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Introduction
Superconductivity has attracted the attention of the world community since its dis-

covery. This applies not only to fundamental science but also to many applications that
can utilize the unusual properties of superconductors. However, the first superconductors
could work only at ultra-low temperatures, which made their use in real devices very dif-
ficult. A great step towards applying superconductivity to everyday life was the discovery
of High-Temperature Superconductors (HTS) in 1986 [Bednorz, ]. These superconductors
can show their superconducting properties already at the temperature of liquid nitrogen
(77.4 K), which is much more accessible and easier to use than liquid helium (boiling point
4.2 K). As a result, high-temperature superconductors have found applications in areas
where they have no competitors - high magnetic fields and high electric power transmis-
sion.

Despite the high critical temperature, the structure of these superconducting crystals
is very complex, and their superconducting properties are extremely sensitive to the oxy-
gen ion content. This severely limited their field of application for a long time. With the
development of technology, scientists have learnt how to successfully scale down HTS de-
vices to micro and nano sizes. Superconducting Quantum Interference Devices (SQUID)
for ultra-sensitive measurement of magnetic fields [Clarke, 2004], nanowires for the de-
tection of single photons [Esmaeil Zadeh, 2021] for various applications in astronomy,
quantum optics, and quantum informatics have been successfully realized. However, fur-
ther improvements in the properties of the devices are needed, which requires a better
understanding of how electron transport occurs in such systems. It is known that HTS,
including YBa2Cu3O7−δ, are type II superconductors, so Abrikosov vortices play a major
role in the transport properties. The present work is devoted to the study of their influence
in nanoscale samples.

This work is devoted to the experimental study of transport characteristics of YBa2Cu3O7−δ

nanowires and the theoretical study of how vortex patterns affect the transport charac-
teristics of nanowires. The work is conventionally divided into three parts. The first part
contains an introduction to the field of superconductivity and consists of two chapters:
Chapter 1 contains a brief history of the study of superconductivity and a more detailed
description of the main theoretical concepts actively used in the future, and Chapter 2
describes the history and properties of HTS. Part II presents our experimental results on
the transport characteristics of YBa2Cu3O7−δ nanowires. Chapter 3 gives an overview
of the fabrication methods of HTS nanowires and describes the fabrication process of
YBa2Cu3O7−δ nanowires used in this work. Chapter 4 presents the main experimental

xii



results on the measurements of transport properties of our samples. The temperature de-
pendencies of the resistivity, which we analyze by different existing theories, are discussed.
The dependencies of the current-voltage characteristics over a wide temperature range are
also presented, which we try to explain within the framework of existing vortex motion
models. The last section of the chapter is devoted to the Shapiro experiment. The third
part, contains our theoretical studies carried out within the framework of Time-Dependent
Ginzburg-Landau (TDGL) theory. It opens with Chapter 5 which describes the theoreti-
cal formalism and the scheme used in the numerical calculations. Chapter 6 contains our
theoretical results. It considers the motion of vortex-antivortex pairs in a nanoscale bridge
in the presence of parallel linear defects. The calculated voltage-current characteristics
were obtained also in the presence of electromagnetic radiation (the Shapiro experiment).
The results include fractional Shapiro steps (that were previously experimentally obtained
in Chapter 4) and sharp discontinuities in the voltage-current characteristics associated
with the change of oscillation modes.
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Chapter 1
A pinch of superconductivity

In this chapter we give a brief description of the phenomenon of superconduc-
tivity. Starting with a historical overview, we then outline in more detail the
main theoretical concepts used in our work.

Objectives
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Chapter 1. A pinch of superconductivity

1 A brief history of superconductivity

On 26 October 1911, Heike Kamerlingh Onnes made a groundbreaking discovery in
his laboratory in Leiden: the sudden transition of mercury to zero resistance [Onnes,
1911]. The historical representation of the resistance versus temperature of mercury can
be observed in Fig.1.1. This experiment marked the identification of a novel phenomenon,
leading to the establishment of a new field known as superconductivity. However, after
22 years, it became evident that zero resistance was not the sole characteristic of the
superconducting phase. In 1933, Walther Meissner and Robert Ochsenfeld found that a
sample of superconducting tin completely repels a magnetic field [Meissner, 1933].

Figure 1.1 – Mercury resistance versus temperature from the work [Onnes, 1911].

The initial theoretical framework for the superconductivity phenomenon was provided
by the London brothers Fritz and Heinz London [London, 1935]. They incorporated equa-
tions describing zero resistance and magnetic field expulsion into Maxwell’s equations. Al-
though this approximation allowed for the description of the electrodynamics of supercon-
ductivity, it did not consider its quantum nature and posed a challenge with the negative
surface energy problem. A significant advancement in understanding superconductivity
occurred in 1950 when Vitaly Ginzburg and Lev Landau introduced a phenomenological
theory [Ginzburg, 1950] based on Landau’s theory of second-order phase transitions. This
approach involved decomposing the free energy into degrees of the order parameter — a
complex function whose modulus is proportional to the density of superconducting elec-
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1. A brief history of superconductivity

trons. Ginzburg and Landau’s theory addressed both issues posed by the London brothers’
theory simultaneously. It provided predictions for temperature and field dependencies near
the transition temperature and introduced a new characteristic of superconducting mate-
rials - the coherence length. At the same time, experimental identification of the isotope
effect [Maxwell, 1950] played a crucial role in understanding the nature of superconduc-
tivity, revealing the connection between lattice vibrations and superconducting electrons.
Herbert Frölich [Fröhlich, 1950] first expressed this idea, but the final result was obtained
by Leon Cooper [Cooper, 1956]. He and his colleagues John Bardeen and John Schrieffer
proposed the first successful microscopic theory [Bardeen, 1957]. The core concept was
that lattice vibrations could attract electrons, leading to the formation of pairs known as
Cooper pairs. This theory successfully explained experimental data and became one of
the triumphs of condensed matter physics.

Subsequent works by Lev Gorkov, Alexei Abrikosov [Abrikosov, 1964] and Gerasim
Eliashberg [Eliashberg, 1960] further developed this theory within the framework of quan-
tum field approach. Gorkov [Gorkov, 1959] demonstrated that the Ginzburg-Landau the-
ory is a limiting case of the Bardeen Cooper Schrieffer (BCS) theory, establishing a mi-
croscopic connection between these two theories. In the same year, Abrikosov [Abrikosov,
1969] analysed the Ginzburg-Landau theory and showed the possibility of superconduc-
tors of the second kind, where the magnetic field penetrates in the form of quantum lines
known as vortices (Abrikosov’s vortices). This analysis was soon experimentally verified,
opening up a new field of study into the behaviour of Abrikosov vortices.

In 1962, while still a graduate student, Brian Josephson discovered a completely new
effect - the tunnelling of Cooper pairs [Josephson, 1962]. In fact, two effects were predicted:
stationary and non-stationary Josephson effects. Both phenomena were soon validated
through experimental work [Anderson, 1963; Clark, 1968], and this discovery laid the
foundation for an entire scientific field. Furthermore, applications of devices based on the
Josephson effect are now commonplace in electronics, medicine, and informatics.

The next breakthrough in superconductivity came from the experimentalists. In
1987, Karl Müller and Johannes Bednorz discovered ceramics with a superconducting
transition temperature of 93 K for YBa2Cu3O7−δ [Wu, 1987b], followed by 107 K for
Bi2Sr2CaCu2O8+δ [Maeda, 1988]. The new materials could not be described within the
framework of the BCS theory. It also turned out that their properties are extremely sensi-
tive to the concentration of oxygen and exhibited a complex phase diagram, incorporating
phenomena such as anti-ferromagnetism, pseudo-gap, and strange metal phenomenon be-
haviour. This discovery triggered a new wave of experimental and theoretical investigations
into the complex nature of these materials.

The evolution of superconductivity does not end here, and with the development of
fabrication and measurement equipment, new phenomena are emerging on scales that were
previously inaccessible. However, these recent developments belong to current research and
do not yet belong to the history of the field, despite its rapid development.
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Chapter 1. A pinch of superconductivity

Figure 1.2 – Timeline of different critical temperatures discovered. Adapted from [Benne-
mann, 2008].

2 London equations

The initial successful attempt to provide a theoretical description of the superconduc-
tivity phenomenon was undertaken by brothers Fritz and Heinz London [London, 1935].
They formulated the Maxwell equations in a manner that accounted for two crucial ex-
perimental observations: zero resistance and ideal diamagnetism.

When a current flows without resistance, the external field simply imparts acceleration
to the electrons. This can be expressed in the form of Newton’s second law as:

m
dv
dt

= −eE, (1.1)

where m - is an electron mass, e - is an electron charge, E - electric field. The expression
for the current density, j = −neev, allows us to rewrite the equation using the electron
density ne:

Λdj
dt

= E, (1.2)

where Λ = m
nee2 . This equation constitutes the first London equation. It elucidates the

phenomenon that in a stationary case with a constant superconducting current, j = const,
no electric field E = 0 is required, illustrating dissipation-less flow. Using one of the
Maxwell equations ∗

∇ × E = −1
c

∂B
∂t

(1.3)

we can express:
∇ ×

(
Λdj
dt

)
= −1

c

∂B
∂t
, (1.4)

∗. Here and later in this Chapter, we use CGS units.
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2. London equations

where B represents a local magnetic induction.
Using another Maxwell equation

∇ × B = 4π
c

j (1.5)

we can express it as an equation for magnetic induction:

Λ c

4π
d

dt
∇ × (∇ × B) = −1

c

∂B
∂t
. (1.6)

Collecting everything on the left side and using the formula from vector calculus ∇× (∇×
B) = ∇(∇ · B) − ∆B, we can rewrite it as:

d

dt
(Λ c2

4π∆B − B) = 0. (1.7)

The general solution of this equation is:

Λ c2

4π∆B − B = const, (1.8)

where the constant const can be determined from the condition that far from the bulk
superconductor’s edges, both magnetic field and superconducting current are zero. In
other words, const = 0 leads to the second London equation:

∆B − 1
λ2
L

B = 0 (1.9)

where λL =
(

Λc2

4π

)1/2
=
(

mc2

4πnee2

)1/2
represents the London penetration depth. In this

form, this equation is the Helmholtz equation for the magnetic induction B with a solution
of a decaying exponent.

