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Titre : Optimisation de la mise en œuvre de la sélection génomique hybride dans un programme de sélection 

réciproque. Evaluation expérimentale et simulations chez le maïs. 

Mots clés : Génétique quantitative, Sélection génomique, Hybride, Maïs 

Résumé : La sélection génomique (SG) est désormais 

couramment utilisée dans les schémas de sélection, 

ouvrant des perspectives pour réexaminer les 

schémas en remplaçant une partie du phénotypage 

par des prédictions basées sur le génotype aux 

marqueurs. La définition de la population 

d’entraînement et les étapes où appliquer la SG dans 

les schémas de sélection sont des questions clé, en 

particulier pour la sélection hybride. Dans les 

schémas de sélection hybride du maïs, un défi est 

d’identifier les meilleurs hybrides parmi tous les 

croisements possibles entre les lignées candidates 

produites chaque année dans des groupes 

hétérotiques. Dans les schémas conventionnels, pour 

réduire le nombre de combinaisons possibles, les 

lignées candidates de chaque groupe sont d'abord 

présélectionnées sur la base de leur valeur en 

croisement sur testeurs. Ensuite, un sous-ensemble 

d’hybrides entre ces lignées sélectionnées est évalué 

afin d’identifier les meilleures variétés hybrides. 

Récemment, des études ont proposé de remplacer 

les évaluations sur testeurs par des prédictions 

génomiques calibrées sur un dispositif factoriel 

incomplet entre lignées candidates non 

sélectionnées afin de prédire tous les hybrides 

possibles à un stade précoce du cycle de sélection. 

Des simulations et études expérimentales ont montré 

des qualités prédictives prometteuses. Cette thèse 

vise à (i) confirmer l'efficacité de factoriels pour 

prédire les valeurs des lignées et des hybrides par 

rapport à une approche sur testeurs, (ii) évaluer 

l'efficacité de factoriels et leur optimisation au cours 

des cycles et (iii) optimiser l’utilisation de la SG dans 

les schémas hybrides. Cette thèse s'appuie sur des 

données expérimentales correspondant à deux cycles 

de sélection d'un schéma de SG réciproque de maïs 

impliquant des populations multiparentales 

connectées des groupes hétérotiques 

complémentaires flint et dent, sélectionnées pour 

leurs performances ensilage et obtenues dans le 

cadre du projet Promaïs "SAMMCR". 

Premièrement, les données du premier cycle de 

sélection ont été utilisées pour évaluer l'efficacité de 

factoriels incomplets pour prédire les hybrides entre 

des lignées non sélectionnées de la même 

génération et la comparer à celle de dispositifs 

testeur. Les factoriels ont montré des qualités 

prédictives équivalentes à celles basées sur testeurs 

et les ont même surpassées pour certains caractères. 

Les résultats obtenus confirment le potentiel des 

factoriels incomplets comme alternative fiable aux 

dispositifs testeurs traditionnels pour prédire les 

performances hybrides. 

Nous avons ensuite évalué la portabilité des 

prédictions génomiques sur deux cycles de sélection. 

Les résultats ont permis de valider 

expérimentalement l'efficacité des dispositifs 

factoriels incomplets pour prédire les aptitudes 

générales à la combinaison des lignées et les valeurs 

hybrides au cours des générations. Ils ont également 

mis en évidence l’intérêt de recalibrer les 

populations d'entraînement au cours des cycles et 

d’optimiser leur composition à l'aide du CDmean. 

Pour compléter, des simulations ont permis de 

comparer à coûts fixes un schéma de sélection 

phénotypique conventionnel avec cinq schémas de 

SG différant par la longueur du cycle et l'utilisation 

de dispositifs testeur et/ou factoriel pour calibrer les 

prédictions. Les résultats suggèrent que la mise en 

œuvre de la SG et le raccourcissement du cycle de 

sélection, en remplacant des évaluations sur testeurs 

par un dispositif factoriel incomplet, permettent 

d'accélérer les cycles et d'augmenter le gain 

génétique. Ces résultats valident l'efficacité des 

factoriels incomplets et soulignent le potentiel 

intérêt de leur intégration dans les programmes de 

sélection hybride à coûts constants. 

Conjointement, nos résultats débouchent sur des 

recommandations visant à améliorer le schéma de 

sélection hybride du maïs par l'intégration de la SG 

et des dispositifs factoriels. 

 

 



 

 

 

Title : Optimization of genomic selection for hybrids in a reciprocal selection program. Experimental evaluation 

and simulations on maize. 

Keywords : Quantitative genetics, Genomic selection, Hybrid, Maize 

Abstract :  

Genomic selection (GS) is now used in routine in 

breeding programs, opening prospects for revisiting 

breeding schemes by replacing extensive 

phenotyping with predictions based on marker 

information. In this context, finding the ideal design 

for training genomic prediction models and the 

step(s) at which applying GS are key questions, 

especially in hybrid breeding. In conventional maize 

hybrid breeding schemes, one challenge is 

identifying the best hybrid varieties among all 

possible hybrid combinations between candidate 

lines produced each year from each heterotic group. 

To reduce the number of possible combinations, the 

candidate inbred lines from each heterotic group are 

first preselected on their hybrid value estimated in 

topcross evaluations. Then, a subset of single-cross 

hybrids between these selected lines is evaluated to 

identify the best hybrid varieties. Recently, studies 

proposed to replace topcross evaluations with 

genomic predictions calibrated on a sparse factorial 

design between unselected candidate lines to predict 

all possible single-cross hybrids at an early stage of 

the breeding cycle. Previous simulations and 

experimental studies have shown promising 

predictive abilities using a sparse factorial design 

instead of tester designs as training sets. This thesis 

aims to (i) confirm the efficiency of factorial training 

sets to predict line and hybrid values and compare it 

to tester training sets, (ii) further investigate the use 

of factorials and their optimization across two 

breeding cycles, and (iii) provide recommendations 

for implementing this approach in maize hybrid 

breeding schemes. It relies on experimental data 

corresponding to two breeding cycles of a maize 

reciprocal genomic selection scheme involving 

multiparental connected populations from the flint 

and dent complementary heterotic groups, selected 

for silage performances, obtained in the framework 

of the Promaïs “SAMMCR” project. Simulations 

completed results obtained on experimental data. 

First, data from the first breeding cycle were used 

to evaluate the efficiency of sparse factorial training 

sets for predicting single-cross hybrids between 

unselected lines from the same generation and 

compare it to tester designs. Factorials showed 

equivalent predictive abilities to tester-based 

training sets and even outperformed them for 

some traits. Results obtained with different 

samplings of our experimental designs support the 

potential of sparse factorial training sets as a 

reliable alternative to traditional tester designs for 

predicting hybrid values. 

We then evaluated the portability of genomic 

predictions across two breeding cycles. The results 

experimentally validated the efficiency of sparse 

factorial designs for predicting line general 

combining abilities and hybrid values across 

generations. They also highlighted the benefits of 

updating training sets along breeding cycles and 

optimizing their composition using the CDmean 

criterion to ensure high prediction accuracy along 

breeding cycles. 

To complement experimental results, simulations 

were carried out to compare at a fixed cost a 

conventional phenotypic breeding scheme with 

five genomic selection breeding schemes differing 

by their cycle length and the use of tester and/or 

factorial designs to calibrate predictions. The 

simulation results suggested that implementing 

genomic selection and shortening the breeding 

cycle by replacing early topcross evaluations by a 

unique sparse factorial design offers the potential 

to accelerate the breeding process and increase 

genetic gain. These findings validate the efficiency 

of sparse factorial training sets and highlight the 

potential of integrating them into hybrid breeding 

programs at fixed costs. 

Jointly, our results lead to a set of 

recommendations to improve the maize hybrid 

breeding scheme through the integration of 

genomic selection and factorial designs. 
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Additionnal informations 

Cette thèse s’inscrit dans le projet « SAMMCR » initié par l’association Promaïs. Elle a eu lieu 

dans le cadre de la convention CIFRE n° 2020/0032 entre l’INRAE et la société RAGT2n. Elle a été 

co-financée par les sept partenaires privés du projet SAMMCR : Lidea, Limagrain Europe, 

Maïsadour Semences, Corteva, RAGT 2n, KWS and Syngenta Seeds.  

Chloé BOYARD (Cadre scientifique – Limagrain) sera présente à la soutenance de thèse en 

qualité d’invitée. 
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Résumé substantiel en français  

Introduction 

Les variétés hybrides de maïs sont principalement des croisements simples entre deux 

lignées issues de groupes hétérotiques différents. En Europe du Nord, les deux principaux 

groupes hétérotiques utilisés par les sélectionneurs pour produire des hybrides destinés à la 

production de maïs fourrage sont les cornés et dentés. Dans les programmes de sélection, le 

nombre de lignées candidates est important et augmente chaque année, ce qui rend 

impossibles la production et l'évaluation de toutes les combinaisons hybrides possibles. 

L’approche qui a été utilisée pour contourner cette limitation consiste à présélectionner des 

lignées dans chaque groupe hétérotique, puis à tester les combinaisons hybrides entre les 

lignées sélectionnées de chaque groupe.  

En 1949, Comstock et al., (1949), ont proposé un schéma de sélection récurrente 

réciproque, pour améliorer simultanément les deux populations parentales des hybrides en 

évaluant les lignées candidates d'une population parentale pour leur valeur en croisement avec 

les lignées du groupe opposé. Dans les programmes de sélection hybride actuels, des variations 

de ce schéma de sélection récurrente réciproque sont utilisées. Dans la première étape, les 

lignées candidates d'un groupe hétérotique sont croisées avec quelques lignes du groupe 

opposé appelées "testeurs". La descendance hybride ainsi produite (topcross) est évaluée 

phénotypiquement, et les meilleures lignées de chaque groupe hétérotique sont sélectionnées 

sur la base de leur Aptitude Générale à la Combinaison (AGC). Dans la deuxième étape, les 

lignées sélectionnées de chaque groupe sont croisées selon un dispositif factoriel incomplet, et 

les meilleures combinaisons hybrides sont identifiées. La sélection basée sur quelques testeurs 

facilite la production de semences hybrides lors des premiers tests, mais ne tient pas pleinement 

compte de la complémentarité entre les groupes (ASC) et peut biaiser l'estimation de l'AGC. De 

plus, l'utilisation de ce processus de sélection en deux étapes augmente le temps nécessaire au 

développement d'hybrides commercialisables et nécessite le phénotypage d'un grand nombre 

de lignées (au moins autant d'hybrides que de lignées dans chaque groupe). 
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La sélection génomique (SG) (Meuwissen et al. 2001) est désormais couramment utilisée 

dans les schémas de sélection, ouvrant de nouvelles perspectives pour repenser les schémas de 

sélection en remplaçant tout ou partie des évaluations phénotypiques par des prédictions 

génomiques. La définition de la population d’entraînement (ou population de calibration) et les 

étapes où appliquer la SG dans les schémas de sélection sont des questions clé, particulièrement 

pour la sélection hybride. Récemment, des études ont proposé de remplacer les évaluations sur 

testeurs par des prédictions génomiques calibrées sur un dispositif factoriel incomplet entre 

lignées candidates non sélectionnées afin de prédire tous les hybrides possibles à un stade 

précoce du cycle de sélection (Giraud, 2016; Kadam et al., 2016). Des simulations (Seye et al., 

2020) et des études expérimentales (Burdo et al., 2021; Fristche-Neto et al., 2018; Kadam et al., 

2016) ont montré des qualités prédictives prometteuses. Néanmoins, cette approche nécessite 

le génotypage des lignées candidates et la production d'hybrides par pollinisation manuelle, ce 

qui est difficile et coûteux. Par conséquent, même si cette approche est attrayante, des études 

supplémentaires et l’exploration de stratégies d’optimisation sont nécessaires pour évaluer 

l’intérêt de l’intégrer dans les programmes de sélection. Cette thèse vise à (i) évaluer l'efficacité 

de dispositifs factoriels pour prédire les valeurs des lignées et des hybrides en comparaison à 

une approche sur dispositifs testeurs, (ii) évaluer l'efficacité de dispositifs factoriels et leur 

optimisation au cours des cycles et (iii) optimiser l’utilisation de la SG dans les schémas de 

sélection hybride du maïs. Cette thèse s'appuie sur des données expérimentales correspondant 

à deux cycles de sélection d'un schéma de SG réciproque de maïs impliquant des populations 

multiparentales connectées des groupes hétérotiques complémentaires flint et dent, 

sélectionnées pour leurs performances ensilage et obtenues dans le cadre du projet Promaïs 

« SAMMCR » (« Sélection Assistée par Marqueurs Multi-parentale Connectée Réciproque »). 

Matériel végétal 

Cette thèse s'inscrit dans le cadre du projet SAMMCR qui a débuté en 2010 en 

collaboration avec huit entreprises privées de sélection, membres de l'association Promaïs : 

RAGT2n, KWS, Lidea, Corteva, Limagrain, Syngenta and MAS. Le projet SAMMCR repose sur un 

dispositif expérimental original composé de deux familles multiparental connectées, chacune 

correspondant à l’un des principaux groupes hétérotiques en Europe du Nord : les cornés et les 

dentés. Au total, deux générations ont été produites et quatre campagnes expérimentales ont 
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été menées lors de ce projet et sont détaillées ci-dessous. 

Dans chaque groupe hétérotique, quatre lignées fondatrices (F373, F03802, F02803 et 

F7088 pour le groupe corné, et F98902, F1808, F04401 et F7082 pour le groupe denté) ont été 

sélectionnées et croisées pour produire six hybrides simples F1. Parmi les quatre lignées 

fondatrices, trois lignées ont été choisies pour leurs performances agronomiques en matière de 

production d'ensilage (rendement en biomasse matière sèche, teneur en matière sèche), et la 

dernière a été choisie pour la qualité de son ensilage (digestibilité). A partir des six hybrides F1, 

six familles biparentales ont été dérivées par haploïdisation doublée pour les dentés et par cinq 

à six générations d'autofécondation (Single Seed Descent) pour les cornés. Au total, 821 lignées 

cornées et 801 lignées dentées ont été produites. L’ensemble des lignées décrites ci-dessus 

constituent les lignées parentales de la première génération et seront désignées par « G0 » dans 

la suite. Les 801 lignées G0 dentées et les 821 lignées G0 cornées ont été croisées selon un plan 

factoriel très incomplet pour produire 951 hybrides simples corné-denté, formant ainsi le 

factoriel G0_F-1H En moyenne, chaque lignée parentale a contribué à la production d’un 

hybride (20 % des lignées ont contribué à produire deux hybrides). Le dispositif factoriel G0_F-

1H est équilibré avec 22 à 35 hybrides produits à partir de chaque combinaison de familles (pour 

plus de détails, voir Giraud et al. 2017a). 

Puis, dans chaque groupe hétérotique, 60 lignées G0 ont été choisies de manière 

aléatoire et équilibrée (10 lignées par famille) et 30 ont été sélectionnées sur la base de leurs 

performances agronomiques et de leur qualité d'ensilage (seules trois familles sur six sont 

représentées dans les lignées sélectionnées). Les 30 lignées cornées «sélectionnées » ont été 

croisées avec les 30 lignées dentées sélectionnées pour produire 131 hybrides « sélectionnés » 

(G0S), et les 60 lignes dentées « aléatoires » ont été croisées avec les 60 lignées cornées 

« aléatoires » pour produire 232 hybrides « aléatoires » (G0R). Au total 363 hybrides corné-denté 

ont été produits et forment le factoriel G0_F-4H. Dans ce dispositif, chaque lignée parentale a 

contribué à la production de quatre hybrides en moyenne. En parallèle, les mêmes 90 lignées 

(60 aléatoires + 30 sélectionnées) ont été croisées avec deux testeurs du groupe opposé pour 

produire un dispositif testeur de 180 hybrides dans chaque groupe hétérotique (G0_T ou 

dispositifs testeurs). Les testeurs utilisés ont été choisis parmi les quatre lignées fondatrices du 

groupe hétérotique complémentaire (F1808 et F98902 pour les testeurs dentés, et F373 et 

F02803 pour les testeurs cornés) pour être contrastés et avoir un bon potentiel de rendement. 
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Une nouvelle génération de lignées, appelées « G1 », a été produite. Dans chaque 

groupe hétérotique, les 30 lignées G0 sélectionnées précédemment ont été croisées pour 

produire 40 hybrides simples à partir desquels 351 lignées ont été produite par haploïdisation 

doublée (HD). Les lignées HD cornées et dentées ainsi produites ont été croisés selon un 

dispositif factoriel incomplet pour produire 441 hybrides G1 corné-denté. En parallèle, 47 

hybrides G0 sélectionnés (G0S) ont été produits en croisant les 30 lignées cornées G0S avec les 

30 lignées dentées G0S précédemment décrites. Le nouveau dispositif factoriel est composé de 

47 hybrides G0S et de 442 hybrides G1, et il est en moyenne composé d'un hybride par ligne, il 

sera donc désigné (G0S+G1)_F-1H. 

Chaque dispositif expérimental a été évalué dans un total de huit essais en deux ans : le 

G0_F-1H a été évalué dans quatre essais en 2013 et quatre en 2014, le G0_F-4H et le G0_T ont 

été évalués conjointement dans trois essais en 2016 et cinq en 2017, et le (G0S+G1)_F-1H a été 

évalué dans trois essais en 2019 et cinq en 2020. Tous les hybrides ont été évalués pour 11 

caractères, quatre caractères agronomiques (rendement en matière sèche, teneur en matière 

sèche, date de floraison, hauteur des plantes) et sept caractères de qualité de l'ensilage (MFU, 

DINAG, DINAGZ, teneur en lignine, cellulose et hémicellulose) mesurés par spectroscopie 

proche infrarouge (NIRS).  

Les lignées fondatrices ont été génotypées sur deux puces différentes : une puce SNP 

de 50 000 marqueurs (Ganal et al., 2011) et une puce SNP privée de 18 480 marqueurs 

Affimetrix® (puce Limagrain). Les lignées parentales G0 ont été génotypées sur la puce SNP 

Affimetrix® de 18 480 marqueurs, et les lignées parentales G1 ont été génotypées sur la puce 

SNP Illumina® publique de 15 000 marqueurs. 

Résultats 

Premièrement, les données du cycle de sélection G0 ont été utilisées pour évaluer 

l'efficacité de dispositifs factoriels incomplets pour prédire des hybrides entre des lignées non 

sélectionnées de la même génération et la comparer à celle de dispositifs testeurs. Les 

dispositigs factoriels ont montré des qualités prédictives équivalentes à celles basées sur 

testeurs et les ont même surpassées pour certains caractères (PH, DINAG and DINAGZ).Les 

qualités prédictives élevées obtenues  Nous avons montré des qualités prédictives hybrides 

allant de 0.5 à 0.8 en utilisant un dispositive factoriel très incomplet pour prédire des nouvelles 
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combinaisons hybrides dans de nouveaux environnements, illustrant l’efficacité d’un tel 

dispositif. Nous avons évalué l’efficacité de différentes compositions pour le dispositif factoriel 

en terme de nombre de lignées et de nombre d’hybride par lignée à nombre total d’hybrides 

identique. Nous avons montré un avantage à augmenter le nombre de lignées évaluées plutôt 

que le nombre d’hybrides par lignées lorsque l’on prédit des hybrides dont aucun de ses parents 

n’a contribué à la calibration du modèle de SG. Les résultats obtenus confirment le potentiel des 

factoriels incomplets comme alternative fiable aux dispositifs testeurs traditionnels pour prédire 

les performances hybrides. 

Nous avons ensuite évalué la portabilité des prédictions génomiques en utilisant les 

données des deux cycles de sélection (G0 et G1). Les résultats ont permis de valider 

expérimentalement l'efficacité des dispositifs factoriels incomplets de la première génération 

pour prédire les aptitudes générales à la combinaison des lignées et les valeurs hybrides au de 

la seconde génération. Nous avons mis en évidence l’intérêt de recalibrer les populations 

d’entrainement des modèles des SG au cours des cycles, en ajoutant à la population 

d’entrainement existante (données historiques de la génération G0) : (i) des hybrides entre les 

lignées sélectionnées du cycle précédent (G0S) qui ont servi à produire les hybrides de la 

nouvelle génération (G1) et/ou (ii) des hybrides entre les lignées de la nouvelle génération (G1). 

Enfin, en utilisant le CDmean, nous avons montré l’efficacité d’optimiser le sous-ensemble 

d’hybrides de la nouvelle génération (G1) à ajouter à la population d’entrainement pour prédire 

la nouvelle génération (G1). 

Pour compléter, des simulations ont été conduites afin d’évaluer le rapport 

coût/bénéfice de l’utilisation de dispositifs factoriels couplés à la SG dans les schémas de 

sélection hybride. Le travail de simulation a permis de comparer à coûts fixes un schéma de 

sélection phénotypique conventionnel avec cinq schémas basé sur la sélection génomique 

différant par la longueur du cycle et l'utilisation de dispositifs testeur et/ou factoriel pour calibrer 

les prédictions. Les résultats suggèrent que la mise en œuvre de la SG et le raccourcissement du 

cycle de sélection, en remplaçant des évaluations sur testeurs par un dispositif factoriel 

incomplet, permettent d'accélérer les cycles et d'augmenter le gain génétique. Ces résultats 

valident l'efficacité des factoriels incomplets et soulignent le potentiel intérêt de leur intégration 

dans les programmes de sélection hybride à coûts constants. 
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Conclusions 

Les résultats des chapitres 1 et 2 basés sur des données expérimentales confirment le 

potentiel des dispositifs factoriels très incomplets en tant qu'alternative efficace aux dispositifs 

testeurs traditionnels pour prédire les valeurs hybrides en ce qui concerne les qualités 

prédictives. Nos conclusions restent étroitement liées à la population et aux dispositifs 

expérimentaux utilisés. De ce fait, il pourrait être intéressant de comparer les dispositifs factoriels 

et testeurs en utilisant des données expérimentales dans d'autres populations, par exemple avec 

une base génétique plus large (plus de lignées fondatrices dans la population initiale) et 

différents niveaux d’ASC, afin d'évaluer l'avantage du dispositif factoriel dans cette situation. 

Nous avons utilisé des simulations pour mieux comprendre le potentiel de l’approche factorielle 

dans un programme de sélection plus réaliste. Dans le chapitre 3, nous avons simulé un schéma 

récurrent réciproque impliquant des populations multi-parentales connectées provenant de 

deux groupes hétérotiques complémentaires imitant un programme de sélection du maïs. Nous 

avons montré que l’utilisation de la SG pour réduire de la durée du cycle de sélection en 

supprimant les étapes d'évaluation phénotypique et l'utilisation de dispositifs factoriels étaient 

économiquement rentables et permettaient de générer un gain génétique plus rapide. 

Un inconvénient majeur de l'incorporation des dispositifs factoriels dans les programmes 

de sélection était le coût supplémentaire de la production de semences et la main d'œuvre 

nécessaire pour produire des hybrides factoriels par pollinisation manuelle. Les résultats du 

chapitre 3 ont montré que le coût supplémentaire de la production de semences hybrides pour 

un factoriel (deux fois le prix de la production de semences d’hybrides testeurs ou topcross 

d'après les discussions avec Cyril Bauland et des partenaires privés) pouvait être compensé 

efficacement en réduisant le nombre de parcelles de phénotypage et en augmentant le nombre 

de lignées évaluées dans le dispositif factoriel (schéma Y2F1H-GS). 

Conjointement, nos résultats débouchent sur des recommandations visant à améliorer 

le schéma de sélection hybride du maïs par l'intégration de la SG et des dispositifs factoriels. 
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General introduction 

Maize has been widely used worldwide over centuries for producing grain for food and feed. Its 

use as forage increased later with the development of silage in North America and Europe. More 

recently, substantial means have been devoted to energy production, in particular bioethanol in 

the US (135 million tonnes) (USDA 2021) and biogas in Germany (more than 1.3 million ha in 

2021) (German Biogas association). It was grown on 206 million hectares in the world in 2021 

and is currently the first cereal in the world in terms of production volume with 1.2 billion tons, 

followed by rice with 787 million tons and wheat with 770 million tons in 2021 (FAOSTAT 2021). 

Food security is increasingly a concern in the context of the growing human population size and 

climate change (Ritchie et al. 2023). Predictions suggest that climate change will significantly 

diminish crop production and quality in the near future (Merca et al. 2021). In light of these 

circumstances, scientists and breeders need to speed up the development of new varieties 

adapted to climate change. Given the growing demand for high-yield, high-quality maize crops 

and the rapid changes in climatic conditions, it is mandatory to advance the development of 

modern techniques and tools for maize breeding improvement. In this introduction, we will 

present maize breeding history and selection schemes before giving an insight into revisiting 

hybrid breeding schemes using genomic selection (GS) and factorial designs. Finally, we will 

briefly present the research objectives and organization of this PhD manuscript. 

Maize breeding history 

From maize domestication to hybrid varieties 

Maize was domesticated at least 8,700 years ago in the mountainous regions of southeastern 

Mexico (Tenaillon and Charcosset 2011). Genetic analyses using isoenzymes (Doebley et al. 

1984) and SSR markers (Matsuoka et al. 2002) support the hypothesis that maize is the result of 

a single domestication event from teosinte (Z. mays ssp. parviglumis). Maize spread across the 

American continent and then to Europe following two introductions during the 15th century, 

one in Southern Spain and one in Northern Europe (Tenaillon and Charcosset 2011). During its 

expansion, maize encountered many environmental conditions, resulting in highly differentiated 

maize populations adapted to local conditions. 
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Mass selection done by the farmers began with the domestication of maize and 

continued until the middle of the 19th century. After harvest, farmers selected the ears matching 

their criteria (size, color, ect…). Then the seeds from the selected individual plants were planted 

to produce the next generation. In the case of allogamous species such as maize, these selected 

plants were pollinated at random by other individuals in the production field. The populations 

produced during this period were very different from each other. In the middle of the 19th 

century, with the work of Vilmorin (1856), the idea of improving the population by increasing 

their homogeneity emerged. This marked the start of the pedigree selection, in which individuals 

issued from a given parental plant were evaluated together as a family. The rediscovery of 

Mendel's laws at the end of the 19th century allowed the identification of the genetic 

foundations of pedigree selection and its widespread adoption. Following the success of 

pedigree selection in an allogamous plant (improving the sugar content in sugar beets Hallauer 

et al. 2010), Hopkins (1899) applied it to corn and referred to it as the "ear-to-row" method. The 

ear-to-row selection was used until about 1925 with limited success in improving yield but was 

highly effective in modifying the oil and protein content of the grains (Gallais 2009). This success 

was nevertheless accompanied by a loss in vigor due to inbreeding depression (see below). 

The beginning of the 20th century marked a decisive turning point for corn improvement 

with the recognition of the benefit of hybridization. The first observation of a greater vigor of 

hybrids compared to their inbred parents can be traced back to the end of the 19th century with 

Darwin’s research work (Darwin 1876). This stimulated further experiments demonstrating the 

benefits of hybridization between populations for increasing productivity (Beal 1880; Morrow 

and Gardner 1893). Later, the concomitant public research conducted by Shull (1908) and East 

(1908) outlined the basis of the breeding methods for developing and producing modern maize 

hybrids. They reported the deleterious effects of inbreeding when producing maize inbred lines. 

They showed that single-cross hybrids (F1) between two inbred lines restored the vigor and 

yield level from the original open-pollinated variety from which the inbred lines were developed, 

and could exceed it if lines and hybrids were selected. These observations led Shull (1909) to 

describe a method for producing single-cross maize hybrids: developing lines by self-

fertilization before crossing them to produce high-vigor hybrids, and later, to the definition of 

the concept of “heterosis” (Shull 1914). Heterosis was defined as the greater vigor of the hybrid 

combination than that of its parents, replacing the numerous expressions describing the “hybrid 
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vigor”. This definition was, however, descriptive and none of the underlying genetic mechanisms 

governing heterosis were identified at that time. 

 
Fig.1 Evolution of U.S maize yield performances from 1860 to 1998; periods dominated by open-

pollinated varieties, double-cross hybrids and single-cross hybrids. Source: Troyer (1999) 

Due to the poor vigor of inbred lines that did not allow sufficient seed production, 

researchers doubted the practical usefulness of this single-cross hybrid selection method. The 

limitation of poor seed production from inbred lines was overcome by an idea from Jones (1918), 

suggesting the use of double-cross hybrids resulting from the crossing of two single-cross 

hybrids. After this discovery, the transition from open-pollinated to double-cross hybrid maize 

was fast in the US (Fig.1) and significantly improved the standability and yield performances of 

maize. Double-cross hybrids were used because, based on the findings of East (1908) and Shull 

(1908, 1909), it was the only practical way to produce maize hybrids. In the following years, the 

continuous improvement in hybrid productivity has been accompanied by an increase in inbred 

lines per se value (Duvick 2001). The enhancement in the yield of inbred lines permitted the 

production of single-cross hybrids that were financially viable for farmers and had higher yields 

than double crosses (Crow 1998). Eventually, from the 1960s, single-cross hybrids started 

replacing double-cross hybrids (Fig.1). 
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The rapid transition from open pollinated to hybrid varieties was made possible by their 

easy production in isolation. Hybrid production was facilitated by the monoecy of the maize 

plant (i.e., a plant with female and male flowers one the same plant), which allowed the castration 

of male inflorescence without damaging the female inflorescence on the plant used as female, 

as illustrated in Fig.2. 

 
Fig.2 Hybrid maize seed production, using designated female and male parents and removing the tassels 

from the female plants before silk emergence, allowing male plants to provide the pollen for fertilizing 

the silks. 

Hybrid breeding schemes 

Maize hybrid selection relies on the method proposed by Shull (1909), which consists of 

developing inbred lines before evaluating them in crosses to identify the lines that, when 

crossed, produce the best performing single-cross hybrids (Gallais 2009). This hybrid selection 

method has allowed breeders to produce genetically identical plants for every hybrid. The 

straightforward way to identify the best single-cross hybrids would be to produce all possible 

hybrid combinations between the candidate lines. However, the number of candidate lines can 

be large and increases every year, making this approach practically undoable. One initial method 

was to select lines based on their per se performance during the selfing generations used to 

produce inbred lines (Jenkins 1928), but the correlation between the per se value of a line and 

its average value in hybrid crosses is weak for traits exhibiting strong heterosis (Smith 1986). 

This is the case for yield, which demonstrates a strong heterosis likely due to numerous 

quantitative trait loci (QTLs) showing dominance effects (Carena et al. 2010). Another method 
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relied on the evaluation of candidate lines based on the performance of their hybrid progeny. 

Davis (1927) suggested the use of the testcross methodology (also referred to as topcross), 

consisting of crossing candidate lines in early-stage selection (not fully homozygous) with one 

or few “testers” to select and advance only the promising lines to the next selfing generation. 

This procedure was first tested by Jenkins and Brunson (1932) who showed that the average 

cross value of a line was better correlated with its cross value with any other “line” (hybrid, inbred 

line or population) used as “tester” than with its own per se value. After Jenkins and Brunson 

(1932) reported on its successful application, the testcross approach was widely used in breeding 

programs. Sprague (1939) and Jenkins (1940) suggested that the “combining ability” of the 

tested lines should be considered at early stages in the inbreeding process. And later, Sprague 

and Tatum (1942) formally defined combining abilities. They proposed decomposing the hybrid 

value into the General Combining Abilities (GCA) of each of the hybrid parents and the Specific 

Combining Ability between the parents (SCA). The GCA of a line 𝑖 (respectively 𝑗), denoted as 

𝐺𝐶𝐴𝑖  (𝐺𝐶𝐴𝑗), is defined as the average performance of that line in hybrid combinations. The 

SCA for the cross between line 𝑖 and line 𝑗, denoted as 𝑆𝐶𝐴𝑖𝑗 , is defined as the deviation from 

the expected hybrid performance based on the GCAs of the two lines. After Sprague and Tatum 

(1942) introduced the notions of combining abilities, new approaches for testcross evaluation 

were proposed. 

The introduction of recurrent selection methods (Hull 1945; Comstock et al. 1949) 

expanded the possibilities for enhancing maize population improvement. Recurrent selection is 

generally defined as an iterative process that alternates between phases of (i) evaluation of 

individuals and (ii) crossing the best individuals to produce the next generation. The purpose of 

recurrent selection methods is to enhance the frequency of favorable alleles associated with 

quantitative traits while preserving genetic diversity, thereby enabling continuous genetic 

enhancement in the long term (Hallauer et al. 2010, Chapter 6). Different recurrent selection 

methods have been proposed, focusing on the GCA and/or SCA selection (Hull 1945; Comstock 

et al. 1949). In methods targeting GCA, candidate plants are evaluated based on their hybrid 

progeny with a tester consisting in a broad base heterogeneous population (i.e., the parental 

population or any broad genetic base unrelated population). In selection for SCA, a narrow 

genetic base (inbred line or single-cross) tester is used. It has been shown that the efficiency of 

these methods depends on the presence of dominance or overdominance in the tested 
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population (Hull 1945; Comstock et al. 1949). In 1949, Comstock proposed a new selection 

procedure to select for both GCA and SCA, referred to as reciprocal recurrent selection, which 

consists of simultaneously improving the two parental populations of the hybrid, testing 

candidate plants from one population by crossing them to candidate plants from the other 

population. Several examples of reciprocal recurrent selection success in maize have been 

reported (Coors 1999; Hallauer et al. 2010, chapter 7). 

Progressively, the genetic diversity of maize has been structured into heterotic groups 

that have been defined by identifying different hybrid combinations showing stronger 

complementarity (Beal 1880; Hallauer et al. 2010). A heterotic group can be defined as “a group 

of related or unrelated genotypes from the same or different populations, which display similar 

combining ability and heterotic response when crossed with genotypes from the other 

genetically distinct germplasm groups” (Melchinger and Gumber 1998). Maize hybrid breeding 

relies on improving heterotic groups and identifying the inbred parents from distinct heterotic 

groups that yield superior hybrids when crossed together. 

In this context, the challenges of maize hybrid breeders are (i) to select lines that will be 

used as parents for the next generation and (ii) to identify the best single-cross hybrids among 

all possible ones to derive new varieties. The most widely used hybrid breeding method today 

is a two-step process based on a recurrent reciprocal selection procedure. Fig.3 illustrates this 

two-step method. Within each heterotic group, inbred lines are derived and improved in a 

reciprocal recurrent selection scheme designed to enhance their combining ability with the 

complementary heterotic group so that their crosses improve performance over selection cycles. 

In the first step, testers from the complementary heterotic group are used to preselect candidate 

lines based on their GCA. In this scheme, the testers are usually inbred lines or a single-cross 

hybrids from the complementary heterotic group, which, when crossed with lines to be tested, 

reveals differences in combining abilities. In the second step, the selected lines from step 1 in 

each group are crossed according to a factorial design to identify the best hybrid combinations. 

When lines are developed by self-pollination, this hybrid breeding method remains lengthy. In 

the last two to three decades, Doubled Haploid (DH) technology has emerged in maize. The 

technology produces completely homozygous lines in one step from gametes which reduces 

the length of the breeding scheme and increases its efficiency. DH lines are now used in routine 

in most commercial maize breeding schemes (see review from Chaikam et al. 2019). 
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Fig.3 Conventional reciprocal recurrent selection scheme for maize hybrids between two complementary 

heterotic groups, using DH to produce inbred lines. 

This two-step selection scheme has some limitations. First, the use of tester designs 

within each heterotic group requires the phenotyping of a large number of hybrids, at least as 

many hybrids as candidate lines in each group in the first step and the phenotyping of a large 

number of hybrid combinations in the second step. Secondly, the use of a small number of 

testers (often one or two) can influence the estimation of GCAs from testcross performances 

when dominance variance is high and bias selection in favor of lines that combine particularly 

well with a given tester (Vitezica et al. 2016). Thirdly, given that testcross means reflect the line 

GCAs, SCA is accounted for only in the incomplete factorial between complementary 

populations used for commercial hybrid selection in the late stage selection. And last, this 

method does not allow for the testing of all hybrid combinations between candidate lines living 

room to miss out on promising superior hybrids. 
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Contribution of markers to breeding methods 

Understanding of the genetic basis of the phenotypic traits, QTL detection 

With the development of markers starting in the 1980s, it became possible to study the genes 

or loci (or QTL, Quantitative Trait Locus) involved in the variation of quantitative traits. QTL 

detection relies on identifying statistical associations between marker polymorphisms and the 

considered phenotypic variation. QTL detection can have two objectives: identifying causal 

genes or polymorphisms and/or using marker-QTL associations in Marker-Assisted Selection 

(MAS) approaches. A major challenge in quantitative genetics is to map QTL and gain insight 

into their mode of action to optimize their use in selection. Two main approaches exist for 

mapping QTL in major crop species. The most common approach, called linkage mapping (or 

"Linkage Analysis mapping"), involves searching for marker-QTL associations in segregating 

populations resulting from controlled crosses (often between two inbred lines) (Lander and 

Botstein 1989; Bernardo 2008). This approach leads to a low resolution of the QTL positions due 

to the limited number of recombination events within this type of population. Furthermore, each 

biparental population represents only a small proportion of the genetic variability available for 

selection. It has therefore appeared interesting to perform QTL detection on a broader genetic 

basis, using, for example, multiple connected segregating populations (Rebaï et al. 1997; Bardol 

et al. 2013; Giraud et al. 2014). The second approach, called association mapping (or "linkage 

disequilibrium mapping"), involves using linkage disequilibrium between markers and QTL in an 

existing population with a looser pedigree structure, typically a diverse collection. This approach 

leverages historical recombination events and thus provides better resolution than the linkage 

analysis mapping approach. However, the history of this population can lead to its structuring 

and to relatedness among individuals, which can generate linkage disequilibrium between 

physically unlinked loci (Yu et al. 2006). Meuwissen et al. (2001) proposed the LDLA approach 

("Linkage Disequilibrium-Linkage Analysis"), which consists in using segregating populations 

with known structure and association mapping models and combines the advantages of both 

QTL identification methods in terms of power and resolution of their positions. 

Application of markers in plant breeding through marker assisted selection  

Markers linked to QTLs can be used for breeding purposes with the Marker-Assisted Selection 

(MAS) approach, first discussed by Neimann-Sorensen and Robertson (1961) in the context of 
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animal breeding. Twenty years later, the advancement of genotyping techniques, opens the way 

for MAS, and several applications in animal and plant breeding emerged (see reviews by Soller 

(1994) and Collard and Mackill (2007)). The main application is the selection for traits determined 

by a major gene that are difficult or costly to phenotype. complex traits influenced by multiple 

QTL, Lande and Thompson (1990) proposed to estimate the genetic value of individuals by 

summing the effects at markers significantly associated with QTLs. It has been shown that this 

approach of MAS provides an advantage over conventional phenotypic selection for traits with 

relatively low heritability and can accelerate genetic gain by shortening cycles (Hospital et al. 

1997; Moreau et al. 1998). However, MAS has several limitations: (1) QTL effects depend on the 

mapping population used during detection, and there is a possible loss of marker-QTL 

associations over generations of selection due to recombination events, (2) selection based 

solely on marker information quickly leads to the fixation of alleles favorable to major QTLs, 

while unfavorable alleles can become fixed at smaller-effect QTLs that are generally not detected 

(Hospital et al. 1997), and (3) due to the small QTL detection power, only a subset of QTL are 

detected as significant, and their effects are overestimated due to a selection bias ("Beavis 

effect", Beavis 1998), resulting in a reduction in the efficiency of MAS (Moreau et al. 1998, 2004). 

Genomic selection, a promising genomewide marker-based approach 

for selection 

Definition of the concept of genomic selection 

In the 2000s, the emergence of cost-effective high-throughput SNP genotyping and statistical 

improvements made it possible to utilize genome-wide markers and paved the way for a novel 

marker-based selection approach: Genomic Selection (GS). While MAS considers only a limited 

number of markers significantly linked to "major" QTLs, GS uses a large number of markers 

distributed throughout the genome as predictors of the genetic value of candidate individuals 

for selection without attempting to locate QTLs precisely or estimate their effects (Meuwissen 

et al. 2001). GS relies on the assumption that quantitative traits are influenced by a larger 

number of QTLS with small effects (infinitesimal model by Fisher (1919)). By using genome wide 

high-density genotyping, it ensures that all QTLs are in Linkage Disequilibrium (LD) with at least 

one marker. 
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GS relies on a prediction equation trained on a set of genotyped and phenotyped 

individuals, referred to as a Training Set (TRS), to predict the genetic values of a set of selection 

candidates based on their marker genotypes, referred to as Prediction Set (PS) (Fig.4). In 

practice, a validation population (Validation Set, VS) that is both genotyped and phenotyped is 

often used to assess the predictive ability of the model being tested. 

 
Fig.4 Diagram of genomic selection process, using a training population or training set (TRS) to calibrate 

an equation of prediction and predict the genomic estimated breeding value (GEBV) of a prediction set 

(PS) to select individual (Adapted from Heffner et al. 2009) 

GS poses several statistical and computational challenges, such as dimensionality, 

collinearity between markers, and the complexity of quantitative traits. The challenge of 

dimensionality corresponds to the larger number of effects to be estimated compared to the 

size of the training population, which makes it impossible to use a classic linear model (fixed 

effects). Since introducing the first GS models (Whittaker et al. 2000; Meuwissen et al. 2001), 

several alternative models have been developed to address this problem. Prediction equations 

are based on various methods: parametric (Bayesian (Bayes A, B, C), GBLUP, RRBLUP) (Meuwissen 

et al. 2001), or non-parametric (reproducing kernel Hilbert space regression) (see Howard et al. 

2022 for a review). A simple scheme representing the main prediction models is presented in 

Fig.5. The simplest, robust and most widely used method, which we will focus on in this work, 

is the Genomic Best Linear Unbiased Prediction (GBLUP) method. The initial concept of the 

GBLUP can be traced back to the marker-based prediction proposed by Bernardo (1994).The 

GBLUP uses markers to estimate the relatedness between individuals in the TRS and PS 

individuals (VanRaden 2008). 
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Fig.5 Classification of the different GS regression models (source Desta and Ortiz 2014) 

The classic GBLUP model can be written as: 

𝑦 = 𝑋𝛽 + 𝑍𝑎 + 𝜀, 

where y is the vector of the 𝑛 phenotypic observations, 𝛽 is the vector of fixed effects (e.g. 

general mean, trial, year, treatment effect…), X the incidence matrix of the fixed effects, Z is the 

incidence matrix of random effects linking phenotypes to genetic values, a is column the vector 

of random effects of the additive genetic values of all individuals (from the TRS and PS) with 

𝑎~𝒩(0, 𝐾𝜎𝑎
2) and 𝐾 is the genomic relationship matrix (kinship) that models the covariance 

between individuals of the TRS and PS and 𝜎𝑎
2 the additive genetic variance. 𝜀 is the error term 

following 𝜀~𝒩(0, 𝐼𝜎𝜀
2) where 𝜎𝜀

2 is the error variance. The marker effects can be estimated by 

back-solving of the GBLUP model (Wang et al. 2012) thanks to the statistical equivalence that 

has been shown with the ridge regression best linear unbiased prediction model (RR-BULP) that 

estimates marker effects instead of genetic values, assuming that all marker effects are drawn 
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from a unique normal distribution and considers. 

The ultimate assessment of the efficiency of genomic predictions would be to compute 

the correlation between the True Breeding Value (TBV) and the predicted value, referred to as 

prediction accuracy. However, in most cases, TBV is not available. Instead predictive abilities are 

computed as the correlation between the observed value (phenotype) and the predicted value 

in a suitable Validation Set (VS). Various factors are known to affect genomic prediction 

accuracies. They can be classified into four categories: trait-specific (heritability, genetic 

architecture of the trait), population-specific (level of linkage disequilibrium (LD), allelic 

frequencies), statistical methods used to perform predictions and experiment-specific 

parameters (marker density, size of the TRS, degree of relatedness between the TRS and PS) 

(Kadam and Lorenz 2018; Isidro y Sánchez and Akdemir 2021; Merrick and Carter 2021; Kadam 

et al. 2021). In the context of hybrid prediction, in addition to these factors, the crossing design 

used to produce the TRS hybrids also affects prediction accuracy (Technow et al. 2014; Seye et 

al. 2020; Lorenzi et al. 2022). 

