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Abstract

Two decades after the first autonomous driving challenge 1, which had no winners suc-
cessfully navigating a 240 kilometers desert road in Mojave, the advancement of machine
learning has brought remarkable progress to this field. Notably, the creation of open-
source simulators made research for autonomous driving easier by sidestepping regula-
tory constraints and providing an affordable way to collect data. This, combined with
the rise of neural networks, has expedited development of increasingly efficient methods.
Recent research for motion planning mostly focuses on imitation learning (IL) and, to a
lesser extent, on reinforcement learning (RL). By learning from data, machine-learning
based methods are more adaptable than rule-based ones as they rely less on perfect and
consistent representation of the environment. Nevertheless, IL approaches remain lim-
ited in grasping the long term consequences of their actions and suffer robustness issues
stemming from distribution mismatch. Conversely, RL incorporates long-term return in-
formation and successfully overcomes distribution mismatch by learning through trial-
and-error. However, it suffers from sample inefficiency, instability during training, and
lacks of convergence guarantees. This thesis aims to synergize the strengths of both ap-
proaches while mitigating their weaknesses by integrating expert knowledge with deep
reinforcement learning methods for different autonomous driving applications.

After recapitulating existing methods for autonomous driving, this thesis investigates
how to introduce expert knowledge in reinforcement learning algorithms for several au-
tonomous driving tasks. Firstly, we introduced a novel method for distilling expertise in
model-free RL and applied it to end-to-end autonomous driving on the CARLA simulator.
Secondly, we developed an approach leveraging an IL-based prior to guide a model-based
RL algorithm in a partially learned model of the environment for mid-to-end autonomous
driving on the nuPlan simulator. Finally, we designed a real-time mesoscale traffic fore-
casting module to be leveraged by a model-free RL centralized speed planner within a
hierarchical control framework for real world traffic dissipation on highways leveraging
a fleet of 100 Connected and Autonomous Vehicles (CAVs).

1DARPA Grand Challenge: https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-
vehicles



Résumé en Français

Deux décennies après le premier défi de conduite autonome, qui n’a vu aucun gag-
nant réussir à naviguer 240 kilomètres de route désertique dans le désert de Mojave,
les évolutions en apprentissage automatique ont permis d’importants progrès dans ce
domaine. En particulier, la création de simulateurs open-source a facilité la recherche
en matière de conduite autonome en permettant d’outrepasser les contraintes réglemen-
taires et en offrant un moyen abordable de collecter des données. Cela, combiné à
la montée des réseaux de neurones, a accéléré le développement de méthodes de plus
en plus efficaces. Les recherches récentes en matière de planification de mouvement
se concentrent principalement sur l’apprentissage par imitation et, dans une moindre
mesure, sur l’apprentissage par renforcement. En apprenant à partir de données, les
méthodes d’apprentissage automatique sont plus adaptables que celles basées sur des sys-
tèmes de règles, car elles dépendent moins d’une représentation parfaite et cohérente de
l’environnement. Néanmoins, les approches par imitation restent limitées dans la com-
préhension des conséquences à long terme de leurs actions et rencontrent des problèmes
de robustesse résultant d’une inadéquation de distribution. En revanche, l’approche par
renforcement intègre des informations de retour à long terme et surmonte avec succès
les problèmes de distribution en apprenant par essais et erreurs. Cependant, cette ap-
proche souffre d’inefficacité d’échantillonnage, d’instabilité pendant l’entraînement et
d’un manque de garanties de convergence. Cette thèse vise à synergiser les points forts des
deux approches tout en atténuant leurs faiblesses en intégrant des connaissances expertes
avec des méthodes d’apprentissage par renforcement profond pour différentes applica-
tions liées à la conduite autonome.

Après avoir récapitulé les méthodes existantes en matière de conduite autonome, cette
thèse examine différentes facons d’introduire des connaissances expertes dans des algo-
rithmes d’apprentissage par renforcement pour plusieurs tâches de conduite autonome.
Tout d’abord, nous avons introduis une nouvelle méthode pour distiller de l’expertise
dans un apprentissage par renforcement sans modèle et l’avons appliquée à la conduite
autonome de bout en bout sur le simulateur CARLA. Ensuite, nous avons développé
une approche tirant parti d’une base d’apprentissage par imitation pour guider un algo-
rithme d’apprentissage par renforcement basé sur modèle dans un modèle partiellement
appris de l’environnement pour la conduite autonome de milieu-à-fin sur le simulateur nu-
Plan. Enfin, nous avons conçu un module de prévision du trafic à l’échelle mésoscopique
en temps réel, fait pour être utilisé avec un planificateur de vitesse centralisé basé sur
l’apprentissage par renforcement sans modèle dans le cadre d’un controleur hiérarchique
pour la dissipation du trafic en temps réel sur les autoroutes en utilisant une flotte de 100
véhicules connectés et autonomes.
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CHAPTER 1. INTRODUCTION

This chapter covers the background and motivation of this thesis, which tackles the integration

of expert knowledge in reinforcement learning setups for autonomous driving systems.

1.1 Context

1.1.1 The autonomous driving pipeline

Autonomous driving (AD) systems are traditionally built following an architecture made of three

main components, illustrated in Figure 1.1. This pipeline runs at each time step so the vehicle can

plan its trajectory and adapt to its dynamic environment.

Perception Prediction Planning

Object/ Lane detection
Localization
Semantic segmentation

Multimodality
Multi-agent consistency
Uncertainty estimation

Driving policy
Path planning
Control

Figure 1.1: Autonomous driving pipeline. Illustrations from [Velodyne, 2018, Deo and
Trivedi, 2018, Chekroun et al., 2023a]

Perception The perception module process sensors (cameras, LiDARs, radars, etc...) sig-

nals to extract high level semantic information of the vehicle’s environment, such as the map

layout, other agents position or object detection, or lower level information such as depth or seg-

mentation maps. This module can leverage handcrafted solutions [Lowe, 2004, Moutarde et al.,

2007, Labatut et al., 2007, Deschaud and Goulette, 2010], but more recent deep learning methods

allows significantly improved image processing [Krizhevsky et al., 2012, Simonyan and Zisser-

man, 2014, He et al., 2016] in all perception-related tasks such as object detection [Redmon et al.,

2016, Liu et al., 2016, Lin et al., 2017, Carion et al., 2020, Horváth et al., 2022], depth estima-

tion [Dosovitskiy et al., 2015, Luo et al., 2016, Godard et al., 2017, Liang et al., 2018b, Ranftl

et al., 2021], semantic segmentation [Long et al., 2015, Badrinarayanan et al., 2017, Isola et al.,

2017, Zhu et al., 2017], or point cloud operations on radar or LiDAR data [Qi et al., 2017a, Yang

et al., 2018, Lang et al., 2019, Thomas et al., 2019].

Prediction The prediction module is fed the processed static representation of the environment

around the ego agent and aims at inferring its evolution in the next few seconds i.e. its dynamics.

In other term, the prediction module should allow the ego agent to estimate its next state given its

current state and its chosen action. While most state transitions can be derived from kinematics,

some of elements of the transition might be independent from agent’s action and past observations

(traffic light states, other agents at an intersections, etc...). Also, trajectory estimation of other

agents should consider both agent-to-environment and agent-to-agent interactions.
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Planning From the knowledge of the ego’s environments and its dynamics in the next few sec-

onds, the planning module builds a plan to follow for the ego agent, so it can reach its destination

while respecting traffic rules, avoiding collisions and staying in the designated drivable area. This

module’s objective is to generate a safe and reliable sequence of actions for the ego to follow to

form a trajectory. Steering and throttle orders are derived from this trajectory by the ego vehicle

controller.

However, for the past few years, progress in deep learning and computer vision for the per-

ception module has led the research focus of Automated Driving (AD) to shift towards improv-

ing motion planning and the introduction of machine-learning in this module. This trend led to

the emergence of two competitive approaches: mid-to-end AD, which leverages the traditional

pipeline and consider perception to be solved to focus on motion planning, and end-to-end AD

which aims at simplifying the approach and learn ego planning directly from sensory inputs.

1.1.2 Mid-to-end and end-to-end autonomous driving

In the realm of autonomous driving, motion planning can be tackled in different ways, each with

its own advantages and weaknesses.

End-to-end autonomous driving refers to a system where a single neural network directly pro-

cesses raw sensor inputs, such as camera images and LIDAR data, and outputs control commands

such as steering angles and throttle values or trajectory planning via successive waypoints. This

approach offers simplicity of implementation as it eliminates the need for complex intermediate

modules, making it easier to deploy. However, training an end-to-end system can be difficult as

it implicitly learns to solve various tasks. End-to-end systems also lack of interpretability thus

making it challenging to understand how the network makes decisions, which is a critical aspect

for safety and regulatory purposes. Additionally, end-to-end systems might require extensive and

diverse data for training, which can be resource-intensive.

Mid-to-end autonomous driving, on the other hand, assesses perception to be already solved

and focuses on the task of prediction and planning. This approach allows for more interpretability

as the module in fault can be detected if unexpected behaviors are observed. Its modularity also

makes the debugging easier, and specific improvement of a given task possible without overhauling

the entire system. Nonetheless, predefined inputs and outputs of individual sub-systems might not

be optimal for the final driving task in different scenarios, and interactions between each module

can lead to unexpected side effects. Coordination between prediction and planning stages can be

complex, and handcrafting these modules might limit the system’s ability to handle diverse and

unpredictable real-world scenarios.

In summary, end-to-end autonomous driving offers simplicity of implementation and overall

adaptability but can be harder to train and lacks interpretability, while mid-to-end approaches

provide more transparency and modularity but can be challenging to integrate. The choice between

these approaches depends on the specific requirements of the autonomous driving application and

the balance between complexity, interpretability, and performance.
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1.1.3 Simulators in Autonomous Driving

Simulators were developed for research in AD primarily to overcome the need of data collec-

tion, which can be expensive and time consuming, and the risks associated with real-world model

training and validation. Indeed, simulators offer a safe, controlled, and cost-effective alternative,

providing a virtual environment where various driving scenarios, including rare or dangerous situa-

tions, can be simulated with high fidelity. This allows for extensive and diverse data collection, and

facilitates rapid iteration and testing of algorithms without the logistical and regulatory constraints

of on-road testing, therefore significantly accelerating the development of reliable autonomous

driving technologies.

CARLA simulator [Dosovitskiy et al., 2017] was released in 2017 and became one of the most

prominent open-source playground for the end-to-end autonomous driving community. CARLA

is an urban driving simulator of synthesis images incorporating realistic vehicle physics, different

towns to drive in, with various weather, and diverse pedestrians and vehicles designs. CARLA

allows the ego agent to be equipped with various sensors at inference (cameras, LiDAR...) and

even a more complete set of cameras to gather ground truth for datasets (depth camera, semantic

segmentation camera...), see Figure 1.2.

Figure 1.2: Three of the sensing modalities provided by the CARLA simulator. From left
to right: normal vision camera, ground-truth depth, and ground-truth semantic segmenta-
tion. Figure from [Dosovitskiy et al., 2017].

Since 2019, CARLA has been hosting the annual CARLA Challenge, a public contest centered

on autonomous driving using the CARLA simulator. This challenge focuses on driving in urban

settings and aims to navigate through unfamiliar maps, using sensor data for vehicle control. Key

objectives include maintaining proper lane discipline, following high-level navigation instructions

at intersections (such as turning right, left, or continuing straight), executing lane changes, and

avoiding pedestrians and other vehicles. Additionally, the challenge involves recognizing and

responding to traffic lights as per both US and European standards.

In 2021 Motional released nuPlan [Caesar et al., 2021], another simulator aimed at both mid-

to-end and end-to-end research in autonomous driving. Contrarily to CARLA, nuPlan is based

on captured images of real scenes and consists of 1500 hours of driving in several cities and on

different scenarios (going straight, stuck in traffic, turning left, on a drop-off location...). nuPlan

dataset not only provides sensors data, but also higher level representations (bounding boxes,

polylanes...) for mid-to-end autonomous driving, see Figure 1.3.

Lastly, Waymo released Waymax in 2023 [Gulino et al., 2023], unfortunately too late to con-

duct research on it during this PhD. Waymax is a multi-agent simulator for autonomous driving
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Figure 1.3: Vizualisation of nuPlan simulator supported features. Other vehicles oriented
bouding boxes, lanes, crosswalks, traffic lights positions and states, etc are provided and
can be obtained in a vectorized way via requests to the API. Figure from nuPlan website.

research based on the Waymo Open Motion Dataset for mid-to-end autonomous driving. It con-

tains different types of scenarios, as represented in Figure 1.4. Waymax is designed to support

research for all aspects of behavior research in autonomous driving - from closed-loop simulation

for planning and sim agent research to open-loop behavior prediction.

1.2 Reinforcement Learning and Expert Knowledge

1.2.1 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns to behave

in an environment by performing actions and receiving rewards or penalties in return [Sutton and

Barto, 2018]. The agent’s objective is to maximize the cumulative reward over time. It’s based

on the principle of trial-and-error, whereby an agent makes decisions by acting in its environment,

observing the outcomes, and then refining its strategy based on the feedback received. A funda-

mental element of RL is the balance between exploration (trying out new actions) and exploitation

(using actions that yield the highest reward according to the current knowledge of the environ-

ment). The agent uses this feedback to update its knowledge and improve its future actions. The

RL principle is represented in Figure 1.5. This process can be mathematically described using

Markov Decision Processes (MDPs). RL is a vast field of research that can be divided into two
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Figure 1.4: Two examples demonstrating the types of interactive, urban driving scenarios
available in Waymax. (a) shows a vehicle waiting for oncoming traffic to pass before
turning into a narrow street. (b) shows an agent performing an left turn at a 4-way in-
tersection while following a route (boundaries highlighted in green). Figure and caption
from [Gulino et al., 2023].

Figure 1.5: Representation of agent and environment interaction in RL. For a given state
𝑠𝑡 , the agent chose an action 𝑎𝑡 following a learned policy 𝜋 which lead to a new state 𝑠𝑡+1
and give a reward 𝑟𝑡+1. Figure from [Li et al., 2020a]

primary approaches: model-free and model-based.

Model-free reinforcement learning methods aim to learn an optimal policy directly from

interactions with the environment without explicitly modeling its dynamics. The advantage of

this approach is that the agent does not need to understand how the environment works, it simply

needs to determine what actions yield the highest cumulative rewards. Two of the most preva-

lent techniques within this category are Value-based and Policy-based methods. In value-based

methods, like DQN [Mnih et al., 2013], the agent seeks to learn its incentive of taking a particu-

lar action in a given state, represented as a Q-value which is the expected cumulative reward. In

policy-based methods, such as REINFORCE [Williams, 1992] or Proximal Policy Optimization

(PPO) [Schulman et al., 2017a], the agent directly optimizes the policy function without using an

intermediate value function. They are by construction flexible and broadly applicable to different

kind of applications as they do not require any prior modelisation and learn intuitions on the con-

sequence of agents’ actions directly by interacting with their environments. However, the training

of such models is notably unstable and require a large amount of data to converge to an optimal
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policy since they operate based on trial-and-error. Using deep neural network as functions approx-

imations even removes all theoretical guarantees on the convergence and reliability of model-free

reinforcement learning algorithms, thus leading to instabilities in practice.

Model-based reinforcement learning, as the name suggests, incorporates a model of the

environment’s dynamics. Instead of just relying on trial-and error, the agent seeks to understand

how the environment responds to different actions. By doing so, the agent can predict the outcomes

of its actions before taking them, leading to more informed decisions. The primary steps in this

approach include modeling the environment, followed by a planning using this model to decide

on the best course of action, and finally acting in the actual environment. Given that it utilizes

a model, this approach is more data-efficient compared to model-free methods. However, the

accuracy of a model-based approach largely depends on the fidelity of the model. If the model

does not capture the environment’s dynamics accurately, the agent’s policy can be suboptimal or

even detrimental therefore leading to safety-critical behavior.

Overall, model-free RL excels in its simplicity and general applicability, as it doesn’t require

a model of the environment and can adapt to various situations through trial and error. However,

it often requires a large amount of data and can be inefficient in learning, especially in complex

environments. On the other hand, model-based RL can learn more efficiently by utilizing a model

of the environment to plan and predict outcomes, leading to quicker learning with less data. Yet, its

effectiveness is heavily dependent on the accuracy of the environment model, and it may struggle

in environments where accurate modeling is difficult or infeasible. While both RL approaches

showed promising results, their inherent flaws and instability make them hardly applicable to real-

life autonomous driving.

1.2.2 Expert Knowledge

Another approach for learning to drive is by leveraging expert data. In particular, one can train a

neural network to mimic an expert behavior via Imitation Learning (IL). This approach offers a

stabler training, but does not bear information on the long term consequences of the agents actions.

Thus, IL stability is complementary with RL more complete understanding of its environment.

In this thesis, we qualify as Expert Knowledge both data obtained by gathering demonstration

from an expert, or via a supervised network trained on these demonstrations. In the realm of

autonomous driving, trained network generally aims at mimicking expert behavior via Imitation

Learning (IL) and Expert Knowledge bears information of expert-level driving policies. However,

training based on Expert Knowledge are limited by their lack of generality as they incorporate

observed behavior only and do not allow to build an intuition on the consequences of an agent’s

action on his environment outside of the scope of the recorded data.
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1.3 Problem statement: Integrating expert knowledge in
RL for AD

This thesis aims at exploring how to overcome inherent limitations of both model-based and

model-free reinforcement learning driving setups by leveraging expert knowledge on diverse au-

tonomous driving related tasks, which are end-to-end and mid-to-end autonomous driving, and

Connected and Autonomous Vehicles (CAVs) for traffic dissipation.

We first present a method to distill expert knowledge in a model-free deep reinforcement

learning setup for end-to-end autonomous driving in urban environment. Then, we extend a

model-based method to follow a learned prior in a partially-learned environment for mid-to-end

autonomous driving in several urban scenarios. Finally, we introduce a learning-based traffic fore-

casting method aiming at improving prediction in a model-free RL hierarchical speed planner

mid-to-end pipeline for traffic dissipation.

1.4 Publications, awards, and communications

This PhD has been conducted in the Center for Robotics of Mines Paris, PSL University in the con-

text of a CIFRE collaboration with Valeo Driving Assistance Research, in the Deep Reinforcement

and Imitation Learning (DRIL) team.

1.4.1 First author publications

First author publications are:

• Chekroun et al., GRI: General Reinforced Imitation and its Application to Autonomous

Driving. Presented in ML4AD workshop in NeurIPS 2021. Revised version published in

Robotics 2023, 12(5), 12.

• Chekroun et al., MBAPPE: MCTS-Built-Around Predictions for Planning Explicitely. Sub-

mitted in IEEE IV 2024.

• Chekroun et al., Mesoscale Traffic Forecasting for Real-Time Bottleneck and Shockwave

Prediction. Submitted in Transportation Research - Part C.

1.4.2 Second author publications

Second author publications are:

• Bujalance Martin et al., Learning from demonstrations with SACR2: Soft Actor-Critic with

Reward Relabeling. Presented in Deep RL workshop in NeurIPS 2021.

• Wang et al., Hierarchichal Speed Planner for Automated Vehicles: A Framework for La-

grangian Variable Speed Limit in Mixed Autonomy Traffic. Accepted in IEEE Control

Systems Magazine.
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• Lee et al., Traffic Control via Connected and Automated Vehicles: An Open-Road Field

Experiment with 100 CAVs. Accepted in IEEE Control Systems Magazine.

1.4.3 Awards, communication and events

Communication and events are:

• Laureate of the CARLA Challenge 2021. Invited speaker in ML4AD workshop in NeurIPS

2021. December 2021.

• Visiting scholar position in University of California, Berkeley. Under the supervision of

Maria Laura Delle Monache. August 2022 - January 2023.

• Laureate of the Honorable mention for Innovation award in nuPlan challenge 2023. May

2023.

• Invited speaker in the workshop Industrial Reinforcement Learning. November 2023.

1.5 Outline

This thesis consists of 7 chapters:

Chapter 1: Introduction. We contextualize our work by presenting the global autonomous

pipeline and the different ways to approach it. We then introduce the notion of reinforcement

learning and expert knowledge before stating this thesis objective.

Chapter 2: Non-learning based Motion Planning. We recapitulate existing non learning-

based methods for autonomous driving and motion planning. In particular, we introduce families

of model based of physical kinematics, interactions between agents of different types, probabilistic

approaches and finally hierarchical models based on high level planning or graph search.

Chapter 3: Machine Learning for Motion Planning. We present an overview of machine

learning based approaches for motion planning. After introducing the different components of

a neural network, our focus lays first on imitation learning methods, and then on reinforcement

learning approaches for autonomous driving.

