge for distribution grid operators (DSOs) due to
their increased power demand required for charging. This thesis addresses the issue by developing algorithmic solutions
to assist DSOs in effectively managing high EV penetration. The research focuses on two main aspects: scheduling EV
charging and planning the necessary charging infrastructure. For scheduling the charge of EVs, the thesis focuses on
the development of a unified algorithmic framework capable of accommodating various charging policies while considering
operational constraints of the grid. This framework utilizes an OPF formulation, incorporating a linearized model of the grid
to ensure convexity and improve computational efficiency. By employing this approach, the performance of different charging
strategies can be compared and analyzed. To plan the charging infrastructure for large penetration of EVs, a MILP formulation
is proposed, extending the proposed scheduling framework. Here the objective is to compute the number and the location
of EV chargers by satisfying EVs’ charging demand and the operational constraints of the distribution grid. The proposed
formulation explicitly models flexibility of owners in plugging and unplugging their EVs. Additionally, the planning method
considers the concept of single-port and multi-port chargers, highlighting their significance. Furthermore, an extension of
the method is proposed to encourage PV self-consumption and incorporate V2G functionality. Validation of the proposed
deployment plans demonstrates the superiority of optimally deployed chargers in achieving higher charging levels for EVs
compared to uniform deployment scenarios.

KEYWORDS

Electric vehicles, Distribution networks, Optimal power flow, Optimal scheduling, Optimal planning, Smart charg-
ing, Vehicle-to-grid, Charging stations, PV self-consumption
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