Genomic prediction models for hybrid prediction 

Bernardo (1994) was the first to propose a marker-based model for plant hybrid performance 

prediction. He combined marker-based similarities between parental lines of hybrids and the 

performances of a related set of single-crosses to predict GCAs and SCAs of non-phenotyped 

hybrids. This prediction model, which aimed at predicting the value of unphenotyped individuals 

based on their marker-based relationship with a set of individuals both phenotyped and 

genotyped, is similar to the genomic best linear unbiased prediction (GBLUP) model (VanRaden 

2008) that is now widely used to perform GS in plants and animal (Heslot et al. 2015; Crossa et 

al. 2017). Since the pioneering work of Bernardo (1994), using a model decomposing genetic 

effects into General Combining Ability (GCA) and Specific Combining Ability (SCA), different 

prediction models adapted to hybrid value prediction have been proposed. One method is to 

decompose genetic effects into additive and dominance effects (Su et al. 2012) based on hybrid 

genotypes without considering the genetic group of origin of the alleles. This approach has 

allowed the modeling of dominance effects in animal populations and was further applied to 

inter-breed hybrids in both animals (Vitezica et al. 2016; Varona et al. 2018) and plants 

(Piaskowski et al. 2018). Most models used today assume Hardy-Weinberg Equilibrium (HWE), 

but in many situations, this assumption is not valid (Vitezica et al. 2013). In response to this 
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observation, (Vitezica et al. 2017) proposed a genomic prediction model that considers additive, 

dominance, and epistatic effects in a general context (without HWE). In the same context, more 

recently, González-Diéguez et al. (2021) proposed a new orthogonal model decomposing the 

hybrid genetic value into GCA and SCA components with a new formula for the computation of 

the SCA kinship. Even if several studies have confirmed the efficiency of these GS models for 

predicting single-cross hybrid values in maize (see review by Kadam and Lorenz (2018), the 

relative interest of the different prediction models is still unclear. 

Focus on training set optimization in genomic selection 

The effectiveness of genomic selection is closely tied to the prediction accuracy of candidates 

to selection. The design of the TRS is a key factor affecting prediction accuracies that have 

attracted interest in the breeding community. GBLUP genomic prediction models assume that 

TRS and PS individuals are drawn from the same population (Rio et al. 2022b). However, this 

hypothesis is not met in several situations, and may result in low prediction accuracy. This can 

be due to differences in LD between molecular markers and QTLs (defined as the non-

independence between alleles at different loci on the same gamete), QTL allele frequencies and 

QTL allele effects between the TRS and PS (Rio et al. 2022b). The first studies addressing the 

question of the TRS design relied on random sampling without any optimization procedure 

(Habier et al. 2007; Pszczola et al. 2012; Windhausen et al. 2012; Wientjes et al. 2013). They gave 

insight into the composition of an ideal TRS and highlighted the importance of the relationship 

between the TRS and PS. According to the literature, an ideal TRS should maximize the accuracy 

by maximizing the relationship between the TRS and PS (Zhong et al. 2009; Zhao et al. 2012; 

Technow et al. 2013; Riedelsheimer et al. 2013; Lorenz and Smith 2015) and minimizing the 

within TRS relationship to capture a large genetic variance (replicating alleles rather than 

individuals) (Pszczola et al. 2012). 

Random sampling does not always guarantee maximum prediction accuracies. For 

example, when a strong population structure is involved, random sampling can lead to the under 

or over-representation of some groups in the TRS, leading to a reduced accuracy (Windhausen 

et al. 2012; Isidro et al. 2015). This prompted the exploration of optimization procedures for 

constructing the TRS. Different optimization criteria have been proposed to optimize a priori the 

TRS that can be grouped into “Model-free” and “Model-based” optimization criteria (Rio et al. 

2022b). Model-free criteria do not rely on a genomic prediction model, instead, they aim at 
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constructing TRS that resemble the PS. On the contrary, model-based criteria are derived within 

the mixed model theory of genomic prediction models to maximize the expected prediction 

accuracy. Rincent et al. (2012) first reported the benefit of using model-based criteria 

maximizing prediction accuracy. Rincent et al. (2012) derived criteria from the mixed model 

equations proposed by Laloë (1993) with the objective of either maximizing the Coefficient of 

Determination (CD), or minimizing the Prediction Error Variance (PEV) of the genetic values of 

the PS. In particular, he proposed optimizing the TRS to be phenotyped by maximizing the mean 

of the coefficient of determination (CDmean) of contrasts between each unphenotyped PS 

individual and the target (PS) population mean. This criterium relies only on molecular 

information and trait heritabilities of the PS and the individuals that are candidates to be part of 

the TRS. Numerous studies have shown that building the TRS using the CDmean significantly 

increases the accuracy of GS models relative to using random sampling (see reviews: Isidro y 

Sánchez and Akdemir 2021; Rio et al., 2022; Fernández-González et al. 2023). Later, the CD was 

extended and applied to other situations. Isidro et al. (2015) proposed stratified CDmean to 

improve the optimization of TRS under population structure effects, Rincent et al. (2017), 

proposed the CDpop to maximize prediction accuracy in population composed of biparental 

families by defining contrasts within each family (CDpop). Generalized CD can be derived from 

multi traits and multi environments genomic prediction models to compute the expected 

reliability for each individual–trait or individual-environment combination. This was done by 

Ben-Sadoun et al. (2020) with the CDmutli for the optimization of a TRS under a multi trait 

context.  

Most of the criteria were developed at the line level, and only a few were adapted to the 

hybrid context. However, model-based criteria rely on genomic prediction models and therefore 

can be adapted using models specific to hybrid prediction including non-additive effects. This 

was done for example by Momen and Morota (2018) and Fristche-Neto et al. (2018). They have 

included non-additive effects in the computation of the CDmean, however, these authors did 

not find a clear benefit of accounting for dominance in the CDmean computation. 
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Implementing genomic selection in breeding programs 

While GS methods were first introduced in plant breeding (Bernardo 1994; Whittaker et al. 2000), 

animal breeders developed GS applications much faster due to the time and cost savings it 

offered (Hickey et al. 2017a), the rapid development of dense genotyping arrays. Indeed, in 

animal breeding and more specifically, in dairy cow breeding, time is required for the animal to 

grow, and often, hundreds of progeny individuals are required to obtain reliable prediction of 

an adult breeding value, which is cost extensive. This integration of GS made it possible to 

predict the potential merit of an individual soon after birth in a more precise way than what was 

possible using only pedigree information, saving time and costs. GBLUP based on the 

computation of a marker-based kinship (Van Raden 208) and its derivations, such as single-step 

BLUP, have been widely used in practical animal breeding (Hayes et al. 2009; Hickey et al. 2017a) 

replacing for many species evaluation based solely on pedigree-based BLUP. In contrast, the 

benefit of introducing GS methods into plant breeding programs was initially less clear , given 

genotyping costs compared to phenotyping and the fact that breeders were not familiar with 

the use of BLUP models. 

A significant advancement enabling the integration of GS in plants was the reduced cost 

of high-throughput genotyping methods. Numerous empirical studies reported predictive 

accuracies of different GS models in several plant species (Jannink et al. 2010). Cost-benefit 

analyses concerning integrating GS into breeding programs indicated that it could be cheaper 

than phenotypic selection (Crossa et al. 2017). Indeed, estimated genetic values can be used in 

place of phenotyping to restructure existing breeding programs to: (i) shorten the breeding 

cycle by replacing early-stage phenotypic evaluations with genomic predictions, (ii) increase 

selection intensity by increasing the number of candidate lines, and (iii) increase selection 

accuracy by increasing the precision of estimation of the candidate lines (Heslot et al. 2015; 

Crossa et al. 2017). The relationship between the additive genetic variance and the expected 

response to selection is known as the breeder’s equation (Lush 1937). Assuming an infinite 

breeding population and a normally distributed targeted trait, the expected change in mean 

performance (Δ𝜇) per generation can be expressed as:  
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∆𝜇 =
𝑖𝑟𝜎𝑎

𝑡
, 

where 𝑖 is the selection intensity, r is the selection accuracy, 𝑡 is the generation interval and 𝜎𝑎 

is the population additive genetic standard deviation of the targeted trait. By acting upon three 

parameters of the breeder’s equation: reducing the generation interval and increasing the 

selection intensity and accuracy, GS can increase the genetic gain as reported in several 

simulation and experimental studies as reviewed for instance by Krishnappa et al. (2021). 

However, depending on the species, the organization of the breeding programs and the 

constraints on breeding may be very different. Consequently, most studies are species-specific 

and can show varying benefit of implementing GS (R2D2 Consortium et al. 2021). GS has now 

become a routine practice in many breeding programs for major crop species such as maize. 

Bernardo and Yu (2007) were the first to report the successful use of GS in a maize hybrid 

breeding scheme using simulation data in biparental populations. They showed that GS 

provided 18 to 43% more genetic gain per cycle than marker-assisted recurrent selection based 

on QTLs. Later, other studies have reported large increases in rates of genetic gain as a result of 

implementing GS in hybrid breeding programs (Wong and Bernardo 2008; Technow et al. 2012; 

Massman et al. 2013; Technow et al. 2014; Xu et al. 2014; Beyene et al. 2015; Kadam and Lorenz 

2018; Seye et al. 2020; Bernardo 2021a; Beyene et al. 2021). The incorporation of GS in breeding 

programs can vary in terms of both the stages at which it is applied and the extent to which is 

it utilized. It is possible to use GS at some steps or at all steps, this was investigated by Bassi et 

al. (2016) showing a higher genetic gain when applying at all stages. Some experimental and 

simulation studies went a step further and performed multiple GS cycles without phenotyping 

to reduce cycle time corresponding to a “rapid cycling” approach (Massman et al. 2013; Beyene 

et al. 2015; Zhang et al. 2017; Seye et al. 2020; Bernardo 2021a). 

The implementation of GS significantly impacts various aspects of the breeding program. 

This includes allocating resources at a constrained budget, selection pressure at different stages, 

and the duration of the breeding cycle. There are inherent tradeoffs that emerge, such as 

deciding how to reallocate resources between phenotyping and genotyping, as well as 

determining the balance between the number of candidate lines and the accuracy of their 

evaluation. However, studies rarely address resource allocation at the level of a breeding 

program and do not compare breeding schemes at fixed costs. In wheat, two simulation studies 
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investigated the benefit of implementing GS in a commercial breeding program at fixed costs 

and with optimized resource allocation (Longin et al. 2015; Ben-Sadoun et al. 2020). A recent 

simulation study by Bernardo (2021) investigated the use of different GS strategies at a fixed 

cost in the early selection stage of a maize breeding program carried out on a biparental 

population and showed that speeding up selection by using two cycles of GS (without 

phenotyping) allowed larger genetic gains than phenotypic selection.  

When implementing GS in breeding programs, an important factor to consider is the 

udpdate of the TRS (Isidro y Sánchez and Akdemir 2021; Rio et al. 2022b). In breeding programs, 

a large dataset from multiple trials and multiple years of phenotyping is often available for 

model training and can be used to predict new genotypes with high prediction accuracy (Sleper 

et al. 2020). However, in some cases, it has been shown that including data from previous 

generations or from genetically distant individuals can deteriorate the prediction accuracy 

(Lorenz and Smith 2015; Auinger et al. 2016). In this situation, the TRS optimization aims at 

selecting a subset among the phenotyped individuals to maximize prediction accuracy. 

Additionally, to maintain high prediction accuracy over generations, the TRS must be regularly 

updated with newly genotyped and phenotyped individuals (Neyhart et al. 2017; Brandariz and 

Bernardo 2018; Lopez-Cruz and de los Campos 2021). Often breeders are working with a 

constrained budget where only a subset of the candidate individuals in the new generation can 

be phenotyped. Optimizing the TRS represents an opportunity to better allocate resources 

within breeding programs by reducing the number of individuals that need to be phenotyped 

to train GS models while maintaining similar accuracy (sparse or selective phenotyping) 

(Akdemir and Isidro-Sánchez 2019). In this context, one can wonder which phenotypic data from 

the previous generation(s) should be included in the TRS and which additional hybrids should 

be phenotyped to complete the existing TRS and achieve the highest prediction accuracy for 

the new generation with a given phenotyping effort. This question has rarely been addressed in 

the studies investigating TRS optimization for hybrid breeding over generations. One idea could 

be to use the CDmean to optimize the choice of the individuals from the new generation to be 

phenotyped while considering the existing TRS comprising data from the previous generations. 

To our knowledge, this strategy has never been tested in this context. 

  



General introduction 

 

A. Lorenzi (2023) 

40 

Revisiting maize hybrid breeding scheme using genomic selection 

combined with factorial training sets 

The conventional hybrid breeding scheme is divided into early-stage evaluations on testcross 

hybrids and late-stage evaluations on single-cross hybrids. Several studies evaluated the 

efficiency of GS to predict hybrids, looking separately at the two steps of hybrid schemes. Some 

of them have evaluated the interest of GS at the early stage, i.e., the selection of the unselected 

candidate lines based on testcross hybrids (Lorenzana and Bernardo 2009; Albrecht et al. 2011; 

Lehermeier et al. 2014; Krchov and Bernardo 2015; Seye et al. 2020; Burdo et al. 2021). Other 

studies addressed GS for single-cross hybrid value prediction in the second stage of the hybrid 

breeding scheme, i.e., by using as TRS single-cross hybrids between lines that have already 

undergone a selection based on their testcross to predict the value of unobserved single-cross 

hybrids (Maenhout et al. 2010; Technow et al. 2012, 2014; Massman et al. 2013; Kadam et al. 

2016). The remarkably high predictive abilities of the single-cross hybrids, ranging from 0.70 to 

greater than 0.90 has opened prospects for considering the use of single-cross hybrids in early-

stage selection and revisiting hybrid breeding schemes (Kadam and Lorenz 2018). 

Kadam et al. (2016) and Giraud (2016) proposed replacing testcross testing in the early 

stage of the process with genomic predictions trained on a sparse factorial design to predict all 

potential hybrid combinations, as well as GCA in view of parent selection for subsequent 

generations. A factorial design based on crossing candidate lines from two complementary 

groups would enable a better utilization of phenotypic information, as each hybrid provides 

information about the value of candidates from both heterotic groups. In the absence of 

markers, estimating the GCA of lines and SCA of hybrid combinations requires that each line 

contributes to several hybrids in the factorial design, which increases the number of hybrids to 

be evaluated compared to tester-based evaluations. Molecular information could overcome this 

limitation. Since several hybrids share each allelic combination, it is possible to decompose the 

total hybrid value into GCA and SCA effects for each marker, even if each line contributes to 

only one hybrid in the factorial design (Seye et al. 2020). This could reduce the number of hybrids 

to be phenotyped for the same number of evaluated lines. By eliminating testers, it would be 

possible to work directly at the hybrid value level to improve both GCA and SCA components 

from the early stages of selection, avoiding the bias associated with tester choice for GCA 

estimation. Thus, using factorial design would allow for a better estimation of GCA and 
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consideration of SCA in early stages of selection. Last, the use of genomic predictions in the 

early-stage of the process would allow the prediction of all potential hybrids to avoid missing 

out on the most promising ones. 

Several studies investigating the use of factorial designs in early-stage selection found 

good prediction accuracies for untested hybrids (Giraud 2016; Kadam et al. 2016; Fristche-Neto 

et al. 2018a; Seye et al. 2020; Burdo et al. 2021). In addition, a study based on simulations by 

Seye et al. (2020) compared the use of sparse factorial designs with tester designs to train GS 

models. It revealed equivalent prediction accuracies when there was no SCA variance in the 

population and an increasing benefit of the factorial design when the SCA variance increased. 

Moreover, even when no SCA is involved, Seye et al. (2020) illustrated the ability of the GS model 

trained on very sparse factorials to decouple line GCA components and predict their value 

accurately. Using factorial design requires genotyping candidate lines and producing hybrids by 

hand-made pollination, which is challenging and costly. Therefore, even if the use of factorial 

design in early-stage evaluations is appealing and its efficiency to calibrate GS models compared 

to testcross evaluations was assessed by simulations (Seye et al. 2020), further investigations 

and experimental validation are needed to investigate its efficiency along cycles and to optimize 

the factorial TRS. This also offers the possibility of revisiting the hybrid breeding scheme by 

collapsing early and late-stage evaluations into one single step using genomic predictions 

calibrated on a factorial design to predict both line GCAs and unobserved hybrid values. This 

idea was mentioned by Seye et al. (2020) but has never been tested to our knowledge. It appears 

necessary to assess the cost-efficiency of GS breeding schemes incorporating factorial designs 

compared to a conventional hybrid breeding scheme based on testcross evaluations. Studies 

have yet to be carried out simulating a hybrid breeding scheme including both early and late-

stage selection in a reciprocal selection scheme performed in complementary groups at fixed 

costs. 
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Objectives of the thesis and organization of this manuscript 

The PhD work presented in the following manuscript is part of the SAMMCR project ("Marker-

Assisted Multi-Cross Reciprocal Selection") initiated by INRAE and seven breeding companies 

within the framework of the Promaïs Association (http://pro-maize-corn.com/): KWS, 

Limagrain, Lidea, Syngenta, MAS, Corteva and RAGT2n. The project aims at studying and 

implementing alternative hybrid breeding methods, and validate their interest in a pilot 

breeding program and using simulations. More specifically, the objective was to develop 

marker-assisted prediction approaches based on QTLs or genomic predictions in a connected 

reciprocal multi-parental factorial design to improve hybrid value for silage maize. Several 

research questions were addressed in previous PhD thesis regarding (i) the effectiveness of 

sparse factorial designs for detecting QTLs involved in GCA and SCA (Giraud 2016; Giraud et al. 

2017a, b; Seye 2019; Seye et al. 2019), (ii) the quality of GCA and SCA predictions using marker-

assisted selection or genomic selection approaches (Giraud 2016; Seye 2019), (iii) the 

optimization of the experimental factorial design, and its comparison with a traditional tester-

based design by simulation. This thesis aims at complementing results from these previous 

theses by including new experimental data with a focus on investigating the efficiency of 

replacing testcross evaluations by genomic predictions calibrated on a factorial designs to 

improve maize hybrid breeding schemes. 

The main objectives of this thesis were to (i) validate on experimental data the efficiency 

of factorial TRSs for the prediction of untested single-cross hybrids and compare it with tester-

based TRSs, (ii) further investigate the use of factorials and their optimization to predict line 

GCAs and hybrid values across two breeding cycles, and (iii) provide recommendations for 

implementing genomic predictions calibrated on factorial designs into maize hybrid breeding 

schemes. This thesis work relies on experimental data corresponding to two breeding cycles of 

a maize reciprocal genomic selection scheme involving multiparental connected populations 

from the flint and dent complementary heterotic groups, selected for silage performances. 

Experimental data were completed by simulations. The results are presented in three main 

chapters, each written in a scientific paper format, followed by a general discussion and 

perspectives. An overview of the SAMMCR project, the plant material and the different 

experimental designs developed during the project and used in this thesis are presented in the 

Supplementary materials section at the end of the document. Figures and tables are numeroted 

http://pro-maize-corn.com/
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within each section of the manuscript. 

In Chapter 1, data from the first breeding cycle was used to evaluate the efficiency of 

sparse factorial TRSs for predicting single-cross hybrids between unselected lines from the same 

generation and compare it to tester designs. At a same number of hybrids and lines, the factorial 

design was as efficient as the tester designs, and, for some traits, outperformed them. We 

showed an advantage of increasing the number of lines involved in the TRS, by (1) allocating 

each of them to a different tester for the tester design, or (2) reducing the number of hybrids 

per line for the factorial design. This chapter corresponds to a paper published in Theor. Appl. 

Genet. (https://doi.org/10.1007/s00122-022-04176-y) 

In Chapter 2, data from the two breeding cycles was used to evaluated the portability 

of genomic predictions calibrated on a factorial TRS across breeding cycles and investigate 

strategies to update and optimize the factorial TRS along cycles. The results validated 

experimentally the efficiency of sparse factorial designs for predicting line GCAs and hybrid 

values across two generations. They also highlighted the benefits of updating TRSs along 

breeding cycles and optimizing their composition using the CDmean criterion to ensure high 

prediction accuracy. This chapter was submitted in Theor. Appl. Genet. 

In Chapter 3, to complement experimental results, simulations were carried out to 

investigate the use of factorial designs into GS hybrid breeding schemes. We compared at a 

fixed cost a conventional phenotypic breeding scheme with five genomic selection breeding 

schemes differing by their cycle length and the use of tester and/or factorial designs to calibrate 

genomic predictions. The simulation results suggested that implementing genomic selection 

and shortening the breeding cycle by replacing early testcross evaluations by a unique sparse 

factorial design offers the potential to accelerate the breeding process and increase genetic 

gain. These findings not only validate the efficiency of sparse factorial TRSs but also highlight 

the potential of integrating them into hybrid breeding programs at fixed costs. This chapter 

corresponds to a paper draft that we plan to submit before the PhD defense. 

This thesis led to a set of recommendations to improve maize hybrid breeding scheme 

through the integration of genomic selection and factorial designs. 
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Abstract 

In maize breeding, the selection of the candidate inbred lines is based on topcross evaluations 

using a limited number of testers. Then, a subset of single-crosses between these selected lines 

is evaluated to identify the best hybrid combinations. Genomic selection enables the prediction 

of all possible single-crosses between candidate lines but raises the question of defining the 

best training set design. Previous simulation results have shown the potential of using a sparse 

factorial design instead of tester designs as the training set. To validate this result, a 363 hybrid 

factorial design was obtained by crossing 90 dent and flint inbred lines from six segregating 

families. Two tester designs were also obtained by crossing the same inbred lines to two testers 

of the opposite group. These designs were evaluated for silage in eight environments and used 

to predict independent performances of a 951 hybrid factorial design. At a same number of 

hybrids and lines, the factorial design was as efficient as the tester designs, and, for some traits, 

outperformed them. All available designs were used as both training and validation set to 

evaluate their efficiency. When the objective was to predict single-crosses between untested 

lines, we showed an advantage of increasing the number of lines involved in the training set, by 

(1) allocating each of them to a different tester for the tester design, or (2) reducing the number 

of hybrids per line for the factorial design. Our results confirm the potential of sparse factorial 

designs for genomic hybrid breeding. 
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Introduction 

Maize genetic diversity has been structured into complementary heterotic groups and varieties 

are mainly single-crosses between two inbred lines issued from different heterotic groups. In 

Northern Europe, the two main heterotic groups are the flint and the dent groups. The 

straightforward way to identify the best single-cross hybrids would be to cross all inbred lines 

from each heterotic group following a complete factorial design. In breeding programs, the 

number of candidate lines is large and increases every year. This makes it impossible to generate 

and evaluate all possible single-cross hybrids. The development of Doubled Haploid (DH) 

technology reinforces this difficulty due to the fact that it allows the fast production of a large 

number of fully homozygous inbred lines, compared to the use of selfing generations in a single-

seeds descent process. 

An approach to manage this situation is to preselect lines within each heterotic group in 

early stages of selection and to evaluate single-crosses between selected lines of each group in 

advanced stages of the process. In 1942, Sprague and Tatum introduced the partition of the 

hybrid value into General and Specific Combining Abilities (GCA and SCA). The GCA of a line is 

defined as the average performance of its progeny in hybrid combinations and the SCA of a 

hybrid is the deviation from the expected performance based on the GCA of the parental lines. 

They illustrated the interest of topcross tests in the early breeding stages, (i.e. the evaluation of 

hybrid progeny obtained by crossing candidates from one group with few individuals from the 

other) for the preliminary evaluation of inbred lines and of single-cross tests in later stages to 

identify the best hybrid combinations. Today, in most hybrid breeding programs, variations of 

this two-step approach are used to improve simultaneously two parental populations in a 

recurrent reciprocal way. The process is divided into two stages. First, the candidate lines of one 

heterotic group are crossed to a limited number of individuals, usually inbred lines (one or few 

lines) from the opposite group which are called “testers”. The topcross hybrid progeny are then 

evaluated in the field and the best lines of each heterotic group are selected based on their GCA. 

In the second stage, the selected lines of each group are crossed following an incomplete 

factorial design and the best hybrid combinations are identified. However, a selection based on 

a few testers in the early breeding stages does not fully exploit the complementarity between 

groups, specifically SCA, and can bias the GCA estimation. The GCA of the inbred line is then 

confounded with the SCA of the topcross hybrids, especially when using only one tester. This 
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two-stage breeding process increases the time required for marketable hybrid development and 

requires the phenotyping of a large number of lines (at least as many hybrids as lines in each 

group in the first step). 

Since the resources available for phenotyping are limited, a major goal in hybrid selection 

is the prediction of untested hybrid performance. Until the 1990s, selection was conducted 

without knowing genes or loci implied in GCA and SCA components. The development of 

markers enabled the identification of genes or loci implied in quantitative traits variations (QTL 

detection) and opened the way to performance prediction based on marker information (Lande 

and Thompson 1990). Several approaches using markers in selection were developed, one of 

which is genomic selection (GS or genomic prediction) (Meuwissen et al. 2001). Implementation 

of GS requires the development of a training set (TRS) consisting of individuals both phenotyped 

and genotyped. The TRS is used to train a prediction model of the value of individuals that have 

only been genotyped. Among the proposed GS models, one consists in using markers to 

estimate additive genomic relationships (kinship matrix) between individuals. Then this matrix is 

used in a mixed model to predict the performance of unphenotyped individuals using the 

performance of phenotyped ones. An adaptation of this model for the prediction of hybrid 

values was first proposed by Bernardo (1994). For predicting the GCAs and SCAs of 

unphenotyped hybrids, he used marker-based distances between parental lines of hybrids and 

the performance of a related set of single-crosses. Several models adapted to the hybrid 

framework have been proposed more recently, modeling either the GCA and SCA components 

or the additive, dominance and epistasis effects (Vitezica et al. 2013, 2017; Varona et al. 2018; 

González-Diéguez et al. 2021). It has been shown that the prediction accuracy of genomic 

selection can be affected by various factors such as the trait heritability, the number of markers 

(Heslot et al. 2012), the statistical model, the training population size (Jannink et al. 2010; 

Technow et al. 2014; Seye et al. 2020), the relationship between the TRS and the prediction set 

(Saatchi et al. 2010; Albrecht et al. 2011; Pszczola et al. 2012; Technow et al. 2014; Kadam et al. 

2016; Seye et al. 2020). In the particular framework of hybrid prediction, other factors affect 

prediction accuracies, such as including SCA in prediction models and the optimization of the 

TRS regarding the number of hybrids phenotyped and the number of parental lines contributing 

to these hybrids (Technow et al. 2014; Seye et al. 2020). 
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Studies confirmed the usefulness of genomic selection models to predict single-cross 

hybrid values in maize (see Kadam and Lorenz 2018 review), but most studies on the prediction 

of single-cross hybrids addressed only the last step of the selection process, i.e. the identification 

of the best hybrid combinations produced from crossings among the selected lines. The use of 

markers and especially the use of GS offers new prospects for improving the hybrid breeding 

scheme. A promising lead, first proposed by Giraud (2016) and Kadam et al. (2016), would be to 

replace topcross evaluations at an early stage by genomic predictions calibrated on a sparse 

factorial design between candidate lines. This would allow the identification of superior single-

crosses early in the hybrid breeding pipeline by (i) predicting all potential hybrid combinations 

using GS, (ii) exploiting the complementarity between the two heterotic groups in early stages 

and (iii) getting rid of the tester bias. This approach requires genotyping candidate lines and 

producing hybrids by hand-made pollination which is challenging and costly. Therefore, even if 

this approach is appealing (Kadam et al. 2016; Giraud et al. 2017a, b; Fristche-Neto et al. 2018b; 

Kadam et al. 2021) and its efficiency compared to the tester approach was assessed by 

simulations (Seye et al. 2020), further investigations and experimental validation are needed. 

The first experimental study (Fristche-Neto et al. 2018b) that investigated the influence of the 

mating design to build the TRS in maize breeding showed a clear advantage of a factorial or a 

diallel over a tester design. But the designs used as TRS had different sizes which might affect 

conclusions. Recently an experimental study compared the use of a topcross progeny to the use 

of randomly paired single-cross progeny as TRS for genomic predictions by cross-validations 

(Burdo et al. 2021). This study relied on two synthetic populations from Iodent and Stiff Stalk 

heterotic groups evaluated for grain yield performances. 

In the present study, our objective is to further evaluate the interest of using a factorial 

design instead of a tester design as TRS in early stages of the breeding pipeline. Original factorial 

and tester experimental designs were produced. In the flint and the dent heterotic group, 

biparental populations were derived from intercrossing four founder lines. From these 

segregating lines, two factorial designs differing in their composition (number of lines and 

number of hybrids per line) were generated as well as two tester designs. All these designs were 

used as TRS or validation set (VS) to evaluate their potential for training GS models for different 

prediction objectives. The aim of this study was to (1) assess the efficiency of a sparse factorial 

TRS to predict new hybrid combinations obtained with a tester or another factorial design, (2) 
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compare the efficiency of factorial versus tester designs of equal size to train GS models, and 

(3) assess the impact of the composition of the factorial design in terms of the number of hybrids 

per line on the prediction accuracy. 

Materials and Methods 

Genetic material 

This study relies on four different experimental designs (Fig.1). 

 
Fig.1 Experimental designs 

The first one, referred to as F-1H was already analyzed in previous studies (Giraud et al. 

2017a, b; Seye et al. 2019). It is a factorial design derived from two multiparental populations, 

each corresponding to one of the major heterotic groups used for silage maize breeding in 

Northern Europe: the flint and the dent. In each heterotic group, three founder lines were chosen 

for their agronomical performances for silage production (F373, F03802, F02803 for the flint 

group and F98902, F1808, F04401 for the dent group) and one for its silage quality (F7088 for 

the flint group and F7082 for the dent group). Six biparental families were derived from the six 

F1 hybrids produced by intercrossing the four founder lines of each heterotic group. The dent 

biparental families were obtained by doubled haploidization and the flint ones were obtained 
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by five to six generations of selfing using a single-seed descend process. A total of 822 flint lines 

and 801 dent lines were derived and crossed following a sparse factorial design to produce 951 

flint-dent single-cross hybrids. Each parental line contributed to one or two hybrids (20% of the 

lines contributed to two hybrids), therefore this design will be referred to as F-1H. The F-1H is 

balanced between families: 22 to 35 hybrids were produced from each biparental family 

combination. For more details see Giraud et al. (2017a). 

The F-4H and the tester designs were produced from crossing a subset of the parental 

lines of the F-1H. In each heterotic group, 60 lines were chosen randomly in a balanced manner 

(10 lines per family) and 30 lines were selected based on genomic predictions obtained in the 

F-1H for an index combining silage yield, moisture content at harvest and silage quality. This 

index corresponds to the one used for silage hybrids registration in France (Seye 2019). Note 

that in each heterotic group only three families (out of six) were represented in the selected 

lines. An incomplete factorial design composed of 363 hybrids was produced by crossing 

randomly (i) the 30 flint selected lines to the 30 dent selected lines to produce 131 hybrids 

(further called “selected hybrids”) and (ii) the 60 random dent lines to the 60 random flint lines 

leading to 232 hybrids (further called “random hybrids”). In this design each parental line 

contributed to produce generally four hybrids, therefore it will be referred to as F-4H. Note that 

the F-1H and the F-4H were issued from the same inbred line populations with the difference 

being their composition in terms of the number of lines and number of hybrids per line: the 

number of hybrids per line was higher in the F-4H than in the F-1H. The same 90 dent lines were 

crossed to two flint testers to produce the 180 hybrids referred to as the T-D design and the 90 

flint lines were crossed to two dent testers to produce the 180 hybrids of the T-F design. The 

testers used were two of the four founder lines from the opposite group (F1808 and F98902 for 

the dent testers and F373 and F02803 for the flint testers) that were chosen to be genetically 

distant and with good yield potential. 

Field trials 

The hybrids were evaluated in eight trials in the North of France and Germany. Hybrids from the 

F-1H were evaluated in four trials in 2013 and four in 2014, and hybrids from the F-4H and the 

tester designs were evaluated in three trials in 2016 and five in 2017. Trials were conducted by 

INRAE and seven private breeding companies (Lidea, Corteva, Maisadour, KWS, RAGT, 

Limagrain, Syngenta). The field experiments were laid out as augmented partially replicated 
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designs (Williams et al. 2011a). In each trial, two types of hybrids were used as controls: two 

commercial hybrids (LG30.275 and RONALDINIO) and 16 founder hybrids that were produced 

by crossing the founder lines of each heterotic group. In each trial, the controls were evaluated 

twice, as well as 20% of the experimental hybrids. The F-1H was evaluated in trials composed of 

1,088 elementary plots distributed in 68 incomplete blocks. One block was composed of 16 

plots, four to five of these were used for replicated genotypes. Among the 2013 and 2014 trials, 

on average each experimental hybrid was seen in seven trials and was replicated within at least 

one trial. See Giraud et al. (2017a) for more details on the F-1H. The F-4H and the tester designs 

were evaluated jointly in the same trials. Each trial was composed of 800 elementary plots laid 

out in 50 incomplete blocks. Among the 50 blocks, 26 were allocated to factorial hybrids and 24 

to tester hybrids (six consecutive blocks per tester). Factorial blocks and tester blocks were 

grouped to limit potential competition between hybrids due to a design effect. One block was 

composed of 16 plots, four to five of these were used to replicate genotypes. Among the 2016 

and 2017 trials, on average each experimental hybrid was seen in seven trials and was replicated 

within at least one trial. 

Hybrids were evaluated for 11 traits, four agronomical traits: silage yield (DMY in tons of 

dry matter per ha), dry matter content at harvest (DMC in % of fresh weight), female flowering 

date (DtSilk in days after January the first) and plant height (PH in cm) and seven silage traits for 

digestibility: milk fodder unit per kilogram of dry matter (MFU) (Andrieu 1995; Peyrat et al. 2016), 

cell wall content of the harvested dry matter measured by the neutral detergent fiber content 

(NDF in % of dry matter), lignin, cellulose and hemicellulose contents in the cell wall NDF 

evaluated with the Goering and Soest (1970) method (LIGN, CELL and HCELL in % of NDF), cell 

wall in vitro digestibility of the non-starch and non-soluble carbohydrates part of silage (DINAG 

in %) and cell wall in vitro digestibility of the non-starch, non-soluble carbohydrates and non-

crude protein part of silage (DINAGZ in %). The DINAG and DINAGZ are two digestibility criteria, 

first proposed by Argillier et al. (1995). The silage quality traits were predicted using Near-

Infrared Reflectance Spectrometry (NIRS) equations on silage powders, or directly in the field at 

harvest, depending on the practices of each breeding company. 

By inspection of raw data and field observations (from field trial visits), outliers were 

identified and considered as missing data. Then filters were applied, plots with abnormal 

standing counts (below 80% of the median), with DMC below 25% and above 45% were 
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considered as missing data (NIRS predictions being considered as unreliable for extreme 

moisture (Baker et al. 1994)). In total over the different traits, after inspection and filters, the 

percentage of missing data was equal to 11%. 

Variance decomposition on single-plot performances (without marker information) 

The individual single plot performance was corrected by the BLUPs of spatial effects predicted 

using models described in detail in File S1. Variance components were estimated on the single 

plot performance corrected by spatial effects independently for each design using Model (1.1) 

for the factorial designs and Model (1.2) for the tester designs. 

The model implemented on the factorial designs (F-1H and F-4H) was: 

𝑌ℎ𝑘𝑘′𝑙𝑥𝑦𝑧 = 𝜇 + 𝜆𝑙 + (𝜏ℎ + 𝜌𝑙ℎ) × 𝑡ℎ + (𝐻ℎ(𝑘𝑘′) + 𝐻𝜆𝑙ℎ(𝑘𝑘′)) × (1 − 𝑡ℎ) + 𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧, (1.1) 

where 𝑌ℎ𝑘𝑘′𝑙𝑥𝑦𝑧 is the phenotypic value of hybrid ℎ produced by crossing the parental lines 𝑘 

and 𝑘’, evaluated in environment 𝑙 (each environment corresponding to the combination of a 

location and a year of experiment), located at row 𝑥, column 𝑦 and in block 𝑧. 𝜇 is the intercept, 

𝜆𝑙 is the fixed effect of environment 𝑙, 𝑡ℎ distinguishes the type of hybrid, it is set to 0 for the 

experimental hybrids and set to 1 for the control hybrids (commercial or founder hybrids), 𝜏ℎ is 

the fixed factor with 18 levels corresponding to the control hybrids, 𝜌𝑙ℎ is the effect of the 

interaction between environment 𝑙 and control hybrid ℎ. 𝐻ℎ(𝑘𝑘′) is the random genetic effect of 

experimental hybrid ℎ produced by crossing the flint line 𝑘 and the dent line 𝑘′. 𝐻ℎ(𝑘𝑘′) is 

decomposed into its GCA and SCA components as follows: 

𝐻ℎ(𝑘𝑘′) =  𝑈𝑘 + 𝑈′𝑘′ + 𝑆𝑘𝑘′, 

where 𝑈𝑘 (respectively 𝑈′𝑘′) is the random GCA effect of the flint line 𝑘 (respectively dent line 

𝑘′). We assume that 𝑈𝑘 and 𝑈𝑘′
′  are independent and identically distributed (iid) and follow a 

normal distribution: 𝑈𝑘~𝒩(0, 𝜎𝐺𝐶𝐴𝑓

2 ) and respectively 𝑈𝑘′
′ ~𝒩(0, 𝜎𝐺𝐶𝐴𝑑

2 ). 𝜎𝐺𝐶𝐴𝑓

2  and 𝜎𝐺𝐶𝐴𝑑

2  are the 

flint and dent GCA variances. 𝑆𝑘𝑘′ is the random SCA effect of the interaction between the 

parental lines 𝑘 and 𝑘’, with 𝑆𝑘𝑘′~𝒩(0, 𝜎𝑆𝐶𝐴
2 ) idd with 𝜎𝑆𝐶𝐴

2  being the SCA variance. 𝐻𝜆𝑙ℎ(𝑘𝑘′) is 

the genotype by trial interaction and is decomposed as follows: 
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𝐻𝜆𝑙ℎ(𝑘𝑘′) = (𝑈𝜆)𝑘𝑙 + (𝑈′𝜆)𝑘′𝑙 + (𝑆𝜆)𝑘𝑘′𝑙, 

where (𝑈𝜆)𝑘𝑙 and (𝑈′𝜆)𝑘′𝑙 are the random effects of the flint GCA effect by trial interaction, 

respectively dent GCA by trial interaction and (𝑆𝜆)𝑘𝑘′𝑙 is the random effect of the SCA by trial 

interaction. With (𝑈𝜆)𝑘𝑙 ∽ 𝒩(0, 𝜎𝐺𝐶𝐴𝑓×𝐸
2 )iid, (𝑈′𝜆)𝑘′𝑙 ∽ 𝒩(0, 𝜎𝐺𝐶𝐴𝑑×𝐸

2 )iid and (𝑆𝜆)𝑘𝑘′𝑙 ∽

𝒩(0, 𝜎𝑆𝐶𝐴×𝐸
2 )iid. 𝜎𝐺𝐶𝐴𝑓×𝐸

2 , 𝜎𝐺𝐶𝐴𝑑×𝐸
2  and 𝜎𝑆𝐶𝐴×𝐸

2  are the flint GCA by trial interaction variance, the 

dent GCA by trial variance and the SCA by trial interaction variance, respectively. 𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧 is the 

error term; we assume that the errors follow: 𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧~𝒩(0, 𝜎𝐸𝑙
2 ) and are independent and 

identically distributed within trial and independent between trials, 𝜎𝐸𝑙
2  is the error variance of 

environment 𝑙. The different random effects of the model are assumed to be independent. 

The model implemented on the T-F was: 

𝑌ℎ𝑘𝑚𝑙𝑥𝑦𝑧 = 𝜇 + 𝜆𝑙 + (𝜏ℎ + 𝜌𝑙ℎ) × 𝑡ℎ + (𝛾𝑚 + 𝐻ℎ(𝑘𝑚) + 𝐻𝜆𝑙ℎ(𝑘𝑚))  × (1 − 𝑡ℎ) + 𝐸ℎ𝑘𝑚𝑙𝑥𝑦𝑧,

            (1.2) 

where 𝜆𝑙, 𝑡ℎ, 𝜏ℎ and 𝜌𝑙ℎ are defined as in Model (1.1). 𝑌ℎ𝑙𝑚𝑥𝑦𝑧 is the phenotypic value of hybrid 

ℎ produced by crossing the dent founder line 𝑚 used as tester and the flint parental line 𝑘, 

evaluated in environment 𝑙 located at row 𝑥, colomn 𝑦 and in block 𝑧. 𝛾𝑚 is the fixed effect of 

line 𝑚 used as tester. 𝐻ℎ(𝑘𝑚) is the random genetic effect of hybrid ℎ produced by crossing the 

dent founder line 𝑚 used as tester and the flint parental line 𝑘 evaluated for its GCA. The genetic 

value of hybrid ℎ, 𝐻ℎ(𝑘𝑚), is decomposed as follows: 𝐻ℎ(𝑘𝑚) =  𝑈𝑘 + 𝑆𝑘𝑚, where 𝑈𝑘 is the random 

GCA effect of the flint line 𝑘, with 𝑈𝑘~𝒩(0, 𝜎𝐺𝐶𝐴𝑓

2 ) iid and 𝑆𝑘𝑚 is the random effect of the 

interaction (SCA) between the flint line 𝑘 and the founder dent line 𝑚 used as tester, with 

𝑆𝑘𝑚~𝒩(0, 𝜎𝑆𝐶𝐴𝑡
2 ) iid. 𝐻𝜆𝑙ℎ(𝑘𝑘′) is the genotype by trial interaction, decomposed as follows: 

𝐻𝜆𝑙ℎ(𝑘𝑘′) = (𝑈𝜆)𝑘𝑙 + (𝑆𝜆)𝑘𝑚𝑙 where (𝑈𝜆)𝑘𝑙 ∽ 𝒩(0, 𝜎𝐺𝐶𝐴𝑓×𝐸
2 ) iid and (𝑆𝜆)𝑘𝑚𝑙 ∽ 𝒩(0, 𝜎𝑆𝐶𝐴𝑡×𝐸

2 ) 

iid. 𝐸ℎ𝑘𝑚𝑙𝑥𝑦𝑧 is the error term. We assume that the errors follow 𝐸ℎ𝑘𝑚𝑙𝑥𝑦𝑧~𝒩(0, 𝜎𝐸𝑙

2 ) iid within 

trial and independent between trials. The different random effects of the model are assumed to 

be independent. The same model was adapted and implemented on T-D. 

Variance components were estimated with each model and a likelihood ratio test was 

performed to test their significance with adjusted p-values corresponding to mixed chi-square 

distributions (Self and Liang 1987; Molenberghs and Verbeke 2007) using the “lrt.asreml” 



Chapter 1 

 

A. Lorenzi (2023) 

57 

function of the ASReml-R package (setting the parameter “boundary” to TRUE for the mixed chi-

square distributions). 