In the considered effective 1D case, where x = 0 is a superconductor-vacuum interface
and the superconductor is at x > 0, and an external magnetic field B0 is applied in the z
direction, the problem becomes one-dimensional and depends solely on x:

d2

dx2B(x) − 1
λ2
L

B(x) = 0. (1.10)

With respect to the boundary conditions B(x = 0) = B0 and B(x → ∞) = 0, the
corresponding solution can be written as

B(x) = B0e
− x

λL . (1.11)

Thus, the magnetic field penetrates the superconductor over a very short distance and
exponentially decays on a scale of λL, justifying the name "penetration depth". Typically,
in real samples, the London penetration depth is of the order of 10−8 − 10−7 m. In our
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Chapter 1. A pinch of superconductivity

considerations, λL does not depend on temperature, which contradicts the experimental
results. This contradiction is addressed in the so-called two-fluid model.

0 100 200 300 400 500

x (nm)

0.0

0.5

1.0

B
/B

0

λL = 10 nm

λL = 50 nm

λL = 100 nm

Figure 1.3 – The penetration of the magnetic field into the superconductor for different
London penetration depth, according to the equation 1.11

In the two-fluid model, all electrons are divided into two electronic fluids: one is a fluid
of normal electrons with density nn, and the other is a fluid of superconducting electrons
with density ns. The latter depends on the temperature ns(T ) and equals zero at T = Tc.
The empirical formula for the temperature dependence of the London penetration depth
λL is given by:

λL(T ) = λL(0)(
1 − (T/Tc)4

)1/2 . (1.12)

where λL(0) is the London penetration depth at zero temperature.
The London model was the first theory that described key superconductor properties,

including- zero resistance and the Meissner effect. Although lacking microscopic expla-
nations, it provides a correct description of superconductor electrodynamics. Despite the
complexity of contemporary theoretical instrumentation, this simple model can still be
very efficient in some practically important limits.

3 Ginzburg-Landau theory

3.1 Ginzburg-Landau free energy

The next significant step towards understanding superconductivity was the develop-
ment of the phenomenological theory, known as the Ginzburg-Landau (GL) theory, by
Landau and Ginzburg in 1950 [Ginzburg, 1950]. This theory builds upon the concept of
second-order phase transitions, previously formulated by Landau in 1937 [Landau, 1937].
In second-order phase transitions, the state of matter changes continuously, but the sym-
metry undergoes a sharp jump. An illustrative example of such a transition is the fer-
romagnetic transition, where the rotational symmetry is lost, and the sample assumes
a specific direction corresponding to the magnetisation vector. Applying this approach
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3. Ginzburg-Landau theory

to superconductivity involved defining the symmetry of the superconducting transition,
which Landau and Ginzburg characterized as the appearance of the order parameter ψ —
a macroscopic wave function describing the superconducting state. Once the symmetry is
identified, the next step is to formulate the expansion of the free energy in powers of the
order parameter. Since the wave function ψ is a complex function, the free energy takes
the form:

Fs = Fn + a|ψ|2 + (b/2)|ψ|4 + . . . (1.13)

Here, Fs and Fn represent the free energies of the superconducting and normal states,
and a and b are the energy expansion parameters. At temperatures above Tc, where
there is no superconducting phase, the minimum energy corresponds to Fn, resulting in
ψ = 0. However, at temperatures T < Tc, the superconducting state is determined by the
minimum of the free energy, leading to the following equation:

∂Fs
∂|ψ|

= 2a|ψ| + 2b|ψ|2 = 0. (1.14)

There are two solutions to the Eq.1.14: one is |ψ| = 0, corresponding to the normal state,
and the other is |ψ| = −a/b, corresponding to the superconducting state. To ensure the
superconducting state, the square of the order parameter must be positive at T < Tc. This
is possible if the parameter a < 0 at T < Tc. Consequently, a > 0 at T ⩾ Tc to satisfy the
normal state condition above the critical temperature.

By defining the parameter a in this way, the parameter b must be positive both above
and below the superconducting transition, allowing us to keep it constant (b > 0). Since
the total energy expansion is provided near the critical temperature of the superconducting
transition T ≈ Tc, we can approximately expand a in powers of (T − Tc) and keep only
the first order of T :

a = α(T − Tc), (1.15)

where α > 0 is some positive function that depends on T .

3.2 Ginzburg-Landau equations

So far, we have considered only the coordinate-independent homogeneous case. How-
ever, when placing a superconductor in a magnetic field, London’s equation predicts the
appearance of a superconducting current along the edges. This current introduces inho-
mogeneity to the order parameter across the volume of the superconductor. Consequently,
it becomes necessary to account for the proportional term |∇ψ|2, which plays the role of
the kinetic energy.

For a superconductor in a magnetic field, Landau and Ginzburg proposed expressing
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the Gibbs free energy in the following form:

Gs = Gn +
∫

d3r

{
a|ψ(r)|2 + b

2 |ψ(r)|4 + 1
2ms

∣∣∣∣[−ıℏ∇ − es
c

A(r)
]
ψ(r)

∣∣∣∣2
+ 1

8π (∇ × A)2(r) − 1
4π∇ × A(r) · H0(r)

}
,

(1.16)

where Gn is the free Gibbs energy of the normal state, H0(r) is the homogeneous external
magnetic field, A(r) is the vector potential associated with the magnetic field, es, ms are
charge and mass of the superconducting electron, that according to the microscopic theory
equals es = 2e, ms = 2me, where e, me are charge and mass of the ordinary electron, ℏ is
the reduced Plank constant and c is the speed of light in vacuum. Using variance calculus,
we can minimize this functional with respect to δA and δψ consecutively. This process
leads to the derivation of the famous Ginzburg-Landau equations: aψ + b|ψ|2ψ + 1

4m

(
ıℏ∇ + 2e

c A
)2
ψ = 0

− ıℏe
2m (ψ∇ψ∗ − ψ∗∇ψ) − 2e2

mc |ψ|2A = c
4π∇ × (∇ × A)

(1.17)

The Ginzburg-Landau equations need to be supplemented with appropriate bound-
ary conditions to fully characterise the behaviour of the order parameter. Ginzburg and
Landau originally considered the condition of the absence of superconducting current flow
through the superconductor-vacuum boundary. This boundary condition is expressed as:

n · (ıℏ∇ + 2e
c

A)ψ = 0 (1.18)

where n is a normal vector to the superconductor-vacuum boundary.
Later de Gennes [De Gennes, 2018] suggested a generalised version of this condition

suitable for the superconductor-normal metal interface

n · (ıℏ∇ + 2e
c

A)ψ = ıγ0ψ (1.19)

where γ0 is a real constant that parameterizes the proximity effect: the extent to which
the order parameter diffuses into normal metal.

The second equation is the Maxwell equation with the superconducting current that
is defined as:

js = − ıℏe
2m (ψ∇ψ∗ − ψ∗∇ψ) − 2e2

mc
|ψ|2A. (1.20)

3.3 Two characteristic lengths and two types of superconductors

Ginzburg-Landau equations 1.17 inherently contain two characteristic lengths.
One of this lengths is a coherence length ξ, which is defined as follows

ξ =
√

ℏ2

4m|a|
. (1.21)
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3. Ginzburg-Landau theory

This length describes the scale over which the order parameter changes spatially. The
microscopic interpretation of the coherence length, as later understood in terms of the
BCS theory, relates to the size of the Cooper pairs.

The corresponding length scale for the vector field variable A(r) is the penetration
depth, and it is defined as:

λ =
√

mc2b

8πe2|a|
. (1.22)

Remarkably, the meaning of this penetration depth is completely the same as the one
in the London equations as this length scale is associated with the spatial extent to which
the magnetic field penetrates the superconductor. And indeed, it can be demonstrated
that using the norm |ψ(r)|2 = ns/2 this definition equals the London penetration depth
λL defined in the Eq.1.12.

Both the coherence length ξ and the penetration depth λ depend on temperature, as
they are influenced by the temperature-dependent parameter a(T ), which, near the critical
temperature, varies as a(T ) ∝ (Tc−T ). Thus, both lengths approximately have an inverse
square root temperature dependency ∝ (Tc − T )−1/2.

To establish a dimensionless parameter independent of temperature, the Ginzburg-
Landau parameter κ is introduced:

κ = λ

ξ
. (1.23)

This parameter is crucial in the Ginzburg-Landau theory and defines the criteria for dis-
tinguishing between two qualitatively different types of superconductors: type I and type
II. The exact criteria are given by:

κ <
1√
2

Type I

κ >
1√
2

Type II
(1.24)

This criterion determines the sign of the surface energy at the superconductor-normal
metal boundary, leading to important physical consequences. For superconductors of the
second type (type II), the surface energy is negative and they possess two critical magnetic
fields. Below the first critical field Hc1 , the usual Meissner effect occurs and the magnetic
field penetrates into the superconductor up to the penetration depth λL. Beyond this field,
magnetic quantum filaments, called Abrikosov vortices, enter the superconductor, and the
superconductor transitions to the so-called mixed state. In contrast, superconductors of
the first type (type I) transition completely to the normal state upon reaching their only
critical field.
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Chapter 1. A pinch of superconductivity

Figure 1.4 – Phase diagrams of a) the type-I and b) the type-II superconductors.

4 Abrikosov vortex

In 1957, Alexei Abrikosov, a student of Lev Landau, used the Ginzburg-Landau theory
to demonstrate the entry of magnetic quantum vortices into a superconductor of the second
kind and illustrated how they form a lattice structure ∗. This discovery gave rise to a broad
new direction in the field of superconductivity. The vortices discovered by Abrikosov are
now commonly known as the Abrikosov vortices, and the lattice they form is referred to
as the Abrikosov lattice. The existence of these vortices and their lattice arrangement
has been substantiated by numerous experiments, including direct observations [Connolly,
2008; Stolyarov, 2018; Grigorieva, 2007; Ning, 2010; Vinnikov, 2003], making them integral
to understanding superconductivity.

