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Abstract

Despite having known great success, reinforcement-learning algorithms still need to be-
come more sample-efficient, particularly for robotics where it is much harder to train an
agent outside of simulation. As the community leans towards data-driven approaches
(offline reinforcement learning, decision transformers, etc.), in this thesis we focus on
off-policy reinforcement learning, and explore different ways of incorporating additional
data into the algorithms. In particular, we rely on expert demonstrations, which can help
with efficiency as well as overall performance. The goal is to design efficient algorithms
to solve a range of robotic-manipulation tasks, such as flipping a switch or sliding a cube
on a table.

After a thorough review of the reinforcement-learning and imitation-learning frame-
works, we first introduce our reward-relabeling method, which can be seen as a form of
reward shaping that happens in hindsight, once the entire episode is collected. This ap-
proach can easily extend any off-policy algorithm to benefit from both reinforcement and
imitation signals. Building on this method, we then introduce a more efficient algorithm
that aggregates previous and concurrent works that also address similar concerns.

Finally, we move onto the more realistic setting of vision-based reinforcement learn-
ing. To tackle this problem, we design a two-stage training pipeline: first learn a visual
representation of the scene by pre-training an encoder from multiple supervised computer-
vision objectives, then train a reinforcement-learning agent which can focus solely on
solving the task. Despite all the data being collected in simulation, the experiments in-
clude one sim-to-real example to show that these techniques can translate to real-world
controlled environments.



Résumé en Français

Malgré leur grand succès, les algorithmes d’apprentissage par renforcement doivent en-
core devenir plus efficaces en termes d’échantillons, en particulier pour la robotique où il
est beaucoup plus difficile d’entraîner un agent en dehors d’un environnement de simula-
tion. Alors que la communauté se tourne vers des approches orientées données (appren-
tissage par renforcement “offline”, “decision transformers”, etc.), nous nous concentrons
dans cette thèse sur l’apprentissage par renforcement “off-policy” et explorons différentes
manières d’incorporer des données supplémentaires dans les algorithmes. En particulier,
nous nous appuyons sur des démonstrations d’experts, qui peuvent contribuer à l’efficacité
ainsi qu’à la performance globale. L’objectif est de concevoir des algorithmes efficaces
pour résoudre des tâches de manipulation robotique, comme actionner un interrupteur ou
faire glisser un cube sur une table.

Après une étude approfondie de l’apprentissage par renforcement et par imitation,
nous présentons tout d’abord notre méthode de ré-étiquetage des récompenses, qui peut
être considérée comme une forme de “reward shaping” qui se produit a posteriori, une
fois que l’ensemble de l’épisode a été collecté. Cette approche peut s’appliquer à tout al-
gorithme “off-policy” pour bénéficier à la fois des signaux de renforcement et d’imitation.
En nous appuyant sur cette méthode, nous présentons ensuite un algorithme plus efficace
qui regroupe des travaux antérieurs et concomitants qui traitent également de questions
similaires.

Enfin, nous passons au cadre plus réaliste de l’apprentissage par renforcement basé
sur la vision. Pour résoudre ce problème, nous concevons un pipeline d’entraînement en
deux étapes : d’abord, apprendre une représentation visuelle de la scène en pré-entraînant
un encodeur à partir de plusieurs objectifs supervisés de vision, puis entraîner un agent
d’apprentissage par renforcement qui peut se concentrer uniquement sur la résolution de
la tâche. Bien que toutes les données soient collectées en simulation, les expériences
comprennent un exemple de transfert simulation-réalité pour montrer que ces techniques
peuvent s’appliquer à des environnements contrôlés du monde réel.
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Chapter 1

Introduction

1.1 Context: Learning for Collaborative Robotics

Figure 1.1: UR3 robot from Universal Robots: robotic arm

with 6 degrees of freedom, equipped with a Robotiq gripper and

wrist camera.

The �rst generation of manufacturing robots were always operating in human-
free areas, for safety reasons. During recent years, new types of collaborative
robots have been designed for deployment in direct contact, and even coop-
eration, with human workers. One example is shown in Figure 1.1, the UR3
robot from Universal Robots, which assisted us during this thesis. To take
advantage from this new opportunity for intelligent human-robot interaction,
next-generation robots need to be able to understand dynamic environments
and react properly and safely to unexpected changes that might occur. Such
behaviour would bene�t to a wide range of robot-manipulation applications in
factories, but also in hospitals, service industries, and even at home.

When it comes to learning controllers for such robots, recent advances in
Deep Learning and computational capabilities allow to solve complex problems
in an end-to-end fashion, mapping observations to controls directly, replacing
the classic multi-staged control pipeline (Figure 1.3). The main advantage of
learning-based controllers is that they produce control policies able to generalize
to novel situations, di�erent from the ones encountered during training. These
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Figure 1.2: Real-time gestural control of robot manipulator

through Deep Learning human-pose inference

The robot follows the movements of the operator (left) to pick an object. The
robot's camera (not the one taking the shot) is �xed and placed in front of the

operator.

kinds of algorithms are mostly derived from the Reinforcement Learning (RL)
framework, and aim to learn general agents.

Figure 1.3: Classic robotic control pipeline (source: Levine,

Fa2019)

As the RL community leans towards data-driven approaches (o�ine RL, de-
cision transformers, etc.), in this thesis we focus on o�-policy RL, and explore
di�erent ways of incorporating additional data into the algorithms. In particu-
lar, we rely on expert demonstrations, which can help with e�ciency as well as
overall performance. The goal is to design e�cient algorithms to solve a range
of robotic-manipulation tasks, such as �ipping a switch or sliding a cube on a
table.

Indeed, another e�ective approach for learning robotic controllers involves
imitating expert demonstrations that exhibit desirable behavior, a framework
known as Imitation Learning (IL). Until recently, learning from demonstra-
tions was possible through non-visual demonstrations, collected with kinesthetic
teaching or tele-operation, which typically required a lot of e�ort to collect.
However, the data-collection process is no longer the bottleneck that it used to
be thanks to advances in computer vision and simulation environments.

The context for this PhD is the paradigm shift in industrial automation
that will follow from recent advances in robotic hardware and Deep Learning.
In particular, it explores how robots are able to learn complex behaviours in a
variety of manipulation tasks, by leveraging both imitation and reinforcement
signals.
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1.2 Publications

This PhD has been conducted in the center for robotics of Mines Paris, PSL
University. The main publications and communications of this thesis can be
synthesized as follows:

� Jesus Bujalance Martin, Raphaël Chekroun, Fabien Moutarde. Learn-
ing from demonstrations with SACR2: Soft Actor-Critic with
Reward Relabeling. Deep RL Workshop at Conference on Neural In-
formation Processing Systems (NeurIPS), 2021.

� Jesus Bujalance Martin, Tao Yu, Fabien Moutarde. Pre-trained Image
Encoder for Data-E�cient Reinforcement Learning and Sim-to-
Real transfer on Robotic-Manipulation tasks. Workshop on Pre-
training Robot Learning at Conference on Robot Learning (CoRL), 2022.

� Jesus Bujalance Martin, Fabien Moutarde. Reward Relabelling for
combined Reinforcement and Imitation Learning on sparse-reward
tasks. Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), 2023.

The following two additional works fall outside the scope of this thesis, so
their contents are not included in this manuscript. In the �rst one we explored
two di�erent ways of enhancing human-robot interaction with the help of ex-
isting computer vision technologies: continuous motion control (i.e. 'mirroring'
of the human arm in real time, see Figure 1.2), and gesture recognition. In the
second one we presented two RL algorithms inspired by Curriculum Learning:
one for sampling more relevant experiences from the replay bu�er, and one for
sampling more relevant initial states.

� Jesus Bujalance Martin, Fabien Moutarde. Real-time gestural control
of robot manipulator through Deep Learning human-pose in-
ference. International Conference on Computer Vision Systems (ICVS),
2019.

� Dániel Horváth, Jesús Bujalance Martín, Ferenc Gábor Erd®s, Zoltán
Istenes, Fabien Moutarde. HiER: Highlight Experience Replay and
Easy2Hard Curriculum Learning for Boosting O�-Policy Rein-
forcement Learning Agents. Submitted to IEEE Access.

1.3 Outline

This thesis is laid out in seven chapters:

Chapter 1: Introduction. We provide an introduction to Collaborative
Robotics and the context surrounding this thesis, a list of contributions, and
this outline.
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Chapter 2: State of the art - Deep Reinforcement Learning. We
thoroughly review the RL literature, the foundational algorithms such as pol-
icy gradient and dynamic programming, and the di�erent families of deep-RL
algorithms, presenting their strengths and shortcomings.

Chapter 3: State of the art - Imitation Learning. We review three
di�erent families of IL algorithms: Behavior Cloning, inverse RL, and o�ine
RL.

Chapter 4: Reward Relabeling for combined Reinforcement and
Imitation Learning. We introduce our reward-relabeling method, which can
be seen as a form of reward shaping that happens in hindsight, once the en-
tire episode is collected. This approach can easily extend any o�-policy RL
algorithm to bene�t from both reinforcement and imitation signals. First, we
present a short background on the three most closely-related families of RL
algorithms. We then introduce the method, and a theoretical intuition to sup-
port and explain the equations governing the hyper-parameters. Finally, we
carry a series of experiments to validate the approach and better understand
its components via an ablation study.

Chapter 5: STIR2: Self and Teacher Imitation by Reward Rela-
beling. We introduce a second algorithm STIR2 that builds on the method pre-
sented in the previous chapter, by aggregating previous and concurrent works
that also exploit demonstration data and can be applied to any continuous-
action o�-policy RL algorithm. After introducing these methods individually,
we present the full algorithm STIR2, and �nally evaluate its components with
a thorough experimental study.

Chapter 6: Pre-trained Vision Encoder for Data-E�cient Rein-
forcement Learning. We move onto the more realistic setting of vision-based
RL. To tackle this problem, we design a two-stage training pipeline: �rst learn
a visual representation of the scene by pre-training an encoder from multiple
supervised computer-vision objectives, then train a RL agent which can focus
solely on solving the task. After a short background on the challenges that
come with this new setting, we introduce both modules of our pipeline, each
followed by experimental results. At the end we provide two enhancements: a
multi-task encoder, and an alternative pipeline for sim-to-real transfer.

Chapter 7: Conclusion. Finally, we summarize our �ndings and open
potential further directions for research in combining RL and IL for solving
more di�cult manipulation tasks.

1.4 Résumé en français

Cette thèse contient sept chapitres :

Chapitre 1: Introduction. Nous présentons une introduction à la robo-
tique collaborative et au contexte de cette thèse, une liste des contributions,
ainsi que ce plan.
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Chapitre 2: État de l'art - Apprentissage par renforcement pro-
fond. Nous passons en revue la littérature sur l'apprentissage par renforcement,
les algorithmes fondamentaux tels que le policy-gradient et la programmation
dynamique, et les di�érentes familles d'algorithmes d'apprentissage par ren-
forcement profond, en présentant leurs forces et leurs faiblesses.

Chapitre 3: État de l'art - Apprentissage par imitation. Nous pas-
sons en revue trois familles di�érentes d'algorithmes d'apprentissage par imita-
tion : Behavior-Cloning, inverse-RL, et o�ine-RL.

Chapitre 4: Ré-étiquetage des récompenses pour l'apprentissage
par renforcement et imitation.. Nous présentons notre méthode de ré-
étiquetage des récompenses, qui peut être considérée comme une forme de
reward-shaping qui se produit a posteriori, une fois que l'ensemble de l'épisode
a été collecté. Cette approche permet d'étendre facilement tout algorithme RL
o�-policy pour béné�cier à la fois des signaux de renforcement et d'imitation.
Nous présentons tout d'abord un bref historique des trois familles d'algorithmes
RL les plus étroitement liées. Nous présentons ensuite la méthode, ainsi qu'une
section théorique pour expliquer les équations régissant les hyperparamètres.
En�n, nous menons une série d'expériences et une étude d'ablation pour valider
l'approche et mieux comprendre ses composantes.

Chapitre 5: STIR2: Self and Teacher Imitation by Reward Re-
labeling. Nous introduisons un second algorithme STIR2 qui s'appuie sur la
méthode présentée dans le chapitre précédent, en agrégeant des travaux an-
térieurs et concurrents qui exploitent également des données de démonstra-
tion. Après avoir présenté ces méthodes individuellement, nous présentons
l'algorithme complet STIR2, et nous évaluons ses composants à l'aide d'une
étude expérimentale approfondie.

Chapitre 6: Encodeur de vision pré-entraîné pour un apprentis-
sage par renforcement plus e�cace. Nous passons ensuite au cadre plus
réaliste de l'apprentissage par renforcement basé sur la vision. Pour abor-
der ce problème, nous concevons un pipeline d'entraînement en deux étapes
: d'abord, apprendre une représentation visuelle de la scène en pré-entraînant
un encodeur à partir de plusieurs objectifs supervisés de vision, puis entraîner
un agent d'apprentissage par renforcement qui peut se concentrer uniquement
sur la résolution de la tâche. Après un bref résumé des dé�s posés par ce nou-
veau contexte, nous présentons les deux modules de notre pipeline, chacun suivi
de résultats expérimentaux. A la �n, nous proposons deux améliorations : un
encodeur multi-tâches et un pipeline alternatif pour le transfert au monde réel.

Chapitre 7: Conclusion. En�n, nous résumons nos résultats et identi�ons
les orientations futures potentielles de notre recherche.
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Chapter 2

State of the art - Deep

Reinforcement Learning

Reinforcement learning (RL) is the sub-�eld of machine learning that studies
how to use past experience to enhance the future control of an agent in a
(potentially unknown) dynamical environment. Imitation learning (IL) is an
alternative approach, where rather than past experience the agent relies on a
set of demonstrations provided by an expert (typically a human), which it tries
to imitate.

In the following two chapters we will de�ne the reinforcement and imitation
learning problems and try to capture the main approaches and state-of-the-
art algorithms. The main sources are the courses Reinforcement Learning and
Optimal Control (Bertsekas, 2019) from Dimitri Bertsekas at Arizona State Uni-
versity and Deep Reinforcement Learning (Levine, Fa2019) from Sergey Levine
at UC Berkeley, as well as the book Reinforcement Learning: an introduction
(Sutton and Barto, 2011) from Sutton and Barto.

Figure 2.1: Reinforcement learning framework (source: Sutton

and Barto, 2011)

In RL an agent interacts with an environment by performing an action and
observing a feedback signal (reward) and the new state of the environment. A
RL problem can be mathematically represented by a MDP (Markov decision
process), which is a 5-tuple (S,A, T , r, γ) where:

� S is the space (discrete or continuous) of states st (or xt).
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� A is the space (discrete or continuous) of actions at (or ut).

� T is a set of conditional transition probabilities between states p(st+1|st, at),
also referred to as the dynamics of the system. These transitions aren't
necessarily time-invariant but they usually are.

� r is the reward function. r(s, a) ∈ R is the reward obtained from doing
action a in state s. Also known as cost c, which is the opposite of the
reward. The reward function isn't necessarily time-invariant but it usu-
ally is. It can sometimes depend on the state only r(s) or on the entire
transition r(st, at, st+1).

� γ ∈ [0, 1] is the discount factor. It has two equivalent interpretations.
The most obvious one is that it weighs the rewards depending on when
the agent gets them: if γ < 1 future rewards are smaller. The second
interpretation is that, at every time-step, there is a probability 1− γ that
the agent dies (i.e. goes into an absorbing state with reward zero).

More generally, we can de�ne a POMDP (partially observable MDP) which
models an agent that makes decisions based on partial observations of the states
(e.g. a robot equipped with a camera observes images of the environment). A
POMDP is a 7-tuple (S,A, T , r, γ,Ω,O) where

� Ω is the space (discrete or continuous) of observations ot

� O is the sensor model p(ot|st) or sometimes p(ot|st, at−1)

A POMDP can be reframed as an MDP where the states are belief states, i.e.
probability distributions over the states of the POMDP.

Figure 2.2: Graphical model of a MDP (up) and POMDP

(down) (source: Levine, Fa2019)

. For an MDP, the state-action distribution p(st, at) is a Markov chain:
p((st+1, at+1)|(st, at)) = p(st+1|st, at)π(at+1|st+1)

The agent's goal is to maximize the cumulative reward it receives in the long
run. Let's write down some de�nitions that will help us de�ne this objective:
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� A policy (or controller µ in control theory) is a function π : S → A
that maps an action to a state. It can be deterministic or stochastic.
In fully observed MDPs, we can always �nd an optimal policy that is
deterministic, but stochastic policies have other properties that might
be interesting in some cases. Policies aren't necessarily time-invariant,
in fact, optimal policies in �nite horizon tasks aren't. But we usually
consider stationary policies for simplicity.

� A trajectory τ is a sequence (s1, a1, s2, a2...sT , aT ) of the visited states and
actions. We have pπ(τ) = π(τ) = p(s1)

∏T
t=1 π(at|st)p(st+1|st, at).

� An episodic task is a task in which there is a natural �nal time step and the
interaction breaks naturally into sub-sequences called episodes. In general,
each episode has a di�erent horizon T <∞ when the episode ended, and
we set γ = 1. When the interaction goes on continually without limit we
have a continuous task. In this case, we have T = ∞ and we set γ < 1
so that the cumulative reward doesn't go to in�nity. In theory, there
isn't a big di�erence between these two settings as γ implicitly de�nes an
expected horizon T ≈ 1

1−γ .

� The objective J in RL is to maximize the cumulative reward (discounted
for continuous tasks):

Rt =
T∑
k=0

γkr(st+k, at+k) (2.1)

π∗ = argmax
π

J(π) = argmax
π

Eτ∼pπ(τ) [R1] (2.2)

Let's de�ne some tools that will help us solve this objective:

� The Q-function Qπ(st, at) = Epπ [Rt|st, at] =
T∑
t′=t

Epπ
[
γt

′−tr(st′ , at′)|st, at
]

is the reward-to-go from state st if we pick the action at and then follow
π.

� The value function V π(st) = Epπ [Rt|st] =
T∑
t′=t

Epπ
[
γt

′−tr(st′ , at′)|st
]
=

Eat∼π(at|st) [Qπ(st, at)] is the reward-to-go from state st if we follow the
policy π. We have J(π) = Es1∼p(s1) [V π(s1)].

� The advantage function Aπ(st, at) = Qπ(st, at) − V π(st) represents the
value of a particular action at with respect to the average action taken by
π at state st.

� A model in RL refers to a model of the environment, i.e. the transition
probabilities p(st+1|st, at) (and sometimes also the reward r(st, at)). We
distinguish model-based algorithms from model-free algorithms.

Model-based algorithms, such as policy/value iteration, need explicit ac-
cess to these probability distributions of next state (and reward). Other
model-based algorithms, such as MCTS, only require a sampling model,
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i.e. a simulator that takes a state and action as inputs, and returns a
single next state and reward with the same probabilities as the target sys-
tem. Common assumptions are that the simulator generates samples fast
enough to plan online, or that it can be reset (in order to collect multiple
trajectories).

Model-free algorithms, such as policy gradients, actor-critics or Q-learning,
rely on real samples from the environment.

� Another important distinction between algorithms is whether the data
must be collected by the current policy (on-policy) or not (o�-policy).

Figure 2.3: The broad structure of a RL algorithm (source:

Levine, Fa2019)

The main challenges in reinforcement learning are credit assignment (which
actions actually led to the reward), exploration (collecting good data) and gen-
eralization (to new unseen data). Simpler settings allow to study these problems
more independently (exploration and generalization in contextual bandits, ex-
ploration and credit assignment in tabular MDPs, generalization and credit
assignment in policy improvement).

2.1 Policy gradient

The idea is to do stochastic gradient ascent on the objective J(π) to �nd the
best parameterized stochastic policy πθ. A simple example is the Reinforce
algorithm (Williams, 1992).

Figure 2.4: Reinforce algorithm (source: Levine, Fa2019)

The derivation is straight-forward. The idea is to use a logarithm to get
rid of the terms depending on the dynamics: ∇θ log pθ(τ) = ∇θ

∑
t log πθ(at|st).

Step 2 of the algorithm uses samples to approximate an expectation. Step
3 is gradient ascent, making good sampled trajectories more likely, and bad
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trajectories less likely.

J(θ) = Eτ∼pθ(τ) [r(τ)] and ∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] (2.3)

Causality. We usually replace
∑T

t=1 γ
t−1r(sit, a

i
t) with

∑T
t′=t γ

t′−tr(sit′ , a
i
t′), i.e.

we hold policies accountable for future rewards only, which reduces the variance
but might bring a bias when γ < 1 (Thomas, 2014). Note that γ can be seen
as a bias-variance trade-o� hyper-parameter, since rewards far away into the
future have higher variance.

Reparameterization trick. An alternative to the likelihood-ratio gradient
(equation 2.4) used in Reinforce to compute a gradient of the form∇θEz∼pθ(z) [f(z)],
is the reparameterization trick (equation 2.5). It decouples the stochasticity
from z, by considering another distribution ϵ ∼ q(ϵ) independent of θ. Then,
z = gθ(ϵ) is recovered from the noise variable. For instance, if z ∼ N (µ, σ), then
z = µθ + ϵσθ where ϵ ∼ N (0, I). This alternative only works under some con-
ditions (di�erentiable model, continuous and reparameterizable distributions),
but it has a lower variance due to the implicit modeling of the dependencies.
Stochastic Value Gradients (SVG) (Heess et al., 2015) is an example of a family
of general policy gradient algorithms based on the reparameterization trick.

∇θEz∼pθ(z) [f(z)] = Ez∼pθ(z) [f(z)∇θ log pθ(z)] ≈
1

N

N∑
i

f(zi)∇θ log pθ(zi) (2.4)

∇θEz∼pθ(z) [f(z)] = Eϵ∼q(ϵ) [∇θf(gθ(ϵ))] ≈
1

N

N∑
i

∇θf(gθ(ϵi)) (2.5)

2.1.1 Importance sampling

J(θ) = Epθ [r(τ)] = Eq
[
pθ(τ)

q(τ)
r(τ)

]
≈ 1

Z(θ)

m∑
i=1

pθ(τi)

q(τi)
r(τi) with

τi ∼ q

τk ∼ pθ

(2.6)

ωi =
1

Z(θ)

pθ(τi)

q(τi)
=

1

Z(θ)

T∏
t=1

πθ(a
i
t|sit)

q(ait|sit)
and ESS = m

varpθ
[∑

k
1
m
r(τk)

]
varq [

∑
i ωir(τi)]

(2.7)

Importance sampling allows us to approximate the objective by sampling from
another distribution q, like a previous policy or any o�-policy guiding distribu-
tion that is somewhat similar to p. The best distribution in terms of minimum
variance is q(τ) ∝ pθ(τ)|r(τ)|. We can choose between Z(θ) = m (unbiased con-

sistent estimator) and Z(θ) =
∑

i
pθ(τi)
q(τi)

(biased consistent estimator with lower

variance, usually preferred). To include samples from multiple distributions, we
can use q(τ) = 1

n

∑
j qj(τ). Note that the importance weights wi do not depend

on the dynamics because the transition terms cancel out.
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The e�ective sample size ESS is commonly used to measure the quality of
an importance sampled estimate. It can be approximated by m

1+varq [ωi]
or 1∑

i ω
2
i
.