The percentage of genetic variance due to SCA was estimated (%) and broad-sense 

heritability was computed as follows: 

𝐻2 =
𝜎𝐻

2

𝜎𝐻
2 +

𝜎𝐻×𝐸
2

𝑛𝑠𝑖𝑡𝑒
+

𝜎𝐸𝑚𝑜𝑦
2

𝑛𝑟𝑒𝑝×𝑛𝑠𝑖𝑡𝑒

 , 

where 𝜎𝐻
2 is the hybrid genetic variance. For the factorial designs it is computed as: 𝜎𝐻

2 = 𝜎𝐺𝐶𝐴𝑓

2 +

𝜎𝐺𝐶𝐴𝑑

2 + 𝜎𝑆𝐶𝐴
2  and for the T-F (respectively T-D) it corresponds to the 𝜎𝐺𝐶𝐴𝑓

2  (respectively 𝜎𝐺𝐶𝐴𝑑

2 ). 

𝜎𝐻×𝐸
2  is the total genotype by trial variance decomposed as: 𝜎𝐻×𝐸

2 = 𝜎𝐺𝐶𝐴𝑓×𝐸
2 + 𝜎𝐺𝐶𝐴𝑑×𝐸

2 + 𝜎𝑆𝐶𝐴×𝐸
2  

for the factorial designs and as: 𝜎𝐻×𝐸
2 = 𝜎𝐺𝐶𝐴𝑓×𝐸

2  for the T-F (respectively 𝜎𝐻×𝐸
2 = 𝜎𝐺𝐶𝐴𝑑×𝐸

2  for the 

T-D). 𝜎𝐸𝑚𝑜𝑦

2  is the mean residual variance across all trials, 𝑛𝑠𝑖𝑡𝑒 is the number of trials and 𝑛𝑟𝑒𝑝 is 

the mean number of within trial replicates across trials. 

Adjusted means 

For each trait and each design, least square-means (ls-means or adjusted means) of the hybrids 

were computed over trials, using a model considering the hybrid genetic effect as fixed: 

𝑌ℎ𝑟𝑙
∗ = 𝜇 + 𝜆𝑙 + 𝛾ℎ + 𝐸ℎ𝑟𝑙.(2) 

In this model, experimental hybrids and founder hybrids were considered jointly. 𝑌ℎ𝑟𝑙
∗  is the 

performance corrected by the spatial field effects of repetition 𝑟 of hybrid ℎ in environment 𝑙. 𝜇 

is the intercept, 𝜆𝑙 is the fixed effect of environment 𝑙, 𝛾ℎ is the fixed genetic effect of hybrid ℎ. 

𝐸ℎ𝑟𝑙 is the error term of environment 𝑙, with 𝐸ℎ𝑟𝑙  ~𝒩(0, 𝜎𝐸𝑙
2 ) iid within trial and independent 

between trials. All genomic predictions were performed on the ls-means thus obtained. 

Genotyping and kinship estimation 

The founder lines as well as the parental lines were genotyped for 18,480 SNPs using an 

Affymetrix array provided by Limagrain. Markers with more than 20% of missing values within 

the dent and flint parental lines, markers with more than 5% (10%) of heterozygosity among the 

dent (flint) parental lines and markerswith Minor Allele Frequency (MAF) inferior to 5% were 

discarded. After quality control, 9,548 SNP polymorphic markers (in at least the flint or dent 
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population) were conserved and mapped on a consensus map (Giraud et al. 2017a). 

Kinship matrices for the flint and dent GCA (𝑲𝑮𝑪𝑨𝒇
 and 𝑲𝑮𝑪𝑨𝒅

) were computed for all 

parental lines following method 1 from VanRaden (2008). The coefficient of the flint GCA kinship 

between individuals 𝑖 and 𝑖′ was estimated as follows: 

𝐾𝐺𝐶𝐴𝑓(𝑖,𝑖′) =
∑ (𝐺𝑖𝑚−𝑓𝑚)(𝐺𝑖′𝑚−𝑓𝑚)𝑀

𝑚=1

∑ 𝑓𝑚(1−𝑓𝑚)𝑀
𝑚=1

 , (3) 

where 𝐺𝑖𝑚 is the genotype of the flint line 𝑖 at locus 𝑚 (coded 0, 0.5 and 1) and 𝑓𝑚 is the allele 

frequency of allele “1” at locus 𝑚 estimated on the whole dataset. The kinship matrix 𝑲𝑮𝑪𝑨𝒅
 was 

computed similarly. The coefficient of the SCA kinship matrix (𝑲𝑺𝑪𝑨) between two flint-dent 

hybrids, produced from the crossings of parental lines 𝑖 to 𝑗 and parental lines 𝑖’ to 𝑗’, was 

computed as follows (Stuber and Cockerham 1966): 

𝐾𝑆𝐶𝐴(𝑖𝑗,𝑖′𝑗′)
= 𝐾𝐺𝐶𝐴𝑓(𝑖,𝑖′) ∗  𝐾𝐺𝐶𝐴𝑑(𝑗,𝑗′). (4) 

Genomic Best Linear Unbiased Prediction (GBLUP) models 

Two GBLUP models were implemented for genomic predictions depending on the design used 

as TRS (factorial or tester). 

The model implemented on the factorial designs (F-1H and F-4H) including SCA effects was: 

𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒅 𝒈𝑮𝑪𝑨𝒅
+ 𝒁𝒇𝒈𝑮𝑪𝑨𝒇

+ 𝒁𝒅𝒇𝒈𝑺𝑪𝑨𝒅𝒇
+ 𝑬, (5.1) 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is 

the intercept. 𝒈𝑮𝑪𝑨𝒇
 (respectively 𝒈𝑮𝑪𝑨𝒅

) is the vector of random GCA effects of the 𝑛𝑓 flint 

parental lines (respectively 𝑛𝑑 dent lines), with 𝒈𝑮𝑪𝑨𝒇
 ~ 𝒩 (0, 𝑲𝑮𝑪𝑨𝒇

𝜎𝐺𝐶𝐴𝑓

2 ) (respectively 

𝒈𝑮𝑪𝑨𝒅
 ~ 𝒩(0, 𝑲𝑮𝑪𝑨𝒅

𝜎𝐺𝐶𝐴𝑑

2 )) where 𝑲𝑮𝑪𝑨𝒇
 (respectively 𝑲𝑮𝑪𝑨𝒅

) is the genomic relatedness matrix 

between the flint lines (respectively dent lines). 𝜎𝐺𝐶𝐴𝑓

2  and 𝜎𝐺𝐶𝐴𝑑

2  are the flint and dent GCA 

variances. 𝒈𝑺𝑪𝑨𝒅𝒇
 is the vector of SCA random effects of the 𝑛 hybrids, accounting for the 

interactions between the flint and dent parental lines, with 𝒈𝑺𝑪𝑨𝒅𝒇
 ~ 𝒩 (0, 𝑲𝑺𝑪𝑨𝒅𝒇

𝜎𝑆𝐶𝐴𝑑𝑓

2 ) where 

𝑲𝑺𝑪𝑨𝒅𝒇
 is the SCA kinship matrix of the hybrids (phenotyped or not) and 𝜎𝑆𝐶𝐴𝑑𝑓

2  the SCA variance. 

𝒁𝒅, 𝒁𝒇 and 𝒁𝒅𝒇 are the corresponding incidence matrices of dimensions [𝑛 × 𝑛𝑑], [𝑛 × 𝑛𝑓], and 

[𝑛 × 𝑛] respectively, that relate the observations to the GCA and SCA effects of lines and single-
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cross hybrids considered in the model. 𝑬 is the vector of error terms, with 𝑬~ 𝒩(0, 𝑰𝜎𝐸
2). The 

different random effects are assumed to be independent. A model without SCA effects was also 

considered. 

The model implemented on the T-F (the same model was adapted and implemented on the T-

D) was: 

𝒚 = 𝟏𝒏. 𝜇 + 𝑿𝝊 + 𝒁𝒇𝒈𝑮𝑪𝑨𝒇
+ 𝒁𝒈𝑺𝑪𝑨𝒕 + 𝑬, (5.2) 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is 

the intercept. 𝝊 is the vector of fixed effects of the 𝑛𝑡 testers. 𝒈𝑮𝑪𝑨𝒇
 is the vector of random GCA 

effects of the 𝑛𝑓 flint parental lines, with 𝒈𝑮𝑪𝑨𝒇
 ~ 𝒩(0, 𝑲𝑮𝑪𝑨𝒇

𝜎𝐺𝐶𝐴𝑓

2 ) where 𝑲𝑮𝑪𝑨𝒇
 is the genomic 

relatedness matrix between the flint lines and 𝜎𝐺𝐶𝐴𝑓

2  is the flint GCA variance. 𝒈𝑺𝑪𝑨𝒕 is the vector 

of random effects of the interaction between the flint line and the dent tester, with 

𝒈𝑺𝑪𝑨𝒕~𝒩(0, 𝑰𝟐 ⊗ 𝑲𝑮𝑪𝑨𝒇 𝜎𝑆𝐶𝐴𝑡
2 ) where 𝜎𝑆𝐶𝐴𝑡

2  is the SCA variance. 𝑿, 𝒁𝒇 and 𝒁 are the 

corresponding incidence matrices of dimensions [𝑛 × 𝑛𝑡], [𝑛 × 𝑛𝑓], and [𝑛 × 𝑛𝑡𝑛𝑓] respectively. 

𝑬 is the vector of error terms, with 𝑬 ~ 𝒩(0, 𝑰𝜎𝐸
2). The different random effects are assumed to 

be independent. 

Predictive ability with different scenarios 

Three objectives were investigated using three different scenarios. In all scenarios the predictive 

ability was computed as the correlation between the observed phenotypes (ls-means) and the 

predicted hybrid values (sum of the predicted GCA and SCA BLUPs, when SCA effect was 

included in the model). 

In scenario 1, the aim was to evaluate the efficiency of using a sparse factorial design 

mostly composed of one hybrid per line to predict new hybrid combinations evaluated in new 

environments. In scenario 1a, all 951 hybrids of the F-1H, were used as TRS to predict the F-4H, 

T-F and T-D. In the tester designs, for a given line, two ls-means values were available (one ls-

mean per tester). Therefore, the predictive ability was computed as the correlation between the 

mean of the two ls-means and the predicted GCA BLUP of the same line. Predictive abilities were 

also computed separately for the selected and the random hybrids to evaluate the quality of 

prediction among hybrids derived from selected lines. In scenario 1b, we evaluated the impact 
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of the level of relationship between the TRS and the validation set (VS) on predictions. To vary 

the level of relationship between the TRS and the VS, we used four different TRS constituted of 

hybrids sampled within the F-1H to predict the same VS (F-4H) (Fig.2). Hybrids included in the 

TRS were sampled to select those issued or not from parental lines contributing to the VS plus 

others to reach 742 hybrids and to preserve the balance between families in each TRS. The four 

TRS led us to consider the prediction of: T0 hybrids where none of the VS parental lines 

contributed to the TRS, T1 hybrids where only one of the VS parental lines contributed to the 

TRS and T2 hybrids where both VS parental lines contributed to the TRS. Each TRS was sampled 

10 times and the mean of the quality of prediction over the 10 repetitions was computed. The 

TRS size of 742 was chosen since it corresponded to the maximum number of hybrids that could 

be sampled for the T0 prediction. 

 
Fig.2 Definition of the four different TRS and a unique VS used in scenario 1 to assess the impact of the 

level of relationship between the TRS and the VS. The F-4H composed of 363 hybrids was used as the 

unique VS and four TRS composed of 742 hybrids were sampled from the F-1H 10 times. The four TRS 

led to consider four types of prediction: T0 hybrids where none of their parental lines contributed to the 

TRS, T1C (and T1D) hybrids where only their flint (dent) parental lines contributed to the TRS, and T2 

hybrids where both of their parental lines contributed to the TRS. The constraint was to sample hybrids 

within the red box. For the T2 hybrids, an additional constraint was to include at least one hybrid per line 

that contributed to the VS (F-4H) 
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In scenario 2, we compared the efficiency of training a GBLUP model with a factorial or 

a tester design. In scenario 2a, the F-4H (composed of 363 hybrids) or the tester designs (360 

hybrids) were used to train respectively models (5.1) or (5.2) to predict the F-1H design (951 

hybrids). For each TRS, the predictive ability was computed. In addition, the GCA BLUPs 

predicted when training on the factorial design were correlated to the ones predicted with each 

of the tester designs. To compare the similarity of selection between the different approaches 

(based on phenotypic evaluations (ls-means) or genomic predictions (BLUPs) calibrated on the 

factorial or the tester designs) the coincidence of selection was computed for each trait. For 

each pair of approaches, it corresponds to the percentage of common hybrids that would be 

selected by the two approaches for a given selection rate (%). The coincidences of selection 

were computed for different selection rates. In scenario 2b we investigated the impact of the 

composition of the tester designs by considering designs composed of one or two testers. 

Different TRS were considered, each composed of 180 hybrids: (i) 180 hybrids produced by 

crossing 90 lines to one tester in each group (180 lines in total), since there were two testers in 

each group, there were four possible tester combinations to predict an hybrid, referred to as 1T-

180H-180L-A, 1T-180H-180L-B, 1T-180H-180L-C and 1T-180H-180L-D, (ii) 180 hybrids 

produced by crossing 45 lines to one tester and the 45 other lines to the other tester in each 

group, referred to as 2T-180H-180L, (iii) 180 hybrids produced by crossing 45 lines to the first 

tester and the same 45 lines to the second tester in each group referred to as 2T-180H-90L. To 

make it comparable 180 hybrids were sampled within the F-4H in a random and balanced 

manner between families, with the objective of maximizing the number of lines. This led to 

sample 152 lines (76 dent and 76 flint), and on average one line contributed to 2.4 hybrids. This 

scenario was called the F-180H-152L. In scenario 2b, TRS were sampled only once. 

In scenario 3, the difference of composition of the two factorials was exploited to 

investigate its impact on predictions. At the same number of hybrids, there are more lines and 

fewer hybrids per line in the F-1H (1.2 hybrids per line on average) compared to the F-4H (3.5 

hybrids per line on average). The F-1H and the F-4H were used in turn as TRS and VS. The two 

factorial designs were sampled to the same number of hybrids (216 hybrids) but represented a 

different number of lines (207 dent lines and 209 flint lines for the F-1H and 60 dent lines and 

60 flint lines for the F-4H). Sampling was done such that hybrids of the two sets had no common 

parental lines (only hybrids produced by crossing lines that did not contribute to TRS were 
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predicted), and were balanced between families. For the F-4H, sampling was done only among 

the random hybrids. 100 samples of 216 hybrids in each factorial design were considered and 

the mean of the 100 predictive abilities was computed. 

To test the significance of the differences between predictive abilities in scenarios 2a and 

2b, Williams tests (Williams 1959) were performed (with a risk level α=0.05) using the “r.test” 

function of the psych R-package (Revelle 2021) for dependent correlations with a common 

variable. In scenario 2b, since 21 pairwise tests were performed for each trait, a Bonferroni 

correction (multiple comparison correction) was applied per trait. All models were implemented 

using the ASReml-R package (version 4) (Butler 2019; R Core Team 2020). 

Results 

For clarity purpose, results on only four traits (DMY, DMC, DtSilk and MFU) are presented in the 

following. The results on the 11 studied traits are presented in supplementary materials. 

Variance components and broad-sense heritability at the phenotypic level without marker 

information 

Broad-sense heritabilities (H²) at the design level were high for all traits and all designs (Table 

1 and Table S1). For the four main traits, they rnged from 0.79 (MFU) to 0.91 (DMC and DtSilk) 

for the F-1H, from 0.86 (MFU) to 0.93 (DMC and DtSilk) for the F-4H, from 0.85 (MFU) to 0.89 

(DMC) for the T-D and from 0.78 (MFU) to 0.94 (DMC) for the T-F. For a given trait, heritabilities 

were similar in both factorial designs. Variance decomposition at the phenotypic level without 

marker information showed large and significant genetic variances for all designs and all traits 

(Table 1, Table S1). For all traits and all designs, the SCA variance was lower than the sum of 

the GCA variances. The percentage of genetic variance due to SCA ranged from 10% (MFU) to 

20% (DMY) for the F-1H, from 3% (MFU) to 9% (DMY) for the F-4H design, from 11% (DtSilk and 

MFU) to 21% (DMY) for the T-D and from 13% (DMC) to 20% (DMY) for the T-F. 

.
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Table 1 Broad-sense heritability (H²), percentage of genetic variance asigned to SCA variance (%SCA) and variance components estimated on phenotypic data 

corrected for the spatial effects for all the designs (F-1H, F-4H, T-F and T-D) without using marker information. 

Trait Design 𝛔𝐆𝐂𝐀𝐝

𝟐 a 𝛔𝐆𝐂𝐀𝐟

𝟐 a 𝛔𝐒𝐂𝐀
𝟐 a 𝛔𝐆𝐂𝐀𝐝×𝐄

𝟐 a 𝛔𝐆𝐂𝐀𝐟×𝐄
𝟐 a 𝛔𝐒𝐂𝐀×𝐄

𝟐 a %SCAb 𝛔𝐄
𝟐a (min-max)c H² d 

DMY F-1H 0.72 (0.10)e 0.25 (0.10) 0.25 (0.11) 0.03 (0.06) 0.19 (0.06) 0.12 (0.09) ns 20 0.70(0.06)-3.09(0.17) 0.84 

F-4H 0.74 (0.14) 0.54 (0.11) 0.13 (0.03) 0.18 (0.03) 0.17 (0.03) 0.11 (0.05) 9 0.44(0.06)-3.15(0.26) 0.89 

T-D 0.70 (0.13) - 0.17 (0.04) 0.03 (0.04) nsf - 0.21 (0.06) 21 0.26(0.06)-2.22(0.27) 0.88 

T-F - 0.52 (0.10) 0.14 (0.03) - 0.09 (0.03) 0.09 (0.05) 20 0.34(0.07)-1.42(0.18) 0.87 

DMC F-1H 0.84 (0.27) 2.25 (0.26) 0.55 (0.27) 0.33 (0.10) 0.30 (0.10) 0.20 (0.15) ns 15 0.71(0.07)-4.96(0.28) 0.91 

F-4H 1.32 (0.24) 2.78 (0.46) 0.28 (0.05) 0.40 (0.06) 0.45 (0.06) 0.25 (0.09) 6 0.68(0.10)-4.15(0.37) 0.93 

T-D 1.89 (0.34) - 0.32 (0.08) 0.56 (0.10) - 0.35 (0.12) 14 0.59(013)-2.63(0.37) 0.89 

T-F - 3.00 (0.51) 0.44 (0.09) - 0.30 (0.07) 0.12 (0.10) 13 0.50(0.10)-2.35(0.31) 0.94 

DtSilk F-1H 1.26 (0.18) 0.73 (0.19) 0.41 (0.18) 0.12 (0.05) 0.16 (0.06) 0 (0.08) ns 17 0.66(0.06)-5.57(0.28) 0.91 

F-4H 0.76 (0.14) 1.55 (0.26) 0.14 (0.03) 0.15 (0.03) 0.20 (0.03) 0.09 (0.06) ns 6 0.69(0.08)-1.42(0.14) 0.93 

T-D 0.63 (0.11) - 0.08 (0.03) 0.06 (0.03) - 0.09 (0.06) 11 0.37(0.07)-2.06(0.25) 0.86 

T-F - 1.07 (0.19) 0.22 (0.05) - 0.14 (0.04) 0.01 (0.08) 17 0.51(0.09)-3.34(0.39) 0.90 

MFU 

(x10²) 

F-1H 2.06 (0.30) 1.03 (0.33) 0.33 (0.34) ns 0.13 (0.23) 0.01 (0.24) 0.86 (0.39) 10 3.39(0.28)-12.36(0.68) 0.79 

F-4H 1.74 (0.31) 1.67 (0.30) 0.10 (0.06) ns 0.37 (0.08) 0.29 (0.07) 0.00 ns 3 1.29(0.12)-7.61(0.60) 0.86 

T-D 2.23 (0.40) - 0.28 (0.10) 0.46 (0.12) - 0.00 11 1.04(0.16)-6.31(0.74) 0.85 

T-F - 1.46 (0.27) 0.23 (0.09) - 0.21 (0.11) 0.23 (0.16) 14 0.46(0.12)-6.53(0.77) 0.78 

a Variance component defined as in Model (1.1) and (1.2). For the tester designs, σSCA
2  corresponds to σSCAt

2  

b Percentage of SCA variance computed as 
𝜎𝑆𝐶𝐴

2

𝜎𝐺𝐶𝐴𝑑
2 +𝜎𝐺𝐶𝐴𝑓

2 +𝜎𝑆𝐶𝐴
2 × 100 

c Minimum residual variance and maximum residual variance across all environments 
d Broad-sense heritability 
e Standard error in brackets 
f Significance of variance components assessed by likelihood ratio test with 𝜒2 mixed distributions (α=0.05). Non-significant variance indicated by ns 
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Variance components obtained using marker information 

Variance decomposition on adjusted means using GBLUP models showed large and significant 

genetic variances for all traits and all designs (Table 2, Table S2). The decomposition of the 

genetic variance into GCA and SCA components showed that most of the hybrid variation was 

due to GCA variance. For the four main traits of interest, the percentage of genetic variance due 

to SCA ranged from 0% (DMC and MFU) to 11% (DMY) for the F-1H, from 0% (DMC) to 7% (UFL) 

for the F-4H, from 4% (DMC, DtSilk) to 15% (DMY) for the T-D and from 5% (MFU) to 10% (DMY) 

for the T-F. These values were lower (except for MFU in F_4H) than the ones estimated based on 

phenotypic data only. Adding SCA effects in the model induced no or minor changes in the 

genetic variance components, but reduced slightly the residual variance. 

Table 2 Variance components and percentage of genetic variance asigned to SCA variance (%SCA) 

estimated with marker information (GBLUP model) for all the designs (F-1H, F-4H, T-D and T-F). 

Trait Design 𝛔𝐆𝐂𝐀𝐝

𝟐  𝛔𝐆𝐂𝐀𝐟

𝟐  𝛔𝐒𝐂𝐀
𝟐 a %𝐒𝐂𝐀b 𝛔𝐄

𝟐 

DMY F-1H 0.62 (0.12)c 0.48 (0.09) 0.13 (0.06) 11 0.52 (0.06) 

F-4H 0.68 (0.15) 1.04 (0.21) 0.03 (0.05) 2 0.31 (0.05) 

T-D 0.47 (0.13) - 0.08 (0.06) 15 0.25 (0.05) 

T-F - 0.86 (0.17) 0.10 (0.05) 10 0.11 (0.03) 

DMC F-1H 1.41 (0.25) 1.79 (0.28) 0.00 0 1.07 (0.08) 

F-4H 2.79 (0.53) 4.45 (0.78) 0.01 (0.08) 0 0.62 (0.10) 

T-D 4.27 (0.79) - 0.19 (0.12) 4 0.41 (0.09) 

T-F - 3.95 (0.76) 0.28 (0.18) 7 0.51 (0.12) 

DtSilk F-1H 1.21 (0.21) 2.03 (0.29) 0.09 (0.06) 3 0.73 (0.08) 

F-4H 1.67 (0.32) 2.65 (0.46) 0.11 (0.06) 2 0.24 (0.05) 

T-D 0.99 (0.23) - 0.04 (0.04) 4 0.21 (0.05) 

T-F - 2.29 (0.42) 0.17 (0.10) 7 0.24 (0.06) 

MFU 

(x10²) 

F-1H 1.14 (0.22) 1.31 (0.24) 0.00 0 1.50 (0.1) 

F-4H 1.19 (0.27) 2.17 (0.42) 0.26 (0.14) 7 0.48 (0.11) 

T-D 1.38 (0.38) - 0.07 (0.10) 5 0.81 (0.14) 

T-F - 2.11 (0.44) 0.12 (0.13) 5 0.55 (0.11) 

a For the tester designs, σSCA
2  corresponds to σSCAt

2   

b Percentage of SCA variance computed for the factorial designs as 
𝜎𝑆𝐶𝐴

2

𝜎𝐺𝐶𝐴𝑑
2 +𝜎𝐺𝐶𝐴𝑓

2 +𝜎𝑆𝐶𝐴
2 × 100 

c Standard error in brackets 
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Scenario 1-Using a sparse factorial design (F-1H) to predict new hybrid combinations in 

new environments 

In scenario 1a, the predictive abilities obtained for new hybrid combinations in new 

environments (F-4H, T-D and T-F) when calibrating on the F-1H were high for all traits (Table 3, 

Table S3). Considering a prediction model without SCA, they ranged from 0.78 (DMY) to 0.82 

(MFU) when predicting all hybrids (Selected + Random) of the F-4H, from 0.74 (DMC) to 0.80 

(DMY) for T-D and from 0.69 (DMY) to 0.84 (DMC and DtSilk) for T-F (Table 3). When predicting 

the tester designs, the ability to predict the 𝐺𝐶𝐴𝑑 was higher than the ability to predict the 𝐺𝐶𝐴𝑓 

for eight traits out of 11, differences ranged from 0.01 (MFU) to 0.11 (DMY). Considering the 

SCA in the model did not improve the quality of predictions. Predictive abilities were computed 

for each hybrid type of the VS (random or selected). They were generally higher for the random 

hybrids compared to the selected hybrids (hybrids produced from crossing two selected 

parental lines) for all VS and all traits but DMC for F-4H and T-D and DMY for T-F (Table 3). 

Differences between the predictions of random and selected hybrids were greater for DMY, 

DtSilk, NDF, CELL and HCELL. 

Table 3 Predictive abilities obtained for the F-4H and for each of the tester designs by training the GBLUP 

model on the F-1H in scenario 1a. 

Validation 

Set 

Predicted hybrid 

value component(s) 
Hybrid type in the VSa DMY DMC DtSilk MFU 

F-4H GCAf + GCAd  Selected+Random (363)b 0.78 0.78 0.79 0.82 

Selected (127) 0.48 0.80 0.69 0.73 

Random (236) 0.67 0.78 0.76 0.80 

GCAf + GCAd + SCA  Selected+Random (363) 0.77 0.78 0.79 0.82 

Selected (127) 0.46 0.80 0.71 0.73 

Random (236) 0.67 0.78 0.77 0.80 

T-D GCAd  Selected+Random (180) 0.80 0.74 0.76 0.79 

Selected (60) 0.66 0.76 0.69 0.73 

Random (120) 0.71 0.73 0.71 0.76 

T-F GCAf  Selected+Random (180) 0.69 0.84 0.84 0.79 

Selected (60) 0.68 0.84 0.78 0.71 

Random (120) 0.63 0.84 0.86 0.79 

a Predictive ability was computed for all hybrids (Selected+Random) and also for each hybrid type (Se-

lected and Random) of the VS 
b Number of hybrids in brackets 
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In scenario 1b, the ability of the F-1H to predict T0, T1 or T2 hybrids was estimated by 

considering different TRS (Fig.3). The lowest predictive abilities were obtained when predicting 

T0 hybrids for the four traits presented (and for seven traits out of 11) and ranged from 0.70 

(DMC and DtSilk) to 0.79 (MFU). The highest predictive abilities were obtained when predicting 

T2 hybrids for all presented traits (and for eight traits out of 11), they ranged between 0.77 (DMY 

and DMC) and 0.82 (MFU). Predictive abilities obtained for T1 hybrids were on average 

intermediate compared to the ones obtained for T0 and T2 hybrids. For a given trait, differences 

in predictive abilities between T0, T1 and T2 hybrids were small especially for DMY (ranging from 

0.74 to 0.77) and MFU (ranging from 0.79 to 0.82). On average over the 11 traits, the quality of 

prediction was higher for the T1F hybrids than for the T1D hybrids for all traits (except for 

DINAG), differences ranged from 0.02 (DINAG) to 0.22 (HCELL) between the highest and the 

lowest quality of prediction. It should be noted that for the T0 predictions, sampling was only 

performed once which explains the zero-variance. 

 
Fig.3 Predictive abilities obtained for the F-4H (363 hybrids) by training the model on four different TRS 

composed of 742 hybrids sampled from the F-1H in scenario 1b. Depending on the TRS, VS hybrids had 

none of their parental lines in the TRS (T0), only their flint parental line in the TRS (T1F), only their dent 

parental line in the TRS (T1D) or their two parental lines in the TRS (T2). For the T1D, T1F and T2 TRS 10 

samplings were performed. The red diamond shaped point represents the mean of the predictive ability 

of the 10 samplings. For the T0 TRS, sampling was performed once (all 742 available hybrids with no 

common parental lines between the TRS and VS were sampled), this explains the zero variance observed 

on the figure. 
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Scenario 2-Compare the efficiency of factorial versus tester designs as TRS 

In scenario 2a, we compared the predictive abilities that can be achieved using either the F-4H 

(363 hybrids) or the tester designs (360 hybrids) as TRS to predict all hybrids of the F-1H (Fig.4). 

They ranged from 0.55 (DtSilk) to 0.67 (MFU) for the calibration on the factorial design and from 

0.54 (DMY) to 0.65 (DMC and MFU) for the calibration on the tester designs. Calibrating on the 

F-4H tended to gave better predictive abilities than calibrating on the tester designs for eight 

traits out of 11 and on average over the 11 traits (Table S4), but differences were not significant 

according to Williams tests (α=0.05). Including SCA effects in the GBLUP model did not improve 

the quality of prediction.  

 
Fig.4 Predictive abilities obtained for all hybrids of the F-1H (951 hybrids) by training the model on the 

F-4H (363 hybrids) (including or not the SCA effect in the model) or on the tester designs (360 hybrids) in 

scenario 2a. Williams tests were performed (α=0.05) and significant differences were indicated with letters: 

two different letters indicate a significant difference and at least one common letters indicate no 

significant difference. 

The GCA BLUPs predicted using the F-4H as TRS were well correlated to the GCA BLUPs 

predicted using the tester designs as TRS, correlations ranged from 0.85 (𝐺𝐶𝐴𝑓 for DMY) to 0.95 

(𝐺𝐶𝐴𝑓 for DMC) (Table 4, Table S5). The coincidence of selection computed for hybrid 

predictions obtained with the factorial or the tester approaches for a selected rate of 5% was 

equal to 53% for DMY, 75% for DMC, 56% for DtSilk and 68% for MFU (Fig.S1). This illustrated 

that at this selection rate, the two approaches did not select the same single-cross hybrids. 
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Interestingly, for DMY, which is the major trait of interest in breeding, for low selection rates 

(<5%), predictions based on the factorial identified a higher proportion of hybrids that were the 

top-ranked ones based on their observed performances (ls-means) (Fig.S1). The predictive 

abilities were also computed for the different types of hybrids constituting the VS: T0 or T1 

hybrids. Overall, predictive abilities of T1 hybrids were higher than the ones of T0 hybrids for all 

traits and all designs (Table 5, Table S6). The differences in predictions between the factorial 

and tester designs were similar when predicting all, only T1 or T0 hybrids. 

Table 4 Correlations between the GCA BLUPs predicted for the F-1H (951 hybrids) using either the F-4H 

(363 hybrids) or the tester designs (360 hybrids) as TRS in scenario 2a. 

BLUPs correlated  DMY DMC DtSilk MFU 

𝐆𝐂𝐀𝐟  0.85 0.95 0.94 0.93 

𝐆𝐂𝐀𝐝  0.90 0.88 0.86 0.92 

Table 5 Predictive abilities obtained by training the GS model on the F-4H (363 hybrids) or on the tester 

designs (360 hybrids) to predict different hybrid types of the F-1H (951 hybrids) in scenario 2a. 

TRS  

Validation Set 

DMY DMC DtSilk MFU 
Hybrid typea Number of 

hybrids 

F-4Hb (363)c T1D 106 0.61 0.72 0.61 0.70 

T1F 95 0.74 0.81 0.72 0.78 

T0 742 0.49 0.61 0.50 0.64 

All 951 0.56 0.64 0.55 0.67 

Tester designs 

(360) 

T1D 107 0.60 0.73 0.63 0.68 

T1F 95 0.75 0.78 0.73 0.75 

T0 741 0.49 0.62 0.52 0.63 

All 951 0.54 0.64 0.56 0.65 

a VS hybrids had none of their parental lines in the TRS (T0), only their flint parental line in the TRS (T1F), 

only their dent parental line in the TRS (T1D) 
b Model (5.1) including SCA effects 
c Number of hybrids in the TRS 

At the same number of hybrids (180 hybrids), the impact of the composition of the tester 

designs used as TRS was investigated in scenario 2b. We compared the predictive abilities 

obtained using either one or two testers or using a factorial design as TRS to predict all 951 

hybrids of the F-1H. Across all presented traits and all TRS, the predictive abilities ranged from 

0.48 (DtSilk, 2T-180H-90L) to 0.66 (MFU, 2T-180H-180L) (Fig.5). When the TRS was composed 

of one tester per group, the average predictive ability over the four tester combinations (1T-
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180H-180L-A, 1T-180H-180L-B, 1T-180H-180L-C, 1T-180H-180L-D) ranged from 0.51 (DMY) to 

0.64 (DMC). Predictive abilities varied between the four different combinations of testers (A, B, 

C and D) and the best combination was different depending on the trait. Differences between 

the lowest and the highest ranged from 0.005 (DMC) to 0.048 (DMY). Qualities of prediction 

obtained with the 2T-180H-180L were significantly higher than those obtained with the 2T-

180H-90L for all presented traits (and for nine traits out of 11 studied traits). On average, the 

quality of prediction obtained with 2T-180H-180L as TRS was equivalent or significantly higher 

to the ones obtained with TRS composed of one tester per group (1T-180H-180L-A, B, C, D). At 

the same number of hybrids, using the F-180H-152L instead of the 2T-180H-90L or the 1T-

180H-180L tended to give higher predictive abilities on average over the 11 traits. This 

advantage was significant for DMY and DMC (between the F-180H-152L and the 2T-180H-90L). 

Differences were not significant between the F-180H-152L and the 2T-180H-180L (for the 11 

traits studied). It should be noted that predictive abilities obtained when calibrating on 180 

hybrids (F-180H-152L) were similar or only slightly lower than the ones obtained when using 

the whole set of 363 hybrids of the F-4H as TRS. Differences ranged from 0 (DMY) to 0.05 (DtSilk) 

(Fig.4 and Fig.5). 

 
Fig.5 Predictive abilities obtained when training the model on different tester design compositions or on 

a factorial desgin in scenario 2b. Each tester TRS was composed of 180 hybrids: 180 hybrids produced by 

crossing 90 lines to one tester in each group (1T-180H-180L-A, 1T-180H-180L-B, 1T-180H-180L-C, 1T-

180H-180L-D), 180 hybrids produced by crossing 90 lines to two testers in each group (2T-180H-180L), 

180 hybrids produced by crossing 45 lines to two testers in each group (2T-180H-90L). The factorial design 

was composed of 180 hybrids produced by crossing 76 flint lines to 76 dent lines (F-180H-152L) to predict 

all 951 hybrids of the F-1H. The significance of the difference in predictive abilities was assessed by William 

tests (α=0.05) and was indicated with letters: two different letters indicate a significant difference and at 

least one common letters indicate no significant difference. 
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Scenario 3-Assess the impact of the number of hybrids per line in factorial designs when 

predicting T0 hybrids 

To investigate the impact of the number of lines involved in the calibration set at the same 

number of hybrids, the F-4H and the F-1H were used in turn as calibration sets to predict T0 

hybrids (no common parental lines between the TRS and the VS) (Fig.6, Table S7). The 

predictive abilities when calibrating on 216 hybrids of the F-1H varied between 0.55 (DMY) and 

0.71 (MFU). The predictive abilities when calibrating on 216 hybrids of the F-4H varied between 

0.44 (DtSilk) and 0.65 (MFU). For all presented traits (and for nine traits out of 11 and on average), 

the quality of prediction was higher when calibrating on 216 hybrids of the F-1H (207 dent lines 

and 209 flint lines) than when calibrating on 216 hybrids of the F-4H (60 dent lines and 60 flint 

lines) to predict T0 hybrids of the other design. Thus, at a given TRS size of 216, using more lines 

and fewer hybrids per line to predict T0 hybrids tended to give better qualities of prediction in 

our scenario. 

 
Fig.6 Predictive abilities obtained when training the GS model on 216 hybrids of the F-1H design to 

predict 216 hybrids of the F-4H design in light orange and when training the model on 216 hybrids of the 

F-4H design to predict the F-1H in red in scenario 3. For each approach, 100 samplings were performed. 

The black diamond-shaped point represents the mean of the predictive abilities over the 100 repetitions. 
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Discussion 

Importance of SCA and its prediction 

The proportion of SCA variance estimated in the designs using the model without marker 

information (Model 1.1 and 1.2) was small for all traits, from 0 to 20% for the F-1H and from 0 

to 9% for the F-4H. This result is expected in hybrids produced by crossing lines from divergent 

populations (heterotic groups) (Reif et al. 2007). This relatively small importance of SCA effects 

compared to GCA effects is consistent with the fact that no SCA QTL could be detected in the 

F-1H design (Giraud et al. 2017b; Seye et al. 2019). Higher SCA proportions were obtained for 

the F-1H than for the F-4H, which might be due to differences in environmental conditions or 

to a different sampling of hybrids from the inbred lines. It should be noted that the estimation 

of the SCA variance in the F-1H was less accurate (Table 1) than in the F-4H design due to the 

fact that most of the inbred lines contributed to producing only one hybrid. This made it more 

difficult to separate the GCA from the SCA effects. Therefore, we can assume that the proportion 

of SCA variance was over-estimated in the F-1H. The proportion of SCA variance in the designs 

was also estimated through GBLUP models, by including marker information to compute GCA 

and SCA kinships. The estimated proportion of SCA was lower using the GBLUP model compared 

to the model without marker information. One possible explanation could be that the GBLUP 

model was not able to efficiently capture the SCA variance component. 

Including SCA effects in the GBLUP models did not improve the predictions. This is 

consistent with the variance decomposition that showed little SCA variance and was also 

observed in other studies using data from inter-heterotic single-cross hybrids (Schrag et al. 

2006, 2018; Technow et al. 2014; Kadam et al. 2016; Westhues et al. 2017; González-Diéguez et 

al. 2021). In fact, few studies have shown an increase in single-cross prediction accuracy by 

modeling SCA effects (Technow et al. 2012; Dias et al. 2018). Kadam et al. (2016) reported that 

including SCA effects in GS models led to higher quality of predictions when predicting hybrids 

with untested parents (T0) compared to hybrids with one or two tested parents (T1 or T2) but 

this result was not confirmed in our study. We computed the SCA kinship matrix coefficient as 

the product, term to term, of the GCA kinship coefficients between the dent and the flint parental 

lines, similarly to what has been done in previous studies (Bernardo 1994; Technow et al. 2014; 

Seye et al. 2020; Kadam et al. 2021). González-Diéguez et al. (2021) showed that this 

computation of the SCA kinship matrix does not capture the whole SCA but only part of it, i.e. 
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the additive-by-additive intergroup epistasis component (𝐺𝐴𝐴(1,2)). González-Diéguez et al. 

(2021) proposed a new SCA kinship formula, but their results as well as ours (results not shown) 

showed that it did not improve the predictive ability for inter-heterotic group single-cross 

hybrids. 

Efficiency of using a factorial design to predict new hybrids in new environments 

One of our objectives was to evaluate the interest of using a sparse factorial design to train GS 

models in early breeding stages. To this end, we compared different TRS designs derived from 

unselected segregating biparental families that correspond to the population structure of 

candidate lines generated by breeders in breeding programs. We showed in scenario 1a that by 

using a factorial design composed of only one hybrid per line to train GS models achieves good 

predictive abilities of new hybrids in new environments (new years and locations). We observed 

good predictive abilities when predicting both factorial and tester designs. There were two main 

explanations for these high predictive abilities. First, all parental lines of the VS hybrids were also 

evaluated in the TRS and for the testers designs two founder lines from the complementary 

group were used as testers. Therefore, the predicted hybrids in the F-4H (VS) were only T2 

hybrids. The impact of predicting T2 hybrids compared to T1 or T0 hybrids was investigated in 

scenario 1b. Results showed that predictive abilities were highest for T2 single-crosses, followed 

by T1 and T0 single-crosses. This was also reported in simulations (Technow et al. 2012; Seye et 

al. 2020) and in maize studies (Technow et al. 2014; Kadam et al. 2016). Another explanation is 

the limited number of founders (four) in each group and the fact that they were chosen to have 

contrasted performances. This created a strong population structure that was accounted for 

implicitly in the GS models. A benchmark prediction model considering only the fixed effects of 

the founder line origin of the hybrids was implemented (File S2). Its good predictive ability 

confirmed that population structure alone could predict part of the hybrid performances 

(Fig.S2). The high predictive abilities found when predicting the tester designs clearly illustrate 

that the genomic prediction model is able to decouple and predict GCAs, even when using a 

highly sparse factorial design where the inbred lines are parents of only one hybrid. This is in 

accordance with other studies showing high predictive abilities for yield even with very sparse 

factorials (for simulations Seye et al. 2020, for experimental data Burdo et al. 2021). We noted 

differences in predictive abilities depending on the tester design (dent of flint) used as VS. For 

most of the traits, a higher predictive ability was observed for the group where the larger GCA 
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variance component was estimated (Table 1). 

In the F-4H and the tester designs, two types of hybrids could be predicted: the random 

hybrids that were produced by crossing parental lines drawn at random from the segregating 

families, and the hybrids between selected lines that were produced by crossing two lines 

selected based on their GCA performance. The ability to predict random hybrids was higher than 

for hybrids between selected lines, which was expected as selection decreased the variance 

between selected hybrids (scenario 1a). Nevertheless, the quality of prediction of the hybrids 

between selected lines was still high. This shows that GS models calibrated on a sparse factorial 

can efficiently predict the best hybrid combinations obtained by crossing lines already selected 

based on their GCA, which is of practical interest in breeding programs. 

Efficiency of the factorial approach compared to the tester approach 

The main objective of this study was to compare, at the same resource allocation (same number 

of hybrids), the efficiency of the factorial and tester approaches. To our knowledge our study is 

the first to compare the use of factorial and tester designs evaluated in the same environment 

in order to predict a distinct VS composed of new hybrids evaluated in new environments. For 

the same number of hybrids and lines, our results showed a slight advantage of the factorial 

design over the tester designs (scenario 2a). The simulation study by Seye et al. (2020) showed 

that the advantage of the factorial design increases with the proportion of SCA variance. In our 

study, the proportion of SCA variance was small, which could explain why we observed only a 

slight advantage of the factorial design. Moreover, the slight advantage of the factorial design 

over the tester design could also be explained by the fact that we used as testers two of the 

founder lines of the opposite group. As shown by simulations by Seye et al. (2020), using a 

founder line as tester reduces the advantage of factorial designs compared to tester designs. A 

recent study, also compared the potential of using a factorial instead of a tester approach as 

TRS (Burdo et al. 2021). They considered two multiparental synthetic populations of maize 

instead of segregating families and used only one tester. As in our study, non-additive effects 

were small and they used as tester one of the founder lines of the opposite group. They found 

an advantage of the factorial design over the tester design for some traits (flowering traits), but 

not for others (grain yield, plant height…). This is globally consistent with our results even if 

differences in their designs, traits, calibration set sizes and number of lines considered prevent 

a direct comparison with our results. 
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At the same number of hybrids, the impact of the composition of the tester designs was 

investigated and compared to a factorial design (scenario 2b). The use of only one tester 

revealed that the quality of prediction varied according to the tester used and that the best 

tester differed from one trait to another. Depending on the alleles carried by the tester, each 

tester is expected to mask part of the genetic variation for traits showing dominance. At the 

same number of hybrids, using more testers while maximizing the number of lines evaluated 

was always beneficial (the 2T-180H-180L TRS outperformed the 2T-180H-90L for nine traits out 

of 11 and all the 1T-180H-180L combinations). This strategy which maximizes the number of 

lines evaluated by crossing a given line to only one tester and using several testers in the tester 

designs is close to the one applied when considering a very sparse factorial design. Our 

experimental designs did not allow the direct comparison of a factorial design composed of 

only one hybrid per line to tester designs at the same number of hybrids. Our scenario 3 aimed 

at addressing this question by comparing the efficiency of the F-1H and the F_4H as TRS. It 

suggests that increasing the number of lines instead of increasing the number of hybrids per 

line was more efficient at the same number of hybrids when predicting T0 hybrids. Since we 

used reciprocally the F-1H and the F-4H as VS, this might have biased results. Nevertheless, a 

simulation study by Seye et al. (2020) comparing factorial designs composed of different 

numbers of hybrid per line when predicting a third independent design is in accordance with 

our results from scenario 3. Therefore, we hypothesize that a factorial composed of 180 hybrids 

and 360 lines could outperform all the tester designs in scenario 2b.  