Consider a bulk superconductor with a cylindrical hollow with radius ∼ ξ in the ex-
ternal magnetic field H. Then, superconducting current will screen this magnetic field
circulating around the hollow part on the length λ. Let us take a closed loop C around
this hollow cylinder. If we place this loop at a distance larger than λ then there supercon-
ducting current is zero js = 0 and, according to Eq. 1.20 we can write an equation

− ıℏe
2m (ψ∇ψ∗ − ψ∗∇ψ) − 2e2

mc
|ψ|2A = 0. (1.25)

Far from the cylinder the amplitude of the order parameter is constant and we can express
it as ψ = ψ0e

iθ, θ being the phase of the order parameter. Rewriting the last equation
using this expression and integrating it over the loop C, we obtain the following result∮

ℏ∇θdl −
∮ 2e

c
Adl = 0. (1.26)

∗. The original paper contained an error as it suggested a square lattice, the lattice is, in fact, triangular
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4. Abrikosov vortex

Figure 1.5 – a) The shape of the Abrikosov vortex and the two characteristic scales of
a superconductor. b) Experimental observation of Abrikosov vortices by the scanning
SQUID microscopy technique, adapted from [Wells, 2015a]

The second integral is just a magnetic flux through the hollow part
∮

Adl =
∫

∇ × AdS =∫
HdS = Φ. The first integral is defined by the condition that the function ψ must be

single-valued. This condition means the phase integral equals 2πn, where n is an integer.
Combining these two results, we come to the quantisation of the magnetic flux:

Φ = Φ0n, (1.27)

where Φ0 = πℏc
e is the magnetic flux quantum. This shows that in the superconductor the

magnetic flux is quantised. In the superconductor of the second type Abrikosov vortices
enter into the superconductor carrying exactly this magnetic flux quantum.

Now we will show the field distribution of one Abrikosov vortex. Consider a supercon-
ductor of the second type with κ ≫ 1 in the external magnetic field H. In the centre of
the vortex, at distance ξ, the order parameter is suppressed, but it recovers to its bulk
value 1 at the penetration depth distance λ, as illustrated Fig 1.5. Using this assumption,
we can express the order parameter as ψ = eiθ, θ being the phase of the order parameter
(|ψ| = |eiθ| = 1). Using this expression and the equality ∇ × A = H we can write the
second Ginzburg-Landau equation as

∇ × H = 1
λ2

(Φ0
2π∇θ − A

)
. (1.28)

Applying the operator ∇× to both sides, we get:

λ2∇ × (∇ × H) = Φ0
2π∇ × (∇θ) − H (1.29)

11



Chapter 1. A pinch of superconductivity

Note that we have ∇ × (∇θ) = 0 everywhere because the curl of the gradient is zero,
except at the zero point. The zero point is an exceptional point where the singularity is
located. Let us take from this expression the integral over the circle of a surface much
larger than ξ and apply to it Stokes’ theorem:∫

∇ × (∇θ)dS =
∮

∇θdl, (1.30)

where the contour is the contour of our circle.
Since each vortex carries one quantum magnetic flux and the phase shifts by 2π while

the vortex is surrounded, we got the following expression:∫
∇ × (∇θ)dS = 2π, (1.31)

or in a vector version
∇ × (∇θ) = 2πδ(r)ev, (1.32)

where ev is the unit vector in the direction parallel to the vortex axis, δ(r) is the Dirac
delta function. Inserting this into Eq.1.29 we obtain the following equation

H + λ2∇ × (∇ × H) = Φ0δ(r)ev. (1.33)

Far away from the vortex, the magnetic field is zero, so with the boundary condition
H(∞) = 0, the solution of the Ginzburg-Landau equation for the magnetic field can be
written as:

H(r) = Φ0
2πλ2K0(r/λ), (1.34)

where K0 is a zeroth-order Bessel function and r is the radius in the plane perpendicular
to the vortex line. This equation describes a magnetic field that the vortex created around
itself. In the limit r → 0, the function K0(r) diverges, but the Ginzburg-Landau theory
is irrelevant on a scale smaller than ξ. Thus, this function is typically truncated at a
distance r ≈ ξ as:

H(0) = Φ0
2πλ2 ln κ. (1.35)

As the magnetic field increases, more and more vortices enter the superconducting
sample, and these vortices interact with each other through the induced current distribu-
tion.

Let us consider the case of two vortices. If these vortices are at a distance greater than
the penetration depth λ from each other, the currents created by each of them in their
respective regions are small, and they do not significantly interact; they do not feel each
other. When considering the condition λ ≫ ξ, which allows us to work in the London
approximation and neglect the term ∇ψ, because the order parameter changes only on a
small scale ∼ ξ, the energy density of a single vortex per unit length can be expressed as
follows:

ϵ = 1
8π

∫ [
H2(r) + λ2(∇ × H(r))2

]
d2r. (1.36)

12



4. Abrikosov vortex

where H2(r) is the energy density of the normal state inside the core of the vortex, corre-
sponding to the magnetic energy density, and λ2(∇ × H(r))2 represents the kinetic energy
density associated with the superconducting current. This expression captures the con-
tributions of both the magnetic and the kinetic energy densities within the vortex core.
Using the vector analysis identity

(∇ × H)2 = [H,∇ × ∇ × H] − ∇ · [∇ × H,H] (1.37)

we can rewrite the energy density per unit length as:

ϵ = 1
8π

(∫
H
(
H + λ2(∇ × ∇ × H

)
d2r +

∫
∇ · [∇ × H,H] d2r

)
=

= 1
8π

(∫
H
(
H + λ2(∇ × ∇ × H

)
d2r +

∮
[∇ × H,H] dl

)
.

(1.38)

The contour integral equals zero when integration is taken at the infinite distance because
H → 0 when r → ∞. The first term can be simplified using Eq.1.33. The final result is

ϵ = 1
8π

∫
HΦ0δ(r)ez = Φ2

0
(4πλ)2 ln κ. (1.39)

This energy density is positive, as expected. It indicates that a positive energy is required
to introduce an Abrikosov vortex into the superconductor, consistent with the notion that
a magnetic field must be applied to create the vortex

Now, let’s consider the energy of a pair of vortices at a distance on the order of λ.
When another vortex is added, the total energy density will consist of the energy density
of each vortex separately and the energy density of their interaction with each other. The
interaction energy will depend on the separation distance between the vortices and their
relative positions. The latter, taking into account the equation Eq.1.33 with two sources,
which must also be fulfilled, can be written as:

ϵ = 1
8π

∫
H ·

[
H + λ2∇ × (∇ × H)

]
d2r

= Φ0
8π

∫
[Hδ (r − r1) + Hδ (r − r2)] d2r

= Φ0
8π (H (r1) +H (r2)) ,

(1.40)

where H (r1) (H (r2)) is the magnetic field in the centre of the first (second) vortex. It
consists of a field created by the vortex itself and a magnetic field H12 (|r1 − r2|) created by
another vortex in the centre of this one. The same applies to the other vortex. Otherwise,
this energy density can be represented as:

ϵ = 2ϵ+ Φ0
4πH12 (|r1 − r2|) (1.41)

13



Chapter 1. A pinch of superconductivity

The last term can be considered as the interaction energy ϵ12 and written as:

ϵ12 = Φ0
4πH12 (|r1 − r2|) = Φ2

0
8π2λ2K0(r/λ), (1.42)

where r = (|r1 − r2|). This energy is also positive, which means that the interaction
between vortices of the same momentum is repulsive, while the interaction between vortices
of different momentum is attractive.

In order to find the force acting on each vortex, we need to differentiate the interaction
energy:

fL = dϵ12
dr

= Φ0
4π

dH12
dr

= Φ0
c
j12, (1.43)

where j12 is the current density at the core of the first vortex created by another vortex.
This formula is very general, and this force fL is called the Lorentz force. Note that here
the current density j12 can be created by various sources, including an external current
source.

Each vortex carries a quantum of magnetic flux, resulting in the formation of a mag-
netic field according to the Faraday law of induction. The motion of vortices leads to the
dissipation of energy. We can consider the motion of vortices in a viscous medium, and a
frictional force can be introduced:

ffriction = −ηv (1.44)

where η is the friction coefficient and v is the vortex speed. In equilibrium, it is compen-
sated with the Lorentz force. Then for a volume with a vortex density n we can write the
following force balance equation

ffriction + fL = − B

Φ0
ηv + 1

c
Bj12 = 0 (1.45)

Here, B = nΦ0 is the magnetic field carried by vortices with the density n. Consequently,
we obtain the resistance to the flow of vortices using Faraday’s law of induction E = Bv/c :

ρflow = Φ0B

c2η
. (1.46)

In real materials, vortices can stop and pin on the pinning centres, which are various
defects. The description of the types and nature of pinning is a rather extensive field.

5 Time-dependent Ginzburg-Landau (TDGL)

Since the Ginzburg-Landau equations describe only stationary solutions, it is necessary
to use other approaches, such as the solution of the Gorkov equations, to describe non-
stationary processes. But the solution of the Gorkov equations is technically incredibly
difficult and we would like some scheme like the Ginzburg-Landau equations. However, it
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5. Time-dependent Ginzburg-Landau (TDGL)

turned out to be extremely difficult to construct a general non-stationary system of the
Ginzburg-Landau equations. The difficulty consists in taking into account in the time
representation of the peculiarity in the density of states at the edge of the superconductor
gap. The first time generalisation of the equations was proposed by Schmid [Schmid,
1966]. Then it was shown by Gorkov and Eliashberg [Eliashberg, 1969; GORKOV, 1968]
that in the presence of a large number of scattering centres (impurities) the gap feature is
weakened and the superconductor becomes gapless. In this case, one can strictly justify the
form of the Time-Dependent Ginzburg-Landau (TDGL) equations proposed by Schmid
[Schmid, 1966]. The TDGL equations can be written as [Gropp, 1996]

ℏ2

2msD

(
∂

∂t
+ i

es
ℏ
µ

)
ψ = − δF

δψ∗

σ

c

(1
c

∂A
∂t

+ ∇µ
)

= − δF

δA − 1
4π∇ × ∇ × A

(1.47)

where ψ is the Ginzburg-Landau order parameter, A is the vector potential, µ is the
electric (scalar) potential, F is the free-energy density functional, t is the time, σ is the
conductivity in the normal state, D is the phenomenological diffusion constant, ms and
es are the mass and charge of the Cooper pair, correspondingly. The free energy density
F is given by the same expression as in stationary Ginzburg-Landau theory:

F = a|ψ|2 + b

2 |ψ|4 + 1
2ms

∣∣∣∣(ℏi∇ − es
c

A
)
ψ

∣∣∣∣2 (1.48)

Taking the variational derivative, one rewrites these equations in a familiar way

ℏ2

2msD

(
∂t + ı

es
ℏ
µ

)
ψ = |a|ψ − b|ψ|2ψ

− 1
2ms

(
ℏ∇ + es

ıc
A
)2
ψ

∇ × (∇ × A) = 4π
c

[JN + JS]

(1.49)

where JN and JS are normal and superconducting current density correspondingly

JN = −σ
[

1
c∂tA + ∇µ

]
JS = − e

2m

[
ψ∗
(
ıℏ∇ + 2e

c A
)
ψ + c.c.