As the policy search steps away from areas where we have gathered samples,
the variance of the estimator increases so we only accept values of θ with high
ESS. However, ESS tends to be unreliable with complex policies and long
rollouts because very few samples have nonzero weights.

2.1.2 Advanced policy gradient

One big issue with vanilla policy gradient is that small changes in parameter
space can lead to big changes in policy space, which makes it di�cult to tweak
the step-size α and to actually converge. More recent algorithms address this
and perform better than vanilla policy gradient. They solve the following opti-
mization problem, which consists on minimizing a surrogate loss derived from
importance sampling:

L(θ) = Epθold

[∑
t

πθ(at|st)
πθold(at|st)

γtAπθold (st, at)

]
≈ J(θ)− J(θold) (2.8)

θ ← argmax
θ
L(θ) s.t. max

s
DKL(πθ(·|s)||πθold(·|s)) < ϵ (2.9)

For ϵ small enough we are guaranteed to improve our policy because we
are optimizing a lower bound of the performance objective (see Figure 2.5). In
practice we use the constraint Es∼dπθold [DKL(πθ(·|s)||πθold(·|s))] < ϵ because the
max is not tractable. Note that policy gradient can be seen as policy iteration
2.2, in that we evaluate our old policy with a function (the advantage), and
then we maximize the function w.r.t. the new policy. The approximation made
in equation 2.8 only holds if the distributions pθ and pθold are close enough,
which we translate into the Kullback-Leibler divergence constraint between the
policies (the dynamics terms cancel out). If we consider an euclidean constraint
on the parameters instead ||θ−θold||2 < ϵ we recover the vanilla policy gradient.

Figure 2.5: Policy gradient (source: John Schulman's slides)

The red curve is the performance objective J(θ)− J(θold).

How do we optimize this new objective in practice?
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� Trust region policy optimization (Schulman et al., 2015a). TRPO consid-
ers a 2nd order approximation of the KL divergence and approximates the
Hessian with the Fisher information matrix F = Epθold

[
∇θ log πθold(a|s)T∇θ log πθold(a|s)

]
.

We have ∇θL(θold) = ∇θJ(θold), so the update becomes:

θ ← θold + αF−1∇θJ(θold) (2.10)

where the term F−1∇θJ(θold) is referred to as natural policy gradient.
We have α =

√
2ϵ/(∇θJ(θold)TF∇θJ(θold)) for the initial constrained

problem, and α = 1
β
for the penalized problem:

θ ← argmax
θ
∇θL(θold)

T (θ − θold)−
β

2
(θ − θold)TF (θ − θold) (2.11)

Additionnaly, TRPO does conjugate gradient descent to compute F−1∇θJ(θold)
e�ciently, and a line search with exponential decay on α to make sure that
the KL constraint is respected and performance improves.

� Proximal policy optimization (Schulman et al., 2017). PPO is a family
of 1st order methods that approximately enforce the KL constraint. One
idea is to modify the penalty coe�cient βk between iterations, with dual
gradient descent or some heuristic. Another idea is to do stochastic gra-
dient ascent on a clipped objective (where rt(θ) =

πθ(at|st)
πθold (at|st)

):

LCLIP(θ) = Epθold

[∑
t

γtmin
[
rt(θ)A

πθold
t , clip (rt(θ), 1− ϵ, 1 + ϵ)A

πθold
t

]]

2.1.3 Evolution strategies

As pointed out in (Recht, 2019), Reinforce is actually a gradient-free algorithm
since the function we care about optimizing (the cumulative reward) is only ac-
cessed through function evaluations. Another very simple gradient-free method
is random search, which consists in perturbing the parameters of the determin-
istic policy πθ randomly (e.g. πθ+w where w is a centered Gaussian) and then
update θ based on the received reward at this perturbed value. Thus, instead
of sampling from a stochastic policy in step 1, we sample from a deterministic
policy with perturbed parameters.
This perturbation approach is closely related to �nite di�erences. If we sample
two trajectories τ+ and τ− with mirror noise from a centered Gaussian, i.e.
θ+ = θ + ϵσ and θ− = θ − ϵσ where ϵ ∼ N (0, 1), then Reinforce does approxi-
mate gradient ascent with the gradient approximation ϵ

2σ
(r(τ+)− r(τ−)).

One advantage of parameter space exploration is its ability to avoid local op-
tima and delayed reward issues better than classic RL algorithms. However, the
search space on action parameters is thought to be smaller than the search space
on policy parameters (and therefore requires fewer environment interactions to
estimate a gradient for).
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More generally, Evolution Strategies (ES) is a type of model-agnostic opti-
mization approach, inspired by Darwin's natural selection. Say, we start with
a population of random solutions. All of them are capable of interacting with
the environment and only candidates with high �tness F scores can survive.
A new generation is then created by recombining the settings (gene mutation)
of high-�tness survivors. This process is repeated until the population gets
good enough. Let's assume the distribution over θ is an isotropic multivariate
Gaussian, the gradient of F (θ) is:

∇θEθ∼N (µ,σ2I)F (θ) = Eθ∼N (µ,σ2I)

[
F (θ)

θ − µ
σ2

]
(2.12)

∇θEϵ∼N (0,I)F (θ + σϵ) =
1

σ
Eϵ∼N (0,I) [F (θ + σϵ)ϵ] (2.13)

ES don't require any value function approximation, don't use gradient back-
propagation, are invariant to delayed or long-term rewards, and are highly par-
allelizable with very little data communication between workers.

2.1.4 Summary

• Policy gradient converges in theory (although usually to local optima) and
works well with continuous actions.

• Policy gradient is entirely on-policy and the variance of the gradient es-
timator is very big, thus requiring a lot of samples to converge. There
are some tricks that can help, like importance sampling to use o�-policy
samples or baselines to reduce the variance.

2.2 Dynamic programming and value function

methods

The dynamic programming approach to the RL problem is completely di�er-
ent. It actually solves the dual problem of our initial objective 5.1. Let's place
ourselves in the �nite horizon case with time-dependant policies and value func-
tions. The solution is based on the principle of optimality: if π = (π1, π2...πT ) is
an optimal policy, then the optimal strategy starting at state st is to follow the
policy (πt, πt+1...πT ). Let π∗ = argmax

π
V π an optimal policy and V ∗ = V π∗

.

Dynamic programming lets us recursively �nd an optimal deterministic policy
starting from V ∗

T (sT ) = r(sT ) and solving backwards:

V ∗
t (st) = max

at
Est+1∼p(st+1|st,at)

[
r(st, at) + V ∗

t+1(st+1)
]

(2.14)

Q∗
t (st, at) = Est+1∼p(st+1|st,at)

[
r(st, at) + max

at+1

Q∗
t+1(st+1, at+1)

]
(2.15)
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The second equation shows the Q-function version of this algorithm. We can
keep track of the chosen actions at each time-step to obtain the optimal deter-
ministic policy or we can simply compute the greedy policy with respect to the
Q-function:

π∗
t (st) = argmax

at
Q∗
t (st, at) (2.16)

In the in�nite horizon case where everything is stationary, we obtain the Bell-
man equations veri�ed by the value function (similar equations hold for the
Q-function):

V ∗(st) = max
at

Est+1∼p(st+1|st,at) [r(st, at) + γV ∗(st+1)] (2.17)

V π(st) = Eat∼π(at|st)Est+1∼p(st+1|st,at) [r(st, at) + γV π(st+1)] (2.18)

We obtain three algorithms that have convergence theoretical guarantees
based on the Bellman operator being a contraction. However, they require a
tabular representation of the value function (or Q-function), i.e. the ability to
store in a table the value for all states (or state-action pairs). They also require
known dynamics to compute the expectations over the next state:

� Value Iteration (VI) consists on iterating the optimal Bellman opera-
tor 2.17 until convergence. In the Q-function version (usually called Q-
iteration) we have limkQk(st, at) = Q∗(st, at) where

Qk+1(st, at) = Est+1∼p(·|st,at)

[
r(st, at) + γmax

at+1

Qk(st+1, at+1)

]
(2.19)

Upon convergence, we return the greedy policy with respect to the Q-
function. Each iteration is computationally e�cient but convergence is
only asymptotic.

� Policy Iteration (PI) consists on two steps. In step 1 we evaluate the cur-
rent deterministic policy πk with the Q-function (or value function). One
way to do so is iterating the Bellman operator 2.18 until convergence start-
ing from a random initial Q-function. We have limj Qj(st, at) = Qπk(st, at)
where

Qj+1(st, at) = Est+1∼p(·|st,at) [r(st, at) + γEa∼πkQj(st+1, a)] (2.20)

In step 2 we improve the policy in a greedy manner:

πk+1(st) = argmax
at

Qπk(st, at) (2.21)

In practice, PI usually converges after a small number of iterations. How-
ever, each iteration requires a full policy evaluation that might be expen-
sive.

� Linear Programming. V* is the solution to the linear programminV
∑

s V (s)
under the union of the following constraints:
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V (s) ≥ r(s, a) + γ
∑
s′

p(s′|s, a)V (s′) ∀a ∈ A,∀s ∈ S (2.22)

2.2.1 Approximate dynamic programming

In RL we don't assume that we know the model, so we need to build estimators
for the value function (or Q-function) based on collected data:

� Monte-Carlo (MC) estimator. Let rπt = r(st, π(st)). By de�nition, the
value function is an expectation of the cumulative reward. We can ap-
proximate it by an incremental average upon collecting a new trajectory:

V̂ π(st)← (1− α)V̂ π(st) + α
T∑
t′=t

γt
′−trπt′ (2.23)

We can use the collected trajectories more than once by reusing the sub-
sequences that start from st, which gives a biased estimator with smaller
variance. If we use more than one trajectory (using sub-sequences or
running several trajectories from st if our simulator allows it) we can

average them 1
n

n∑
i=1

r(τi(st)).

� Temporal Di�erence (TD) or bootstrap estimator. Inspired by the Bell-
man equation 2.18, we can update our estimator like follows:

V̂ π(st)← V̂ π(st) + α
(
rπt + γV̂ π(st+1)− V̂ π(st)

)
(2.24)

TD can work online (we don't have to collect a complete trajectory) and
has smaller variance than MC, but is no longer unbiased. The variance of
MC targets comes from stochasticity of rewards and dynamics, whereas
the bias of TD targets comes from using an imperfect bootstrap to esti-
mate future returns.

� n-step TD: intermediate estimator between TD (n = 1) and MC (n =∞):

V̂ π(st)← V̂ π(st) + α

(
t−1+n∑
t′=t

γt
′−trπt′ + γnV̂ π(st+n)− V̂ π(st)

)
(2.25)

TD(λ): weighted average (1− λ)
∑∞

n=1 λ
n−1δnt where δnt is the n-step TD

error (the term multiplying α in the equation above). λ ∈ [0, 1] is a
hyper-parameter between 0 (equivalent to TD) and 1 (equivalent to MC).

V̂ π(st)← V̂ π(st) + α
T∑
t′=t

(γλ)t
′−t
(
rπt′ + γV̂ π(st′+1)− V̂ π(st′)

)
(2.26)

Eligibility traces: computational e�cient method to approximate the TD(λ)
update online. Instead of updating our value function based on future re-
wards, we propagate current error information into the states we visited
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in the past. The eligibility trace z starts at z0(s) = 0. For all t, we decay
the contribution of all states by λγ and increase the contribution of the
state that was visited.

zt(s) = λγzt−1(s) + 1[st=s] and V̂ π(s)← V̂ π(s) + αzt(s)δ
1
t ∀s (2.27)

Figure 2.6: Comparison of backup diagrams for state value

functions (source: David Silver's slides)

Let's look at three algorithms from (Sutton and Barto, 2011) based on boot-
strap estimators of the Q-function, i.e. online updates based on the TD error
rt + γQ̃− Q̂(st, at). Under some properties (in particular the data needs to be
collected by a suitable exploration policy, more on this later) we have conver-
gence of these algorithms in the tabular case.

� Sarsa is an on-policy algorithm that estimates Qπ for the current policy
π (similar to PI). We have Q̃ = Q̂(st+1, π(st+1)).

� Q-learning is an o�-policy algorithm that aims directly for Q∗ (similar to
Q-iteration). We have Q̃ = maxat+1 Q̂(st+1, at+1). Note that Q-learning
is not possible without Q-functions: if we compare 2.14 and 2.15, the
order of the max operator and the expectation is reversed, which allows
to approximate Q∗ by sampling without knowing the dynamics.

� Expected Sarsa is a generalization. We have Q̃ = Eat+1∼π

[
Q̂(st+1, at+1)

]
.

If π is the greedy policy we recover Q-learning. If π is the current policy
we recover an on-policy algorithm similar to Sarsa (more complex com-
putationally but with less variance).

2.2.2 Deep Q-learning

If we step out of the tabular case, we need to approximate the Q-function
with some parametric function Qϕ. By doing so, we lose all of the convergence
guarantees. We obtain our �rst completely general algorithm called �tted Q-
iteration:

Let's cover the two main improvements brought to this algorithm:

� Replay bu�er. As we interact with the environment sequentially, the sam-
ples are strongly correlated which can lead to local over-�tting. Parallel
computation can mitigate this issue to some degree, but not completely.
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Figure 2.7: Fitted Q-iteration algorithm (source: Levine,

Fa2019)

The idea is to have a bu�er B where we add the collected data, and then
update the Q-function from data sampled uniformly from B.

� Target network. We do not run the supervised regression in step 3 until
convergence because the optimal estimate from the available data will be
very poor in early stages. This means that the targets y are going to
change very frequently, which doesn't help with stability. The idea is to
do regular backups of the parameters ϕ into a new target network Qϕ′

used to compute these targets.

Figure 2.8: General Q-learning algorithm (source: Levine,

Fa2019)

We obtain 2.8, which can be decomposed into three di�erent processes:

� Data collection (and eviction if B is �nite).

� Target update: update ϕ′ ← ϕ every several steps, update ϕ′ ← αϕ′ +
(1− α)ϕ every step with a moving average...

� Q-function regression.

A very popular Q-learning algorithm is DQN (Mnih et al., 2015). Since, a lot
of further improvements have been proposed, such as n-step DQN, Double DQN
(Van Hasselt, Guez, and Silver, 2016), Prioritized Experience Replay (PER)
(Schaul et al., 2015), Distributional DRL (Bellemare, Dabney, and Munos,
2017) or Rainbow (Hessel et al., 2018).

What about continuous actions? Computing the targets y and the greedy
policy involves taking a max over actions, which is a problem. One idea is to
use stochastic optimization methods (e.g. cross-entropy method - CEM), which
consider maxaQ(s, a) = max [Q(s, a1)...Q(s, an)] where (a1...an) are sampled
from some distribution. Another idea is to use a Q-function representation
that is convex on the actions, providing an analytical solution (e.g. NAF: Gu
et al., 2016b). A third idea is to learn an approximate maximizer µθ(s) =
argmaxaQ(s, a) like in DDPG (Lillicrap et al., 2015).
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2.2.3 Experience replay

The replay bu�er B is typically implemented as a circular bu�er, where the
oldest transition in the bu�er is removed to make room for a transition that
was just collected. The most basic strategy to sample transitions from the bu�er
is uniform sampling. Other strategies include PER (Schaul et al., 2015), that
favors transitions with a high temporal di�erence (TD) error.

Three properties are a�ected when modifying the bu�er size.

1. The replay capacity is the total number of transitions stored in the bu�er.
A larger replay capacity will typically result in a larger state-action cov-
erage.

2. The age of the oldest policy, i.e. the age of the policy that collected the
oldest transition in the bu�er. It is a proxy of the degree of o�-policyness:
the older a policy, the more likely it di�ers from the current policy.

3. The replay ratio is the number of gradient updates per environment tran-
sition. It can be viewed as a measure of the relative frequency the agent
is learning on existing data versus acquiring new experience.

Whenever the replay bu�er size is increased, both the replay capacity and
the age of the oldest policy increase. The replay ratio stays constant, but will
change if one of the other two factors is independently modulated. Works like
(Fedus et al., 2020) discuss in more detail the impact of these parameters.

2.2.4 O�-policy learning

In o�-policy algorithms we do not assume that the policy π that is collect-
ing the data, called behaviour policy, is the same than the policy that we are
learning, called target policy. Why is Q-learning o�-policy? Given s′, the value
maxa′ Qϕ(s

′, a′) is independent of π because it computes the Q-function for an-
other policy (the greedy policy). Given (s, a), the transition to s′ and the reward
r(s, a) are given by the environment only. Given s, the action a does depend
on π, but we don't actually care because we need to estimate the Q-function
for all state-action pairs anyway.

What about n-step returns? If we consider more than one transition in our
TD error we can no longer claim that Q-learning is o�-policy. The n-step Tree
Backup Algorithm (Sutton and Barto, 2011) solves this problem: "because we
have no sample data for the unselected actions [by π during the n transitions],
we bootstrap and use the estimates of their values in forming the target for the
update". The algorithm is designed for any target policy (similar to Expected
Sarsa). In practice, for Q-learning, the algorithm simply considers the regular
n-step return, which gets truncated as soon as there is disagreement between π
and the greedy target policy.

One caveat with o�-policy learning is that there might be a distribution
mismatch between our training set (collected by π) and the actual data that we
are going to encounter at test-time (induced by our target policy). To mitigate
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this, we need π to cover the regions that our �nal policy will visit in order to
get good estimates of the Q-function where it matters. If we cannot use an
ϵ-greedy policy (greedy w.r.t. the current Q-function with probability 1− ϵ and
random with probability ϵ), a good idea is to use a mix of policies with di�erent
behaviours.

More generally, function approximation of Q-values, bootstrapping, and o�-
policy learning have been identi�ed as the deadly triad of properties that, when
combined, can negatively a�ect learning or even cause divergence. For instance,
(Kumar, Gupta, and Levine, 2020) points out an absence of corrective feedback
during training: errors in Q-values happen at some states due to their low fre-
quency and aliasing (∼ function approximation) with other states, and these
values propagate (∼ bootstrapping) and corrupt other states, even if the Bell-
man error is fully minimized at those states. The key is to better understand
the data generating distribution and its properties: degree of on-policyness (how
close is the data-generating distribution to the current policy being evaluated?),
state-space coverage, correlation between transitions, cardinality of distribution
support. Practically, these aspects may be di�cult to control independently,
and the typical algorithmic adjustments we can make a�ect several of these
simultaneously.

2.2.5 Summary

• Q-learning methods are o�-policy, so they tend to be much more sample
e�cient than direct policy optimization methods.

• They can handle continuous actions spaces with approximate methods,
but are initially intended for discrete action spaces only.

• The main issue with value function methods is that, although they are
designed to �nd a global optimal solution, they lose the convergence guar-
antees under function approximation. The learning process tends to be
unstable as small updates to Q may signi�cantly change the policy and
the data distribution.

2.3 Actor-Critic

Actor-critic methods lie between policy gradients and value function methods, in
that they use function approximation for both the policy and the value function.
They are based on generalised policy iteration, interleaving policy evaluation
(a critic Qϕ estimates the action-value function) with policy improvement (an
actor adjusts the parameters of the policy πθ).

As brie�y mentioned in the policy gradient section, we can use a baseline b
to reduce the variance of the gradient estimator while remaining unbiased (as
long as the baseline doesn't depend on action in logprob(action)):

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(a
i
t|sit)

(
T∑
t′=t

γt
′−tr(sit′ , a

i
t′)− b

)
(2.28)
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We are actually using the MC estimator of the Q-function with a single sample

Q̂π(st, at) =
T∑
t′=t

γt
′−tr(sit′ , a

i
t′), hence the high variance. We can use a bootstrap

estimator instead Q̂π(st, at) = r(st, at)+ γV̂ π(st+1) to reduce the variance. The
next idea is to use a state-dependant baseline that approximates the value
function b = V̂ π(st), giving us an approximation of the advantage function
Âπ(st, at). As usual, we approximate the function of interest with a parametric
function Vϕ.

Figure 2.9: Advantage actor-critic algorithm (source: Levine,

Fa2019)

The parallel asynchronous version of this algorithm, A3C (Mnih et al., 2016),
is very popular.

� In step 2, we de�ne targets yi and minimize the supervised regression loss
1
2

∑
i ||V π

ϕ (s
i
t) − yi||2. As usual, we have a choice for the targets between

bootstrap yi = r(sit, a
i
t) + γV π

ϕ (s
i
t+1) and MC yi =

∑
t′ γ

t′−tr(sit′ , a
i
t′).

� Some extensions use action-dependant baselines (i.e. b = Qπ
ϕ(st, at)) or

intermediate estimators for the advantage function between the MC es-
timator Âπ(sit, a

i
t) =

∑
t′ γ

t′−tr(sit′ , a
i
t′) − V π

ϕ (s
i
t) and the critic estimator

Âπ(sit, a
i
t) = r(sit, a

i
t)+γV

π
ϕ (s

i
t+1)−V π

ϕ (s
i
t), like we did for n-step TD 2.2.1

(e.g. GAE: Schulman et al., 2015b).