A major issue in breeding programs is resource allocation. It is therefore important to 

optimize the factorial design at a given number of hybrids. Our results showed the advantage 

of using more lines instead of more hybrids per line when predicting T0 hybrids, as also observed 

by Seye et al. (2020) with simulations. Yet, within that same study they also showed that when 

predicting T2 hybrids it was more efficient to use a factorial with four hybrids per line instead of 

one hybrid per line. In light of these preliminary results, we can argue that different objectives 

of selection could lead to considering different compositions for the factorial TRS to maximize 

the quality of prediction. Given our results, we hypothesize that using a factorial design 

composed of only one hybrid per line for preliminary screening and a factorial design composed 

of more hybrids per line in a second screening would be a promising lead. This could be 

integrated into the two-part strategy proposed in the hybrid context by Powell et al. (2020). We 
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propose using a factorial design composed of one hybrid per line in the population 

improvement part of the program and a factorial design composed of more than one hybrid 

per line in the product development part when the objective is to identify commercial hybrids. 

What does it imply for breeding programs? 

Our study revealed a significant advantage (Williams tests) of the factorial approach compared 

to the tester approach for some traits (DINAG, DINAGZ, PH) and at least an equivalence for the 

rest of the traits studied. According to our prediction results, topcross evaluations could be 

replaced by evaluations on a sparse factorial design and lead to similar or higher predictive 

abilities. At the same number of lines, a factorial design composed of one hybrid per line requires 

half as much phenotyping effort as the tester design. However, creating single-cross hybrids is 

more challenging than test-cross hybrids since hand-made pollination is necessary. Therefore, 

the factorial design could decrease the number of plots needed for phenotypic evaluation but 

its production could be more costly. A preliminary study conducted by Seye et al. (2020) showed 

that the increase in production costs would be compensated by the diminution in field plots 

needed. 

This study relies on original experimental designs derived from segregating families, 

which allow the testing of several hypotheses. It has given some insights into the potential of 

replacing topcross evaluations by genomic predictions calibrated on a factorial design in 

breeding programs. Since our conclusions are closely related to the experimental designs and 

populations we considered (genetic variability available in the founder lines, number of founder 

lines…), future studies could take into consideration other populations. Another line of 

investigation would be the optimization of the TRS and the portability along breeding cycles. 
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Abstract 

Genomic selection offers new prospects for revisiting hybrid breeding schemes by replacing 

extensive phenotyping of individuals with genomic predictions. Finding the ideal design for 

training genomic prediction models is still an open question. Previous studies have shown 

promising predictive abilities using sparse factorial instead of tester-based training sets to 

predict single-cross hybrids from the same generation. This study aims to further investigate the 

use of factorials and their optimization to predict line general combining abilities (GCAs) and 

hybrid values across breeding cycles. It relies on two breeding cycles of a maize reciprocal 

genomic selection scheme involving multiparental connected reciprocal populations from flint 

and dent complementary heterotic groups selected for silage performances. Selection based on 

genomic predictions trained on a factorial design resulted in a significant genetic gain for dry 

matter yield in the new generation. Results confirmed the efficiency of sparse factorial training 

sets to predict candidate line GCAs and hybrid values across breeding cycles. Compared to a 

previous study based on the first generation, the advantage of factorial over tester training sets 

appeared lower across generations. Updating factorial training sets by adding single-cross 

hybrids between selected lines from the previous generation or a random subset of hybrids from 

the new generation both improved predictive abilities. The CDmean criterion helped determine 

the set of single-crosses to phenotype to update the training set efficiently. Our results validated 

the efficiency of sparse factorial designs for calibrating hybrid genomic prediction 

experimentally and showed the benefit of updating it along generations. 
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Introduction 

Maize varieties are generally single-cross hybrids obtained by crossing two inbred lines that 

belong to complementary heterotic groups. The challenges for breeders are (i) selecting lines 

within each heterotic group that will be used as parents for the next generation and (ii) 

identifying the best single-cross hybrids among all possible ones in order to derive new varieties. 

The advent of Doubled Haploid (DH) technology now enables the rapid production of numerous 

fully homozygous inbred lines each year. This large number of candidate lines produced each 

year in breeding programs makes generating and evaluating all potential single-cross hybrids 

practically undoable. To overcome this difficulty, conventional maize hybrid breeding schemes 

are typically divided into two stages. In the first stage (1), topcross hybrids are produced by 

crossing candidate lines from one heterotic group with a limited number of inbred lines from 

the complementary group, referred to as "testers". The performances of these topcross hybrids 

provide an estimation of the General Combining Abilities (GCA) of the candidate lines. In the 

second stage (2), the selected lines from stage 1 are crossed using a sparse factorial design to 

identify the best single-cross hybrid combinations. At this stage, the selection is performed on 

the GCA of the parental lines and the Specific Combining Ability (SCA) of the pair of parental 

lines. Selecting lines based on a limited number of testers at stage 1 does not fully exploit the 

complementarity between the candidate lines from the two heterotic groups and can bias the 

line GCA estimation since the line GCA and its SCAs with the testers are confounded (Hallauer 

et al. 2010). Also, the two-stage process is time-consuming and requires extensive phenotyping 

(at least as many as the total number of candidate lines in both groups in stage 1). 

Due to limited resources for phenotyping, predicting the performance of untested 

hybrids has been a critical objective in hybrid selection. Bernardo (1994) was the first to propose 

a marker-based model for plant hybrid performance prediction. He combined marker-based 

distances between parental lines of hybrids and the performances of a related set of single-

crosses to predict GCAs and SCAs of non-phenotyped hybrids. This prediction model, which 

aims at predicting the value of unphenotyped individuals based on their marker-based 

relationship with a set of individuals both phenotyped and genotyped, is similar to the Genomic 

Best Linear Unbiased Prediction (GBLUP) model (VanRaden 2008) that has been proposed more 

recently and is now widely used to perform Genomic Selection (GS) in plants and animal. 

Different other genomic prediction models have been proposed (see Meuwissen et al. 2001 
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seminal paper and Howard et al. 2022 for a review), all of them use molecular markers scored 

across the entire genome to predict the genetic values of genotyped individuals, referred to as 

the Prediction Set (PS), using individuals both phenotyped and genotyped, referred to as the 

Training Set (TRS). Since the pioneer work of Bernardo (1994), different prediction models 

adapted to hybrid value prediction have been proposed considering non-additive effects, either 

by modeling the GCA and SCA effects or the additive, dominance, and epistasis effects (Vitezica 

et al. 2013, 2017; Varona et al. 2018; González-Diéguez et al. 2021). Even if several studies have 

confirmed the efficiency of these GS models for predicting single-cross hybrid values in maize 

(see review by Kadam and Lorenz 2018), the relative interest of the different prediction models 

is still unclear. Besides the statistical model, various factors are known to affect genomic 

prediction accuracies, such as trait heritability, the number of markers, the size of the TRS, and 

the relationship between the TRS and the PS (see reviews: Kadam and Lorenz 2018; Isidro y 

Sánchez and Akdemir 2021; Merrick and Carter 2021; Kadam et al. 2021). In the context of hybrid 

prediction, in addition to these factors, the crossing design used to produce the TRS hybrids 

also affects prediction accuracy (Technow et al. 2014; Seye et al. 2020; Lorenzi et al. 2022).  

In most studies, GS for hybrid value prediction has been considered in the second stage 

of the hybrid breeding scheme, i.e., by using as TRS hybrids between lines that have already 

undergone a selection based on their testcross values. To improve the efficiency of hybrid 

breeding schemes, Kadam et al. (2016) and (Giraud 2016) proposed (1) to replace topcross 

evaluation in stage 1 with a sparse factorial design between unselected candidate lines from 

both groups and (2) to use GS to predict GCAs of all lines and SCA of all potential single-cross 

combinations. This makes it possible to perform selection in one stage instead of two. Both 

studies found good prediction accuracies for untested hybrids using factorial designs as TRS. 

Later, simulations and experimental studies have shown the potential of using sparse factorial 

instead of tester TRSs when predicting the same generation (Seye et al. 2020; Burdo et al. 2021; 

Lorenzi et al. 2022). Although a simulation work validated the advantage of factorial compared 

to tester TRSs to predict hybrid values across breeding cycles (Seye et al. 2020), further 

experimental validation is needed. From one cycle to the next, the average relatedness between 

the TRS and PS decreases and the joint effect of selection, drift, and recombination events 

change allele frequencies and the linkage disequilibrium between markers and QTLs, which 

decrease prediction accuracy if the TRS is not updated along cycles (Pszczola et al. 2012; Isidro 
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y Sánchez and Akdemir 2021; Rio et al. 2022b). This raises questions about how to efficiently 

update the TRS to maximize prediction accuracy while minimizing phenotyping costs. 

According to the literature, an ideal TRS should maximize the accuracy by maximizing 

the relationship between the TRS and PS (Zhong et al. 2009; Zhao et al. 2012; Technow et al. 

2013) and minimizing the within TRS relationship to capture a large genetic variance (Pszczola 

et al. 2012; Isidro y Sánchez and Akdemir 2021). Different optimization criteria have been 

proposed to define the TRS (Rio et al. 2022b). Rincent et al. (2012) proposed optimizing the TRS 

by maximizing the mean of the coefficient of determination (CDmean) of contrasts between 

each unphenotyped PS individual and the target population mean. Numerous studies have 

shown that building the TRS using the CDmean significantly increases the accuracy of GS models 

relative to random sampling (Isidro y Sánchez and Akdemir 2021; Rio et al., 2022; Fernández-

González et al. 2023). In a breeding program, where genomic prediction is applied routinely, a 

large dataset from previous years of phenotyping is available for model training. One can 

wonder which phenotypic data from the previous generation(s) should be included in the TRS 

and which additional hybrids should be phenotyped to complete the existing TRS and achieve 

the highest prediction accuracy for the new generation with a given phenotyping effort. One 

idea could be to use the CDmean to optimize the choice of the individuals from the new 

generation to be phenotyped while considering the existing TRS comprising data from the 

previous generations. To our knowledge, this strategy has never been tested in this context.  

The present study investigates the use and optimization of factorial TRS for genomic 

prediction of hybrid performance across breeding cycles. It relies on two breeding cycles of a 

reciprocal genomic selection scheme initiated from multiparental connected reciprocal 

populations generated in the flint and dent complementary heterotic groups. Data from the first 

cycle was already analyzed in previous studies (Giraud et al. 2017a, b; Seye et al. 2019) and have 

shown promising results in terms of genomic predictive abilities for replacing testcross 

evaluation by sparse factorial evaluations (Lorenzi et al. 2022). We present in study results from 

a new breeding cycle that was produced and evaluated in a factorial design to: (i) estimate the 

genetic gain achieved after selection based on genomic predictions calibrated on a sparse 

factorial, (ii) assess the predictive ability in the new breeding cycle and compare different GS 

models, (iii) evaluate the efficiency of training GS models on a factorial design for predictions 

across breeding cycles and compare it to tester designs, (iv) investigate the benefit of different 
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strategies to update the factorial TRS across cycles and optimize it to predict the new generation. 

Materials and Methods 

This study relies on data from a reciprocal breeding experiment aiming at improving the silage 

performance of maize single-cross hybrids produced between the dent and flint heterotic 

groups, the two main heterotic groups used for silage maize hybrids in Northern Europe. The 

experimental data comprises two breeding cycles, further called G0 and G1. Inbred lines from 

the G0 cycle were evaluated for hybrid performances in three experimental designs already 

analyzed in previous publications (Giraud et al. 2017a, b; Seye et al. 2019; Lorenzi et al. 2022). A 

summary of the G0 cycle production is provided below. The best G0 lines in each group were 

selected based on genomic predictions and intercrossed to produce the new breeding cycle 

(G1) we will focus on in this study. All experimental designs are described in Table 1 and Fig.1. 

Table 1 Description of all experimental designs used in this study. 

Years of 

phenotyping 

Breedin

g cycle 

Design Name Hybrids 

within the 

design a 

Reference c 

2013, 2014 G0 Factorial G0_F-1H G0Ra Giraud et al. 2017a, b; 

Seye et al. 2019; 

Lorenzi et al. 2022 

2016, 2017 G0 Factorial G0_F-4H G0R + G0Sb Seye 2019; Lorenzi et 

al. 2022 
Tester G0_T 

2019, 2020 G0+G1 Factorial (G0S+G1)_F-

1H 

G0S + G1 Current study 

a G0R hybrids were produced by crossing two random lines from the G0 cycle 
b G0S hybrids were produced by crossing two selected lines from the G0 cycle 
c A reference was indicated for data that was already analyzed in previous studies 

Summary of the G0 plant material production and selection of the best candidate lines 

Four founder lines were intercrossed in each group to derive six biparental families. In total, 822 

flint lines and 802 dent lines were produced, further called G0 lines. The G0 lines were crossed 

to produce three experimental hybrid designs. The G0_F-1H was obtained by crossing the 822 

flint lines to the 801 dent lines following a sparse factorial design, leading to 951 single-cross 

hybrids (on average, one line contributed to 1.2 hybrids). This experimental design was 

evaluated in France and Germany in 2013 and 2014 for silage performances (Giraud et al. 2017a, 

b; Seye et al. 2019). Then, 30 G0 lines were selected in each heterotic group based on genomic 
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predictions trained on the G0_F-1H for an index combining silage yield, moisture content at 

harvest, and silage quality. Additionally, 60 G0 lines (10 lines per family) were chosen randomly. 

These lines were used to create two other experimental designs. The G0_F-4H factorial design 

composed of 363 hybrids (on average, one line contributed to four hybrids) was produced by 

randomly crossing (i) the 30 G0 selected flint lines to the 30 G0 selected dent lines to produce 

131 hybrids (further called “G0S hybrids”) and (ii) the 60 G0 random dent lines to the 60 G0 

random flint lines leading to 232 hybrids (further called “G0R hybrids”). In parallel, the G0_T-F 

(and G0_T-D) tester design was produced by crossing the same 90 G0 flint (dent) lines from one 

group to two founder lines from the dent (flint) group used as testers. Together, the G0_T-F and 

G0_T-D tester designs were called G0 tester designs or G0_T. The G0_F-4H and the G0_T were 

evaluated jointly in eight trials in Northern France and Germany in 2016 and 1017 (Seye 2019; 

Lorenzi et al. 2022). In all trials, 18 hybrids were used as controls and evaluated twice: two 

commercial hybrids (LG30.275 and RONALDINIO) and 16 founder hybrids produced by crossing 

the four flint founder lines with the four dent founder lines.  

 
Fig.1 Hybrid experimental designs produced by crossing inbred lines from the initial generation (G0) and 

the inbred lines obtained after one cycle of selection (G1). 
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New breeding cycle (G1) 

40 intragroup single-crosses were produced in each group by crossing the 30 selected G0 lines 

described above. 351 dent and 351 flint DH lines (G1) were derived from the 40 single-crosses 

in the dent and flint groups, respectively. The dent G1 lines were crossed with the flint G1 lines 

following a sparse factorial design to produce 442 G1 hybrids. Crosses were made at random 

with an average number of hybrids per line close to one. A new set of 47 G0S hybrids between 

the 30 G0 selected lines from each group was produced and evaluated jointly with the G1 

hybrids, yielding a total of 489 hybrids further referred to as (G0S+G1)_F-1H. Hybrids were 

evaluated for two years in the North of France and Germany: three trials in 2019 and five in 2020. 

The same 18 control hybrids (two commercial and 16 founder hybrids) as in the G0 experiments 

were evaluated twice in each trial. 15% of the experimental hybrids were also replicated once at 

each location. The field experiments were laid out as augmented partially replicated designs (p-

rep) (Williams et al. 2011a). Each trial comprised 512 to 520 elementary plots distributed in 26 

incomplete blocks of 20 plots. Each genotype was evaluated in 7 trials across 2019 and 2020 

and was replicated in at least one trial. For each trial, repetitions were allocated to blocks to 

form an efficient incomplete block design using the DiGGer R package (Coombes 2009).  

Hybrids were evaluated for 11 traits, four agronomical traits: silage yield (DMY in tons of 

dry matter per ha), dry matter content at harvest (DMC in % of fresh weight), female flowering 

date (DtSilk in days after January the first) and plant height (PH in cm) and seven silage traits for 

digestibility: milk fodder unit per kilogram of dry matter (MFU in MFU per kg) (Andrieu 1995) 

(computed using model 4.2), cell wall content of the harvested dry matter measured by the 

neutral detergent fiber content (NDF in % of dry matter), cell wall in vitro digestibility of the 

non-starch and non-soluble carbohydrates part of silage (DINAG in %) and cell wall in vitro 

digestibility of the non-starch, non-soluble carbohydrates and non-crude protein part of silage 

(DINAGZ in %), lignin, cellulose and hemicellulose contents in the cell wall NDF evaluated with 

the Goering and Soest (1970) method (LIGN, CELL, and HCELL in % of NDF). The DINAG and 

DINAGZ are two digestibility criteria first proposed by Argillier et al. (1995). The silage traits were 

predicted using Near Infrared Reflectance Spectrometry (NIRS) measured in the lab on silage 

powders or directly on fields during the harvest, depending on the trial. 
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Outlier observations were detected by examining raw data and considering field 

observations. They were treated as missing data. Subsequently, filters were applied to identify 

plots with standing counts below 80% of the median, and DMC below 25% or above 45%, which 

were also considered as missing data. Values of DINAG, DINAGZ, and MFU measured in two 

trials were inconsistent with those of other trials and were excluded from further analyses. 

Following quality control and filters, the percentage of missing data across all traits was 8%. 

Genotyping 

The founder lines and the G0 parental lines were genotyped for 18,480 SNPs using a proprietary 

Affymetrix array provided by Limagrain. The G1 parental lines were genotyped using a custom-

made chip comprising a subset of 15,000 SNPs of the Illumina® MaizeSNP50 BeadChip (Ganal 

et al. 2011). Filters were applied for both G0 and G1 lines: markers with more than 20% of missing 

values within the dent and flint parental lines, markers with more than 5% of heterozygosity 

among the dent (flint) parental lines, and with Minor Allele Frequency (MAF) inferior to 5% were 

discarded. After quality control, only markers common to the two arrays were considered. 4,812 

SNP polymorphic markers (in at least the flint or dent population) were retained for further 

analyses. 

Estimation of variance components and trait heritabilities 

Variance components and trait heritabilities were estimated in the (G0S+G1)_F-1H design. 

Individual single-plot performances were corrected by the BLUPs of spatial effects predicted 

using the model defined in supplementary material File S1. Corrected data were then used to 

estimate variance components using the following model: 

𝑌ℎ𝑖𝑖′𝑗𝑙 = 𝜇 + 𝜆𝑙 + (𝜏ℎ + 𝜌𝑙ℎ) × 𝑡ℎ + [𝜋𝑗 + 𝐻ℎ(𝑖𝑖′)𝑗 + 𝐻𝜆𝑙ℎ(𝑖𝑖′)𝑗] × (1 − 𝑡ℎ) + 𝐸ℎ𝑖𝑖′𝑗𝑙 , (1) 

where 𝑌ℎ𝑖𝑖′𝑗𝑙 is the phenotypic value corrected by spatial effects of hybrid ℎ of generation j 

produced by crossing the flint parental line 𝑖 and the dent parent line 𝑖′ evaluated in trial 𝑙. 𝜇 is 

the intercept, 𝜆𝑙 is the fixed effect of trial 𝑙, 𝑡ℎ is an indicator function that distinguishes 

experimental hybrids (set to 0) from control hybrids (set to 1), 𝜏ℎ is the fixed effect of control 

hybrids with 19 levels (2 for commercial hybrids + 16 for founder hybrids + one for non-control 

hybrids), 𝜌𝑙ℎ is the effect of the interaction between trial 𝑙 and control hybrid ℎ, 𝜋𝑗 is the fixed 

effect of the generation with two levels (G0S or G1 hybrids). 𝐻ℎ(𝑖𝑖′)𝑗 is the random genetic effect 
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of experimental hybrid ℎ of generation 𝑗, produced by crossing the flint line 𝑖 and the dent line 

𝑖′. 𝐻ℎ(𝑖𝑖′)𝑗 is decomposed into its GCA and SCA components as follows: 

𝐻ℎ(𝑖𝑖′)𝑗 =  𝑈𝑖𝑗 + 𝑈′𝑖′𝑗 + 𝑆𝑖𝑖′𝑗 

where 𝑈𝑖𝑗 (respectively 𝑈′𝑖′𝑗) is the random GCA effect of the flint line 𝑖 (respectively dent line 

𝑖′) of generation 𝑗. We assume that 𝑈𝑖𝑗 and 𝑈𝑖′𝑗
′  are independent and identically distributed (iid) 

within generation and follow a normal distribution: 𝑈𝑖𝑗~𝒩 (0, 𝜎
𝐺𝐶𝐴𝑓

𝑗
2 ) and 𝑈𝑖′𝑗

′ ~𝒩 (0, 𝜎
𝐺𝐶𝐴𝑑

𝑗
2 ), 

respectively. 𝜎
𝐺𝐶𝐴𝑓

𝑗
2  and 𝜎

𝐺𝐶𝐴𝑑
𝑗

2  are the flint and dent GCA variances of generation 𝑗. 𝑆𝑘𝑘′ is the 

random SCA effect of the interaction between the parental lines 𝑖 and 𝑖’, with 𝑆𝑖𝑖′𝑗~𝒩(0, 𝜎
𝑆𝐶𝐴𝑗
2 ) 

ind with 𝜎
𝑆𝐶𝐴𝑗
2  being the SCA variance at generation 𝑗. 𝐻𝜆𝑙ℎ(𝑖𝑖′)𝑗 is the genotype by trial 

interaction and is decomposed as follows: 

𝐻𝜆𝑙ℎ(𝑖𝑖′)𝑗 = (𝑈𝜆)𝑖𝑙𝑗 + (𝑈′𝜆)𝑖′𝑙𝑗 + (𝑆𝜆)𝑖𝑖′𝑙𝑗, 

where (𝑈𝜆)𝑖𝑙𝑗 and (𝑈′𝜆)𝑖′𝑙𝑗 are the random effects of the flint GCA effect by trial interaction, 

respectively dent GCA by trial interaction of generation 𝑗 and (𝑆𝜆)𝑖𝑖′𝑙𝑗 is the random effect of 

the SCA by trial interaction of generation 𝑗. With (𝑈𝜆)𝑖𝑙𝑗 ∽ 𝒩 (0, 𝜎
𝐺𝐶𝐴×𝐸𝑓

𝑗
2 ), (𝑈′𝜆)𝑖′𝑙𝑗 ∽

𝒩 (0, 𝜎
𝐺𝐶𝐴×𝐸𝑑

𝑗
2 ) and (𝑆𝜆)𝑖𝑖′𝑙𝑗 ∽ 𝒩(0, 𝜎

𝑆𝐶𝐴×𝐸𝑗
2 ). 𝜎

𝐺𝐶𝐴×𝐸𝑓
𝑗

2 , 𝜎
𝐺𝐶𝐴×𝐸𝑑

𝑗
2  and 𝜎

𝑆𝐶𝐴×𝐸𝑗
2  are the flint GCA by 

trial interaction variance, the dent GCA by trial variance and the SCA by trial interaction variance 

of generation 𝑗, respectively. 𝐸ℎ𝑖𝑖′𝑗𝑙 is the error term; we assume that the errors follow: 

𝐸ℎ𝑖𝑖′𝑗𝑙~𝒩(0, 𝜎𝐸𝑙

2 ) and are iid within trial and independent between trials, 𝜎𝐸𝑙

2  is the error variance 

of trial 𝑙. The different random effects of the model are assumed to be independent. 

For each trait and each generation 𝑗 (G0S or G1), the percentage of genetic variance due 

to SCA was estimated (%), and broad-sense heritability was computed as follows: 

𝐻𝑗
2 =

𝜎𝐻𝑗
2

𝜎𝐻𝑗
2 +

𝜎𝐻×𝐸𝑗
2

𝑛𝑠𝑖𝑡𝑒
+

𝜎𝐸𝑚𝑜𝑦
2

𝑛𝑟𝑒𝑝×𝑛𝑠𝑖𝑡𝑒

 , 

where 𝜎𝐻𝑗

2  is the hybrid genetic variance of generation 𝑗 computed as 𝜎𝐻𝑗

2 = 𝜎
𝐺𝐶𝐴𝑓

𝑗
2 + 𝜎

𝐺𝐶𝐴𝑑
𝑗

2 +

𝜎
𝑆𝐶𝐴𝑗
2 , 𝜎𝐻×𝐸𝑗

2  is the total genotype by trial variance of generation 𝑗 decomposed as: 
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𝜎𝐻×𝐸𝑗

2 = 𝜎
𝐺𝐶𝐴×𝐸𝑓

𝑗
2 + 𝜎

𝐺𝐶𝐴×𝐸𝑑
𝑗

2 + 𝜎
𝑆𝐶𝐴×𝐸𝑗
2 , and 𝜎𝐸𝑚𝑜𝑦

2  is the mean residual variance across all trials, 

𝑛𝑠𝑖𝑡𝑒 is the average number of trials in which an hybrid has been evaluated and 𝑛𝑟𝑒𝑝 is the 

average number of within trial replicates per hybrid across trials. 

Ls-means and genetic gain estimation 

Least square-means (ls-means) of hybrids were computed over the eight trials. The model used 

was: 

𝑌ℎ𝑟𝑙
∗ = 𝜇 + 𝜆𝑙 + 𝛾ℎ + 𝐸ℎ𝑟𝑙 (2) 

In this model, experimental hybrids and founder hybrids were considered jointly. 𝑌ℎ𝑟𝑙
∗  is the 

performance corrected by the spatial field effects of repetition 𝑟 of hybrid ℎ in trial 𝑙. 𝜇 is the 

intercept, 𝜆𝑙 is the fixed effect of trial 𝑙, 𝛾ℎ is the fixed genetic effect of hybrid ℎ. 𝐸ℎ𝑟𝑙 is the error 

term of environment 𝑙, with 𝐸ℎ𝑟𝑙  ~𝒩(0, 𝜎𝐸𝑙

2 ) iid within trial and independent between trials. All 

genomic predictions were performed on the ls-means thus obtained. 

The founder hybrids were used as a reference for the initial unselected population. The 

observed genetic gain was computed as the difference between the performances of the 

founder hybrids and the experimental hybrids (either the G0S or the G1 hybrids). Then, we 

compared the observed to the predicted genetic gain estimated from the genomic predictions 

of hybrid values trained on the G0_F-1H. 

Pedigree based Best Linear Unbiased Prediction (PBLUP) model  

A prediction model based on the pedigree information (PBLUP) model was implemented and 

used as a benchmark compared to the GBLUP models. The model was:  

𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒈 + 𝑬, (3) 

where y is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is 

the intercept. 𝒈 is the vector of random hybrid effects, with 𝒈 ~ 𝒩(0, 𝑲𝜎ℎ
2) where K is the 

pedigree kinship matrix computed on the hybrid population considering the founder lines as 

the base generation. The pedigree kinship matrix was computed with the recursive method 

presented in Mrode and Thompson (2005) using the AHGmatrix R-package (Amadeu et al. 

2016). 𝜎ℎ
2 is the hybrid variance. 𝒁 is the corresponding incidence matrix. 𝑬 is the vector of error 
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terms, with 𝑬~ 𝒩(0, 𝑰𝜎𝐸
2). The random effects are assumed to be independent. 

Genomic Best Linear Unbiased Prediction (GBLUP) models  

Several GBLUP models were tested to evaluate the predictive ability within the G1 cycle. Two 

types of models can be distinguished: the GCA-models, which decompose the hybrid genetic 

effect into its parental GCAs and its SCA components and the G-models, which consider genetic 

effects defined based on the hybrid marker genotypes.  

GCA.1-model. Two GBLUP models were implemented for genomic predictions 

depending on the TRS design (factorial or tester). The model implemented on the factorial 

designs including SCA effects was:  

𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒅 𝒈𝑮𝑪𝑨𝒅
+ 𝒁𝒇𝒈𝑮𝑪𝑨𝒇

+ 𝒁𝒈𝑺𝑪𝑨𝒅𝒇
+ 𝑬, (4.1) 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is 

the intercept. 𝒈𝑮𝑪𝑨𝒇
 (respectively 𝒈𝑮𝑪𝑨𝒅

) is the vector of random GCA effects of the 𝑛𝑓 flint 

parental lines (respectively 𝑛𝑑 dent lines), with 𝒈𝑮𝑪𝑨𝒇
 ~ 𝒩 (0, 𝑲𝑮𝑪𝑨𝒇

𝜎𝐺𝐶𝐴𝑓

2 ) (respectively 

𝒈𝑮𝑪𝑨𝒅
 ~ 𝒩(0, 𝑲𝑮𝑪𝑨𝒅

𝜎𝐺𝐶𝐴𝑑

2 )) where 𝑲𝑮𝑪𝑨𝒇
 (respectively 𝑲𝑮𝑪𝑨𝒅

) is the genomic relatedness matrix 

between the flint lines (respectively dent lines). The kinship matrix was computed for all the flint 

(dent) parental lines following method 1 from VanRaden (2008). 𝜎𝐺𝐶𝐴𝑓

2  and 𝜎𝐺𝐶𝐴𝑑

2  are the flint 

and dent GCA variances. 𝒈𝑺𝑪𝑨𝒅𝒇
 is the vector of SCA random effects of the 𝑛 hybrids, accounting 

for the interactions between the flint and dent parental lines, with 𝒈𝑺𝑪𝑨𝒅𝒇
 ~ 𝒩 (0, 𝑲𝑺𝑪𝑨𝒅𝒇

𝜎𝑆𝐶𝐴𝑑𝑓

2 ) 

where 𝑲𝑺𝑪𝑨𝒅𝒇
 is the SCA kinship matrix of the hybrids (phenotyped or not) and 𝜎𝑆𝐶𝐴𝑑𝑓

2  the SCA 

variance. The coefficient of the SCA kinship between two flint-dent hybrids produced from 

crossing parental lines 𝑖 to 𝑗 and parental lines 𝑖’ to 𝑗’ were computed as the product between 

the flint GCA kinship coefficient between lines 𝑖 and 𝑖’ and the dent GCA kinship coefficient 

between lines 𝑗 and 𝑗’ (Stuber and Cockerham 1966). 𝒁𝒅, 𝒁𝒇 and 𝒁 are the corresponding 

incidence matrices. 𝑬 is the vector of error terms, with 𝑬~ 𝒩(0, 𝑰𝜎𝐸
2). The different random 

effects are assumed to be independent. 
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The model implemented on the G0_T-F was: 

𝒚 = 𝟏𝒏. 𝜇 + 𝑿𝝊 + 𝒁𝒇𝒈𝑮𝑪𝑨𝒇
+ 𝒁𝒈𝑺𝑪𝑨𝒕 + 𝑬, (4.2) 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is 

the intercept. 𝝊 is the vector of fixed effects of the two dent testers. 𝒈𝑮𝑪𝑨𝒇
 is the vector of random 

GCA effects of the 𝑛𝑓 flint parental lines, with 𝒈𝑮𝑪𝑨𝒇
 ~ 𝒩 (0, 𝑲𝑮𝑪𝑨𝒇

𝜎𝐺𝐶𝐴𝑓

2 ) where 𝑲𝑮𝑪𝑨𝒇
 is the 

genomic relatedness matrix between the flint lines and 𝜎𝐺𝐶𝐴𝑓

2  is the flint GCA variance. 𝒈𝑺𝑪𝑨𝒕 is 

the vector of random effects of the interaction between the flint line and the dent testers, with 

𝒈𝑺𝑪𝑨𝒕~𝒩(0, 𝑰𝟐 ⊗ 𝑲𝑮𝑪𝑨𝒇 𝜎𝑆𝐶𝐴𝑡
2 ) where 𝜎𝑆𝐶𝐴𝑡

2  is the SCA variance. The kinship matrix was 

computed for all the flint parental lines following method 1 from VanRaden (2008). 𝑿, 𝒁𝒇 and 𝒁 

are the corresponding incidence matrices. 𝑬 is the vector of error terms, with 𝑬 ~ 𝒩(0, 𝑰𝜎𝐸
2). The 

different random effects are assumed to be independent. The same model was adapted and 

implemented on the G0_T-D. 

GCA.2-model. This GCA-model was defined following González-Diéguez et al. (2021), 

where the genetic effect is defined according to gamete origin. The fullest model for the factorial 

TRS was: 

𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒅𝒈𝑨𝒅
+ 𝒁𝒇𝒈𝑨𝒇

+ 𝒁𝒈𝑫 + 𝒁𝒅𝒈𝑨𝑨𝒅
+ 𝒁𝒇𝒈𝑨𝑨𝒇

+ 𝒁𝒈𝑨𝑨𝒅𝒇
+ 𝑬, (6) 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is 

the intercept. 𝒈𝑨𝒇
 and 𝒈𝑨𝒅

 are the vectors of the random additive effect from the flint and dent 

parental lines with 𝒈𝑨𝒇
~𝒩 (0, 𝑲𝑨𝒇

𝜎𝐴𝑓

2 ) and 𝒈𝑨𝒅
~𝒩(0, 𝑲𝑨𝒅

𝜎𝐴𝑑

2 ), respectively. 𝒈𝑫 is the vector of 

random dominance effect with 𝒈𝑫~𝒩(0, 𝑲𝑫 𝜎𝐷
2), 𝒈𝑨𝑨𝒇

 is the vector of random additive-by-

additive epistatic effect within the flint (resp. dent) population with 𝒈𝑨𝑨𝒇
~𝒩 (0, 𝑲𝑨𝑨𝒇

𝜎𝐴𝐴𝑓

2 ) (resp. 

𝒈𝑨𝑨𝒅
~𝒩(0, 𝑲𝑨𝑨𝒅

𝜎𝐴𝐴𝑑

2 )) and 𝒈𝑨𝑨𝒅𝒇
 is the vector of random additive-by-additive epistatic effect 

across the flint and dent populations 𝒈𝑨𝑨𝒅𝒇
~𝒩 (0, 𝑲𝑨𝑨𝒅𝒇

𝜎𝐴𝐴𝑑𝑓

2 ). 𝑲𝑨𝒇 , 𝑲𝑨𝒅 , 𝑲𝑫 , 𝑲𝑨𝑨𝒇 , 𝑲𝑨𝑨𝒅  and 

𝑲𝑨𝑨𝒅𝒇  are respectively the flint additive, dent additive, dominance, additive-by-additive epistasis 

within the flint population, additive-by-additive epistasis within the dent population and the 

additive-by-additive epistasis across populations genomic relatedness matrices computed 

following González-Diéguez et al. 2021. 𝜎𝐴𝑓

2 , 𝜎𝐴𝑑

2 , 𝜎𝐷
2, 𝜎𝐴𝐴𝑓

2 , 𝜎𝐴𝐴𝑑

2  and 𝜎𝐴𝐴𝑑𝑓

2  are the corresponding 
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variances. 𝒁𝒇, 𝒁𝒅 and 𝒁 are the incidence matrices. 𝑬 is the vector of error terms, with 

𝑬 ~ 𝒩(0, 𝑰𝜎𝐸
2). The different random effects are assumed to be independent. 

G-model. This model was defined by Vitezica et al. (2017). It is based on the hybrid 

genotypes and does not account for the gamete origin (flint and dent parental origins). The 

fullest model considered for the factorial TRS was: 

𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒈𝑨 + 𝒁𝒈𝑫 + 𝒁𝒈𝑨𝑨 + 𝑬, (5) 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is 

the intercept. 𝒈𝑨 is the vector of the random additive effect with 𝒈𝑨~𝒩(0, 𝑲𝑨 𝜎𝐴
2), 𝒈𝑫 is the 

vector of random dominance effect with 𝒈𝑫~𝒩(0, 𝑲𝑫 𝜎𝐷
2) and 𝒈𝑨𝑨 is the vector of random 

additive-by-additive epistasis effect with 𝒈𝑨𝑨~𝒩(0, 𝑲𝑨𝑨 𝜎𝐴𝐴
2 ). 𝑲𝑨 , 𝑲𝑫  and 𝑲𝑨𝑨 are respectively 

the additive, dominance and additive-by-additive epistasis genomic relatedness matrices 

computed following Vitezica et al. 2017. 𝜎𝐴
2, 𝜎𝐷

2 and 𝜎𝐴𝐴
2  are the corresponding variances and Z 

is the incidence matrix. 𝑬 is the vector of error terms, with 𝑬 ~ 𝒩(0, 𝑰𝜎𝐸
2). The different random 

effects are assumed to be independent. 

Prediction scenarios 

We defined three prediction scenarios to achieve three objectives: (i) assess the predictive ability 

of GS in the new generation and compare different GS models, (ii) evaluate the efficiency of a 

factorial design for predictions across breeding cycles and compare it to the tester designs, and 

n (iii) investigate the benefit of different strategies to update the factorial TRS across cycles and 

optimize it using the CDmean to predict the new generation. 

In Scenario 1, we evaluated the predictive ability within the new generation (G1 hybrids) 

to serve as a reference and compared the efficiency of several GS models. Cross-validations 

within the G1 hybrids were performed by training the GS model on 354 G1 hybrids (four-fifth) 

to predict the remaining 88 G1 hybrids (one-fifth). This process was repeated a hundred times. 

We compared three types of GBLUP models, namely the GCA.1-model, G-model, and GCA.2-

model, to a benchmark PBLUP model. The GCA.1-model involved two nested models, with or 

without the SCA effect. For the GCA.2- and G-models, several nested models were tested by 

adding successively dominance and additive-by-additive genetic effects to additive effects. See 

Table 2 for the summary of all tested models. 
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Table 2 Definition of the genomic prediction models tested in Scenario 1.  

Models Model code Random genetic effectsa Reference 

PBLUP 𝑔 Henderson 1976 

GCA.1 

 

GCA 𝑔𝐺𝐶𝐴𝑓
+ 𝑔𝐺𝐶𝐴𝑑

 VanRaden 2008 

GCA_SCA 𝑔𝐺𝐶𝐴𝑓
+ 𝑔𝐺𝐶𝐴𝑑

+ 𝑔𝑆𝐶𝐴 

GCA.2 GCA:A 𝑔𝐴𝑓
+ 𝑔𝐴𝑑

+ 𝑟 González-

Diéguez et al. 

2021 

GCA:AD 𝑔𝐴𝑓
+ 𝑔𝐴𝑑

+ 𝑔𝐷 

GCA:A(AAdf) 𝑔𝐴𝑓
+ 𝑔𝐴𝑑

+ 𝑔𝐴𝐴𝑑𝑓
 

GCA:AD(AAdf) 𝑔𝐴𝑓
+ 𝑔𝐴𝑑

+ 𝑔𝐷 + 𝑔𝐴𝐴𝑑𝑓
 

GCA:AD(AAf)(AAd)(AAdf) 𝑔𝐴𝑓
+ 𝑔𝐴𝑑

+ 𝑔𝐷 + 𝑔𝐴𝐴𝑓
+ 𝑔𝐴𝐴𝑑

+ 𝑔𝐴𝐴𝑑𝑓
 

G G:A 𝑔𝐴 Vitezica et al. 

2017 G:AD 𝑔𝐴 + 𝑔𝐷 

G:A(AA) 𝑔𝐴 + 𝑔𝐴𝐴 

G:AD(AA) 𝑔𝐴 + 𝑔𝐷 + 𝑔𝐴𝐴 

a The list of the random genetic effects considered in the GCA models correspond to: dent GCA (𝑔𝐺𝐶𝐴𝑑
), 

flint GCA (𝑔𝐺𝐶𝐴𝑓
), SCA (𝑔𝑆𝐶𝐴), intragroup additive-by-additive epistasis for the dent (𝑔𝐴𝐴𝑑

) and flint 

group (𝑔𝐴𝐴𝑓
), and intergroup additive-by-additive epistasis (𝑔𝐴𝐴𝑑𝑓

) effects. In the G models, random ge-

netic effects correspond to: additive (𝑔𝐴), dominance (𝑔𝐷) and additive-by-additive epistasis (𝑔𝐴𝐴) ef-

fects. 

Scenario 2 evaluated the efficiency of training a GBLUP model (GCA.1) on the G0 

generation to predict the next one (G1). In Scenario 2a, we evaluated the efficiency of the 

incomplete factorial TRS (G0_F-1H) to predict G1 hybrids. We assessed the prediction stability 

across breeding cycles by comparing the predictive abilities obtained for the G1 hybrids to the 

one obtained for the G0S hybrids evaluated in the same experiments. The GCA.1 model was 

used to perform predictions. In Scenario 2b, we compared the efficiency of factorial and tester 

TRSs from the G0 cycle to predict the G1 cycle. The GCA.1 models (4.1) or (4.2) were trained on 

the G0_F-4H (363 hybrids) or the tester designs (360 hybrids) to predict G1 hybrids. We 

investigated the impact of the TRS on hybrid selection through the correlation between the GCA 

BLUPs predicted using the factorial and the ones obtained using the tester designs. In addition, 

to compare the similarity of selection between the different approaches (based on phenotypic 

evaluations (ls-means) or genomic predictions (BLUPs) trained on the factorial or the tester 

designs), the coincidence of selection was computed for each trait. For each pair of approaches, 

it corresponds to the percentage of common hybrids that would be selected by the two 
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approaches at a given selection rate (%). This coincidence of selection was computed for 

different selection rates. As in Lorenzi et al. 2022, we sampled hybrids in the tester designs to 

evaluate the impact of the number of testers used in the TRS. In this Scenario 2b’, each tester 

TRS was composed of 180 hybrids produced by crossing in each group: (i) 90 lines to one tester 

(180 lines in total): since there were two testers in each group, there were four possible tester 

combinations, referred to as 1T-180H-180L- followed by the names of the testers, (ii) 45 lines to 

one tester and the 45 other lines to the other tester, referred to as 2T-180H-180L, (iii) the same 

45 lines to two testers referred to as 2T-180H-90L. We compared these tester TRS to a factorial 

TRS by sampling 180 hybrids from the G0_F-4H in a random and balanced manner between 

families to maximize the number of lines. This factorial TRS comprised 180 hybrids representing 

170 lines (one line contributed to 2.1 hybrids on average) and was called F-180H-170L. In 

Scenario 2b’, all the TRSs were sampled ten times except for the one-tester designs that were 

sampled only once. 

Scenario 3 investigated TRS optimization across breeding cycles. In Scenario 3a, we 

evaluated the benefit of updating the TRS across cycles by adding either G0S or/and G1 hybrids 

to the initial G0R TRS. Several TRSs were sampled and compared to cross-validations within the 

G1 hybrids. To assess the benefit of adding G0S hybrids to the initial G0R TRS, we compared 

TRSs only composed of G0R hybrids with the same TRSs to which 132 G0S hybrids from the 

G0_F-4H design were added. To evaluate the benefit of updating G0 TRSs with G1 hybrids, we 

added from 0 to 354 randomly sampled G1 hybrids to G0 TRSs. One-fifth of the G1 hybrids (88 

hybrids) were predicted using the GCA.1 model. The mean predictive ability over 100 replicates 

was computed for each TRS. In Scenario 3b, our objective was to maximize the predictive ability 

of the G1 hybrids by optimizing a priori the G1 hybrid subset used to update the initial G0 TRS 

using only G1 line genotypes. We considered the CDmean proposed by Rincent et al. (2012). 