] (1.50)

here c.c. is a complex conjugated.
It is convenient to work with this system in dimensionless units. For this purpose, we

need to choose a characteristic scale for each magnitude. We will denote the new coor-
dinates with a dashed line. The order parameter, as known from the Ginzburg-Landau
theory, effectively changes at length ξ, which is convenient to take as a characteristic di-
mensional scale. Then spatial differential operators in the new coordinates will be written
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Chapter 1. A pinch of superconductivity

as
q = ξq′ ⇒ d

dq
= d

ξdq′ , q = {x, y, z} (1.51)

The amplitude of the order parameter is normalised in the same way as in the Ginzburg-
Landau theory: ψ = ψ0ψ

′, where ψ0 =
√

|a|/b. Time is normalised as t = τt′, where
τ = 4πσλ2

c2 . The vector potential A varies on the scale λ, but this value we will define
through the Ginzburg-Landau parameter κ as λ = κξ. The Ginzburg-Landau parameter
κ is itself an input parameter of the system. The amplitude of the potential vector is
conveniently normalised by the magnetic field values and the distance characteristic of the
system: A = Hc2ξA′, where Hc2 is the second critical field. The magnetic field itself is
then measured in units of the second critical field. Then the scalar potential, according to
the formula, will be written in the new coordinates as µ = µ0, µ

′, where µ0 = ℏ
2eτξ . And,

consequently, the characteristic scale for the current J = J0J′, where J0 = ℏσ
2eτξ .

Finally, in the new normalised coordinates, the equations are written as

u (∂τ + ıµ)ψ = ϵ(r)ψ − |ψ|2ψ + (∇ − ıA)2ψ

κ2∇ × (∇ × A) = JN + JS
(1.52)

These equations as well as static Ginzburg-Landau equations are invariant under gauge
transformations

ψ 7→ ψeiχ,

A 7→ A + ∇χ
µ 7→ µ− ∂χ

∂t ,

(1.53)

The invariance has not only a fundamental physical meaning but also allows us to simplify
the calculation in some cases. For example, by choosing the zero-scalar µ = 0 potential
calibration, one can completely exclude the scalar potential from the equations:

u∂τψ = ϵ(r)ψ − |ψ|2ψ + (∇ − ıA)2ψ,

κ2∇ × (∇ × A) = −σ(1/c)∂tA − e

2m

[
ψ∗
(
ıℏ∇ + 2e

c
A
)
ψ + c.c.

] (1.54)

To solve the TDGL equations, it is also necessary to supplement them with boundary and
initial conditions. Similarly to the Ginzburg-Landau equations, the boundary conditions
for the order parameter at the superconductor-vacuum boundary will be written as follows:

n · (∇ − ıA)ψ = 0, (1.55)

the boundary conditions for the potential vector are determined from the equality to the
external magnetic field at the boundary

∇ × A = Hext, (1.56)

Let us finally discuss the applicability region of the TDGL approach. Formally, the TDGL
equations are justified, like the stationary Ginzburg-Landau equations, only near the crit-
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6. Conclusion

ical temperature and for slowly varying electromagnetic fields. In addition, they are valid
only for gapless superconductors, based on the conclusion of Gorkov. Furthermore, this
theory is local, relating the local field A to the local superconducting current density
js. Such an approximation is possible under the condition λ ≥ ξ, satisfied by London
superconductors. However, in most applications of interest, the TDGL equations qualita-
tively describe the behaviour of the Abrikosov vortices, even beyond the strict limits of
applicability. This is partly due to the fact that, for example, in the limit of dirty super-
conductors, the effective coherence length is smaller and proportional to ∼

√
ξl, where l is

the free path length l ≪ ξ. This effect extends the limits of applicability. The restriction
to gapless superconductors can be addressed by the generalisation of the TDGL equations,
known as the so-called generalised TDGL equation:

u√
1+γ2|Ψ|2

(
∂
∂t + iµ+ 1

2γ
2 ∂|Ψ|2

∂t

)
Ψ =

(∇ − iA)2Ψ +
(
1 − T − |Ψ|2

)
Ψ

(1.57)

where γ is a parameter describing inelastic electron-phonon collisions and T is the tem-
perature. These equations were first obtained by Kramer and Watts-Tobin [Kramer, 1978]
based on the linearised Eilenberger equations in the dirty superconductor approximation.

6 Conclusion

In this chapter, we have presented a brief history of the development of the field
of superconductivity from the beginning of the discovery of the phenomenon to current
issues and developments. We have highlighted separately those theoretical aspects and
details that are important and will be used in the subsequent chapters of this work.
Much attention is paid to the phenomenological Ginzburg-Landau theory, which due to
its simplicity allows us to obtain a large number of physical results and to the phenomenon
of Abrikosov vortices, because their influence on the properties of superconductors of the
second kind can hardly be overestimated. We have also briefly described the apparatus
of TDGL theory, which we will use in the future for numerical modelling of realistic
experimental structures.
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Chapter 2
High temperature superconductors

In this chapter we give the discovery and the mains properties of High Temper-
ature Superconductors with a focus on YBa2Cu3O7−δ.
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1. High temperature superconductors: the short story of its discovery

In the period following the discovery of superconductivity in mercury by Kammerlingh
Ohnes in 1911, many groups explored a large number of metals and alloys for supercon-
ducting properties. The BCS shed light on the microscopic mechanism behind supercon-
ductivity in certain metals and alloys, they are the so-called conventional superconductors.
This theory predicts two effects : the formation of Cooper pairs through electron pairing
and the emergence of a gap in the spectrum of electronic excitations. The crystal lattice
plays a role in this pairing mechanism by screening the coulomb interactions between the
two electrons in a pair. This leads to the creation of new, more energetically favourable
electronic states known as Cooper pairs. These pairs behave as bosons and can condense
into the same macroscopic quantum state below a critical temperature denoted as Tc.
The outcome is a state of zero electrical resistance. The presence of a gap in the spec-
trum of excitations at zero temperature reflects the energy required to break a pair in the
condensate.

During that period, the BCS theory, along with Matthias’ heuristic law from 1957,
offered valuable criteria to assist experimentalists in their quest to identify new super-
conducting materials among metals and alloys. These criteria included high crystalline
symmetry, high electron density, the absence of insulating, oxide, and magnetic properties.
Consequently, researchers discovered hundreds of superconductors, while some materials
did not exhibit these properties. The highest critical temperature Tc observed reached its
peak at 23 K in Nb3Ge [Païdassi, 1979] in 1979. The BCS theory provided an explanation
for this ceiling in critical temperature. Over nearly six decades, the critical temperature
experienced an incremental increase of approximately 0.4 K per year. As a result, research
into superconductivity experienced a commensurate slowdown.

1 High temperature superconductors: the short story of its
discovery

In this context, the discovery by Berdnorz and Müller ∗ of superconductivity at 30 K in
1986 [Bednorz, ] triggered the start of a wild race for superconducting materials in oxides
and renewed interest in "unconventional" superconductivity, which broke the paradigm.
In 1987, superconductivity in YBa2Cu3O7−δ [Wu, 1987a] was discovered with a Tc=93 K
above the temperature of liquid nitrogen. This opened up new horizons for the introduction
of superconductors into applications.

Müller’s experiment with oxides was decisive and led him, with the help of his colleague
Bednorz, to go against the stream and look for materials in which a structural transition
would cause a strong increase in the interaction between pairs of electrons. This interaction
was different from the traditional Debye phonon responsible for the Tc cap in BCS theory.
The Jahn-Teller structural transition in perovskite materials generated a much stronger
electron-phonon coupling.

High-Temperature Superconductors can be classified into two broad classes : those

∗. he made a significant contribution to the understanding of SrTiO3-
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Chapter 2. High temperature superconductors

based on copper oxides (or cuprates) and those based on iron (pnictures). Here, we will
focus on YBa2Cu3O7−δ.

7
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NdNiO

BCS

Heavy Fermion Based

Cuprate

Strontium Ruthenate 

Nickel-based

Iron-pnictogen-based

Figure 2.1 – Different classes of superconducting materials shown in colour adapted from
wikipedia [Ray, 2015] : BCS (dark green circle), based on heavy fermions (green star),
cuprates (blue diamond), based on iron-pnicture (orange square), strontium ruthenate
(grey pentagon), nickel (pink cross). YBa2Cu3O7−δ compound has been outlined with its
discovery in 1987.

2 Crystal structures

High-temperature superconductors have a generic crystal structure derived from a
cubic perovskite structure of the ABX3 type shown in figure 2.11b, where X is an oxygen
(O) atom. They are structured so that a stack of several CuO2 conductive planes (from 1
to 5 planes) separated by Yttrium (Y) or Calcium (Ca) atoms, alternating with blocks of
BO/AO/BO type oxides which are themselves charge reservoirs (B being an alkaline-earth
metal of the Barium (Ba) or Strontium (Sr) type, and A being, for example, Bismuth (Bi),
Calcium (Ca), Lead (Pb), Thallium (Tl)).

The elementary cell of YBa2Cu3O7−δ, figure 2.11c, is composed of three oxygen-
deficient perovskite meshes in which the Barium atom (Ba) and the Yttrium atom (Y) at
the centre of a cube, are surrounded by Copper atoms (Cu) at the vertices of the cube, and
Oxygen atoms (O) at the centre of the edges. The two conductive planes are separated by
the Yttrium atom. The elementary lattice has very close a and b parameters, which is the
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3. Properties of CuO2 planes

Figure 2.2 – a) ABX3-type perovskite lattice, where A is an alkali metal, alkaline earth or
rare earth cation, B is a transition metal cation and X is O−2 b) YBa2Cu3O7−δ unit cell.

reason for the quasi-systematic presence of macles in the films. Depending on the oxygen
doping, the crystallographic structure of YBa2Cu3O7−δ can evolve from the tetragonal
phase for YBa2Cu3O7−δ to an orthorhombic phase for the optimum doping, while passing
through intermediate phases for the other dopings.

All cuprates have in common the presence of CuO2 planes separated from each other
by other planes, acting as charge reservoirs and structural stabilisers. In the following
section, we will provide a brief description of the properties of these planes upon which
superconductivity is based.