Chapter 4: Expertise Distillation in Model-Free RL for End-to-end Autonomous Driv-
ing. This chapter introduces a method distilling expert knowledge in a reinforcement learning

setup. This method goes through ablation studies and hyperparameter analysis on the Mujoco en-

vironment, and is finally applied to end-to-end autonomous driving on the CARLA simulator. We

justify the advantage of this method over vanilla reinforcement learning via an ablation study and

benchmark the performance of our approach against the existing state-of-the-art, both prior and

after the release of out method. Lastly, we present some qualitative insights and limitations of the

proposed methods.

Chapter 5: Leveraging Learned Prior in Model-Based RL for Mid-to-End Autonomous
Driving. We present a method where a neural network trained via imitation learning is leveraged

as a prior to guide a MCTS exploration of a partially-learned environment of the nuPlan simulator
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for mid-to-end autonomous driving. After detailing the designed MCTS and tree steps, we jus-

tify some core elements of our approach through an ablation study and comparison with existing

state-of-the-art. Finally, the explainability and explicit nature of this method is highlighted via a

qualitative analysis.

Chapter 6: Traffic Forecasting for RL-based Traffic Dissipation. This chapter introduces

the CIRCLES consortium and our work on traffic dissipation with connected and autonomous

vehicles (CAVs). We present the open-road field experiment in mixed-autonomy leveraging 100

CAVs that took place in November 2022 near Nashville, TN and the hierarchical control frame-

work designed to guide those vehicles. In particular, we detail the next iteration of a specific

component of the overall system and focus on real-time mesoscale traffic forecasting which out-

put is to be leveraged by the model-free reinforcement learning decentralized speed planner. We

justify our approach through ablation studies and comparison with existing methods. Lastly, we

provide qualitative observations and analysis of different approaches behavior in key traffic stages

to provide more insights on the tackled problem.

Chapter 7: Conclusion. Finally, we summarize our contribution to the fields, and discuss

potential limitations of our approaches and how to tackle them.
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2.1 Physical kinematics models

Future position of a vehicle can, with the knowledge of its initial speed 𝑣 and heading 𝜃 and the

assumption they are constants in a short time 𝛿𝑡, be approximated via iterative call of the Constant

Velocity (CV) model, mathematically represented in Equation 2.1.(
𝑥𝑡+𝛿𝑡

𝑦𝑡+𝛿𝑡

)
=

(
𝑥𝛿𝑡

𝑦 𝛿𝑡

)
+ 𝑣𝛿𝑡

(
cos𝜃
𝑠𝑖𝑛𝜃

)
(2.1)

However this first order approximation no longer yields coherent physical behavior when the

horizon time 𝛿𝑡 become too big as vehicles may be accelerating or turning. Assuming the Constant

Turn Rate (𝜔) and Acceleration (𝑎) (CTRA) model, future positions of a vehicles can be computed

via iterative call of the set of equations represented in Equation 2.2.(
𝑥𝑡+𝛿𝑡

𝑦𝑡+𝛿𝑡

)
=

(
𝑥𝛿𝑡

𝑦 𝛿𝑡

)
+ 𝑣𝛿𝑡

(
cos𝜃
𝑠𝑖𝑛𝜃

)
𝑣𝑡+𝛿𝑡 = 𝑣𝑡 + 𝑎𝛿𝑡

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 +𝜔𝛿𝑡

(2.2)

This quantities can be extracted from sequences of past positions with a Kalman filter [Welch

et al., 1995]. Classically, these filters require hand-tuned parameters for initial uncertainty values,

but recent research leveraged learning-based methods to obtain these values through backpropa-

gation of the filter prediction errors [Jouaber et al., 2021]. In the realm of autonomous driving,

Kalman filters generally use a derivative of the CTRA model hypothesizing a constant steering

value 𝛿 and computing the turn rate 𝜔 from the steering, wheelbase L and speed via the Equation

2.3.

𝜔 =
𝑣

𝐿
× tan𝛿 (2.3)

This model is called the bicycle model and its elements are represented in Figure 2.1.

Figure 2.1: Bicycle model with constant steering angle 𝛿 and wheelbase 𝐿. Figure from
[Ding, 2020]
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2.2 Interaction models

2.2.1 Intelligent driver model

The Intelligent Driver Model (IDM) [Treiber et al., 2000a] is a behavior model designed to directly

control the acceleration of an agent by following a lead vehicle while respecting a safety distance

and a comfortable behavior with limited acceleration and braking deceleration. IDM is a rule-

based method mathematically defined in the Equation 2.4.

𝑑𝑣

𝑑𝑡
= 𝑎 ∗

(
1−

(
𝑣

𝑣0

) 𝛿
−

(
𝑠∗(𝑣,Δ𝑣)

𝑠

)2
)

(2.4)

with Δ𝑣 = 𝑣− 𝑣𝑡 the speed of approach of the lead vehicle, 𝛿 an experimentally obtained constant

(generally 𝛿 = 4) used to compare 𝑣 and the desired speed 𝑣0. 𝑠 is the observed distance between

the agent and the vehicles it follows, and 𝑠∗ is computed with Equation 2.5.

𝑠∗(𝑣, 𝛿𝑣) = 𝑠0 +max
(
0, 𝑣𝑇 + 𝑣Δ𝑣

2
√
𝑎𝑏

)
(2.5)

with T the time-gap to the leading vehicle, 𝑠0 the minimum authorized spacing, 𝑎 the maxi-

mum authorized acceleration, and 𝑏 the authorized braking deceleration. In Equation 2.5, 𝑣Δ𝑣

2
√
𝑎𝑏

represents the dynamic part implementing the "intelligent" braking strategy where the kinematic

acceleration necessary for safety is safe-regulating towards the comfort deceleration.

Figure 2.2: Generalized notations of the IDM model with 𝑛 following cars. Figure from
[Salles et al., 2022].

The IDM is designed to make an agent follow leading cars, mainly for traffic simulation of

collision avoidance, and the scenario covered are very specific (e.g. highways). It is more adaptive

to its surrounding than physical models, but yields less realistic behavior. Several works aims at

improving the realism of IDM e.g. by computing adaptive gaps between vehicles [Salles et al.,

2022] or bounding acceleration and deceleration values [Albeaik et al., 2022].

2.2.2 Pedestrian interactions

To reach a safe and reliable driving, the planner must consider evolution of all the agents in the

scene, whether they are other vehicles or pedestrians. However, pedestrians dynamics is fairly
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different from that of vehicles. Indeed, while cars must avoid collisions, most of the decision

making consist of following lanes and strict driving rules in a very constrained environment. On

the other hands, pedestrians evolve in unconstrained environments and their motion is influenced

almost only by other pedestrians in crowds. Therefore, [Helbing and Molnar, 1995] modelized

pedestrian motion planning through the application of social forces, where other pedestrians and

obstacles, including sidewalks limits, are repulsive forces, and aimed destination are attractive

forces.

Another approach to modelize crowds movements or vehicle traffic is via fluid dynamics sys-

tems [Henderson, 1974]. However, those methods mainly aims at macroscopic-level modelization

and do not allow accurate microscopic predictions, as represented in Figure 2.3.

Figure 2.3: Pedestrian crowds movements can be modelized as a fluid dynamic problem
at the macroscopic scale. Figure from vadere.org.

A data driven approach to modelize pedestrian interactions is via social pooling. [Alahi et al.,

2016] introduced a new LSTM model which jointly reasons across multiple individuals in a scene

by sharing information between their respective LSTMs through a pooling layer. The same kind of

pooling mechanism has been leveraged with Generative Adversarial Networks (GANs) to generate

socially acceptable pedestrians trajectories [Gupta et al., 2018].

2.2.3 Game-theory approaches

Multi-agent motion forecasting can be modelized as a game solving problem where each agent

aims at maximizing its own internal reward while considering other agents rewards [Schwarting

et al., 2019]. This model can be solved via a Stackelberg game [Li et al., 2017] or a game tree

[Bahram et al., 2015]. In this game, each vehicle successively chooses an action in order to reach

a Nash equilibrium i.e. a solution where no player can increase its reward by solely changing its

action.
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2.3 Probabilistic planning models

2.3.1 Hidden Markov models

The car trajectory can be represented as a sequence of partial observation 𝑥 derived from a hidden

variable 𝑧 and modelized as a Hidden Markov Model (HMM) [Berndt and Dietmayer, 2009, Firl

et al., 2012, Christopher, 2009]. Following the Markov chain hypothesis, 𝑠𝑡 distribution of prob-

ability only depends of 𝑠𝑡−1, and 𝑥𝑡 depends on 𝑠𝑡 only, as represented in Figure 2.4. Therefore,

HMM are particularly fitted for sequential data. In HMM framework, the joint probability of 𝑠

and 𝑥 can be computed via Equation 2.6.

𝑝(𝑥, 𝑠) =
𝑇∏
𝑡

𝑝 (𝑥𝑡 | 𝑠𝑡 ) 𝑝 (𝑠𝑡 | 𝑠𝑡−1) (2.6)

with 𝑝 (𝑥𝑡 | 𝑠𝑡 ) the emission probability and 𝑝 (𝑠𝑡 | 𝑠𝑡−1) the transition probability. Hence,

HMM can be seen as a generative model representing underlying distributions of probability.

Figure 2.4: Representation of hidden states 𝑠 and observable states 𝑥 in an HMM. Figure
from dlab.berkeley.edu.

2.3.2 Conditional Random Fields

Like HMM, Conditional Random Fields (CRF) can also be used to modelize sequences of partially

observable observations but are discriminative models for the conditional probability 𝑝(𝑠 |𝑥) only.

In the realm of autonomous driving, [Ohn-Bar et al., 2015] leveraged CRFs to predict latents

events of braking or overtaking.

2.3.3 Bayesian networks

Another approach are Bayesian networks, which are less focused on temporal dependencies than

HMMs but emphasize more on the relationships between the different variables. Within the sphere

of autonomous driving, [Lefèvre et al., 2011] modelized dependencies between several variables

(chosen maneuver, turn signal...) as a graph an leveraged Bayesian networks to infer the probabil-

ity of each possible lane.
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2.3.4 Monte Carlo simulation

Monte Carlo sampling can be used to simulate future path from a sequence of uniformly sampled

controls while checking collisions to infer paths avoinding colisions [Broadhurst et al., 2005,

Eidehall and Petersson, 2006]. Such approach does not require linear physical models.

2.4 Hierarchicl planning models

To consider the different scales related to a realistic motion planning, the process can be subdivided

in successive intermediary steps.

2.4.1 High level planning

Some work focus on high level planning. This tasks aims at modeling more general concepts

than a trajectory, such as classifying driving intentions such as lane change, turn left or following

a leading vehicle. [Wen and Gong, 2023] leveraged an MCTS for behavior planning, [Greene

et al., 2011] used a Kalman filter to select the most likely intended maneuver, and [Streubel and

Hoffmann, 2014] utilized a HMM to estimate the likelihood of a vehicle going straight or turning.

2.4.2 Graph search

Some approaches aim at planning on road map modelized as a graph via graph search. In particu-

lar, A* [Hart et al., 1968] is based on Dijkstra algorithm and is designed to find the most efficient

path from a start node to a goal node in a graph while considering the cost of each edge or step.

A* uses a heuristic function to estimate the cost of reaching the goal from the current node. The

heuristic helps guide the search towards the goal, making A* more efficient than Dijkstra’s algo-

rithm in many cases. This approach was extended to continuous state search by storing continuous

states in reached discrete cells with Hybrid A* [Dolgov et al., 2008].
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Machine learning has significantly advanced the field of autonomous driving, offering inno-

vative solutions and methodologies for creating intelligent, self-driving vehicles. Two promi-

nent machine-learning approaches applied in this domain are imitation learning and reinforcement

learning, each contributing uniquely to the development of autonomous driving systems.

3.1 Deep learning model components

This section introduces deep learning model components which are relevant for our study. Those

components are the different blocks composing most of the deep learning models introduced in

this thesis.

3.1.1 Multi layer perceptron

A Feed-Forward Network with Fully Connected Layers, also called Multi-Layer Perceptron (MLP)

and represented in Figure 3.1 is a type of artificial neural network designed for supervised learning

[Bishop, 1995]. It consists of three main layers: an input layer, one or more hidden layers, and

an output layer. Each layer is composed of nodes, also known as neurons. In a MLP, information

flows through the network in a forward direction, with input data passing through the hidden lay-

ers to produce an output. Neurons in each layer are connected to neurons in the subsequent layer,

and each connection is associated with a weight that is adjusted during the training process to op-

timize the network’s performance. MLPs (Multi-Layer Perceptrons) employ activation functions

to introduce non-linearity to the model, enabling it to capture complex patterns and relationships

in the data. To enable affine transformations of the data, i.e. adjusting the output independently

of the inputs, we must include a set of parameters known as biases. These biases are added to the

weighted sum of inputs to shift the activation function. Training an MLP involves adjusting the

weights through a process called backpropagation, where the model learns by comparing its pre-

dictions to the actual target values and updating the weights accordingly. MLPs are widely used

in various applications, including image recognition, natural language processing, and financial

forecasting.

3.1.2 Convolutional neural network

A Convolutional Neural Network (CNN) is a type of artificial neural network designed for pro-

cessing structured grid data, such as images. CNNs are particularly well-suited for tasks like

image recognition or other computer vision related tasks [LeCun et al., 2015]. The key innovation

of CNNs is the use of convolutional layers, which apply filters or kernels to small, overlapping

regions of the input data. These filters help capture local patterns and features in the data, allow-

ing the network to recognize hierarchical representations of visual information. CNNs typically

consist of multiple convolutional layers followed by pooling layers to reduce spatial dimensions

and alleviate computational intensity. The final layers are usually fully connected layers that make
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Figure 3.1: Representation of a MLP. It is composed of multiple layers of nodes (neurons),
including an input layer, one or more hidden layers, and an output layer, with each node
connected to all nodes in the next layer and having associated weights and biases. Figure
from medium.com.

predictions based on the learned features. The architecture of CNNs is inspired by the organiza-

tion of the visual cortex in animals. LeCun et al. [LeCun et al., 1995] describe the effectiveness

of CNNs in capturing spatial hierarchies of features, making them well-suited for image-related

tasks. A CNN classical architecture is represented in Figure 3.2.

Figure 3.2: Representation of a CNN. It comprises layers of convolutional filters, pooling,
and fully connected layers to process and classify image data effectively. Figure from
learnopencv.com.
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3.1.3 Attention and transformers

Attention is a method that allows a model to weight different input positions differently when

making predictions, enabling it to consider contextual information effectively. Attention operates

akin to a dictionary search among tokens, a fundamental unit of data such as a word or number,

with each token identifying and utilizing only the relevant information from other tokens. This

process involves creating three tensors from the tokens through linear projection: the queries 𝑄,

keys 𝐾 , and values 𝑉 . In time encoding scenarios, all these tensors are derived from time steps

𝑇 and thus have a shape of (𝑇, 𝑑), where 𝑑 represents the feature size. When queries, keys, and

values all originate from the same tensor, it’s known as self-attention. Attention update the tokens

via a weighted by 𝑋 sum. 𝑋 is computed following Equation 3.1.

𝑋 = softmax(𝑄.𝐾
𝑇

√
𝑑
)𝑉 (3.1)

The Transformer is a type of neural network architecture based on Attention that has gained

prominence for its success in natural language processing tasks. Introduced by Vaswani et al.

[Vaswani et al., 2017a], the Transformer architecture eschews traditional recurrent or convolu-

tional layers and relies on a mechanism called attention. The Transformer consists of an encoder

and a decoder, each containing multiple layers of self-attention and feedforward neural networks.

The self-attention mechanism enables capturing long-range dependencies in the input data, making

Transformers highly effective for tasks such as machine translation and language understanding.

The use of self-attention also facilitates parallelization of training, enhancing efficiency compared

to sequential models. The Transformer architecture has since been adapted and extended for vari-

ous applications beyond natural language processing [Devlin et al., 2018], including image recog-

nition [Dosovitskiy et al., 2020], data series [Wen et al., 2022a] and generative tasks [Hudson and

Zitnick, 2021].

3.1.4 Recurrent neural network

A Recurrent Neural Network (RNN) is a class of artificial neural networks designed for processing

sequential data and capturing temporal dependencies. In contrast to traditional feedforward neural

networks, RNNs have connections that form directed cycles, allowing them to maintain a hidden

state that evolves over time. This hidden state serves as a memory that retains information about

previous inputs, enabling RNNs to consider context and sequential information in their predictions.

However, traditional RNNs often face challenges in learning long-term dependencies due to issues

like vanishing or exploding gradients. Hochreiter et al. [Hochreiter and Schmidhuber, 1997a]

introduced the Long Short-Term Memory (LSTM) architecture as a solution to these problems,

incorporating memory cells with gated mechanisms to selectively store and retrieve information.

LSTMs have become a popular choice in RNN architectures for tasks such as natural language

processing, speech recognition, and time-series analysis, where modeling temporal dependencies

is crucial. An LSTM cell is represented in Figure 3.4. Another type of RNN is the Gated Recurrent

Unit (GRU) [Cho et al., 2014], which is similar to LSTM (Long Short-Term Memory), but with a
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Figure 3.3: Representation of a Transformer. It is made of an encoder and a decoder,
each consisting of layers of self-attention mechanisms and feed-forward neural networks.
Figure from machinelearningmastery.com.

simpler structure and fewer parameters, making it computationally more efficient.

3.2 Imitation learning for motion planning

Imitation Learning, a subset of supervised learning, has been pivotal in teaching autonomous vehi-

cles to mimic human driving behavior. This approach involves training machine learning models

on datasets of human driving behavior to learn the complex patterns of navigating roads, respond-

ing to traffic signals, and avoiding obstacles. A key advantage of imitation learning is its ability to

leverage real-world driving data, providing a more practical and realistic learning environment for

the autonomous systems while overcoming the inherent rigidity of rule-base methods.

3.2.1 Imitation learning for end-to-end autonomous driving

Imitation Learning (IL) is by design simpler to setup than rule-based methods, as it removes the

requirements of mathematical modelization. Simply training a classical neural network end-to-
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Figure 3.4: Representation of an LSTM cell. The Cell State (𝐶𝑡 , in orange) runs through
the entire sequence. It stores and transmits information across time steps while selectively
modifying or forgetting parts of it. The Hidden State (ℎ𝑡 , in purple) is the output of the
LSTM cell at a specific time step. It carries information that is relevant to the current time
step’s prediction or output. It is also influenced by the cell state and the input at that time
step. LSTMs employ three gate types (forget in brown, input in blue, and output in red)
to regulate how information is managed within the cell state and the hidden state. Figure
from [Chekroun et al., 2024].

end on expert data can lead to interesting results. In 1989, Pomerleau et al. [Pomerleau, 1988]

pioneered the field with ALVINN, a method leveraging a shallow fully connected neural network

for end-to-end prediction of steering wheel angle from camera images and radars signals, able

to follow lanes on public roads. Obstacle avoidance was first achieved in 2005 by [Lecun et al.,

2004] with DAVE, a robot car navigating in a cluttered backyard with two cameras to extract

depth information. First notable real-life applications on commercial vehicles were reached in

2016 by Bojarki et al. [Bojarski et al., 2016] who introduced a convolutional neural network

(CNN) trained to steer a car in a range of driving conditions (highways and residential roads) by

mimicking a human driver.

Since then, the creation of open-source simulators allowed an acceleration of this domain of

research by providing safe training and testing environment, and easy access to diverse scenes and

sensor data. In this context, Chitta et al. developed TransFuser [Chitta et al., 2022], an end-to-end

autonomous driving pipeline leveraging attention for LiDAR and RGB camera fusion. It leverages

a MLP and a GRU on multi-modal vision features to generate an ego-centric trajectory in the bird-

eye-view domain for the ego. To improve the training process, TranFuser leverages auxiliary losses

during training: the vision part of the system is trained in the same time on generating features

to be used by the controller part, and features yieldings good performances when associated with

decoders for given vision tasks (semantic segmentation, depth estimation, other vehicle detection,

and road reconstruction). TransFuser full training architecture is represented in Figure 3.6.

However, an imitation learning model is trained to mimic an expert’s handling of traffic sce-

narios that the expert themselves has caused. Therefore, when the model is in control of the car,

its decisions directly affect what the car will encounter next. As a result, the model must adapt to

the outcomes of its own driving. This can be problematic if the model’s driving choices result in
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Figure 3.5: Training loop of Bojarski et al. end-to-end imitation learning autonomous
driving system. Images are fed into a CNN which computes a proposed steering com-
mand. The proposed command is compared to the desired command for that image and
the weights of the CNN are updated using back propagation. Figure from [Bojarski et al.,
2016].
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Figure 3.6: TransFuser is made of a multi-modal vision subsystem composed of inter-
communicating LiDAR module, RGB images modules and Transformers modules to ef-
ficiently fusion RGB image and LiDAR inputs. It outputs the future trajectory of the
ego, in ego-centric bird-eye-view space. TransFuser is trained on several auxiliary tasks
demonstrated to improve final metrics on the driving. Figure from [Chitta et al., 2022].

unfamiliar situations, leaving the model unsure of the appropriate action to take. The issue where

a self-driving car, guided by the model, encounters situations during actual driving that were not

covered during training is known as the distribution shift problem. This occurs because the real-

world experiences differ from the scenarios presented during training. For instance, if the training

only involved the expert driving mainly in the center of the road, the model would not have learned

how to correct the car’s course when it strays towards the roadside.
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3.2.2 Solutions to the distribution shift

Overcoming the distribution shift is a first step toward safer IL models for autonomous driving.