Figure 2.10: DDPG: deep deterministic policy gradient

(source: Levine, Fa2019)

DDPG (Lillicrap et al., 2015) (deep DPG: Silver et al., 2014) is another
popular actor-critic algorithm. It is an interesting example because it was ac-
tually introduced as an alternative to policy gradient for deterministic policies,
and can also be seen as an alternative to Q-learning for continuous actions. A
key feature is that it works o�-policy: importance sampling in the actor is not
necessary because the deterministic policy gradient removes the integral over
actions, and importance sampling in the critic is not necessary because it uses
Q-learning. Other popular actor-critic algorithms include TD3 (Fujimoto, Van
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Hoof, and Meger, 2018), which brings some improvements to DDPG; D4PG
(Barth-Maron et al., 2018), wich considers DDPG with a distributional critic
and other improvements; Soft Actor-Critic (Haarnoja et al., 2018b), which is
also o�-policy and looks for a maximum-entropy stochastic policy; ACKTR
(Wu et al., 2017), which expands A2C by taking steps in the natural gradient
direction; Q-Prop (Gu et al., 2016a), which uses an action-dependant baseline
Qϕ as a critic which can be updated o�-policy, while the actor is updated on-
policy; MPO (Abdolmaleki et al., 2018), which is o�-policy and performs an
expectation maximization form of policy iteration.

Figure 2.11: Phasic policy gradient (PPG) networks (source:

Cobbe et al., 2021)

PPG (Cobbe et al., 2021) is a more recent on-policy actor-critic framework
that achieves feature sharing between the policy and value function while de-
coupling their training, by operating in two alternating phases: the �rst phase
trains the policy, and the second phase distills useful features from the value
function. Also, by optimizing the training of each network with the appropri-
ate level of sample reuse (higher for V ), PPG signi�cantly improves sample
e�ciency compared to PPO.

2.3.1 Summary

• Actor-critic algorithms have smaller variance than policy gradients and
still work well with continuous actions. Some algorithms are o�-policy.

• They have twice as many networks (although we can design a shared
architecture) and the learning process su�ers from instability like in Q-
learning.

2.4 Planning and model-based methods

In control theory with known dynamics and �nite horizon, planning refers to
�nding the best sequence of actions u1...uT without learning a policy. If the
dynamics are deterministic, i.e. xt+1 = f(xt, ut) instead of xt+1 ∼ p(xt+1|xt, ut),
we can �nd the optimal sequence of actions with open-loop control (no tempo-
ral feedback). We usually refer to this problem as trajectory optimization or
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optimal control:

shooting min
u1...uT

T∑
t=1

c(xt, ut) s.t. xt+1 = f(xt, ut)

collocation min
x1,u1...xT ,uT

T∑
t=1

c(xt, ut) s.t. xt+1 = f(xt, ut)

direct collocation min
x1...xT

T∑
t=1

c(xt, ut) s.t. ut = f−1(xt, xt+1)

(2.29)

Note that the shooting approach is actually an unconstrained problem. The
main con is that it is very sensible to early actions, so it is poorly conditioned.
We could instead optimize over the whole trajectory (states and actions), called
collocation, which allows for local corrections but becomes a constrained prob-
lem. There is a trade-o� between the implicit hard constraint of shooting and
the soft constraint of collocation: a shooting algorithm provides a feasible set
of controls during the entire optimization process, which ensures that the �nal
output will be feasible but limits the exploration space and is more prone to
local optima. If we have access to an inverse dynamics model we can opt for
direct collocation instead. Let's look at some simple shooting algorithms:

� Linear Quadratic Regulator (LQR). If the dynamics are linear and de-
terministic and the cost is quadratic, dynamic programming provides a
simple linear controller ut = Ktxt + kt. If the dynamics are linear Gaus-
sian, the same controller is still optimal. There is a version of this al-
gorithm called iLQR (iterative LQR), which is very similar to another
one known as DDP (di�erential dynamic programming), that works for
general dynamics and cost function through local linear and quadratic
approximations.

� Cross-Entropy Method (CEM). Under stochastic dynamics, we can use
an open-loop stochastic optimization algorithm such as CEM. More re-
cent extensions include CMAES, which stores information about previous
updates, or PI2-CMA (Stulp and Sigaud, 2012), a combination with PI2

(Theodorou, Buchli, and Schaal, 2010) suited for parameterized policies.

Figure 2.12: CEM algorithm (source: Levine, Fa2019)

p(A) is usually chosen to be Gaussian.
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� AICO (Toussaint, 2009), RRTs (Rapidly-exploring random trees), PRM
(Probabilistic roadmap), etc.

If we have a discrete action space and a simulator fast enough to plan online,
we can use re-planning algorithms like:

� Rollout. Run a base policy π on the simulator until the end of the episode
(or until a particular horizon and then approximate the terminal cost) to
obtain an approximation of the cost-to-go. Then, take the greedy action:

ut = argmin
ut

Ext+1∼p(xt+1|xt,ut)

[
c(xt, ut) + V̂ π(xt+1)

]
(2.30)

Monte-Carlo Tree Search (MCTS) is an algorithm based on rollouts which
has known great success (e.g. AlphaGo Silver et al., 2016). It is an
adaptive simulation algorithm that builds a tree over all possible controls
and expands only the leafs that seem promising based on some pre-de�ned
rules (e.g. upper con�dence bound - UCB).

Figure 2.13: MCTS general algorithm (source: Levine,

Fa2019)

� Model Predictive Control (MPC). At each time step, compute controls by
solving an open-loop optimization problem for the prediction horizon l.
Apply the �rst value of the computed control sequence and repeat.

ut ∈ arg min
ut,µt+1...µt+l−1

Ep(x′|x,u)

[
c(xt, ut) +

t+l−1∑
t′=t+1

c(xt′ , µt′(xt′))

]
(2.31)

If we need to satisfy a set of constraints, we can just add them to the
optimization above. We can also use rollouts to approximate the terminal
cost V̂ π(xt+l).

2.4.1 Model-based reinforcement learning

We have seen some methods that exploit the model of the environment to �nd
the optimal controls. Model-based RL aims at learning such a model so that
we can apply similar solutions. What is the right representation for our model?
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Figure 2.14: Basic model-based algorithm with MPC (source:

Levine, Fa2019)

Two popular choices for models are Gaussian Processes (GP) and Neural
Networks (NN). NNs are more expressive and can model better non-smooth
dynamics if a lot of data is available. However, high-capacity models tend to
over-�t because the planner will exploit the mistakes of the model, i.e. it will
seek out regions where the model is erroneously optimistic. GPs mitigate this
issue because they provide an estimate of the uncertainty on the model: the
planner will make less mistakes because the expected reward of an erroneously
optimistic region under high variance will now be smaller (e.g. PILCO: Deisen-
roth and Rasmussen, 2011). Note that we can also obtain an estimate of the
uncertainty with NNs via Bayesian NNs or bootstrap ensembles (e.g. PETS:
Chua et al., 2018; ME-TRPO Kurutach et al., 2018).

Model uncertainty. The action optimization process will seek out-of-distribution
states where the output of the model is erroneously optimistic. This means that
we don't care about the uncertainty that the model has on the data (e.g. the
variance value of a NN that outputs a Gaussian distribution for the next state)
because this uncertainty will also be �awed for out-of-distribution inputs. This
type of uncertainty is called aleatoric or statistical. What we care about is
epistemic or model uncertainty, i.e. the entropy of p(θ|D) where θ are the pa-
rameters of our model.
With bootstrap ensembles we have p(θ|D) ≈ 1

N

∑
i δ(θi) so that

∫
p(st+1|st, at, θ)p(θ|D) ≈

1
N

∑
i p(st+1|st, at, θi). Note that, in principle, we need to generate independent

datasets to get independent models, by training each θi on Di sampled with re-
placement from D (or by naively splitting D into smaller datasets). In practice
for NNs, SGD optimization and random initialisation already provide indepen-
dent models.

Figure 2.15: Basic planning procedure from a model with un-

certainty (source: Levine, Fa2019)
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2.4.2 Local models

Sometimes we might only need to estimate the dynamics on a local region
around our current policy. Let's look at one such example: LQR with �tted
linear models (LQR-FLM) (Levine and Abbeel, 2014), which attempts to learn
local time-varying linear Gaussian (TVLG) dynamics, and a linear Gaussian
controller with iLQR.

To �t the dynamics, the authors propose linear regression on the collected
trajectories at each time-step, so that p(xt+1|xt, ut) = N (f(xt, ut), Nt) where
f(xt, ut) = Atxt+Btut+Ct. At and Bt play the roles of the derivatives df

dxt
and

df
dut

respectively, which are the quantities that we are missing (since we don't
know the model) in order to run LQR directly.

Then, running iLQR gives the actions ut = Kt(xt − x̂t) + kt + ût, which
becomes the controller p(ut|xt) = N (Kt(xt − x̂t) + kt + ût,Σt) so that the
trajectories that will be collected aren't too close to each other. A good choice
for the variance is Σt = Q−1

ut,ut , which will be high when the actions don't have a
big impact on the reward-to-go (i.e. many di�erent actions might lead to good
rewards).

In order to avoid regions where the �tted dynamics are not a good estimate
(since they are only valid locally) the new controller must stay close to the
old one. They do so by imposing the constraint DKL(p(τ)||p̄(τ)) < ϵ. If the
trajectories induced by the new controller p(ut|xt) and the old controller p̄(ut|xt)
are close, then the dynamics will be close too.

Figure 2.16: LQR-FLM algorithm (source: Levine, Fa2019)

2.4.3 Global models

Some examples include MuZero (Schrittwieser et al., 2020), Imagination-based
Planner (Pascanu et al., 2017), and DreamerV2 (Hafner et al., 2020).

DreamerV2 and the newer version DreamerV3 (Hafner et al., 2023) learn a
model over latent variables. An encoder turns each image into 32 distributions
over 32 classes each, the meanings of which are determined automatically as the
world model is learning. The one-hot vectors sampled from these distributions
are concatenated to a sparse representation that is passed on to the recurrent
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Figure 2.17: DreamerV2 model architecture (source: Hafner

et al., 2020)

state. The world model loss function is the ELBO or variational free energy of a
hidden Markov model that is conditioned on the action sequence. It encourages
accurate reconstructions while keeping the stochastic representations (posteri-
ors) close to their predictions (priors) to regularize the amount of information
extracted from each image and facilitate generalization.

2.4.4 Model-based policy learning

We might want to adopt a closed-loop setting and learn a policy together with
the model. Policies are much faster to execute at test-time and are better at
generalization. Here are some ideas to do so:

� Back-propagate into the policy (e.g. PILCO: Deisenroth and Rasmussen,
2011):

min
θ,ϕ

T∑
t=1

c(xt, ut) s.t. xt+1 = fϕ(xt, ut) s.t. ut = πθ(xt) (2.32)

For deterministic policy and dynamics, we can simply back-propagate through
the dynamics and cost function to update the policy. We alternate solving for
dynamics parameters (standard supervised regression) and solving for policy
parameters (back-propagation through time). It can also work for stochastic
policy and dynamics with a re-parameterization trick.

This problem is very ill-conditioned: the Hessian has some very large eigen-
values (corresponding to parameters that a�ect actions early on) and some very
small eigen-values (corresponding to parameters that a�ect actions towards the
end). This translates into similar parameter sensitivity problems as shooting
methods, but we can no longer use dynamic programming methods like LQR be-
cause θ couples all the time-steps. This is analagous to the vanishing/exploding
gradients problem in RNNs, which is usually adressed by designing an archi-
tecture that simpli�es the dynamics of the network, which we cannot do in
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RL because the dynamics are imposed to us by the real data. This method is
therefore only recommended for simple dynamics like linear dynamics.

� Guided policy search (GPS) (Levine et al., 2016):

min
τ,θ

c(τ) s.t. ut = πθ(xt) (2.33)

In order to apply the constraint ut = πθ(xt) the authors use dual gradient
descent, so the surrogate c̃(τ) is given by the Lagrangian or any other function
that can incorporate such constraints. Step 1 (Figure 2.18) is optimal control,
which we can solve however we want (shooting vs collocation, local vs global
model). Step 2 is supervised learning, which can be interpreted as imitation of
the optimal control "expert". As they iterate this process, the "expert" adapts
to the learner by the constraint ut = πθ(xt), avoiding actions that the learner
can't mimic.

Figure 2.18: General guided policy search (source: Levine,

Fa2019)

One concrete example is presented in (Levine and Koltun, 2013), where step
1 provides a set of controllers πLQR,i(ut|xt) with LQR-FLM. The guiding con-
trollers are only valid around a single trajectory, so GPS can be seen as distilling
a collection of trajectories into a general policy.

Figure 2.19: Stochastic (Gaussian) GPS with LQR-FLM

(source: Levine, Fa2019)

� DAgger (Ross, Gordon, and Bagnell, 2010) is an imitation learning algo-
rithm. Instead of a human expert, we can imitate an optimal control planner to
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learn our policy (e.g. PLATO: Kahn et al., 2017). DAgger doesn't require an
expert that can adapt to the learner, but it assumes that it's possible to match
the expert's behavior up to a bounded loss.

Figure 2.20: Imitating MCTS with DAgger (Guo et al., 2014)

(source: Levine, Fa2019)

2.4.5 Model-free learning with a model

Another approach involves using any model-free algorithm while jointly learn-
ing a model. Some examples include Imagination-Augmented Agents (I2As)
(Racanière et al., 2017) and PILQR (Chebotar et al., 2017).

Figure 2.21: Original Dyna-Q algorithm (source: Sutton and

Barto, 2011)

Dyna (Sutton, 1990). This algorithm has inspired many others (e.g. MBA:
Gu et al., 2016b; MVE: Feinberg et al., 2018; MBPO: Janner et al., 2019)
that follow the same idea: learn a model to simulate rollouts that are used as
additional data to a model-free algorithm. The advantage over regular model-
free algorithms is that we are getting additional samples by generating many
short rollouts starting from random previously visited states. The advantage
over fully model-based algorithms, which consider long rollouts from the model
to plan ahead, is that we avoid potential compounding errors (the model is
imperfect so the error accumulates). This is usually referred to as model-based
acceleration.
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Figure 2.22: Model-based acceleration: generate short sim-

ulated rollouts from previously visited states (source: Levine,

Fa2019)

2.4.6 Successor representation

In model-based reinforcement learning, models predict immediate next states,
are trained on a prediction problem with a horizon of one, deal with the long-
horizon nature of the prediction task during testing, and face the challenge of
compounding model prediction errors at test-time. On the �ip side, in model-
free reinforcement learning, value functions predict long-term sums of rewards,
are trained with either Monte Carlo estimates of expected cumulative reward or
with dynamic programming, deal with the long-horizon nature of the prediction
task during training, and face the challenge of bootstrap error accumulation
during training.

Successor representation (Dayan, 1993) is a hybrid approach that learns
a model able to make long-horizon state predictions by virtue of training-
time amortization. Instead of approximating p(st+1|st, at), we wish to approx-
imate the discounted occupancy dπγ(s|st, at) = (1 − γ)

∑∞
∆t=1 γ

∆t−1p(st+∆t =
s|π, st, at).

In the discrete state space case, we can learn such a modelM with a Bellman-
like vector equation (where 1 is a one-hot indicator vector):

M(st, at)← Est+1 [1(st+1) + γM(st+1)] (2.34)

More recent works exist for the continuous-state space, such as (Janner,
Mordatch, and Levine, 2020).

2.4.7 Summary

• Learning a model can be a good idea if the interactions with the real
environment are expensive or we want to generalize to other tasks in the
same environment.
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• Learning a model can be harder than learning a policy for some tasks
and environments. Also, the right representation isn't always obvious
depending on the problem and the algorithm that we want to use.

2.5 Which algorithm to use?

There are many factors that might guide the choice of an algorithm: dis-
crete/continuous actions, ability to generalize, safety concerns, etc. In chapter 4
we will see in more detail which algorithms have been successfully implemented
for robotics.

Sample e�ciency. How many samples, i.e. interactions with the environment,
do we need to converge? Note that sample e�ciency might di�er from wall-clock
speed depending on our hardware (sample ine�cient methods like gradient-free
algorithms usually scale very well), our data collection procedure (in a fast
simulator vs in a slow real system), the training speed of our algorithm, etc.

Figure 2.23: RL algorithms by sample e�ciency (source:

Levine, Fa2019)

2.6 Exploration

A key concept in RL is the idea of exploration. Do we look for new strategies to
solve the task or do we stick to the best one found so far? O�-policy methods can
use any explorative strategy to collect data. In on-policy methods, exploration
must be built into the policy we are learning and determines the rate of the
policy improvements.

In some cases a simple strategy can provide good enough exploration. The ϵ-
greedy policy (left) is greedy w.r.t Q-function with probability 1−ϵ and random
otherwise. The Boltzmann policy (right) is similar: it approaches the greedy
policy as the temperature α decreases.

π(a|s) =

{
1− ϵ if a = argmaxaQ

π(s, a)

ϵ/(|A| − 1) otherwise
π(a|s) ∝ exp(

1

α
Qπ(s, a))

For continuous-action spaces, the simplest exploration method is to use ac-
tion noise, which adds small random perturbations to the policy's actions. Most
algorithms use white noise (explicitly for deterministic policies like in DDPG or
TD3, or implicitly via sampling actions from the stochastic policy like in SAC
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Table 2.1: Overview of RL algorithms

Note that for PILCO the model is a GP, and for GPS it is a TVLG model, not
NNs.

or MPO), which is uncorrelated over time, or OrnsteinUhlenbeck (OU) noise,
which is strongly correlated. OU noise produces better exploration, but it also
produces strongly o�-policy trajectories (see distribution mismatch discussion
in 2.2.4), so (Eberhard et al., 2022) explore noises with intermediate temporal
correlation (pink noise) that handle this trade-o� better.

Many other di�erent approaches have been proposed over the years. For
instance, NoisyNet (Fortunato et al., 2017) adds parametric noise to the weights
of the Q-function and/or policy networks, and AGAC (Flet-Berliac et al., 2021)
incentivizes the policy to di�erentiate itself from an adversary that is trying to
mimic it. Let's look at three di�erent families in more detail.

Multi-arm bandits

Exploration vs exploitation is a well studied problem in the �eld of multi-arm
bandits. Here are some exploration strategies derived from bandits:

� Optimistic exploration: we assume the unknown to be good. A simple
idea is to consider count-based exploration bonuses to create a new reward
r+(s, a) = r(s, a) + B(N(s)), where B is some bonus decreasing function
and N(s) counts the visits to state s. A very popular bandit bonus is

UCB: B(N) =
√

2 lnn
N

, where n =
∑

sN(s). If the space is too large

or continuous we can learn a density model instead pθ(s) ≈ N(s)/n. For
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instance, pθ(s) ∝ N(fθ(s)) where fθ embeds the states into a smaller space
(Tang et al., 2017).

Figure 2.24: Exploring with pseudo-counts (Bellemare et al.,

2016) (source: Levine, Fa2019)

� Posterior sampling. Inspired from bandit's Thompson sampling, we sam-
ple from a prior distribution over Q-functions or policies and act according
to the sample for one episode, then update the prior. Exploring with ran-
domized actions like ϵ-greedy can oscillate back and forth, but exploring
with a randomized Q-function can reveal more sophisticated strategies
because the exploration during the entire episode is consistent.

� Approximate information gain IG(z, y) = DKL(p(z|y)||p(z)) methods try
to measure how much we learn about z from the quantity y. Let z = θ.
How much we learn about the dynamics pθ(s

′|s, a) given the new transition
y = (s, a, s′) ? In VIME (Houthooft et al., 2016), the authors consider
that a transition is more informative if it causes belief over θ to change.
How much we learn about the state density pθ(s) given the new state
y = s′? If the density changed a lot (e.g. log pθ(s)− log pθold(s) big), the
state was novel.

Prediction errors

A more broad idea is to use any type of prediction error, i.e. train a model
to make some type of prediction and build an exploration bonus based on the
model error. The prediction error can quantify the novelty of new experience
because it should be high where few similar examples have been seen so far.

For instance, (Pathak et al., 2017) encode image observations st into ϕ(st) us-
ing an auto-encoder, and train another network to predict ϕ(st+1) from (ϕ(st), at).
The error w.r.t. the encoding of the actual new state st+1 is used as an explo-
ration bonus.

In Random Network Distillation (RND) (Burda et al., 2018), the authors
realize that the prediction error might also be high for reasons that do not
characterize novelty, like stochasticity of the target function (trying to predict
the ouptut of a stochastic function such as p(s′|s, a) might provide the agent
with endless novelty if the function is "too random") or model misspeci�cation
(prediction error is high because the predictor's model can't �t the complexity of
the target). Their solution is to predict the output of a �xed randomly initialized
neural network on the current observation: the target network can be chosen
to be deterministic and inside the model-class of the predictor network.
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Auxiliary losses

These exploration bonuses are addressing a deeper problem in RL: the reward
function is not enough/good supervision. (Shelhamer et al., 2016) presents a
variety of loss functions that mine further supervision from the same data avail-
able to existing RL methods: the transitions (s, a, r, s′). These self-supervised
losses are simple proxies of the reward (e.g. predict the sign of the reward), the
dynamics (or inverse dynamics), or based on reconstruction errors (e.g. auto-
encoders), and can reduce the burden of exploration. The challenge of these
approaches, just as any exploration bonus, is that the separate sources of su-
pervision must not con�ict with each other. UNREAL (Jaderberg et al., 2016)
and MERL (Flet-Berliac and Preux, 2019) also introduce auxiliary training
objectives.

2.7 Maximum-entropy reinforcement learning

Exploration is closely related to a more general concept: stochasticity. Most
algorithms covered so far, like Q-learning, try to �nd the optimal policy which
is always deterministic under full observability. But stochastic policies have
interesting properties: better exploration and robustness (due to wider coverage
of states). Also, stochastic policies try to learn all ways of performing the task
(not just the better one), which can help model human behaviour (see section
3.2.2) and provides better policies to �netune from for speci�c environments.
Another interesting property is shown in (Haarnoja et al., 2018a), where they
obtain a decent policy for a complex task (e.g. move to the target and avoid the
obstacle) by simply adding the Q-functions of the stochastic policies trained on
the simpler tasks (e.g. two policies here, one that moves to the target and one
that avoids obstacles).

How to implement entropy regularization? For instance, MICARL (Della
Vecchia et al., 2022) provides a closed form for an entropy-regularized policy-
iteration update, provided one can keep track of all previously estimated Q-
functions. Let's focus on a family of methods that are derived from the following
objective, designed to promote stochasticity by maximizing the entropy of the
policy (we omit γ here for simplicity):

π∗ = argmax
π

T∑
t=1

E(st,at)∼pπ [r(st, at) + αH(π(·|st))] (2.35)

We can de�ne new soft value functions. They are referred to as "soft" because
they use a LogSumExp softmax instead of the max operator of typical value
functions. Note that if π is equal to π̃, where π̃(a|s) ∝ exp( 1

α
Qπ

soft(s, a)) is an
energy-based policy, then 1

α
V π
soft(s) is the log-partition function of the negative
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energy function 1
α
Qπ

soft(s, a).