3 Properties of CuO2 planes

In the CuO2 planes shown in Figure 2.3b, the Cu2+ transition ions have a valence
configuration of 3d9 and are positioned at the centre of an octahedron formed by six
oxygen atoms, as depicted in Figure 2.3a. The apical oxygen atom is not included in this
arrangement. As a result, the Cu band is partially filled, leaving a single hole with a
spin of 1/2. In the presence of the crystalline field, similar to the case of the Ti atom in
SrTiO3, there is a lifting of degeneracy in the energy levels of the five 3d orbitals of Cu.
This splitting results in eg orbitals (for dxy, dyz, and dxz) and t2g orbitals (for d3z2−r2 and

Figure 2.3 – a) Orbitals of the Cu and O atoms involved in CuO2 planes. b) Schematic
arrangement of Cu-O-Cu bonds in CuO2 planes.
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dx2−y2), as shown in Figure 2.3c. Furthermore, the Jahn-Teller tetragonal deformation
along the z axis further lifts the degeneracy of the eg levels, with the highest energy level,
dx2−y2 , being partially filled. The p orbitals of oxygen are also partially degenerate. The
lowest energy level corresponds to the dxy, dyz, and dxz orbitals, which do not point toward
oxygen atoms, and thus, are less affected by Coulombic repulsion.

Figure 2.4 – Energy diagram of the 3d Cu and 2p O orbitals, and their hybridisation
[Alloul, 2009]

The dx2−y2 orbital of copper aligns with the px or py orbitals of oxygen, resulting in
strong hybridization and a very strong covalent Cu-O-Cu bond within the CuO2 planes,
as schematically represented in Figure 2.5. The Coulombic repulsion (U) between the
1/2 spins of Cu2+ is exceptionally high, in the order of tens of electronvolts (eV), and it
dominates all other energy scales in the system. It’s important to note that the electron
jump term (tpd) between the Cu and O orbitals is relatively high, approximately 1.5 eV.
The strong Coulombic repulsion (U) between the Cu atoms in the planes, in the absence

Figure 2.5 – Schematic of the CuO2 plane in its Mott insulator phase and in the case of
hole doping.

of any doping, results in electrons being localized at each of the sites, as schematically
represented in Figure 2.6. An uncorrelated band calculation for a partially filled d band
would predict the material’s metallicity. However, the parent compound of the cuprates
is an insulator, more precisely, a Mott insulator. This is because the Coulombic repulsion

22



3. Properties of CuO2 planes

(U) between the high and low Hubbard bands on the Cu sites exceeds the bandwidth.
These compounds can be classified as charge-transfer Mott insulators, as distinct from
Mott-Hubbard insulators. This distinction arises from the energy values of the electronic
levels (ϵp for O and ϵd for Cu), which are among the closest within the transition ions. The

Figure 2.6 – Band structure of a CuO2 plane. The Hubbard bands of Cu, and the bonding
and non-bonding bands of O-Cu are shown, U is the coulombic interaction energy on Cu.

lowest excitation energy in undoped cuprates remains weak compared to the Coulombic
repulsion. Undoped cuprates can be described as a model system using the Heisenberg
Hamiltonian with 1/2 spins in two dimensions, involving the t hopping term and the J
site exchange coupling.

Figure 2.7 – YBCO Unit Cell for Different Doping Levels a) Insulating underdoped
YBa2Cu3O6 where in the CuO chains there are no oxygen ions. b) Optimally doped
YBa2Cu3O7−δ c) Overdoped YBa2Cu3O9: in this case, the CuO chains are fully occupied
by oxygen ions.

If undoped CuO2 planes are insulating, their properties can be modulated by control-
ling electron or hole doping. This modulation can be achieved through various means,
such as substituting atoms with different valencies, creating oxygen vacancies, or incorpo-
rating oxygen. Hole doping is typically accomplished by substituting divalent atoms with
trivalent atoms, as seen in the substitution of Y3+ with Ca2+ in YBa2Cu3O7−δ to obtain

23



Chapter 2. High temperature superconductors

Y1−xCaxBa2Cu3O6+y. Another approach is to modify reservoir blocks, which, through
charge transfer, introduce holes into the CuO2 planes. YBa2Cu3O6 is insulating, while
YBa2Cu3O7−δ is superconducting due to hole doping.

In a more general sense, precise control over the doping of CuO2 planes allows for the
exploration of a common phase diagram shared by all cuprates, as shown in Figure 2.8.
Typically, this generic phase diagram is constructed based on various chemical dopings,
which may involve multiple samples or different chemical and physical treatments of the
same sample.

4 Electronic properties of YBa2Cu3O7−δ

4.1 Phase Diagram

Figure 2.8 – Generic phase diagram of cuprates [Vishik, 2018].

Figure 2.8 shows the phase diagram for hole-doped cuprates, specifically the case of
YBa2Cu3O7−δ. In this case, the mobile carriers are positive charges. The cuprate diagram
illustrates different electronic phases. The parent compound of YBa2Cu3O7−δ is a Mott
Insulator, see figure 2.6. In the absence of doping, there is antiferromagnetic order with a
Neel temperature that decreases with hole doping. Conversely, there is a superconducting
order with a specific doping value where the critical temperature is at its maximum, often
referred to as the optimum doping point. In the overdoped regime and in the normal
state, we observe metallic behaviour of the Fermi liquid type (characterized by a temper-
ature dependence of T 2) or of the anomalous metal type (linear resistance dependence
on temperature) for lower doping levels. As doping decreases further, we reach a phase
known as the pseudo-gap, marked by a gap in the spectrum of excitations, which seems
to characterize a freezing of low-energy excitations. Each region of this diagram has been
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4. Electronic properties of YBa2Cu3O7−δ

studied using various experimental probes, both resonant and non-resonant, local and
global, optical, electrical, thermoelectric, etc. [Tsuei, 1994; Tsuei, 2000; Bobroff, 2005;
OMahony, 2022].

Figure 2.9 – Anisotropy of resistivity measured in-plane (a) and out-of-plane (b). [Segawa,
2003].

Electronic transport in cuprates exhibits high anisotropy. The conductivity perpen-
dicular to CuO2 planes can be more than 1000 times lower than in-plane conductivity. If
we consider the cuprates YBa2Cu3O7−δ, the conductivity anisotropy is of a factor of 30
[Segawa, 2003] at room temperature, see figure 2.9.

4.2 Superconducting properties in YBa2Cu3O7−δ

The CuO2 planes harbor superconductivity. Several experimental studies using dif-
ferent techniques [Ding, 1996; Tsuei, 1994; Wollman, 1993] [Wollman, 1993; Hilgenkamp,
2003; Tsuei, 2000; OMahony, 2022] have demonstrated the existence of a knot in the non-
isotropic gap of superconductors at high critical temperature, as shown in Figure 2.10.
This work has led to a consensus on the symmetry of the order parameter, which is of the
dx2−y2 type. Quasi-particles can therefore exist down to absolute zero, along nodal lines
at 45° to the lobe direction. The superconducting characteristic lengths are different in
the ab plane and along the c axis, resulting in significant anisotropy in critical fields in
these two directions.

The d-type wave symmetry of the superconducting order parameter in YBa2Cu3O7−δ

enhances its sensitivity to defects. Each defect acts as a depairing centre for the Cooper
pairs. By controlling the amount of disorder introduced, the superconducting properties
of a thin film of YBa2Cu3O7−δ can be finely tuned. This effect has been demonstrated
using different types of sources (electrons [Rullier-Albenque, 2001], Ga+ [Chen, 1989], He+

[Lesueur, 1993], O+ ions [Bergeal, 2005]). This is the technique we have used, and will
describe in the next chapter, to fabricate YBa2Cu3O7−δ-based superconducting nanowires.
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Figure 2.10 – a) Schematic diagram of the tri-crystalline substrate of SrTiO3 (100), with
four epitaxial YBa2Cu3O7−δ rings. b) Scanning SQUID microscope image of the four
superconducting rings, cooled under a magnetic field of approximately 5 mG [Tsuei, 1994].
c) Ordered antiferromagnetic lattice of half-flow quanta spontaneously generated in a
zigzag lattice (YBa2Cu3O7−δ-Au-Nb) [Hilgenkamp, 2003].

In bulk cuprates, the coherence length is approximately ξ0 = 2 nm, and the mean
free path is on the order of le = 15 nm [Krishana, 1995; Tang, 2000; Wells, 2015b].
Therefore, superconductivity in the CuO2 planes is in the so-called clean limit. This type of
superconductivity is of type II, and the Ginzburg-Landau parameter satisfies κ = λ/ξ ≫ 1.
Transport properties are dominated by vortex dynamics.

The closing section of this chapter will detail the primary technique employed for thin
film growth. Additionally, it will provide an overview of the original samples that have
been the focus of investigation throughout our work.

5 Thin Film growth

Typically, YBa2Cu3O7−δ deposition is performed on a mono-crystalline substrate, of-
ten an oxide like sapphire, LaAlO3, or MgO. A suitable buffer layer, such as CeO2 (with a
lattice parameter adapted to YBa2Cu3O7−δ growth) or SrTiO3 (with a lattice parameter
close to YBa2Cu3O7−δ), is employed. In the case of a silicon substrate, a multilayer ap-
proach like Si/SrTiO3/YBa2Cu3O7−δ or Si/YSZ/CeO2/YBa2Cu3O7−δ (YSZ for Yttrium
Stabilized Zirconia) can be utilized. Various techniques are available for YBa2Cu3O7−δ

thin film growth, with sputtering, evaporation, molecular beam epitaxy, and pulsed laser
ablation being the main methods. The thin films utilized in our work are primarily pro-
duced using the latter two techniques.

Molecular jet evaporation and epitaxy necessitate a partial oxygen vacuum of approxi-
mately 10−4 mbar, a rotating substrate heated to temperatures between 650oC and 800oC,
and crucibles made of materials like Y, Ba, and Cu. These crucibles are heated through
the joule effect or by an electron gun, enabling the materials to evaporate onto the hot,
rotating target substrate.

In the Pulsed Laser Ablation (PLD) growth technique, Ultraviolet (UV) light from a
class IV laser is focused through a lens onto a target inside a chamber. The chamber is
kept at a low gas pressure (in our case, Oxygen), so that the atoms extracted by the laser
beam can reach the substrate, which faces the target. The substrate is heated, in our case
by a heating element fig 2.11, so as to give energy to the atoms and thus obtain an ordered
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structure. The parameters that need to be controled are:

1. Pressure in the chamber during growth;

2. Substrate temperature

3. Laser energy on the target

4. Target-substrate distance

Figure 2.11 – a) Pulsed Laser Ablation in Thalès. b) Scheme of the process showing the
laser, the target and the heated samples. c) Photos of the interior of the PLD chamber
with the target and heated sample holder, courtesy to J. Briatico

For the production of thin films we collaborated with German company Ceraco and J.
Briatico of UMR CNRS/Thalés . In collaboration with Robert Semerad from Ceraco and
Javier Briatico from Thales, the group has developed an original sample growth technique
to ensure the stability of thin layers of YBa2Cu3O7−δ during the nanowire fabrication
processes. The detailed steps of this process are described in Chapter 3.