We used a heritability of 0.7, corresponding to the average heritability of our traits, to compute 

the value for the shrinkage parameter 𝜆 and the additive covariance kinship between hybrids 

defined by Vitezica et al. (2017). Two optimization strategies were considered and compared to 

random sampling. For both strategies, we optimized the mean of the CD of contrasts between 

each non-phenotyped G1 hybrid (PS) and the mean of the G1 hybrids. In the first strategy 

(CDmean1), the G1 hybrid set was optimized without considering the marker information on the 

G0 hybrids. The additive kinship considered to compute expected CDmeans only included the 
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442 G1 hybrids. In the second strategy (CDmean2), the optimization of the G1 was performed 

by also considering information on the G0 hybrids: the additive kinship was computed for all 

1802 hybrids from both generations (1360 G0+ 442 G1). The procedure was performed in both 

scenarios with four sampling sizes for the G1 hybrids (50,100, 200, and 300) and replicated a 

hundred times each. For each optimized set, all G0 hybrids plus the chosen G1 hybrids were 

used as TRS to predict the remaining G1 hybrids, used as VS. Predictions were performed using 

the GCA.1 model. 

Predictive ability and statistical tests 

In all scenarios, the predictive ability was computed as Pearson’s correlation between predicted 

hybrid values and hybrid ls-means. Different statistical tests were performed depending on the 

scenario to test the significance of differences between predictive abilities. In Scenario 1, paired 

t-tests were performed with a risk level α=0.05, and a Bonferroni correction (multiple 

comparison correction) was applied per trait. In Scenario 2b, Williams tests (Williams 1959) were 

performed with a risk level α=0.05 using the “r.test” function of the psych R-package (Revelle 

2021). In Scenario 2b’, t-tests with a risk level α=0.05 were performed, and a Bonferroni 

correction was applied per trait. For all scenarios, computations were performed in the R 

statistical environment (R Core Team 2020), and models were fitted using the “MM4LMM” R-

package (Laporte and Mary-Huard 2020; Laporte et al. 2022). 

Results 

For clarity purposes, results on the four main traits of interest (DMY, DMC, DtSilk, and MFU) are 

presented in the following. The results on the 11 studied traits are shown in supplementary 

materials. 

Variance components and broad-sense heritability at the phenotypic level without marker 

information 

Broad-sense heritabilities (H²) were medium to high (Table 3). They ranged from 0.56 (MFU) to 

0.93 (DtSilk) for G0S hybrids and from 0.62 (MFU) to 0.94 (DtSilk) for G1 hybrids. Large and 

significant genetic variances were observed for all traits (Table 3, Table S1) with no clear 

differences between G0S and G1 hybrids. The main part of the genetic variance was due to GCA. 

The proportion of genetic variance due to SCA ranged from 0% (DMC) to 30% (MFU) for the 
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G0S and from 0% (DMY) to 10% (DMC) for the G1. 𝜎𝐺𝐶𝐴𝑓

2  was always larger than 𝜎𝐺𝐶𝐴𝑑

2  except 

for G0S hybrids for DMC. Non-null GCA by trial variances were observed for G0S and G1 hybrids, 

but were lower than the GCA variances. For the G0S, 𝜎𝑆𝐶𝐴
2  was larger than 𝜎𝑆𝐶𝐴𝑥𝐸

2  for all traits. For 

G1 hybrids, 𝜎𝑆𝐶𝐴𝑥𝐸
2  was larger than 𝜎𝑆𝐶𝐴

2 , except for DtSilk. 

Table 3 Broad-sense heritability (H²), percentage of genetic variance assigned to SCA variance (%SCA) 

and variance components estimated on phenotypic data corrected for spatial effects for the (G0S+G1)_F-

1H without marker information. 

 
DMY  

(t/ha) 

DMC 

(%) 

DtSilk 

(days) 

MFU 

(MFUx10²/kg) 

 G0S G1 G0S G1 G0S G1 G0S G1 

𝝈𝑮𝑪𝑨𝒇

𝟐   0.50(0.24)d 0.31(0.05) 0.46(0.28) 1.47(0.21) 1.63(0.71) 2.06(0.29) 0.44(0.24) 0.49(0.09) 

𝝈𝑮𝑪𝑨𝒅

𝟐   0.13(0.18) 0.25(0.05) 1.42(0.51) 0.73(0.21) 1.57(0.65) 1.41(0.27) 0.00 0.36(0.09) 

𝝈𝑺𝑪𝑨
𝟐   0.14(0.18) 0.00 0.00 0.25(0.20) 0.03(0.27) 0.05(0.22) 0.19(0.13) 0.00(0.09) 

𝝈𝑮𝑪𝑨𝒇×𝑬
𝟐  0.07(0.08) 0.05(0.05) 0.00 0.11(0.05) 0.41(0.16) 0.17(0.07) 0.27(0.17) 0.20(0.07) 

𝝈𝑮𝑪𝑨𝒅×𝑬
𝟐  0.12(0.09) 0.07(0.04) 0.39(0.13) 0.31(0.05) 0.05(0.12) 0.09(0.06) 0.06(0.12) 0.13(0.07) 

𝝈𝑺𝑪𝑨×𝑬
𝟐   0.00 0.23(0.07) 0.00 0.00 0.00 0.24(0.11) 0.00 0.11(0.09) 

𝝈𝑬
𝟐  a  0.31(0.05)-1.40(0.12) 0.57(0.07)-3.62(0.27) 0.64(0.09)-2.33(0.20) 0.12(0.02)-7.97(0.55) 

%SCAb 19 0 0 10 1 1 30 0 

H² c 0.87 0.80 0.90 0.92 0.93 0.94 0.56 0.62 

a Minimum and maximum residual variance across all environments 

b Percentage of SCA variance computed as 
𝝈𝑺𝑪𝑨

𝟐

𝝈𝑮𝑪𝑨𝒅
𝟐 +𝝈𝑮𝑪𝑨𝒇

𝟐 +𝝈𝑺𝑪𝑨
𝟐 × 100 

c Broad-sense heritability 
d Standard error in brackets
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Table 4 Performances (ls-means) of commercial, founder and experimental hybrids (G0S and G1 hybrids) and genetic gain of the experimental hybrids compared 

to the founder hybrids corresponding to the (G0S+G1)_F-1H design. 
 

Hybrid type Component DMY 

(t/ha) 

DMC 

(%) 

DtSilk 

(days) 

MFU 

(MFUx10²/kg) 

Ls-means Commercial Mean 17.96 

(17.18-18.74)b 

34.69 

(34.37-35.00) 

201.89 

(200.27-203.50) 

95.54 

(95.34-95.74) 

Sdc 1.10 0.45 2.28 0.28 

Founder Mean 15.80 

(14.27-17.47) 

34.10 

(30.53-37.48) 

203.14 

(199.80-206.16) 

95.28 

(91.13-98.14) 

Sd 0.84 1.94 1.50 2.05 

G0S Mean 17.35 

(14.82-18.89) 

33.33 

(30.54-37.13) 

204.97 

(201.80-208.79) 

93.17 

(89.04-97.06) 

Sd 0.92 1.40 1.82 1.56 

G1 Mean 17.33 

(14.33-19.72) 

33.43 

(29.39-39.18) 

205.04 

(197.98-211.40) 

93.13 

(87.59-101.36) 

Sd 0.85 1.63 1.97 1.71 

Genetic gaina G0S 1.55 -0.77 1.83 -2.11 

G1 1.52 -0.67 1.90 -2.15 

Predicted 

genetic gaind 

G0S 1.45 -0.33 1.18 -1.35 

G1 1.41 -0.28 0.91 -1.14 

a Genetic gain computed as the difference between the mean performance of the experimental hybrids and the founder hybrids 
b Minimum and maximum mean performance in brackets 
c Standard deviation of the ls-means of the experimental hybrid performances 
d Predicted genetic gain based on genomic predictions trained on the G0_F-1H 
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Ls-means and genetic gain 

On average, G0S and G1 hybrids performed similarly (Table 4). Compared to the 16 founder 

hybrids, which are representative of the performance of the unselected G0 hybrids (G0R), G0S 

and G1 hybrids showed a gain in performance for DMY (+1.55 t/ha for G0S and +1.52 t/ha for 

G1). This gain was associated with a later DtSilk (+1.83 days for G0S and +1.90 days for G1), a 

lower DMC (-0.77% for G0S and -0.67% for G1), and a lower MFU (-2.11 MFUx10²/kg for G0S 

and -2.15 MFUx10²/kg for G1). The observed genetic gain for DMY was similar to the predicted 

one based on the genomic predictions trained on the G0_F-1H design. However, for DMC, DtSilk, 

and MFU, the observed response to selection was higher in absolute value than the predicted 

one.  

Scenario 1-Predictive ability within the G1 cycle and GS model comparison 

We assessed the predictive ability in the new breeding cycle using cross-validations among G1 

hybrids (Fig.2). GBLUP predictive abilities of the new generation were high for all traits, ranging 

from 0.63 (DMY) to 0.76 (DtSilk) when considering the best GBLUP model. All GBLUP models 

significantly outperformed the PBLUP model (differences between the worst GBLUP model and 

the PBLUP ranged from 0.07 (DMY) to 0.11 (MFU)). Differences among GBLUP models were 

sometimes significant but minor (<0.01), showing that models were equivalent and that adding 

non-additive effects had little effect. 

Scenario 2-Efficiency of a factorial TRS for predictions across breeding cycles and 

comparison with tester TRSs 

In Scenario 2a, we compared the ability of the G0_F-1H TRS to predict the same generation (G0S 

hybrids) or the new generation (G1 hybrids). Predictive abilities were high for all traits (ranging 

from 0.56 for DMY to 0.67 for DtSilk for G1 hybrids and from 0.60 for DMY to 0.75 for MFU for 

G0S hybrids) (Fig.3). As expected, predictive abilities were higher for G0S hybrids (hybrids from 

the same generation as the TRS hybrids) than for G1 hybrids for all traits. Lower predictive 

abilities were obtained when training on the G0_F-1H compared to those obtained by cross-

validations within G1 hybrids (Fig.3). 



Chapter 2 

 

A. Lorenzi (2023) 

103 

 
Fig.2 Predictive abilities obtained by cross-validations within the 442 G1 hybrids using different prediction 

models (PBLUP, GCA.1, GCA.2 or G models) in Scenario 1. The mean predictive ability over the 100 

replicates is represented by a white cross. Significant differences (as obtained by paired t-tests at a level 

risk α=0.05) are indicated with letters: two different letters indicate a significant difference and at least 

one common letters indicate no significant difference. 
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In Scenario 2b, we compared predictive abilities obtained using either the G0_F-4H (363 

hybrids) or the G0 tester designs (360 hybrids) as TRS to predict all G1 hybrids (442 hybrids) 

(Fig.4). They ranged from 0.59 (DMY and MFU) to 0.70 (DtSilk) when training on the G0_F-4H 

and from 0.60 (MFU) to 0.69 (DtSilk) when training on the G0 tester designs. Across the 11 traits, 

training on the G0_F-4H or the G0 tester designs gave equivalent predictive abilities except for 

four traits: the G0_F-4H design significantly outperformed the G0 tester designs for DMC and 

PH, and the G0 tester designs significantly outperformed the G0_F-4H design for DMY and CELL 

(Fig.S1). The GCA BLUPs of the G1 lines predicted using the G0_F-4H or the G0 tester designs 

as TRS were highly correlated. They ranged from 0.85 (DMC) to 0.94 (MFU) for the dent G1 lines 

and from 0.84 (DMY) to 0.94 (DtSilk) for the flint G1 lines, and from 0.87 (DMY, DMC) to 0.91 

(DtSilk) for G1 hybrids (Table S4). The coincidence of selection for genomic predictions between 

the factorial and the tester TRS of the top 5% of hybrids was 52% for DMY, 61% for DMC, 65% 

for DtSilk, and 39% for MFU (Fig.S2), which indicates that the single-cross hybrid sets selected 

by the two approaches are not identical. To assess if one of the two approaches identified a 

higher proportion of the best-phenotyped hybrids, we compared the proportion of the top 5% 

hybrids identified based on the factorial or tester TRS to the top 5% phenotyped hybrids. For 

DMY, the major trait of interest in our study, the factorial design identified a higher proportion 

of the best-phenotyped hybrids compared to the tester designs. 

In Scenario 2b’, we investigated the efficiency of different G0 tester design compositions 

to predict G1 hybrids (442 hybrids) at the same number of hybrids (180) and compared them 

with a factorial design of same size (Fig.5). Predictive abilities varied between the four one-

tester TRS ranging from 0.005 (DMC) to 0.048 (DMY), and the best one-tester TRS depended on 

the trait. The best two-tester TRS maximized the number of evaluated candidate lines by 

crossing more lines each to a different tester (2T-180H-180L) and usually outperformed the 

worst one-tester TRS. The F-180H-170L factorial TRS was equivalent to or outperformed the 

tester TRS except for DMY. On average, over the 11 traits, the F-180H-170L TRS gave the highest 

predictive abilities (Fig.5, Fig.S3). 
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Fig.3 Predictive abilities obtained in Scenario 2a when training the GS model on the G0_F-1H design (951 

hybrids) to predict the 47 G0S hybrids or the 442 G1 hybrids. The dotted line corresponds to the mean 

predictive ability over 100 replicates of cross-validations within the 442 G1 hybrids. 

 

 
Fig.4 Predictive abilities obtained for the G1 hybrids (442) by training the GS model on the G0_F-4H (363) 

or the G0_T (360) TRSs in Scenario 2b. Williams tests were performed (α=0.05) and significant differences 

were indicated with letters: two different letters indicate a significant difference and at least one common 

letters indicate no significant difference. 
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Fig.5 Predictive abilities obtained in Scenario 2b’ by training the GS model on 180 hybrids issued from 

tester-based or factorial TRSs to predict the G1 hybrids (442). The different tester-based TRSs correspond 

to: 90 lines crossed to one tester (1T-180H-180L-A, 1T-180H-180L-B, 1T-180H-180L-C, 1T-180H-180L-D), 

90 lines crossed to two testers (2T-180H-180L), 45 lines crossed to two testers (2T-180H-90L). The factorial 

design (F-180H-152L) corresponds to the crosses of 76 flint lines with 76 dent lines. The sampling was 

repeated 10 times and t-tests (α=0.05) were performed for the F-180H-170L, 2T-180H-180L and 2T-180H-

90L. Significant differences were indicated with letters: two different letters indicate a significant difference 

and at least one common letters indicate no significant difference. 

Scenario 3a-Benefit of updating the factorial TRS across breeding cycles 

To evaluate the benefit of updating the TRS across breeding cycles, four TRS strategies were 

evaluated based on their ability to predict G1 hybrids: (i) training on G0R only (G0_F-1H, G0R_F-

4H or G0_F-1H+G0R_F-4H), (ii) training on G0R plus 132 hybrids between G0 selected lines 

(G0S), (iii) training on G0R plus a subset m of hybrids from the new generation (G1 hybrids), and 

(iv) training on G0R plus 132 G0S hybrids and m G1 hybrids, with m ranging from 1 to 354 

(Fig.6). The four TRS strategies were also compared to cross-validations within the G1 hybrids. 

The best G0R TRS (G0_F-1H+G0R_F-4H) was also the largest one (1183 hybrids) with predictive 

abilities ranging from 0.69 (MFU) to 0.76 (DMC and DtSilk), which were equivalent or higher than 

the ones obtained with a TRS composed of 354 G1 hybrids.  
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Fig.6 Predictive abilities obtained in Scenario 3a when predicting one-fifth of the G1 hybrids (88) using 

different TRSs: G0R hybrids (in solid colored lines) completed by 132 G0S hybrids (in doted colored lines) 

and m G1 hybrids (with m ranging from 0 to 354 from the left to the right of each graph). The mean 

predictive ability over 100 replicates is represented by a dot for each TRS. The number of hybrids in the 

initial G0R TRSs is indicated between brackets in the figure legend. 

Adding 132 G0S hybrids to the initial G0R TRSs (G0_F-1H, G0R_F-4H, or G0_F-1H+G0R_F-

4H) increased predictive abilities (with a gain on average of 0.10 for DMY, 0.14 for DMC, 0.16 for 

DtSilk and 0.05 for MFU). The largest gain in predictive ability was observed for the G0R_F-4H 

TRS, which was also the smallest G0R TRS (232 hybrids), with gains ranging from 0.08 (MFU) to 

0.39 (DtSilk). There was always a gain in predictive ability when adding G1 hybrids to the TRS, 

whether composed of G0R or of G0R and G0S hybrids. As expected, the gain increased with the 
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number of G1 hybrids included in TRS. Adding 354 G1 hybrids to G0R TRSs, increased predictive 

abilities on average by 0.13 for DMY, 0.20 for DMC, 0.21 DtSilk, and 0.12 for MFU. For TRSs 

comprising G0R and G0S hybrids, adding 354 G1 hybrids led to smaller gains (gain not 

exceeding 0.07 for MFU). The largest increase in predictive abilities when updating the TRS with 

G1 hybrids was obtained with the smallest initial G0R TRS (G0R_F-4H). It is interesting to note 

that TRSs composed of G0 and 354 G1 hybrids always outperformed prediction accuracies 

obtained with 354 G1 (cross-validations within G1), illustrating the benefit of keeping 

information from the previous generation in the TRS. 

From Fig.6, it is possible to estimate the number of G1 hybrids to add to the initial G0R 

TRSs to achieve similar predictive abilities to the ones obtained when adding 132 G0S hybrids. 

For example, for DMY and the G0R_F-4H initial TRS, adding 132 G0S was equivalent to adding 

around 170 G1 hybrids. For all initial G0R TRSs, the number of G1 hybrids to include to be more 

efficient than 132 G0S hybrids was higher than 132 for all traits except MFU. 

Scenario 3b-Optimization of the composition of the factorial TRS for G1 hybrid 

predictions 

The G1 hybrid set to add to the existing G0 TRS (1360 G0 hybrids) was optimized using the 

CDmean following two strategies, and the results were compared to a TRS obtained from 

random sampling (Fig.7). In the first strategy (CDmean1), the G1 hybrid set was optimized 

without considering the information from the G0 hybrids, whereas in the second strategy 

(CDmean2), the information from the G0 hybrids was considered. For all traits and all sampling 

sizes, the best CDmean strategy gave higher or at least equivalent predictive abilities compared 

to random sampling except for DMC for a sampling size of 300. The maximum gains were 0.03 

for DMY, 0.01 for DMC, 0.03 for DtSilk, and 0.02 for MFU, depending on the sampling size. Across 

the 100 replicates, the variance of the predictive abilities was always lower using the CDmean (1 

or 2) than the random sampling. The CDmean1, which does not consider G0 hybrid information 

to optimize the G1 hybrid set included in the TRS, outperformed the CDmean2 except for small 

sampling sizes (size 50 and 100 for DMY, size 50 for DMC, DtSilk, and MFU). 
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Fig.7 Predictive abilities obtained with TRSs composed of an initial G0 set (1360 hybrids) completed by a 

CDmean optimized G1 hybrid set of different sizes (50, 100, 200 and 300). The G1 hybrid set is optimized 

considering only G1 information (CDmean 1) or considering G1 and G0 information (CDmean 2) in the 

calculation of the CDmean and compared to a randomly sampled TRS (Random). The white cross 

represents the mean predictive ability over the 100 replicates.  

Discussion 

SCA variance and its importance in hybrid breeding  

The SCA variance estimated in the G1 generation was small or equal to zero (Table 3, Table S2). 

Small SCA variance was expected in hybrids produced by crossing lines from divergent 

populations (Reif et al. 2007). The estimated SCA percentage decreased for all traits from G0 to 

G1 hybrids (Table S3). The precision of SCA variance estimation in our experiment is limited and 

does not allow us to draw a final conclusion on this evolution. However, one possible 

explanation for the decrease in SCA variance we observed is that the recurrent reciprocal 

selection increased the divergence between groups (as also observed by Gerke et al. (2015)) 

and, as a result, decreased the SCA variance in the flint-dent single-cross hybrids (consistent 
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with theoretical expectations from Reif et al. (2007) and Legarra et al. (2023)). 

Genetic gain after selection based on genomic predictions trained on a sparse factorial 

design 

The population was selected for an index combining yield performance (DMY), dry matter 

content (DMC), and digestibility (MFU) based on genomic predictions. We successfully improved 

the mean performance of the new generation for DMY, but there was a decrease for MFU and 

DMC (Table 4), which was higher than expected. The negative correlation (-0.53) between DMY 

and MFU that was observed based on phenotypic data in the G0 generation (G0_F-1H) (Fig.S4) 

certainly explains the difficulty of improving both traits simultaneously. This was consistent with 

results found by Barrière and Emile (2000) and Surault et al. (2005), who also reported a negative 

correlation of -0.5 between these traits for maize silage. To maintain a stable level of DMC and 

improve MFU in the new generation, higher weights relative to DMY should have been put on 

these traits in the index calculation. 

The genetic gain predicted by the GBLUP model trained on the G0_F-1H design was 

similar to the observed genetic gain for DMY. This illustrates the efficiency of GS models in 

predicting GCA values based on a sparse factorial TRS and confirms the results found by Seye 

et al. (2020) using simulations and Lorenzi et al. (2022) on the G0 generation. 

Predictive ability in the new generation and comparison of different GS models 

In Scenario 1, we evaluated the predictive ability within G1 hybrids and compared different 

prediction models. All models gave high predictive abilities, with the lowest reaching 0.66 (for 

DtSilk with the PBLUP model). The high predictive ability of the PBLUP model indicates that 

family structure alone could predict part of hybrid performances. However, GBLUP models 

always outperformed the PBLUP, confirming the efficiency of GBLUP to predict the mendelian 

sampling within a family, which is of main interest for breeding. Different GBLUP models were 

tested. Differences were sometimes significant but always small (<0.01). Including non-additive 

genetic effects had little or no effect on predictive abilities, which was also reported in studies 

using data from inter-heterotic group hybrids (Bernardo 1994; Schrag et al. 2006, 2018; 

Maenhout et al. 2010; Vitezica et al. 2017; González-Diéguez et al. 2021; Lorenzi et al. 2022). 

Note that the new SCA kinship formula proposed by González-Diéguez et al. (2021) used in 

model GCA.2 did not improve predictive abilities compared to the one used in the GCA.1 model. 



Chapter 2 

 

A. Lorenzi (2023) 

111 

This was also observed by Lorenzi et al. (2022) for genomic predictions within the G0 generation. 

In their simulations, Seye et al. (2020) found an advantage of including SCA in prediction models 

when SCA explains about 23% of the genetic variance. The small SCA variances estimated in our 

experimental design are consistent with the fact that including non-additive effects did not 

improve prediction accuracies. 

Assuming a single additive hybrid genetic effect (G models) or additive genetic effects 

defined according to the allele origin (GCA models) was equivalent in terms of quality of 

prediction for hybrid performance. This was surprising considering the large differences in GCA 

variances observed between the two groups and the detection of group-specific QTLs in the 

G0_F-1H design (Giraud et al. 2017b). The equivalence in terms of prediction accuracy between 

the G and GCA models was also shown in hybrid populations by Technow et al. (2014), González-

Diéguez et al. (2021), and Alves et al. (2019). Even if the GCA model did not outperform the G 

model, it makes it possible to estimate parental line values and thus select the parental lines of 

the next cycle, which is less straightforward with a G model. We kept the GCA.1 model for the 

following genomic prediction scenarios for these reasons. 

Portability of genomic predictions trained on a sparse factorial across breeding cycles 

In Scenario 2a, we trained the GS model on the G0_F-1H to predict G0S and G1 hybrids, allowing 

us to evaluate the predictive ability across cycles and environments. We obtained high predictive 

abilities for G0S hybrids, which illustrates the ability of the GS model trained on the G0_F-1H 

design to predict the performances of a new set of hybrids between selected lines in new 

environments. This confirms previous results (Lorenzi et al. 2022), which considered another set 

of G0S hybrids evaluated in the 2016-2017 G0_F-4H trials. We observed lower predictive abilities 

for G1 compared to G0S hybrids. Note that G0S and G1 hybrids were evaluated in the same 

environments, therefore, the decrease in predictive ability is not attributable to an environmental 

effect. A decrease in prediction accuracy when generations differ between the TRS and PS was 

reported in simulations (Pszczola and Calus 2016; Seye et al. 2020) and experimental studies on 

hybrids (on sugar beet by Hofheinz et al. 2012; on barley Sallam et al. 2015 and Michel et al. 

2016 and on maize by Wang et al. 2020). This decrease is expected as selection modifies allele 

frequencies along generations, and recombination events modify marker-QTL linkage 

disequilibrium. Allelic frequencies are identical in G0S and G1 hybrids since G1 lines are the 

unselected progeny of G0S lines. Thus, the observed decrease is due to the recombination 
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events. Still, predictive abilities remained high, highlighting the efficiency of the GS model 

trained on the G0_F-1H design in decorrelating the contributions from each parental line to 

predict their GCAs, the GCAs of their progeny, and therefore the hybrid values across breeding 

cycles. 

Efficiency of factorial compared to tester TRSs for predictions across the breeding cycle 

In Scenario 2b, we compared, for the same number of hybrids and lines, the efficiency of the 

factorial and tester TRSs to predict hybrids across generations. A previous study using the same 

TRSs to predict the G0 generation showed slightly higher predictive abilities using the factorial 

compared to the tester TRSs (Lorenzi et al. 2022). This advantage decreased when predicting 

the new generation (G1). This is in accordance with results from simulations based on a similar 

design (Seye et al. 2020), which showed that the advantage of the factorial over the tester TRSs 

decreases across breeding cycles if the TRS was not updated. When investigating several tester 

designs composition (Scenario 2b’), we showed that the best strategy was always to use more 

testers while maximizing the number of candidate lines, a strategy comparable to using a sparse 

factorial design. 

Benefit of updating the factorial TRS along breeding cycles 

Once inbred lines from a new generation (G1) are available and can be genotyped, a key issue 

is to predict the best new hybrid combinations between them to prioritize hybrid production 

and evaluation. There are two possible situations, depending on the availability of phenotypes 

of a subset of hybrids from the new breeding cycle (G1 hybrids). When G1 phenotypes are 

available, they can be used to calibrate prediction equations. We showed the benefit of 

combining this information with historical data from G0 hybrids compared to using G1 

phenotypes alone (Fig.6). Several studies also reported similar results (Jannink 2010; Denis and 

Bouvet 2013; Neyhart et al. 2017). Among the historical data, hybrids between the lines selected 

to generate the new generation (G0S) are the most related to the G1 generation. We showed 

that even when G0S and G1 hybrids were already in the TRS, there was still a benefit of including 

hybrids between unselected lines from previous generations (G0R hybrids). This last result aligns 

with results found by Neyhart et al. (2017) and Brandariz and Bernardo (2018), showing that 

when constructing a TRS, one must consider keeping hybrids produced between unselected 

lines to maintain high prediction accuracy. Additionally, when including data from the two 
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generations (G0 and G1) in the TRS, we also included TRS hybrids evaluated in different years 

and environments. This reduced the impact of genotype-by-environment interactions and, as a 

result, increased prediction accuracy. Similar results have been obtained by Auinger et al. (2016). 

In the second situation, where G1 hybrids phenotypes are not yet available, we showed 

that using only historical data in the TRS can provide good prediction accuracies (Fig.6). We 

evaluated the benefit of producing and phenotyping additional data to update the historical 

(G0) TRS, particularly the benefit of adding G0S hybrids. G0S are single-crosses between the G0 

lines selected to be the parents of the G1 generation, so including these hybrids increases the 

relationship between the TRS and the G1 PS. We compared G0S and G1 hybrids for their 

efficiency to update the TRS. Predictive abilities obtained with the 132 G0S hybrids were reached 

when adding a similar number or more G1 hybrids (Fig.6). This indicates that for a fixed number 

of hybrids, using G0S hybrids was equivalent to or slightly better than using G1 hybrids for 

updating the TRS. Once the best candidate lines are selected to become the parental lines 

(corresponding to G0S lines) for the subsequent breeding cycle, but hybrids from the new cycle 

(G1 hybrids) are not yet available, it is beneficial to phenotype new hybrid combinations 

between the selected lines to update the TRS. Several entangled factors can explain the result: 

(i) the increased TRS size, (ii) the increased relationship between the TRS and PS, and (iii) the 

increased number of years and environments in the data used as TRS (see reviews by Isidro y 

Sánchez and Akdemir 2021 and Rio et al. 2022). Adding G0S hybrids is a way to accumulate 

information on the hybrid values (GCAs) of the selected lines in different environments, which 

is helpful to predict the hybrid values of their progeny. Our results also show that even if G0S 

hybrids are added to the TRS, it is still interesting to add performances of G1 hybrids to the TRS 

when these become available, as it increases the genotypic relatedness between the TRS and 

the PS (Fig.6). 

Optimization of the G1 hybrid set to phenotype to update the TRS 

In Scenario 3b, we optimized the G1 hybrid set used to update the initial G0 TRS. The G1 hybrid 

set was optimized based on the CDmean computed considering (CDmean 2) or not (CDmean 1) 

the information from the initial G0 TRS (G0R+G0S hybrids) (Fig.7). As expected, optimizing the 

TRS using the CDmean (CDmean 1 or CDmean 2) instead of random sampling increased our 

predictive abilities in most of the cases. This was also reported in numerous other studies 

(Rincent et al. 2012, 2017; Isidro et al. 2015; Akdemir et al. 2015; Mangin et al. 2019; Isidro y 
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Sánchez and Akdemir 2021; Kadam et al. 2021). Interestingly, we observed more stable 

predictions abilities across replicates using the CDmean, than with random sampling. It has to 

be noted that in this optimization process, we used CDs computed assuming a single additive 

genetic effect despite using a GCA/SCA prediction model for our predictions. We could have 

included non-additive effects in the computation of the CDmean, as done by Momen and 

Morota (2018) and Fristche-Neto et al. (2018). However, these authors did not find a clear benefit 

of accounting for dominance in the CDmean computation, and we did not see any advantage 

of including the dominance effect in our prediction models. For these reasons, we do not expect 

that adding dominance in the CDmean computation would have had a positive impact.  

It was surprising to us that the CDmean 1 (which does not consider information from the 

G0 TRS hybrids) outperformed the CDmean 2 (which considers the G0 information). The 

CDmean 1 likely selected G1 hybrids that were representative of the whole range of G1 hybrids. 

In contrast, since the hybrids between the G0S parental lines of the G1 were already in the TRS, 

the CDmean 2 likely maximized the diversity of the TRS by favoring G1 hybrids genetically 

distant from the G0 hybrids. The CDmean 2 assumed that G0 and G1 hybrids were evaluated in 

the same environments, which was not true. As a consequence, some of the G0 hybrids may not 

have been as informative to predict the G1 hybrids as they seemed, based on the genomic 

relationship matrix. This may explain why CDmean 2 did not outperform CDmean 1. To compute 

the CDmean, we could have considered each environment as a different trait and used the 

correlation value between the two environments, as suggested by Ben-Sadoun et al. (2020). Rio 

et al. (2022a) showed the benefit of using such multi-environmental CDs to optimize the 

allocation of individuals in trial networks, and this could have been extended to multigeneration 

TRS optimization. In practice, one cannot know in advance the correlation between the 

environments where the previous generation was evaluated and those where the new 

generation will be evaluated. One solution might be to use historical data to estimate the 

magnitude of correlations that can be expected between years and use this value when 

computing the expected multi-environment CD. 
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Conclusions 

Our study confirms the efficiency of combining genomic predictions and sparse factorial TRS to 

predict candidate lines GCAs and hybrid values across breeding cycles. Genomic prediction 

accuracy was high and increased when updating the TRS by incorporating performances of 

hybrids between selected lines from the previous generation and potentially hybrids from the 

new generation. When incorporating hybrids from the new generation, choosing them based 

on a criterion such as the CDmean was beneficial. 
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Abstract 

Genomic selection has the potential to increase the rate of genetic gain by acting on three 

parameters of the breeder’s equation: reducing the generation interval, increasing the selection 

intensity and the selection accuracy. In conventional maize hybrid breeding schemes, candidate 

inbred lines are selected based on topcross evaluations using a limited number of testers. Then, 

a subset of single-crosses between these selected lines is evaluated to identify the best hybrid 

combinations. Recent studies proposed to replace tester-based evaluations with genomic 

predictions calibrated on a factorial design to predict single-cross hybrids at an early stage and 

have shown promising predictive abilities to improve hybrid breeding schemes. This study aims 

to further investigate the use of genomic selection trained on factorial designs in hybrid 

breeding programs. We simulated a reciprocal recurrent scheme involving multiparental 

connected populations from two complementary heterotic groups mimicking a maize breeding 

program. We compared a conventional phenotypic selection breeding scheme at fixed costs 

against five other schemes based on genomic predictions combined or not with (i) shortening 

the breeding cycle time by removing phenotypic evaluation steps and (ii) using factorial instead 

of tester designs to train genomic selection models. The simulations were carried out 

considering two scenarios, with or without specific combining ability (SCA) effects. Results 

suggest that implementing GS and shortening the breeding cycle by replacing the two early-

stage topcross evaluations with a unique sparse factorial design hold great potential to fasten 

the breeding process while increasing the genetic gain under both SCA scenarios. 
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Introduction 

Modern maize breeding emerged in the 20th century, replacing open-pollinated populations 

with hybrids. Progressively, maize genetic diversity has been structured into complementary 

groups, and current varieties are mainly single-cross hybrids between two inbred lines issued 

from different heterotic groups, which maximizes the expression of heterosis at the hybrid level 

(Shull 1908). Hybrid selection involves developing inbred lines by self-fertilization or doubled 

haploidization and then crossing them to produce and identify the best-performing single-cross 

hybrids. In conventional breeding programs, hundreds of candidate lines can be produced yearly 

in each group, making it impossible to evaluate all possible single-cross hybrid combinations. 

To circumvent this issue, the selection process is divided into two steps. In the first step, 

candidate inbred lines from each group are crossed with one or a few “testers”, usually inbred 

lines, from the complementary group to produce topcross hybrids. Based on these topcross 

hybrids, an early-stage selection is done to reduce the number of candidate lines. In the second 

step, selected candidate lines from the first step are crossed between the two groups, and the 

resulting single-cross hybrid combinations are evaluated to select the future hybrid varieties 

and parental lines for initiating the next cycle. The early stage selection based on a few testers 

can bias the estimation of the capacity of a line to generate good hybrids, referred to as its 

General Combining Ability (GCA), by confounding the line GCA with its Specific Combining 

Ability (SCA) with the testers, masking part of the GCA variance among candidate lines (Hallauer 

et al. 2010). Therefore, this two-stage selection process does not guarantee the identification of 

inbred lines that will produce the best hybrid combinations. This breeding process is also time-

consuming and requires extensive phenotyping in both groups since each topcross hybrid only 

provides information on one candidate line from one group. 

Genomic selection (GS) is now a routine practice in many breeding programs for major 

crop species such as maize. It uses markers across the whole genome to predict the genetic 

value of complex traits (Meuwissen et al. 2001). It relies on a prediction model trained on a set 

of genotyped and phenotyped individuals (training set, TRS) that is then used to predict the 

genetic values of a set of selection candidates (prediction set, PS) based on their marker 

genotypes. Several prediction methods have been proposed, but the most robust and common 

is the genomic best linear unbiased prediction (GBLUP). Genomic predictions can be used to 

restructure existing breeding programs to: (i) shorten the breeding cycle by suppressing 



Chapter 3 

 

A. Lorenzi (2023) 

126 

phenotypic evaluation steps, (ii) increase selection intensity by increasing the number of 

candidate lines and (iii) increase selection accuracy of the candidate lines for traits difficult or 

costly to phenotype (Heslot et al. 2015; Crossa et al. 2017). By acting upon three parameters of 

the breeder’s equation: reducing the generation interval and increasing the selection intensity 

and accuracy, GS can increase the genetic gain, as reported in several simulation and 

experimental studies reviewed for instance by Krishnappa et al. (2021). However, depending on 

the species, the organization of the breeding programs and the constraints on breeding may be 

very different. As a consequence, the benefit of using GS is species-specific (R2D2 Consortium 

et al. 2021). 

Bernardo and Yu (2007) were the first to report the successful use of GS in a maize 

breeding scheme using simulation results. They focused on using GS in the early selection stage, 

considering only one heterotic group and topcross evaluations. Following their work, numerous 

simulation and field studies have shown the great potential of GS in hybrid breeding (Technow 

et al. 2012, 2014; Massman et al. 2013; Xu et al. 2014; Kadam et al. 2016; Kadam and Lorenz 

2018; Seye 2019; Lorenzi et al. 2022). Some of them have evaluated the interest of GS at the 

early stage, i.e., the selection of the candidate lines based on topcross hybrids (Lorenzana and 

Bernardo 2009; Albrecht et al. 2011; Lehermeier et al. 2014; Krchov and Bernardo 2015; Seye et 

al. 2020; Burdo et al. 2021; Lorenzi et al. 2022). Other studies addressed GS for hybrid value 

prediction in the second stage of the hybrid breeding scheme, i.e., by using as TRS single-cross 

hybrids between lines that have already undergone a selection based on their testcross to 

predict the value of unobserved single-cross hybrids (Maenhout et al. 2010; Technow et al. 2012, 

2014; Massman et al. 2013). 

Whatever the species considered, implementing GS may impact various aspects of a 

breeding program. This includes reallocating phenotyping resources, changing selection 

pressure at different stages, and modifying the duration of the breeding cycle. With a 

constrained budget, inherent tradeoffs emerge, such as deciding how to reallocate resources 

between phenotyping and genotyping, as well as determining the balance between the number 

of candidate lines and the accuracy of their evaluation. Simulation studies published so far for 

evaluating the relative interest of GS rarely addressed resource allocation at fixed costs. In wheat, 

two simulation studies investigated the benefit of implementing GS in a commercial breeding 

program at fixed costs and with optimized resource allocation (Longin et al. 2015; Ben-Sadoun 
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et al. 2020). A recent simulation study by Bernardo (2021) investigated the use of different GS 

strategies at a fixed cost in the early selection stage of a maize breeding program carried out 

on a biparental population and showed that speeding up selection by using two cycles of GS 

(without phenotyping) allowed larger genetic gains than phenotypic selection. To the best of 

our knowledge, no study has been carried out simulating a more complex hybrid breeding 

scheme (BS) at a fixed cost including both early and late-stage selection in a reciprocal selection 

scheme performed in complementary groups. 

To further improve hybrid breeding programs taking advantage of GS, Kadam et al. 

(2016) and Giraud (2016) proposed replacing topcross testing in the early stage of the process 

with genomic predictions trained on a sparse factorial design to predict all potential hybrid 

combinations. Both studies found good prediction accuracies for untested hybrids using sparse 

factorial design to train GS models. In addition, studies based on simulations by Seye et al. (2020) 

and experimental data by Lorenzi et al. (2022) and (Lorenzi et al. 2023) compared the use of 

sparse factorial designs with tester designs to train GS models. They revealed equivalent 

prediction accuracies when there is no SCA variance in the population and an increasing benefit 

of the factorial design when the SCA variance increases. Moreover, even when no SCA is 

involved, these studies illustrated the ability of the GS model trained on very sparse factorials to 

decouple line GCA components and predict their value accurately. The potential benefits of 

using a sparse factorial design instead of tester designs are (i) to evaluate more lines with the 

same number of plots and (ii) to select jointly on the GCA and SCA components in the early 

stage of the selection process. This also offers the possibility of revisiting the hybrid breeding 

scheme by collapsing early and late-stage evaluations into one single step using genomic 

predictions calibrated on a factorial design to predict both line GCAs and unobserved hybrid 

values. This idea was mentioned by Seye et al. (2020) but has never been tested to our 

knowledge. The main drawback of implementing factorial designs into maize breeding 

programs is the production of single-cross hybrids by handmade pollination instead of isolation 

plots for testcross evaluation, which can be challenging and costly. Therefore, even if the 

approach is appealing, it is necessary to assess the cost-efficiency of breeding schemes 

incorporating factorial designs compared to a conventional hybrid breeding scheme based on 

topcross evaluation. 
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The objective of our study is to further investigate the use of genomic selection trained on 

factorial designs in hybrid breeding programs. We used simulations to evaluate how the global 

efficiency of a conventional hybrid breeding program is affected by the implementation of GS 

and investigated several breeding scheme strategies combining (i) shortening the breeding 

cycle time by omitting one or several phenotypic evaluation steps, and (ii) using factorial designs 

instead of tester designs to train GS models to improve hybrid breeding schemes. Since breeders 

operate with a fixed budget, we compared all breeding scheme strategies at fixed annual costs. 

We used the generic public simulator MoBPS (Pook et al. 2020) to simulate a conventional 

phenotypic selection breeding scheme, considered as a benchmark, and five GS breeding 

schemes. The simulations were carried out considering a trait showing SCA or not. In both cases, 

our results illustrated the benefit of replacing test-cross evaluations by GS calibrated on a sparse 

factorial design to fasten the breeding process and revisit reciprocal recurrent selection 

schemes. 

Materials and Methods 

We aimed at comparing, at the same budget, the efficiency of different breeding schemes (BS) 

in a recurrent reciprocal breeding context. To do so, we simulated two segregating populations 

from two complementary heterotic groups. We implemented five BSs using GS differing in their 

duration and the use of sparse factorials vs. tester evaluation. We compared them to a 

benchmark BS relying on phenotypic selection only. The simulations were performed using R (R 

Core Team 2020) and the R package MoBPS (Pook et al. 2020). Genomic predictions were 

performed using homemade scripts and the R package MM4LMM (Laporte et al. 2022). 

Founder lines 

We used the real genotypic data of 15 dent and 15 flint lines to simulate realistic LD patterns 

and allelic frequencies, as used in previous simulations (Seye et al. 2020). The genotypic data 

originated from two projects: 11 flint and 11 dent lines from the Dent and Flint NAM design of 

the European CornFed project (Bauer et al. 2013; Giraud et al. 2014), and four flint and four dent 

lines from the French SAMMCR (“Sélection Assistée par Marqueurs Multi-parental Connectée 

Réciproque”) project (Giraud et al. 2017b; Seye et al. 2020; Lorenzi et al. 2022). Lines were 

genotyped with single-nucleotide polymorphism (SNP) from the Illumina MaizeSNP50 BeadChip 

(Ganal et al. 2011). 
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Marker quality control and imputation were done following Seye et al. 2020, considering 

jointly genotypic data from the European CornFed and SAMMCR projects (308 dent and 397 

flint lines). We applied filters to keep PANZEA markers (Gore et al. 2009) that were mapped on 

the CornFed NAM consensus genetic map (Bauer et al. 2013; Giraud et al. 2014) and were 

polymorphic in the set of 30 founder lines considered for the simulations. In total, 20,766 SNPs 

were used in our simulations. Among them, 88% were polymorphic in both groups, 7% were 

monomorphic in the flint founder group, and 6% were monomorphic in the dent founder group. 

The genetic positions of these markers were retrieved from the CornFed NAM consensus genetic 

map (Bauer et al. 2013; Giraud et al. 2014). 

Simulation of QTL effects and positions  

Each simulation replication was initiated by simulating one quantitative trait controlled by 300 

biallelic QTLs. We sampled 300 QTLs among the polymorphic markers in both groups with a 

minimum interval of 0.2 cM between consecutive QTLs to avoid linkage between too close QTLs. 

Then, the 300 markers selected as QTLs were excluded from the list of markers used in the 

simulations to calibrate genomic predictions. 