Qπ
soft(st, at) = rt + Eτ∼pπ

[
T∑
l=1

γl(rt+l − α log π(at+l|st+l))

]
= rt + γEst+1∼p(·|st,at) [V

π
soft(st+1)]

V π
soft(s) = Ea∼π(·|s) [Qπ

soft(s, a)− α log π(a|s)]

= α log

∫
exp(

1

α
Qπ

soft(s, a))da− αDKL(π(·|s)||π̃(·|s))

(2.36)

Let's look at two Q-learning algorithms that use these soft value functions:

� Soft policy iteration. We evaluate the policy with Qπ
soft by iterating the

soft Bellman equation until convergence:

Qπ
soft(s, a)← r + γEs′∼p(·|s,a),a′∼π(·|s′) [Qπ

soft(s
′, a′)− α log π(a′|s′)] (2.37)

The policy improvement step consists on πnew = argminπDKL(π||π̃old).

Soft Actor-Critic (SAC) (Haarnoja et al., 2018b) translates this idea into
an actor-critic architecture with function approximations for policy and
soft value functions.

� Soft Q-iteration. We aim for π∗(a|s) ∝ exp( 1
α
(Q∗

soft(s, a)) = exp( 1
α
(Q∗

soft(s, a)−
V ∗
soft(s))) by iterating the optimal soft Bellman equation until convergence:

Q∗
soft(s, a)← r + γEs′∼p(·|s,a)

[
α log

∫
exp(

1

α
Q∗

soft(s
′, a′))da′

]
(2.38)

Soft Q-learning (Haarnoja et al., 2017) builds upon this idea. One prob-
lem when dealing with energy-based policies is that they are intractable
because of the partition function which involves an integral over the ac-
tion space. Since soft Q-learning requires us to sample from such a policy
(to take on-policy actions and to estimate V ∗

soft), the authors implement a
stochastic sampling network trained to output approximate samples from
the target distribution. Like SAC, it can handle both discrete and con-
tinuous action spaces.

Note that although the Boltzmann explorative policy looks similar, it only
greedily maximizes entropy at the current time step, and doesn't maximize the
entropy of the entire trajectory distribution like the methods shown in this
section.
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Chapter 3

State of the art - Imitation

Learning

One of the main practical challenge in RL is de�ning the reward function. In
controlled environments like games, the reward usually comes up very naturally.
But what about real systems like robots? A sparse reward is easy to design but
very sample ine�cient, even if we supervise the agent with other signals (e.g.
exploration bonuses). Manually designing a more complex reward will work
better, but reward shaping is far from easy and very task-speci�c. In imitation
learning we attempt to leverage expert demonstrations as a source of useful
supervision for the agent. Let's look at two examples that are similar to the
algorithms presented in the previous chapter, but rely on demonstrations to
compensate for the lack of feedback provided by the reward signal.

Soft Q Imitation Learning (SQIL) (Reddy, Dragan, and Levine, 2019) is
derived from soft Q-learning. The replay bu�er is initially �lled with demon-
strations where the rewards are always r = 1. New experiences collected by the
agent are added with reward r = 0. For learning, the sampled experiences are
balanced (50% each). Intuitively, these modi�cations create a simple reward
structure that gives the agent an incentive to imitate the expert in demon-
strated states, and to take actions that lead it back to demonstrated states
when it strays from the demonstrations. The paper shows theoretical connec-
tions between SQIL and regularized behaviour cloning.

Recursive Classi�cation of Examples (RCE) (Eysenbach, Levine, and Salakhut-
dinov, 2021) presents a framework similar to goal-conditioned RL, but the aim
is to learn a policy for solving one task, rather than a goal-conditioned pol-
icy. It only requires success images, not full demonstrations. Let a random
variable et indicate whether the task is solved at time t. Given a policy, the
(discounted) probability of solving the task at a future step is pπ(et+|st, at). The
objective is equivalent to the standard RL objective with the unkown reward
function r(st, at) = p(et = 1|st). The challenge is to learn a classi�er Cπ

θ (st, at)
in a positive-unlabeled setting. To do so, the idea is to use the classi�er's own
predictions (at the next time step) as labels for the classi�er.

Other than RL-inspired algorithms, there is a wide scope of imitation-
learning algorithms. For instance, (Muelling et al., 2012) use demonstrations to
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create a library of table tennis movements from kinesthetic data. In this chap-
ter we will look in more detail at three major families. In behaviour cloning
we directly look for a policy that acts like the expert by solving a supervised-
learning problem. In inverse reinforcement learning (IRL) we try to infer the
reward function that the expert was most likely trying to maximize, while op-
tionally jointly learning a policy. In o�ine RL, agents are trained from datasets
collected beforehand, without additional online data collection.

Note that demonstrations can also be used alongside a reward signal. In-
deed, demonstrations can be used in RL to design an additional reward, guide
exploration, augment the training data, initialize policies, etc. We will focus
more on these hybrid approaches in Chapter 5.

3.1 Behaviour Cloning

Figure 3.1: Learning from demonstrations with supervised

learning (source: Levine, Fa2019)

Imitation learning as supervised learning: we train a network to match
the actions of the expert (assumed i.i.d.) conditioned on the corresponding
observation πθ(at|ot).

Figure 3.2: Compounding errors in behaviour cloning (source:

Levine, Fa2019)

The main challenge of behaviour cloning are compounding errors. When the
policy makes a small mistake, it deviates from the state distribution seen during
training, making it more likely to make a mistake again. Eventually, the agent
is no longer able to recover. A simple idea to correct this is to present the agent
with data from unwanted states labelled with the actions to correct them (e.g.
turn inwards if we are about to exit the road: Bojarski et al., 2016). Another
example is presented in (Zhou et al., 2023), where they sample perturbations
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around expert robotic poses, calculate the corrective actions that would stabilize
the trajectories, and render observations for the perturbed poses with a neural
radiance �eld (NeRF).

A more robust idea is presented in DAgger (Ross, Gordon, and Bagnell,
2010): have an interactive expert tell us what we did wrong. Supervised learning
works under the assumption that training and test data distributions match.
Therefore, the goal is to collect data from our current policy πθ to reduce the
distribution mismatch between pπθ and pdata.

Figure 3.3: DAgger: Dataset Aggregation algorithm (source:

Levine, Fa2019)

Of course, DAgger requires human feedback during training which isn't very
practical. What if we had a model so good that it didn't actually drift in
practice? These are the two main challenges and some ideas to overcome them:

� Multi-modal behaviour. Human behaviour is often multi-modal. For in-
stance, we can avoid obstacles on the road by going left or right. If our
policy model does not have enough capacity to represent the human dis-
tribution it will learn a distribution which "covers" all of the modes, which
will also cover unwanted parts of the space corresponding to sub-optimal
behaviour. With discrete actions, a softmax output and cross-entropy
loss can represent any complex multi-modal distribution. What about
continuous actions? We could use an autoregressive discretization net-
work, which discretizes one dimension of the action space at a time (to
avoid the curse of dimensionality). We could also learn a latent variable
model (e.g. VAE), which are more expressive but are tricky to train. A
simpler idea if we know the number of modes is to output a mixture of
Gaussians.

� Non-Markovian behavior. Human behaviour is often non-Markovian, de-
pending on several previous observations. Recurrent neural networks
(RNNs) allow to condition the policy on all previous inputs πθ(at|o1...ot),
but present additional training challenges.

3.2 Inverse Reinforcement Learning

In behaviour cloning we attempt to directly mimic the expert. But what if the
expert has di�erent capabilities? Can we reason about what the expert is trying
to achieve instead? In the IRL setting we assume that the reward function is
more succinct than the optimal policy. We consider an MDP with unknown
reward, which we need to recover from a dataset of expert demonstrations. We
assume that these samples come from an optimal policy πE. Our goal is to �nd
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the reward r∗ such that:

Eτ∼πE [r
∗(τ)] ≥ Eτ∼π [r∗(τ)] ∀π (3.1)

3.2.1 Linear reward

Let's consider a reward rψ which is represented as a linear combination of fea-
tures f :

Eτ∼π [rψ(τ)] = Eτ∼π

[∑
t

γtψTf(st, at)

]
= ψTEτ∼π

[∑
t

γtf(st, at)

]
= ψTf(π)

We assume that the expert is solving an MDP with unknown reward r∗(s, a) =
ψ∗Tf(s, a). The advantage of the linear representation is that we can approxi-
mate the left-hand term in 3.1 with samples to build an estimator f̂(πE). We
want to �nd ψ such that the expert policy outperforms other policies:

ψTf(πE) ≥ ψTf(π) ∀π (3.2)

Maximum margin. In order to reduce the ambiguity of the reward (e.g.
ψ = 0 is a solution) we can solve a maximum margin problem: pick the reward
for which the expert is better than anybody else by as big of a gap as possible
(equation 3.3). The margin can depend on the distance of the policy to the
expert (e.g. the number of states where πE was observed and disagrees with π).
We could also relax the assumption of expert optimality by introducing slack
variables like in SVMs to account for mistakes (Ratli�, Bagnell, and Zinkevich,
2006).

min
ψ

1

2
||ψ||2 s.t. ψTf(πE) ≥ max

π
ψTf(π) + d(π, πE) (3.3)

Feature matching. The Apprenticeship Learning (Abbeel and Ng, 2004)
algorithm doesn't guarantee to recover ψ∗, but �nds a policy πψ

∗
optimal with

respect to the unknown reward rψ∗ . To do so, the authors prove that it is both
necessary and su�cient to match the feature expectation of the expert's policy,
i.e. �nd ψ such that ||f(πE)−f(πψ)||2 ≤ ϵ. For instance, if we are driving a car
we would like our policy to have same average "speed" and average "number
of collisions" than the expert. The algorithm starts with π0 and iterates over i
the following two steps:

1. "Guess" the reward function: �nd ψi such that the teacher outperforms
all previous policies (πk)0≤k<i by the maximum margin m.

2. Find optimal control policy πi = πψi for the current guess of the reward
function ψi. If m ≤ ϵ

2
exit the algorithm.

If we have enough expert samples so that ||f̂(πE) − f(πE)||2 ≤ ϵ
2
, the last re-

turned policy matches the expert's feature expectation up to ϵ. We can account
for expert sub-optimality errors by solving an optimization problem on the re-
turned policies (see paper) or by manually testing them and choosing the best
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one.
This method is ambiguous: there is an in�nite number of reward functions with
the same optimal policy, and an in�nite number of stochastic policies that can
match feature expectations.

Unfortunately, these methods are still ambiguous and don't handle sub-
optimal behaviour in a principled way.

3.2.2 Maximum entropy inverse reinforcement learning

How can we model sub-optimal behaviour? One idea is to use a probabilistic
model of the expert. (Ziebart et al., 2008) propose to follow the principle of
maximum entropy, which resolves the ambiguity by choosing among the candi-
dates the distribution that does not exhibit any additional preference. It turns
out that this is equivalent to choosing the following path distribution:

p(τ |ψ) ∝ p(s1)
T∏
t=1

p(st+1|st, at) exp(rψ(τ)) (3.4)

We can adopt this model of the expert for any reward rψ, linear or not. Under
this model, the expert takes paths with equivalent rewards with same proba-
bility, and prefers (exponentially) paths with higher rewards. Let πψ the cor-
responding policy, which is the optimal maximum-entropy policy under reward
rψ.

We look for ψ∗ by maximizing the likelihood L(ψ) of the expert data (τi)i:

L(ψ) =
1

N

∑
i

log p(τi|ψ) =
1

N

∑
i

rψ(τi)− logZ(ψ) (3.5)

Z(ψ) =

∫
p(s1)

T∏
t=1

p(st+1|st, at)erψ(st,at)dτ (3.6)

∇ψL(ψ) =
1

N

∑
i

∇ψrψ(τi)− Eτ∼p(τ |ψ) [∇ψrψ(τ)] (3.7)

In the tabular case and under known dynamics, the second term in 3.7 is
tractable and can be computed with a dynamic programming algorithm that
recovers the state-action probability of πψ to compute

∑
s

∑
a

∑
t p(st = s, at =

a|ψ)∇ψrψ(s, a). See (Ziebart et al., 2008) for the details in the linear reward
case. See (Wulfmeier, Ondruska, and Posner, 2015) for a similar method with
a neural network reward representation that works for continuous spaces (but
still requires known dynamics).

3.2.3 Deep inverse reinforcement learning

We want algorithms that can handle large and continuous state and action
spaces and unknown dynamics.
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Let's write down a general problem formulation that sums up what we have
seen so far and that is adopted by many recent papers:

argmax
c
−ϕ(c) + (min

π
−H(π) + Eπ [c(s, a)])− EπE [c(s, a)] (3.8)

We recall that the cost c is the opposite of the reward, and ϕ here refers to
a convex cost function regularizer (e.g. l2 norm of the cost parameters). The
optimal policy for the corresponding cost is given by:

argmin
π
−H(π) + ϕ∗(ρπ − ρπE) (3.9)

where ϕ∗ is the convex conjugate of ϕ and ρπ(s, a) is the occupancy measure, i.e.
the action-state stationary distribution ρπ(s, a) = π(a|s)dπ(s) where dπ(s) =
limt p(st = s|π) measures the fraction of time the agent spends in state s. Note
that a constant regularizer leads to an imitation learning algorithm that exactly
matches occupancy measures (similar idea to the feature matching algorithm
seen above).

Guided cost learning (GCL) (Finn, Levine, and Abbeel, 2016). Let's go
back to the objective in 3.5. One idea is to learn πψ by using any max-ent
RL algorithm (see section 2.7), then approximate the second term of the gra-
dient ∇ψL(ψ) with samples. In practice, they don't learn πψ until convergence
because it would be too expensive and ψ changes with every gradient update.
Instead, they consider a policy πθ that they improve a little (towards πψ) in each
iteration. They use importance sampling to account for this approximation:

∇ψL(ψ) =
1

N

N∑
i=1

∇ψrψ(τi)−
1∑
j ωj

M∑
j=1

ωj∇ψrψ(τj) with ωj =
exp rψ(τj)

πθ(τj)

(3.10)

Figure 3.4: Guided cost learning algorithm (source: Levine,

Fa2019)

As shown in �gure 3.4, GCL presents an adversarial mechanism similar to
GANs: the discriminator/reward is updated to make the demos more likely
than the samples, and the generator/policy is updated to produce samples that
are harder to distinguish from the demos. The authors follow this idea with
AIRL (Finn et al., 2016) and consider a discriminator Dψ(τ) that outputs the
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probability that τ comes from the expert πE. The goal is to minimize the
following loss (both terms can be approximated with samples):

Ldiscriminator(ψ) = −Eτ∼πE [logDψ(τ)]− Eτ∼πθ [log(1−Dψ(τ))] (3.11)

The optimal discriminator for any GAN is given by D∗(τ) = πE(τ)
πθ(τ)+πE(τ)

. Of

course, we don't know πE = πψ
∗
, but the authors replace it with the current πψ

that the generator πθ is trying to approach. This choice for the discriminator is
one of the main di�erences with a normal GAN. The other one is that we can't
back-propagate through the discriminator into the generator (we could under
known dynamics), so they improve the policy as before with any max-ent policy

optimization algorithm, giving Dψ(τ) =
1
Z

exp(rψ(τ))∏
t πθ(at|st)+

1
Z

exp(rψ(τ))
.

Generative Adversarial Imitation Learning (GAIL) (Ho and Ermon, 2016).
Similar idea to adversarial GCL: �nd a policy that makes it impossible for a
discriminator to distinguish between samples from the expert and samples from
the imitator agent. The main di�erence is that the reward is not explicitly
represented so the discriminator D can be any binary classi�er, which makes
the optimization process simpler but doesn't recover the optimal reward. The
generator/policy is optimized with a max-entropy TRPO step under the current
reward r(s, a) = − logD(s, a), which will guide the policy towards expert-like
regions (as classi�ed by D). See the paper for the theoretical derivation of their
algorithm, which starts with a particular choice for the regularizer ϕ that yields
the �nal objective:

min
π

max
D

Eπ [logD(s, a)] + EπE [log(1−D(s, a))]− λH(π) (3.12)

There have been a number of improvements brought to this algorithm. For
instance, InfoGAIL (Li, Song, and Ermon, 2017) (based on InfoGAN: Chen et
al., 2016) assumes that the expert policy is a mixture of experts and considers
a discrete latent variable c that selects one of these policies, and AGAIL (Sun
and Ma, 2019) can handle demonstrations with incomplete action sequences.
PU-GAIL (positive unlabeled) (Xu and Denil, 2019) addresses the problem
of over-�tting (GAIL manages to distinguish between agent and expert based
on non-important features like lightning) by learning classi�ers from positive
(expert) data and unlabeled (agent) data, and also addresses the more general
problem of delusion in reward supervised learning (wrongfully over-optimistic
reward predictions are exploited by the agent).

3.2.4 Summary

• IRL requires fewer demonstrations than behavioral cloning and avoids
supervised learning issues such as compounding errors.

• Current methods that can handle complex behaviours in real systems are
based on adversarial optimization, which is hard to train. So far, only
successfully tested on �rst-person non-visual demos (kinesthetic teaching,
teleoperation).
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3.3 O�ine Reinforcement Learning

The main breakthroughs in machine learning have come from supervised learn-
ing, where large pools of data are used to make predictions. What if RL algo-
rithms could e�ectively use large datasets as well? O�ine RL (Levine et al.,
2020), also known as data-driven RL, proposes a paradigm where the training
leverages datasets collected beforehand, without additional online data collec-
tion. It provides a way to learn from any previously collected data D: rein-
forcement learning experiments, expert demonstrations, random interactions,
hand-crafted policies...

Figure 3.5: O�ine RL (source: Levine et al., 2020)

In contrast with classic RL, the dataset D is collected once by some
(potentially unknown) behavior policy πβ, and is not altered during training.

Note that learning from a �xed dataset without online environment inter-
action is di�cult even if provided expert actions. For behaviour cloning we
have l(π) = Eπ

∑T
t=0 [δ(at ̸= a∗t )] ≤ C + T 2ϵ where ϵ is the generalization error

on demo data. For DAgger (online interaction allowed) the bound becomes
l(π) ≤ C + Tϵ.

Note that exploration is no longer an algorithmic problem in o�ine RL since
there is no way of collecting new data, so we must assume that D adequately
covers the space of high-reward transitions to make learning feasible. However,
although the idea is to not rely on online data, it is still possible and bene�cial
to �ne-tune the o�ine policy on a smaller task-speci�c dataset. For instance,
Figure 3.6 shows results of �ne-tuning the algorithm QT-OPT for robotic grasp-
ing.

Figure 3.6: QT-OPT �ne-tuning (source: Julian et al., 2020)

The main challenge is distributional shift, which a�ects o�ine RL at test
time (for all algorithms) and at training time (for dynamic programming and
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model-based algorithms). The distributional shift problem at test-time is in-
evitable and more pronounced than in general supervised learning. First, the
data is not i.i.d. but sequential, so errors can cumulate. Second, the goal is to
learn a policy that does something di�erently (better) than the behaviour policy
πβ that collected the data D. Therefore, the state visitation frequency dπ(s)
will di�er systematically from dπβ(s) at test time. Constraining π(a|s) such that
DKL(π(a|s)||πβ(a|s)) ≤ ϵ can bound DKL(d

π(s)||dπβ(s)) by δ ∼ O(ϵ/(1− γ)2).

Dynamic programming methods, such as Q-learning algorithms, in principle
can o�er a more attractive option for o�ine RL as compared to pure policy
gradients. However, they face an action distribution shift during training: when
π(a|s) di�ers substantially from πβ(a|s), the Q-function regression targets won't
be accurate. Since π(a|s) is explicitly optimized to maximize reward, the policy
will seek out-of-distribution actions that lead to wrong high returns. This means
that, when an approximation error in a Q-value is an overestimation, it gets
propagated (explicitly via the argmax of the Q-learning greedy policy update,
or implicitly in actor-critic algorithms). In practice, this problem has a similar
e�ect as over-�tting (it "unlearns" as the Q-values become more and more
erroneous), although it can't simply be solved with a larger dataset. Note
that this problem happens also with world models (the policy is still trying to
exploit the model in order to maximize rewards). In standard reinforcement
learning, this issue is somewhat corrected naturally when the policy runs in
the environment to collect more data for the next iteration: it will attempt the
over-optimistic transitions, and observe that in fact they are not.

Figure 3.7: Over-optimistic Q-values (source: Levine et al.,

2020)

O�ine performance of SAC, showing return as a function of gradient steps
(left) and average learned Q-values on a log scale (right), for di�erent n (size

of training set).

Importance sampling

Importance sampling, typically used for policy gradient algorithms, seems like
a bad candidate since it already su�ers from high variance. Recall that the
importance weights at successive time steps are multiplied together, resulting
in exponential blowup, which is not manageable when both policies are too
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di�erent from each other like in o�ine RL. Self-normalizing the importance
weights results in a biased weighted importance sampling estimator, but with
much lower variance.

Policy constraints

The goal is to ensure that π(a|s) is close to the behavior distribution πβ(a|s),
while still deviating a little in order to improve. The constraints can be enforced
either as direct policy constraints on the actor update (equation 3.14), or via a
policy penalty added to the target Q-value or reward function, such as r̄(s, a) =
r(s, a)− αD(π(·|s), πβ(·|s)).

Q̂π
k+1 ← argmin

Q
E(s,a,s′)∼D

[(
Q(s, a)−

(
r(s, a) + γEa′∼πk(·|s′)Q̂

π
k(s

′, a′)
))2]
(3.13)

πk+1 ← argmax
π

Es∼D
[
Ea∼π(·|s)Q̂π

k+1(s, a)
]

s.t. D(π, πβ) ≤ ϵ (3.14)

A common f-divergence constraint is the KL-divergenceDKL(π, πβ) = Ea∼π(·|s)[log π(a|s)−
log πβ(a|s)]. However, explicit policy constraints require explicit estimation of
the behavior policy, which means that the performance of these algorithms is
limited by the accuracy of this estimation.

Other algorithms such as Advantage Weighted Actor Critic (AWAC) (Nair
et al., 2020) opt for implicit f-divergence constraints. These methods �rst solve
for the optimal next policy iterate under the KL-divergence constraint, non-
parameterically, and then project it onto the policy function class via supervised
regression.