This fabrication process involves the addition of an extra protective surface layer of
YBa2Cu3O7−δ on top of the YBa2Cu3O7−δ only in the center of the sample. Additionally,
a layer of gold is deposited in situ, directly in contact with the YBa2Cu3O7−δ at the
periphery of the sample. For further details on the process, refer to Fig. 2.12.

The morphology of the resulting YBa2Cu3O7−δ films is very complex due to complex
crystalline structure of YBa2Cu3O7−δ. Different kind of structural disorders are present in
films. The main one is grain boundaries, which strongly influence the transport properties
of the resulting samples. Fig.2.13 shows an example of how a film can be formed and how
a typical grain boundary looks like.
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Figure 2.12 – Layers of the special samples: on a sapphire substrate, a 40 nm CuO2 buffer
layer allows the deposition of a 30 nm thick YBa2Cu3O7−δ thin film under a partial oxygen
vacuum of approximately 10−4 mbar, on a rotating substrate heated between 650oC and
800oC. The sample is then cooled to room temperature. A mechanical mask is aligned
with the sample and heated under a ∼ 10−4 mbar partial oxygen vacuum, reaching tem-
peratures between 650oC and 800oC to ensure optimal doping of the YBa2Cu3O7−δ layer.
Subsequently, a 4 nm capping CuO2 layer, through this circular stencil mask, is deposited
under the same conditions to ensure full stoichiometry of the capping layer. CuO2 is known
to be highly stoichiometric and prevents grabbing oxygen from YBa2Cu3O7−δ, requiring
deposition under partial oxygen vacuum. In the last step, the sample is cooled down to
room temperature, the mechanical mask removed. In the last step the sample is heated
around 650oC under the same partial oxygen vacuum ( ∼ 10−4 mbar ), on a rotating
substrate heated between 650oC and 800oC to ensure optimal doping of the uncapped
YBa2Cu3O7−δ layer. The sample is cooled down under this partial oxygen pressure. Then
20 nm thick Au thin film is deposited in situ on all the sample in this last step, ensuring
ohmic contact with the unprotected YBa2Cu3O7−δ layer around the CuO2 capping layer.
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5. Thin Film growth

Figure 2.13 – Atomic Force Microscopy (AFM) image of the surface of a ≈ 150-nm-
thick YBa2Cu3O7−δ film with an asymmetric 45o [001]-tilt grain boundary. Adapted from
[Hilgenkamp, 2002]
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6 Conclusion

In this chapter, we have provided a concise overview of the discovery of cuprates and
their Perovskite-type crystalline structures. We delved into the significance of CuO2 planes
and the impact of strong electronic correlations, giving rise to a complex phase diagram
modulated by hole doping. The main features of the superconducting phase, belonging to
the broad category of superconductors of the second type with a symmetry order param-
eter d, were outlined. Despite the potential applications linked to superconductivity at
temperatures above nitrogen’s, YBa2Cu3O7−δ still present numerous challenges. These in-
clude technological hurdles in terms of nanoscale structuring, as discussed in the upcoming
chapter on 6, and fundamental issues surrounding the mechanism driving superconductiv-
ity—a topic subject to ongoing debates within the scientific community.
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In this section, we explain why high-temperature superconductor nanowires are
an issue from both a fundamental and an applied point of view. We then give
an overview of the various projects for producing superconducting nanowires.
Finally, we describe the overall process for fabricating YBa2Cu3O7−δ nanowires
using a high-energy oxygen ion irradiation technique combined with electron
lithography implemented in this thesis. We start with the general idea of using
ion implantation and then describe the whole technical process of fabricating
a device using two types of lithography (laser lithography and electron-beam
lithography).

Objectives
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Chapter 3. YBa2Cu3O7−δ nanowires

1 Motivation

In the last two decades, a novel class of detectors has emerged, operating on a specific
detection principle. Their operating mechanism was first proposed by Golt’smanet al. in
2001 [Goltsman, 2001]. These detectors are made of a superconducting nanowire giving
rise to what is known as Superconducting Nanowire Single Photon Detector (SNSPD). The
operational mechanism is illustrated Fig.3.1a along with the electrical circuit necessary to
be able to detect the fast voltage pulse upon absorption of the photon, see Fig. 3.1b.

Figure 3.1 – a) Operational mechanism originally proposed by Golt’sman et al.[Goltsman,
2001]. The superconducting nanowire is biased just below its critical current (i). When
a photon with energy hν surpassing the superconducting gap ∆ is absorbed, it disrupts
the Cooper pairs and forms a normal region (ii), termed a hot spot. This normal region
deflects the supercurrents (iii), which propagate along the wire’s edges until they exceed
the critical current density. Consequently, the nanowire undergoes a local transition to a
resistive state (iv), generating a measurable voltage pulse.To be able to detect such a fast
voltage pulse, the superconducting nanowire is in an electrical circuit allowing to separate
the Direct Current (DC) and Radio-Frequency (RF) part of the signal. b) Electrical circuit
involving a Bias Tee to be able to bias with a DC current and detect the fast voltage pulse
through an amplifier towards a counter or an oscilloscope.

To obtain the best yields, the nanowire must be thin, typically a few nanometres
to a few tens of nanometres thick. Its width should be on the order of the magnetic
penetration length in superconducting materials (typically 100 nm). To optimise the
detection area, the nanowire is generally long (10 µm) and folded on itself, typically
in the area of a pixel, figure 3.1b. These detectors are broadband since the detection
mechanism is not based on a specific energy. In addition, they have a low dark count
rate because no ionisation process is involved in the detection event. Nowadays, SNSPDs
based on conventional low Tc materials such as NbN, NbTi or WSi [Goltsman, 2001;
Natarajan, 2012; Hadfield, 2009; Dauler, 2014] outperform their semiconductor-based
counterparts in many respects [Hadfield, 2009] and are commercially available throughout
the world [httpwwwscontelru, 2022]. Some remarkable properties include high quantum
efficiency (∼ 94% at λ ∼ 1.31 µm [Smirnov, 2018], 93% at λ ∼ 1.55 µm [Marsili, 2013]),
high operating frequency (∼1.2 GHz [Vetter, 2016]), low intrinsic dark count rate (6.10−6

count/s) [Chiles, 2022]), low jitter (∼ 4.6 ps full width at half height λ ∼ 1.55 µm [Korzh,
2020]) and a wide spectral range (from visible to mid-infrared [Marsili, 2012; Korneev,
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2012]) up to 10 µm wavelength [Verma, 2021]). [Protte, 2022]. Very recently, this width
constraint has been largely relaxed : single-photon detectors based on thin wires of the
order of a micron in width have been produced [Protte, 2022].

However, these devices operate at ultra-low temperatures, below 1 K, which requires
heavy and energy-intensive cryogenics, preventing large-scale applications.

In this context, the manufacture of SNSPDs using high critical temperature supercon-
ductors (HTS SNSPDs) would offer two main advantages : the ability to work at a higher
temperature (around 40 K) with simplified cryogenics and the possibility of operating at
a higher frequency, thanks to an electron-phonon relaxation time that is two orders of
magnitude shorter [Lindgren, 1999].

2 State of the art

For these reasons, the development of an SNSPD from a high-temperature supercon-
ductor is at the heart of intense research worldwide [Santavicca, 2018] based on doped
high-temperature superconductors such as:

1. Pr2−xCexCuO4−δ [Charpentier, 2016],

2. Nd2−xCexCuO4±δ [Romano, 2018],

3. YBa2Cu3O7−δ [Arpaia, 2015b; Ejrnaes, 2017b; Arpaia, 2017; Amari, 2017b; Lyatti,
2018; Trabaldo, 2019; Andersson, 2020], see figure 3.2a ,

4. La1.85Ce0.15CuO4 [Shibata, 2017], see figure 3.2b-,La1.85Ce0.15CuO4 [Charaev, 2023],
see figure 3.2d-,

5. YBa2Cu3O7−δ/La0.7Sr0.3MnO3 [Arpaia, 2014a],

6. Bi2Sr2CaCu2O8+δ [Charaev, 2023], see figure 3.2d -

High-temperature superconductors fulfil all the conditions required for detection, such as,
for example, a short coherence length ξY BCO ∼ 2 nm (comparable to the low-temperature
superconducting materials used for SNSPD : ξNbN ∼ 5 nm [Annunziata, 2010]), an intrin-
sically fast quasiparticle recombination time (∼ 1ps [Sobolewski, 1998]), hysteretic Current
versus Voltage (IV) curves [Sobolewski, 1998; Arpaia, 2017] and, at the same time, a high
critical temperature Tc ∼ 87 K. For more than a decade, efforts failed to demonstrate the
sensitivity of nanowires to the single photon. And it was only very recently that a first
proof of principle was achieved [Charaev, 2022] in cuprate nanowires on ultrathin layers
below 25 K from a high-temperature superconducting nanowire, re-launching the race to
achieve a single-photon detector operating at around 40K, figure 3.2.

The main problems in making such thin nanowires arise from the growth of ultra-thin
high-temperature superconducting films and their shaping on a nanometric scale [Assink,
1993; Nawaz, 2013a; Larsson, 2000]. Approaching the typical length scale required for
SNSPD operation and known for low Tc (typically 100 nm wide, 5 nm thick, several
µm long for nanowires) is a major challenge. The other problem relates to the genera-
tion of self-stabilising hot spots when photons are absorbed. This requires a homogeneous
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nanowire carrying a current density approaching the theoretical Ginzburg-Landau depairi-
sation limit of Jd = 5.108 A.cm−2 [Vodolazov, 2017], with hysteretic IV curves [Arpaia,
2017], the signature of a runaway effect.