To simulate QTLs, we considered two scenarios with different proportions of SCA 

variance: one with no SCA and the other with a proportion of SCA variance similar to what could 

be observed in a maize breeding program between the dent and flint groups. In the absence of 

epistasis effects, SCA is generated by dominance effects at QTLs, with a magnitude depending 

on the divergence in allele frequencies between the two populations (Technow et al. 2012). The 

QTLs contributing to SCA variance are the ones that are polymorphic in both heterotic groups 

and showing dominance effects (Legarra et al. 2023). To simulate two levels of SCA variance, we 

considered different levels of additive and dominance QTL effects. We considered the same QTL 

effects for both flint and dent groups. In the purely additive scenario (no SCA variance), additive 

effects were drawn from a Gamma distribution with parameters scale=1.66 and shape=0.4 

(Meuwissen et al. 2001; Technow et al. 2012), and for each locus, the favorable allele was 

randomly chosen (with probability P = 0.5). In the scenario with SCA variance, additive effects 

were simulated as described previously, and the dominance effects were obtained as the 

product between the absolute value of the additive effect and the degree of dominance at each 

QTL. The degree of dominance was drawn from a Normal distribution of mean 1.0 and variance 

0.75, corresponding to experimental estimates for grain yield in maize (Technow et al. 2012). 
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This simulates QTLs with mostly positive dominance effects for the favorable effect and the 

possibility of overdominance effects. This scenario generated on average 29% of genetic 

variance due to SCA in the initial cycle. 

Initialization 

Before starting any of the six BSs, one initialization cycle was performed to produce populations 

that mimic those of breeding programs and phenotypic data to train the GS model in the first 

cycle of the GS BSs (see Fig.1). The 15 initial founder lines in each group were crossed following 

a half diallel to produce 80 single-cross F1 hybrids. 25 DH lines were generated for each single-

cross, reaching a total of 2000 DH lines per group. The breeding scheme encompassed three 

different evaluation steps: two early-stage topcross hybrid testings, further called early testing 

1 and 2 (ET1 and ET2), and a late testing stage (LT) for the final selection of candidates. In the 

ET1 step, DH lines were crossed to one tester from the opposite group and evaluated in three 

trials for yield performance. In the ET2 step, candidate lines issued from the ET1 step were 

crossed to three testers from the opposite group and evaluated in six trials. And last, in the LT 

step, the dent and flint candidate lines issued from the ET2 step were crossed following a 

factorial design, with each line contributing to four hybrids. These hybrids of the LT step were 

evaluated in 12 trials. Testers used in ET1 and ET2 steps were chosen randomly at each breeding 

cycle and phenotyping step among the founder lines of the population (15 flint founder and 15 

dent founder lines). In this initialization cycle, 20% of the candidate lines were randomly sampled 

after each phenotypic evaluation step. This random sampling aimed at avoiding reducing 

genetic variance before starting BSs. At the end of the initialization cycle, 16 lines were used to 

be parents of the subsequent breeding cycles. After the initialization, six different BSs were 

conducted for eight non-overlapping breeding cycles (i.e., the initialization is common to all 

breeding schemes). 
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Fig.1 Initialization breeding scheme comprising three different evaluation steps, two early-stage topcross 

hybrid testings further called, early testing 1 and 2 (ET1 and ET2) and a late testing stage (LT) 

Phenotypic selection breeding scheme 

A convention phenotypic selection BS, further called “Y3-Pheno”, was implemented to be used 

as a benchmark. Candidate individuals were assumed to be doubled-haploid (DH) lines at each 

cycle, as is currently the case in most maize breeding schemes. The Y3-Pheno scheme was 

designed considering realistic costs for a maize breeding scheme. Costs per unit of each 

operation within a breeding scheme (production, multiplication, phenotyping, and genotyping) 

are shown in Table 1. We considered the cost of production of the crosses between selected 

individuals to generate segregating DH families at each cycle as being negligible. The costs were 

assumed to be equal for genotyping, testcross seed production, and phenotyping at one 

location. The seed production cost of a single-cross hybrid (factorial) was considered twice the 

cost of a testcross hybrid. These costs were defined based on the expertise of breeders involved 

in the SAMMCR project. 

The Y3-Pheno scheme is described in Fig.2. After the initialization cycle, at each cycle, 

the 16 selected lines in each group from the previous breeding cycle were crossed following a 

half diallel to produce 80 single-crosses. For each single-cross, 25 DH lines were generated, 

reaching a total of 2000 DH lines per group with equal contributions from all families. The 

breeding scheme encompassed the same three evaluation steps (ET1, ET2, LT) already described 
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in the initialization cycle. After each phenotyping step (ET1, ET2, and LT), the best 20% candidate 

lines were selected based on the average phenotypic performance of their progeny and passed 

on to the next selection step. At the end of the cycle, the 16 best dent lines and the 16 best flint 

lines from the LT step were used as parents for the subsequent breeding cycle. 

Genetic values were generated from the genotype at QTLs of the hybrids. Then, 

environmental errors were added to generate phenotypic values. Environmental errors were 

sampled from a normal distribution with a zero mean and an error variance 𝜎𝐸
2 defined by the 

initial repeatability in the founder population: 𝑟 =
𝜎𝐺

2

𝜎𝐺
2+𝜎𝐸

2 = 0.25. This led to an initial heritability 

in the founder population of ℎ2 = 0.50 for a multi-trial phenotypic evaluation in three 

environments (ET1), ℎ2 = 0.67 in six environments (ET2) and ℎ2 = 0.80 in 12 environments (LT). 

Note that the heritability varied along breeding cycles with the evolution of the genetic variance 

𝜎𝐺
2. 

Table 1 Cost per unit in euros of each operation in the breeding scheme 

Operation Unit Cost per 

unit 

Production + 

Multiplication 

DH line 
25 

Hybrid seed production  Testcross hybrid 15 

Single-cross hybrid 30 

Genotyping DH line 15 

Phenotyping Field plot 15 

GS breeding schemes 

Five different BSs using GS were considered and compared to the Y3-Pheno scheme described 

above (Fig.2). We compared all BSs at a constant averaged annual cost, using the Y3-Pheno 

annual cost as a reference. Compared to the Y3-Pheno scheme, GS BSs included the additional 

genotyping cost of candidate lines. Resources were reallocated in the BSs (see below). We did 

not modify the number of trials for a given phenotyping evaluation step (three in ET1, six in ET2 

and 12 in LT) and the same number of selected lines to be used as parents for the subsequent 

cycle (16 selected lines in each group). Details on the sizes and costs of each BS are given in 

Fig.2 and Table 2. 
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Fig.2 Definition of the benchmark phenotypic selection BS and the five GS BSs. For each BS and at each 

step, the number of lines is indicated along with the method - phenotypic selection (PS) or genomic 

selection (GS) - used to select the lines. The phenotyping steps are underlined and the corresponding 

number of trials is indicated (Trials). The phenotyping steps ET1 and ET2 correspond to the early testing 

of candidate lines based on topcross hybrids and the LT step to the late-stage evaluation of the hybrid 

combinations obtained by crossing the selected candidate lines following a factorial design with four 

hybrids per line (F4H). 
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Table 2 Summary of hybrid BSs sizes (number of parents, F1 hybrids, DH lines and for each phenotypic 

evaluation step, the number of lines 𝒏𝒍 and hybrids 𝒏𝒉), number of years per cycle and costs (in euros). 

Breeding 

scheme 
Parents F1 DH 

ET1 ET2 LT 
𝐧𝐭𝐫𝐢𝐚𝐥 

Years 

per 

cycle 

Cost 

per 

year 

Cost 

per 

cycle 
𝐧𝐥 𝐧𝐡 𝐧𝐥 𝐧𝐡 𝐧𝐥 𝐧𝐡 

Y3-

Pheno 
32 160 4000 4000 4000 800 2400 160 320 21 5 131840 659200 

Y3-GS 32 160 4000 3000 3000 800 2400 160 320 21 5 131840 659200 

Y2TC1-

GS 
32 160 7040 3000 3000 - - 160 320 15 4 132200 528800 

Y2F1H-

GS 
32 160 7040 4760 2380 - - 160 320 15 4 131825 527300 

Y1F4H-

GS 
32 160 7040 - - - - 270 540 12 3 131667 395000 

Y1F1H-

GS 
32 160 7040 - - - - 1086 543 12 3 131877 395630 

 

We implemented the Y3-GS scheme to evaluate the impact of introducing GS while 

keeping the same steps as the Y3-Pheno scheme at fixed costs (Fig.2). In this GS BS and all the 

following ones, the candidate lines were selected based on genomic predictions of the candidate 

lines GCAs (GCA BLUPs). The GS model was trained on two generations for all GS BSs. The TRS 

comprised all phenotypic data available from the previous generation and the phenotypic data 

from the current generation was added to the TRS along the different steps of the breeding 

cycle. Note that in all GS BSs, the candidate DH lines were first selected based on predictions 

calibrated on the phenotypic data from the previous cycle. In contrast in the ET1, ET2 and LT 

selection stages, the selection included hybrid performances of the candidate lines. It should 

also be noted that depending on the GS BS, the size of the TRS can differ significantly. The 

description of the GS model used to calibrate the prediction model is given in the “Genomic 

selection” section. To compensate for the additional costs of genotyping in the Y3-GS scheme, 

we reduced the number of evaluated lines in the ET1 phenotyping step from 2000 in each group 

in the Y3-Pheno to 1500 lines in the Y3-GS scheme. 

Then, taking advantage of GS, we investigated the impact of shortening the breeding 

cycle by suppressing one or two phenotypic evaluation steps. The Y2TC1-GS scheme omitted 

the ET2 phenotyping step, reducing the length of the scheme by one year compared to the Y3-

GS (Fig.2). The budget saved by suppressing the ET2 step was reallocated to produce more DH 

lines (3520 DH lines in each group in the Y2TC1-GS instead of 2000 in the Y3-GS scheme) while 

keeping the other parameters identical to the Y3-GS scheme. The Y1F4H-GS scheme omitted 

both ET1 and ET2 phenotyping steps, reducing the length of the scheme by two years compared 
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to the Y3-GS (Fig.2). The budget saved by suppressing the ET1 and ET2 steps was reallocated 

to produce more DH lines (3520 DH lines in each group) and evaluate more lines in the LT 

phenotyping step (135 in each group in the Y1F4H-GS instead of 80 in the Y3-GS scheme). 

Combined with shortening the breeding cycle, we also investigated the impact of 

replacing tester designs with a factorial design. We implemented the Y2F1H-GS scheme to 

evaluate the efficiency of suppressing the ET2 phenotyping step and using a factorial design 

instead of tester designs in the ET1 step (Fig.2). We used the Y2TC1-GS scheme as a framework 

and replaced the tester designs from the ET1 step with a factorial design composed of one 

hybrid per line. To make the Y2F1H-GS and Y2TC1-GS schemes comparable, we adjusted the 

number of evaluated lines in the ET1 phase (2380 lines in each group in the Y2F1H-GS instead 

of 1500 in the Y2TC1-GS) while keeping all other parameters identical. 

Last, we investigated the impact of changing the composition of the factorial design in 

the Y1F4H-GS scheme. We implemented the Y1F1H-GS scheme to assess the impact of 

increasing the number of evaluated lines at the same number of plots by replacing the factorial 

composed of four hybrids per line with one composed of one hybrid per line in the LT step 

(Fig.2). To make the Y1F4H-GS and Y1F1H-GS schemes comparable, we adjusted the number 

of evaluated lines in the LT step without changing any other parameters of the BS. 

Genomic selection model  

To perform genomic predictions, we used a unique GBLUP GS model considering phenotypic 

and genotypic data from both groups (flint and dent) jointly. For BSs comprising tester designs, 

tester lines were considered as any other line. The GS model was defined as:  

𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒅 𝒈𝑮𝑪𝑨𝒅
+ 𝒁𝒇𝒈𝑮𝑪𝑨𝒇

+ 𝑬, 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is 

the intercept. 𝒈𝑮𝑪𝑨𝒇
 (respectively 𝒈𝑮𝑪𝑨𝒅

) is the vector of random GCA effects of the 𝑛𝑓 flint 

parental lines of the hybrids (respectively 𝑛𝑑 dent lines), with 𝒈𝑮𝑪𝑨𝒇
 ~ 𝒩 (0, 𝑲𝑮𝑪𝑨𝒇

𝜎𝐺𝐶𝐴𝑓

2 ) 

(respectively 𝒈𝑮𝑪𝑨𝒅
 ~ 𝒩(0, 𝑲𝑮𝑪𝑨𝒅

𝜎𝐺𝐶𝐴𝑑

2 )) where 𝑲𝑮𝑪𝑨𝒇
 (respectively 𝑲𝑮𝑪𝑨𝒅

) is the genomic 

relatedness matrix between the flint lines (respectively dent lines) computed following method 

1 from VanRaden (2008). 𝜎𝐺𝐶𝐴𝑓

2  and 𝜎𝐺𝐶𝐴𝑑

2  are the flint and dent GCA variances. 𝒁𝒅 and 𝒁𝒇 are 
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the corresponding incidence matrices of dimensions [𝑛 × 𝑛𝑑] and [𝑛 × 𝑛𝑓], respectively, that 

relate the observations to the GCA effects of lines considered in the model. 𝑬 is the vector of 

error terms, with 𝑬~ 𝒩(0, 𝑰𝜎𝐸
2). The different random effects are assumed to be independent. 

The GS model was fitted using the package MM4LMM for R (Laporte and Mary-Huard 2020). 

Metrics used to assess the BS efficiency 

To assess the efficiency of a BS we estimated the genetic gain and the genetic variance after 

each breeding cycle. And for GS BSs, we computed the prediction accuracy at two selection 

steps were genomic predictions were used: the initial selection of the DH lines before any early-

stage phenotyping, and the LT selection step to select the final individuals. 

To estimate the genetic gain, we estimated the average true genetic values of all possible 

single-cross hybrids between the 16 selected flint candidate lines and the 16 selected dent 

candidate lines (𝜇). We also computed the average of the ten superior true genetic values to 

mimic the mean value of the best varieties that could be released from the breeding program 

(𝜇10). The genetic gain was computed following: 𝐺 =
μ−μ0

𝜎0
, where μ0 and 𝜎0 were the mean and 

standard deviation of the initial population (hybrids produced by crossing the 2000 DH lines 

between the dent and flint groups in the initialization cycle). 

To estimate the GCA and SCA genetic components of the population of a given breeding 

cycle, we produced a factorial design between all DH candidate lines of the flint and dent groups, 

with each DH line contributing to 50 single-cross flint-dent hybrids. The GCA of a DH line was 

estimated as the mean true genetic value of its progeny, and the SCA of a hybrid was estimated 

as the difference between the expected value based on the mean of the parental GCAs and the 

observed genetic value of the hybrid.  

The prediction accuracy of the GS BSs was computed at two selection steps: at the 

selection stage of the candidate DH lines (prior to their evaluation) and at the LT selection stage 

of the final 16 best lines in each group. For the DH selection step, the prediction accuracy of the 

line GCAs was computed based on the hybrids of the incomplete factorial design between all 

the flint and the dent DH lines used to obtain variance components. The prediction accuracy 

was computed as the correlation between the GCA BLUP and the true line genetic value, where 

the true genetic value of the line was estimated as the average true genetic value of the hybrid 
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progeny of the line. For the LT selection step, the prediction accuracies of the line GCAs and the 

hybrids of the LT factorial design were computed using all performances available in the TRS 

(including the LT evaluation phenotypes). The prediction accuracy of the line GCAs was 

computed as described previously, using the true line genetic values estimated in the DH 

selection step. The hybrid prediction accuracy was computed as the correlation between the 

predicted hybrid value (sum of the GCA BLUPs) and the true hybrid genetic value. 

Results 

Impact of the different BSs on the genetic gain 

We evaluated first how genetic gain was affected by the implementation of GS in a conventional 

BS, including early testing of DH candidates based on testers. At fixed costs, the genetic gain 

along years (Fig.3) and breeding cycles (Fig.S1) was higher for the Y3-GS than the Y3-Pheno 

scheme. The advantage of the Y3-GS scheme was higher for the purely additive scenario (0% 

SCA) compared to the SCA variance scenario (29% SCA) (Fig.S1). The genetic gain computed on 

the top ten hybrids was higher than the one computed on the total population for both BSs 

under both SCA scenarios. Differences between the Y3-Pheno and Y3-GS schemes were also 

lower in the top ten hybrids than in the total population, however, the Y3-GS scheme still 

outperformed the Y3-Pheno scheme (Fig. S2 and Fig. S3). 

Then, we investigated the impact of shortening the breeding cycle by suppressing one 

(Y2TC1-GS) or two phenotypic topcross evaluation steps (Y1F4H-GS) and compared it to the Y3-

GS scheme. Shortening the breeding cycle in the Y2TC1-GS and Y1F4H-GS schemes resulted in 

a faster and higher short-term genetic gain per year than in the Y3-GS scheme. However, the 

cumulated genetic gain after eight cycles was generally lower (Fig.3, Fig.S1). The Y2TC1-GS 

scheme, which omitted the ET2 phenotyping step, combined a faster short-term genetic gain 

with a high long-term genetic gain, slightly below and above the one of the Y3-GS at 0% and 

29% SCA, respectively. The Y1F4H-GS scheme, which omitted ET1 and ET2 phenotyping steps, 

generated the highest short-term genetic gain (first 15 years) but the lowest long-term genetic 

gain. Overall, the genetic gain in the scenario with 29% SCA was lower than in the purely additive 

scenario, but the global ranking between BSs was unchanged. The genetic gain computed on 

the top ten hybrids showed the same ranking and similar differences between BSs to what was 

observed on the total population (Fig.S2 and Fig.S3). 
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Fig.3 Evolution of the genetic gain over time of all BSs in two SCA scenarios with 0% or 29% SCA in the 

initial population. Genetic gain is expressed as the difference between the mean genetic value of the 

hybrids and the mean hybrid genetic value in the initial population divided by the standard deviation in 

the initial population. Each point represents the overall mean of 10 replicates. Year 0 corresponds to the 

initial population, year 5 corresponds to the initialization and the breeding starts after year 5. 

Last, we investigated the impact of combining shorter breeding cycles with factorial 

designs and compared different factorial design compositions. First, we compared the Y2TC1-

GS and Y2F1H-GS schemes to investigate the impact of replacing tester designs with a sparse 

factorial design (F1H) in the ET1 step. The Y2F1H-GS scheme, using a factorial design in the ET1 

step, enabled the evaluation of more lines than Y2TC1-GS and generated a higher genetic gain 

per year (Fig.3) and per breeding cycle (Fig.S1) regardless of the SCA scenario. The advantage 

of the Y2F1H-GS scheme was stronger when 29% SCA variance was considered in the initial 

population where it outperformed all the other BSs (Fig.3). The Y1F4H-GS and Y1F1H-GS 

schemes, which only involve one evaluation step (LT) were slightly more efficient per year in the 

short-term and less efficient in the long-term compared to all the other BSs (Fig.3). The 

comparison between the Y1F1H-GS and the Y1F4H-GS schemes, allowed us to assess the 

efficiency of evaluating more lines (F1H) instead of more hybrids per line (F4H) at the same 

number of plots. The Y1F1H-GS scheme generated a higher genetic gain per year (Fig.3) and 

per breeding cycle (Fig.S1) than the Y1F4H-GS. The results were similar between the two SCA 
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scenarios, however, differences were smaller in the scenario with 29% SCA. The genetic gain 

computed on the top ten hybrids showed the same ranking and similar differences between BSs 

to what was observed on the total population (Fig.S2 and Fig.S3). 

Impact of the different BSs on the genetic variance 

The total genetic variance decreased rapidly along breeding cycles. This decrease was faster in 

the scenario with 0% SCA variance than in the scenario with 29% SCA (Fig.4). After eight cycles, 

almost all initial variance was exhausted, especially for GS BSs. The Y3-Pheno scheme was 

associated with a slower decrease in the genetic variance per breeding cycle compared to all 

the other BSs. The implementation of GS resulted in a faster decrease in the genetic variance 

per cycle. However, the shortening of the breeding cycle and the use of factorial designs had no 

strong impact on the genetic variance per cycle. 

We decomposed the genetic variance into its GCA and SCA components (results 

presented in supplementary materials in Fig.S4). We observed the same trends and ranking 

between the BSs as described previously on the total genetic variance. When SCA was involved 

(29% SCA scenario), the SCA variance decreased faster than the GCA variances for all BS, as 

illustrated by the decreasing percentage of SCA variance along breeding cycles (Fig.S4). 

 
Fig.4 Evolution of the genetic variance along breeding cycles for all BSs for two SCA scenarios, purely 

additive or with 29% SCA. Genetic variance is expressed as the ratio between the genetic variance in the 

current population and the genetic variance in the initial population. Each point represents the overall 

mean of 10 replicates. Breeding cycle 0 corresponds to the initialization and the breeding starts at 1. 
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Impact of the different GS breeding schemes on the prediction accuracy 

We computed the prediction accuracy for two selection steps: the initial selection of the DH 

lines (Fig.5) and the late-stage selection of the lines (LT selection step) (Fig.6). At the DH 

selection step, since the objective was to select the candidate lines to be phenotyped, we 

computed the prediction accuracy of the DH line GCAs for each breeding cycle (Fig.5). Genomic 

predictions at this step were performed using only the phenotyping data from the previous 

breeding cycle to train the model. Overall, the prediction accuracy decreased along breeding 

cycles regardless of the SCA scenario. There was a strong decrease in prediction accuracy 

between the first and second breeding cycle, particularly for the Y1F4H-GS and Y1F1H-GS 

schemes. This drop is associated with moving from predictions calibrated on data from the 

initialization cycle, which includes three phenotyping steps, to predictions calibrated on the first 

selection cycle, which for these BS includes only one phenotyping step. The ranking based on 

the prediction accuracy was: Y3-GS, Y2F1H-GS, Y2TC1-GS, Y1F1H-GS and Y1F4H-GS. The lowest 

prediction accuracies were observed for the Y1F1H-GS and Y1F4H-GS, which were also the 

schemes with the smallest TRSs. The prediction accuracies were lower in the scenario with SCA 

(29% SCA) compared to the purely additive scenario (0% SCA).  

Overall, in the LT selection step, the hybrid prediction accuracy decreased along 

breeding cycles regardless of the SCA scenario (Fig.6). The highest prediction accuracies were 

observed for the Y1F1H-GS and Y1F4H-GS with no clear difference between them. The 

prediction accuracies of the other BSs were similar but lower than the Y1F4H-GS and the Y1F1H-

GS schemes. Similar results were observed between the two SCA scenarios with a similar 

prediction accuracy level. 
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Fig.5 Evolution of the prediction accuracy of the line GCAs in the DH initial selection step along breeding 

cycles for two SCA scenarios, purely additive or with 29% SCA. Prediction accuracy is expressed as the 

correlation between the line GCA true genetic values and the GCA BLUPs. Each point represents the overall 

mean of 10 replicates. 

 

Fig.6 Evolution of the hybrid prediction accuracy in the LT step along breeding cycles for two SCA 

scenarios, purely additive or with 29% SCA. Prediction accuracy is expressed as the correlation between 

the hybrid true genetic values and the predicted hybrid value. Each point represents the overall mean of 

10 replicates. 
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Discussion 

Impact of implementing GS in a conventional breeding scheme 

The first objective of this study was to assess the efficiency of implementing GS in a conventional 

recurrent reciprocal BS by comparing the Y3-GS and Y3-Pheno schemes. The Y3-GS scheme 

showed a higher genetic gain at fixed costs regardless of the SCA scenario (Fig.3, Fig.S1). 

Numerous studies reported an increased genetic gain with GS compared to phenotypic 

selection in hybrid BSs (Lin et al. 2016; Gaynor et al. 2017; Gorjanc et al. 2018; Voss-Fels et al. 

2019a, b). However, these studies were not conducted at fixed costs and often took advantage 

of GS to do more cycles per year. Comparison of Y3-GS and Y3-Pheno schemes at fixed costs 

with the same cycle length still showed an advantage of Y3-GS, even if fewer candidate lines 

were evaluated in the ET1 phenotyping step to offset the genotyping costs in the Y3-GS scheme. 

In the Y3-GS, these candidate lines were preselected based on genomic predictions before being 

evaluated in the ET1 step, which added one selection step compared to Y3-Pheno. 

The Y3-Pheno scheme only relied on phenotypic performances to select candidate 

individuals. It could have been possible to use pedigree BLUP (PBLUP) predictions in the Y3-

Pheno scheme to improve prediction accuracy. However, all DH candidate lines were 

phenotyped in the Y3-Pheno scheme, and the benefit of using information from relatives to 

increase the GCA prediction accuracy within segregating families is expected to be low in this 

case. Several plant studies compared GS with PBLUP selection and generally reported an 

advantage of GS (Beyene et al. 2015; Vivek et al. 2017; Zhang et al. 2017; Viana et al. 2019). 

Implementing GS improved genetic gains but resulted in a faster decrease in the genetic 

variance compared to the Y3-Pheno scheme. This accelerated loss of genetic diversity under GS 

has already been reported in previous studies, especially when coupled with high selection 

intensity (Gaynor et al. 2017; Tessema et al. 2020; Li et al. 2022). It is due to the rapid fixation of 

favorable but also unfavorable alleles at QTL (Falconer 1996; Li et al. 2008, 2022; Jannink 2010). 

Maintaining genetic diversity is therefore essential for the sustainability of GS breeding 

programs (Goddard 2009). Optimum contribution selection (OCS) methods have been proposed 

to maintain diversity in breeding programs, showing promising results (Gorjanc et al. 2018; Allier 

et al. 2019a). It would be interesting to apply such methods to the hybrid context to maximize 

genetic gain while controlling the loss of genetic diversity in GS breeding programs. We 
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simulated closed breeding programs, i.e. no new material was introduced along cycles, which 

explains the decrease in genetic variance that we observed for all BSs after eight generations In 

real breeding programs, external diversity is regularly introduced and GS was helpful in 

optimizing introductions (Allier et al. 2020; Sanchez et al. 2023). Introduction of genetic 

resources raises specific questions when applied to reciprocal BS, notably the maintenance of 

heterotic group differentiations. These questions were beyond the scope of this paper but would 

deserve further attention. 

Impact of shortening the breeding cycle  

This section discusses the impact of shortening the breeding cycle without changing the 

phenotypic evaluation designs. In the Y2TC1-GS and Y1F4H-GS schemes, we investigated the 

benefit of reducing the cycle length by suppressing one or two early-stage phenotyping steps 

compared to a conventional GS BS (Y3-GS). The shorter BSs allowed for a faster short-term 

genetic gain (particularly the Y1F4H-GS) but led to a lower genetic gain in the long term. 

Shortening the breeding cycle made it possible to do more breeding cycles per time unit 

compared to the Y3-GS scheme, which increased the genetic gain per time unit in the first years 

(Fig.3). However, shortening breeding cycles led to a lower cumulated genetic gain after eight 

breeding cycles compared to the Y3-GS as shown in Fig.S1. To explain this result, we looked at 

different parameters that impact genetic gain: the selection intensity, the genetic variance and 

the prediction accuracy. When reallocating resources in the Y2TC1-GS and Y1F4H-GS schemes 

to fit the constrained budget, we increased the number of candidate DH lines without changing 

the number of selected lines to be used as parents for the subsequent cycle, so we increased 

the selection intensity compared to the Y3-GS. This increased selection intensity could result in 

a faster decrease in genetic variance. However, genetic variances along breeding cycles were 

similar between GS BSs (Fig.4), indicating that it did not explain the lower long-term genetic 

gain. So, to explain this result we looked at prediction accuracies. Prediction accuracies were 

computed at two genomic selection steps: the initial DH lines selection stage (before field 

evaluation) and the late-stage selection (LT step) (Fig.5, Fig.6). Lower prediction accuracies were 

observed at the initial DH selection step for GS BSs with shorter cycle lengths than for the Y3-

GS scheme, whereas in the LT selection step, the prediction accuracies were higher for the 

Y1F4H-GS scheme than for the Y3-GS and Y2TC1-GS schemes. As most selection is done at the 

DH phase, the prediction accuracies at this step have a stronger impact on the genetic gain than 
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in the LT step. Thus, even if the prediction accuracies for the Y1F4H-GS scheme were higher in 

the LT step, it did not compensate for the decrease in prediction accuracy from the DH phase. 

So, the lower long-term genetic gain observed for the shorter GS BSs (Y2TC1-GS, Y1F4H-GS) 

compared to the Y3-GS scheme is mostly due to lower prediction accuracy in the DH selection 

step, which was not compensated by the increased selection intensity. 

The size of the TRS is a major factor affecting prediction accuracies (cf review by Isidro y 

Sánchez and Akdemir 2021). Since incorporating phenotypic data from previous years in the 

TRS can increase prediction accuracies (Lorenzi et al. 2023 in review, Jannink 2010; Denis and 

Bouvet 2013; Neyhart et al. 2017; Sleper et al. 2020), we chose to include the phenotyping data 

of two generations in the TRSs regardless of the BS. As a consequence, the TRS sizes were smaller 

for the BSs with a reduced number of phenotyping years, impacting the prediction accuracy. 

Indeed, in the DH selection step in the Y3-GS scheme, genomic predictions were calibrated on 

the performances of 5720 hybrids, whereas it was calibrated on 3320 in the Y2TC1-GS and 540 

in the Y1F4H-GS. The effect of the TRS size on the prediction accuracy was particularly visible 

between the first and second breeding cycles, where there was a strong decrease of prediction 

accuracy for the Y1F4H-GS BS. This decrease in prediction accuracy is associated with moving 

from genomic predictions calibrated on data from the initialization cycle comprising three 

phenotyping steps (5720 hybrids) to predictions calibrated on the first breeding cycle 

comprising for the Y1F4H-GS BSs only one phenotyping step. To avoid the reduction in the size 

of TRS for the shortest BSs, it might have been interesting to include more than two generations 

in the TRS (particularly for the Y1F4H-GS). Additionally, optimization strategies to construct the 

TRS could have been investigated (see Rio et al. 2022 for a review). Note that the same trend in 

terms of prediction accuracies was observed for the Y1F1H-GS, which is also based only one 

evaluation step. 

We could have tested other schemes with different allocations for the phenotyping, but 

we had to limit the number of schemes to facilitate their exploitation. In the Y2TC1-GS scheme, 

we chose to suppress the ET2 phenotyping step instead of the ET1 for two reasons. The ET1 is 

the step where the greatest number of candidate lines for selection are phenotyped, which 

enables eliminating the worst candidate lines. It is also the cheapest phenotyping step due to 

the limited number of trials. So, suppressing ET2 instead of ET1 allowed for more efficient 

resource reallocation. We considered shortening the BS by suppressing some phenotyping steps 
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(one or two) but we did not consider the possibility of further shortening BS by performing 

selection cycles without any phenotyping, as proposed for instance by Bernardo (2021). 

The phenotyping stages and the number of phenotyping cycles to be conserved or not 

for calibrating GS predictions is an important question. More generally, the choice of the 

individuals to phenotype along each stage of a BS is crucial. In conventional phenotypic 

breeding programs, only the most promising individuals are phenotyped in the late stage, but 

keeping only these individuals in the TRS might not lead to the highest prediction accuracy in 

GS. Results found by Neyhart et al. (2017) and Brandariz and Bernardo (2018), showed that when 

constructing a TRS, one should consider keeping hybrids produced between unselected lines to 

maintain high prediction accuracy. It is still unclear whether it would be advantageous at a fixed 

budget to evaluate only the best lines based on their predicted value or also some of the worst 

ones to construct an efficient TRS.  

Benefit of factorial designs in GS hybrid breeding schemes 

Our simulations align with a previous simulation study conducted by Seye et al. (2020), which 

showed promising results for replacing testcross evaluations with genomic predictions 

calibrated on a factorial design in early-stage maize hybrid BSs. We aimed at extending this 

previous simulation study to consider more realistic BSs addressing both the line evaluation and 

the identification of superior hybrids at fixed costs. We investigated the benefit of replacing the 

tester designs with a factorial design in a two-step phenotyping BSs (Y2F1H-GS) and also 

collapsing early- and late-stage phenotyping into a single phenotyping stage relying on a 

factorial design (Y1F4H-GS and Y1F1H-GS). This last option was mentioned by Seye et al. (2020) 

but has never been tested. 

We showed that reducing the cycle length by one year and replacing tester designs with 

a sparse factorial design in the Y2F1H-GS scheme improved the genetic gain compared with the 

Y2TC1-GS and the Y3-GS schemes (Fig.3, Fig.4). The use of a factorial design in the Y2F1H-GS 

instead of a tester designs slightly increased the prediction accuracies and allowed evaluating 

1760 more lines in the ET1 step than in the Y2TC1-GS scheme, which increased the genetic gain 

per cycle. Interestingly, the Y2F1H-GS scheme was the only scheme with a reduced cycle length 

showing an advantage both in the short- and long-term compared to the Y3-GS scheme. The 

Y2F1H-GS even outperformed the Y3-GS scheme in the long term when SCA was involved. 
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Prediction accuracies in the DH selection step were slightly higher for the Y2F1H-GS than the 

Y3-GS in the first three breeding cycles, which could explain the increased genetic gain. This 

result agrees with the simulations by Seye et al. (2020) reporting an increasing advantage of the 

factorial compared to the tester for the prediction of line and hybrid values when the SCA 

variance increases. While SCA levels simulated in both studies were comparable (23%, for Seye 

et al. 2020 and 29% in our study), the increased advantage of the factorial was not as strong in 

our study as the one observed by Seye et al (2020). It may be due to the fact that we considered 

a more complex and realistic breeding scheme involving more founder lines and more families 

at each cycle, which is less favorable to predict GCAs in a sparse factorial design. We also did 

not include SCA effects in the GS models because the computation time was too long to be 

compatible with the simulation of different BSs. However, studies have shown that including 

SCA effects in GS models often does not increase or only slightly improve the prediction 

accuracy of single-cross hybrids (Vitezica et al. 2017; Seye et al. 2020; González-Diéguez et al. 

2021; Lorenzi et al. 2022). In this context, we think the benefit of using factorial designs could 

have been similar or slightly improved if SCA effects were included in the GS prediction models, 

but it would not have changed our main conclusions. 

We also investigated BSs with only one phenotyping step and compared two BSs with 

different resource allocations (Y1F4H-GS and Y1F1H-GS). The observations mentioned for the 

Y1F4H-GS scheme in the previous section also apply to the Y1F1H-GS, both BSs were less 

efficient in the long term than the Y2F1H-GS. The Y1F1H-GS outperformed the Y1F4H-GS in 

terms of genetic gain per year and per cycle. Yet, the number of produced candidate DH lines, 

the genetic variances and prediction accuracies along cycles were similar between the two 

schemes. The benefit of the Y1F1H-GS can be explained by the increased number of lines that 

were evaluated in the factorial design F1H compared to the F4H. Increasing the number of 

evaluated lines in the factorial design decreases the selection intensity at the DH selection step 

and increases it in the LT step when predictions are based on the performances of the lines still 

in the selection process and are more accurate than in the LT step. However, it was surprising 

that there was no clear difference in prediction accuracy in the DH selection step between the 

Y2F4H-GS and Y1F1H-GS schemes. Results from previous studies showed that it was beneficial 

to use more lines instead of more hybrids per line when predicting untested hybrids (Seye et al. 

2020; Lorenzi et al. 2022), thus we were expecting an increased prediction accuracy in the Y1F1H-
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GS scheme. One possible explanation is that in these studies, the TRS and PS were composed 

of the same generation, whereas in our simulations, we used performances from the previous 

generation to predict the next one. Compared to other GS BSs, the strategy using only one year 

of phenotyping (Y1F4H-GS and Y1F1H-GS), even when considering the use of a factorial with 

one hybrid per line (Y1F1H-GS), showed the lowest genetic gains. Some optimization of the 

resource allocation could be investigated to improve Y1 BSs, however, in light of our results, we 

do not recommend using this BSs. 

Prospects for implementing factorial design in hybrid BSs 

We intended simulating a realistic breeding program. To do so, we used real genotypic data to 

create our initial population, considered two SCA level scenarios, compared BSs at fixed costs, 

and resource allocation was performed based on discussions with the private companies and 

on results from previous studies (Seye et al. 2020; Lorenzi et al. 2022; Lorenzi et al. 2023). Still, 

for the sake of simplicity, some hypotheses were made. We simulated a closed breeding 

program and no overlapping generations. We could have tested other schemes, but we had to 

limit the number of schemes to facilitate the interpretation of our results. Among the BSs tested, 

the best one is the Y2F1H-GS scheme, in which the two conventional testcross evaluations (ET1 

and ET2) are replaced with a very sparse factorial (F1H), followed by a LT evaluation based on 

factorial with more hybrids per line to better estimate their GCAs. This strategy was more 

efficient in the long term than the strategies (Y1F1H-GS and Y1F4H-GS) that collapse the two 

evaluation stages of a conventional hybrid BS by using only one factorial design per cycle. As 

already discussed, this is due in our simulations to the strong reduction of the number of lines 

evaluated for their hybrid value in these BS compared to the Y2F1H-GS, which reduced 

prediction accuracies for the early DH selection of the next cycle. We chose to keep the same 

number of trials in this LT stage, which limited the number of lines involved in this factorial. The 

presented BSs might not be optimal and it could be interesting to further optimize the resource 

allocation to assess the optimum genetic gain that could be achieved. 

While our results confirm the interest in using factorial in the early selection stage, a 

major drawback is the cost and the workforce necessary for producing single-cross hybrids. 

Handmade pollination increases the costs per unit of single-cross hybrids seed production 

compared to topcross seed production (Table 2). Since one benefit of the factorial is to be able 

to evaluate more lines than a tester design with fewer plots, the increased cost of production of 
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single-crosses can be compensated by a reduced cost of phenotyping for the same number of 

tested lines (Seye et al. 2020). This strategy was used to implement factorial designs in our BSs 

at fixed costs. We showed that it is cost-efficient to suppress one early-stage phenotyping 

evaluation (ET2) and use a factorial design that maximizes the number of evaluated lines in early 

stages. Besides financial aspects, producing single-cross hybrids requires restructuring the 

breeding programs to manage the challenges of single-cross production. Indeed, handmade 

pollination requires larger workforces but can also result in a lower rate of success of seed 

production compared to topcross hybrids and requires synchronizing the flowering period of 

the two new candidate DH lines, which may not be known with precision. Sparse tester designs 

are an alternative to factorial designs showing equivalent predictive abilities for predicting 

single-cross hybrids (Lorenzi et al. 2022). It corresponds to a tester-based design, which 

maximizes the number of evaluated lines by crossing more lines, each with a different tester. 

Using such a design in the ET1 step in a Y2 BS could have been interesting since it would benefit 

from the factorial strategy (maximizing the number of evaluated lines) without requiring major 

restructuration of the breeding program. 

The integration of GS into breeding programs can vary in terms of the stages at which it 

is applied and the extent to which it is utilized, depending on the constraints encountered. GS 

can be coupled with other approaches to even speed up the process in several species. Recently, 

methods aiming at accelerating plant development (greenhouses or controlled environment 

facilities) have been proposed to reduce the generation time and accelerate the breeding 

process. This opens the way to the so-called “speed breeding” approach (Hickey et al. 2017b; 

Wanga et al. 2021). Simulation studies in several species have investigated combining GS and 

speed breeding to increase the breeding cycles and generate high genetic gains per unit time 

(Watson et al. 2018; Jighly et al. 2019; Pandey et al. 2022). A possible improvement for the BSs 

we proposed could be to combine GS factorial BSs with speed breeding. 

Conclusion 

This study aimed at investigating the use of genomic selection trained on factorial designs in 

maize hybrid BSs and give some insight regarding its practical implementation in commercial 

breeding programs at fixed costs. Using factorial design is challenging because handmade 

pollination is necessary for producing single-cross hybrids and increases the cost per unit of 
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single-cross hybrid seed production. Our results clearly showed that even when considering 

additional seed production costs, replacing tester designs with a sparse factorial design is 

beneficial. Combining genomic selection with shortening the breeding cycle by replacing the 

two early-stage topcross evaluations with a unique sparse factorial design (Y2F1H-GS scheme) 

was the most promising scheme, holding great potential to fasten maize hybrid breeding while 

increasing the genetic gain. Implementing genomic predictions calibrated on factorial designs 

will require reorganizing the logistics of BSs but is potentially worth the effort in light of our 

results. 
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General discussion and Perspectives 

Typical maize hybrid breeding programs are based on reciprocal selection in complementary 

heterotic groups. These schemes involve (i) the creation of biparental families in each group, (ii) 

the evaluation of candidate lines based on topcross hybrids, and (iii) the identification of the 

best hybrid combinations between candidate lines selected in each group. This method is 

convenient, but leads to a lower gain than an approach that would involve testing all possible 

hybrid combinations between candidate lines right from the start in the hybrid breeding process 

(Fehr 1987). While it is practically unfeasible to field test all potential hybrids, Genomic Selection 

(GS) enables predicting their value based on the performances of a set of hybrids used as 

training set (TRS), holding great promise for revisiting hybrid breeding schemes. 

Recent studies proposed to revisit the maize hybrid breeding scheme by replacing 

tester-based evaluations with genomic predictions calibrated on a factorial design to predict all 

possible single-cross hybrids at an early stage (Giraud 2016; Kadam et al. 2016). This could 

enable the identification of the most promising single-cross hybrids early in the breeding 

process, ultimately reducing the time needed to bring new hybrid varieties to the market. Using 

a factorial design to calibrate GS models showed promising predictive abilities of line GCAs and 

hybrid values (Kadam et al. 2016; Seye et al. 2020; Burdo et al. 2021). This PhD aimed to further 

investigate the use of GS trained on factorial designs and discuss the cost-efficiency of its 

implementation in maize breeding programs compared to a conventional breeding scheme. 

This main objective was addressed in three chapters each focused on a specific question: 

(i) validate on experimental data the efficiency of factorial TRSs for the prediction of untested 

single-cross hybrids and compare it with tester-based TRSs, (ii) assess the portability of genomic 

predictions calibrated on a factorial design across two generations and investigate the 

optimization of factorial TRS across cycles, and (iii) investigate by simulations the benefit of 

breeding schemes using genomic predictions calibrated on a factorial design to improve maize 

hybrid breeding schemes. In the following, the three chapters are discussed and put into 

perspective regarding the benefits and limitations of implementing GS in hybrid breeding 

programs. 
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Comparison of predictive abilities obtained with factorial and tester 

TRSs in early stage evaluations 

In Chapter 1, we compared predictive abilities obtained by calibrating GS models on a factorial 

and two tester designs of the same size (360 hybrids), derived from the same candidate inbred 

lines and evaluated in the same environments (G0-F4H and G0-T designs). Predictive abilities 

obtained with the factorial TRS were higher for some traits (plant height, DINAG, DINAGZ) and 

equivalent for others (dry matter yield, date of female flowering …), and on average, there was 

a slight advantage of the factorial over the tester designs. We also compared the efficiency of 

the factorial and tester TRSs of the first generation (G0) for predicting the new generation (G1) 

of hybrids (Chapter 2). We found the advantage of using factorial compared to tester TRSs was 

lower when predicting the next generation (G1) than the G0 generation. Recently, another 

experimental study reported similar results in a multiparent synthetic population of maize 

(Burdo et al. 2021), showing an advantage of the factorial design for some traits (flowering traits) 

but not for others (grain yield, plant height…). 

Simulations by Seye et al. (2020) showed that the advantage of factorial compared to 

tester TRSs increased with the SCA variance proportion. The small SCA variances estimated in 

our experimental factorial and tester designs certainly explain why we only observed a slight 

advantage of the factorial over the tester designs. Additionally, as in Burdo et al. (2021), we used 

founder lines of the complementary population as testers. As shown by simulations (Seye et al. 

2020), using as tester one of the founder line of the complementary group instead of a non-

founder line reduces the advantage of factorial compared to tester designs. Yet, even if the 

predictive abilities were similar between factorial and tester TRSs, predictions based on the two 

TRSs did not select the same subset of individuals. Interestingly, for yield (DMY), the predictions 

calibrated on the factorial design identified a higher proportion of the best-performing hybrids. 

This result might be specific to our data set, but the factorial TRS was more efficient to identify 

the best-performing hybrids in advance. 