To make models more general and more robust to this issue, data need to be more diverse, either

by collecting more data or by generating additional samples.

A simple hardware approach to tackle the distribution shift is to add left and right cameras on

the vehicle and associate them with opposite steering. This allows to provide example of desired

reaction when the vehicle drifts away from the center of lane [Müller et al., 2018, Bojarski et al.,

2016].

A method less reliant on the need of more hardware components is on-policy learning. It is a

training method where data is collected by an agent alternating between the expert policy and the

model’s one. DAgger [Ross et al., 2010] first introduced this approach which proved to teach the

model to be able to recover from errors and handle situations the expert would never have been

exposed to. In DAgger, the expert provides expert data solving situations reached by the model.

To reduce human involvement, SafeDAgger [Zhang and Cho, 2016] developed a module deciding

whether expert’s help is required at an given moment. Other methods partially or completely

remove the need of a human expert by applying conventional controller stack when required to

annotate encountered states [Pan et al., 2017, Li et al., 2018]. Chen et al. [Chen et al., 2020a]

went further in Learning by Cheating (LBC) and replaced the controller stack by a model called

the privileged agent who have access to ground truth information, and trained to replace the expert

for the training of a sensorimotor agent with access to regular RGBs camera data only as input, as

represented in Figure 3.7.

Expert

Privileged 

agent

imitation

Simulator

(a) Privileged agent imitates the expert

Sensorimotor 

agent

Privileged 

agent

imitation Simulator

(b) Sensorimotor agent imitates the privi-
leged agent

Figure 3.7: Overview of LBC. (a) The privileged agent with access to ground truth in-
formation learns to imitate expert demonstrations. (b) A sensorimotor agent with access
to sensory data onlylearns to imitate the privileged agent. The privileged agent provides
high-capacity on-policy supervision. Figure from [Chen et al., 2020a].

Without resorting to on-policy learning, distribution shift can be reduced by generating arti-

ficial data via data augmentation [Shorten and Khoshgoftaar, 2019]. In the realm of autonomous

driving, flipping, rotating, scaling or cropping RGB images help create variations of existing data

and have shown to improve the impact of accumulation error on distribution shift in lane keeping.

Other data augmentations like blurring, erasing, noising, brightness or hue changing to RGB im-
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ages are standard data augmentation [Sobh et al., 2018, Carton, 2021] helping to adapt on unseen

scenes with different weather or lighting conditions.

Despite their efficiency and generalizability on validation sets and some real-life applications,

IL methods frequently operate as well trained black boxes, thus lacking explainability. This results

in behavior that cannot be proven and offers no theoretical guarantees of preventing safety-critical

issues.

3.2.3 Toward more explainability and robustness

To address these issues, other approaches focus on making the planning decisions more inter-

pretable and robust.

Some methods aims at improving the robustness by generating multiple planning options with

deep learning models, evaluate all of them with a cost function assessing some driving features (no

collision, stay within the drivable area...), and finally select the one minimizing it [Cui et al., 2021,

Sadat et al., 2020, Sadat et al., 2019, Fan et al., 2018, Zeng et al., 2020]. This cost function can be

partially learned [Cui et al., 2021, Sadat et al., 2020] or handcrafted [Sadat et al., 2019, Fan et al.,

2018]. This kind of method is represented in Figure 3.8. Other methods, such as GameFormer

Planner [Huang et al., 2023], generate a single trajectory via deep learning models and then refine

it via mathematical optimization [Huang et al., 2023, Aydemir et al., 2023], therefore improving

overall robustness.

Figure 3.8: Pipeline of trajectory proposals methods for autonomous driving. Several
trajectories are generated with a deep learning model. This trajectories are then attributed
a score assessing the driving quality related to it. The trajectory yielding the best score is
selected. Figure from [Sadat et al., 2020] ECCV presentation.

Tackling the explainability limitation, Dauner et al. developed Predictive Driver Model (PDM)

[Dauner et al., 2023] to combine an interpretable IDM with a simple fully connected neural net-

work.

3.3 Reinforcement learning in motion planning

Instead of copying human behavior like IL does, Reinforcement Learning (RL) models leverage

a reward system to assess how good a strategy is, and learns by trial and error. This can lead
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to improved decision-making, sometimes even outperforming humans [Silver et al., 2016, Silver

et al., 2017, Schrittwieser et al., 2020].

3.3.1 Reinforcement learning for autonomous driving

In 2019, [Kendall et al., 2017] presented a RL method allowing a real car to follow lanes in an

empty street. In 2020, [Amini et al., 2020] trained a RL agent for lateral control on the VISTA

data driven simulator. Since then, no RL methods have been shown to be competitive with IL on

end-to-end autonomous driving. A cause might be the weakness of the RL reward signal which

is not enough to train the convolutional part of the network. However RL has been successfully

applied in autonomous driving to fine-tune models pre-trained with IL [Liang et al., 2018a, Ohn-

Bar et al., 2020], or when combined with supervised learning [Toromanoff et al., 2020a, Chekroun

et al., 2021]. Implicit Affordances (IAs) method [Toromanoff et al., 2020a] presented an approach

where a shallow model-free DRL model was trained on the latent space of a frozen ResNet pre-

trained on several auxiliary tasks, such as semantic segmentation and classification. This method

reached state-of-the-art performance on the CARLA simulation at its release and its pipeline is

represented in Figure 3.9.

Figure 3.9: IAs network architecture. A ResNet is pre-trained, with decoders and associ-
ated auxiliary tasks, to encode RGB images from the onboarded camera and frozen. Fully
Connected Networks (FNCs) are then trained with an RL training on the ResNet output.
Figure from [Toromanoff et al., 2020a].

3.3.2 Reinforcement learning for dataset curation

Other methods effectively leveraged RL to planning or control tasks where the network has access

to privileged simulator information [Knox et al., 2023, Zhang et al., 2022, Zhang et al., 2021,

Chen et al., 2020a] whether for driving directly or as a dataset curator. In particular, Zhang et

al.’s ROACH method trained a RL model on privileged bird-eye-view semantic segmentation and

exploits the obtained policy to automatically collect a dataset used to train an online imitation

learning agent, thus tackling the distribution shift issue following intuitions presented in Section

3.2.2. Finally, Chen et al. World On Rails (WoR) [Chen et al., 2021a] employs traditional RL

to generate additional or enrich labels for a static dataset used to train a visuomotor model, as

represented in Figure 3.10.
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Figure 3.10: Overview of WoR method. (a) A forward model is learned from a dataset
of offline driving trajectories of sensor readings, driving states, and actions. (b) With the
offline driving trajectories, action-values under a predefined reward and learned forward
model using dynamic programming and backward induction on the Bellman equation are
then computed. (c) Action-values are leveraged to train a reactive visuomotor driving
policy through policy distillation. Figure from [Chen et al., 2021a].

3.4 Conclusion

RL and IL both have their respective strengths and weaknesses, and those are complementary.

Indeed, IL suffers from distribution mismatch contrarily to RL. Alternatively, as RL learns from

scratch, it is less data efficient than IL, which incorporates prior Expert Knwoledge during train-

ing. In the next Chapter 4, we will introduce General Reinforced Imitation (GRI), a new paradigm

leveraging both Expert Knowledge and exploration to enhance the RL vanilla approach by distill-

ing expertise in model-free RL.
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4.1 Basics of model-free RL

The RL problem can mathematically be defined as an Markov Decision Process (MDP). An MDP

is a 5-tuple (𝑆, 𝐴, 𝑃,𝑟, 𝛾) with:

• 𝑆 is the state space (generally finite).

• 𝐴 is the action space (discrete or continuous).

• 𝑃 is the probability of the transition from one state to another. We note 𝑝(𝑠2 |𝑠1, 𝑎1) the

probability to reach state 𝑠2 when taking the action 𝑎1 in state 𝑠1.

• 𝑟 is the reward function. We note 𝑟 (𝑠, 𝑎) ∈ R the reward obtained by doing the action 𝑎 in

the state 𝑠.

• 𝛾 ∈ [0,1] is the discount factor. It represents the extent to which future rewards are consid-

ered in decision-making, with higher values giving more weight to long-term rewards.

A trajectory 𝜏 is a sequence (𝑠0, 𝑎0), (𝑠1, 𝑎1), ..., (𝑠𝑁 , 𝑎𝑁 ). The goal of an agent is to maximize

the sum of accumulated reward 𝑅𝑡 =
∑𝑇

𝑘=0 𝛾
𝑘𝑟𝑡+𝑘 obtained throughout the associated trajectory.

A policy 𝜋 : 𝑆→ 𝐴 is a function that associates to each state a distribution of probability over

the action space. The policy is said to be deterministic if there is just a single action associated to

each state. We call 𝜋(𝑎𝑡 |𝑠𝑡 ) the probability to take action 𝑎𝑡 in the state 𝑠𝑡 .

We define the state-value function 𝑉𝜋 of a policy 𝜋 as an expectation of the accumulated

reward at this state following 𝜋. This can be interpreted as a quantifier of how good a given state

is. This value function depends of the policy and is mathematically defined as follow:

𝑉𝜋 (𝑠) = E [𝑅𝑡 |𝑠𝑡 = 𝑠] = E𝜋

[
𝑇∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 |𝑠𝑡 = 𝑠
]

(4.1)

with E𝜋 the expected value over the choice of trajectories with the policy 𝜋.

We also define the action-value function 𝑄 𝜋 as the value obtained when starting a trajectory

from a state 𝑠 with an action 𝑎 and then following the policy 𝜋 until it reaches a terminal state.

This Q-function is mathematically define as follows:

𝑄 𝜋 (𝑠) = E [𝑅𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = E𝜋

[
𝑇∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
]

(4.2)

An important propriety of the state-value and action-value functions is that they can be defined

iteratively with the Bellman equation:

𝑄(𝑠, 𝑎) =
∑︁
𝑠′
𝑃(𝑠′ |𝑠, 𝑎)

(
𝑟 (𝑠, 𝑎, 𝑠′) +𝛾 ·max

𝑎′
𝑄(𝑠′, 𝑎′)

)
(4.3)

These three notions of policy, state-value function, and action-value function are at the core of

most RL algorithms. In essence, solving a RL problem consists in finding a policy that maximizes

long-term rewards. A policy 𝜋1 is defined as being greater or equal than another policy 𝜋2 if
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Figure 4.1: General architecture of a reinforcement learning algorithm. Figure from S.
Levine CS294 Deep Reinforcement Learning course, Fall 2017, UC Berkeley.

the expected return is greater for each state 𝑠 when following 𝜋1 compared to 𝜋2, i.e. 𝜋1 ≥ 𝜋2

if ∀𝑠 ∈ 𝑆,𝑉𝜋1 (𝑠) ≥ 𝑉𝜋2 (𝑠). This defines a partial order on the set of policies. Furthermore, there

always exist at least one deterministic policy greater than all the other. It is refered to the optimal

policy, noted 𝜋∗. Consequently, every RL algorithms aims at finding this policy, and they follow

the same global architecture represented in Figure 4.1.

4.2 Deep Q Network

4.2.1 Q-learning

Q-learning is a model-free reinforcement learning algorithm which operates in discrete state and

action spaces and iteratively updates its estimates of action values, denoted as Q-values, based on

observed experiences. The core idea is to approximate the optimal action-value function for an

agent in a Markov decision process (MDP). The main equation in Q-learning is the Q-learning

update rule:

𝑄(𝑠, 𝑎) ←𝑄(𝑠, 𝑎) +𝛼 ·
(
𝑟 +𝛾 ·max

𝑎
𝑄(𝑠′, 𝑎) −𝑄(𝑠, 𝑎)

)
(4.4)

During training, the agent explores the environment, receives rewards, and updates its Q-

values according to the Q-learning update rule 4.4. Over time, these Q-values converge to their

optimal values, enabling the agent to make informed decisions by selecting actions with the highest

estimated Q-values. Q-learning is widely applied in various domains, including robotics, gaming,

and autonomous systems, due to its simplicity and effectiveness in solving reinforcement learning

problems. State space and action space being discrete, the Q-learning algorithm stores information

in 2D tables where (𝑠, 𝑎) coordinates contains the information 𝑄(𝑠, 𝑎).
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4.2.2 Deep Q Network

Real-life applications often present a very large state space. Therefore, Q-learning tabular repre-

sentation cannot be considered, as stored tables would be too large. In this context, Mnih et al.

[Mnih et al., 2015] developed the Deep Q Network (DQN), an extension of Q-learning leveraging

a neural network (NN) trained to approximate the optimal Q-function via learned parameters 𝜃

such that 𝑄(𝑠, 𝑎, 𝜃) ≈𝑄∗(𝑠, 𝑎). This NN is optimized via backpropagation with the following loss

function, which incorporate the update equation of Q-learning:

𝐿 (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1, 𝜃) = (𝑟𝑡+1 +𝛾max
𝑎
𝑄 (𝑠𝑡+1, 𝑎, 𝜃)︸                          ︷︷                          ︸

target

−𝑄 (𝑠𝑡 , 𝑎𝑡 , 𝜃))2 (4.5)

We observe the first part of the equation (the target) to be dependant from 𝜃. Hence, this

method is not a gradient descent, but a semi-gradient one. This causes instability and strong oscil-

lations. These issues are tackled by Minh et al. by leveraging a target network parametrized with

parameter 𝜃′ used to compute the target. In practice, the target network is a copy of the first neural

network which is updated in very large intervals of time. Minh et al. also clipped the loss to avoid

high loss samples harming previous training. Finally, as data are gathered sequentially during the

simulation, experiments used for the backpropagation are highly correlated. To avoid negative

consequences of this correlation, all the explored transitions 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1 are stored in a

replay buffer. Q-learning being an off-policy algorithm i.e. we can leverage samples from another

policy, or an older version of the neural network, to update parameters, the issue can be mitigated

by backpropagating on approximately decorelated transitions randomly sampled from the memory

buffer.

Therefore, DQN theoretically is a powerful tool for model-free reinforcement learning, which

can be leveraged to learn a policy by trial and error via interactions with a simulator. However,

even with all the mentioned tricks, DQN still suffers from its limitations which are sample ineffi-

ciency, instability, and overestimation bias. It struggles with the exploration-exploitation trade-off,

especially in high-dimensional state spaces, and is sensitive to hyperparameter choices. Mem-

ory requirements for experience replay can be high, generalization across tasks has been shown

to be limited, and safety guarantees are lacking. To overcome these limitations, some research

focused on combining incremental improvements on DQN [Hessel et al., 2018] or building dis-

tributed DQN setup to mitigate sample efficiency [Horgan et al., 2018]. Another approach consists

of leveraging expert data into DQN training to reduce instability and improve sample efficiency

[Reddy et al., 2019b, Hester et al., 2018].

4.3 General reinforced imitation

This sections introduces General Reinforced Imitation (GRI) [Chekroun et al., 2021], a method

designed for distilling expert knowledge from demonstration data in a model-free off-policy rein-

forcement algorithm. GRI aims at overcoming IL distribution mismatch and RL data inefficiency
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by combining exploration and demonstration through distillation of Expert Knowledge in a clas-

sical online RL training. GRI was applied to camera-based Autonomous Driving on the CARLA

simulator with the GRIAD algorithm. It ranked first on the CARLA leaderboard for ∼ 6 months

and won the CARLA Challenge 2021.

4.3.1 Related work

RL and IL strengths and weaknesses are complementary. Indeed, IL suffers from distribution

mismatch contrarily to online RL. Alternatively, as RL learns from scratch, it is less data efficient

than IL, which incorporates prior demonstration knowledge during training. To take the best

of both worlds, some algorithms combine IL’s supervision and RL’s trial-and-error to maximize

efficacy through the leverage of both expert data and exploration, aiming at a generalizable and

data efficient system [Hester et al., 2018, Reddy et al., 2019b, Rajeswaran et al., 2017, Martin

et al., 2021].

In particular, demonstrations can be used to initialize policies by pretraining the network [Xu

et al., 2018, Rajeswaran et al., 2017, Hester et al., 2018]. DQfD [Hester et al., 2018] is based

on DQN, introduced in Section 4.2, an off-policy RL algorithm with a replay buffer. DQfD first

pretrains the agent on expert data with both IL and RL losses using the real reward given by the

environment. After some steps of pretraining, the agent starts gathering data from the environment

in the memory buffer. The network is then trained on batches composed of exploration data with

an RL loss and expert data with both IL and RL losses. Nonetheless, DQfD uses simultaneously

reinforcement and imitation, which can have divergent losses and are difficult to jointly optimize

[Gao et al., 2018]. Other approaches differentiate expert and exploration data via specific reward

but using RL losses only [Hester et al., 2018, Reddy et al., 2019b]. Soft-Q Imitation Learning

(SQIL) [Reddy et al., 2019b] completes the imitation task with an RL agent. To do so, the replay

buffer is initially filled with demonstrations, associated with a constant reward 𝑟𝑑𝑒𝑚𝑜 = 1. An

RL agent collects data from exploration into the replay buffer, associated with a constant reward

𝑟𝑒𝑥𝑝𝑙𝑜 = 0. Thus, SQIL designed an RL agent that learns to imitate expert behavior, and has been

mathematically demonstrated to be equivalent to regularized behavior cloning. However, SQIL

does not efficiently leverage exploration as environment rewards are never used.

The method we present in this section leverages both demonstrations and exploration exclu-

sively with an RL loss, and thus cannot suffer from the divergent losses issue. Moreover, contrarily

to DQfD, GRI does not require the true environment rewards for the expert data, which cannot al-

ways be obtained, thus making it an easier solution for real-life applications.

4.3.2 Methodology

GRI is a method which is straightforward to implement over any model-free off-policy RL algo-

rithm using a replay buffer, such as SAC [Haarnoja et al., 2018], DDPG [Lillicrap et al., 2016],

DQN [Mnih et al., 2015], and its successive improvements [Hessel et al., 2017, Dabney et al.,

2018]. GRI is built upon the hypothesis that expert demonstrations can be seen as perfect data
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whose underlying policy gets a constant high reward. We denote this as demonstration reward,

𝑟𝑑𝑒𝑚𝑜. In our experiments, we chose 𝑟𝑑𝑒𝑚𝑜 to be the maximum of the reachable reward by an

agent. GRI introduces the notion of offline demonstration agents which sends expert data associ-

ated with the reward 𝑟𝑑𝑒𝑚𝑜 to the memory buffer. These agents collect transitions from an expert

dataset and work concurrently and indistinguishably with exploration agents connected with the

simulator to collect states, actions, and rewards. GRI algorithm is presented in Algo. 1.

Algorithm 1: GRI: General Reinforced Imitation.
Input: 𝑟𝑑𝑒𝑚𝑜 demonstration reward value, 𝑝𝑑𝑒𝑚𝑜 probability to use demonstration
agent;

Initialize empty buffer B;
while not converged do

if len(B) ≥ min_buffer then
do a DRL network update;

end
if random.random() ≥ 𝑝𝑑𝑒𝑚𝑜 then

collect episode (𝑠online
𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠

online
𝑡+1 )𝑡 in buffer B with exploration

agent
else

add episode (𝑠offline
𝑡 , 𝑎𝑡 , 𝑟𝑑𝑒𝑚𝑜, 𝑠

offline
𝑡+1 )𝑡 in buffer B with demonstration

agent;
end

end

The idea of GRI is to distill expert knowledge from demonstrations into an RL agent during the

training phase. To do so, we defined two types of agents: (i) the online exploration agent, which is

the regular RL agent exploring its environment to gather experiences (𝑠online
𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠

online
𝑡+1 ) into

the memory buffer, and (ii) the offline demonstration agent, which sends expert data associated

with a constant demonstration reward (𝑠offline
𝑡 , 𝑎𝑡 , 𝑟𝑑𝑒𝑚𝑜, 𝑠

offline
𝑡+1 ) to the memory buffer. 𝑠𝑡 is the

state, 𝑎𝑡 the chosen action and 𝑟𝑡 the reward at time 𝑡. At any given training step, the next episode

to add to the replay buffer comes from the demonstration agent with a probability of 𝑝𝑑𝑒𝑚𝑜, else

from the exploration agent.

4.3.3 Ablation study on Mujoco

We first validate GRI on simple selected environments from the Mujoco benchmark, represented

in Figure 4.2.

Expert data were generated using chainerrl [Fujita et al., 2021] pretrained RL agent weights

and contain 200,000 samples. For each environment, the value of 𝑟𝑑𝑒𝑚𝑜 was chosen as the highest

value chainerrl expert agent reached during the generation of the dataset. As we did not find

real expert data on Mujoco environments, expert data are not always significantly better than our

trained vanilla RL network. Hence, this study assesses the efficiency of GRI even with suboptimal

expert data.
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Figure 4.2: Mujoco environments used for our experiments. Respectively HalfCheetah-
v2, Humanoid-v2, Ant-v2, and Walker2d-v2. Articulations are controlled to make them
walk. Rewards depend on the covered distance.