Manufacturing steps very often lead to the degradation of superconducting properties.
Thin films exposed to air easily lose their optimum oxygen doping, mainly because of the
ease with which oxygen atoms migrate along Cu-O [Gupta, 1991] chains, and their high
sensitivity to introduced defects [Lesueur, 1990]. Various techniques have been proposed
to overcome these difficulties, including standard argon ion etching with very careful ad-
justment of the etching parameters to avoid overheating effects and limit interaction with
the corresponding ions [Arpaia, 2017], the edges of etched wires are favourable zones for
the escape of oxygen atoms along Cu-O chains, a phenomenon that is amplified for ultra-
thin films. The thin film is protected by a layer of gold [Papari, 2012; Papari, 2014;
Lam, 2019] or a mask of carbon 100 nm thick [Arpaia, 2013; Arpaia, 2014b] improves
both manufacturing reliability and homogeneity of superconducting properties. However,
photon detection requires the removal of this protective layer, an additional step that gen-
erally damages the superconducting properties. An alternative approach to argon etching
is based on direct etching of the film by a focused Ga3+ ion beam [Curtz, 2010; Lyatti,
2016; Lam, 2019]. This method offers higher resolution than the usual electron lithog-
raphy process. The doses used are lower than in conventional Ar etching, thus limiting
the introduction of disorder. However, Ga3+ ions poison YBa2Cu3O7−δ, damaging the
superconducting properties.
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Figure 3.2 – a) Top : optical microscope image of 300 nm wide parallel YBa2Cu3O7−δ
nanowires and AFM image of several 130 nm wide YBCO nanowires. Bottom : pho-
toresponse under pulsed optical illumination at 1550 nm wavelength at 8 K. IV char-
acteristics at T = 8 K. The three insets show the time-resolved photoresponse signal
(red circles) measured at three polarisation currents, adapted from [Arpaia, 2015a]. b)
Top : Scanning Electron Microscope (SEM) image of the mask before etching to pro-
duce La1.85Ce0.15CuO4 wires 100 nm wide, 10 µm long, 5 nm thick. And I(V ) hysteretic
at 3 K. Bottom : Transient photoresponse of a 100 nm wide, 10 µm long, 5 nm thick
La1.85Ce0.15CuO4 wire at different laser pulse powers. The wire is illuminated by a fem-
tosecond laser pulse of 1.56 µm wavelength at a repetition rate of 100 MHz, and measured
at 3 K with Ibias = 111 µA, adapted from [Shibata, 2016]. c) Ultra-thin nanowires (10-
20 nm thick, 65 nm wide, 200 nm long) of optimally doped unprotected YBCO, taken
from [Ejrnaes, 2017a]. IV hysteretic at 4.9 K and pulse associated with a black shot. d)
Nanowires made of Bi2Sr2CaCu2O8+δ cuprates on the left and LSMO on the right. De-
tection pulse with single-photon sensitivity in each of the two cuprates [Charaev, 2023].

.
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3 Fabrication by ion irradiation

3.1 Disorder effect

Due to the d-wave nature of superconductivity in YBa2Cu3O7−δ, it is highly sensitive
to crystal defects. Each electron collision with a crystalline defect can lead to a loss of
Cooper pair coherence, effectively acting as a depairing center for the Cooper pairs. The
work by [Lesueur, 1993] demonstrated that when irradiated with a beam of He+ ions, the
YBa2Cu3O7−δ film undergoes a continuous transition from a superconducting to an insu-
lating state. The authors observed that an increase in displacement per atom (dpa) corre-
lates with a decrease in the critical temperature. After reaching a certain value of dpa (ap-
proximately 0.04), the critical temperature reduces to zero, rendering the YBa2Cu3O7−δ

thin film insulating. This effect has been described based on the Abrikosov-Gorkov model
of depairing in s-wave superconductors due to magnetic impurities, assuming that defects
play a similar depairing role for d-wave superconductors.

Figure 3.3 – Normalized critical temperature as a function of dpa. Adapted from [Lesueur,
1993].

Using this approach, following Abrikosov-Gorkov model [Abrikosov, 1969], one can
write the relationship as:

ln
(
Tc
Tci

)
= 𭟋

(1
2

)
− 𭟋

(1
2 + 0.14 dpa

dpac

Tci
Tc

)
, (3.1)

where 𭟋 - is a digamma function, Tci is the initial critical temperature before irradiation.
This formula is in a good agreement with Lesueur’s et al. [Lesueur, 1993] experimental
results. Using this method, it is possible to pattern different mesoscopic superconducting
devices inside an insulating YBa2Cu3O7−δ matrix through ion beam irradiation, thereby
controlling local critical temperature [Bergeal, 2005; Bergeal, 2006; Lesueur, 2007; Sirena,
2007b; Sirena, 2007a; Sharafiev, 2016; Ouanani, 2016a; Couëdo, 2019; Couëdo, 2020;
Pawlowski, 2018]. The next sections provide a detailed description of this approach.
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3.2 Ion implantation

Ion irradiation (or implantation) is a wide use technique in the semiconductor industry
and nanotechnology.

Various techniques exist for ion implantation into solid materials. These include wide-
beam ion implantation, commonly used for n- or p-doping in the semiconductor industry
[Jaeger, 2002], as well as focused ion beams using gallium [Curtz, 2010] or helium [Cybart,
2015; Couëdo, 2020]. Depending on the chosen technique, specific ions are extracted
from the source and then accelerated by a voltage ranging from 10 kV to 200 kV (with
a maximum of 30 kV for Focused Ion Beam (FIB)) toward the thin film. These high-
energy ions penetrate the material over a typical length of a few tens to a few hundreds of
nanometers. As a result, the ions can dope, create defects, or even modify the material,
depending on the chosen dose.

Figure 3.4 – Simulation of the dpa generated by punctual source
of He+ and O+ ions with an energy of 30 keV into a stack of
CeO2 (8 nm)/YBa2Cu3O7−δ (30 nm)/CeO2 (40 nm)/Al2O3 (105 ions simulation).
a) Scheme of the irradiated sample with the axes (x, y, z), the different layers and their
thicknesses. Nota Bene: the scales are not respected. b) Dpa averaged along the depth
x in the YBa2Cu3O7−δ layer at y = 0 as a function of the lateral dimension z. c) dpa
at y = 0 and z = 0 as a function of the depth x. The dose is adjusted such that the
maximum dpa in a) are equals for the He+ ions and the O+ ions. The black dashed lines
separate the different material layers.

The working principle of ion irradiation involves accelerating ions of a chosen element
to high energy (ranging from 1 keV to 10 MeV) using an electric field. These accelerated
ions are then directed towards a target substrate. As the ions penetrate the target, they
displace atoms from their original crystallographic positions, potentially causing successive
displacements of other atoms. This ion beam induces defects along the trajectories of the
implanted ions, as illustrated in Figure 3.4.

The control of the critical temperature (Tc) of the film depends significantly on the
amount of disorder introduced locally into the thin film. This dependence is directly re-
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lated to the type of ions, their energy, and the dose used. By using Monte Carlo SRIM
(The Stopping and Range of Ions in Matter) [Ziegle, 2004] numerical simulations, it be-
comes possible to determine the appropriate range of parameters necessary to control the
superconducting properties of the irradiated film. This simulation tool enables the esti-
mation of the interaction zone of implanted ions and the resulting defect rate created by
a large number of ions, typically on the order of 105 ions.

After the first collision with the substrate surface, ions travel inside the substrate
to a certain depth, which depends on factors such as the ion’s energy, size, mass, and
the composition of the substrate. The number of ions implanted into the substrate is
proportional to the implantation time and ion current. An important characteristic used
to quantify the amount of implanted ions per unit area is called the dose, denoted by D,
and defined as follows:

D = I∆t
eS

, (3.2)

where I is a using ion current, ∆t is the implantation time, e is the elementary charge,
and S is the target surface. By varying the dose D, it is possible to introduce different
atoms into the substrate or even etch the substrate at sufficiently high dosages.

3.3 SRIM Simulations

For preliminary estimation of ion implantation parameters for the desired sample, we
simulate the ion implantation process using SRIM software. SRIM is based on Monte
Carlo simulation of collisions that an accelerated ion introduces into the target material.
Starting from the first collision with a surface atom, the ion transfers part of its energy to
the target atom. If this energy exceeds the displacement energy of the atom, it shifts from
its position and launches another series of subsequent collisions, while the ion maintains
its motion through the target until it loses all its energy (or reaches the edge of the target)
and stops. This process repeats for a statistically meaningful number of ions. At the end
of the simulation, the program provides information about all collisions in all cascades. To
estimate the introduced disorder, we keep information only about coordinates (x, y, z) of
each vacancy. The overall simulation volume V = xmaxymaxzmax, where xmax, ymax, zmax
are the maximum coordinate values through all vacancies. This volume is divided into
cubic elementary volumes δV = δxδyδz. For each elementary volume we compute number
of vacancies inside C(x,y,z). Using this information we can estimate dpa as follows:

dpa(x, y, z) = C(x, y, z)D
nδxNions

, (3.3)

where D - is an ion dose, n - is a target material density (nY BCO = 7.53×10 atoms.cm−3),
Nions - is a number of ions (≈ 105).

In SRIM simulation, each ion hits the target surface at the origin (0, 0, 0). To simulate
FIB pattern or irradiation through a mask we introduce a dpaP for a whole pattern as a
convolution of the punctual effect of a beam irradiation dpaB with a binary matrix M(y,z)
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represents sample pattern:

dpaP(x, y, z) =
Nx∑
i

Nz∑
j

dpaB (x, y − yi, z − zj)M (yi, zj) . (3.4)

4 Fabrication workflow

Step 0. Bare YBa2Cu3O7−δ film Starting point of our nanowire fabrication workflow
is the unpatterned bare YBa2Cu3O7−δ film. All samples in this work are made from thin
YBa2Cu3O7−δ films from two origins as already pointed out in Chapter 2: commercial films
from Ceraco GmbH (marked as "CS") and other from collaboration with Javier Briatico at
the UMR CNRS-Thales (marked as "JS"). After deposition YBa2Cu3O7−δ film of desired
thickness the central part of the film is covered with 5 mm diameter 8 nm thick CeO2 disc,
see Fig. 3.5. Then all film is covered with 20 nm thick gold layer. This capping CeO2

disc is important part of our fabrication workflow. This material keeps its stoichiometry
during the following deposition procedure and protect underneath YBa2Cu3O7−δ part
from change in oxygen doping. As it was mentioned before YBa2Cu3O7−δ superconducting
properties is very sensitive to oxygen concentration thus it is important to preserve optimal
doping during the whole fabrication process.

Step 1. Current and voltage probes The next step involves the fabrication of gold
current and voltage probes for the future nanowires. These gold electrodes are designed
to reach the superconducting central part of the sample, protected by the CuO2 layer,
ensuring excellent electrical contact. The dimensions of the probes are larger than 10
µm, so laser lithography is employed. A first layer of LOR05B is deposited and baked at
110°C. Following this, a 500 nm thick layer of S1805 photoresist is deposited and baked at
110°C. This bilayer is chosen to ensure a good lift-off with an undercut. It’s noteworthy
that the annealing temperature of the resist never exceeds 110°C. All resist deposition
and lithography processes are adapted to allow the production of resist contacts and
microbridges under these conditions. The sample is then patterned with a PhotonSteer
LW450C laser lithography system. During this step, the exposed areas are developed and
define the gold layer of the contact electrodes. The entire laser lithography process is
carried out at the College de France clean room facility.