In tester-based designs, the choice of the testers is crucial, as illustrated in Chapter 1 

and Chapter 2 comparing several tester design compositions to factorial designs. We showed 

that predictive abilities of tester TRSs varied according to the tester used in each group and that 

the one-tester TRS that best predicted single-cross hybrids depended on the trait. For a trait 

showing dominance, the dominant QTL alleles carried by the tester mask part of the genetic 
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variability available in the line population (Hallauer et al. 2010). This limits the ability of models 

trained on one tester to predict hybrids obtained with another tester or in a factorial. As QTLs 

and QTL effects differ between traits, the tester that provided the best GS predictions might vary 

depending on the trait. One benefit of using a factorial design is getting rid of that variability 

linked to the choice of the tester. 

Single-cross hybrid prediction using a factorial TRS 

Efficiency of genomic predictions calibrated on sparse factorial TRSs 

In Chapter 1 and Chapter 2, we evaluated experimentally the prediction accuracy of factorial 

TRSs derived from unselected segregating biparental families. We confirmed the efficiency of 

factorial TRSs to predict single-cross hybrids, as also reported in previous studies (Kadam et al. 

2016; Fristche-Neto et al. 2018; Seye et al. 2020, Burdo et al., 2021). We focused our analyses on 

a sparse factorial design in which one line contributed to one hybrid (G0-F-1H). In the absence 

of markers, estimating the GCA of lines and SCA of hybrid combinations requires that each line 

contributes to several hybrids in the factorial design. With molecular markers, since each allelic 

combination is shared by several hybrids, it is possible to decompose the total hybrid value into 

GCA and SCA effects for each marker. In Chapter 1, we showed that models calibrated with a 

sparse factorial TRS (G0_F-1H) could efficiently predict performances in tester designs, which 

illustrates the ability of the GS models to decouple the GCA effects from each parental line. This 

aligns with results found by Seye et al. (2020) and Burdo et al. (2021) using sparse factorial TRSs. 

Compared to the other experimental studies, our predictive abilities were particularly high. The 

small number of founder lines at the origin of the population could explain this result. We 

confirmed that population structure, specifically the founder line origin alone, could predict part 

of the hybrid values. 

We confirmed that predictive abilities calibrated on a factorial design (G0_F-1H) were 

higher when parental lines of the PS (G0_F-4H) hybrids contributed to the TRS (T2 and T1 

hybrids) than when none of them were represented in the TRS (T0 hybrids) (Chapter 1), as also 

reported in simulations (Technow et al. 2012; Seye et al. 2020) and maize studies (Technow et 

al. 2014; Kadam et al. 2016). Interestingly, predictive abilities of T0 hybrids in our study were still 

high, illustrating that a sparse factorial design can efficiently predict hybrids between lines that 

have never been evaluated. The small differences in predictive abilities observed for T0, T1 or T2 
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hybrids might be the consequence of our population design. As each line belongs to a large 

biparental family, even when the parental line of a hybrid does not contribute to the TRS, several 

of its full-sib lines contribute to the TRS, ensuring a good prediction of the hybrid value. Last, 

we investigated the ability of GS models calibrated on a sparse factorial TRS (G0_F-1H) to 

efficiently predict new hybrid combinations obtained by crossing lines already selected based 

on their GCAs and showed high predictive abilities (G0_F-4H) (Chapter 1). GS is able to identify 

in advance the best potential single-crosses between selected inbred lines. This supports the 

idea of using factorial designs in early stage of the process (as simulated in the Chapter 3). 

Genomic predictions calibrated on a sparse factorial TRS across cycles 

An important objective was to evaluate the portability of genomic predictions calibrated on 

factorial designs across two breeding cycles (Chapter 2). The first factorial design (G0_F-1H) was 

used to select the best candidate lines from which the new-generation hybrids (G1) were 

produced. We confirmed the efficiency of sparse factorial designs (G0-F1H) for predicting line 

general combining abilities (GCAs) and hybrid values in the new generation (G1). We found that 

predictions across two breeding cycles without updating the TRS led to a decrease in prediction 

accuracy, as reported in several simulations (Pszczola and Calus 2016; Seye et al. 2020) and 

experimental studies on hybrids (on sugar beet by Hofheinz et al. 2012; on barley Sallam et al. 

2015 and Michel et al. 2016 and on maize by Wang et al. 2020). This decreased prediction 

accuracy is likely due to changes in allelic frequencies and a decrease in linkage disequilibrium 

(LD) between markers and QTL due to recombination events (Auinger et al. (2016). To maintain 

high prediction accuracy over generations, we investigated strategies to update the factorial 

TRS and optimize its composition, which are discussed below. 

SCA and its prediction 

The relative proportion of GCA and SCA components is an important factor for organizing hybrid 

selection schemes (Seye et al. 2020). In principle, factorial designs allow for considering the SCA 

component (or dominance) of the hybrid value and, compared to tester design, eliminate a 

potential bias from using a limited number of testers from the complementary group. Across 

Chapter 1 and Chapter 2, we highlighted a good ability to predict GCA but showed limits with 

respect to SCA prediction, which is consistent with the small proportion of SCA variance 

estimated across experimental designs (ranging from 0 to 20% for dry matter yield depending 
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on the experimental design). This relatively small importance of SCA effects compared to GCA 

effects is consistent with the fact that no SCA QTL was detected in the sparse factorial design 

(G0_F-1H) (Giraud et al. 2017b; Seye et al. 2019). Along breeding cycles, a decrease in the SCA 

variance is expected as recurrent reciprocal selection increases divergence between groups (Reif 

et al. 2007; Gerke et al. 2015; Legarra et al. 2023), which reinforces the difficulty to predict SCA 

for hybrids obtained by crossing lines issued from heterotic groups derived from a reciprocal 

selection process as it is the case for the flint and dent group that we used in this project. 

To improve prediction accuracies in our designs, we compared different prediction 

models, decomposing the hybrid genetic effect into GCA and SCA components or additive, 

dominance, and epistasis. We found that including non-additive genetic effects had little to no 

impact on predictive abilities, which was also reported in studies using data from inter-heterotic 

group hybrids (Bernardo 1994; Schrag et al. 2006, 2018; Maenhout et al. 2010; Vitezica et al. 

2017; González-Diéguez et al. 2021; Lorenzi et al. 2022). The small SCA variances estimated in 

our experimental designs were consistent with this result. The high multicollinearity between 

GCA and SCA kinship matrices makes it challenging to separate their variances (Sweet and 

Bernardo 2023). Using orthogonal models for GCA and SCA (Vitezica et al. 2017; González-

Diéguez et al. 2021) could have reduced the confusion of effects. However, using such models 

did not increase prediction accuracies, as reported in other studies (González-Diéguez et al. 

2021). The estimation of SCA (dominance) variance components that we obtained using GBLUP 

models were much lower than estimates given directly by field plot data analysis, suggesting 

SCA (dominance) was maybe not well captured by markers. Including non-additive effects in GS 

models must be reconsidered in other hybrid contexts when heterotic groups are not well 

established. The interest of factorial TRSs and GS models including non-additive effects are 

expected to be higher in this context. 

Optimization of the factorial TRS 

Composition of the factorial TRS 

The composition of the TRS is an important factor to consider in the implementation of GS in 

breeding programs (Isidro y Sánchez and Akdemir 2021; Rio et al. 2022b). In Chapter 1 and 2, 

we took advantage of the two factorial designs (G0-F1H and G0-F4H) to investigate different 

factorial design compositions regarding the number of inbred lines and hybrids per line. Results 
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showed that at a fixed number of hybrids, there is a benefit to increasing the number of evaluated 

lines instead of the number of hybrids per line when predicting T0 hybrids (Chapter 1, Seye et al. 

2020). The two factorials were being used reciprocally as TRS and PS. Simulation results (Seye et 

al. 2020) comparing the same number of hybrids factorials composed of one hybrid per line or 

four hybrids per line and predicting a distinct PS are in accordance with our findings. This was 

further investigated using simulations (Chapter 3) and is discussed below. 

Updating factorial TRS across cycles 

Large datasets from multiple trials and multiple years of phenotyping are often available for 

model training in GS and can be used to predict new genotypes with high prediction accuracy 

(Sleper et al. 2020). We showed the benefit of keeping data from previous generations in the 

TRS (Chapter 2). More interestingly, we observed the benefit of including hybrids between 

unselected lines from the previous generations evaluated in different environments. This 

observation aligns with results found by Neyhart et al. (2017) and Brandariz and Bernardo (2018). 

The TRS must be regularly updated with newly genotyped and phenotyped individuals 

to maintain high prediction accuracy over generations (Neyhart et al. 2017; Brandariz and 

Bernardo 2018; Lopez-Cruz and de los Campos 2021). We considered two options to update the 

TRS, evaluating hybrids between (i) selected lines of the previous generation in new 

environments (G0S) (ii) and/or new-generation hybrids (G1). We showed the benefits of 

including hybrids between selected lines from the previous generation to predict hybrids from 

the new generation. And even when new-generation hybrids were already in the TRS, including 

selected hybrids from previous generations was still beneficial. These results suggest that it 

might be interesting to reevaluate some hybrids between the best-performing lines from the 

previous generations while evaluating the new-generation hybrids. This provides a better 

estimation of the breeding value of the parental lines of the new generation and information on 

their values in additional environmental conditions. 

Breeders work with a constrained budget so that, often, only a subset of the candidate 

individuals of the new generation can be phenotyped. Optimizing the TRS represents an 

opportunity to better allocate resources within breeding programs by reducing the number of 

individuals that need to be phenotyped to train GS models while maintaining a similar accuracy 

(sparse or selective phenotyping) (Akdemir and Isidro-Sánchez 2019). In this context, one can 
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wonder which phenotypic data from the previous generation(s) should be included in the TRS 

and which additional hybrids should be phenotyped to complete the existing TRS and achieve 

the highest prediction accuracy for the new generation, with a given phenotyping effort. This 

question has rarely been addressed in studies investigating TRS optimization for hybrid 

breeding. In Chapter 2, we used the CDmean (Rincent et al. 2012) and extended its application 

to optimize the choice of the individuals from the new generation to be phenotyped while 

considering the existing TRS comprising data from the previous generations. Two different 

computations of the CDmean were compared, considering or not the marker information from 

the historical data in the optimization process. Both ways of computing the CDmean generated 

a gain in predictive ability compared to a randomly sampled TRS. Interestingly, it was the 

strategy that did not account for the historical information (CDmean1) when optimizing the 

new-generation hybrids that performed best. The strategy that did not consider the information 

from the historical data (CDmean1) likely selected representative hybrids of the whole range of 

new generation hybrids. In contrast, the strategy considering the genotypic information from 

the historical data (CDmean2) likely maximized the diversity by selecting new-generation 

hybrids genetically distant from the historical data. The new- and the previous-generation 

hybrids were not evaluated in the same environment. This could not be accounted for by the 

CDmean2, which relies only on genotyping information without accounting for phenotyping 

information and for possible genotype-by-environment interactions. To circumvent this 

problem, we could have considered each environment as a different trait and used the 

correlation value between the two environments to compute the CDmean, as Ben-Sadoun et al. 

(2020) suggested in the context of multi trait predictions. Rio et al. (2022a) showed the benefit 

of using such multi-environmental CDs to optimize the allocation of individuals in trial networks, 

and this could be extended to multigeneration TRS optimization. In practice, one cannot know 

in advance the correlation between the environments where the previous generation was 

evaluated and those where the new generation will be evaluated. One solution might be to use 

historical data to estimate the magnitude of correlations that can be expected between years 

and use this value when computing the expected multi-environment CD. 

To optimize the TRS, we decided to only present the results of the CDmean (Chapter 2), 

but other criteria have been considered. The CDmean presents several limits: (i) requires a priori 

determining the size of the TRS, and (ii) when phenotyping is available, it does not consider 
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phenotypic observations to optimize the TRS. For example, we considered another approach 

called “sparse selection index” (SSI) (Lopez-Cruz and de los Campos 2021). The SSI is a model 

aiming to optimize the TRS for each individual of the PS without requiring the size of the TRS to 

be known a priori. Results showed no increase in prediction accuracy and required long 

computation time. However, we tested the SSI on one generation only. It could be interesting 

to use it across generations when using historical data and predicting the next generation. 

Implementing factorial designs in GS breeding schemes 

Combining GS and factorial TRSs to revisit hybrid breeding schemes using simulations 

Results from Chapter 1 and Chapter 2 based on the experimental designs support the potential 

of sparse factorial TRSs as a reliable alternative to traditional tester TRSs for predicting hybrid 

values regarding predictive abilities. Our conclusions are closely related to the population and 

composition of the experimental designs. It could be interesting to compare factorial and tester 

TRSs using experimental data in other populations, for example, with a larger genetic base (more 

founders lines in the initial population) and different SCA levels, to evaluate the advantage of 

the factorial TRS in this situation. We used simulations to get further insight into the potential 

of such an approach in a more realistic breeding program. In Chapter 3, we simulated a 

reciprocal recurrent scheme involving multiparental connected populations from two 

complementary heterotic groups mimicking a maize breeding program. We compared a 

conventional phenotypic selection BS at fixed costs against GS BSs combined or not with (i) 

shortening the breeding cycle length by removing phenotypic evaluation steps and (ii) using 

factorial instead of tester designs to train genomic selection models. 

As in numerous studies, we reported an increased genetic gain with GS compared to 

phenotypic selection in hybrid BSs (Lin et al. 2016; Gaynor et al. 2017; Gorjanc et al. 2018; Voss-

Fels et al. 2019a, b), even at fixed costs. Then, we investigated the impact of shortening the BS 

by suppressing one or two phenotyping steps in “conventional” programs involving testers. We 

kept remaining trials with a constant size and reallocated spared resources by producing and 

genotyping more DH lines, thus increasing the selection intensity thanks to predictions. The 

shorter BSs allowed for a faster short-term genetic gain (more cycles per time unit) but led to a 

lower genetic gain in the long term (lower genetic gain per cycle). This lower genetic gain was 

due to lower prediction accuracies, particularly in the first selection step of the candidate DH 
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lines, that was not compensated by the increased selection intensity. Last, we investigated the 

benefit of replacing tester designs with a sparse factorial design in a two-step phenotyping BSs 

(Y2F1H-GS) and also collapsing early- and late-stage phenotyping into a single phenotyping 

stage relying on a factorial design (Y1F4H-GS and Y1F1H-GS). The one-year BSs (Y1F4H-GS and 

Y1F1H-GS) generated the highest short-term genetic gain (increased number of cycles per year) 

and the lowest long-term genetic gain. Thus, considering the actual parameters and resource 

allocation, we do not recommend using this one-year BSs. On the opposite, using a two-year 

BS and replacing tester designs with a sparse factorial design (Y2F1H-GS) improved the genetic 

gain compared to the same BS using tester designs (Y2TC1-GS) and outperformed the 

conventional GS BS (Y3-GS) in the short term and was equivalent in the long term.  

A major drawback of incorporating factorial designs in breeding programs was the 

additional seed production costs and workforce necessary for producing single-cross hybrids 

by handmade pollination. Results from Chapter 3 showed that the additional cost of single-

cross seed production (twice the price of topcross seed production based on discussion with 

Cyril Bauland and private partners) could be efficiently compensated by reducing the number 

of phenotyping plots and increasing the number of evaluated lines in the factorial TRS (Y2F1H-

GS scheme). 

The Y2F1H-GS scheme is in line with the initial proposition of the SAMMCR project: using 

a very sparse factorial design in the first step with a large number of candidate lines and using 

a factorial between the most promising lines with more hybrid per lines in the second step to 

better estimate their GCAs. In light of all our results (Chapter 1, Chapter 2 and Chapter 3), it 

appears that implementing GS and shortening the breeding cycle by replacing the two early-stage 

topcross evaluations with a unique sparse factorial design (Y2F1H-GS) hold great potential to 

fasten the breeding process while increasing the genetic gain. 

Prospects for extending simulations 

The simulation program developed in this thesis could be used to test other BSs in connected 

reciprocal multi-parental breeding programs. However, optimizing the algorithm for computer 

resource (RAM) consumption and computation time is essential, as these two factors 

constrained the number of BSs we were able to test in Chapter 3. In addition to considering 

other populations and BSs, several improvements could be considered. 
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One improvement concerns the inclusion of SCA effects in the GS model. Because the 

computation time was too long, we did not include SCA effects in the GS model. Studies relying 

on experimental data have shown that including SCA effects in GS models often does not 

increase or only slightly improve the prediction accuracy of single-cross hybrids (Vitezica et al. 

2017; Seye et al. 2020; González-Diéguez et al. 2021; Lorenzi et al. 2022). In addition, a simulation 

study considering a scenario with a proportion of SCA over the total genetic variance of 24%, 

reported that including SCA effects in the model had little effect on prediction accuracies (Seye 

et al. 2020). In this context, the benefit of using factorial designs could have been similar or 

slightly improved if SCA effects were included in the GS prediction models. 

Secondly, we compared GS BSs at a fixed number of generations in the TRS, resulting in 

a smaller TRS size for shorter BSs (including one or two phenotyping steps). The small size of 

the TRS considered for these shorter BSs certainly limited the prediction accuracies (Akdemir 

and Isidro-Sánchez 2019). It would have been interesting to include data from more than two 

generations to increase the size of the TRSs and evaluate its impact on prediction accuracies. 

Additionally, optimization strategies to construct the TRS could be investigated (see Rio et al. 

2022 for a review) to maintain high prediction accuracies even with numerous generations in 

the TRS, such as the ones investigated in Chapter 2. 

Another possible improvement is the optimization of the resource allocation in the 

different BSs. To find the optimum resource allocation for a given BS, testing all combinations 

of parameters (number of lines, number of hybrids, number of trials…) is impossible. To facilitate 

the optimization of the resource allocation, it would be ideal to move from stochastic 

simulations to more deterministic simulation approaches as done, for instance, by Lorenz (2013), 

Riedelsheimer and Melchinger (2013), or Endelman et al. (2014) for the optimization of 

phenotypic resource allocation in GS programs at a given generation. For GS, a key point is to 

anticipate the impact of different resource allocations on the prediction accuracy. Deterministic 

formulae of GS accuracy have been proposed (Daetwyler et al. 2008), but their application 

depends on parameters that are difficult to know in practice, especially if one wants to anticipate 

the effect of selection in complex designs along generations. 

The balance between the costs and benefits of replacing topcross evaluations by genomic 

predictions calibrated on a sparse factorial TRS can vary depending on the costs and resources 
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available in a given breeding program. Additionally, as illustrated in the previous sections, 

several factors can affect the benefit of factorial compared to tester TRSs, such as the level of 

SCA variance or the factorial TRS composition. It appears necessary to investigate further the 

impact of the different parameters of the BS on the benefit of factorial TRS. Using simulations 

to test several BSs and resource allocations corresponding to the real breeding program of the 

company could help guide the decision of including factorial designs or not. 

Perspectives to improve GS models for hybrid breeding 

Accounting for genotype by environment interactions (GxE) in GS models 

In breeding programs, TRSs often assemble data from multi environmental trials, requiring 

properly modelling GxE interactions to maximize prediction accuracy (Jighly et al. 2021). GS 

models that account for GxE interactions have been widely investigated in plant breeding and 

improved prediction accuracies in most cases (Crossa et al. 2017). Current GS models exploit the 

genetic correlation among different environments to model GxE effects (Burgueño et al. 2012; 

Lopez-Cruz et al. 2015; Cuevas et al. 2016, 2017); other consider environmental covariates to 

improve the prediction accuracy for multi environmental trials (Jarquín et al. 2014; Heslot et al. 

2015; He et al. 2019). In the SAMMCR project, each hybrid panel was evaluated in eight 

environments. Significant GxE variance estimations confirmed the importance of GxE 

interactions in the phenotypic data of the project. We detected more SCAxE variance than SCA 

variance for most traits, suggesting that non-additive effects contributed to hybrid adaptation 

to environmental conditions. It would be interesting to incorporate GxE effects into GS models 

to improve prediction accuracies. 

Considering multi trait GS models 

Although yield is usually the primary trait of interest in most crops, the economic value of a 

variety always relies on several other traits (Bernardo 2021b). For example, in silage maize, 

agronomic (DMY, DMC...) and digestibility quality (MFU, DINAG…) traits are improved 

simultaneously. The correlation between traits can make multi-trait selection challenging. One 

objective of the SAMMCR project was to carry out a breeding program as a proof of concept of 

the interest of our approach. Hybrids were selected to combine a good yield potential with a 

good digestibility. The candidate lines were selected for an index combining yield performance 

(DMY), dry matter content (DMC), and digestibility (MFU) based on genomic predictions 
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calibrated on the G0_F-1H sparse factorial design. The observed genetic gain for DMY was 

similar to the predicted one, but responses to selection obtained on silage quality traits (MFU) 

were worse than anticipated. This illustrates the importance of considering multiple trait aspects 

in GS, which was not done in our case.  

An approach to account for multi-trait in GS is to estimate a genomic matrix of 

covariance between different traits (Schulthess et al. 2016). The application of multi-trait models 

in GS has been the subject of several studies in maize (dos Santos et al. 2016; Lyra et al. 2017), 

showing a small gain in prediction accuracy. The challenge of such an approach is to optimize 

multiple functions simultaneously to find a compromise. Akdemir et al. (2019) proposed a multi-

optimized framework for breeders to optimize breeding schemes that improve multiple traits. 

They showed with simulations that this approach led to higher genetic gain for the different 

traits than the selection index. 

Integrating omics data in prediction models, prospects open by phenomic selection 

More recently, studies showed a gain for genomic prediction by including various omics data in 

the models (Rice and Lipka 2021). Schrag et al. (2018) showed that predicting hybrid 

performance in maize using models combining genotyping data and transcriptomic data 

outperformed models only considering one of the two data types. However, studying gene 

expression generates additional costs that need to be evaluated to assess the economic 

feasibility of these models and also raises the question of the stability of these expressions in 

different environments. The choice of organs, stages and conditions for sampling can complicate 

this approach. Another promising approach in silage maize is the use of NIRS data that are 

already available in most silage breeding programs and can be seen as a cheap way to access 

metabolomic information. Rincent et al. (2018) have proposed using a kinship matrix based on 

NIRS spectra to calibrate prediction equations. This “phenomic” selection approach can be 

viewed as an alternative or complementary approach to GS and has shown promising predictive 

abilities in wheat (Robert et al. 2022). This approach will be tested in a hybrid context using 

populations and data produced in the SAMMCR project” (PhenoMaize project 2022-2023 leaded 

by R. Rincent ). 
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Perspectives for hybrid breeding schemes incorporating GS 

Sparse tester designs, an interesting compromise between tester and sparse factorials? 

A remaining question not directly addressed in this thesis is the challenges of producing single-

cross hybrids that may require restructuring part of breeding programs. Handmade pollination 

requires larger workforces and can result in a lower success rate than topcross hybrid 

production. Additionally, single-crosses require more precise management of the precocity of 

the inbred lines to cross. Producing single-cross hybrids represents new constraints to account 

for and developing new protocols to optimize the production of single-crosses may be 

necessary. 

Sparse tester designs are an alternative to factorial designs, showing promising 

predictive abilities for predicting single-cross hybrids and relaxing the constraint of their 

production (Chapter 1 and 2). It corresponds to a tester-based design, which maximizes the 

number of evaluated lines by crossing more lines, each with a different tester. The sparse tester 

designs were compared to classic tester designs (where all lines are crossed to all testers) and 

factorial designs on experimental data in Chapter 1 and Chapter 2. Using sparse tester designs 

in early testing would benefit from the factorial strategy (maximizing the number of evaluated 

lines) without requiring major restructuration of the breeding program. We could have 

investigated a BS using this approach in the simulation work (Chapter 3) to assess its cost 

efficiency compared to the Y2F1H-GS BS using a factorial design in early-stage evaluation. 

Combining GS with rapid cycling and speed breeding approaches to speed up the 

breeding process 

The incorporation of GS in breeding programs can vary in terms of both the stages at which it 

is applied and the extent to which it is utilized. In Chapter 3, we chose to have at least part of 

the candidates phenotyped at each cycle. Some simulation studies went a step further and 

evaluated the interest of “rapid cycling” approaches in which GS cycles without phenotyping are 

performed to accelerate breeding (Massman et al. 2013; Beyene et al. 2015; Zhang et al. 2017; 

Bernardo 2021a). Recently, Bernardo (2021b) showed that a BS using two cycles of GS without 

updating the TRS (no phenotyping) outperformed a conventional BS at the same costs and cycle 

time regarding genetic gains. 
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Combining GS with other modern breeding strategies can enhance its efficiency. 

Recently, “speed breeding” has been promising for accelerating breeding programs by reducing 

the generation time (Hickey et al. 2017b; Wanga et al. 2021). Speed breeding corresponds to 

the methods and protocols aiming at accelerating plant development using rapid generation 

advance systems such as greenhouses or controlled environment facilities where plants are 

grown at high density under conditions that promote flowering and production of viable seed 

(e.g., controlled temperature and constant light exposure). Simulation studies in several species 

have investigated combining GS and speed breeding to increase the breeding cycles and 

generated high genetic gains per unit time (Watson et al. 2018; Jighly et al. 2019; Pandey et al. 

2022). 

Diversity management in hybrid GS breeding schemes 

The implementation of GS can accelerate the loss of genetic diversity per time unit, especially 

when coupled with high selection intensity, as reported in several studies (Gaynor et al. 2017; 

Tessema et al. 2020; Li et al. 2022) and as reported in Chapter 3. This genetic variance loss is 

due to the rapid fixation of favorable and unfavorable alleles at QTLs (Falconer 1996; Li et al. 

2008, 2022; Jannink 2010). To maximize genetic gains in the long term, monitoring genetic 

diversity is essential (Goddard 2009). In addition to the prediction of the breeding values of 

candidates, GS can also be used to predict the variance in the next generation and identify the 

most promising crosses between candidate lines. Several studies have shown that GS could be 

used to predict the usefulness criterion (UC) of a cross (i.e. the expected performance of the best 

progeny; Mohammadi et al. 2015; Tiede et al. 2015; Lehermeier et al. 2017) and the contribution 

of each candidate lines to the next generation after selection (using the UCPC proposed by Allier 

et al. (2019b) and therefore the level of diversity in the next generation. Optimum contribution 

selection (OCS) methods can be used to optimize the crossing list of individuals to maximize the 

genetic gain with a constraint on diversity. These methods have proved efficient in increasing 

long-term genetic gain, with minor short-term penalties (Clark et al. 2013; Woolliams et al. 2015; 

Gorjanc et al. 2018 ). Recently, the UCPC was incorporated into the OCS and led to higher long-

term genetic gain than OCS alone (Allier et al. 2019a). In real breeding programs, external 

diversity is regularly introduced, and GS can help optimize introductions by identifying 

promising donors and the best crosses between these donors and the elite lines of the 

populations (Allier et al. 2020; Sanchez et al. 2023). It would be interesting to apply such 
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methods to the hybrid context. Incorporating genetic resources into reciprocal breeding 

schemes raises specific questions, particularly the maintenance of heterotic group 

differentiations that deserve further research. 
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Supplementary materials. SAMMCR project and Plant Material 

In this chapter, we introduce the “SAMMCR” project and present the original plant material 

produced within this framework. This chapter gives the reader an overview of the plant material 

used in this Ph.D. 

The SAMMCR project 

This thesis relies on an original plant material that was produced in the framework of the 

SAMMCR project (“Sélection Assistée par Marqueur Multi-parentale Connectée Réciproque”). The 

project started in 2010 and has been supported by 7 private partners members of the ProMaïs 

association: Syngenta, RAGT 2n, Maisadour, Limagrain, Lidea, KWS, and Corteva. The project 

aims to study and implement alternative hybrid breeding methods using molecular information 

in a reciprocal multiparental design, validate their interest in a pilot breeding program on silage 

maize, and use simulations to complement experimental data. The SAMMCR project 

encompasses three successive phases, each with different objectives. 

SAMMCR1 aimed to develop segregating populations in two complementary heterotic 

groups and evaluate a factorial design between them with the double objective of (i) acquiring 

knowledge on the genetic determinism of GCA and SCA components for silage and agronomic 

traits and (ii) evaluating the efficiency of marker-assisted selection and specifically genomic 

selection calibrated on this sparse factorial design. The segregating populations of this phase 

are referred to as the G0 generation. The analysis of the experimental data of the SAMMCR1 

campaign was done in the framework of two previous PhD thesis (Giraud 2016; Seye 2019) who 

performed QTL detection and performed the first genomic predictions. From these analyses, the 

best individuals in each group were selected.  

SAMMCR2 objectives were to (i) assess the efficiency of factorial designs to train GS 

models to predict line GCAs and hybrids compared to tester-based training sets and (ii) to create 

a new generation of inbred lines (called G1) from the lines selected based on genomic 

predictions calibrated on a factorial design and test their hybrid performances. Some preliminary 

analyses of the data obtained in the SAMMCR2 phase by comparing the tester and factorial 

designs were performed during Adama Seye’ s PhD thesis (Seye 2019) and continued during the 
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present study (Lorenzi et al. 2022, 2023). 

SAMMCR3 objectives were to evaluate the portability of genomic predictions trained 

on a factorial design across two breeding cycles (G0 and G1) using the hybrid performances of 

the new generation evaluated in the SAMMCR2 phase and used simulations to propose an 

alternative breeding scheme taking advantage of GS and factorial designs (Lorenzi et al. 2023).  

The main objective of this thesis was to evaluate the benefit of replacing tester-based 

evaluations with genomic predictions trained on a factorial design to predict line GCAs of all 

candidate lines and hybrid values of all single-crosses in the early stages of the selection process. 

To achieve this objective, the data from the three experimental campaigns was analyzed jointly. 

Plant material 

The plant material produced in the project is a reciprocal recurrent breeding experiment aiming 

at improving the silage performance of maize single cross hybrids produced between the dent 

and flint heterotic groups (used for silage maize in Northern Europe). Two breeding cycles were 

produced, G0 and G1, comprising several experimental designs described in detail in the 

following and in Fig.1, Fig.2 and Table 1. 

Table 1 Description of all experimental designs used in this study.  

Years of 

phenotyping 

Breeding 

cycle 
Design Name 

Hybrids 

within the 

design a 

References c 

2013, 2014 G0 Factorial G0_F-1H G0Ra Giraud et al. 2017a, 

b; Seye et al. 2019;  

Lorenzi et al. 2022 

2015, 2016 G0 Factorial G0_F-4H G0R + G0Sb (Seye 2019; Lorenzi 

et al. 2022, 

2023)Seye 2019; 

Lorenzi et al. 2022, 

2023 

Tester G0_T 

2019, 2020 G0+G1 Factorial (G0S+G1)_F-1H G0S + G1 Lorenzi et al. 2023 

a G0R hybrids were produced by crossing two random lines from the G0 cycle  
b G0S hybrids were produced by crossing two selected lines from the G0 cycle 
c Reference of the publication corresponding to the analysis of the corresponding design. 
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Fig.1 Experimental designs of the G0 generation 

 

 
Fig.2 Experimental designs of the G1 generation 
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Production of the G0 parental lines 

Two multiparental connected families were produced, each corresponding to one of the major 

heterotic groups used for maize silage in Northern Europe: the flint and the dent. In each 

heterotic group, four founder lines were chosen: three (F373, F03802 and F02803 for the flint 

group and F98902, F1808 and F04401 for the dent group) for their agronomical performances 

for silage production (dry matter biomass yield and dry matter content) and one (F7088 for the 

flint group and F7082 for the dent group) for its silage (digestibility) quality. The four founder 

lines were intercrossed to produce six single-cross F1 hybrids from which six biparental 

connected families were generated. In total, 801 G0 dent lines were obtained by double 

haploidization and 822 G0 flint lines were produced by five to six generations of selfing using a 

single-seed descend (SSD) process. The crosses at the origin of the six biparental families and 

the number of G0 lines in each family is given in Table 2 for the flints and Table 3 for the dents. 

Table 2 Half-diallel design between the four flint founder lines at the origin of the six flint biparental 

families (F1, F2, F3, F4, F5 and F6) and, between brackets, the corresponding number of flint G0 SSD lines 

produced in each family.  

 F373 F03802 F02803 F7088 

F373  F2 (139) F1 (162) F4 (154) 

F03802   F3 (111) F6 (138) 

F02803    F5 (118) 

F7088     

The green founder line corresponds to the one chosen for its digestibility quality 
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Table 3 Half-diallel design between the dent founder lines at the origin of the six dent biparental families 

(D1, D2, D3, D4, D5 and D6) and, between brackets, the corresponding number of dent G0 DH lines 

produced in each family.  

 F1808 F98902 F04401 F7082 

F1808  D2 (144) D1 (139) D5 (138) 

F98902   D3 (140) D6 (99) 

F04401    D4 (142) 

F7082     

The green founder line corresponds to the one chosen for its digestibility quality 

The G0_F-1H experimental design 

The 822 flint and 801 dent parental lines (G0) thus obtained were crossed following a very 

incomplete factorial to produce 951 hybrids, further referred to as G0_F-1H ( also referred to as 

F-1H in Chapter 2, Lorenzi et al. 2022). The originality of this factorial design lies in its 

composition, where most parental lines contributed to producing only one hybrid (on average 

1.2 hybrids per line). This factorial design is balanced between families where 22 to 35 hybrids 

were produced from each biparental family combination (Table 4). The hybrids of this design 

were evaluated in eight trials in 2013 and 2014 for 11 traits (four agronomic traits and seven 

silage quality traits). The data from the G0_F-1H was first analyzed during Heloise Giraud’s thesis 

(Giraud 2016) for agronomical traits and during Adama Seye’s thesis for the silage quality traits 

(Seye 2019). QTL(s) involved in GCA and SCA were detected for agronomic traits (Giraud et al. 

2017c, d) and silage quality traits (Seye et al. 2019). The first genomic predictions were obtained 

with a “simple” genomic prediction model (Giraud, 2016; Seye, 2019) and were validated by 

cross-validations. Good qualities of prediction were obtained for GCA components but not for 

SCA components. In this thesis, the G0_F-1H allowed us assessing using cross-validations the 

efficiency of using a sparse factorial composed of one hybrid per line to train for genomic 

predictions. Questions remained about the efficiency of such a design compared to tester 

designs along breeding cycles and the optimization of the composition of the factorial design 

(number of lines and number of hybrids per line). The advantage of using a factorial design 

instead of a tester design as a training set for genomic predictions was assessed by simulations 

(Seye et al. 2020). However, this advantage had to be confirmed experimentally. 
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Table 4 Number of hybrids per biparental family in the G0_F-1H design 

 F1 F2 F3 F4 F5 F6 

D1 31 27 22 30 25 27 

D2 34 27 22 30 23 32 

D3 28 29 23 30 26 27 

D4 28 28 25 30 27 27 

D5 33 29 23 28 24 30 

D6 24 23 15 25 21 18 

 

The G0_F-4H and tester experimental designs 

In each heterotic group, 30 lines were selected among the G0 lines (G0S lines) based on genomic 

prediction obtained in the G0_F-1H for an index combining silage yield (DMY), moisture content 

at harvest (DMC) and silage quality (MFU). This index corresponds to the one used for silage 

hybrid registration in France (Seye 2019). Note that in each heterotic group, only three families 

out of six were represented in the selected lines (Table 5). Additionally, in each heterotic group, 

60 lines were chosen at random in a balanced manner, with ten lines per family (G0R lines) 

(Table 5). The G0_F-4H factorial design (also referred to as F-4H in Chapter 2, Lorenzi et al. 

2022) comprises 363 new single-cross hybrids produced by crossing randomly (i) the 60 dent 

G0R lines to the 60 flint G0R lines to produce 236 random hybrids and, (ii) the 30 dent G0S lines 

to the 30 flint G0S lines to produce 127 selected hybrids (Table 6). On average, each parental 

line contributed to produce four hybrids (F4H). Note that the G0_F-1H and the G0_F-4H designs 

were issued from the same inbred line populations (G0) with the difference being their 

composition in terms of the number of lines and number of hybrids per line: the number of 

hybrids per line was higher in the G0_F-4H than in the G0_F-1H. One reason for increasing the 

number of hybrids per line, compared to the G0_F-1H, was to better estimate the GCA and SCA 

components of each hybrid performance. In parallel, two tester designs were produced by 

crossing the same 90 G0 lines to two founder lines from the complementary heterotic group. In 

each group, the 30 G0S and the 60 G0R lines were crossed to two testers from the 

complementary heterotic group that were also the founders of the population (F1808 and 
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F98902 for the dent testers and F373 and F02803 for the flint testers). The testers were chosen 

to be genetically distant and with good yield performances. The G0_F-4H and the G0_T design 

are both composed of two types of hybrids: (i) hybrids obtained by crossing lines with the best 

predicted values GCA (G0S) and (ii) hybrids that correspond to a random sample of potential 

hybrids that can be obtained from the G0 generation. This makes it possible to distinguish the 

two types of hybrids in the analyses. The GOS hybrids correspond to hybrids produced after a 

first selection stage of a breeding program. 

Table 5 Distribution of the G0S or G0R lines per family in the G0_F-4H design 

 Dent Flint 

 D1 D2 D3 D4 D5 D6 
F1 F2 F3 F4 F5 F6 

G0S lines 0 21 0 0 2 7 20 0 5 0 5 0 

G0R lines 10 
10 10 10 10 10 10 10 10 10 10 10 

 

Table 6 Number of hybrids per biparental family in the G0_F-4H design 

 F1 F2 F3 F4 F5 F6 

D1 6 7 7 6 7 7 

D2 60 7 22 7 23 6 

D3 7 7 6 7 7 6 

D4 7 6 7 7 6 7 

D5 15 6 8 7 9 6 

D6 30 6 8 6 10 7 

Production of the G1 parental lines and G1 hybrids 

Last, a new generation of inbred lines was produced to evaluate the portability of the genomic 

predictions along breeding cycles (called G1). In each group, 40 intragroup single cross hybrids 

were produced by crossing the 30 G0S lines previously described. 351 dent and 351 flint DH 

lines (G1) were derived by haplo-diploidization from the 40 F1 single-cross hybrids in the dent 

and flint group, respectively. The G1 parental lines thus obtained were crossed following a sparse 

factorial design (G1_F-1H) to produce 442 G1 hybrids. In parallel, the 30 G0S lines were also 
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crossed following a factorial design to produce 47 G0S hybrids. Together, they form the new 

factorial design referred to as (G0S+G1)_F-1H comprising 489 hybrids (47 G0S + 442 G1). 

Adding some G0S hybrids in this design makes it possible to compare the hybrid value of the 

G0S parents and their G1 progeny. 

Phenotyping 

Each experimental design was evaluated in eight trials in the North of France and Germany. 

Across the three experimental campaigns, we kept the trial network in the same geographical 

area. Hybrids from the G0_F-1H design were evaluated in four trials in 2013 and four in 2014, 

hybrids from the G0_F-4H and the tester designs were evaluated in the same field in three trials 

in 2016 and five in 2017 and hybrids from the (G0S+G1)_F-1H design were evaluated in three 

trials in 2019 and five in 2020. Trials were conducted by INRAE and seven private breeding 

companies (Lidea, Corteva, Maisadour, KWS, RAGT, Limagrain, Syngenta). The field experiments 

were laid out as augmented partially replicated designs (Williams et al. 2011b). In each trial, two 

types of hybrids were used as controls: two commercial hybrids (LG30.275 and RONALDINIO) 

and 16 “founder” hybrids that were produced by crossing the founder lines of each heterotic 

group. In each trial, the controls were evaluated twice. 

Genotyping 

The founder lines were genotyped with a 50 K SNP array (Ganal et al. 2011). The founder lines 

and the G0 lines were genotyped for 18,480 SNPs using an Affymetrix array provided by 

Limagrain. Markers with more than 20% of missing values within the dent and flint parental lines, 

markers with more than 5% (10%) of heterozygosity among the dent (flint) parental lines and 

markers with Minor Allele Frequency (MAF) inferior to 5% were discarded. After quality control, 

9,548 SNP polymorphic markers (in at least the flint or dent population) were conserved and 

mapped on a consensus map (Giraud et al. 2017a). For the analyses, we considered the 

Affymetrix® genotyping data for the founder lines and when needed, replaced missing data 

with the genotypes obtained with the 50 K chip when it was available. Missing genotypes of the 

G0 lines were imputed with Beagle v3.0. (Browning and Browning 2007) by family, using genetic 

maps, and putting the founder lines in the dataset. Phasing of the flint lines and of the founder 

lines that presented residual heterozygosity was done simultaneously with missing genotypes 

imputation. 
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The G1 lines were genotyped using a custom-made chip comprising a subset of 15,000 

SNPs of the Illumina® MaizeSNP50 BeadChip (Ganal et al. 2011). The same quality control filters 

as for the G0 genotypes were applied. 4,812 SNP polymorphic markers (in at least the flint or 

dent population) were common with the 9,548 SNP considered for the G0 lines. 
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File S1 Spatial corrections 

The BLUPs of spatial effects were estimated on raw performance using model (S.1) on the 

factorial designs and model (S.2) on the tester designs. 

The model implemented on the factorial designs (F-1H and F-4H) was: 

𝑌ℎ𝑘𝑘′𝑙𝑥𝑦𝑧 = 𝜇 + 𝜆𝑙 + 𝜏ℎ × 𝑡ℎ + 𝐻ℎ(𝑘𝑘′) × (1 − 𝑡ℎ) + (𝑅𝑥(𝑙) + 𝐶𝑦(𝑙)) × (1 − 𝑑𝑙) +

𝐵𝑧(𝑙) × 𝑑𝑙 + 𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧, (S.1) 

where 𝑌ℎ𝑘𝑘′𝑙𝑥𝑦𝑧 is the phenotypic value of hybrid ℎ produced by crossing the parental lines 𝑘 

and 𝑘’, evaluated in environment, 𝑙 located at row 𝑥, column 𝑦 and in block 𝑧. 𝜇 is the intercept, 

𝜆𝑙 is the fixed effect of environment 𝑙, 𝑡ℎ distinguishes the type of hybrid, it is set to 0 for the 

experimental hybrids and set to 1 for the controls, 𝜏 is the vector of fixed effect of the control 

with 18 levels (two for the commercial hybrids and 16 for the founder controls). With 𝐻ℎ(𝑘𝑘′) the 

random genetic effect of hybrid ℎ produced by crossing the flint line 𝑘 and the dent line 𝑘′ The 

genetic value of the hybrid 𝐻ℎ(𝑘𝑚), is defined as follows: 𝐻ℎ(𝑘𝑘′) =  𝑈𝑘 + 𝑈′𝑘′ + 𝑆𝑘𝑘′, where 𝑈𝑘 

(respectively 𝑈′𝑘′) is the random GCA effect of the flint line 𝑘 (respectively dent line 𝑘′), we 

assume that 𝑈𝑘 (𝑈𝑘′
′ ) are independent and identically distributed (iid) and follow a normal 

distribution: 𝑈𝑘~𝒩(0, 𝜎𝐺𝐶𝐴𝑓

2 ) (and 𝑈𝑘′
′ ~𝒩(0, 𝜎𝐺𝐶𝐴𝑑

2 )). 𝑆𝑘𝑘′ is the random SCA effect of the 
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interaction between the parental lines 𝑘 and 𝑘’, with 𝑆𝑘𝑘′~𝒩(0, 𝜎𝑆𝐶𝐴
2 ) idd. 𝑅𝑥(𝑙) is the random 

effect of row 𝑥 in environment 𝑙, 𝐶𝑦(𝑙) is the random effect of column 𝑦 in environment 𝑙 and 

𝐵𝑧(𝑙) is the random effect of block 𝑧 in environment 𝑙, with 𝑅𝑥(𝑙)~𝒩(0, 𝜎𝑅𝑙

2 ), 𝐶𝑦(𝑙)~𝒩(0, 𝜎𝐶𝑙

2 ) and 

𝐵𝑧(𝑙)~𝒩(0, 𝜎𝐵𝑙

2 ) which are assumed to be independent and identically distributed (iid). 𝑑𝑙 

indicates the spatial effect to consider in environment 𝑙, it is set to 1 if the spatial effect is 

modeled by a block effect and by 0 if modeled by row and column effects. To construct the 

vector 𝑑, for each trait and each trial, two types of spatial effects were tested the line and column 

effects or the block effect. The best spatial effect was chosen based on the AIC criterion. 𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧 

is the error term of the model, with 𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧~𝒩(0, 𝜎𝐸𝑙
2 ) iid within trial and independent between 

trials. The different random effects of the model are assumed to be independent. 