To validate GRI and further comprehend the impact of demonstration agents we compare RL

training with different proportions of demonstration agents and with exploration agents only. For

these experiments, we used a GRI-SAC, i.e., a GRI algorithm using SAC [Haarnoja et al., 2018]

as DRL backbone, and we vary the proportion of demonstration agents between 0% i.e. vanilla

RL and 40%. Each experiment has been repeated three times, with different seeds. Figure 4.3

presents the results with the variances and the evaluation reward of the expert. Experiments were

conducted with public code from GitHub (original code from https://github.com/dongmin

lee94/deep_rl, accessed on 3 November 2021), which has been adapted with GRI.

Figure 4.3: Ablation over demonstration agents with the GRI-SAC setup on Mujoco en-
vironments, and analysis of the evolution of the evaluation reward in function of the pro-
portion of demonstration agents. GRI-SAC with 0% demonstration agent is vanilla SAC.
We observe that GRI-SAC always reaches the level of the expert even when the expert is
significantly better than the trained vanilla SAC. The proportion of demonstration agent
has a significant impact on the dynamics of the convergence.

We observe three different dynamics.
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• For HalfCheetah-v2, a difficult task on which the expert is significantly stronger than the

trained SAC, we observe that the beginning of the training is slower using GRI-SAC; we

call this a warm up phase, which we will explain further in Section 4.6. However, the

rewards turns out to become significantly higher after some time. Here, GRI-SAC is better

than SAC with every proportion of demonstration agents. The best scores were reached

with 10% and 20% of demonstration agents.

• For Humanoid-v2, a difficult task on which the expert is just a little stronger than the trained

SAC, we observe that the higher the number of demonstration agents is, the longer the warm

up phase is. Nonetheless, GRI-SAC models end up having higher rewards after their warm

up phase. The best scores are reached with 10% and 20% of demonstration agents.

• Ant-v2 and Walker2d-v2 are the easiest tasks of the four evaluated. On Ant-v2, the SAC

agent reaches the expert level, converging similarly as GRI-SAC regardless of the number

of demonstration agents used. Nevertheless, GRI-SAC converges faster with 10% and 20%

demonstration agents. On Walker2d-v2, the final reward of GRI-SAC is significantly higher

and reaches the expert level, while SAC remains below.

More experiments were conducted, with the proportion of demonstration agents varying be-

tween 50% and 90%. Results were significantly worse than using 20% demonstration agents.

Therefore, we conclude that the proportion of demonstration agent should not exceed 50%. We

discuss some qualitative insights in Section 4.6.

These experiments reveal, at least on the evaluated Mujoco environments, that 20% demon-

stration agents seems to be the best choice for GRI-SAC to reach the expert level.

We also investigated the contribution of the DRL backbone to assess the generalizability of the

GRI method. To do so, we evaluated the same tasks with the Deep Deterministic Policy Gradient

(DDPG) algorithm [Lillicrap et al., 2016] instead of SAC. For these experiments, we fixed the

proportion of demonstration agents to 20%. Results are shown in Figure 4.4.

We observe that, similar to GRI-SAC with a proportion of 20% demonstration agents, GRI-

DDPG reaches better results than DDPG on all the tested environments. However, GRI-DDPG

does not systematically reach the level of the expert. While final rewards are better with SAC and

GRI-SAC, the dynamics of the rewards evolution is about the same with both backbones (compare

Figure 4.3). We can conclude that GRI is easily adaptable and generalizes to locomotion tasks,

where it robustly outperforms the two alternative methods.

4.4 GRI for autonomous driving

GRI being demonstrated as more sample efficient, providing stabler training and reaching better

results than vanilla RL, we decided to apply it in an end-to-end autonomous driving pipeline. We

chose to work on the CARLA simulator, as it offers strong baseline, a clear API and the possibility

to compare our results to other state-of-the-art method. We named our method General Reinforced

Imitation for Autonomous Driving (GRIAD).
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Figure 4.4: Ablation over demonstration agents with the GRI-DDPG, with 20% of demon-
stration agents on Mujoco environments. GRI-DDPG systematically leads to a better re-
ward than vanilla DDPG. However, contrary to GRI-SAC, GRI-DDPG with 20% demon-
stration agents does not systematically reach the expert level.

4.4.1 Related Work

This section introduces methods reaching state-of-the-art performance on the CARLA leader-

board. Learning by Cheating (LBC) trains an agent having access to privileged ground truth

information via imitation learning and distil its policy into a regular agent having only access to

sensor informations. Implicit Affordances (IAs) method [Toromanoff et al., 2020a] develops a

end-to-end pipeline where camera sensors are first encoded by a CNN before going through a

model-free RL network. Transfuser [Prakash et al., 2021] is an IL method leveraging both Li-

DAR and cameras signals in a transformer-based sensor fusion system followed by a GRU-based

waypoints prediction network and a PID controller. It went through several improvements in the

data collection process and training method to give Transfuser+, reaching the highest score of this

family of methods on the CARLA leaderboard. Latent Transfuser replaces LiDAR by simple po-

sitional encoding but significantly underperfoms his counterparts. World on Rails (WOR) [Chen

et al., 2021b] distillate a vision based policy learned via model-based tabular RL approach in a

CNN. Trajectory-guided Control Prediction (TCP) [Wu et al., 2022] aims at designing a long-term

understanding IL-based control method. It predicts both control and trajectory planning via two

interconnected neural network to provide the control branch with a guidance from the trajectory

planning one, and finally fuse the two branches outputs. Learning from All Vehicles (LAV) [Chen

and Krähenbühl, 2022a] leverage sensor fusion to build a bird-eye-view of the scene, and learns
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driving policies from experiences collected not just from the ego-vehicle, but all vehicles around

it. ReasonNet [Shao et al., 2023b] generates a bird-eye-view from sensor fusion and leverage a

temporal reasoning module to process current and historic features. Then, a global reasoning mod-

ule models the interaction and relationship among objects and the environment to detect adverse

events (e.g. occlusion) and improve overall perception performance. Finally, InterFuser [Shao

et al., 2023a] processes and fuses information from multi-modal multi-view sensors for achieving

comprehensive scene understanding which is fed to a Transformer-based controller to generate

driving actions.

4.4.2 The GRIAD pipeline

GRIAD is a camera-based end-to-end pipeline for autonomous driving. Therefore, it feeds camera

data and outputs direct control of the ego vehicle. Its pipeline is made of two main components: a

visual encoder, and a decision-making subsystem.

4.4.2.1 Visual Encoder

The designed visual subsystem is composed of two EfficientNet [Tan and Le, 2019] encoder mod-

els. They are trained with respectively one segmentation decoder for the first encoder, and several

classifications and regressions of relevant driving information for the second one. The classified

information are: the type of road ahead (straight road, intersection), the presence of traffic light

and its color. The regressed information are the distance to the traffic light, and the vehicle rotation

compared to the road centerline. The visual subsystem is represented in Figure 4.5 and an ablation

study over the choice of encoder is presented in Table 4.1.

Task Town, Weather Visual Encoder
Toromanoff et al. Chekroun et al.

Empty 85 98.0 ± 1.0
Regular train, train 85 98.6 ± 1.2
Dense 63 95.0 ± 1.6

Empty 77 96.3 ± 1.7
Regular test, train 66 96.3 ± 2.5
Dense 33 78.0 ± 2.8

Table 4.1: Ablation study of the visual encoder on the NoCrash benchmark. The designed
visual encoder from Chekroun et al. [Chekroun et al., 2023b] appears to be more suited
to be used to generate RL input features than the one from Toromanoff et al. [Toromanoff
et al., 2020a]. Both encoders are evaluated with the same vanilla RL network.

EfficientNet encoders are trained jointly with the above-mentionned decoders. After training,

encoders are frozen and decoders removed. The visual subsystem therefore feeds from RGB

images and outputs encoded features, called Implicit Affordances (IAs) as in [Toromanoff et al.,

2020a], which are then fed to the decision-making subsystem. The visual encoder has been trained
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on a dataset of 400,000 samples, which corresponds to 44 hours worth of driving. This dataset has

been generated with the CARLA autopilot on every town with random trajectories. Each sample

of the dataset is composed of three images from the three cameras and the corresponding ground

truth information, which are segmentation maps from CARLA, Booleans indicating the presence

of an intersection, and the presence of a traffic light in front of the car. Furthermore, if there is a

traffic light, a class corresponding to its color and the distance to it in meters. Trajectories have

been augmented with random cameras translations and rotations.

4.4.2.2 Decision-making subsystem

The decision-making subsystem feeds four consecutive IAs and outputs ego vehicle next action.

Therefore, a state contains visual features from the last 300 milliseconds, as the simulator runs

at 10 FPS. An action is defined by the combination of the desired steering of the wheel, and the

throttle or brake to apply. Generating data on the CARLA simulator is computationally expensive.

We used a Rainbow-IQN Ape-X [Toromanoff et al., 2019b], which is a distributed DQN [Mnih

et al., 2015] variante, to mitigate this issue. Therefore, we discretized the actions space in 27

steering values, and 4 acceleration (throttle or brake) values. The discretized action space contains

27×4 = 108 actions. The decision-making subsystem is represented in Figure 4.6.

Demonstration agents send to the memory buffer samples of expert trajectory from the demon-

stration dataset. This dataset consists of 22 h of driving, which correspond to 200,000 samples,

generated using the autopilot from CARLA on predefined tracks published by CARLA. Each sam-

ple from the demonstration dataset consists of three images from the three cameras and a discrete
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Figure 4.5: Feature extraction from RGB camera images for the visual subsystem. Two
encoder-decoder networks are pretrained on segmentation, classifications, and regression
tasks. Classifications and regression are only performed on the center image while all
three images are segmented. After training, the visual encoders serve as fixed feature
extractors with frozen weights. For the DRL backbone training, both encoder outputs
are concatenated and sent to the memory buffer as input to DRL. Both encoders are
Efficientnet-b1. The segmentation decoder is fully convolutional, and the classification
decoder is an MLP with several outputs.
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Figure 4.6: Simplified representation of the distributed GRIAD setup with a Rainbow-
IQN Ape-X backbone. A central computer receives data in a shared replay buffer from
both exploration and demonstration agents running on other computers. Data are sampled
from this replay buffer to make the backpropagation and update the weights of all the
agents. Images from the agents are encoded using the network presented in Figure 4.5
before being stored in the memory buffer.

action obtained by mapping continuous actions of the expert to our discrete set of RL actions.

We did not use any data augmentation. We note that the autopilot makes driving errors, such as

collisions, red light infractions, or the car getting stuck for hundreds of frames. As a result, ∼10%

of our demonstrations correspond to poor action choices. However, we decided to use this demon-

stration dataset as is in order to assess the robustness of our method to noisy demonstrations.

In our experiments on CARLA, GRIAD had a total of 12 agents, including 3 demonstration

agents, running in a distributed setup and sending data to the memory buffer. As demonstration

agents have been constrained to send data at the same frequency as exploration agents, this is

equivalent to having 𝑝𝑑𝑒𝑚𝑜 = 25%.

The training reward is primarily based on the waypoint API provided by the CARLA sim-

ulator. This API grants access to the dynamic positions and orientations of all lanes within the

current environment, which is crucial for plotting the agent’s path. It also details various options

at intersections. An agent commences each episode at a random waypoint within the virtual city,

from which the ideal route is calculated using the waypoint API. Upon approaching an intersec-

tion, the agent randomly selects a maneuver—left, straight, or right—and proceeds accordingly.

The reward structure is based on three principal factors:

• Desired speed: this reward component peaks at 1 when agent matches target speed, and

decreases linearly to zero the further it is. The desired speed in context-sensitive; it reduces

gradually to zero as the agent nears a red traffic light and resumes the standard maximum

speed once the light turns green. This same approach applies when the agent encounters

obstacles, including pedestrians, bicycles, or other vehicles. In other scenarios, the agent

maintains a constant maximum speed of 40 km/h.
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• Position: this reward component is negatively correlated with the agent’s deviation from

the lane’s center, as determined by the waypoints and represented in Figure 4.7. The reward

reaches its peak of 0 when the agent is precisely centered in the lane and declines to -1 as

it strays to a maximum set distance (Dmax) from the center. If the agent exceeds Dmax,

which in our experiments is 2 meters (the distance from the lane’s center to its edge), the

episode ends. Episodes also ends if the agent collides with an object, runs a red light, or is

immobile without any apparent obstacles or red lights, with a consequent reward of -1 for

these terminations.

• Rotation: this reward component is inversely related to the angular disparity between the

agent’s orientation and that of the closest waypoint on the optimal path, as illustrated in

Figure 4.7. This addition encourages the agent to align with the correct lane orientation,

promoting smoother navigation.

Figure 4.7: Lateral distance and angle difference for lateral and angle reward computation.
The difference is measured between the ideal waypoint (in green) and the current agent
position (in red). Figure and caption from [Toromanoff et al., 2020a].

Ablation study over components of this reward can be found in [Toromanoff et al., 2019a].

Since this reward is normalized to have a range between 0 and 1, we set the demonstration reward

to 𝑟𝑑𝑒𝑚𝑜 = 1.

4.4.2.3 The global pipeline

The GRIAD pipeline is different at training and at inference. Indeed, training is two folded with

1) training of the visual subsystem which is then frozen, and 2) training of the decision-making

subsystem, and is represented in Figure 4.8.

Inference is end-to-end i.e. feeds sensory data and outputs an action without any explicit

intermediate view of the data in the pipeline, and is represented in Figure 4.9.
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Figure 4.8: GRI pipeline is trained in two phases: (1) Visual encoders are pretrained on several
auxiliary tasks, which are semantic segmentation, road type classification, relevant traffic light
presence, and if there is such a traffic light, its state and the distance to it. (2) Visual encoders
are frozen and a GRI-based DRL network is trained with both pre-generated expert data with an
offline demonstration agent and an online exploration agent gathering data from a simulator. At
any given training step, the next episode to add to the replay buffer comes from the demonstration
agent with a probability of 𝑝𝑑𝑒𝑚𝑜, else from the exploration agent. Actions correspond to a pair
(steering, throttle) to apply to the car.
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Figure 4.9: GRI is end-to-end at inference. Input are RGB images from onboarded cameras on
the agent and output is an action. The DRL backbone feeds from the last 4 IAs encoded by the
visual subsystem which are stored in the memory buffer. Actions correspond to a pair (steering,
throttle) to apply to the car.

4.5 Experimental results

4.5.1 Ablation study on the NoCrash benchmark

We provide an ablation study on the demonstration agents in the GRIAD setup. We compare

GRIAD trained with nine exploration agents and three demonstration agents, to GRIAD trained

with nine explorations agents, i.e., regular RL on the NoCrash benchmark [Codevilla et al., 2019].

Agents are trained on a single environment (Town01) under a specific set of training weather. They

are then evaluated on several scenarios with different traffic density on the training (Town01) and

test (Town02) town with training and test sets of weather.

For these experiments, GRIAD was trained on 16M samples corresponding to 12M explo-
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ration steps + 25,000 expert data, which have been sampled 4M times in total. We present an

ablation study to show how GRIAD compares to RL without GRI i.e. without demonstration

agents, using two vanilla RL models: one trained on 12M exploration steps and the other on 16M

exploration steps. Each agent was trained using the exact same visual encoder trained on an-

other demonstration dataset of 100,000 samples coming exclusively from Town01 under training

weather. Results are presented in Table 4.2.

Task Town, Weather GRIAD
Explo. 12 M Explo. 12 M + Demo. 4 M Explo. 16 M

Empty 96.3 ± 1.5 98.0 ± 1.7 98.0 ± 1.0
Regular train, train 95.0 ± 2.4 98.3 ± 1.7 98.6 ± 1.2
Dense 91.7 ± 2.0 93.7 ± 1.7 95.0 ± 1.6

Empty 83.3 ± 3.7 94.0 ± 1.6 96.3 ± 1.7
Regular test, train 82.6 ± 3.7 93.0 ± 0.8 96.3 ± 2.5
Dense 61.6 ± 2.0 77.7 ± 4.5 78.0 ± 2.8

Empty 67.3 ± 1.9 83.3 ± 2.5 73.3 ± 2.5
Regular train, test 76.7 ± 2.5 86.7 ± 2.5 81.3 ± 2.5
Dense 67.3 ± 2.5 82.6 ± 0.9 80.0 ± 1.6

Empty 60.6 ± 2.5 68.7 ± 0.9 62.0 ± 1.6
Regular test, test 59.3 ± 2.5 63.3 ± 2.5 56.7 ± 3.4
Dense 40.0 ± 1.6 52.0 ± 4.3 46.0 ± 3.3

Table 4.2: Ablation study of GRIAD on the NoCrash benchmark. Mean and standard
deviation are computed over three evaluation seeds. Score is the percentage of road com-
pleted without any crash. Explo. xM + Demo. yM means the network has been trained
on x million samples from exploration agents and y million samples from demonstration
agents. GRIAD leveraging only exploration agents is regular RL. GRIAD experimentally
generalizes more on test weather than RL trained on 12 M and 16 M exploration samples
and globally gives the best agent. GRIAD trained with demonstration agents only leads
to scores of 0 on every task, as every sample has the same reward during the training.

We first observe that GRIAD systematically gives better results than RL with 12 M steps,

while taking approximately the same time to train (+∼4%). Indeed, as demonstration agents do not

require any interaction with the simulator, we can add them at a negligible cost and still improve

results. We also observe that while RL with 16M steps does better than GRIAD on train weather,

GRIAD gives better results on the test weather while being ∼25% faster to train. We believe this

is because RL tends to overfit on a given environment if it explores it too much. Hence, replacing

4M exploration data with 25,000 demonstration data sampled ∼160 times each appears to reduce

the overfitting and allows a better generalization.

Further tests were conducted by training the same pipeline with SQIL [Reddy et al., 2019a]

but the evaluation reward stayed particularly low during the 20M steps of training. The first test

showed SQIL to be inefficient for end-to-end autonomous driving on CARLA, as it did not learn

to drive at all, staying static or drifting off the road most of the time. It reached a score of 0 on

every evaluated task. We believe that the reward signal as defined by SQIL is not rich enough to

allow the network to converge on such a highly complex task.
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4.5.2 On the CARLA leaderboard

We trained GRIAD for 60 M steps (∼45 M exploration steps +200,000 expert data sampled ∼15

M times). Both visual and decision-making parts were trained on all available maps with all

available weather. We compare the top three of camera-based and LiDAR-based methods, also

distinguishing methods exploiting or not the Inertial Movement Unit (IMU) sensor, on the CARLA

Leaderboard. Our method outperforms World on Rails, the previous comparable leading method

on the CARLA leaderboard, by ∼17% on the main metric, the driving score, while using fewer

sensors.

However, more recent LiDAR-based methods, or methods exploiting IMU sensor, give signif-

icantly better results but cannot be compared directly as inputs are of a different nature. Indeed,

LiDAR allows accurate depth measurement, which allows an increase of accuracy on vision related

task after fusion with camera data [Hu et al., 2022]. IMU sensor replaces approximate orientation

estimation by precise measurement, therefore providing accurate positional information. There-

fore, using LiDAR and/or IMU sensors on top of camera leads to richer input features for deep

learning models. In this work, we chose to build an autonomous driving system using camera only,

as it leads to less expensive and complex systems. GRIAD pipeline can be augmented with other

sensors by changing the vision subsystem. CARLA Leaderboard results are presented in Table

4.3.

Method Cam. LiDAR IMU DS RC IS

GRIAD (ours) 3 ✗ ✗ 36.79 61.85 0.60
Rails [Chen et al., 2021b] 4 ✗ ✗ 31.37 57.65 0.56
IAs [Toromanoff et al., 2020b] 1 ✗ ✗ 24.98 46.97 0.52

TCP [Wu et al., 2022] 1 ✗ ✓ 75.13 85.53 0.87
Latent Transfuser [Prakash et al., 2021] 3 ✗ ✓ 45.2 66.31 0.72
LBC [Chen et al., 2019] 3 ✗ ✓ 10.9 21.3 0.55

ReasonNet [Shao et al., 2023b] 4 ✓ ✓ 79.95 89.89 0.89
LAV [Chen and Krähenbühl, 2022a] 4 ✓ ✓ 61.8 94.5 0.64
InterFuser [Shao et al., 2023a] 3 ✓ ✓ 76.18 88.23 0.84

Transfuser+ [Prakash et al., 2021] 4 ✓ ✗ 50.5 73.8 0.68
Transfuser [Prakash et al., 2021] 4 ✓ ✗ 34.6 69.8 0.60

Table 4.3: Top three of camera-based and LiDAR-based agents with and without IMU
sensors on the CARLA Leaderboard on August 2023. Results of reproduced methods are
not considered. Driving metrics are: driving score (DS, main metric), route completion
(RC), and infraction score (IS). Higher is better for all metrics. Our method improves the
driving score by 17% relative to the prior camera-based IMU-less state-of-the-art method
[Chen et al., 2021b], while using fewer cameras than the two other best methods in this
category. Underlined methods were published before GRIAD. GRIAD was state-of-the
art at time of publication.
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4.6 Limitations and quantitative insights

The main limitations of this method are the consequences of our initial hypothesis that demonstra-

tion data can always be associated with a constant maximal reward 𝑟𝑑𝑒𝑚𝑜.