Uncertainty estimation

The epistemic uncertainty (i.e. the entropy of p(ϕ|D), not the variance of
the output of Qϕ) of the Q-function should be substantially larger for out-of-
distribution actions. The goal is to learn a distribution PD(Qπ) over possible
Q-functions, and use it to update the policy as follows:

πk+1 ← argmax
π

Es∼D,a∼π(a|s)
[
EQπk+1∼PD(Qπ)[Q

π
k+1(s, a)]− αUnc(PD(Qπ))

]
Ways to compute uncertainty estimates include Gaussian processes, Bayesian

neural networks, Bootstrap ensembles... Note that uncertainty methods have
been used in the past for exploration, but in an optimistic way (for pessimistic
purposes the uncertainty estimation needs to be much more precise).

Conservative Q-learning

The idea behind Conservative Q-learning (CQL) (Kumar et al., 2020) is to
regularize the value function or Q-function directly to avoid overestimation for
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out-of-distribution actions. Let the Bellman error:

E(D,Q) = E(s,a,s′)∼D

[(
Q(s, a)−

(
r(s, a) + γEa′∼π(·|s′)Q(s′, a′)

))2]
A �rst conservative objective is introduced. It provides a lower bound Q̂π(s, a) ≤
Qπ(s, a) ∀(s, a) ∈ D, but risks underestimation. It should mostly push down
on Q-values for out-of-distribution actions because the Bellman error anchors
in-distribution actions.

Q̂← argmin
Q

max
µ

αEs∼D,a∼µ(·|s) [Q(s, a)] + E(D,Q)

A second less conservative objective (Eπ(a|s)Q̂π(s, a) ≤ Eπ(a|s)Qπ(s, a) ∀s ∈ D)
is also presented. When µ is equal to πβ, the penalty is zero, so high Q-values
are only assigned to in-distribution actions.

Q̂← argmin
Q
αEs∼D

[
log
∑
a

expQ(s, a)− Ea∼DQ(s, a)

]
+ E(D,Q)

COG (Singh et al., 2020) and (Bharadhwaj et al., 2020) are two of the many
algorithms that follow similar principles. MoREL (Kidambi et al., 2020) and
MOPO (Yu et al., 2020) are conservative model-based algorithms. In model-
based o�ine RL, the model su�ers from distribution shift both in states and
actions, since the policy (or action sequence, in the case of planning) is optimized
to obtain the highest possible expected reward under the current model.



46

Chapter 4

Reward Relabeling for combined

Reinforcement and Imitation

Learning

4.1 Introduction

Two of the main remaining challenges in RL are reward shaping and sample
e�ciency. Reward shaping can be de�ned as the process of engineering the
right reward function for the problem at hand. Since the reward function is
the only supervision signal that the agent will receive, reward shaping is a
crucial component of the training process. However, having to design a new
reward function for every task makes it very di�cult to translate results between
tasks, and often relies on the intuition of the designer rather than a robust
methodology. On the other hand, sample-e�cient algorithms are required to
obtain faster and more reliable results, particularly in robotics where it is much
harder to train an algorithm outside of simulation. The recent trend towards
more data-driven algorithms could be a solution to both of these problems.
Indeed, additional data can alleviate the need for online data collection, and
demonstration data can act as additional supervision, guiding the agent to good
behaviours alongside a simpler task-agnostic reward function.

With these objectives in mind, we designed a method called Reward Rela-
belling, able to leverage both demonstrations and episodes collected online in
any sparse-reward environment with any o�-policy algorithm. Before introduc-
ing our method, we present a short background on the three most closely-related
families of RL algorithms. This chapter focuses mainly on the theoretical side
and inner workings of our reward-relabeling method, while the following chap-
ter will present an extension of the algorithm and more detailed experimental
results.
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4.2 Background - Other related frameworks

4.2.1 Self-Imitation Learning

Having an expert to learn from can be very helpful, but such a luxury is not
always available. Instead, we can apply IL methods to the experiences collected
by the agent in the environment, to further supervise its behaviour. (Oh et
al., 2018) introduced Self-Imitation Learning (SIL), where an additional loss
function pushes the agent to imitate its own decisions in the past only when
they resulted in larger returns than expected.

Further works such as Self-Imitation Advantage Learning (SAIL) (Ferret,
Pietquin, and Geist, 2020) followed. One of the main improvements over SIL is
that SAIL mitigates the problem of stale returns by choosing the most optimistic
return estimate between the observed return and the current action-value for
self-imitation. Indeed, relying just on the observed return (like in SIL) is not
ideal because it quickly becomes outdated as the policy improves.

4.2.2 Reward bonus

One major challenge in RL is exploration, and one common approach to encour-
age it is to augment the environment reward with an additional bonus. Many
previous works rely on some sort of optimistic exploration: assume the unknown
to be good. A simple idea is counting state occurrences, even if the space is too
large or continuous via pseudo-counts (Bellemare et al., 2016) or hashing (Tang
et al., 2017). Another idea is to use any type of prediction error, which can
quantify the novelty of new experience. For instance, in (Pathak et al., 2017)
they learn a forward model to predict future states, and in RND (Burda et al.,
2018) they predict the output of a �xed randomly initialized neural network
on the current observation. More generally, reward bonuses are used to provide
further supervision to the agent. For instance, (Shelhamer et al., 2016) presents
a variety of self-supervised losses such as simple proxies of the reward (e.g. pre-
dict the sign), the dynamics (or inverse dynamics), or based on reconstruction
errors (e.g. auto-encoders).

4.2.3 Hindsight Experience Replay (HER)

Since o�-policy RL algorithms can theoretically use data coming from any pol-
icy, a natural idea was to share data between tasks in a multi-task setting. An
even better idea came in HER (Andrychowicz et al., 2017), where the authors
pointed out that if we accidentally solve one task when trying to perform an-
other task, that experience is still optimal if we relabel the goal that was initially
intended. Indeed, RL can be viewed as a joint optimization problem over both
the policy and the data, alternating between �nding good data (generally using
relabeled data) and training a model on that data.

Similar and more general works followed, such as GCSL (Ghosh et al., 2019),
Generalized Hindsight (Li, Pinto, and Abbeel, 2020), and HIPI (Eysenbach et
al., 2020), which reframes the relabeling problem as inverse RL. RCP (Kumar,
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Peng, and Levine, 2019) extended the idea to the single-task setting, by learning
a policy conditioned on the trajectory return. Indeed, non-expert trajectories
collected from sub-optimal policies can be viewed as optimal supervision, not
for maximizing the reward, but for matching the reward of the given trajectory.
By then conditioning the policy on the numerical value of the reward, they
obtain a policy that generalizes to larger returns.

4.3 Reward Relabelling

O�-policy algorithms are more suited to bene�t from demonstration data than
on-policy ones, so we only focus on the former. Indeed, one can simply add
any o�-policy data into the replay bu�er and the algorithm should be able to
make good use of it. The replay bu�er then contains both both demonstrations
and episodes collected online. As discussed in the introduction of the chapter,
we also want to focus on sparse-reward environments. The method that we
present here can therefore be applied to any sparse-reward environment with
any o�-policy algorithm, and is able to accelerate the training process.

Our method is based on a reward bonus given to demonstrations and success-
ful episodes (via relabeling), encouraging expert imitation and self-imitation. In
this work we focus on o�-policy RL, and present a way to leverage o�ine data
in the form of expert demonstrations. Our method is based on the observa-
tion that, in hindsight, a successful episode of collected experience is in fact
a demonstration, so it should receive the same treatment. In particular, we
propose to add a reward bonus to transitions coming from both demonstrations
and successful episodes. Our approach provides a simple way of tying positive
rewards and desired behaviour, without any task-speci�c reward shaping.

We instantiate our approach with Soft Actor-Critic (SAC) (Haarnoja et al.,
2018b) and Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016).
In this section we introduce a new method that consists in giving a reward
bonus to demonstrations and relabeling successful episodes as demonstrations.
We thoroughly test it in a reaching task, and show that it greatly improves
upon the base algorithm.

4.3.1 Method

We propose SAC-R2 and DDPG-R2, acronyms for SAC with Reward Relabeling
and DDPG with Reward Relabeling respectively, based on a straight-forward
method that could be implemented to any other o�-policy RL algorithm with
sparse rewards. Let R be the sparse reward from the environment, b the reward
bonus of our method, and L the amount of transitions that will receive the
bonus. First, we add demonstration data to the bu�er: the last transition
of each expert trajectory is given the sparse reward R, and the last non-�nal
L transitions are given a reward equal to b. Then, as the agent explores the
environment during training, every new successful episode is relabeled the same
way: the last L transitions leading to the sparse reward are assigned a reward
equal to b. Intuitively, our method helps propagate the signal of the sparse
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reward by explicitly turning zero rewards into positive rewards, rather than
entirely relying on bootstrapping rare future rewards.

Figure 4.1: Reward Relabeling procedure.

Reward bonus to demonstrations. The �rst part of our algorithm is
most similar to SQIL (Reddy, Dragan, and Levine, 2020). Intuitively, it gives
the agent an incentive to imitate the expert. Their paper shows theoretical
connections between SQIL and regularized behaviour cloning. One important
di�erence is that SQIL is a pure IL algorithm, while our method learns from
both the reward bonuses and the reward from the environment. Also, SQIL
gives an incentive to avoid states that were not in the demonstration data,
which could potentially be harmful if those states led to successful behaviour.

Reward bonus to successful episodes. The relabeling part of our algo-
rithm tries to mitigate this issue and is most similar to SIL (Oh et al., 2018) or
SAIL (Ferret, Pietquin, and Geist, 2020). In our method, the self-imitation is
achieved by e�ectively treating successful episodes as if they were demonstra-
tions. In order to give a reward bonus to successful episodes, we need to wait for
the episodes to end �rst. We follow the idea presented in HER (Andrychowicz
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et al., 2017) to relabel past experiences and modify the transitions' rewards.
To the best of our knowledge, HIPI (Eysenbach et al., 2020) is the only exist-
ing method to also modify the rewards this way. While their method relies on
inverse RL to tackle the more general multi-task setting, ours is more straight-
forward for the simpler single-task setting with sparse rewards.

4.3.2 Optimal Policy: Discussion and Safety Decay

One issue with our method so far, is that it might change the optimal policy of
the problem. Intuitively, the bonus encourages a policy that requires at least
L steps to reach the goal, which might not take the shortest path available.
We want our method to converge to the optimal policy of the sparse reward
problem.

As stated in (Ng, Harada, and Russell, 1999), in order to still converge to
the optimal policy of the original problem one can only add a reward term such
as, for a given transition between two states, the term is expressible as in the
di�erence in value of an arbitrary potential function applied to those states.
Our reward bonus cannot be expressed as such since it depends on the time-
step of the states. In fact, our reward violates the Markov assumption of the
MDP, its future evolution is no longer independent of its history.

To ensure that our method converges to the optimal policy, we decide to use
a decay that eventually causes the bonus to completely disappear. By doing so,
our method operates in two steps: An initial RL training with reward bonuses
that might not converge to the optimal policy, followed by a second RL training
without any reward bonuses which should converge to the optimal policy. In
practice, on top of not adding any future bonuses during data collection, we also
have to remove the reward bonuses from the transitions stored in the bu�er.
Since the environment's rewards are fully sparse, this simply requires to ignore
any reward from any non-�nal transition sampled from the bu�er.

For our experiments, we use a simple linear decay that quickly turns the
bonus to 0 when the success rate stops improving. We refer to this decay as
safety decay. In the following section we will de�ne a second decay, called
scheduled decay, that controls the bonuses in a more organic way throughout
the entire training process.

4.3.3 Hyper-parameters: Tuning and Scheduled Decay

Our method has two hyper-parameters to tune, b and L. L represents how far
the sparse reward should be propagated into the past, and is similar to other
parameters in RL such as the n of the n-step look-ahead in Q-learning. Why
not relabel all time-steps? We do not wish to reward the early transitions of
overly long episodes since they probably did not help to the completion of the
task. Also, the cumulative rewards would greatly vary between episodes.

How about b? We propose to adjust the value of b during training based
on the agent's recent success. This also acts as a more natural decay during
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Figure 4.2: Reward obtained as a function of the agent's suc-

cess. The more successful the agent, the smaller the bonus, until

recovering the fully sparse reward at 100% success rate. We want

to avoid the situation on the top, where the highest cumulative

reward is obtained for a smaller success rate.

the entire training process. Let's place ourselves in the episodic undiscounted
scenario. Let ζ be the current average success rate (in practice, we use the
fraction of successful episodes in the last 100-episodes window), and r the total
reward obtained over a successful episode τ . We wish to have the following
reward:

r(τ) = R + L · b · (1− ζ) (4.1)

Intuitively, the more the agent struggles, the larger the bonus to help guide
it. We can study the behaviour of this reward function in the case where
the agent reaches a constant �nal success rate. Let f the cumulative reward
obtained over N runs, and n the number of successful episodes.

f(n) = n(R + L · b · (1− n

N
)) = n(R + b · L)− n2 b · L

N

The cumulative reward f is shown in Figure 4.2. If not careful, the optimal



Chapter 4. Reward Relabeling for combined Reinforcement and Imitation 52

behaviour for this reward can correspond to a policy that has not actually
reached a success rate of 100%. There is a simple condition to avoid this:
N ≤ argmax f if and only if b ·L ≤ R. We are free to chose b and L as we want,
as long as their product, corresponding to the total reward coming from bonuses
in an episode, is smaller than the �nal sparse reward. A similar condition holds
for the discounted case.

undiscounted b · L ≤ R

discounted b

(
L−1∑
i=0

γi

)
≤ R · γL

(4.2)

Therefore, having a reward as de�ned in 4.1 yields an intuitive condition: R
should prevail over the bonuses. Since R is always the main source of supervision
during the entire training process, this condition should also help to ensure that
the policy's behaviour never deviates too much from the optimal policy of the
original MDP problem, which would facilitate that the policy can recover to it
once the bonuses have disappeared from the training.

The most straight-forward implementation for such a reward is to use the
same bonus for all transitions within an episode τt, but which decays over time
t as the success rate improves. We refer to this decay as scheduled decay:

bk ← b · (1− ζk) (4.3)

Although we always use both the safety and scheduled decays, in practice our
experiments showed that the scheduled decay alone is enough to avoid the un-
desirable side-e�ects of our method.

4.4 Experiments

4.4.1 Setup

In this chapter we focus on a single task from RLBench (James et al., 2020), we
choose one of the simplest and most fundamental tasks in robotics: reaching a
target. We evaluate our method on a 6-degrees-of-freedom robot manipulator.
The target ball appears randomly at the beginning of each episode within the
reach of the robot (anywhere in the 3D scene). The state has 22 dimensions,
19 from the robot proprioceptive state (joint angles, joint speeds, gripper pose)
and 3 from the task-related information (3D coordinates of the ball). The robot
receives 6-dimensional joint speed commands.

The expert demonstrations are provided by the environment and rely on
OMPL (Sucan, Moll, and Kavraki, 2012) for motion planning. An episode ends
once the robot has completed the task, or after expiration (100 time-steps). The
reward is fully sparse, and is equal to +100 if the robot solves the task and 0
otherwise.
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Algorithm 1: R2

Require: L amount of steps to relabel.
Set b according to equation 4.2. Initialize bu�er with demonstrations:

set reward r = b for the last L non-�nal transitions.
Initialize empty episode.
while not converged do

sample a batch B from the bu�er
if b > 0 then

b← decay_rule(b) according to equation 4.3
else

set r = 0 for all non-�nal transitions in B
end
do o�-policy RL update
if len(episode) == 0 then

collect one episode
if episode is successful then

set r = b for the last L non-�nal transitions
pop a transition (s, a, s′, r) from the episode and add it to the bu�er

end

We compare our methods SAC-R2 to a simple baseline SAC-Demo, which
we de�ne as SAC with demonstrations in the bu�er. For SAC-R2, we use the
scheduled decay presented in equation 4.3. If the success rate doesn't improve
over a period of 5000 iterations, the safety decay is applied to completely erase
the bonus. We always choose the largest bonus allowed by the condition 4.2.

All the results are smoothed with a rolling window of 100 episodes, and the
standard error is computed on three random seeds.

Figure 4.3: Reaching task in RLBench
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(a)

(b)

Figure 4.4: Learning curves for the RLBench reaching task.

4.4.2 Results

Figures 4.4a and 4.4b show that SAC-R2 and DDPG-R2 are signi�cantly faster
than the baselines on the reach target task. Most of the speed increase happens
in the beginning of the training, so R2 seems to provide a more e�cient explo-
ration, guiding the agent faster towards the environment rewards when these
are hard to come by. More importantly, both R2 versions consistently solve the
task, whereas the baselines show a much larger variance, and even fail on some
seeds in the case of DDPG.

4.4.3 Impact of hyper-parameters

We remind that there are two hyper-parameters, but in practice if we set b as
the largest bonus allowed by the condition 4.2, then only L needs to be chosen.
As we see in Figures 4.5 and 4.6, there appears to be an optimal value for this
particular task, which is consistent with the choice of the largest b allowed.
Interestingly, setting an overly large b or L doesn't hinder the performance too
much, which means that the algorithm is robust to the hyper-parameter values.
However this robustness is more apparent during the early and middle stages
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Figure 4.5: Impact of hyper-parameters on SAC. For a given

hyper-parameter value, we plot the number of training steps re-

quired for the average episode success to reach a certain thresh-

old.

of the training process, whereas near convergence the drop in performance is
larger (especially for b).

Impact of hyper-parameter L. Figure 4.5 (bottom) shows the impact of
di�erent values of L. Having a longer window hurts the performance, as adding
a bonus to transitions closer to the goal is probably more important. Also, if L
is bigger than the length of an episode some bonuses will not be assigned. For
this task, there seems to exist an optimal value somewhere between 5 and 10.

Impact of hyper-parameter b. What happens if we ignore the condi-
tion found in Section 4.3.2 and choose b as an independent hyper-parameter?
Figure 4.5 (top) shows the impact of di�erent values of b for a �xed L = 10.
Surprisingly, violating the condition (b > 8) does not hinder the performance
that much, which means that as long as there is some sort of decay the value
of b is not that important. The drop in performance only becomes noticeable
with very large values. As expected, choosing a smaller bonus (b < 8) reduces
the performance as the algorithm becomes closer to SAC-Demo (which can be
seen as SAC-R2 with b = 0).
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Figure 4.6: Impact of hyper-parameters on DDPG. For a given

hyper-parameter value, we plot the number of training steps re-

quired for the average episode success to reach a certain thresh-

old.

4.4.4 Ablation study

Figure 4.7 shows the impact of online relabelling and decay. What happens if
we skip the former? We still give a reward bonus to the transitions coming from
demonstrations, but we no longer relabel successful episodes. The red curve in
Figure 4.7b shows that, without relabeling, the learning process seems more
unstable, probably due to the lack of consistency in the rewards once the agent
has collected enough successful episodes. However, even without relabeling we
can notice a signi�cant boost with respect to the baseline.

The red curve in Figure 4.7a shows the impact of not decreasing the bonus
during training. Both curves (pink and red, with and without decay) are very
similar, but the agent without decay does not actually reach a 100% success
rate, and additional results show that the larger the bonus, the smaller the �nal
performance. As discussed in Section 4.3.2, SAC-R2 does not seem to converge
to the optimal policy without a decay.

Table 4.1 con�rms these results. Not only does it show that the average
success rate across evaluation episodes is smaller if the decay is absent, but the
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(a)

(b)

Figure 4.7: Learning curves for di�erent ablation studies.

average length of the succesful episodes is also longer. This last point shows
the drift from the optimal policy of the MDP, which should try to �nd the goal
as quickly as possible without detours. When the decay is present, the average
episode length is consistent with that of the baseline, which shows that our
method appears to be able to recover to the optimal policy.

4.4.5 Alternative decay

The scheduled decay de�ned in equation 4.3 is not the only way to obtain the
desired reward 4.1. We recall that the goal is to ultimately drive the sum of
bonuses to 0 when they are no longer needed. Since L and b play symmetrical
roles in that equation, we can apply the decay on L rather than b, as shown
in Figure 4.8. This alternative reward was actually our initial implementation,
because it provides a more intuitive interpretation from the lense of curriculum
learning.

Our method operates on two steps: �rst learn to reach a vicinity of the goal
(be within L steps of the goal), then learn to reach the goal. A decay on L
is consistent with this interpretation: the more succesful the agent, the closer
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Success rate Episode length (succesful episodes)
SAC-Demo 96.1 12.92
SAC-R2 (L=10) 99.1 12.36
SAC-R2 (L=10, no decay) 90.1 16.49

Table 4.1: SAC-R2, with and without decay, compared to the

baseline SAC-Demo on evaluation episodes. The average success

rate and average episode length (of succesful episodes only) are

calculated across 3000 evaluation episodes (3 seeds, 1000 per

seed).

Figure 4.8: Learning curves for two di�erent types of decay.

to the goal it needs to go in order to see rewards. However, as shown in the
�gure, the results are not as good as with a decay on b, as the training is more
unstable.

Rather than a constant bonus (within the transitions of an episode), we also
tried other alternatives, such as having a vanishing bonus (in both directions,
larger towards the beginning or the end of the L-step segment), but the results
didn't report any noticeable di�erences compared to the simpler constant bonus.

4.5 Discussion

We propose Reward Relabeling (R2), a generic method that can be applied to
any o�-policy RL algorithm in any sparse-reward environment. It encourages
two behaviours: imitate the expert demonstrations (if available), and imitate
the past successful trajectories. We have seen that it can greatly improve upon
the base algorithm on a simple reaching task, and the next chapter will focus
on an algorithm extension evaluated on a larger pool of tasks.

However, one obvious limitation of our method is that it is only suited for a
speci�c kind of task: those de�ned by a �nal discrete goal. For tasks de�ned as
continuous problems, like balancing an object, our method is not the best choice.
What about tasks in which beginning actions are crucial to the performance of
the agent? One way to handle those tasks is to simply decompose them into
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a sequence of sparse-reward tasks. For instance, if the scene of the reaching
task was divided by a wall, we could simply give an intermediate reward after
choosing the right fork (the one leading to the side of the scene containing
the target). For those sequential tasks, our method could still be applied as
is. For more complex tasks where credit assignment is especially tricky, simply
increasing L to the entire episode could work to some extent. But we believe that
a di�erent relabeling strategy should be used for those tasks, such as sampling
the set of transitions to relabel according to some heuristic or some neural
network trained for that purpose.