The model implemented on the T-F was: 

𝑌ℎ𝑘𝑚𝑙𝑥𝑦𝑧 = 𝜇 + 𝜆𝑙 + 𝜏ℎ × 𝑡ℎ + 𝛾𝑚 + 𝐻ℎ(𝑘𝑚) × (1 − 𝑡ℎ) + (𝑅𝑥(𝑙) + 𝐶𝑦(𝑙)) × (1 − 𝑑𝑙) +

𝐵𝑧(𝑙) × 𝑑𝑙 + 𝐸ℎ𝑘𝑚𝑙𝑥𝑦𝑧, (S.2) 

where 𝜆𝑙, 𝑡ℎ, 𝜏ℎ, 𝜌𝑙ℎ, 𝑅𝑥(𝑙), 𝐶𝑦(𝑙), 𝐵𝑧(𝑙) and 𝑑𝑙 are defined as in model (S.1). 𝑌ℎ𝑙𝑚𝑥𝑦𝑧 is the 

phenotypic value of hybrid ℎ produced by crossing the dent parental line 𝑚 used as tester and 

the flint parental line 𝑘, evaluated in environment 𝑙 located at row 𝑥, colomn 𝑦 and in block 𝑧. 

𝛾𝑚 is the fixed effect of line 𝑚 used as tester. 𝐻ℎ(𝑘𝑚) is the random genetic effect of hybrid ℎ 

produced by crossing the dent parental line 𝑚 used as tester and the flint parental line 𝑘 

evaluated for its GCA. The genetic value of the hybrid 𝐻ℎ(𝑘𝑚), is defined as follows:  

𝐻ℎ(𝑘𝑚) =  𝑈𝑘 + 𝑆𝑘𝑚, 

where 𝑈𝑘 is the random GCA effect of the flint line 𝑘, with 𝑈𝑘~𝒩(0, 𝜎𝐺𝐶𝐴𝑓

2 ) iid and 𝑆𝑘𝑚 is the 

random effect of the interaction between the flint line 𝑘 and the dent line 𝑚 used as tester, with 

𝑆𝑘𝑚~𝒩(0, 𝜎𝑆
2) iid. 𝐸ℎ𝑘𝑚𝑙𝑥𝑦𝑧 is the error term of the model, we assume that it follows: 

𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧~𝒩(0, 𝜎𝐸𝑙

2 ) iid. The same model was adapted and implemented on T-D. The different 

random effects of the model are assumed to be independent. 
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Table S1 Broad-sense heritability (H²), percentage of genetic variance assigned to SCA variance (%𝐒𝐂𝐀) and variance components estimated on phenotypic data 

corrected for the spatial effects for all the designs (F-1H, F-4H, T-D and T-F) without using marker information. 

Trait Design 𝛔𝐆𝐂𝐀𝐝

𝟐  𝛔𝐆𝐂𝐀𝐟

𝟐  𝛔𝐒𝐂𝐀
𝟐  𝛔𝐆𝐂𝐀𝐝×𝐄

𝟐  𝛔𝐆𝐂𝐀𝐟×𝐄
𝟐  𝛔𝐒𝐂𝐀×𝐄

𝟐  %SCAa 
𝛔𝐄

𝟐 
H² c 

min-max b 

DMY F-1H 0.72(0.10) 0.25(0.10) 0.25(0.11) 0.03(0.06) 0.19(0.06) 0.12(0.09) ns 20 0.70(0.06)-3.09(0.17) 0.84 

F-4H 0.74(0.14) 0.54(0.11) 0.13(0.03) 0.18(0.03) 0.17(0.03) 0.11(0.05) 9 0.44(0.06)-3.15(0.26) 0.89 

T-D 0.70(0.13) - 0.17(0.04) 0.03(0.04) ns - 0.21(0.06) 20 0.26(0.06)-2.22(0.27) 0.88 

T-F - 0.52(0.10) 0.14(0.03) - 0.09(0.03) 0.09(0.05) 21 0.34(0.07)-1.42(0.18) 0.87 

DMC F-1H 0.84(0.27) 2.25(0.26) 0.55(0.27) 0.33(0.10) 0.30(0.10) 0.20(0.15) ns 15 0.71(0.07)-4.96(0.28) 0.91 

F-4H 1.32(0.24) 2.78(0.46) 0.28(0.05) 0.40(0.06) 0.45(0.06) 0.25(0.09) 6 0.68(0.10)-4.15(0.37) 0.93 

T-D 1.89(0.34) - 0.32(0.08) 0.56(0.10) - 0.35(0.12) 14 0.59(0.13)-2.63(0.37) 0.89 

T-F - 3.00(0.51) 0.44(0.09) - 0.30(0.07) 0.12(0.10) 13 0.50(0.10)-2.26(0.31) 0.94 

DtSilk F-1H 1.26(0.18) 0.73(0.19) 0.41(0.18) 0.12(0.05) 0.16(0.06) 0.00(0.08) ns 17 0.66(0.06)-5.57(0.28) 0.91 

F-4H 0.76(0.14) 1.55(0.26) 0.14(0.03) 0.15(0.03) 0.20(0.03) 0.09(0.06) ns 6 9.69(0.08)-2.34(0.22) 0.93 

T-D 0.63(0.11) - 0.08(0.03) 0.06(0.03) - 0.09(0.06) 11 0.37(0.07)-2.06(0.25) 0.86 

T-F - 1.07(0.19) 0.22(0.05) - 0.14(0.04) 0.01(0.08) 17 0.51(0.09)-3.34(0.39) 0.90 

PH F-1H 89.26(10.94) 41.69(11.68) 23.40(11.90) 8.36(3.50) 1.95(3.76) 3.03(5.78) ns 15 33.87(3.39)-215.58(11.31) 0.90 

F-4H 120.75(20.40) 57.37(10.36) 5.40(1.96) 11.68(2.38) 6.99(2.16) 0.00 ns 3 55.38(6.60)-169.29(14.29) 0.92 

T-D 115.58(18.90) - 5.80(2.49) 10.66(3.68) - 0.00 5 46.16(7.77)-128.96(16.56) 0.92 

T-F - 56.86(11.64) 24.98(5.22) - 10.12(3.28) ns 0.00 31 38.26(7.06)-91.75(12.70) 0.89 

DINAG F-1H 1.55(0.18) 0.90(0.18) 0.00 ns 0.09(0.11) 0.11(0.12) 0.23(0.18) ns 0 1.45(0.13)-6.47(0.34) 0.85 

F-4H 2.11(0.36) 1.17(0.21) 0.08(0.05) 0.36(0.07) 0.23(0.06) 0.00 ns 2 1.12(0.11)-5.36(0.43) 0.87 

T-D 2.68(0.45) - 0.15(0.08) ns 0.38(0.12) - 0.24(0.20) 5 1.28(0.24)-3.27(0.46) 0.88 
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T-F - 1.25(0.23) 0.21(0.08) - 0.18(0.10) ns 0.04(0.17) 14 0.99(0.21)-3.60(0.44) 0.81 

DINAGZ F-1H 1.47(0.17) 0.86(0.15) 0.00 ns 0.21(0.12) 0.25(0.13) 0.00 ns 0 2.10(0.16)-5.88(0.33) 0.79 

F-4H 1.88(0.34) 0.97(0.20) 0.11(0.08) ns 0.43(0.10) 0.28(0.09) 0.00 ns 4 2.13(0.25)-8.84(0.71) 0.78 

T-D 2.53(0.44) - 0.08(0.10) ns 0.21(0.14) - 0.36(0.25) 3 1.16(0.24)-5.67(0.71) 0.82 

T-F - 1.10(0.23) 0.25(0.12) - 0.10(0.14) ns 0.00 ns 19 1.39(0.25)-5.78(0.68) 0.71 

MFU 

(x10²) 
F-1H 2.06(0.30) 1.03(0.33) 0.33(0.34) ns 0.13(0.23) 0.01(0.24) 0.86(0.39) 10 3.39(0.28)-12.83(0.69) 0.79 

F-4H 1.74(0.31) 1.67(0.30) 0.10(0.06) ns 0.37(0.08) 0.29(0.07) 0.00 ns 3 1.29(0.12)-7.61(0.60) 0.86 

T-D 2.23(0.40) - 0.28(0.10) 0.46(0.12) - 0.00 11 1.04(0.16)-6.31(0.74) 0.85 

T-F - 1.46(0.27) 0.23(0.09) - 0.21(0.11) 0.23(0.16) 14 0.46(0.12)-6.53(0.77) 0.78 

NDF F-1H 0.80(0.21) 0.89(0.22) 0.25(0.24) ns 0.06(0.19) 0.13(0.19) 0.71(0.31) 13 2.51(0.22)-10.23(0.55) 0.72 

F-4H 0.71(0.15) 1.31(0.24) 0.12(0.07) ns 0.17(0.07) 0.23(0.08) 0.23(0.19) ns 6 2.07(0.24)-5.32(0.47) 0.80 

T-D 0.79(0.19) - 0.27(0.11) 0.48(0.14) - 0.00 25 1.42(0.27)-4.03(0.53) 0.71 

T-F - 1.46(0.29) 0.31(0.12) - 0.08(0.14) ns 0.62(0.24) 18 1.15(0.23)-4.30(0.59) 0.79 

LIGN 

(x10²) 
F-1H 0.08(0.01) 0.02(0.01) 0.00(0.01) ns 0.01(0.00) 0.00 0.01(0.01) ns 0 0.05(0.00)-1.03(0.06) 0.89 

F-4H 0.13(0.02) 0.03(0.01) 0.00 ns 0.02(0.00) 0.01(0.00) 0.01(0.01) ns 0 0.05(0.01)-0.11(0.01) 0.86 

T-D 0.12(0.02) - 0.01(0.00) ns 0.01(0.00) - 0.00 8 0.04(0.01)-0.09(0.01) 0.88 

T-F - 0.05(0.01) 0.00 ns - 0.01(0.00) 0.01(0.01) 0 0.03(0.01)-0.12(0.02) 0.70 

CELL 

(x10²) 
F-1H 0.21(0.03) 0.10(0.03) 0.01(0.03) ns 0.05(0.02) 0.03(0.02) 0.00 ns 3 0.34(0.03)-1.03(0.06) 0.78 

F-4H 0.40(0.08) 0.25(0.05) 0.02(0.02) ns 0.10(0.03) 0.07(0.03) 0.03(0.04) ns 3 0.26(0.04)-12.98(0.96) 0.57 

T-D 0.40(0.08) - 0.07(0.03) 0.12(0.04) - 0.00(0.06) 15 0.29(0.06)-7.65(0.83) 0.58 

T-F - 0.20(0.05) 0.03(0.03) ns - 0.09(0.04) 0.01(0.06) 13 0.28(0.06)-7.03(0.82) 0.39 

HCELL 

(x10²) 
F-1H 0.55(0.06) 0.21(0.06) 0.00(0.05) ns 0.08(0.03) 0.04(0.03) 0.00 ns 0 0.54(0.04)-2.01(0.11) 0.84 

F-4H 0.94(0.17) 0.36(0.08) 0.04(0.03) ns 0.20(0.04) 0.17(0.04) 0.05(0.06) ns 3 0.38(0.05)-9.81(0.76) 0.73 
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T-D 0.89(0.16) - 0.12(0.05) 0.19(0.06) - 0.00 12 0.49(0.10)-6.22(0.70) 0.76 

T-F - 0.32(0.07) 0.04(0.04) ns - 0.17(0.06) 0.05(0.08) 11 0.39(0.08)-7.41(0.82) 0.48 

a Percentage of SCA variance computed as 
𝜎𝑆𝐶𝐴

2

𝜎𝐺𝐶𝐴𝑑
2 +𝜎𝐺𝐶𝐴𝑓

2 +𝜎𝑆𝐶𝐴
2 × 100 

b Minimum residual variance and maximum residual variance across all environments 
c Broad-sense heritability 
d Standard error in brackets 
e Significance of the variance components assessed by likelihood ratio test with 𝜒2 mixed distributions (α=0.05). Non-significant variance component is indi-

cated by ns 
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Table S2 Variance components and percentage of genetic variance assigned to SCA variance (%𝐒𝐂𝐀) 

estimated with marker information (GBLUP model) for all the designs (F-1H, F-4H, T-D and T-F). 

Trait Design 𝛔𝐆𝐂𝐀𝐝

𝟐  𝛔𝐆𝐂𝐀𝐟

𝟐  𝛔𝐒𝐂𝐀
𝟐  %SCAa 𝛔𝐄

𝟐 

DMY 

F-1H 0.62(0.12)b 0.48(0.09) 0.13(0.06) 11 0.52(0.06) 

F-4H 0.68(0.15) 1.04(0.21) 0.03(0.05) 2 0.31(0.05) 

T-D 0.47(0.13) - 0.08(0.06) 15 0.25(0.05) 

T-F - 0.86(0.17) 0.10(0.05) 10 0.11(0.03) 

DMC 

F-1H 1.41(0.25) 1.79(0.28) 0.00 0 1.07(0.08) 

F-4H 2.79(0.53) 4.45(0.78) 0.01(0.08) 0 0.62(0.10) 

T-D 4.27(0.79) - 0.19(0.12) 4 0.41(0.09) 

T-F - 3.95(0.76) 0.28(0.18) 7 0.51(0.12) 

DtSilk 

F-1H 1.21(0.21) 2.03(0.29) 0.09(0.06) 3 0.73(0.08) 

F-4H 1.67(0.32) 2.65(0.46) 0.11(0.06) 2 0.24(0.05) 

T-D 0.99(0.23) - 0.04(0.04) 4 0.21(0.05) 

T-F - 2.29(0.42) 0.17(0.11) 7 0.24(0.06) 

PH 

F-1H 70.90(11.74) 68.85(11.28) 6.59(4.31) 5 33.18(4.62) 

F-4H 76.78(14.91) 103.47(18.80) 0.61(2.81) 0 20.42(3.16) 

T-D 75.91(15.80) - 1.12(2.38) 1 16.75(3.11) 

T-F - 100.13(21.72) 17.53(10.18) 15 20.85(5.92) 

DINAG 

F-1H 0.78(0.13) 0.60(0.11) 0.00 0 0.69(0.05) 

F-4H 1.03(0.22) 1.10(0.23) 0.08(0.09) 4 0.47(0.09) 

T-D 1.67(0.39) - 0.00 0 0.63(0.09) 

T-F - 1.13(0.28) 0.47(0.24) 29 0.32(0.11) 

DINAGZ 

F-1H 0.84(0.15) 0.58(0.12) 0.00 0 0.90(0.06) 

F-4H 1.11(0.26) 0.79(0.21) 0.00 0 0.92(0.09) 

T-D 1.97(0.49) - 0.00 0 0.85(0.12) 

T-F - 0.90(0.28) 0.24(0.22) 21 0.72(0.15) 

MFU (x10²) 

F-1H 1.14(0.22) 1.31(0.24) 0.00 0 1.50(0.10) 

F-4H 1.19(0.27) 2.17(0.42) 0.26(0.14) 7 0.48(0.11) 

T-D 1.38(0.38) - 0.07(0.10) 5 0.81(0.14) 

T-F - 2.11(0.44) 0.12(0.13) 5 0.55(0.11) 

NDF 

F-1H 0.77(0.16) 0.99(0.19) 0.02(0.05) 1 1.32(0.10) 

F-4H 0.88(0.23) 1.54(0.32) 0.09(0.10) 4 0.66 (0.11) 

T-D 0.62(0.23) - 0.01(0.07) 2 0.84(0.12) 

T-F - 1.80(0.44) 0.10(0.14) 5 0.77(0.14) 
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LIGN (x10²) 

F-1H 0.04(0.01) 0.02(0.00) 0.00 1 0.02(0.00) 

F-4H 0.07(0.01) 0.05(0.01) 0.00 2 0.02(0.00) 

T-D 0.06(0.01) - 0.00 0 0.03(0.00) 

T-F - 0.06(0.01) 0.00 5 0.03(0.00) 

CELL (x10²) 

F-1H 0.09(0.02) 0.08(0.02) 0.00 0 0.15(0.01) 

F-4H 0.33(0.09) 0.51(0.13) 0.00 0 0.50(0.05) 

T-D 0.25(0.10) - 0.06(0.06) 19 0.37(0.06) 

T-F - 0.24 (0.10) 0.04(0.05) 14 0.39(0.06) 

HCELL 

(x10²) 

F-1H 0.23(0.04) 0.17(0.03) 0.00 0 0.23(0.01) 

F-4H 0.50(0.12) 0.65(0.16) 0.00 0 0.50(0.05) 

T-D 0.37(0.12) - 0.13(0.10) 26 0.35(0.07) 

T-F - 0.36 (0.13) 0.05(0.06) 12 0.46(0.07) 

a Percentage of SCA variance computed as 
𝜎𝑆𝐶𝐴

2

𝜎𝐺𝐶𝐴𝑑
2 +𝜎𝐺𝐶𝐴𝑓

2 +𝜎𝑆𝐶𝐴
2 × 100 

b Standard error in brackets 

Table S3 Predictive abilities obtained for the F-4H and each of the tester designs using the F-1H as TRS 

in scenario 1a. 

Validation Set F-4H T-D T-F 

Predicted hybrid value GCAf + GCAd GCAf + GCAd + SCA GCAd GCAf 

DMY 0.78 0.77 0.69 0.80 

DMC 0.78 0.78 0.84 0.74 

DtSilk 0.79 0.79 0.84 0.76 

PH 0.87 0.87 0.75 0.87 

DINAG 0.86 0.86 0.82 0.85 

DINAGZ 0.79 0.79 0.77 0.78 

MFU 0.82 0.82 0.79 0.79 

NDF 0.69 0.69 0.76 0.57 

LIGN 0.87 0.87 0.78 0.91 

CELL 0.72 0.72 0.58 0.73 

HCELL 0.80 0.80 0.61 0.83 
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Table S4 Predictive abilities obtained for the F-1H using the F-4H (using a model including or not the 

SCA effect) or the tester designs as TRS in scenario 2a. 

Training set F-4H Tester designs 

Predicted hybrid 

value 

𝐆𝐂𝐀𝐟 + 𝐆𝐂𝐀𝐝 𝐆𝐂𝐀𝐟 + 𝐆𝐂𝐀𝐝 + 𝐒𝐂𝐀 𝐆𝐂𝐀𝐟 + 𝐆𝐂𝐀𝐝 

DMY 0.56 0.56 0.54 

DMC 0.64 0.64 0.65 

DtSilk 0.55 0.55 0.56 

PH* 
0.69 0.69 0.66 

DINAG* 0.78 0.78 0.75 

DINAGZ* 0.73 0.73 0.70 

MFU 0.67 0.67 0.65 

NDF 0.51 0.51 0.50 

LIGN 0.80 0.80 0.81 

CELL 0.64 0.64 0.63 

HCELL 0.73 0.73 0.72 

* Significant difference assessed by Williams tests (α=0.05) between the predictive abilities obtained 

when training the GS model on the F-4H or on the tester designs 

Table S5 Correlations between the GCA BLUPs of the F-1H predicted using the F-4H or the tester designs 

as TRS in scenario 2a. 

BLUPs 

correlated  
DMY DMC DtSilk PH DINAG DINAGZ MFU NDF LIGN CELL HCELL 

𝐆𝐂𝐀𝐟  0.85 0.95 0.94 0.809 0.94 0.92 0.93 0.90 0.89 0.86 0.84 

𝐆𝐂𝐀𝐝  0.90 0.88 0.86 0.94 0.94 0.91 0.92 0.76 0.95 0.94 0.96 
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Table S6 Predictive abilities obtained by training the GS model on the F-4H or on the tester designs to 

predict T0, T1 or T2 hybrids in the F-1H (VS) in scenario 2a. 

Training set  F-4Ha Tester designs 

Hybrid type in the VSb T1D T1F T0 All T1D T1F T0 All 

Number of hybrids in the VS 106 95 742 951 107 95 741 951 

DMY 0.61 0.74 0.49 0.56 0.60 0.75 0.49 0.54 

DMC 0.72 0.81 0.61 0.64 0.73 0.78 0.62 0.65 

DtSilk 0.61 0.72 0.50 0.55 0.63 0.73 0.52 0.56 

PH 0.75 0.78 0.65 0.69 0.74 0.75 0.62 0.66 

DINAG 0.79 0.84 0.77 0.78 0.76 0.84 0.73 0.75 

DINAGZ 0.70 0.81 0.72 0.73 0.66 0.80 0.69 0.70 

MFU 0.70 0.78 0.64 0.67 0.68 0.75 0.63 0.65 

NDF 0.63 0.70 0.47 0.51 0.60 0.65 0.47 0.50 

LIGN 0.83 0.83 0.79 0.80 0.84 0.84 0.79 0.81 

CELL 0.59 0.71 0.62 0.64 0.62 0.73 0.61 0.63 

HCELL 0.71 0.77 0.72 0.73 0.73 0.78 0.71 0.72 
a TRS used to calibrate the Model (5.1) including the SCA effect 
b Different hybrids types in the VS: T0 hybrids where none of the parental lines was in the TRS, T1F hy-

brids where only the flint line was in the TRS and T1D where only the dent line was in the TRS 

Table S7 Predictive abilities obtained when training the GS model (i) on 216 hybrids of the F-1H design 

to predict 216 hybrids of the F-4H design and (ii) on 216 hybrids of the F-4H design to predict 216 hybrids 

of the F-1H in scenario 3. 

TRS  
F-1H F-4H 

Meana Sdb Mean Sd 

DMY 0.55 0.04 0.50 0.05 

DMC 0.62 0.03 0.60 0.03 

DtSilk 0.57 0.04 0.44 0.05 

PH 0.71 0.03 0.62 0.04 

DINAG 0.77 0.02 0.76 0.02 

DINAGZ 0.71 0.03 0.70 0.03 

MFU 0.71 0.03 0.65 0.03 

NDF 0.55 0.04 0.46 0.05 

LIGN 0.80 0.02 0.78 0.02 

CELL 0.58 0.03 0.60 0.03 

HCELL 0.69 0.03 0.70 0.03 
a Mean of the predictive abilities over the 100 repetitions 
b Standard deviation of the 100 repetitions  
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Fig.S1 Coincidence of selection of the F-1H single-cross hybrids computed for different selection rates 

(%) in scenario 2a. The coincidence of selection was computed in black between the factorial and the 

tester approaches (GBLUP), in red between the factorial approach (GBLUP) and the phenotypic values 

(hybrid ls-means) and in blue between the tester approach (GBLUP) and the phenotypic values (hybrid ls-

means). The BLUPs estimated in scenario 2a were used to compute the coincidence of selection. 

File S2 Benchmark model used in Scenario 1a  

The model considered as a benchmark was implemented on the ls-means and was defined as: 

𝑌𝑖𝑗𝑖′𝑗′𝑘𝑘′ = 𝜇 + 𝜑𝑖 + 𝜑𝑗 + 𝛿𝑖′ + 𝛿𝑗′ + 𝑈𝑘 + 𝑈′𝑘′ + 𝑆𝑘𝑘′ + 𝐸𝑖𝑗𝑖′𝑗′𝑘𝑘′ ,(S.3) 

where 𝑌𝑖𝑗𝑖′𝑗′𝑘𝑘′ is the phenotypic value of the hybrid produced by crossing flint parental line k 

(issued from crossing founder lines 𝑖 and 𝑗) and dent parental line k’ (issued from founder lines 𝑖’ 

and 𝑗’), 𝜑𝑖  and 𝜑𝑗  are the fixed effect of the flint founders 𝑖 and 𝑗, 𝛿𝑖′  and 𝛿𝑗′  are the fixed effects of 

the dent founders 𝑖’ and 𝑗’. 𝑈𝑘  (𝑈′𝑘′) is the random effect of the GCA effect of flint line k (dent line 

k’) with 𝑈𝑘~𝒩(0, 𝜎𝐺𝐶𝐴𝑓

2 ) iid (𝑈′𝑘′~𝒩(0, 𝜎𝐺𝐶𝐴𝑑

2 ) iid) where 𝜎𝐺𝐶𝐴𝑓

2  and 𝜎𝐺𝐶𝐴𝑑

2  are the flint and dent 

GCA variances. 𝑆𝑘𝑘′ is the random SCA effect of the interaction between the parental lines 𝑘 and 

𝑘’, with 𝑆𝑘𝑘′~𝒩(0, 𝜎𝑆𝐶𝐴
2 ) idd with 𝜎𝑆𝐶𝐴

2  being the SCA variance. 𝐸𝑖𝑗𝑖′𝑗′𝑘𝑘′ is the error term. We 

assume that the errors follow 𝐸𝑖𝑗𝑖′𝑗′𝑘𝑘′~𝒩(0, 𝜎𝐸
2) iid. The different random effects of the model are 

assumed to be independent. 
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For the prediction of the F-4H hybrids, the predictive ability was computed as the 

correlation between the observed phenotypes of the VS (ls-means of the hybrids) and the sum 

of the BLUEs estimated in the model for the founder parents of the hybrid’s parental lines. When 

the tester designs were used as VS, the predictive ability was computed as the correlation 

between the mean of the ls-means for a given line over the two testers and the sum of the BLUEs 

estimated for the founder parents of the line. 

The predictive abilities of the Founder model were compared to the ones obtained with 

the GBLUP model in the same prediction scenario (scenario 1a) (Fig.S2). When predicting the F-

4H, the Founder model (benchmark model) showed moderate to high predictive abilities 

ranging from 0.45 (DtSilk) to 0.69 (MFU) and the GBLUP model predictive abilities ranged from 

0.78 (DMY and DMC) to 0.82 (MFU). When predicting the tester designs, the Founder model 

predictive abilities ranged from 0.15 (T-D for DMC) to 0.76 (T-D for DMY) and the GBLUP model 

predictive abilities ranged from 0.76 (T-D for DtSilk) to 0.84 (T-F for DMC and DtSilk). The GBLUP 

model always outperformed the Founder model. 
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Fig.S2 Predictive abilities obtained when using the F-1H as TRS to predict the F-4H and the tester designs. 

Two types of prediction models were implemented: the “Founder” model corresponding to the 

benchmark model (S.3) defined in File S1 and the “GBLUP_GCA+SCA” model corresponding to the GBLUP 

GS model (5.1). 
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File S1-Spatial corrections 

The BLUPs of spatial effects were estimated on raw performance using model (S1) on the 

(G0S+G1)_F-1H design. The model implemented was: 

𝑌ℎ𝑖𝑖′𝑙𝑥𝑦𝑧 = 𝜇 + 𝜆𝑙 + (𝜏ℎ + 𝜌𝑙ℎ) × 𝑡ℎ + [𝐻ℎ(𝑖𝑖′) + 𝐻𝜆𝑙ℎ(𝑖𝑖′)] × (1 − 𝑡ℎ) + (𝑅𝑥(𝑙) + 𝐶𝑦(𝑙)) ×

(1 − 𝑑𝑙) + 𝐵𝑧(𝑙) × 𝑑𝑙 + 𝐸ℎ𝑖𝑖′𝑙𝑥𝑦𝑧, (S1) 

where 𝑌ℎ𝑖𝑖′𝑙𝑥𝑦𝑧 is the phenotypic value of hybrid ℎ produced by crossing the parental lines 𝑖 and 

𝑖’, evaluated in environment, 𝑙 located at row 𝑥, column 𝑦 and in block 𝑧. 𝜇 is the intercept, 𝜆𝑙 is 

the fixed effect of trial 𝑙, 𝑡ℎ is an indicator function that distinguishes experimental hybrids (set 

to 0) from control hybrids (set to 1), 𝜏ℎ is the fixed effect of control hybrids with 19 levels (2 for 

commercial hybrids + 16 for founder hybrids + one for non-control hybrids) and 𝜌𝑙ℎ is the effect 

of the interaction between trial 𝑙 and control hybrid ℎ. 𝐻ℎ(𝑖𝑖′) is the random genetic effect of 

experimental hybrid ℎ, produced by crossing the flint line 𝑖 and the dent line 𝑖′ and follows a 

normal distribution: 𝐻ℎ(𝑖𝑖′)~𝒩(0, 𝜎𝐺
2). 𝐻𝜆𝑙ℎ(𝑖𝑖′) is the genotype by trial interaction with 

𝐻𝜆𝑙ℎ(𝑖𝑖′) ∽ 𝒩(0, 𝜎𝐺𝑥𝐸𝑙

2 ) iid within trial and independent between trials. 𝑅𝑥(𝑙) is the random effect 

of row 𝑥 in environment 𝑙, 𝐶𝑦(𝑙) is the random effect of column 𝑦 in environment 𝑙 and 𝐵𝑧(𝑙) is 

the random effect of block 𝑧 in environment 𝑙, with 𝑅𝑥(𝑙)~𝒩(0, 𝜎𝑅𝑙

2 ), 𝐶𝑦(𝑙)~𝒩(0, 𝜎𝐶𝑙

2 ) and 
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𝐵𝑧(𝑙)~𝒩(0, 𝜎𝐵𝑙

2 ) which are assumed to be independent and identically distributed (iid). 𝑑𝑙 

indicates the spatial effect to consider in environment 𝑙, it is set to 1 if the spatial effect is 

modeled by a block effect and by 0 if modeled by row and column effects. To construct the 

vector 𝑑, for each trait and each trial, two types of spatial effects were tested the line and column 

effects or the block effect. The best spatial effect was chosen based on the AIC criterion. 𝐸ℎ𝑖𝑖′𝑙𝑥𝑦𝑧 

is the error term of the model, with 𝐸ℎ𝑖𝑖′𝑙𝑥𝑦𝑧~𝒩(0, 𝜎𝐸𝑙

2 ) iid within trial and independent between 

trials. The different random effects of the model are assumed to be independent. 
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Table S1 Broad-sense heritability (H²), percentage of genetic variance assigned to SCA variance (%SCA) and variance components estimated on phenotypic data 

corrected for spatial effects for the (G0S+G1)_F-1H without marker information using (Model 1). 

Trait Hybrid 𝝈𝑮𝑪𝑨𝒇

𝟐  𝝈𝑮𝑪𝑨𝒅

𝟐  𝝈𝑺𝑪𝑨
𝟐  𝝈𝑮𝑪𝑨𝒇𝒙𝑬

𝟐  𝝈𝑮𝑪𝑨𝒅𝒙𝑬
𝟐  𝝈𝑺𝑪𝑨𝒙𝑬

𝟐  
𝝈𝑬

𝟐   

min-maxa 
%SCAb H² c 

DMY G0S 0.50(0.24) 0.13(0.18) 0.14(0.18) 0.07(0.08) 0.12(0.09) 0.00 
0.31(0.05)-1.40(0.12) 

19 0.87 

G1 0.31(0.05) 0.25(0.05) 0.00 0.05(0.05) 0.07(0.04) 0.23(0.07) 0 0.80 

DMC G0S 0.46(0.28) 1.42(0.51) 0.00 0.00 0.39(0.13) 0.00 
0.57(0.07)-3.62(0.27) 

0 0.90 

G1 1.47(0.21) 0.73(0.21) 0.25(0.20) 0.11(0.05) 0.31(0.05) 0.00 10 0.92 

DtSilk G0S 1.63(0.71) 1.57(0.65) 0.03(0.27) 0.41(0.16) 0.05(0.12) 0.00 
0.64(0.09)-2.33(0.20) 

1 0.93 

G1 2.06(0.29) 1.41(0.27) 0.05(0.22) 0.17(0.07) 0.09(0.06) 0.24(0.11) 1 0.94 

PH G0S 13.30(25.69) 32.70(29.46) 45.20(33.71) 10.16(9.38) 15.22(10.15) 0.00 
31.30(4.11)-108.33(9.08) 

50 0.88 

G1 32.11(5.80) 51.45(7.13) 0.00 3.38(3.24) 0.00 15.81(4.78) 0 0.88 

DINAG G0S 0.71(0.37) 0.00 0.08(0.29) 0.32(0.45) 0.00 0.78(0.54) 
1.47(0.20)-5.37(0.44) 

10 0.56 

G1 0.48(0.12) 0.78(0.14) 0.00 0.16(0.15) 0.17(0.15) 0.55(0.26) 0 0.68 

DINAGZ G0S 0.51(0.31) 0.00 0.00 0.74(0.45) 0.00 0.42(0.43) 
1.08(0.14)-3.88(0.35) 

0 0.43 

G1 0.47(0.17) 0.65(0.16) 0.06(0.19) 0.14(0.15) 0.21(0.15) 0.44(0.25) 5 0.66 

MFU 

(x10²) 
G0S 0.44(0.24) 0.00 0.19(0.13) 0.27(0.17) 0.06(0.12) 0.00 

0.12(0.02)-7.97(0.55) 
30 0.56 

G1 0.49(0.09) 0.36(0.09) 0.00(0.09) 0.20(0.07) 0.13(0.07) 0.11(0.09) 0 0.62 

NDF G0S 0.46(0.22) 0.00 0.16(0.13) 0.01(0.13) 0.12(0.13) 0.00 
0.11(0.00)-5.49(0.38) 

25 0.62 

G1 0.52(0.09) 0.33(0.09) 0.06(0.09) 0.09(0.06) 0.05(0.06) 0.10(0.08) 6 0.70 

LIGN 

(x10²) 
G0S 0.33(0.67) 1.42(0.82) 0.00 2.79(1.31) 1.09(1.16) 0.21(0.78) 

1.02(0.16)-23.93(1.84) 
0 0.47 

G1 1.16(0.31) 0.77(0.27) 0.00 2.45(0.47) 1.75(0.46) 0.66(0.59) 0 0.48 

CELL G0S 3.81(3.08) 5.12(2.86) 0.00 0.00(2.00) 0.00 0.00 2.73(0.38)-505.18(32.48) 0 0.30 
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(x10²) G1 1.63(0.99) 3.61(0.99) 1.28(1.10) 1.23(0.69) 0.00 0.00 20 0.24 

HCELL 

(x10²) 
G0S 3.26(3.16) 6.65(3.62) 0.12(1.81) 1.32(2.78) 0.00 0.00 

2.60(0.39)-418.84(27.37) 
1 0.30 

G1 6.18(1.61) 3.66(1.60) 1.25(1.61) 3.58(1.42) 1.28(1.22) 0.00 11 0.32 

a Minimum and maximum residual variance across all environments  

b Percentage of SCA variance computed as 
𝝈𝑺𝑪𝑨

𝟐

𝝈𝑮𝑪𝑨𝒅
𝟐 +𝝈𝑮𝑪𝑨𝒇

𝟐 +𝝈𝑺𝑪𝑨
𝟐 × 100 

c Broad-sense heritability 
d Standard error in bracket 
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Table S2 Performances (ls-means) of commercial, founder and experimental hybrids (G0S and G1 hybrids) and genetic gain of the experimental hybrids compared 

to the founder hybrids corresponding to the (G0S+G1)_F-1H design. 

Trait 

Ls-means 
Genetic 

Gainb 

Commerciala Foundera G0Sa G1a G0Sa G1a 

Mean Min-Max Sdc Mean Min-Max Sd Mean Min-Max Sd Mean Min-Max Sd   

DMY 17.96 17.18-18.74 1.10 15.80 14.27-17.47 0.84 17.35 14.82-18.89 0.92 17.33 14.33-19.72 0.85 1.55 1.52 

DMC 34.69 34.37-35.00 0.45 34.10 30.53-37.48 1.94 33.33 30.54-37.13 1.40 33.43 29.39-39.18 1.63 -0.77 -0.67 

DtSilk 201.89 200.27-203.50 2.28 203.14 
199.80-

206.16 
1.50 

204.9

7 

201.80-

208.79 
1.82 205.04 197.98-211.40 1.97 1.83 1.90 

PH 246.31 239.86-252.76 9.12 245.11 
222.10-

279.19 
13.44 

259.5

2 

235.54-

283.59 
10.40 257.50 227.27-286.97 10.15 14.41 12.40 

DINAG 51.14 50.71-51.57 0.61 51.03 47.48-54.84 2.09 49.73 47.54-52.63 1.35 49.61 45.08-53.35 1.37 -1.30 -1.42 

DINAGZ 43.13 42.56-43.70 0.81 42.98 39.75-46.35 1.91 42.22 39.81-45.17 1.29 42.03 38.12-45.80 1.36 -0.75 -0.94 

MFU 95.54 95.34-95.74 0.28 95.28 91.13-98.14 2.05 93.17 89.04-97.06 1.56 93.13 87.59-101.36 1.71 -2.11 -2.15 

NDF 41.10 40.73-41.48 0.53 41.34 39.88-42.16 0.63 42.07 39.19-43.94 0.95 42.11 38.27-46.39 1.12 0.73 0.77 

LIGN 5.41 5.37-5.46 0.07 5.73 5.27-6.41 0.32 5.86 5.20-6.26 0.23 5.89 5.28-7.00 0.23 0.13 0.17 

CELL 51.76 51.51-52.01 0.35 51.64 50.85-52.40 0.50 52.07 50.92-53.34 0.48 52.10 50.55-53.91 0.46 0.44 0.46 

HCELL 42.90 42.50-43.30 0.57 42.70 41.50-43.56 0.72 42.04 40.69-43.56 0.61 42.01 39.64-43.97 0.63 -0.66 -0.69 

a Hybrid type in the experimental design comprise hybrids used as controls (commercial or founder hybrids) and experimental hybrids from the first generation 

(G0S) or the new generation (G1) 
b Genetic gain computed as the difference between the mean performance of the experimental hybrids and the mean performance of the founder hybrids 
c Standard deviation 
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Table S3 Broad-sense heritability (H²), percentage of genetic variance assigned to SCA variance (%SCA) estimated for all experimental designs of the study. 

Experimental 

design 

Component DMY DMC DtSilk PH DINAG DINAGZ MFU NDF LIGN CELL HCELL 

G0_F-1H H² 0.84 0.91 0.91 0.90 0.85 0.79 0.79 0.72 0.89 0.78 0.84 

%SCA 20 15 17 15 0 0 10 13 0 3 0 

G0_F-4H H² 0.89 0.93 0.93 0.92 0.87 0.78 0.86 0.80 0.86 0.57 0.73 

%SCA 9 6 6 3 2 4 3 6 0 3 3 

G0_T-D H² 0.86 0.86 0.84 0.90 0.87 0.79 0.81 0.68 0.82 0.55 0.72 

%SCA 20 14 11 5 5 3 11 25 8 15 12 

G0_T-F H² 0.85 0.93 0.87 0.87 0.77 0.67 0.75 0.76 0.69 0.36 0.44 

%SCA 21 13 17 31 14 19 14 18 0 13 11 

(G0S+G1)_F-1H H² 0.81 0.92 0.94 0.88 0.68 0.65 0.62 0.70 0.48 0.24 0.32 

%SCA 0 7 1 0 0 1 7 9 0 17 9 

G1_F-1H H² 0.80 0.92 0.94 0.88 0.69 0.66 0.62 0.70 0.48 0.23 0.32 

%SCA 0 10 1 0 0 4 0 6 0 19 11 
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Fig.S1 Predictive abilities obtained for the G1 hybrids (442) by training the GS model on the G0_F-4H 

(363) or the G0_T (360) TRSs in Scenario 2b. Williams tests were performed (α=0.05) and significant 

differences were indicated with letters: two different letters indicate a significant difference and at least 

one common letters indicate no significant difference. 

Table S4 Correlation between the GCA BLUPs predicted for the G1 single-cross hybrids from the 

(G0S+G1)_F-1H design when using the G0_F-4H or the tester designs as TRS. 

Traits  
Predicted GCA BLUPs Predicted 

hybrid value 
Dent Flint 

DMY 0.90 0.84 0.87 

DMC 0.85 0.92 0.87 

DtSilk 0.86 0.94 0.91 

PH 0.90 0.77 0.85 

DINAG 0.94 0.83 0.91 

DINAGZ 0.93 0.79 0.90 

MFU 0.94 0.85 0.89 

NDF 0.86 0.78 0.81 

LIGN 0.89 0.83 0.87 

CELL 0.88 0.80 0.85 

HCELL 0.91 0.81 0.88 
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Fig.S2 Coincidence of selection of the G1 single-cross hybrids (442) computed for different selection rates 

(%). The coincidence of selection was computed in black between the factorial and the tester approaches 

(GBLUP), in red between the factorial approach (GBLUP) and the phenotypic values (hybrid ls-means) and 

in blue between the tester approach (GBLUP) and the phenotypic values (hybrid ls-means). The BLUPs 

estimated in Scenario 2a (Figure S1) were used to compute the coincidence of selection. 
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Fig.S3 Predictive abilities obtained in Scenario 2b’ by training the GS model on 180 hybrids issued from 

tester-based or factorial TRSs to predict the G1 hybrids (442). The different tester-based TRSs correspond 

to: 90 lines crossed to one tester (1T-180H-180L-A, 1T-180H-180L-B, 1T-180H-180L-C, 1T-180H-180L-D), 

90 lines crossed to two testers (2T-180H-180L), 45 lines crossed to two testers (2T-180H-90L). The factorial 

design (F-180H-152L) corresponds to the crosses of 76 flint lines with 76 dent lines. The sampling was 

repeated 10 times and t-tests (α=0.05) were performed for the F-180H-170L, 2T-180H-180L and 2T-180H-

90L. Significant differences were indicated with letters: two different letters indicate a significant difference 

and at least one common letters indicate no significant difference. 
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Fig.S4 Phenotypic correlation between traits in the G0_F-1H design (A) or in the G1 hybrids (B). 

  

A B 
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Fig.S1 Evolution of the genetic gain along breeding cycles of all BSs for two SCA scenarios, with 0% or 

29% SCA in the initial population. Genetic gain is expressed as the difference between the mean hybrid 

genetic value of the hybrids and the mean hybrid genetic value in the initial population divided by the 

standard deviation in the initial population. Each point represents the overall mean of 10 replicates. Year 

0 corresponds to the initial population, year 5 corresponds to the initialization and the breeding starts 

after year 5. 
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Fig.S2 Evolution of the genetic gain of the top ten hybrids over time of all BSs in two SCA scenarios, 

with 0% or 29% SCA in the initial population. Genetic gain is expressed as the difference between the 

mean hybrid genetic value of the hybrids and the mean hybrid genetic value in the initial population 

divided by the standard deviation in the initial population. Each point represents the overall mean of 10 

replicates. Year 0 corresponds to the initial population, year 5 corresponds to the initialization and the 

breeding starts after year 5. 
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Fig.S3 Evolution of the genetic gain of the top ten hybrids along breeding cycles of all BSs in two SCA 

scenarios, with 0% or 29% SCA in the initial population. Genetic gain is expressed as the difference 

between the mean hybrid genetic value of the hybrids and the mean hybrid genetic value in the initial 

population divided by the standard deviation in the initial population. Each point represents the overall 

mean of 10 replicates. Year 0 corresponds to the initial population, year 5 corresponds to the initialization 

and the breeding starts after year 5. 
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Fig.S4 Evolution of the genetic variance decomposed into its GCA and SCA components and percentage 

of SCA variance over the total genetic variance for all breeding scheme strategies when the SCA variance 

in the initial population equals 0 or 29%. Genetic variance is expressed as the ratio between the genetic 

variance in the current population and the genetic variance in the initial population. Each point 

represents the overall mean of 10 replicates. The breeding cycle 0 corresponds to the initialization, and 

the breeding starts at breeding cycle 1. 
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