A first limitation occurs if the demonstration data are not constantly optimal, e.g., due to low

expert performance on some aspect of a given task, as this introduces noise in the reward function.

This is the case in our demonstration dataset on the CARLA simulator, as expert data have been

generated using an imperfect autopilot containing ∼10% noisy demonstrations. Still, GRIAD

showed to improve our model by a significant margin over vanilla RL. Therefore, we can consider

the GRI setup to present some robustness to noisy demonstrations.

A second limitation of our approach is the warm-up phase on some difficult environments,

as observed in Figure 4.3 on HalfCheetah-v2 and Humanoid-v2. This warm-up phase can be

seen as the consequence of a distribution shift. Indeed, GRI suffers from a sort of distribution

shift when the training expert data mostly represent actions made in states not reached yet by the

exploration agents. In particular, we observed this effect on HalfCheetah-v2: the expert agent

does not walk but jumps as soon as it touches the ground, which is a complex yet highly efficient

strategy. However, to reach a state where it can successfully jump, it needs to warm up to gain the

required speed and momentum by doing some low reward actions. Hence, our GRI-SAC agent

learns to jump before it is able to walk, making it fall. Once the agent learned how to reach the

jumping state, rewards steadily increase until convergence. However, we observe that the lower the

proportion of demonstration agents is, the faster the model is able to recover from this distribution

shift. Indeed, collecting more exploration data following the current agent policy compensates for

the distribution shift between demonstration and exploration data.

Finally, a third limitation of our approach is the inconsistency of the rewards associated with

some common actions collected by both the demonstration and exploration agents. Still for the

HalfCheetah-v2 example, the demonstration agent will reward expert actions at the beginning of

the agent run with the high demonstration reward, while the exploration agent will receive poor

reward for the same exact actions. This induces a sort of discrepancy between data coming from

the offline demonstration agent and experiences coming from the online RL exploration agent.

It also implies an overestimation of demonstration actions. However, allocating high reward to

demonstration data which are not correlated with the actual reward of the environment might

encourage the agent to get to states closer to the expert ones. Nonetheless, it is difficult to assess

the impact on the training in practice.

4.7 Conclusion

This chapter introduces the basics of model-free Deep RL and how to distillate expertise in such

models training to improve stability and efficiency. In particular we present General Reinforced

Imitation (GRI), a novel method for distilling expert data in RL training, and how we applied

to End-to-end Autonomous Driving with the GRIAD method. GRIAD achieved state-of-the-art

results on the CARLA leaderboard and won the CARLA Challenge 2021.
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To go further. This method showed that simple RL enriched with expert knowledge can

outperform well-designed complex IL methods. However, the GRIAD approach came with a sig-

nificant margin of improvement. In particular, it focused on camera only based autonomous driv-

ing. However, observations in Table 4.3 highlighted a correlation between number of sensors and

higher metrics. More specifically, building a bird-eye-view via LiDAR and camera fusion [Chen

and Krähenbühl, 2022b, Shao et al., 2023c] led to improved result as environment representa-

tions are both richer and simpler. We intuited that if leveraging such a simplified representation

of the environment could improve GRIAD results, it will be exploited even more efficiently with

model-based RL.

Therefore, we implemented a MCTS-based approach inspired by MuZero [Schrittwieser et al.,

2020] on centerline-centered bird-eye-view inputs generated by the carla-birdeye-view library

available on GitHub 1. In this approach, bird-eye-view input images are encoded via a CNN and

each tree operation is tackled via another neural network. An example of generated bird-eye-view

is represented in Figure 4.10.

Figure 4.10: Bird-eye-view built by fetching ground truth data from the CARLA API.
Generated with the library carla-birdeye-view available on GitHub. We observe some
artifacts in the road layout.

Despite a lot of hyperparameters tuning, training were highly unstable and sample inefficient,

as a month of training only led the ego agent to decently follow centerline and stay on the drivable

area. We believed this to be due to the fact that our model was training several neural networks in

the same time (one for image encoding, one for state forecasting, and another one for state eval-

uation i.e. infering a reward from an encoded state), while being dependant of the slow CARLA

simulator for environment exploration and data gathering. Therefore, we decided to directly focus

on higher level semantics than images to allow more explicit transitions and reward functions, and

designed an MCTS-based mid-to-end method for autonomous driving, presented in Chapter 5.

1https://github.com/deepsense-ai/carla-birdeye-view
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In this chapter, we introduce the notion of Monte-Carlo Tree Search and how we applied it

for mid-to-end autonomous driving in a partially-learned environment by leveraging supervised

learning to train a learned prior in [Chekroun et al., 2023a].

5.1 Monte-Carlo tree search and deep learning

This section introduces the intuition behind the notion of Monte-Carlo Tree Search (MCTS) and

how it can be, and has been, integrated with supervised learning for planning task.

5.1.1 Introducing the Monte-Carlo tree search

MCTS is a popular algorithm used in decision-making processes, particularly in game-playing

and other domains with large search spaces. It was introduced in 2006 for computer Go [Coulom,

2006a, Chaslot et al., 2006, Yoshimoto et al., 2006], a complex board game, but has since been

applied to various other games and problems. In the context of MCTS, "Monte Carlo" refers to the

use of random sampling or simulation to make informed decisions. The basic idea is to explore

the decision space by sampling possible outcomes and using the results of these samples to guide

the decision-making process. The "Tree Search" refers to the MCTS functioning, which builds

and explores a search tree that represents the possible decisions and their outcomes. The tree is

expanded and updated iteratively and each node of the tree is scored via a pre-defined reward

function. The algorithm finally selects the branch maximizing the cumulated reward. Therefore,

MCTS is used to find the planning i.e. sequence of actions in a decision-making process, typi-

cally in the context of game playing with a perfectly known and deterministic environment. The

different steps of MCTS functioning are represented in Figure 5.3.

5.1.2 Integrating deep learning with MCTS

Integrating MCTS with deep learning techniques has emerged as a compelling approach to en-

hance decision-making processes in various domains and yields superhuman capability on some

games with well known deterministic environments. AlphaGo [Silver et al., 2016], developed

by DeepMind, marked a significant advancement in the field by mastering the game of Go. Its

strength lies in its use of a combination of supervised learning from human games and MCTS

from self-play. AlphaGo demonstrated remarkable strategic understanding and surpassed human

champions, such as Lee Sedol. However, AlphaGo heavily relies on a vast dataset of human

games, making it less adaptable to novel situations. Additionally, its computational requirements

are immense, limiting its practicality in real-world applications. AlphaZero [Silver et al., 2017],

a successor to AlphaGo, addressed these limitations. Unlike its predecessor, AlphaZero is trained

from scratch through self-play without human data, as represented in Figure 5.1. This approach

allows it to generalize strategies beyond the confines of human knowledge, showcasing its adapt-

ability and creativity. AlphaZero’s main strength lies in its ability to learn optimal strategies with

minimal prior knowledge.
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Figure 5.1: AlphaZero pipeline. Games are continuously generated via self-play and
used to train a neural network. After each round of training, the new model is compared
with the previous one, and the training process restart on the model yielding the highest
metrics. Figure from [Gao and Wu, 2021].

MuZero [Schrittwieser et al., 2020], also developed by DeepMind, is a further evolution.

Unlike AlphaZero, MuZero is not game-specific and can handle a variety of environments. Its

strength lies in its capacity for model-based planning without an explicit model of the environ-

ment, making it more versatile in dynamic scenarios. MuZero’s weaknesses include the computa-

tional demands required for training, its sensitivity to hyperparameters, and the lack of theoritical

guarantees caused by its implicitness.

In the realm of autonomous driving, Chen et al. [Chen et al., 2020b] integrated MCTS with

deep learning but relied on implicitness for the tree transitions and the value function, possibly

leading to inexplicable behaviors which are not desirable for this domain of application. Other

published methods effectively leverage MCTS or MCTS-like approaches but constraint their ap-

plicative fields for decision-making to custom environment such as highway driving [Ha et al.,

2020, Galceran et al., 2015], lane changes [Sunberg and Kochenderfer, 2022], or high level tacti-

cal decisions [Hoel et al., 2019]. Cai et al. [Cai and Hsu, 2022] extended the Partially Observable

Markov Decision Process (POMDP) from [Sunberg and Kochenderfer, 2022] to unregulated dense

traffic urban driving, i.e. without any driving rules, but uses high level actions at the lane level (an

action is a tuple consisting of a lane decision in {Left, Keep, Right} and an acceleration in {Acc,

Maintain, Dec}), which is then executed by another heuristics algorithms, and does not provide

comparisons with other state-of-the-art autonomous driving algorithms.

5.2 MCTS built-around predictions for planning explic-
itly

This section introduces MCTS Built-Around Predictions for Planning Explicitly (MBAPPE) [Chekroun

et al., 2023a], a novel approach to motion planning for autonomous driving combining tree search

with a partially-learned model of the environment by leveraging both an MCTS and supervised

learning.
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5.2.1 Introducing MBAPPE

MBAPPE focuses on the mid-to-end stage of autonomous driving, presuming that perception tasks

have already been accomplished and working toward an efficient and explainable motion planning,

as presented in Section 1.1.2. In this realm, recent research mostly focus on Imitation Learning

(IL) [Huang et al., 2023, Renz et al., 2023] or hybrid IL and rule-based methods [Dauner et al.,

2023, Hallgarten et al., 2023]. However, rule-based methods for autonomous driving are limited

by their lack of scalability, adaptability, robustness in complex and ambiguous situations, and

their inability to handle unconventional scenarios. This contrasts with machine-learning based ap-

proaches that address these limitations through data-driven learning and adaptability. Nonetheless,

while Neural Networks (NN) provide a powerful and flexible tool for learning to drive using super-

vised labels with IL methods [Bojarski et al., 2016, Prakash et al., 2021], they remain limited in the

long-term understanding of the consequences of their actions. Therefore, they may not compre-

hend the full scope of interactions with the map and other agents. Deep Reinforcement Learning

(Deep RL) based methods [Kendall et al., 2019, Chen et al., 2021b, Chekroun et al., 2023b] aim

to incorporate long-term returns of such consequences in the training of these networks. However,

this causal understanding remains implicit and not guaranteed, and Deep RL training is most often

sample inefficient.

MBAPPE aims to get the best of both worlds by using an IL prior to guide a MCTS [Coulom,

2006b, Kocsis and Szepesvári, 2006] into explicitly exploring the consequences of actions, val-

idating the NN trajectory if it respects driving constraints, or exploring new actions if required.

The main challenge in running a MCTS is that it generally assumes environment transitions to be

deterministic and perfectly known. While this is true for the displacement of the ego vehicle given

its actions, and for the update of the map that remains the same, other agents will also move on

their own accord. In order to have a realistic world model, MBAPPE leverages an IL model to

predict all the other agents future trajectories. This way we get an approximate of the future tran-

sitions that enables us to roll out the consequences of our chosen actions on multiple time-steps.

In other words, MBAPPE extends the MCTS paradigm to partially-learned environment and apply

it to autonomous driving.

5.2.2 MBAPPE framework

The MBAPPE pipeline. At each time-step, a neural network (based on an open-loop version of

Urban Driver [Scheel et al., 2022]) predicts an estimation of the ego trajectory and of the future

trajectories of every other agents around the ego. This information is fed to the MCTS, which

will deploy an internal lightweight simulation where the ego trajectory is used as a prior to guide

the first steps of exploration, and other agents trajectories are leveraged to build the world model.

At each simulation-step, which follows a planning time axis inside the tree, the MCTS explores

the possible actions and internally simulates the evolution of the environment to check how those

explored actions will impact its driving performances (driving out of area, check for collisions

with static objects, check collisions with other agents thanks to their estimated trajectory, etc).

The global pipeline is represented in Figure 5.2.
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Figure 5.2: The MBAPPE pipeline At each simulation time step, a prediction model
infers future trajectories of other agents in the scene. This information is fed to the MCTS
which outputs a sequence of consecutive low-level actions. Those are integrated to form
an improved trajectory planning for the ego.

A Partially-Learned World Model. By construction a MCTS requires a perfectly known

and deterministic environment to explore and plan in. However, the autonomous driving setup

is neither perfectly known nor deterministic. In particular, as we consider the mid-to-end driv-

ing problem as presented in Section 1.1.2, the perception is supposed solved so that we have

knowledge of instant positions of other agents and map layout, but the environment’s dynamic is

unknown, which is unfit for the internal simulation required for MCTS exploration. To overcome

this limitation, we designed a partially-learned environment combining known features with the

ones learned by a neural network through supervised learning. This environment is made of two

categories of features:

• Known features:

– The map information, including traffic light,

– Static objects such as traffic cones and barriers

– Dynamic objects such as neighboring vehicles, bicycles or pedestrians, which we will

consider as other agents evolving in the simulated environment

• Learned features:

– Estimated future trajectories of other agents given by the neural network prediction.

Hence, MBAPPE generalize MCTS to a partially-known environment for autonomous driving.

5.2.3 MCTS design and tree steps

Our MCTS is based on a kinematic bicycle model of the vehicle. Actions are low-level are defined

as a tuple (𝑎, 𝛿), where 𝑎 is the acceleration and 𝛿 the steering angle. Accelerations and steering

are discretized in 13 values each, in the respective range of [−3,3] m.s−2 and [−𝜋/4, 𝜋/4] rad.

Actions are integrated every 0.1 s.

The simulation process of our tree search is detailed in Fig. 5.3. The tree is initialized with a

single root node representing the current context. Each tree node stores 3 values: Q the expected
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return, P the action prior and N the number of visits. The nodes are built and evaluated iteratively

through the following steps:

• Selection: We follow the PUCTS [Silver et al., 2016] formula to select the next action

following a trade-off between the exploitation of Q and the exploration of unvisited nodes

with low 𝑁 .

At a node state S the action A is chosen using the following formula:

A𝑡 = argmax
A

[
𝑄(S,A) + 𝑐puct ·𝑃(S,A) ·

√︁∑
B 𝑁 (S,B)

1+𝑁 (S,A)

]
(5.1)

with 𝑐𝑝𝑢𝑐𝑡 a hyper-parameter balancing the trade-off between exploration and exploitation.

We found 𝑐𝑝𝑢𝑐𝑡 = 2 to perform the best in our experiments.

• Expansion: We expand leaf nodes by all physically possible actions from the state of the

leaf node, following a prior 𝑃 and some continuity constraints. These constraints ensure

both comfort and physical feasibility of successive actions. Prior design and continuity

constraints are described in Section 5.2.4.

• Evaluation: We consider that driving rewards are rather short term (crash or not, exit road

or not within the next 6 or 8 seconds). Therefore they do not need to be bootstrapped by a

learned value network, but rather can be evaluated at the current simulation step by checking

for them directly. Our computed reward 𝑟𝑡 at state 𝑠𝑡 is made of these main components:

– Progress: distance advanced since the last node, normalized by maximum allowed

speed limit ([0,1]),

– Collision: penalty for collision with car and pedestrian (−5) or object (−2),

– Route: −0.5 if the vehicle is not on the expected road,

– Drivable area: −1 if the vehicle is not on the drivable area,

– Center of the road:

* −𝑠𝑖𝑛(𝜃)/2 where 𝜃 is the angle difference between the ego heading and the clos-

est centerline heading,

* −𝑑/2 where 𝑑 is the distance between the ego position and the closest centerline.

• Back up: We update the Q values using the cumulative reward as in MuZero [Schrittwieser

et al., 2019]:

𝐺𝑘 =

𝑙−1−𝑘∑︁
𝜏=0

𝛾𝜏𝑟𝑘+1+𝜏

𝑄

(
𝑠𝑘−1, 𝑎𝑘

)
:=
𝑁

(
𝑠𝑘−1, 𝑎𝑘

)
×𝑄

(
𝑠𝑘−1, 𝑎𝑘

)
+𝐺𝑘

𝑁
(
𝑠𝑘−1, 𝑎𝑘

)
+1

𝑁

(
𝑠𝑘−1, 𝑎𝑘

)
:= 𝑁

(
𝑠𝑘−1, 𝑎𝑘

)
+1

(5.2)

We use a discount factor 𝛾 of 1.
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The different tree steps are represented in Figure 5.3

5.2.4 Prior and continuity constraints

An efficient MCTS exploration process can be achieved by leveraging two approaches. Firstly,

providing the MCTS an intuition over actions to be explored in order to prioritize the more prob-

able ones. This issue is tackled using a prior over the distribution of actions for each node. This

prior is usually learned and inferred for every node [Schrittwieser et al., 2019], which is compu-

tationally expensive, or handcrafted. Secondly, to further streamline the exploration process, we

narrowed down the action space, thereby reducing the overall actions that need to be explored

to the most critical ones. To achieve this, we integrated continuity constraints into the MCTS to

ensure not only the physical feasibility of the actions explored but also to enhance comfort and to

reduce the exploration time.

5.2.4.1 The prior

We designed a prior which relies on both handcrafted rules and learned rules, all without incurring

any additional computational overhead.

The prior function is made of two parts:

• The handcrafted prior 𝑃ℎ prioritizes exploration around the constant speed with null steer-

ing angle,

• The learned prior 𝑃𝑙 is obtained by deriving the prediction of the ego trajectory by the NN

into consecutive actions. This prior advantages the possibility of following NN actions for

the first 𝑇 time steps of the internal simulation of the MCTS. We found 𝑇 = 1 s to perform

the best in our experiments.

Both 𝑃𝑙 and 𝑃ℎ are Gaussians centered on the chosen action. The Gaussian are parameterized

with a very high variance (𝜎2 = 100) to encourage an almost uniform exploration.

The designed prior can be written:

𝑃𝑡 =


𝑃𝑡
ℎ
+𝑃𝑡

𝑙
if 𝑡 ≤ 𝑇

𝑃𝑡
ℎ

if 𝑡 > 𝑇
(5.3)

5.2.4.2 Continuity constraints

To ensure the output trajectory is physically feasible and to minimize the total number of actions

to explore, we implemented continuity constraints in the MCTS, represented in Figure 5.4. These

constraints are two folded:

• The Tree Constraint: At a given step 𝑡 of the real-world vehicle movement, the root node of

the novel tree will be constrained to explore neighboring accelerations and steering angles

relatively to the actions taken at time 𝑡−1 by the ego in the simulator. This constraint favors

a behavior continuity between successive time-steps and corresponding MCTS.
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(a) MCTS steps 1/2. a) Selection: Each simulation pass in the tree follows a trade-off
between exploitation of the best 𝑄 value of an action, and the exploration term 𝑢(𝑃) that
encourages to explore nodes with less visits 𝑁 along the prior 𝑃. b) Expansion: The leaf
node is possibly expanded following some probabilities depending on the prior 𝑃 and
the continuity constraints.

c) Evaluation d) Backup
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(b) MCTS steps 2/2. c) Evaluation: The leaf node is possibly expanded following some
probabilities depending on the prior 𝑃 and the continuity constraints. (Backup) After the
simulation, the leaf node is evaluated by explicitly computing the reward 𝑟 described in
Section 5.2.3. d) Backup: 𝑄-values are updated so means of the rewards 𝑟 in the sub-tree
below each actions are tracked.

Figure 5.3: Representation of the four MCTS steps.
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Figure 5.4: Representation of a constrained tree exploration. Both at the root and in-
side a given tree, exploration is constrained around the 7 neighboring accelerations and
the 7 steering angle values relatively to the action that led to the parent node. There-
fore, transitioning to a higher depth from a given node cannot yield more than 7×7 = 49
exploration steps instead of the 169 theoretically possible ones.

• The Node Constraint: During the MCTS internal expansion phase, exploration only focuses

on neighboring accelerations and steering angle values relatively to the actions of his parent

node. This constraint favors a behavior continuity during the expansion phase of a given

MCTS.

We formulate both continuity constraints as restricting the following action (𝑎𝑡+1, 𝛿𝑡+1) to be

within a range of 𝑎𝑡 ± 0.15 m.s−2 for the acceleration and 𝛿𝑡 ± 𝜋/240 rad for the steering angle

with (𝑎𝑡 , 𝛿𝑡 ) the action at the previous time-step for node constraints, or the last ran in simulator

action in the previous tree for tree constraints.

5.3 MBAPPE on the nuPlan simulator

5.3.1 Practical details

Dataset. We show results on the nuPlan dataset. It encompasses 1500 hours worth of real vehi-

cle motion data along with its corresponding simulator. Within the nuPlan framework, we chose

to provide planners performance comparisons on the closed-loop non-reactive agents benchmark.