60

Chapter 5

STIR2: Self and Teacher Imitation

by Reward Relabeling

5.1 Introduction

In the previous chapter we introduced Reward Relabeling (R2), which is able to
leverage a set of demonstrations added to the replay bu�er, alongside episodes
collected online in any sparse-reward environment with any o�-policy RL al-
gorithm. Our method is based on a reward bonus given to demonstrations
and successful episodes (via relabeling), encouraging expert imitation and self-
imitation.

In the past, other ideas have been proposed to make good use of the demon-
strations added to the replay bu�er, such as pretraining on demonstrations only
or minimizing additional cost functions. After presenting a brief background
on some of these ideas, in this chapter we present a new algorithm, an exten-
sion of R2, which we call Self and Teacher Imitation by Reward Relabeling
(STIR2). Similarly to other algorithms such as Rainbow (Hessel et al., 2018),
STIR2 integrates into our method multiple improvements from other works,
and show that it outperforms all baselines. Our experiments focus on several
robotic-manipulation tasks across two di�erent simulation environments.

5.2 Background - SAC and DDPG

In this section, we brie�y recall the equations behind Soft Actor-Critic (SAC)
(Haarnoja et al., 2018b) and Deep Deterministic Policy Gradient (DDPG) (Lil-
licrap et al., 2016), two of the most widespread algorithms for continuous-action
spaces in RL.

The usual RL framework is the following: an agent interacts with an envi-
ronment by performing an action and observing a feedback signal (reward r)
and the new state of the environment. The goal is to �nd the policy π (func-
tion mapping states s to actions a) that maximizes the discounted cumulative
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reward (the parameter γ ≤ 1 makes future rewards smaller).

π∗ = argmax
π

Eτ∼pπ(τ)

[
T∑
k=0

γkr(s1+k, a1+k)

]

TheQ-function Qπ(st, at) =
T∑
t′=t

Epπ
[
γt

′−tr(st′ , at′)|st, at
]
is de�ned as the reward-

to-go from the state st if we pick the action at and then follow π. This function
obeys the Bellman equation:

Qπ(s, a) = r + γEs′∼p(·|s,a),a′∼π(·|s′) [Qπ(s′, a′)]

Deep Deterministic Policy Gradient. The goal is to learn a determinis-
tic policy µθ. To train the critic, we can approximate the right-hand expectation
of the Bellman equation with samples, set it equal to y, and minimize the MSBE
loss on a parameterized Qϕ (in practice, two additional target approximators
Qϕ′ and µθ′ are used to compute the targets y):

L(Qϕ) = E
(s,a,r,s′,d)∼D

[
(Qϕ(s, a)− y)2

]
To train the actor, simple gradient descent w.r.t. θ on the following loss:

L(µθ) = − E
s∼D

[Qϕ(s, µθ(s))]

Soft Actor-Critic. In classic RL, the optimal policy is always determinis-
tic under full observability, but stochastic policies have interesting properties:
better exploration and robustness (due to wider coverage of states), and multi-
modality. This new objective promotes stochasticity by maximizing the entropy
H of the policy (α is a hyper-parameter, and we omit γ for simplicity):

π∗ = argmax
π

T∑
t=1

E(st,at)∼pπ [r(st, at) + αH(π(·|st))]

A new Q-function (slightly di�erent) is derived and follows the soft Bellman
equation:

Qπ(s, a) = r + γEs′∼p(·|s,a),a′∼π(·|s′) [Qπ(s′, a′)− α log π(a′|s′)]

Similar to DDPG, to train the critic we can approximate the right-hand ex-
pectation with samples, set it equal to y, and minimize the MSBE loss on a
parameterized Qϕ (in practice, two approximators Qϕ1 and Qϕ2 are trained,
with their respective target versions Qϕ′1

and Qϕ′2
).

To train the actor πθ, the actor loss is derived from the reparameterization
trick to compute samples ãθ(s, ϵ) = µθ(s) + σθ(s)ϵ, where ϵ is some random
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noise:

L(πθ) = − E
s∼D,ϵ∼N

[
min
j=1,2

Qϕj(s, ãθ(s, ϵ))− α log πθ(ãθ(s, ϵ)|s)
]

5.3 Related Work

Demonstrations can be used to design the reward, guide exploration, augment
the training data, initialize policies, etc. Let's look at some previous works that
also combine demonstrations and RL. For example, (Zhu et al., 2018) introduce
a hybrid reward that combines a simple (multi-stage sparse) manually designed
task reward with an imitation-based reward.

DQfD (Hester et al., 2017) uses demonstrations to populate the replay bu�er
of DQN as a preliminary step to learn an initial policy, and as additional o�-
policy data during training.
During the pre-training phase four losses are applied: the 1-step double Q-
learning loss, an n-step double Q-learning loss, a supervised large margin clas-
si�cation loss, and an L2 regularization loss on the network weights and biases.
The Q-learning loss ensures that the network satis�es the Bellman equation and
can be used as a starting point for TD learning. The supervised loss pushes the
value of the demonstrator's actions above the other action values, thus helping
to ground all state-actions pairs (including those not seen in the demonstra-
tions) to realistic values.
During TD learning, the agent never over-writes the demonstration data, and
the supervised loss is not applied to self-generated data. Proportional priori-
tized sampling is used to control the relative sampling of demonstration versus
agent data (demonstration data is given a bonus to be sampled more often).
DDPGfD (Vecerik et al., 2017) adds similar improvements to DDPG: transi-
tions from demonstrations are added to the replay bu�er, prioritized replay is
used for sampling transitions (demonstration data is slightly boosted), a mix
of 1-step and n-step return losses are used, and L2 regularization losses on the
weights of the critic and the actor are used.

In (Nair et al., 2018a) the authors address the problem of stacking 6 blocks
from a dataset of 100 demonstrations collected via teleoperation. They use
DDPG + HER in a goal-conditioned setting with sparse rewards, conditioning
both the actor and the critic on the desired �nal positions of the blocks.
Their �rst idea is to consider an additional replay bu�er containing demonstra-
tion data. Their second idea is to introduce an auxiliary behaviour cloning loss
applied to samples from this bu�er, which prevents the policy from deviating
too much from the demonstrations, and accounts for sub-optimimality of the
demonstrations by �ltering out updates where the critic under-performs. The
third idea, if the simulator allows it, is to reset some episodes to a state sampled
uniformly from a demonstration to overcome the challenge of sparse rewards.
As in HER, the �nal state in that demonstration is the goal for the episode.

Normalized Actor-Critic (NAC) (Gao et al., 2018) is based on soft Q-learning
and uses the demonstrations as the only training data during the �rst iterations
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of the algorithm. The maximum entropy framework provides a natural normal-
ization of the Q-function so that it is initialized everywhere: high values for the
expert's action and low values for alternative actions.

Demonstration Actor-Critic (DAC) (Liu et al., 2021) introduce a novel ob-
jective with policy-dependent shaping reward, which can provide both gener-
alized supervision for all states as well as direct supervision signal over these
demonstrated states. The augmented reward equals zero if the state is unseen
in the demonstrations, otherwise is a positive number, the larger the closer the
policy to the expert policy.

J(π) = E(s,a)∼ρπ
[
r(s, a) + 1s∈suppρπE (s) (M −DKL(π(·|s), πE(·|s))

]
(5.1)

The full derivation of the algorithm includes a discriminator Dω(s, a) which has
to tell if a comes from π or the expert.

Demo-Augmented Policy Gradient (DAPG) (Rajeswaran et al., 2017) To
combat distribution drift, a small amount of noise (uniform random [−0.1, 0.1]
radians) is added to the actuators per timestep in the demonstrations. The
demonstrations are used twice: to pretrain with behaviour cloning, and to aug-
ment the policy gradient g =

∑
(s,a)∈ρπ [∇θ log πθ(a|s)Aπ(s, a)]+

∑
(s,a)∈ρD [∇θ log πθ(a|s)w(s, a)]

where w(s, a) is a weighting function (see paper for details).

5.3.1 Baselines

For our baselines, we focus on three algorithms that can be applied to any
continuous-action o�-policy algorithm with minor modi�cations.

� DDPG-fD and SAC-fD (Vecerík et al., 2017) (originally DDPGfD based
on DDPG) introduce three main ideas as described above: transitions
from demonstrations are added to the replay bu�er, demonstration data
is sampled more often from the bu�er, and a mix of 1-step and n-step
return losses is used.

� DDPG-BC and SAC-BC (Nair et al., 2018a) (has no name and originally
based on DDPG) also introduce three main ideas as described above:
transitions from demonstrations are added to a separate additional replay
bu�er, an auxiliary behaviour cloning loss is applied to samples from this
bu�er, and some episodes are reset to a state sampled uniformly from a
demonstration. The authors additionally present other ideas regarding
the multi-goal setting which we will not cover in this work.

� DDPG-SAIL and SAC-SAIL (Ferret, Pietquin, and Geist, 2020) (origi-
nally SAIL based on DQN). This algorithm was presented in Section 4.2
in Chapter 4. It is a self-imitation RL algorithm, but we modify it by
introducing demonstrations in the replay bu�er like the other baselines.

� DDPG-Demo and SAC-Demo. Simple baseline introduced in Chapter 4.
Simply the base DDPG and SAC algorithms, but just like with SAIL, we
introduce demonstrations in the replay bu�er.
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5.4 STIR2: Self and Teacher Imitation by Re-

ward Relabeling

In this section we introduce SAC-STIR2 and DDPG-STIR2 (acronym for Self
and Teacher Imitation by Reward Relabeling), two new algorithms that in-
tegrate four main improvements into the base SAC and DDPG algorithms.
All these improvements could also be added to any other continuous-action o�-
policy RL algorithm. Let's de�ne L(πθ) and L(Qϕ) as the usual SAC and DDPG
losses for policy and Q-function respectively. Other than the reward-relabeling
hyper-parameter L discussed in Chapter 4, the full algorithm introduces four
additional hyper-parameters: n, λn, λBC, and λSAIL. We now explain each
improvement in more details.

Reward Relabeling.

The reward relabeling method from our algorithm SAC-R2 presented in
Chapter 4.

N-step loss. Following SAC-fD (Vecerík et al., 2017), we use the n-step
loss Ln to train the critic. This loss is a modi�ed version of the standard Q-
function loss L(Qϕ) = L1(Qϕ), with n-step returns replacing the immediate
reward. Using a larger look-ahead n can be particularly useful for tasks with
sparse rewards, since it increases the chances of encountering a reward. For
instance, for the simpler DDPG case we have:

Ln(Qϕ) = ED

(n−1∑
k=0

γkrt+k + γnQ̂π(st+n, at+n)−Qϕ(st, at)

)2


The total critic loss becomes:

LCritic(Qϕ) = L1(Qϕ) + λnLn(Qϕ) (5.2)

Behaviour-Cloning loss.

Following SAC-BC (Nair et al., 2018a), we use a behaviour-cloning loss to
train the actor. This loss prevents the policy from deviating too much from
the demonstrations, and accounts for sub-optimimality of the demonstrations
by �ltering out updates where the critic under-performs.

LBC(πθ) =
∑

i∈Demo

||πθ(si)− ai||221Qϕ(si,ai)>Qϕ(si,πθ(si))

The total actor loss becomes:

LActor(πθ) = L(πθ) + λBCLBC(πθ) (5.3)
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Modi�ed reward derived from Advantage Learning.

Following SAIL (Ferret, Pietquin, and Geist, 2020), we use a modi�ed reward
that promotes self-imitation. The idea is to increase the current action-value
for actions whose returns are unexpectedly good. The new reward can also be
smaller than the original reward, compensating also for negative experiences.
Let Gt =

∑T
t′=t γ

t′−trt′ be the return-to-go at each time-step. The modi�ed
reward is:

r̃(st, at) = r(st, at) + λSAIL

[
max (Gt, Qϕ′(st, at))− V̂ (st)

]
(5.4)

For DDPG, since the policy is deterministic, we can directly use V̂ (st) =
Qϕ′(st, πθ′(st)) as the value-function estimator. For SAC, we use V̂ (st) = Vψ′(st)
where Vψ is a separate network. Since the �rst version of the SAC algorithm
had a value-function network, we choose the same loss function to train Vψ:

L(Vψ) = Es∼D

[(
Vψ(s)− Ea∼πθ(·|s) [Qϕ(s, a)− α log πθ(a|s)]

)2]
The new reward r̃ replaces the standard reward in the Bellman equation for

the critic update. For instance, for DDPG the critic loss becomes:

L(Qϕ) = E
(st,at,rt,st+1)∼D

[(
r̃t + γQ̂π(st+1, at+1)−Qϕ(st, at)

)2]

Algorithm 2: STIR2

Require: L amount of steps to relabel.
Set b according to equation 4.2.
Initialize bu�er with demonstrations, set reward r = b for the last L
non-�nal transitions.
Initialize empty episode.
while not converged do

sample a batch B from the bu�er
if b > 0 then

b← decay_rule(b) according to equation 4.3
else

set r = 0 for all non-�nal transitions in B
end
do o�-policy RL update (one step of gradient descent following
equations 5.2, 5.3 and 5.4)
if len(episode) == 0 then

collect one episode
if episode is successful then

set r = b for the last L non-�nal transitions
pop a transition (s, a, s′, r) from the episode and add it to the bu�er

end
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5.5 Experiments

5.5.1 Setup

Figure 5.1: Snapshots from each RLBench task: reach target,

�ip switch, push button, slide block.

We test our method on two di�erent simulation environments: RLBench
(James et al., 2020) and Meta-World (Yu et al., 2019). For both environments,
an episode ends once the robot has completed the task, or after expiration (from
50 to 100 time-steps depending on the task). The reward is fully sparse, and is
equal to +100 if the robot solves the task and 0 otherwise.

RLBench. We evaluate our method on four simulated tasks for a 6-degrees-
of-freedom robot manipulator: reaching a ball, pushing a button, �ipping a
switch, and sliding a block to a target square. The target object (ball, button,
switch, block and square) appears randomly at the beginning of each episode
within the reach of the robot: the ball appears anywhere in the 3D space, the
button, block and square are bound to the tabletop, and the switch is on a wall
which appears randomly in the scene facing the robot. The initial position of the
target object changes after each episode, but it does not move during an episode.
The initial state of the robot is always the same, close to an upright position.
The state has 19 + x dimensions, 19 from the robot proprioceptive state (joint
angles, joint speeds, gripper pose) and x from the task-related information (3D
coordinates of each target object). For the more contact-based sliding task, the
robot receives 3D end-e�ector position commands (�xed orientation). For the
other tasks, the robot receives 6-dimensional joint speed commands.
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Figure 5.2: Snapshots from each MetaWorld task.

Meta-World. We evaluate our method on four simulated tasks for a 7-
degrees-of-freedom robot manipulator: reaching a ball, pressing a button, clos-
ing a drawer, and sliding a block to a target location. The target object (ball,
button, drawer, block) appears randomly at the beginning of each episode within
the reach of the robot: the ball appears anywhere in the 3D space, while the
drawer, (horizontal) button, and block are bound to the tabletop. We refer to
the Meta-World paper for the action and state spaces which we do not change.

For all tasks, success is de�ned by reaching the end-goal state. In particular,
whenever a condition or set of conditions is met (e.g. a proximity condition
between the end-e�ector and the target for the reaching task).

Demonstrations. For RLBench, the expert demonstrations are provided
by the environment and rely on OMPL (Sucan, Moll, and Kavraki, 2012) for
motion planning. For Meta-World, we �rst train an RL agent for each task
from dense rewards, and retain a batch of its successful episodes at test-time as
demonstrations.

Experiments. The basic SAC algorithm without demonstrations is able
to solve these tasks on some runs. Our goal is to solve the tasks consistently
and reduce the amount of training steps required to do so. We want to an-
swer three questions: How does our method perform? How robust is it to the
hyper-parameters? How does it perform under rougher conditions (weaker base
algorithm, few demonstrations available, no demonstrations available)?

In order to answer to these questions, we compare our methods SAC-R2

and SAC-STIR2 to a simple baseline SAC-Demo, which we de�ne as SAC with
demonstrations in the bu�er, as well as SAC-fD (Vecerík et al., 2017), SAC-BC
(Nair et al., 2018a) and SAC-SAIL (Ferret, Pietquin, and Geist, 2020). We
apply the following modi�cations to all 6 algorithms:
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� For all methods except SAC-BC: Single bu�er initially �lled with 200
demonstrations, and kept thereafter at a ratio of 10% demonstration data.
We decide not to set a limit on the number of unique demonstrations
available, meaning that around 500-1000 more demonstrations are added
to the bu�er (depending on the task and number of iterations). For SAC-
BC: Two separate bu�ers, one exclusively �lled with demonstrations (with
a comparable amount).

� We additionally put 1000 random interactions alongside the demonstra-
tions in the bu�er, and pre-train during 3000 iterations before collecting
any data. The idea is to have some negative examples during the pre-
training phase so that the agent can disriminate between good and bad
transitions.

� For all methods except SAC-fD: The data is sampled from the bu�er
according to prioritized experience replay (PER) (Schaul et al., 2016).
For SAC-fD: A modi�ed version of PER which boosts the sampling of
demonstration data is used.

� The replay ratio on the collected data is set to 32. Since the batch size is
set to 64, the agent takes two environment steps per training step.

� L2 regularization losses on the weights of the critic and the actor.

Nothe that some of these parameters (amount of pre-training steps, amount
of initial demonstrations, ratio of demonstrations in the bu�er) were �ne-tuned
on the reaching task with SAC-Demo, while others (replay ratio, batch size) were
not thoroughly tested and were chosen with the limitations of the hardware in
mind. On top of these changes, SAC-BC uses an auxiliary behaviour-cloning
loss and resets some episodes to demonstration states, SAC-fD uses an auxiliary
n-step loss and boosts demonstrations in PER, SAC-R2 uses the reward bonus
presented in Chapter 4, and SAC-SAIL uses a modi�ed reward (see (5.4)). For
SAC-R2, we use the scheduled decay presented in equation 4.3. If the success
rate doesn't improve over a period of 5000 iterations, the safety decay is applied
to completely erase the bonus. We always choose the largest bonus allowed by
the condition 4.2. Unless stated otherwise, we set L = 10, λSAIL = 0.9, λBC = 2,
λn = 1 and n = 5.

All the results are smoothed with a rolling window of 100 episodes, and the
standard error is computed on three random seeds.

5.5.2 Results

The results are reported in Table 5.1 and show that SAC-R2 has comparable
results to the other baselines. Overall, the best methods are SAC-fD in the RL-
Bench tasks, and SAC-BC in the Meta-World tasks. However, our full algorithm
SAC-STIR2 does outperform all baselines in all tasks.
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SAC-Demo SAC-BC SAC-SAIL SAC-fD SAC-R2 SAC-STIR2
RlBench
Reach 1.0 / 95k 1.0 / 95k 1.0 / 90k 1.0 / 70k 1.0 / 70k 1.0 / 50k
Push .60 / 170k .70 / 170k .95 / 140k .95 / 140k .95 / 140k .95 / 110k
Flip .40 / 160k .80 / 160k .90 / 160k .95 / 120k .90 / 120k .95 / 120k
Slide .78 / 300k .78 / 300k .80 / 300k .80 / 300k .78 / 300k .82 / 300k
MetaWorld
Sweep 0.0 / 50k .40 / 50k .30 / 50k .30 / 50k .30 / 50k .42 / 50k
Close 1.0 / 15k 1.0 / 10k 1.0 / 10k 1.0 / 10k 1.0 / 15k 1.0 / 5k
Press .80 / 25k 1.0 / 5k .85 / 25k .90 / 15k .85 / 15k 1.0 / 5k
Reach .90 / 25k 1.0 / 20k .90 / 25k 1.0 / 15k .90 / 25k 1.0 / 10k

Table 5.1: Summary of the training results (Figures 5.3, 5.4,

5.5). The values correspond to the rounded �nal training suc-

cess rate and the amount of iterations needed to converge. The

column-wise best results are marked in bold.

(a)

(b)

Figure 5.3: Learning curves for the RLBench reaching task.

RLBench Results

The results (Figures 5.3a, 5.4a, 5.4b, 5.4c) show that SAC-STIR2 is signi�cantly
better than the other methods on the reach target and push button tasks: It
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(a)

(b)

(c)

Figure 5.4: Learning curves for three RLBench tasks.

is ∼ 1.5 times faster to reach a relative success rate of 90%. It also has the
best performance on the �ip switch task, but is tied with both SAC-R2 and
SAC-fD. On the more di�cult slide block task, SAC-STIR2 is able to reach a
higher success rate than the other methods (∼ 84%, compared to ∼ 82% for
second-best SAC-fD and ∼ 78% for SAC-Demo).

From SAC to DDPG: Figure 5.3b shows that DDPG-R2, DDPG-BC, DDPG-
fD and DDPG-SAIL have similar performances in the reach target task, while
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DDPG-Demo struggles and DDPG-STIR2 outpaces everybody by a factor of 4
to reach a relative success rate of 90%.

Note that the hyper-parameter L is always chosen equal to 10, except for
the RLBench sliding task (5 instead). The action space used for that task is
based on end-e�ector position commands, since none of the methods made any
progress with the lower-level joint-speed commands. Therefore, the episodes
tend to be much shorter, as the task can be completed in just a few steps.
L = 5 is more consistent with the other experiments in terms of average ratio of
relabeled transitions per episode, even if the results were only marginally better
than L = 10.

Meta-World Results

The results (Figure 5.5) show that SAC-STIR2 is also the best method across the
four Meta-World tasks. It is faster to converge on the easier tasks, and attains
a higher �nal performance (almost one point higher) on the more di�cult sweep
into goal task. However, the overall results are only marginally better than those
of SAC-BC, which is the strongest among all baselines. Surprisingly, SAC-BC
was one of the weakest baselines on the RLBench tasks. We believe this is tied
to the origin of the demonstrations. Indeed, SAC-BC's behaviour-cloning loss
pushes the agent to closely imitate the expert's actions, which is easier if the
expert is also an RL agent, rather than a motion-planning expert who might
exhibit di�erent tendencies.
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Figure 5.5: Learning curves for four Meta-World tasks.
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5.5.3 Ablation study

Figure 5.6: Ablation curves on SAC-STIR2.