We focus on this benchmark, as evaluations conducted in closed-loop more effectively assess an

agent’s driving capabilities without the need to compare them to a flawed ’ideal’ behavior as typ-

ically seen in open-loop assessments. Additionally, we chose to provide non-reactive agents met-

rics only for our study, as our complete set of local experiments have demonstrated that outcomes

are largely consistent between reactive and non-reactive agents on the nuPlan simulator, which

is in line with observations from other performance benchmarks [Dauner et al., 2023, H. Cae-
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sar, 2021]. This might be due to the fact that new predictions are computed at every simulation

time step, as represented in Figure 5.2. All simulations are ran on 100 scenarios of each of the

14 scenarios types (totaling 1,118 scenarios in practice, as all 14 types do not have 100 available

scenarios) of the nuPlan challenge, following the Val14 benchmark validation set [Dauner et al.,

2023].

Score and metrics. We use the nuPlan official score, which measures driving quality between

0 and 100 through a combination of 16 normalized driving metrics related to infraction rate, ego

comfort, or progress toward the goal. We decided to put a special emphasis on the metrics of

collision rate (CR), driving area non-compliance (DA) and ego progress (EP) in our experiments,

as they are key elements for a safe and efficient autonomous driving system.

Implementation details. For ablations studies, the number of simulation steps is limited

to 256 in each MCTS. In our setup (Intel Core i7-9700K CPU @ 3.60GHz) the whole pipeline

inference time is ∼ 0.15 seconds for this setup, including input pre-processing, prediction model,

MCTS and post-processing. The pipeline runs on CPU only. For inference speed purposes, we

only expand new possible actions every 1 s. We observed no drop of performance.

Prediction models. For ablation studies we evaluated MBAPPE with Urban Driver [Scheel

et al., 2022], the official nuPlan baseline for mid-to-end planning, extended to predict trajectories

of all other agents in the scene in addition to the ego’s. This extended version presents similar plan-

ning performance than regular Urban Driver. For comparisons with other methods, we evaluated

MBAPPE with both Urban Driver and GameFormer [Huang et al., 2023], the highest performing

open-source method on nuPlan designed for both prediction and planning.

5.3.2 Ablation study over the prior

An ablation study over the choice of prior is presented table 5.1. Continuity constraints are the

one described section 5.2.4.

Prior Metrics
Learned Crafted CR ↓ DA ↓ EP ↑ Score ↑

- - 6% 4% 31% 26%
✓ - 11% 3% 88% 65%
- ✓ 6% 4% 95% 82%
✓ ✓ 5% 2% 96% 86%

Table 5.1: Ablation over the prior.

We can see from results of Table 5.1 that MCTS without prior is inefficient. Exploration being

unguided, the expansion phase does not create node leading to a good reward a priori. Following

𝑃𝑙 for the first steps of the simulation allowed to significantly improve the exploration phase by

guiding the MCTS to stay within the driving area. Indeed, thanks to continuity constraints, a good

beginning of the trajectory allows to stay on the road and reach acceptable metrics. Interestingly,
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leveraging only 𝑃𝑙 leads to an increase of the collision rate: if the MCTS first actions differ from

the prior’s, there will be a mismatch between the guidance it provides and the actual scenes which

can lead to collisions.

Leveraging 𝑃ℎ allows the MCTS to prioritize exploration of the most common behavior on

average (staying at around the same velocity with a null steering angle), therefore minimizing

collisions and optimizing overall progress. Notably, using only this naive prior without any kind

of learning already yields very good performance, highlighting the power of guided exploration in

the MBAPPE method. Finally, leveraging 𝑃ℎ +𝑃𝑙 allows to prioritize this kind of behavior while

starting with a better heads up and leads to best results on this set of experiments.

5.3.3 Ablation study over continuity constraints

An ablation study over the choice of continuity constraints is presented Table 5.2. For these

experiments, prior is 𝑃ℎ +𝑃𝑙.

Constraints Metrics
Tree Node CR ↓ DA ↓ EP ↑ Score ↑

- - 7% 4% 95% 79%
✓ - 8% 3% 96% 82%
- ✓ 8% 2% 94% 82%
✓ ✓ 5% 2% 96% 86%

Table 5.2: Ablation over continuity constraints.

It becomes apparent that when applied separately, continuity constraints offer only marginal

improvements to our method. A possible explanation is that the handcrafted identity prior already

directs the MCTS towards a form of constrained exploration similar to what is achieved through

node constraints. However, utilizing both node and tree constraints independently does enhance

the exploration process. Importantly, the combined effects of these constraints not only substan-

tially increase performance but also ensure a consistent selection of actions, both within a single

tree and across multiple trees that correspond to sequential planning steps.

5.3.4 Comparison with state-of-the-art methods

We compare MBAPPE’s performance with other state-of-the-art method on the validation scenario

of the Val14 benchmark [Dauner et al., 2023]. See Table 5.3.

Baselines: Urban Driver [Scheel et al., 2022] utilizes PointNet [Qi et al., 2017b] layers to

process polyline and employs a MLP following a multi-head attention block to forecast the ego

trajectory. GameFormer Planner [Huang et al., 2023] exploits a Transformer to predict all agents

trajectories before refining ego planning via non-linear optimization. PlanCNN [Renz et al., 2023]

leverages a CNN on rasterized inputs to predicts the ego trajectory. PDM [Dauner et al., 2023]
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leverages an improved IDM [Treiber et al., 2000b] model combined with a simple MLP to generate

several trajectories which are then scored to return the optimal one. GC-PGP [Hallgarten et al.,

2023] categorizes proposed plans according to their traversal of a route-constrained lane graph,

and then identifies the most probable cluster center.

Method CR ↓ DA ↓ EP ↑ Score ↑
Urban Driver [Scheel et al., 2022] 34% 26% 96% 47%
GameFormer Planner [Huang et al., 2023] 6% 4% 98% 84%
PDM-Hybrid [Dauner et al., 2023] 2% 0% 99% 93%
IDM [Treiber et al., 2000b] 12% 6% 95% 76%
GC-PGP [Hallgarten et al., 2023] - - - 57%
PlanCNN [Renz et al., 2023] - - - 73%

MBAPPE (Urban Driver) 5% 2% 96% 86%
MBAPPE (GameFormer) 3% 2% 98% 90%

Table 5.3: Val14 benchmark on nuPlan

In our experiments, we found that incorporating a prediction model into MBAPPE consistently

leads to enhanced planning compared to the vanilla model. When combined with GameFormer,

MBAPPE significantly boosts key metrics, achieving a score of 90% compared to 84% when using

non-linear optimization techniques in the GameFormer Planner. The improvement is even more

pronounced with Urban Driver MA, increasing the score from 47% to 86%. The scoring gap be-

tween MBAPPE (Urban Driver) and MBAPPE (GameFormer) arises from GameFormer’s superior

prediction of both other agents’ trajectories and ego trajectory derived as a prior to guide explo-

ration. However, on this benchmark designed by the PDM team, PDM-Hybrid still outperforms

MBAPPE (GameFormer) by 1% to 3% on all key metrics. Nonetheless, given the larger perfor-

mance gap between all other runner ups, we believe this minimal score difference to be negligible

in practical driving scenarios, especially considering the gain in explainability and interpretability

of MBAPPE approach compared to PDM-Hybrid. Furthermore, scores of 0% DA and 99% EA are

increasingly hard to beat, which may call for alternative metrics in the future to understand per-

formance differences. Additionally, MBAPPE has room for improvement. Specifically, the fixed

and hard-coded lane widths in the internal MCTS simulation sometimes leads to nearly impossible

situations with extremely narrow turns, hence diminishing overall score. Better outcomes could

also be attained by incorporating a more sophisticated learned prior for each node, as suggested

in other work [Schrittwieser et al., 2019, Chen et al., 2020b], or by using MCTS results to en-

hance the prior through continuous learning, creating a self-improving loop [Schrittwieser et al.,

2019, Cai and Hsu, 2022].

Thus, MBAPPE not only delivers state-of-the-art performance, but is also an explainable and

interpretable operator when applied to predictive models. This dual benefit both refines decision-

making policies and provides added adaptability.
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5.4 A Qualitative Analysis

This section presents qualitative visualization and analysis on MBAPPE internal thought process

to emphazise on its transparency and explainability.

5.4.1 Qualitative observations

Qualitative visualization of the exploration done by MBAPPE at one planning step in different

scenarios from the nuPlan challenge are represented in Figure 5.5. The chosen scenarios are

straight in traffic, turn right, turn left and high lateral speed. We chose to illustrate these particular

scenarios as they represent most of the driving time of an agent. Videos representing the MCTS

exploration and decision process on this same scenarios can be found on YouTube 1.

1Link: https://www.youtube.com/watch?v=EzgHDyH7RfI

(a) One time step in straight in traffic scenario. The trajectory in green yields
the highest Q-value. We observe that the decision of going straight and avoid
collision is scored better by a significant margin, as all other trajectory are in
deep red.

(b) One time step in turn right scenario. Different imagined trajectories pre-
senting decent behavior are observable, hence the presence of both green (the
highest score) and yellow (good score) trajectories. Yellow trajectories here
raise good driving behavior, but does not satisfy the progress part of the re-
ward as the objective is to turn right.
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(c) One time step in high lateral speed scenario. The MCTS explores several
possible planning and finally selects the one following the road, as it yields
the highest Q-value.

(d) One time step in turn left scenario. The MCTS follows the road and finally
select the trajectory leading the ego vehicle to go and wait behind the stopped
vehicle.

(e) Color scale for the Q-value representation. A higher Q-
value means a better driving behavior as captured by the ac-
cumulated reward over the trajectory.

Figure 5.5: Qualitative visualization of the exploration done by MBAPPE in one plan-
ning step in different scenarios. We display the bird-eye-view trajectory pieces in xy
coordinates. The MCTS explores multiple steering angle and acceleration configurations
to correctly take the turn. MBAPPE finally selects the path which maximizes the Q-value
(in green).
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5.4.2 An explicit and explainable method

A key benefit of MBAPPE is its conceptual simplicity: it requires only basic high-level directives

in the form of a reward function (e.g., move ahead, avoid collisions, stick to the route, and remain

on the road). Despite its vague prior presented in Section 5.2.4, the method yields highly effective

and realistic planning, on par with the state-of-the-art. This approach eliminates the need for

specific, hard-to-generalize rules, like basing decisions on the road’s curvature or the speed of the

car ahead, as well as the use of hardly interpretable neural networks. As a result, our approach is

highly flexible, adaptable, and explainable.

Indeed, decisions of the MCTS are explainable and the internal process that led to those de-

cisions can be easily observed and analyzed. Figure 5.6 provides an example of a decision tree

of the MCTS in which we can observe several exploration branches and their consequences on

the tree expansion. In particular, we observe on the green right branch that internal exploration

leading to desirable behavior yields the highest Q-value and further exploration of that branch.

When exploration leads to collisions or to the ego leaving its expected route, the Q-value is low

and exploration stops, as shown in the red middle and orange left branches. Figure 5.6 shows that

MCTS decisions-making process is transparent and explainable, thus leading to an explicit and

safe planning.

Figure 5.6: A subset of a decision tree obtained with MCTS exploration. Nodes are
colored according to their Q-value. The root node correspond to the present state of the
vehicle in the nuPlan simulator. We observe that the orange left branch exploration leads
to the ego leaving the expected route, hence the low Q-value. The red middle branch
exploration leads to a collision, thus explaining the low Q-value. The green right branch
exploration presents the expected behavior and therefore has the highest Q-value. The
explored planning can also be observed in Figure 5.5.
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5.5 Conclusion

As a conclusion, this chapter introduced MBAPPE, a novel approach extending MCTS for plan-

ning within a partially learned environment in the context of autonomous driving. Through ab-

lation studies, we highlighted the advantages of incorporating the designed priors and continuity

constraints into the MCTS tree. Comparative analysis using a public benchmark on the nuPlan

simulator revealed that MBAPPE is an effective refinement operator for planning models, con-

sistently outperforming vanilla models across all evaluation metrics. Finally, we emphasized on

the interpretability and explainability provided by this technique, which is a critical attribute for

ensuring the safety and reliability of autonomous vehicles. In terms of future work, as MBAPPE

improves planning model capabilities, one could fine-tune the prior network similarly to the ap-

proach used in AlphaGo [Silver et al., 2016]. This would enable the network to better emulate

the MCTS output, thereby refining its priors and initiating a cycle of self- improvement. Better

results could also be achieved with a more complex learned prior inferred for each node as well as

learning a bootstrapped value network to estimate node expected returns in addition to the current

reward [Schrittwieser et al., 2020, Chen et al., 2020c]. However this would require more network

inferences and could harm the execution time.

Altogether, and even at the current stage of development, MBAPPE is an efficient and inter-

pretable method for autonomous driving, whose explainability and robustness offers a novel and

promisable approach not only applicable on simulators, but also real life autonomous driving on

commercial cars. Nonetheless, this PhD thesis aims at more than research on commercial appli-

cations of autonomous vehicles and defends the idea that research in autonomous driving can be

applied to greater causes and generate social benefits. Therefore, chapter 6 introduces an approach

leveraging connected and autonomous vehicles for traffic dissipation.
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This chapter aims at going further with the idea of autonomous driving and utilize this concept

to serve a greater cause and generate social benefits. In particular, it introduces a novel approach

leveraging Connected and Autonomous Vehicles (CAVs) for traffic dissipation via a hierarchi-

cal speed planner, whose design includes supervision, reinforcement learning, and mathematical

modelization. The presented work was conducted at the University of California, Berkeley as a

visiting PhD candidate during the Fall 2023 semester, under the supervision of Professor Maria

Laura Delle Monache. My main contribution is the first authored [Chekroun et al., 2024] research

of Section 6.4 which present an efficient method for real time mesoscale traffic forecasting whose

output is to be leveraged by an RL-based speed planner (co-authored [Wang et al., 2024]) inside

a hierarchical control framework (co-authored [Lee et al., 2024]) for mixed traffic autonomous

driving for traffic dissipation.

6.1 Autonomous driving for traffic dissipation

This section introduces the notion of traffic dissipation by leveraging CAVs. This research takes

place in the context of the CAV-in-the-loop Lagrangian Energy Smoothing (CIRCLES) consor-

tium1 to which I was a member as a supervised student of Pr Delle Monache. The whole consor-

tium, composed of Pr Bayen, Pr Piccoli, Pr Seibold, Pr Sprinkle, Pr Work, Dr Lee and Pr Delle

Monache is shared between University of California Berkeley, Rutgers University, Temple Univer-

sity and Vanderbilt University and seeks to apply CAVs for traffic dissipation in real life scenarios,

in particular traffic dissipation in mixed autonomy traffic, i.e. some vehicles are autonomous and

other are manually controlled.

6.1.1 A hierarchical control framework

The CIRCLES consortium introduced the MegaController [Lee et al., 2024], a control framework

for the mixed autonomy traffic flow problem. The designed control framework is a hierarchi-

cal structure coordinating a centralized speed planner, focusing on macroscopic traffic flow op-

timization, and microscopic decentralized vehicle controllers which are either acceleration-based

or ACC-based. The Speed Planner and Vehicle Controller are intrinsically connected, with the

former advising the latter of upcoming events. Simultaneously, the vehicles are designed to relay

their observations to a central server for the purpose of compiling data. The architectural frame-

work of the MegaController is represented in Figure 6.1. The MegaController was implemented

and tested in an open road field operational test called the MegaVanderTest (MVT) for which 100

CAVs were deployed on the I-24 interstate highway in the US on November 2022.

6.1.1.1 A centralized speed planner

The centralized speed planner, described in [Wang et al., 2024, Lee et al., 2024], is designed to

optimize the overall traffic via macroscopic speed guiding for all the CAVs by utilizing traffic data

1https://circles-consortium.github.io
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Figure 6.1: Architectural framework of the MegaController. The hierarchical and mod-
ular nature of the design allows for greater flexibility in design decisions and dealing
with varied sensing and actuation capabilities of the heterogeneous fleet. The blue box
represents the centralized Speed Planner unit, and the red boxes represent decentralized
Vehicle Controllers, which are vehicle-dependent (that is, each vehicle has a different con-
trol architecture and thus requires a different control paradigm). The components work
in concert to achieve higher level goals of flow smoothing. Figure and caption from [Lee
et al., 2024].

from homogeneous sources which are the mesoscale INRIX traffic data [Reed, 2019], presented

in Section 6.3.1, and microscopic data from the CAVs. It is important to note that each vehicle

makes its post approximately every 1 second, and a server-side process inserts new data from

INRIX approximately every 60 seconds which have a delay of up to 3 minutes, and that while

the INRIX data provides a single speed across all lanes, the CAVs pings provide lane-level speed

information. Figure 6.2 represents the implementation of the speed planner we tested in the MVT.

The sequence of events of a Speed Plan publication can be summarized as follows:

1. Each new INRIX update is integrated with historical INRIX data and then fed to the pre-

diction module.

2. Vehicle observations from the previous 60 seconds are retrieved and combined with the
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Figure 6.2: Data pipeline for the Speed Planner: 1.For each update, past INRIX data from
the database are fetched as the input of the prediction module. 2. Fetch the vehicle ob-
servations of the previous 1 minute. Fuse the INRIX prediction with vehicle observation
to obtain the lane level Trattic State Estimation (TSE). 3. Smooth the obtained lane level
TSE with the forward average kernel. 4. Input the smoothed TSE into the bottleneck
identification module. 5. If there is any standing bottleneck identified, design the corre-
sponding buffer segment in the smoothed TSE as the target speed profile. Else use the
smoothed TSE as the target speed profile. 6. Publish. Figure and caption from [Wang
et al., 2024].

INRIX prediction to derive an estimation of traffic conditions at the lane level.

3. The lane-level Traffic State Estimation (TSE) is smoothed using a forward kernel average.

4. Bottleneck identification is performed on the smoothed lane-level TSE.

5. In the event that a stationary bottleneck is detected in the lane, a deceleration zone is pre-

scribed as a buffer segment, as represented in Figure 6.3. For all other areas, the smoothed

lane-level TSE is utilized as the lane-level Speed Plan.

6. Publish the Speed Plan for all lanes.

TSE Enhancement module. The TSE enhancement module is made of two submodules: an

INRIX prediction module designed to overcome INRIX latency, and a data fusion module inte-

grating real-time data from on road vehicles enabling more detailed, lane-level TSE with enhanced

time-space precision. For the MVT, the implemented prediction module presented in [Lee et al.,

2024, Wang et al., 2024] is a neural network based on self-attention trained to identify and pre-

dict movement of congestion frontiers within INRIX data by inferring binary vectors indicating

whether the corresponding INRIX segment is a congestion frontier. However, this design of pre-

diction module is being reconsidered and a forecasting-based method [Chekroun et al., 2024] for
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Figure 6.3: Obtain target speed profile: once a standing bottleneck is identified, the speed
profile 𝑣(𝑡, 𝑥) will be converted to the density profile 𝜌̃(𝑡, 𝑥) by using a calibrated mapping
from speed to density called a fundamental diagram (FD). RL policy selects the desirable
density for the buffer area 𝜌𝑏 based on 𝜌̃(𝑡, 𝑥), which is the critical parameter to determine
a desirable density profile 𝜌∗(𝑡, 𝑥). The target speed profile is obtained by converting
𝜌∗(𝑡, 𝑥) to the speed profile and taking the minimum value at each position. Figure and
caption from [Wang et al., 2024].

prediction presented in Section 6.4 will be implemented in the next MVT. After the prediction

phase, the fusion module further segment INRIX data into smaller sub-segments by computing

each vehicle’s average speed over the past update interval and overwriting the TSE of the corre-

sponding sub-segment. As vehicle data comes with lanes information, a distinct TSE is generated

for each lane.

Target design. The enhanced TSE is leveraged to generate a target speed profile for CAVs.

It is made of two submodules: a kernel smoothing which process the enhanced TSE at each time

step using a chosen kernel to improve the fuel consumption in a high density traffic flow by syn-

chronizing the driving speeds of all automated vehicles, and a buffer design which leverage a RL

based algorithm to infer a buffer area upstream of the standing bottleneck [Jang et al., 2024, Wang

et al., 2024]. The target speed generated by the RL algorithm is leveraged in a mathematical model

of traffic (a Partial and Ordinary Differential Equation, PDE-ODE) to generate an identification

of traffic density. Finally, the kernel smoothing is fed this information to generate the velocity

of the next time step. Contrarily to human drivers who tend to accelerate to close the distance

between their vehicle and the one in front, our proposed desired speed profile aims to slow down

in advance of the right amount to create a gap between successive vehicles. This approach consid-

ers the information from the TSE which are the presence of congestion in the nearby downstream

area. The proposed desired speed profile is adaptive to traffic states and is robust, as it relies on a

single hyper-parameter, as detailed in [Wang et al., 2024].

Respective example outputs of TSE and Target design with interpretations are represented in

Figure 6.4.
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Figure 6.4: Speed surfaces of (a) Enhanced TSE and (b) Target Speed. In (b) the overall
speed surface is smoother. Upstream of the congestion (Exit 62 – Exit 66 in the figure),
our system designs a smooth speed gradient for vehicles about to enter the queue. The
goal is to guide the traffic to slow down in advance. (Arrow indicates the traffic flow
direction). Figure and caption from [Wang et al., 2024].
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6.1.1.2 Decentralized vehicle controllers

Mesoscopic traffic information from the Speed Planner is then put in context with microscopic

observation of each CAVs local state, such as the distance to the vehicle in front, relative speed,

etc. The decentralized vehicle controller [Hayat, 2024, Lee et al., 2024] is designed to improve

the traffic flow while ensuring the safety of both the AV and other vehicles around it and is inputed

target speeds from the Speed Planner and input data from the in-vehicle network. Due to physical

differences between vehicles of the fleet, two types of controller have been implemented for the

MVT.

Acceleration-based Controller is an explicit, mathematically-defined controller defined in

[Lee et al., 2024]. It aims at reaching a target speed without getting trapped in stop-and-go waves

of congested traffic. It is actually made of two distinct controllers, one designed for base control

i.e. to use under normal and emergency operating conditions, and a lane-change recovery one to

behave smoothly during cut-ins and cut-outs.

ACC-based controller was deployed on 97 of the 100 vehicles from the fleet during the

MVT. Rather than generating an acceleration to actuate as the acceleration-based controller does,

the ACC-based controller provides outputs setpoints for the CAV native ACC system, an assistant

driving system controlling a vehicle longitudinal movements based on given setpoints. Hence,

safety assurance and lane-change are handled by the stock ACC. The ACC-based controller is

RL-based and trained with Proximal Policy Optimization (PPO) [Schulman et al., 2017b]. The

underlying MDP is presented in [Lee et al., 2024].

6.1.2 An open-road field experiment with 100 CAVs

The presented hierarchical control framework was implemented and deployed on a fleet on 100

CAVs to improve traffic efficiency on a freeway in which a small portions of vehicles were auto-

mated, others being driven by unaware drivers. The MVT is the largest field experiment to leverage

CAVs to regulate traffic flow, and deployed algorithms from diverse fileds of transportation, math-

ematical modelization and computer science, from model based control to reinforcement learning.

The control strategy adopted is hierarchical, as an upper level control speed planner generate target

speeds following mesoscopic analysis which are then fed to onroad vehicles for low level control

via a microscopic analysis of the scene. The dataset obtained from the experiment has been com-

bined with datasets from I-24 MOTION [Gloudemans et al., 2023], a four mile section of the I-24

interstate highway equiped with a technology called I-24 Mobility Technology Interstate Obser-

vation Network designed to produce ultra-high resolution trajectory data of all vehicles on the

roadway via 276 cameras on 3̃5 meters roadside poles to avoid occlusion. Therefore, the MVT

experiment was able to generate a large data resource for further study on the interaction of control

vehicles on bulk traffic flow.

If the MVT was the first experience of this kind at that scale, the CIRCLES consortium plans

on reiterating the experiment to gather more data on different highways, and improve existing

technology. In particular, the current implementation of the prediction submodule of the TSE En-

hancement Module in the Speed Planner has ben reconsidered toward a traffic forecasting module
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able to infer the evolution of the mesoscale INRIX traffic in real-time.

6.2 Related work on traffic forecasting

Traffic forecasting is a key challenge in transportation research. With the rise of autonomous ve-

hicles, the need for precise traffic predictions becomes more important. Accurate forecasts can

greatly impact urban planning, public safety, and the overall effectiveness of transportation sys-

tems. By predicting future traffic patterns, decision-makers such as policymakers and city planners

can better allocate resources, implement infrastructure improvements promptly, and develop ef-

fective traffic management strategies. This forward-thinking approach can help in reducing traffic

congestion through systems designed to distribute traffic more evenly. Traffic information is rel-

evant on several levels of granularity, on a scale from micro to macro, each presenting its own

interest. Micro-scale traffic information captures detailed, vehicle-level data, such as individual

speeds, positions, and behaviors, providing a high-resolution view of traffic conditions at specific

locations. It is often used for fine-grained analyses, like understanding the dynamics of a single

intersection, or collaborative planning to enable an energy-efficient driving [Antonio and Maria-

Dolores, 2022, Delle Monache et al., 2019, Stern et al., 2018]. On the other hand, macro-scale

traffic information focuses on aggregated, high-level data that provides an overall picture of traf-

fic flow across broader areas. This can include metrics like average speeds, traffic volumes, and

congestion levels, and is generally employed for long-term planning and large-scale traffic man-

agement [Derrow-Pinion et al., 2021]. Mesoscale traffic information occupies the middle ground

between micro-scale and macro-scale. Specifically in our use case, it focuses on how groups of

vehicles interact with each others on segmented portions of a single highway and how it impact

average speeds across these distinct sections. These three types of information offer valuable

insights but differ in their level of detail and computational requirements.

6.2.1 Rule-based traffic forecasting

Traffic forecasting has long been explored via rule-based methods. In particular, some research ex-

tended the Kalman Filter for traffic estimation via ensemble methods [Yuan et al., 2015] or Kalman

recursions in dynamic state-space [Portugais and Khanal, 2014]. Alternative modelizations, such

as particle filters [Ren et al., 2010] or spatial copulas [Ma et al., 2019], have also been leveraged

to this extent. However, these methods suffer from performance decays when unexpected events

provoke non predictable changes or if the allocation to a traffic pattern is inaccurate.

6.2.2 Learning-based traffic forecasting

6.2.2.1 Recurrent neural networks

RNNs, and in particular LSTMs [Hochreiter and Schmidhuber, 1997b], are lighter deep-learning

based methods for forecasting able to effectively to capture and model sequential data via a so-

phisticated memory mechanism. Key components of LSTM networks are represented in Figure
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3.4, in Chapter 3. During training, the LSTM network learns to adjust the parameters of its gates

and the cell state in a way that allows it to capture long-range dependencies and patterns in se-

quential data. This enables LSTMs to excel in time series prediction where understanding context

and dependencies over time is crucial. However, LSTM remains limited to capturing both spatial

and temporal patterns in series prediction. Some work extended LSTM with self-attention on the

temporal dimension to exploit temporal structure in videos[Yao et al., 2015], or to merge the cell

and output states to improve performance for classification of long sequences of text [Jing, 2019a].

6.2.2.2 Coupling RNNs and convolutions

The advent of deep learning has addressed several shortcomings of rule-based methods. By learn-

ing from data, these models can account for unpredictable yet regular behaviors. Laña et al. [Laña

et al., 2019] employed Spiking Neural Networks to achieve long-term pattern forecasting, adapt-

ing these predictions to real-time situations. For short-term forecasting, the Graph Convolution

Network (GCN) has emerged as a potent tool. Guo et al. [Guo et al., 2020] utilized a GCN for

traffic forecasting, integrating it with a latent network to glean spatial-temporal features. Mallick

et al. [Mallick et al., 2022] enhanced the capabilities of GCN by incorporating ensembling meth-

ods, leveraging Bayesian hyperparameter optimization and generative modeling. However, despite

their efficiency, these deep models consist of computationally demanding operations, making them

unsuitable for real-time forecasting.

6.2.2.3 Other learning-based approaches

Incorporating an analysis of spatial dependencies has been explored through a different method.

ConvLSTM replaces LSTM state-to-state and input-to-state transition with convolutions [Shi et al.,

2015, Lin et al., 2020] to bring LSTM the computational capability to analyze spatiotemporal se-

ries. Methods relying on attention are able to learn how each data point interacts with each other at

each timestep. In particular self-attention has been successfully leveraged with LSTM for diverse

forecasting tasks [Li et al., 2020b, Deng et al., 2019, Jing, 2019b], and Transformers [Vaswani

et al., 2017b, Wen et al., 2022b] recently showed promising results in data series [Wu et al., 2020].

Some methods leverages both convolution and self-attention to reach state-of-the-art results on

some datasets [Lin et al., 2020]. Other methods combine LSTM and graph neural network [Jiang

and Luo, 2021, Zhao et al., 2020, Bogaerts et al., 2020] to forecast and quantify how roads and

intersections impact one another through graph modelization. However, these methods are by

design for macro-scale road systems and are unfit for meso modelizations.

6.3 Traffic forecasting on INRIX data

6.3.1 Data acquisition

This research utilizes mesoscale data obtained from INRIX traffic services [Reed, 2019], which

includes average speeds across multiple lanes on 21 segments of the I-24 interstate highway in
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Figure 6.5: The Target Road Segment of CIRCLES: I-24 Westbound in Nashville, Ten-
nessee, seen within the highlighted region. Figure from [Chekroun et al., 2024].

Nashville, TN, as depicted in Figure 6.5.

This data spans mileposts MM66 to MM59, covering an 11.4 km road fraction divided into

21 segments, with a sampling rate of 3,600 data points per day. An example of typical morning

traffic is shown in Figure 6.6.

While INRIX traffic data updates every minute, there can be a slight lag of up to three minutes

in data generation. The focus of this study is to enhance the accuracy and timeliness of traffic

forecasting, especially considering the brief delays in data updates. The objective is to develop a

predictive model that effectively forecasts traffic patterns in three-minute intervals, leveraging the

minute-by-minute data refreshment to anticipate and manage traffic conditions more efficiently.

6.3.2 Modelization as a data series problem

We modeled this data series problem in the following way. At every time-step 𝑡, we note 𝑣𝑖𝑡 the

average velocity over the lanes on the whole 𝑖 ∈ [0,20] segment. Hence, the studied data series

can be seen as follows:

V𝑡 =


v0
𝑡

v1
𝑡

...

v20
𝑡


,
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Figure 6.6: In the red contour of the figure, one observes the chronological progression
of congestion on the specified segments. A notable persistent bottleneck is evident at
Exit 59. This congestion initiates at approximately 6:00 a.m., likely attributable to the
augmented commuting demand upstream, and it fully resolves by around 9:00 a.m. Figure
and caption from [Chekroun et al., 2024].

We also define

∀(𝑡, 𝑘) ∈ N2, I𝑘𝑡 =𝑉𝑡 ⊕ · · · ⊕𝑉𝑡+𝑘 =


v0
𝑡 . . . v0

𝑡+𝑘
v1
𝑡 . . . v1

𝑡+𝑘
...

...

v20
𝑡 . . . v20

𝑡+𝑘


The concatenation of 𝑘 consecutive velocity vector starting at time 𝑡.

Therefore, our final model should be fed with 𝐼𝑠𝑡−𝑠 to output 𝐼3𝑡 , 𝑠 being the chosen sequence

length used as input.

6.3.3 Training and validation datasets

The training set is composed of 504,000 data points (every minute for 350 days). We also built

two validation sets, also represented in Figure 6.7:

• The Easy Validation set: made of 86,400 data points (every minute for 60 days), it mostly

represents common traffic as most of it is smooth, with some discrete congestion and traffic

shockwaves. There is usually at least one bigger traffic bottleneck every day between 6 am
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Figure 6.7: Illustrative representation of the validation datasets. Top Row: Three repre-
sentative snapshots from the Easy Validation set, showcasing common traffic patterns with
periodic congestion and the prominence of temporal dependencies. Bottom Row: Three
exemplar visuals from the Hard Validation set, highlighting moments of intense conges-
tion, significant vehicle interactions, and the emphasis on spatial dependencies.Figure and
caption from [Chekroun et al., 2024].

and 10 am. Traffic is mostly fluid in this dataset, interactions between vehicles are almost

negligible, and metrics mostly represent a model capability to capture temporal dependen-

cies.

• The Hard Validation set: the composition of four 440 minutes of highly congested traffic

bottlenecks (1,760 total data points). Metrics are evaluated independently and averaged

on those three sets to obtain the Hard metric. Traffic being highly congested, interactions

between vehicles are consequent, and validations metrics on this dataset represent a model

capability to capture spatial dependencies.

6.4 Real-time mesoscale traffic forecasting

Our primary emphasis is on single-step traffic prediction, which involves forecasting traffic con-

ditions just one minute ahead. Subsequently, we expand our approach to solve the problem of

multi-step traffic forecasting, which involves predicting traffic conditions several minutes into the

future.
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6.4.1 One-minute INRIX prediction

While LSTM is a correct baseline for both accuracy and inference time, they do not qualify as an

optimal solution for our data. Indeed, at a given time 𝑡, a traffic bottleneck at position 𝑘 will impact

both the short and long-term 𝑣𝑘𝑡 , but also the neighboring segments 𝑣𝑘−𝜖𝑡 and 𝑣𝑘+𝜖𝑡 . Hence, studied

data presents spatio-temporal relationships, while standard LSTM mostly focuses on temporal

relationships. To overcome this limitations, self-attention can be a powerful tool. Indeed, self-

attention can intuitively capture the dynamic dependencies between different segments of the road

network, recognizing how traffic conditions on one segment affect others. By attending to relevant

spatial and temporal patterns, self-attention enables traffic forecasting models to adapt and predict

congestion, flow changes, and bottlenecks. This intuitive capacity to capture inter-dependencies

makes self-attention a valuable asset in improving the accuracy and reliability of mesoscale traffic

forecasting, ultimately contributing to more effective traffic management strategies and reduced

congestion. Self-attention is mathematically represented in Equation 3.1.

Therefore, we designed a Self-Attention LSTM (SA-LSTM) whose output gate is augmented

with a self-attention layer on the spatial dimension. Our SA-LSTM is represented in Figure 6.8.

Figure 6.8: A single cell from an SA-LSTM network. The SA-LSTM is an LSTM in
which the output gate, in red, is augmented with self-attention.

To train the network to focus on more fine-grained spatial information without further increas-

ing the computational time of operations at inference, we leveraged the Laplacian Pyramid loss

[Denton et al., 2015]

Lap𝑛 (𝑥, 𝑥′) =
𝑛∑︁
𝑗=0

22 𝑗 ��𝐿 𝑗 (𝑥) − 𝐿 𝑗 (𝑥′)
��
1

where 𝐿 𝑗 (𝑥) is the j-th level of the Laplacian pyramid representation of 𝑥 [Ling and Okada, 2006].

It is a convolution-based loss able to weights the details at fine scales by capturing multi-scale

information. The Laplacian Pyramid build process is represented in Figure 6.9. It is used in

addition to the MSE loss generally used for LSTMs.
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Figure 6.9: Representation of the build process of a Laplacian Pyramid.

6.4.2 𝑛-step SA-LSTM

Section 6.4.1 studied one-minute forecasting. In practice however, we aim to forecast up to three-

minutes, i.e. have access to V𝑡+1,V𝑡+2,V𝑡+3. 𝑛-step forecasting is classically done via recursive

inference over the data. Therefore, inferring 𝐼3𝑡 is made in three successive inferences. First,

the network is fed with 𝐼𝑠𝑡−𝑠 and outputs 𝑣̃𝑡 . Then, the network is fed with 𝐼𝑠
𝑡−𝑠+1 ⊕ 𝑣̃

𝑡 to infer

𝑣̃𝑡+1, and so on. However, such methods suffer from accumulation error, as inaccuracies in each

inference will weigh on the next ones. Also, total inference time is at least 𝑛 times the inference

time of a single network inference. This method is therefore unfit for real-time inference. Another

method is the all-at-once technique, in which a single LSTM is fed 𝐼𝑠𝑡−𝑠 and trained to output

𝐼 𝑡+𝑛𝑡 . While significantly faster and offering better long-term forecasting, this method can lead to

underperformance on short term forecasting compared to 1-step LSTM which is not desirable in

our case of study.

We designed the 𝑛-step SA-LSTM, a highly supervised multi-layer SA-LSTM represented in

Figure 6.10, to take the best of both world: a fast method resilient to accumulation error offering

good short term and long term forecasting.

An 𝑛-step SA-LSTM is a 𝑛 layers SA-LSTM where:

• Each layer output is constrained via a loss to converge toward 𝑉𝑡+𝑖;

• Each 𝑖-th layer input is the concatenation of the network input 𝑣𝑡−𝑘−1...𝑣𝑡 concatenated

with previous layer output (𝑣̃𝑡+ 𝑗) 𝑗≤𝑖 . Layer 𝑖 also takes ℎ𝑖−1, 𝑐𝑖−1 as input.

Therefore, each layer have the same input and output dimensions but contains a different

number of cells - which is equal to the input sequence length. Indeed, if input sequence length is

8, first layer will have 8 cells, second layer 8 + 1 cells as we add the previous layer output, and so

on. The training of a 𝑛-step LSTM is sequential layer-wise as each layer is trained independently

until convergence.

• Epochs 0→ 𝑁: layer1 is trained, other layers are frozen and loss is only on 𝑣̃𝑡+1
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Figure 6.10: Each 𝑖-th layer of the 3-step SA-LSTM is trained to infer the forecasting at
time 𝑡 + 𝑖 through a shared weight fully connected network (FCN). We note ℎ𝑖

𝑓
and 𝑐𝑖

𝑓
the

outputs of the last cell of the 𝑖-th SA-LSTM.

• Epochs 𝑁→ 2×𝑁: layer2 is trained, other layers are frozen and loss is only on 𝑣̃𝑡+1

...

• Epochs (𝑛−1) ×𝑁→ 𝑛×𝑁: all layers are unfrozen and the network is fine-tuned.

6.5 Experimental results

Unless specified otherwise, all presented models have been trained with an AdamW [Loshchilov

and Hutter, 2017] optimizer set with a learning rate of 0.01 and a scheduler to make the learning

rate decrease by a factor of 10 when validation metrics stagnate or increase over 3 consecutive

validations. Training aims to minimize the Mean Square Error (MSE) between the prediction 𝑦̃

and the ground truth 𝑦 i.e., the value 1
𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2. For ablation studies, training seeds are

fixed, and gradient descent is not stochastic: every batch contains the whole dataset and hence is

an epoch.

6.5.1 One-minute forecasting

Ablation study over self-attention. Comparison between LSTM and SA-LSTM is presented

in Table 6.1. We observe that LSTM and SA-LSTM are on-par on the Easy validation set, and

SA-LSTM is significantly better on the Hard dataset. Hence, adding a self-attention layer to an

LSTM allows for enhancing the quality of spatial dependencies predictions with no degradation

of temporal dependencies.

Ablation study over Laplacian pyramid loss. Experimental results are presented in Table

6.2. Training with this loss gave better results on one-minute predictions, particularly on the Hard

dataset with a significant observed improvement. Indeed, this loss allows the model to focus the

training on high-frequency details, which are more important in the Hard set. We observed the

optimal depth to be 3 for our chosen hyper-parameters setting. Accuracy degrades for deeper
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Validation set

Method Self-Attention Easy Hard Time (ms)

LSTM
- 0.66 5.71 0.2
✓ 0.64 4.53 0.5

Table 6.1: Ablation study of LSTM and SA-LSTM on INRIX data for traffic forecasting.
Metric is MSE scaled by ×103. Time is inference time measured as the mean over 50,000
inferences after a warmup of 1,000 inferences.

depth than 3 because of the required pre-processing on tensors used for the Laplacian Pyramid

loss during training only: we need the dimension of the inputs of this loss to be a multiple of

2depth, and going to deep adds substantial empty padding. Therefore most of the input becomes

0, which improves training metrics but significantly decreases validation metrics.

Pyramid depth

Method Validation 0 1 2 3 4

SA-LSTM
Easy 0.64 0.64 0.63 0.63 0.65
Hard 4.48 4.31 3.94 3.59 4.12

Table 6.2: Ablation study of SA-LSTM trained with Laplacian Pyramid Loss using sev-
eral depths on INRIX data for traffic forecasting. Metric is MSE and scaled by ×10−3.
Inference time is unchanged compared to SA-LSTM, as the core network is the same.
Next experiments will fix the Laplacian Pyramid loss depth at 3.

Comparison with state-of-the-art methods. To validate our method, we compare inference

time and validations accuracy with state-of-the-art spatio-temporal forecasting methods in Table

6.3. ConvLSTM [Shi et al., 2015] is a type of LSTM in which state-to-state and input-to-state

transitions are replaced with convolutions. Self-Attention ConvLSTM [Lin et al., 2020] is a Con-

vLSTM whose transitions have been augmented with self-attention layers. Transformers [Vaswani

et al., 2017b] leverage attention to transform an input sequence into an output one by weighting

how each elements of the input sequence interact one with each other. Interestingly, convolution-

based methods trained with the Lap3 loss led to a drop in accuracy on the easy validation set, while

self-attention only methods experimentally benefit from it. SA-LSTM yields the best metrics on

the Hard validation set and is comparable with the best method on the Easy one. Moreover, infer-

ence time is significantly lower than other methods designed for spatio-temporal forecasting and

stays well under the intended millisecond.