Ablation study on SAC-STIR2. Figure 5.6 shows that the contributions
of all four methods (SAC-R2, SAC-BC, SAC-fD and SAC-SAIL) are important
to SAC-STIR2, since removing either of them causes the performance to drop.
For this task, SAC-fD is clearly the most important element, followed by SAC-
R2. SAC-BC performs particularly bad on this task (Figure 5.3a), so it is
unsurprising that it has the lesser impact.

Low-data regime. The previous results were obtained with a large amount
of demonstrations, which is unrealistic for real-world applications. What hap-
pens if we limit the amount of available demonstrations to just 100? Figure
5.7a shows that the results are very similar (but slightly worse for all methods)
to the high-data regime (Figure 5.3a). What about 10 demonstrations? The
results shown in Figure 5.7b are also similar, but our method SAC-R2 actually
has the highest drop in performance, while SAC-fD appears to be responsi-
ble for most of SAC-STIR2's success under these circonstances. One possible
explanation is that SAC-R2 is the only method that explicitely modi�es the
transitions that come from the demonstrations added to the bu�er (by giving
them a bonus), so it might be more sensible to the degree in which they cover
the entire state-action space.

Learning without demonstrations. Finally, can SAC-R2 also improve
the performance when no demonstrations are available, by just relabeling suc-
cessful episodes? Figure 5.8 shows similar results to those with demonstrations
in the bu�er: SAC-STIR2 performs the best, while the weakest SAC baseline is
only able to solve the task on some runs. Note that SAC-BC is not included in
the �gure because its behaviour-cloning loss relies on demonstration data.
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(a)

(b)

Figure 5.7: Learning curves exploring low-data regimes on the

RLBench reaching task.

Figure 5.8: Learning curves without demonstrations on the

RLBench reaching task.
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5.6 Additional Results

As described in Section 5.3, the baselines we introduced actually contain other
elements that we decided not to integrate into our �nal algorithm SAC-STIR2.
Why is so? In this section we carry a study to isolate the impact of each element
on the basic SAC-Demo baseline.

Figure 5.9: Curves of the isolated SAC-STIR2 components on

SAC-Demo.

As introduced in Section 5.4, SAC-STIR2 has four main components: addi-
tional n-step critic loss 5.2, additional behaviour-cloning actor loss 5.3, modi�ed
self-imitation reward 5.4, and our reward-relabeling method presented in Chap-
ter 4. Figure 5.9 shows the impact of each element on isolation on top of the
baseline SAC-Demo. As expected, all four elements provide a boost in perfor-
mance.

One vs two bu�ers.

The main di�erence between these two approaches is the ratio of demon-
strations in the sampled batches. With two bu�ers, this ratio can be �xed,
for instance SQIL (Reddy, Dragan, and Levine, 2020) uses 50% and SAC-BC
roughly 10%. With one bu�er, the ratio varies from batch to batch and is on
average equal to the ratio of demonstration data in the bu�er if the sampling
is uniform. Since we sample according to PER, the ratio is actually slightly
higher, but the results (Figure 5.10a) show that the two con�gurations yield
almost identical results. One practical advantage of using two bu�ers over one
is that we can easily have two di�erent replay ratios for the demonstration data
and online data, but in our experiments we introduced an equivalent amount
of demonstrations in both settings to keep things fair.

Prioritized replay.

Following SAC-fD, we modify the PER strategy with two additional terms:
a term representing the actor loss, and a constant bonus applied to all tran-
sitions coming from demonstrations. We recall that in PER, the probability
of sampling a particular transition is proportional to its priority pi, which is
commonly computed from the transition's temporal di�erence (TD) error δi,
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(a)

(b)

Figure 5.10: Additional curves (bu�er con�guration + PER)

on SAC-Demo.

for instance pi = δ2i + ϵ where ϵ is a bonus given to all transitions. SAC-fD adds
a square term representing the actor loss and a second bonus ϵD given only to
the demonstrations. We use the same hyper-parameters as in SAC-fD.

From our limited experiments, this new strategy didn't have a great impact
in terms of ratio of demonstration data in the sampled batches. With both
PER and the modi�ed PER the ratio is close to 11% (we recall that 10% of
the transitions in the bu�er come from demonstrations). However, the results
(Figure 5.10b) do show a major initial boost during training.

Reset to demonstrations.

Following SAC-BC, we reset some episodes (10%) to a demonstration: the
position of the target ball is the same as in the demonstration, and the initial
state of the robot is randomly sampled from the demonstration's states. This
should act as a form of curriculum learning and lead to more successful episodes
early on. The results (Figure 5.11a) do show an initial boost in the learning
process, but the improvement isn't too signi�cant.

Pre-training on demonstrations.

Pre-training on demonstrations is one of the most common approaches to
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(a)

(b)

Figure 5.11: Additional curves (pretraining + resetting to de-

mos) on SAC-Demo.

leverage demonstrations in the literature, and does seem like a good idea ac-
cording to the results (Figure 5.11b). However, too much pre-training (10000
iterations on 600 demonstrations rather than 3000 iterations on 200 demonstra-
tions) also decreases performance. One possible explanation is that the agents
winds up forgetting what it initially learnt from the demonstrations when it
�rst encounters subpar trajectories from its collected experience. This drop in
performance from excessive pre-training appears even clearlier in Figure 5.12
with STIR2 as the base algorithm.

Conclusion

The results of the study show that the n-step loss from SAC-fD, our approach
SAC-R2, the behaviour-cloning loss from SAC-BC, and the modi�ed reward
from SAC-SAIL are the four improvements with the greatest increase in per-
formance over the baseline SAC-Demo. These four components are the 4 main
ingredients of our STIR2 algorithm presented in Section 5.4.

To further validate these results, we evaluate STIR2 in Figure 5.12, and show
that none of the rejected components particularly move the needle anymore.
However, these results come from a single task, and we don't know how they
would translate to other tasks, in particular more complex tasks where we try to
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increase the success rate rather than the sample e�ciency. Although we cannot
draw any categorical conclusions from these studies, they do allow us to justify
our choices for the components integrated into STIR2, where the goal was to
balance simplicity and performance.

5.7 Discussion

We propose Self and Teacher Imitation by Reward Relabeling (STIR2), a new
algorithm which combines our Reward Relabeling (R2) method from Chapter 4
with the n-step loss from SAC-fD, the behaviour-cloning loss from SAC-BC, and
the modi�ed reward from SAIL. We show that these methods stack together,
as the best results were obtained with SAC-STIR2 on all tasks. Similar results
were obtained with DDPG as the base algorithm, and in theory it could be
implemented on top of any continuous-action o�-policy RL algorithm.

The questions raised at the end of Chapter 4 also apply to the full algorithm
STIR2, so addressing those issues remains a possible path for future work. Other
baselines based on more recent works could also be compared against and po-
tentially integrated into the algorithm, in particular a pure imitation-learning
algorithm such as Implicit BC (Florence et al., 2022). Finally, it would be in-
teresting to test our method with a Q-learning-type base algorithm on a task
with discrete actions.
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Figure 5.12: Adding extra components to SAC-STIR2 doesn't

result in further improvements.
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Chapter 6

Pre-trained Vision Encoder for

Data-E�cient Reinforcement

Learning

6.1 Introduction

Figure 6.1: Real-world setting with a Universal Robots' UR3

model. The inputs to the agent are the views from two cameras

as shown in the left.

In the previous chapters, all the experiments were done entirely from a
scalar state, where the main limitation is that the agent needs to be granted
access to information that is not easily available in the real world, such as
the exact position of every object in the scene. In this chapter we move onto
the more realistic setting of vision-based reinforcement learning. As we will
see, demonstration data can also be used to increase sample e�ciency in this
domain.

To tackle this problem, we design a two-stage (optionally three) training
pipeline (see Figure 6.2): �rst learn a visual representation of the scene by pre-
training an encoder from multiple supervised computer-vision objectives, then
train a reinforcement-learning agent which can focus solely on solving the task.
Despite all the data being collected in simulation, the experiments include one
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sim-to-real example to show that these techniques can translate to real-world
controlled environments.

Figure 6.2: Proposed pipeline.

The results show that not only is our method more sample-e�cient than any
of the end-to-end baselines, but it also achieves a higher �nal success rate in all
tasks, including one task where the baselines are unable to make any progress.

6.2 Background - Challenges in Robotics

Solving robotic-manipulation tasks with RL is no easy endeavor. However,
multiple tasks have been attempted and solved in the past:

� Simple tasks: non-prehensile (reaching, pushing, button-pressing, pour-
ing) and prehensile (grasping, picking and placing, door opening).

� Sequential tasks: block stacking (Nair et al., 2018b), dish placing (Ser-
manet et al., 2018), table clean-up (Xu et al., 2018)...

� Contact-rich tasks: peg insertion (Lee et al., 2019), sweeping with a tool
(Xie et al., 2019; Schmeckpeper et al., 2019)...

� Complex-dynamics tasks: pouring water (Schenck and Fox, 2017), playing
table tennis (Muelling et al., 2012), throwing objects (Ghadirzadeh et al.,
2017; TossingBot: Zeng et al., 2019)...

In terms of RL algorithm choice, there is a trade-o� between sample e�-
ciency and model complexity. For robotic tasks, the optimal policy often has
fewer parameters than the optimal value function or optimal dynamics model.
However, methods like policy gradient that look directly for such a policy are
the least sample-e�cient ones, while model-based methods are the most sample
e�cient.

In terms of design choices, robotic tasks are often best modelled as POMDPs
with �nite horizon episodic tasks. There are lots of other choices to make: dis-
cretize the state/action spaces or not, choice of time-step, initial state distri-
bution, state representation, action space, action repeat, episode termination,
torque limits...
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Let's look in more detail at the main challenges that make robotics such a
tricky �eld for RL. The main sources for this section are the surveys (Andrew
Bagnell, 2014) and (Kroemer, Niekum, and Konidaris, 2019).

Challenges

• Curse of dimensionality. The state and action spaces are continuous for
robot manipulation tasks. We have seen several algorithms that can han-
dle continuous spaces, like policy gradient or actor-critics. We could also
opt for a (smart) discretization of the space, or aggregations (form clusters
of states/actions and consider their transitions). We refer to (Sigaud and
Stulp, 2019) for a comprehensive overview of the main families of methods
handling continuous action spaces.

One approach especially suited for robotics is to choose a particular struc-
ture for our policy that best adapts to our problem: motor primitives (e.g.
Muelling et al., 2012), locally linear controllers (e.g. Levine et al., 2016),
hierarchical structure (learned high-level actions, hard-coded low-level ac-
tions)...

• Real-world problems. Many potential issues related to the robot's hard-
ware: the dynamics of a robot can change over time due to external fac-
tors, there is measurement noise from the sensors, actions may be delayed
and its e�ects can appear several time steps later (latency, which violates
the MDP assumption of synchronous execution), the upper bound on the
rate of temporal discretization is determined by the robot's sampling fre-
quency... Also, the main problem is that real-world samples are expensive
in terms of time and labor.

However, recent work towards large-scale robotics has proven to be viable.
For instance, in QT-Opt (Kalashnikov et al., 2018) they exploit a dataset
of about 800 robot hours collected over the course of four months.

• Exploration. Exploration is particularly challenging for robotic manipu-
lation. Random actions can be a suitable exploration strategy for other
tasks such as navigation, but random torques on the joints will spend most
of the time doing useless exploration and not interacting with the envi-
ronment. Also, simply adding random noise to the actions may produce
jerky motions that could damage the robot.

For instance, (Ibarz et al., 2021) propose di�erent options to smooth out
the actions and avoid the jerkiness: low-pass �lters, temporal-coherent
noise, reward shaping...

• Safety. Other than safe exploration, many other safety measures need to
be implemented. Typically, many model-based or heuristic-based safety
checks are used, such as self-collision detection, power/torque limit, col-
lision detection from force-torque sensors... More sophisticated methods
can also be used.
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For instance, (Ibarz et al., 2021) use a geometric model of the robot and
the world in order to reject actions that violate kinematic or geometric
constraints.

To address these problems, we dispose of two main tools:

• Prior knowledge from other tasks (meta-learning, multi-task learning...),
from demonstrations (imitation learning), from task structure (hierarchi-
cal RL)... These can alleviate the challenge of goal speci�cation (specify-
ing a suitable reward function), which is particularly di�cult in real-world
settings.

• Simulation. Can we transfer a policy/model learned in simulation to the
real robot? Oftentimes, a model of the dynamics will transfer more easily,
especially if we reduce the simulation biases by introducing some stochas-
ticity to the model, or by explicitly training for robustness (referred to
as under-modeling). Generally, the actuator dynamics and the lack of
latency modeling are the main causes of the model error.

6.3 Background - Simulation to Reality

Transfer learning is a well-studied �eld in computer vision, and it has been
used in robotics to address the sim-to-real problem: from simulation to the real
world. The most common techniques usually involve GANs or other generative
networks, where the goal is to update the distribution of simulated data to
match that of the real world. These techniques are known as domain adaptation.

Rather than working towards a speci�c target domain, which usually requires
collecting data from that domain (in this case the real world), more recent
methods aim for a more general transfer. The idea is to train a model that is
able to generalize across an entire distribution of simulated environments, which
hopefully covers the desired test environment (again, the real world). This
techniques are known as domain randomization. Let's look at a few examples.

For instance, (Pashevich et al., 2019) propose to augment synthetic depth
images through a set of random transformations, while (Tobin et al., 2018)
focuses on generating random synthetic objects for grasp planning. In (James,
Davison, and Johns, 2017), domain randomisation is used to augment robot
trajectories to train a CNN mapping observed images to velocities, and achieve
to do so even under dynamic lighting conditions.

In (Horváth et al., 2022), domain randomization is used for object detec-
tion by generating synthetic objects. For the trickier detection classes where
randomized synthetic data is not enough, they show that as little as one single
real-world image can be added to considerably improve the results.

In (James et al., 2019) they introduce Randomized-to-Canonical Adaptation
Networks (RCAN). Rather than feeding an agent a wide array of diverse data so
that it can generalize to any situation, they �rst train an image-conditional GAN
to transform those randomized images into "plain" (canonical) images. When
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the agent is deployed, the real-world images are also transformed into their
canonical versions, which means the agent sees no di�erence from its training
episodes.

Like the previous methods, in this work we are interested in the visual
aspect of sim-to-real, dealing with how to process real images at test time after
training with simulated images. However, domain randomization is not limited
to images, it can be used to randomize the dynamics of the environment as well
as other factors. Let's look at some examples.

In (Kumar et al., 2021), they introduce Rapid Motor Adaptation (RMA),
where a legged robot learns how to walk on di�cult terrains. The idea is to
train a supervised adaptation module, whose goal is to predict the extrinsics
of the environment (a latent representation of the environmental parameters).
This information is fed into the policy as an additional input, and the policy is
trained accros a wide variety of simulated environment, which should cover the
conditions encountered in the real world.

In (Pinto et al., 2017), they introduce Robust Adversarial RL (RARL). Both
modeling errors and di�erences in training and test scenarios can be viewed as
extra disturbances in the system. The idea is to train an agent in the presence of
these disturbances. Rather than sampling all possible disturbances, they jointly
train a second agent (the adversary, rewarded only for the failure of the main
agent) that applies disturbance forces that incorporate domain knowledge (e.g.
suddenly change a physical parameter like frictional coe�cient or mass).

Finally, the distribution of data where we want to bridge the sim-to-real
gap isn't necessarily the agent's state space. Recent works use domain adap-
tation/randomization for other more original use-cases. Let's look at one such
example.

In (Liu et al., 2018), they introduce Context Translation, which achieves a
wide range of real-world robotic tasks from videos of a human demonstrator
(sweeping, pushing objects...). The goal is to learn a model that can con-
vert a demonstration from one context (a third person viewpoint and a human
demonstrator) to another context (a �rst person viewpoint and a robot), and
then learn a policy that optimally tracks the translated demonstration in the
target context. To do so, a translation model looks at a single observation from
a target context j, and predicts what future observations in that context will
look like by translating a demonstration Di from a source context i.

6.4 Related work

Representation Learning is particularly challenging in RL, because it is intrin-
sically tied with the agent's exploration. Exploring the environment provides
the dataset to learn the representations, but e�ective non-random exploration
is di�cult without good representations. We refer to the survey (Lesort et al.,
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2018) for a thorough review of the algorithms and objectives that have been
used in recent years. Let's look at some examples.

SAC+AE (Yarats et al., 2021b) augments SAC with a regularized determin-
istic autoencoder, which is updated with gradients from the reconstruction and
soft Q-learning objectives.

Figure 6.3: CURL: Contrastive Unsupervised Representa-

tions for Reinforcement Learning (source: Srinivas, Laskin, and

Abbeel, 2020)

Contrastive Unsupervised Representations for RL (CURL) (Srinivas, Laskin,
and Abbeel, 2020) (see Figure 6.3) extracts high-level features from raw pix-
els using contrastive learning, and simultaneously performs o�-policy control
on top of the extracted features. Trajectories sampled from the replay bu�er
are data-augmented twice to form key-query pairs, and then encoded with the
key and query encoders. While the full key-query pairs are used to compute
the contrastive-learning objective, only the queries are passed on to the RL
algorithm.

Proto-RL (Yarats et al., 2021a) trains two agents simultaneously. An explo-
ration agent is trained from an intrinsic reward to learn task-agnostic represen-
tations: a set of vectors that will act as a basis for representing observations.
The projected observations are fed to the main RL agent, which receives the
task reward.

Policy Adaptation during Deployment (PAD) (Hansen et al., 2020) operates
in two steps. During the �rst training, the RL and self-supervised objectives
are jointly optimized. During the second training (referred to as adaptation),
only the self-supervised objective is optimized in the test environment. They
test two di�erent self-supervised objectives: learning an inverse-dynamics model
(usually better for RL tasks that require more motor control) and learning to
predict the rotation angle applied as augmentation to the original image (usually
better for navigation tasks).

Active Pre-Training (APT) (Liu and Abbeel, 2021) designs an intrinsic
reward that maximizes entropy in an abstract representation space, and can
be used to pre-train a policy that can be later �ne-tuned for downstream
tasks. This reward decreases to 0 as most of the state space is visited, and
it is derived from a nonparametric particle-based entropy estimator Hk(z) ∝∑n

i=1 log ||zi − z
(k)
i ||, where z(k) is the k-th closest neighbor, and the latent
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representation z is obtained from data augmentation and contrastive learning
within each batch of transitions sampled from the replay bu�er.

6.4.1 Baselines

For our baselines, we focus on two of the aforementioned algorithms:

� SAC+AE (Yarats et al., 2021b).

� SAC-CURL (Srinivas, Laskin, and Abbeel, 2020).

� SAC+AE-CURL: A combination of the two methods above.

� SAC-Demo. Simple baseline introduced in Chapter 4. The base SAC
algorithm with demonstrations in the replay bu�er. Note that all baselines
use SAC-Demo rather than SAC as the base algorithm, but we omit the
Demo in the nomenclature for ease of reference.

6.5 Training the Encoder

As shown in Figure 6.2, our method consists in two main steps (steps 2 and 3 in
the �gure). First, we train an encoder on a collection of supervised computer-
vision objectives. Then, we freeze the weights of the encoder and use it as the
backbone of all RL networks to learn a task. Let s = (simage, sproprioception) the
environment state. The goal of the �rst step presented in this section is to learn
a more compact representation s̃image, and the goal of the second step is to train
an RL agent from the new states s̃ = (s̃image, sproprioception).

Figure 6.4: Our four computer-vision objectives to learn an

encoded representation of the scene.

Before training the encoder, one preliminary step is required (step 1 in Figure
6.2): obtaining a dataset to train on. We choose to gather the data by collecting



Chapter 6. Pre-trained Vision Encoder for Data-E�cient Reinforcement

Learning
87

episodes with a pre-trained RL agent, but any source of data that su�ciently
covers the entire state space would work, such as expert demonstrations. This
agent was trained in a much simpler setting that the one we are interested in,
as it was trained with dense rewards and without image inputs (instead, it has
access to the full state of the environment, namely the coordinates of the objects
in the scene).

Similar to works such as Mid-Level Visual Representations (Chen et al.,
2020), we consider multiple computer-vision objectives in order to learn good en-
coded features. However, rather than having one encoder per objective, we train
a single encoder on all the objectives at once. These are the objectives we train
on simultaneously: Image Segmentation, Depth Prediction, Auto-encoding, and
State Regression. A simple ResNet decoder is used for the �rst three objectives,
and a simple MLP for regressing the state of the environment.

In order to be able to solve manipulation tasks, it is most important to
accurately process the scene and the objects within it. We apply the following
modi�cations to the standard computer-vision objectives in order to prioritize
the objects over the other visual information:

� Image Segmentation: We simply give a bigger weight to the object class in
the cross-entropy loss (10 for the object class, 1 for the rest). We consider 5
di�erent tasks for segmentation: Floor and Walls, Table, Robot, Gripper,
Objects. Let c = Imsegm

i (n,m) the target class of pixel (n,m) in image i,
and wc the corresponding weight:

Lsegmentation =
N∑
i

∑
n,m

−wc log σ
(
ˆIm

segm

i (n,m, c)
)

(6.1)

� Depth Prediction: Similarly, we use the segmented ground-truth images
Imsegm to multiply by a factor of 10 the loss value of all pixels belonging
to the object class. Without this modi�cation, the network might choose
to ignore the objects since they represent a tiny portion of the full image.
Let µ = 0.1, I the identity matrix, and Iobji a binary mask matrix equal
to 1 for every pixel in the object class:

Ldepth =
1

N

N∑
i

∥∥∥(Imdepth
i − ˆIm

depth

i

)
⊙
(
(1− µ)Iobji + µI

)∥∥∥
1

(6.2)

� Auto-encoding. Learning to reconstruct the full image would be redun-
dant with the information extracted by the other two decoders. Instead,
we want this decoder to further help the network focus on the objects. To
do so, we use the same object-segmentation mask to only reconstruct the
objects in the scene, ignoring all the rest. Let Imi = simage

i :

Lauto-encoding =
1

N

N∑
i

∥∥∥(Imi − ˆImi

)
⊙ Iobji

∥∥∥2
2

(6.3)
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� State regression. This objective already focuses on the objects, as the goal
is to reconstruct the scene objects' coordinates as well as a 20-dimensional
vector containing the robot proprioception (joint positions, joint speeds,
gripper position and orientation, gripper state).

Lregression =
1

N

N∑
i

∥∥∥sproprioceptioni − ŝproprioceptioni

∥∥∥2
2

(6.4)

The �nal loss function is a simple weighted sum of all 4 losses to adjust for
the di�erent magnitudes of each loss:

Ltotal = Lregression + λrgbLauto-encoding + λdepthLdepth + λsegmLsegmentation (6.5)

6.5.1 Architecture

All networks, one per task, were trained with identical hyperparameters and
using a ResNet-50 encoder (He et al., 2016). As shown in Figure 6.4, our setup
consists of two cameras, one mounted on the wrist of the robot and one in front
of it. The encoder takes a single image as input, and all three vision decoders
take the corresponding 32-dimensional encoded representation as input. How-
ever, the MLP decoder for state regression takes in the concatenation of both
encoded vectors (one for each camera). This fully concatenated 64-dimensional
vector corresponds to s̃image, and is part of the RL state that will be used in the
following stage of the pipeline.

Other than ResNet, we also tried di�erent architectures. The one that
yielded the second-best results was the Vision Transformer (ViT) (Dosovit-
skiy et al., 2020), used as a backbone for both encoder and decoder. However,
Figure 6.5 shows that the qualitative results in the segmentation and depth
tasks (we discarded ViT before adding the auto-encoding task) are noticeably
worse than those of the ResNet counterpart (Figures 6.8 and 6.7). The depth
predictions in particular appear to be very low-resolution, which might be due
to the patch-decomposition nature of the ViT architecture.

Note that we borrow pre-trained versions (on ImageNet) of both the ResNet
and ViT encoders, from their o�cial Github repositories. In the case of the
chosen ResNet architecture, only the �rst and last CNN layers are trained from
scratch, because we need them to match our desired input and output shapes
respectively. The ResNet decoders are more shallow than the encoder, and
are fully trained from scratch. Note that all three decoders share most of the
architecture, and only di�er at the very end, each having a separate single-
layer CNN head. We adopt this architecture because we believe that the same
low-level features are needed to solve all three computer-vision tasks.

6.5.2 Experiments

Figures 6.8, 6.7, 6.9 and 6.6 show some examples of ground-truth images used
to train the encoder, as well as the corresponding predictions after training.
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Figure 6.5: Qualitative results with a ViT encoder for the

pushing task. The upper two rows show prediction results for

the image segmentation task, the lower two rows for the depth

prediction task.

Figure 6.6: State regression: Qualitative results of the pre-

trained encoder for the reaching task on some test images. The

black square shows the 2D projection of the 3D output for the

ball's coordinates.

The segmentation results are key for the agent to accurately locate the
objects in the scene. Despite some errors in the boundaries between classes,
the predictions closely match the ground truth, even when the di�erent objects
overlap (objects, gripper, and robot overlap often).

The depth results further help in locating the robot, but the objects are
trickier to spot because the di�erences in depth are very minor. In particular,
the front camera (upper two rows in Figure 6.7) fails to detect the button on
the table, but it does appear in the wrist camera.

The auto-encoding results show that the encoder is able to accurately dif-
ferentiate between the two objects in the scene (red block and green target).
The un-masked predictions are shown in the bottom row of Figure 6.9.
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Figure 6.7: Depth prediction: Qualitative results of the pre-

trained encoder for the pushing task on some test images. The

�rst row for each view shows the ground-truth, the second row

shows the network outputs.

Figure 6.8: Image segmentation: Qualitative results of the pre-

trained encoder for the reaching task on some test images. The

�rst row for each view shows the ground-truth, the second row

shows the network outputs.
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Figure 6.9: Auto-encoding: Qualitative results of the pre-

trained encoder for the sliding task on some test images. The

�rst row for each view shows the ground-truth, the second row

shows the network outputs.
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Figure 6.10: Learning curves for the encoder's supervised ob-

jectives.
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6.6 Training the Agent

Figure 6.11: State-encoding procedure.

Once the encoder is trained, we follow by learning an agent with RL. Since
we use SAC (most speci�cally SAC-Demo, the modi�ed version introduced in
Chapter 4) as the base algorithm for all our experiments, we name our method
SAC-PVE, as in Pre-trained Vision Encoder.

Similar to works such as SEER (Chen et al., 2021a), the encoder is frozen
during the totality of the training process. Other than hopefully being more
sample e�cient, another advantage of using a pre-trained encoder is that the
replay bu�er has a smaller memory footprint, since the encoded representations
are much smaller than the full images.

Some minor modi�cations to the standard SAC are required to store the
intermediate encoded states s̃ in the bu�er. One idea would be to use a
callback function whenever an episode is complete, to transform the transi-
tions (st, at, rt, st+1) into (s̃t, at, rt, s̃t+1). However, we already compute the in-
termediate encoded states during exploration when we compute the actions
a = π(Enc(s)) = π(s̃), so we simply need to keep track of them.

What about demonstration data (or any other type of o�-policy data that
might be used)? This time the callback function is actually required to compute
the encoded states in the demonstrations' transitions. As shown in Figure 6.11,
this step can entirely be done o�-line. However, if GPU memory is not the
bottleneck, in practice a separate copy of the frozen encoder can be loaded to
encode the demonstations as needed.
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6.6.1 Experiments

Setup

Figure 6.12: Snapshots from each task: reach target, push

button, slide block.

We evaluate our method on three simulated RLBench James et al., 2020
tasks for a 6 degrees-of-freedom robot manipulator: reaching a ball, pushing a
button, and sliding a block to a target square. Other than the state space, the
experimental setup is the same as in Chapter 5, so we refer to it for a detailed
description of the scene parameters. All the results are smoothed with a rolling
window of 100 episodes, and the standard error is computed on three random
seeds.

Observation space and Policy architecture. The encoder receives 64x64x6
images (two cameras) and outputs a 64-dimensional vector. This vector is
concatenated to a 20-dimensional vector containing the robot proprioception
(joint positions, joint speeds, gripper position and orientation, gripper state).
This 84-dimensional vector is then fed into an MLP that outputs the action.

Results

Figure 6.13 shows that learning with a pre-trained encoder is not only much
more sample-e�cient, but the �nal performance is also better.

For the reaching task, the agent with a pre-trained encoder reaches a per-
formance close to 100% after just 20.000 steps, while the end-to-end agents
have a high variance across runs. The best baseline SAC+AE-CURL is also
able to reach a perfect success rate on one of the seeds, but fails to make any
progress on another. The converge speed of the end-to-end baselines is also
considerably slower. For reference, an agent learning from the full state of the
environment (i.e. object coordinates) rather than image inputs, is also able to
reach a training success rate close to 100% at a similar convergence speed.

For the pushing task, the agent with a pre-trained encoder reaches a perfor-
mance close to 100% after just 25.000 steps, while the end-to-end agents seem
to perform better than in the reaching task, particularly SAC+AE-CURL and
SAC-Demo. The most probable explanation is that the reaching task presents
the additional challenge of having to reach a target in the 3D space, which
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Reach Push Slide
no vision 99.3 (12.2) 97.7 (19.8) 85.2 (4.66)
SAC-PVE 99.2 (12.1) 98.2 (19.4) 72.9 (6.76)
SAC+AE-CURL 97.1* (12.4) 97.2 (21.3) 5.90 (4.56)
SAC-Demo 94.4 (14.0) 94.2 (22.2) 16.8 (6.66)

Table 6.1: Comparison on evaluation episodes. The �rst value

is the average success rate, and the second value (between paren-

theses) is the average episode length (of succesful episodes only),

calculated across 3000 evaluation episodes (3 seeds, 1000 per

seed, except for SAC+AE-CURL where we exclude the seed that

made zero progress in the reach task). The column-wise best vi-

sion results are marked in bold.

wasn't really a problem in previous chapters when learning from object coor-
dinates. For reference, in the pushing task such an agent is also able to reach
close to 100% accuracy, but takes signi�cantly longer to do so (around 100.000
iterations). One possible explanation is that knowing the position of the button
is only helpful to reach it, but doesn't really help with the actual pushing down
(the gripper would sometimes get stuck in the sides of the button and the agent
is unable to recover).

In the case of the more complicated sliding task, all end-to-end baselines are
unable to make any signi�cant progress, while the agent with the pre-trained
encoder solves the task consistently, reaching a performance close to 70% after
200.000 steps. This task is also particularly hard from image inputs because the
wrist camera is not as useful as in the other two tasks, as the target is almost
never in frame, and the block is only in frame when already making contact
with it. For reference, an agent learning from the full state of the environment
is able to reach ∼ 80% accuracy after 200.000 iterations.

Being more sample-e�cient than end-to-end methods is an expected result,
what's more interesting is that the �nal success rate is also higher. Table 6.1
compiles these results on evaluation episodes. We include a baseline no vision,
the best method from Chapter 5 that takes in the true state of the environment,
including the target object's coordinates. The results show that on every task,
SAC-PVE has the highest success rate and shortest trajectories.

Qualitative results for all three tasks are shown in the following video. The
quality of the learnt policy is noticeably better when learning with a pre-trained
encoder.

drive.google.com/�le/d/14c1MPRvfumvos2o8tDsIXMF1MLDpiPSh/view

6.7 Towards a Shared Encoder across tasks

The main obvious disadvantage of our method is that it requires an additional
non-negligeable step: pre-training the encoder. However, do we really need to
train a separate encoder for every task we want to solve? The encoder doesn't

https://drive.google.com/file/d/14c1MPRvfumvos2o8tDsIXMF1MLDpiPSh/view?usp=sharing
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(a)

(b)

(c)

Figure 6.13: Learning curves of SAC-PVE on three RLBench

tasks.

care about the actual task and how to solve it, it only cares about the visual
representation of the scene. If we had a shared encoder across tasks we would
only need 1 additional training rather than N additonal trainings, where N is
the number of tasks we want to solve.
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Figure 6.14: Learning curves of the shared encoder.

Reach Push Slide
SAC-PVE (shared encoder) 99.9 (11.3) 99.7 (17.7) 87.7 (4.79)
SAC-PVE 99.2 (12.1) 98.2 (19.4) 72.9 (6.76)

Table 6.2: SAC-PVE, with and without a shared encoder, com-

pared on evaluation episodes. Same conditions as in Table 6.1.

Here are the two main modi�cations we bring to our encoder-training pro-
cedure in order to train such a shared encoder.

� We combine the per-task datasets into a single shared dataset. During
training, each batch of data contains exactly the same amount of elements
from each task.

� While the vision decoders (depth, segmentation, autoencoder) can remain
the same, the state decoder presents a problem, because its output is
di�erent depending on the task. For instance, for our particular setup,
the sliding task contains two objects in the scene, while the other two tasks
just one. We want a decoder that can predict the coordinates of every
object in the scene, regardless of how many there are. To do so, we replace
the simple MLP decoder with a Permutation-Invariant Set Autoencoder
(PISA), as introduced in (Kortvelesy, Morad, and Prorok, 2023). A PISA
decoder is a set decoder able to decode �xed-size embeddings into variable-
size output sets.

Figure 6.15 shows that not only do we not pay a price for training a sin-
gle encoder, but the results are actually better with the shared encoder than
with the task-speci�c ones, especially for the sliding task where the increase in
performance is most noticeable. But Table 6.2 shows that the performance im-
proves for all three tasks across evaluation episodes. For reaching and pushing,
where SAC-PVE was already close to a perfect success rate, the shared-encoder
version is slightly better and the quality of the planner is noticeably better
(shorter trajectories). This improvement is probably due to the larger training
dataset for the shared encoder, leading to improved generalization.
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(a)

(b)

(c)

Figure 6.15: Learning curves of SAC-PVE (shared encoder)

on three RLBench tasks.

6.8 Towards a Sim-to-Real pipeline

Other than learning how to solve the task, sim-to-real transfer presents an
additional challenge to the RL agent: learning a robust image representation
that can generalize to the target test environment. By having a two-step process,
we can alleviate the burden of the RL algorithm and rely instead on the more
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Figure 6.16: Full sim-to-real pipeline. Two additional steps

with respect to the standard pipeline: texture randomization

and data augmentation.

stable supervised-learning training. We introduce a simple sim-to-real pipeline
to show the advantages and possibilities of such a framework. As shown in
Figure 6.16, the sim-to-real pipeline is very similar to the one discussed so far.
Two additional steps are required.

� First, we apply texture randomisation to generate the dataset that is
used to train the encoder, as shown in Figure 6.17. In our case, rather
than adopting a full domain-randomisation approach, we use some domain
knowledge and collect textures from the real target environment (Figure
6.1) under di�erent lighting and camera conditions. If the transfer domain
were completely unknown, a much more varied dataset would be required
for the �nal agent to be able to adapt to it (we have discussed some
domain-randomization examples in Section 6.3). Note that this same
texture randomisation is also applied during Step 3 when training the
�nal vision agent.

Figure 6.17: Texture randomization: the texture of the walls,

table and target are randomized to bring variety to the dataset.

� Second, Figure 6.18 shows the standard computer-vision data-augmentation
transformations we apply to the data during the training process of the en-
coder, including classic augmentations (hue, contrast, blur, saturation...)
as well as small image translations to account for any di�erences in posi-
tion between the simulated and real-world cameras.
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Figure 6.18: Data augmentation: during training of the en-

coder, visual transformations are applied to further diversify the

data.

As shown in Figure 6.1, the task we tackle in the real world is a simpler
version of the reaching task, with a 2D target on the table. We only provide
qualitative results for this experiment, available at the end of the video below.
A zero-shot transfer results in a policy that is able to consistently solve the task
in the real-world setup, and is even able to adapt mid-episode if the target is
displaced.

drive.google.com/�le/d/14c1MPRvfumvos2o8tDsIXMF1MLDpiPSh/view

6.9 Discussion

In this chapter we propose a two-stage pipeline in order to obtain faster and most
sample-e�cient RL trainings, while also obtaining a higher �nal success rate
than the end-to-end baselines. Our simple pipeline accelerates RL algorithms
with the help of a pre-trained vision encoder, and vastly outperforms end-to-end
alternatives across three di�erent manipulation tasks.

The better results are actually obtained with a single shared encoder across
tasks, rather than having to train one encoder per task. It would be interesting
to see if this holds true for a larger amount of tasks and objects, but the current
results show that the scalability of the model is promising. The next step would
be to have a fully multi-task model by training a single multi-task RL agent on
top of our single task-agnostic encoder.

We also show that, by adding texture randomization and data augmentation,
the pipeline is suited for a zero-shot sim-to-real transfer in a reaching task. Many
improvements can be brought to our simple sim-to-real setup. For instance,
other than texture randomization, it would be interesting to see if we could
generalize to previously-unseen objects in the real world after training on a

https://drive.google.com/file/d/14c1MPRvfumvos2o8tDsIXMF1MLDpiPSh/view?usp=sharing
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variety of synthetic objects. We also wish we had the time to test more tasks
in the real robot.
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Chapter 7

Conclusion

7.1 Summary of Contributions

Overall, this thesis focused on two main research directions:

� Using demonstrations to improve the performance and e�ciency
of o�-policy reinforcement-learning algorithms. We proposed R2,
a reward-bonus method at the intersection of imitation learning, self-
imitation learning, and hindsight experience replay. Other than improv-
ing the overall performance and e�ciency, it bene�ts from being easy
to implement and simple to understand, with a single hyper-parameter
that intuitively corresponds to the amount of steps that the user wants to
relabel, requiring very little knowledge of the task at hand. After compar-
ing our method to concurrent works, we carried a thorough experimental
study to determine the key methods in the literature that make the bet-
ter use of the demonstrations in the bu�er, and combined them together
into our second algorithm STIR2. While some methods struggled in a
particular task or simulation environment, STIR2 always had the better
performance, showing that the selected methods don't con�ict with each
other but rather elevate the performance in all the tested scenarios.

� Using demonstrations to accelerate vision-based reinforcement
learning. Rather than an end-to-end controller, directly mapping ob-
servations to controls, we introduced a perception module in a two-stage
pipeline. We used the demonstrations to train an encoder from multiple
computer-vision objectives simultaneously: Image Segmentation, Depth
Prediction, Auto-encoding, and State Regression. The pre-trained en-
coder was then frozen and used by the reinforcement-learning agent to
bypass the raw images. Despite all the demonstrations being collected
in simulation, we showed that by adding a handful of real-world texture
images, the pipeline is suited for a zero-shot sim-to-real transfer in a reach-
ing task. We carried multiple experiments showing the bene�ts over the
end-to-end alternatives.
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7.2 Perspectives and Future Work

Exploiting o�ine data is very much a promising research axis in the �eld of
RL, with recent advances such as o�ine RL (Levine et al., 2020) or decision
transformers (Chen et al., 2021b). Here are some perspectives to improve on
the methods that we presented in this thesis, as we continue to scale up towards
more complex tasks.

� The biggest missing piece of our reward-relabelling method R2 is the lack
of a proper theoretical proof. We provided some intuition and believe
that our choices for the equations governing the evolution of the hyper-
parameters are sound, but we failed to provide an actual theoretical guar-
antee that could really bene�t the method. We believe the most interest-
ing research direction on this work is to tackle more complex tasks where
credit assignment isn't obvious. The popular and well-studied attention
mechanism immediately comes to mind as a possible way to determine
which steps need to be relabelled, rather than relying on the rigid heuris-
tic of our current method.

� The experiments of our two-stage vision pipeline weren't as thorough as
we wish since we didn't test for generalization to randomized objects and
scenes. Other than carrying those tests, as well as more real-world tests,
the encoder can be easily improved by adopting more recent computer-
vision objectives and architectures. We believe the most interesting re-
search direction to be multi-task learning. We already showed that a
multi-task vision encoder is possible and even desirable in terms of per-
formance, probably due to the fact that robot-manipulation tasks present
a signi�cant degree of visual overlap. As we move to more complicated
tasks, we believe that the overlap in behaviour could lead to similar results
for the second part of the pipeline by adopting a multi-task agent.

� Overall, we believe that in order to make the best use of the demonstration
data (or any other type of additional data), it is better to revert back from
a fully end-to-end robot-control pipeline, as having separate modules al-
lows to attack speci�c problems in a more precise manner, providing each
module with the parts of the data that are most important. For instance,
as we saw with our two-stage vision papeline, when the RL agent can focus
solely on solving the task rather than also learning a state representation
simultaneously, it is able to reach a much higher performance. Other than
o�-policy RL, there are other frameworks that lay themselves better to
such a modular approach, and are better tailored to exploit large quan-
tities of o�ine data, such as model-based RL, o�ine RL, or hierarchical
RL. Our most promising experiments came in the latter, where we began
to design a two-level hierarchy with a pure IL agent at the higher level
and a RL agent at the lower level. Sadly, we couldn't �nish that work due
to lack of time, but we believe it to be a promising direction for future
work.
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MOTS CLÉS

Robots manipulateurs, Apprentissage par renforcement, Apprentissage par imitation

RÉSUMÉ

Malgré leur grand succès, les algorithmes d’apprentissage par renforcement doivent encore devenir plus efficaces en
termes d’échantillons, en particulier pour la robotique où il est beaucoup plus difficile d’entraîner un agent en dehors d’un
environnement de simulation. Alors que la communauté se tourne vers des approches orientées données (apprentissage
par renforcement “offline”, “decision transformers”, etc.), nous nous concentrons dans cette thèse sur l’apprentissage par
renforcement “off-policy” et explorons différentes manières d’incorporer des données supplémentaires dans les algo-
rithmes. En particulier, nous nous appuyons sur des démonstrations d’experts, qui peuvent contribuer à l’efficacité ainsi
qu’à la performance globale. L’objectif est de concevoir des algorithmes efficaces pour résoudre des tâches de manipu-
lation robotique, comme actionner un interrupteur ou faire glisser un cube sur une table.
Après une étude approfondie de l’apprentissage par renforcement et par imitation, nous présentons tout d’abord notre
méthode de ré-étiquetage des récompenses, qui peut être considérée comme une forme de “reward shaping” qui se
produit a posteriori, une fois que l’ensemble de l’épisode a été collecté. Cette approche peut s’appliquer à tout algorithme
“off-policy” pour bénéficier à la fois des signaux de renforcement et d’imitation. En nous appuyant sur cette méthode,
nous présentons ensuite un algorithme plus efficace qui regroupe des travaux antérieurs et concomitants qui traitent
également de questions similaires.
Enfin, nous passons au cadre plus réaliste de l’apprentissage par renforcement basé sur la vision. Pour résoudre ce
problème, nous concevons un pipeline d’entraînement en deux étapes : d’abord, apprendre une représentation visuelle
de la scène en pré-entraînant un encodeur à partir de plusieurs objectifs supervisés de vision, puis entraîner un agent
d’apprentissage par renforcement qui peut se concentrer uniquement sur la résolution de la tâche. Bien que toutes les
données soient collectées en simulation, les expériences comprennent un exemple de transfert simulation-réalité pour
montrer que ces techniques peuvent s’appliquer à des environnements contrôlés du monde réel.

ABSTRACT

Despite having known great success, reinforcement-learning algorithms still need to become more sample-efficient, par-
ticularly for robotics where it is much harder to train an agent outside of simulation. As the community leans towards
data-driven approaches (offline reinforcement learning, decision transformers, etc.), in this thesis we focus on off-policy
reinforcement learning, and explore different ways of incorporating additional data into the algorithms. In particular, we
rely on expert demonstrations, which can help with efficiency as well as overall performance. The goal is to design
efficient algorithms to solve a range of robotic-manipulation tasks, such as flipping a switch or sliding a cube on a table.
After a thorough review of the reinforcement-learning and imitation-learning frameworks, we first introduce our reward-
relabeling method, which can be seen as a form of reward shaping that happens in hindsight, once the entire episode
is collected. This approach can easily extend any off-policy algorithm to benefit from both reinforcement and imitation
signals. Building on this method, we then introduce a more efficient algorithm that aggregates previous and concurrent
works that also address similar concerns.
Finally, we move onto the more realistic setting of vision-based reinforcement learning. To tackle this problem, we design
a two-stage training pipeline: first learn a visual representation of the scene by pre-training an encoder from multiple
supervised computer-vision objectives, then train a reinforcement-learning agent which can focus solely on solving the
task. Despite all the data being collected in simulation, the experiments include one sim-to-real example to show that
these techniques can translate to real-world controlled environments.

KEYWORDS

Robot manipulator, Reinforcement Learning, Imitation Learning
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