Notably, both ConvLSTM and SA-ConvLSTM results on the Easy dataset degrade when train-

ing with a Laplacian Pyramid Loss but improve on the Hard dataset, as seen in the ablation in

Table 6.3. More generally, we observed the Laplacian Pyramid Loss to improve all methods on

the Hard validation dataset, however, SA-LSTM trained with Laplacian Pyramid Loss still out-

performs other variations. Our intuition is that ConvLSTM-based models are by design highly

focused on spatial dependencies and less on temporal ones than regular LSTM-based methods.
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Validation Set

Method Lap3 Loss Easy Hard Time (ms)

LSTM
✗ 0.66 5.71 0.2
✓ 0.61 4.09

ConvLSTM
✗ 0.63 5.15

3.7
✓ 0.68 5.13

SA-ConvLSTM
✗ 0.72 4.19

4.1
✓ 0.76 3.94

Transformers
✗ 0.65 5.03

1.8
✓ 0.64 4.71

SA-LSTM ✗ 0.64 4.52
0.5

✓ 0.63 3.58

Table 6.3: Comparison of different forecasting methods and ablation study over the Lap3
loss on INRIX data for traffic forecasting. Metric is MSE scaled by ×103.

Training with this loss worsens the spatial-dependency/ temporal-dependency analysis trade-off

and over-advantages the analysis of spatial predictions over temporal ones.

Overall, the model offering the best results on both the Easy and Hard datasets, so on temporal-

focused and spatial-focused prediction, is the SA-LSTM. An example heatmap prediction from

this network and corresponding traffic curve in different scenarios are represented in Figure 6.11

and Figure 6.14, in Section 6.6.

6.5.2 n-step forecasting

We compared different multi step forecasting methods and compared metrics on 𝑡 + 1, 𝑡 + 2 and

𝑡 +3. We also compare running time, as we want our solution to run under the millisecond.

Method Validation set 𝑡 +1 𝑡 +2 𝑡 +3 Total time (ms)

Recursive
Easy 0.63 0.83 1.24

1.8
Hard 3.58 6.51 10.67

All-at-once
Easy 0.70 0.82 0.96

0.5
Hard 4.31 5.58 7.43

𝑛-step
Easy 0.63 0.83 1.03

0.9
Hard 3.58 5.41 7.56

Table 6.4: Comparison of different multi step forecasting methods. Metrics are MSE
scaled by 103. Underlined running times are the one acceptable for our application case.

The most optimal results for 𝑡 + 1 are achieved using the recursive and 3-step methods. This

is expected since the LSTM weights dedicated to this inference were trained specifically for 1-

step forecasting using real INRIX data. In contrast, the underperforming all-at-once method is
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not as finely tuned for 1-step predictions. However, from 𝑡 + 2 onwards, the accumulation errors

begin to impact the recursive method, which then gets surpassed by both the all-at-once and 3-step

approaches, leading to similar performance metrics. This gap becomes even more pronounced at

𝑡 + 3, where both the all-at-once and 3-step methods significantly outpace the recursive method.

It’s worth noting that the 3-step LSTM offers the best overall results for both single-step and multi-

step predictions while maintaining sub-millisecond inference times. This highlights the method’s

proficiency in 1-step forecasting and its resistance to cumulative errors.

For our use case, 𝑛-step SA-LSTM appears as the best trade-off between inference time and

both single and multi-step inference: 𝑡+1, 𝑡+2 and 𝑡+3 predictions are on-par with our best results

overall while being faster than any other forecasting method except Vanilla LSTM. An example

heatmap prediction from this method and corresponding traffic curve in different scenarios are

represented in Figure 6.12 and Figure 6.15.

6.6 Qualitative observations

This section presents qualitative observations and analysis of some of our results. Presented qual-

itative representation comes in two forms of different granularity.

6.6.1 Heatmaps

We first present a comparison of ground truth and inferred speed profile plotted has heatmaps

for different forecasting methods and for both single step forecasting and multi-step forecasting.

These heatmaps bear 3D information and represent mean velocity of all the vehicles on each

segment of the studied part of the I-24 highway at each time step. While this kind of representation

can give an overall insight on the quality of the inference, it is in practice hardly analyzable with

the naked eyes. This subsection present heatmaps for single step Lap3 SA-LSTM, 3-step Lap3

SA-LSTM, and for the example of a failing case a 3 minute inference via the recursive method

with the Lap3 SA-LSTM.
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Figure 6.11: Comparison of heatmap generated from Lap3 SA-LSTM one-minute traffic
prediction with an heatmap generated from ground truth data. We observe inference to be
as expected in both fluid and congested setup. Speeds are in miles/hour, time is in minute.

Figure 6.12: Comparison of heatmap generated from 3-step Lap3 SA-LSTM three-minute
traffic prediction with an heatmap generated from ground truth data. We observe inference
to be as expected in both fluid and congested setup. Speeds are in miles/hour, time is in
minute.

84



CHAPTER 6. TRAFFIC FORECASTING FOR RL-BASED TRAFFIC DISSIPATION

Figure 6.13: Comparison of heatmap generated from recursive Lap3 SA-LSTM three-
minute traffic prediction with a heatmap generated from ground truth data. We observe
some blurr in the figure. This is due to the loss of accuracy caused by accumulation error.

6.6.2 Velocity curves in diverse stages of traffic

A more granular and easier to analyse type of representation is the plot of velocity curves in

different stages of traffic. Contrarily to heatmaps, a velocity curve focuses on a single timestep and

represents the relation between segment and mean velocity of the vehicles in it. This subsection

present velocity curves in four representative stages of traffic (free flow of timestep 24, bottleneck

of time 48, fully congested on time 180, and dissipation stage of timestep 216) for single step Lap3

SA-LSTM, 3-step Lap3 SA-LSTM, and for the example of a failing case a 3 minute inference via

the recursive method with the Lap3 SA-LSTM.
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(a) Timestep 24: During the free flow stage,
the prediction is able to generate the results
around the free flow speed, 70 mile/hr.

(b) Timestep 48: A bottleneck start to form
between segments 11 - 15. The prediction
presents the same velocity change pattern
with an accurate spatial location of the bot-
tleneck as ground truth.

(c) Timestep 180: During the fully con-
gested stage, the model is able to predict the
propagation of the upstream shockwaves.

(d) Timestep 216: During the dissipation
stage of the congestion, the prediction is
able to capture the speed recovery at the bot-
tleneck and upstream.

Figure 6.14: Comparison between the ground truth and the one-minute predictions from
the Lap3 SA-LSTM during different stages of the congestion lifecycle. Velocities are in
mph.
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(a) Timestep 24: Prediction of free flow
stage align with the ground truth around free
flow speed.

(b) Timestep 48: A bottleneck start to form
between segments 11 - 15. The prediction
presents the same velocity change pattern
with an accurate spatial location of the bot-
tleneck as ground truth.

(c) Timestep 180: During the fully con-
gested stage, the prediction captured the pat-
tern of shockwave, while the prediction of
absolute speed value has diversion from the
ground truth. The predicted locations of the
bottleneck and shockwaves are reliable.

(d) Timestep 216: During the dissipation
stage of the congestion, the prediction is
able to capture the speed recovery at the bot-
tleneck and upstream.

Figure 6.15: Comparison between the ground truth and the three-minute predictions from
the 3-step Lap3 SA-LSTM during different stages of the congestion lifecycle. Velocities
are in mph.
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(a) Timestep 24: Prediction of free flow
stage align with the ground truth around free
flow speed.

(b) Timestep 48: A bottleneck start to form
between segments 11 - 15. The prediction
presents the same velocity change pattern
with an accurate spatial location of the bot-
tleneck as ground truth. The lowest speed at
the bottleneck is underestimated.

(c) Timestep 180: During the fully con-
gested stage, the prediction captured the pat-
tern of shockwave, while the prediction of
absolute speed value has diversion from the
ground truth.

(d) Timestep 216: During the dissipation
stage of the congestion, the prediction is
able to capture the speed recovery at the bot-
tleneck and upstream.

Figure 6.16: Comparison between the ground truth and the three-minute predictions from
the recursive Lap3 SA-LSTM during different stages of the congestion lifecycle. Veloci-
ties are in mph.
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6.7 Conclusion

This section introduces the concept of leveraging autonomous driving technologies to generate so-

cial benefits, in particular for traffic dissipation. It presents the CIRCLES consortium and the work

of this community to build a hierarchical speed planner utilizing diverse methods and technologies

from several fields, and the MegaVanderTest, the biggest CAV experiment so far (as of January

2024) where a fleet of 100 vehicles leveraged those technology to gather traffic data and test the

designed system. This section focuses in particular on my main contribution of this project, which

is the problem of real-time mesoscale traffic forecasting. Hence, we present a fast and accurate

method able to extract and analyze both temporal and spatial dependencies of traffic data series.

This approach has been analyzed through an extensive ablation study of its components, and com-

pared with state-of-the-art methods for spatio-temporal forecasting to highlight how adapted it

is for the studied task. Lastly, we introduced a novel technique for generalization of one-step

forecasting method to multi-step forecasting. This method showed to provide the best trade-off

inference time on both short-term and long-term forecasting for our considered use case.
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This thesis explored three approaches where expert knowledge, in the form of expert data or

supervised network trained on such expert data, are leveraged in a reinforcement learning setup.

Firstly, this dissertation presents the GRI framework and its application to end-to-end au-

tonomous driving with the GRIAD algorithm. GRI is an approach leveraging both expert data and

exploration data gathered by an online agent for model-free deep reinforcement learning. GRI lays

on the simplifying hypothesis that expert data represents a perfect behavior, and are thus always

associated with a constant maximal reward. Data from both sources are sampled indistinguishably

by the neural network for the training. GRIAD applied the GRI approach to autonomous driving

on the CARLA simulator and trained a reinforcement learning network on the latent space of a

pre-trained CNN encoder. Ablation studies and experimental and qualitative analysis of GRI and

GRIAD showed the interest of this method. GRIAD won the 2021 CARLA Challenge, and was

ranked first on the CARLA leaderboard for around 6 months. It is worth noting that GRIAD has

been trained on real data on a Valeo proprietary simulator, was implemented on real vehicles by

Valeo engineers and was tested on the road in Créteil, France. However, GRIAD has some limita-

tions, which have been tackled by other research. Adaptive General Reinforced Imitation (AGRI)

[Olsen, 2022] aims at generalizing the GRI approach to incorporate an adaptive demonstration

on exploration ratio instead of the fixed one. Reinforced InterFuser [Markhus, 2023] proves that

GRIAD-like approaches can benefit from sensor fusion approaches and use LiDAR sensors on top

of cameras. Nonetheless, while both approaches offer clear and interesting insights on GRIAD

limitations they failed to match state-of-the-art performance.

Secondly, this thesis introduces MBAPPE, a method leveraging a supervised neural network

trained via IL on expert data to allow and enhance MCTS exploration in a partially-learned en-

vironment for mid-to-end autonomous driving on the nuPlan simulator. The supervised neural

network guides the MCTS exploration phase by providing a prior on the ego agent trajectory,

and predicts trajectories of other agents in the scene to allow a more reliable MCTS simulation

phase. Ablation study was conducted to assess the importance of a well designed prior and conti-

nuity constraints to limit exploration to comfortable action for the ego agent within the MBAPPE

setup. A comparison with state-of-the-art method showed the interest of this approach which can

be seen as a fast improvement operator over existing prediction methods. The interpretability and

explainability of this approach is also emphasized via qualitative analysis of MBAPPE behavior

and thought process on some scenarios. MBAPPE provides state-of-the-art metrics on a nuPlan

benchmark, and a preliminary draft of MBAPPE was awarded the Honorable Mention for Innova-

tion Award at the nuPlan challenge 2023. However, MBAPPE still holds some limitations, often

related to implementation. In particular, lane width considered by the MCTS during the simula-

tion phase was, at time of publishing and evaluation, not retrieved from the API but were hard

coded to the value found in most scenarios instead. This can lead to difficulties in some turning

or pickup dropoff scenarios. Moreover, the MCTS output could be leveraged to refine the prior

in a continuous learning setup, thus allowing a circle of self-improvement. Also, better results

could be achieved with a more complex learned prior inferred for each node [Schrittwieser et al.,

2019, Chen et al., 2020b], as well as learning a bootstrapped value network to estimate node ex-

pected returns in addition to the current reward, but this would require more network inferences

92



CHAPTER 7. CONCLUSION

which severely harmed the execution time in our experiments.

Lastly, this thesis aims at going further with the idea of autonomous driving and utilize it to

serve a greater cause than commercial use by introducing a novel approach leveraging CAVs for

traffic dissipation in mixed traffic autonomy. It presents the global hierarchical control frame-

work designed by the CIRCLES consortium, composed of decentralized vehicle controllers and

a centralized speed planner. In particular, it introduces a real-time mesoscale traffic forecasting

method that is leveraged by the RL-based speed planner to generate a target speed for all the con-

nected vehicles in the designated area. Ablation studies are presented to justify the design of the

traffic forecasting network. Comparison with state-of-the-art methods shows that this approach

outperforms comparable ones for our given task. Finally, single step forecasting is generalized to

multi-step forecasting with the novel n-step LSTM approach, demonstrated to offer the best trade-

off in accuracy through successive time steps and execution time. However, why experimental

results shows our method efficiency for mesoscale traffic forecasting in real time on the INRIX

traffic dataset, our validation method fails to demonstrate whether this approach will allow an im-

proved speed planning in the RL loop, on the global system scale. To measure its efficiency on the

global pipeline, the developed method is planned on being utilized in the next MegaVanderTest

organized by the CIRCLES consortium, which will take place in a couple of years.

Overall, this thesis explored different concepts relative to autonomous driving and tackle them

by integrating expertise in reinforcement learning setups via diverse approaches.
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Appendix A
Résumé en français

Chapitre 1 : Introduction Ce chapitre introduit la thèse en expliquant le contexte de la

conduite autonome et l’importance de l’intégration des connaissances expertes dans les systèmes

d’apprentissage par renforcement pour améliorer les performances de ces systèmes. Il décrit égale-

ment les objectifs de la thèse et donne un aperçu des publications et distinctions obtenues.

Chapitre 2 : Revue de la littérature : des modèles cinématiques à la planification de
mouvement non fondée sur l’apprentissage Ce chapitre présente une révue des méthodes

existantes de planification de mouvement non fondées sur l’apprentissage. Il explore les modèles

fondés sur la cinématique, les interactions entre agents, les approches probabilistes et les modèles

hiérarchiques.

Chapitre 3 : Revue de la littérature : des modèles d’apprentissage profond à la
planification de mouvement fondée sur l’apprentissage Ce chapitre se concentre sur les

approches fondées sur l’apprentissage automatique pour la planification de mouvement. Il aborde

les composants des réseaux neuronaux, l’apprentissage par imitation pour la conduite autonome

de bout en bout, ainsi que les approches par apprentissage par renforcement pour la planification

de mouvement.

Chapitre 4 : Distillation d’expertise dans le RL sans modèle pour la conduite au-
tonome de bout en bout Ce chapitre propose une méthode novatrice pour intégrer des con-

naissances expertes dans des systèmes d’apprentissage par renforcement sans modèle, appliqués à

la conduite autonome de bout en bout. La méthode, appelée GRIAD (General Reinforced Imitation

for Autonomous Driving), distille les connaissances expertes dans l’apprentissage d’un agent, en

combinant apprentissage par imitation et apprentissage par renforcement. Le chapitre comprend

une étude approfondie de l’algorithme dans des environnements de simulation du simulateur Mu-

joco pour valider l’efficacité de la méthode. Il présente également une évaluation sur le simulateur

CARLA, démontrant que l’approche surpassait les méthodes classiques d’apprentissage par ren-

forcement, notamment sur les benchmarks NoCrash et sur le CARLA Leaderboard. Une analyse

qualitative des limites de la méthode est également abordée.
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Chapitre 5 : Exploitation des connaissances apprises dans le RL fondé sur un mod-
èle pour la conduite autonome de milieu à fin Dans ce chapitre, une approche hybride est

développée pour la conduite autonome de milieu à fin. Un réseau neuronal, préalablement entraîné

via l’apprentissage par imitation, est utilisé comme guide dans une méthode d’apprentissage par

renforcement fondé sur modèle, exploitant l’exploration par recherche d’arbre de Monte-Carlo

(MCTS). L’algorithme, appelé MBAPPE (MCTS-Built-Around Predictions for Planning Explic-

itly), est testé dans l’environnement du simulateur nuPlan. Le chapitre inclut des études d’ablation

qui analysent les effets des contraintes de continuité et de l’intégration des priorités apprises. Il met

également en avant la capacité du système à fournir une meilleure interprétabilité des décisions

prises par l’algorithme, ce qui est crucial pour des applications de conduite autonome sécurisées.

Chapitre 6 : Prévision du trafic pour la dissipation du trafic fondée sur le RL Ce

chapitre présente un cadre de contrôle hiérarchique dans lequel un planificateur de vitesse central-

isé, entraîné par renforcement, guide une flotte de 100 véhicules autonomes et connectés sur les

autoroutes afin de dissiper les embouteillages. Cette recherche, menée par le consortium améri-

cain CIRCLES, a conduit à une expérience réelle sur l’autoroute I-24 à Nashville, Tennessee, aux

États-Unis. En particulier, ce chapitre développe un module de prévision du trafic à l’échelle mé-

soscopique en temps réel, qui peut être exploité par le planificateur de vitesse centralisé entraîné

par renforcement. Ce module de prévision est capable de prédire l’état du trafic à court terme (une

minute) et à moyen terme (plusieurs minutes). Le chapitre présente les résultats expérimentaux

de ce module de prédiction de trafic, obtenus à partir de données réelles issues de la base de don-

nées INRIX, et démontre son efficacité sur différents types de trafic observés, en le comparant à

d’autres méthodes de l’état de l’art en prédiction spatio-temporelle.

Chapitre 7 : Conclusion Le dernier chapitre récapitule les principales contributions de la

thèse, les résultats obtenus et propose des perspectives pour des recherches futures dans le domaine

de la conduite autonome basée sur l’apprentissage par renforcement.
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MOTS CLÉS

Voiture autonome, Apprentissage par renforcement, Connaissance Experte

RÉSUMÉ

Deux décennies après le premier défi de conduite autonome, qui n’a vu aucun gagnant réussir à naviguer 240 kilomètres
de route désertique dans le désert de Mojave, les évolutions en apprentissage automatique ont permis d’importants
progrès dans ce domaine. En particulier, la création de simulateurs open-source a facilité la recherche en matière
de conduite autonome en permettant d’outrepasser les contraintes réglementaires et en offrant un moyen abordable
de collecter des données. Cela, combiné à la montée des réseaux de neurones, a accéléré le développement de
méthodes de plus en plus efficaces. Les recherches récentes en matière de planification de mouvement se concentrent
principalement sur l’apprentissage par imitation et, dans une moindre mesure, sur l’apprentissage par renforcement.
En apprenant à partir de données, les méthodes d’apprentissage automatique sont plus adaptables que celles basées
sur des systèmes de règles, car elles dépendent moins d’une représentation parfaite et cohérente de l’environnement.
Néanmoins, les approches par imitation restent limitées dans la compréhension des conséquences à long terme de
leurs actions et rencontrent des problèmes de robustesse résultant d’une inadéquation de distribution. En revanche,
l’approche par renforcement intègre des informations de retour à long terme et surmonte avec succès les problèmes
de distribution en apprenant par essais et erreurs. Cependant, cette approche souffre d’inefficacité d’échantillonnage,
d’instabilité pendant l’entraînement et d’un manque de garanties de convergence. Cette thèse vise à synergiser les points
forts des deux approches tout en atténuant leurs faiblesses en intégrant des connaissances expertes avec des méthodes
d’apprentissage par renforcement profond pour différentes applications liées à la conduite autonome.

ABSTRACT

Two decades after the first autonomous driving challenge, which had no winners successfully navigating a 240 kilometers
desert road in Mojave, the advancement of machine learning has brought remarkable progress to this field. Notably, the
creation of open-source simulators made research for autonomous driving easier by sidestepping regulatory constraints
and providing an affordable way to collect data. This, combined with the rise of neural networks, has expedited devel-
opment of increasingly efficient methods. Recent research for motion planning mostly focuses on imitation learning (IL)
and, to a lesser extent, on reinforcement learning (RL). By learning from data, machine-learning based methods are more
adaptable than rule-based ones as they rely less on perfect and consistent representation of the environment. Neverthe-
less, IL approaches remain limited in grasping the long term consequences of their actions and suffer robustness issues
stemming from distribution mismatch. Conversely, RL incorporates long-term return information and successfully over-
comes distribution mismatch by learning through trial-and-error. However, it suffers from sample inefficiency, instability
during training, and lacks of convergence guarantees. This thesis aims to synergize the strengths of both approaches
while mitigating their weaknesses by integrating expert knowledge with deep reinforcement learning methods for different
autonomous driving applications.

KEYWORDS

Autonomous driving, Reinforcement learning, Expert knowledge
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