After preparing the lithography mask, a 0.5 nm thick Ti layer is deposited for good
adhesion, followed by a 200 nm thick Au layer using e-beam evaporation in a Plassys
SEM 550S. Subsequently, a lift-off and etching process is performed to remove the thin
gold layer deposited in situ. During the etching process, the sample holder is continuously
cooled to avoid heating the sample.

After this step, the superconducting properties of the sample are checked to ensure
that they have not been damaged during the probe fabrication. For this purpose, bonding
is performed on some gold probes, and the critical temperature Tc is measured before
proceeding further.
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Step 2. Nanowire patterning If the sample passes the critical temperature check,
we proceed to pattern nanowires using electron lithography and ion irradiation. For elec-
tron lithography, the sample is covered with a 500 nm thick ma-N 2405 electronic resist
[wwwmicroresistde, 2022]. Exposure is carried out using the FEI Magellan SEM in two
steps: the first for the finest parts with low current (11 pA) in ultra-high-resolution mode,
and the second for the rest with a current of 23 nA in standard resolution. After developing
the unexposed resist before ion irradiation, we inspect the mask and nanowire alignment
to the gold electrodes using an optical microscope. The next stage involves ion irradiation
to form an insulating matrix around superconducting nanowires. This is performed at the
ICUBE laboratory in Strasbourg in collaboration with Y. Legall. The samples are fixed
with carbon tape on a metallic sample holder to ensure good thermalization during the
irradiation process. To discharge the sample, metallic clips are placed on the gold pads of
the current probe. The samples are irradiated with an adjusted beam that is homogeneous
on the scale of the sample surface. For ion beam parameters, we use a dose of 3 × 1014

ions/cm−2 with current values set between 10 µA and 15 µA to prevent overheating of
the samples.

All the samples geometries designed on sample CS15 are presented in Fig.3.5.
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4. Fabrication workflow

Figure 3.5 – i) Main structure of the initial samples. ii) Spin coating of a 500-nm thick
S1805 photoresist with a first layer of LOR05B to achieve an undercut. iii) Laser lithog-
raphy to pattern the pre-contact. iv) Development of the photoresist. v) Deposition of a
Ti(2nm)/Au(200nm) thin film in a Plassys ultra-high vacuum thin film deposition system.
vi) Lift-off. vii) Spin coating of a 500-nm thick MAN 2405 negative electron-sensitive re-
sist. viii) Electron beam lithography to design nanowires and contacts, particularly under
the CeO2 capping layer. ix) Ion Beam Etching (IBE) with Argon ions accelerated at 500
eV at a rate of 25 nm of gold per minute. An optical picture of one of the devices on
CS15 after the development of the lithography and before the IBE effect is shown. x) Ion
irradiation of all the samples at an energy of 30 keV, a dose of 3×1014 ions/cm2. The parts
protected either by the gold layer or the MAN resist are not irradiated and remain su-
perconducting, while in the other non-protected areas, YBa2Cu3O7−δ becomes insulating.
This entire process prevents the out-diffusion of oxygen from YBa2Cu3O7−δ, as the thin
film remains embedded in the insulating YBa2Cu3O7−δ and between two highly stable
and stoichiometric CeO2 layers (buffer layer and capping layer).
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Chapter 3. YBa2Cu3O7−δ nanowires

Figure 3.6 – Map of a typical sample with all the nanowire geometries patterned by ion
irradiation onto a 30 nm thick YBa2Cu3O7−δ thin film on a single 10×10 mm2 chip. The
region delimited by the purple contact, made by e-beam lithography on negative resist,
outlines the CeO2 capping layer. Orange areas represent the gold contact.
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5 Conclusion

This chapter was devoted to the fabrication of HTS nanowires. Ideally, it is divided
into two parts. In the first part, we described the current fundamental and technological
problems and challenges that scientists and engineers face in order to create complete
devices based on HTS nanowires. However, the advantages that HTS devices promise
are attracting multiple groups of scientists around the world. We have also presented the
advances that have been made in this topic by the scientific community in recent years.

The second part is devoted to the YBa2Cu3O7−δ nanowire fabrication method used
in this work. This method uses such a feature of the YBa2Cu3O7−δ superconductor as d-
wave symmetry, which makes the superconductivity in this material extremely sensitive to
disorder. Because of this and the fact that disorder can be introduced pointwise using an
ion beam, we are able to draw superconducting structures in the YBa2Cu3O7−δ thin film.
Beyond this simple idea, there are a number of technological features that are necessary
to obtain a good quality sample and have also been described in the second part of this
chapter.
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Chapter 4
Transport measurements

In this chapter, we present our transport measurements of YBa2Cu3O7−δ
nanowires at zero magnetic field. First, we describe our different measurements
setups for various type of measurements. Then, we present resistance versus
temperature dependence, that we analyze using different existing models. We
then show the current-voltage characteristics measured over a wide tempera-
ture range and analyze their shape in the framework of vortex motion. In the
last section, we present our results on the Shapiro experiment on the fabricated
nanowires. Within this experiment, we obtain a number of interesting results
that require further analysis.
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1 Measurement setup

All transport measurements were provided in an OptiDry pulsed tube cryostat with a
base temperature equals to 3.4 K. Samples were glued with silver paste to the homemade
sample holder and then bonded with Al wires to contact pads. To control the temperature
over a wide range, we utilized a calibrated CX-1030 resistor as a thermometer and an Arcol
HS10 100 Ω resistor as a heater. Both the thermometer and the heater were affixed to the
back of the sample holder. The sample holder was thermally decoupled from the optical
plate of the cryostat using Duralumin pillars, resulting in a base temperature increase
up to 4.2 K. Electrical measurements were conducted using twisted pairs passing through
low-pass RC filters inside the cryostat. Outside the cryostat, the wires were connected to a
distribution box where the connection to the selected sample occurred. Each connector on
this box was equipped with a three-position toggle switch that connects the contact to the
ground, protecting the sample from electrostatic discharges, as the samples demonstrated
high sensitivity to electrostatic voltage.

Resistance measurements were conducted using two Signal Recovery 7265 DSP lock-
in amplifiers in a four-probe measurement scheme to eliminate the influence of contact
resistance, which can be relatively high and non-ohmic for certain samples. The lock-in
technique was chosen for its exceptional sensitivity and capability to measure complex
impedance. This feature is particularly valuable for analysing the sample and contact
quality even at room temperature. Samples with a significant imaginary impedance com-
ponent are considered suboptimal because of internal defects or contact issues, allowing
their identification before the cryostat cools down. Another notable advantage of the
lock-in technique is its capacity to simultaneously measure multiple samples, thanks to
the frequency sensitivity of the lock-in amplifier.

The temperature is regulated by a PID controller throughout the experiment, allowing
control over not only the specific temperature but also over the rate of temperature change.
Current-voltage characteristics (IV) were measured using a Yokogawa GS200 as a DC
current source and a Keithley 2200 as a voltmeter. Both devices were equipped with
low-pass filters with a characteristic frequency of 50 kHz. Prior to reaching the input
of the voltmeter, the signal passes through a low-noise voltage preamplifier, the Stanford
Research Systems SR560. All devices are controlled and monitored from a single computer
using custom LabVIEW programs.

45



Chapter 4. Transport measurements

2 RT measurements
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Figure 4.1 – Resistance versus temperature curves for different nanowires from the sample
CS15 (see Fig.3.6). The exact dimensions of each nanowire are presented in table 4.1 or
in Fig.3.6. a) in linear scale, b) in log scale.

In Fig.4.1, we present resistance versus temperature dependence for different nanowires
from the sample CS15. One can observe that the resistance of all samples drops to zero
below 90 K. The exact value of the critical temperature Tc varies with the width of the sam-
ple (see table 4.1). This can be explained in different ways: reducing the width increases
the role of structural defects that can lead to a broadening of the superconducting tran-
sition (in the case of Berezinskii–Kosterlitz–Thouless (BKT) transition [Benfatto, 2009],
for example), another argument suggests that decreasing the wire’s width changes the
energy barrier for vortex to enter the nanowire [Bulaevskii, 2011; Gurevich, 2008; Vodola-
zov, 2012], and broaden the transition. The validity of these arguments depends on the
specific mechanism causing the drop in resistance, and it is essential to determine which
one is more probable.

The first scenario is the BKT transition experienced by 2D superconducting systems.
For this, our system must be two-dimensional with respect to the characteristic correlation
length, which is the coherence length ξ in the superconducting case. The thickness of the
sample CS15 is d = 30 nm, while the bulk literature coherence length of YBa2Cu3O7−δ

is ∼ 2 nm, which is one order of magnitude smaller. However, in the vicinity of the su-
perconducting transition coherence length diverges. Thus, there can be a temperature
region close to the critical temperature T ∼ Tc where our sample becomes effectively
two-dimensional. We can attempt to estimate the dimensionality via the fluctuation con-
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Nanowire Width (nm) Length (nm)
A-10 300 500
C-8 200 500
C-5 176 500
C-3 150 500

Table 4.1 – Geometrical parameters for the nanowire’s RT curves plotted in Fig.4.1

ductivity. Above but close to Tc, there is some distribution of Cooper pairs created by
thermal fluctuations that enhances conductivity. This effect is called paraconductivity
and is stronger with a higher critical temperature Tc because thermal fluctuations are
proportional to ∼ kBT .

Based on the microscopic theory, Aslamazov and Larkin [Aslamasov, 1968] calculated
the impact of fluctuation on conductivity for different dimensions:

∆σ1D(T ) = π · e2ξ0
16ℏwd ·

(
Tc

T − Tc

) 3
2

∆σ2D(T ) = 1
16 · e

2

ℏd
·
(

Tc
T − Tc

)
∆σ3D(T ) = 1

32 · e
2

ℏξ0
·
(

Tc
T − Tc

) 1
2
,

(4.1)

where ξ0 is a coherence length at zero temperature T = 0, d is the thickness of the sample,
w is the width of the sample, T is the temperature and Tc is the critical temperature.
This paraconductivity is a part of a full conductivity, which can be written as σ(T ) =
σn+∆σ(T ), where σn is a normal part of the full conductivity and ∆σ(T ) is a fluctuations
component. We can express it in terms of resistivity, which is easier to compare with our
experiment:

ρ(T ) = 1
σ(T ) = 1

σn + ∆σ(T ) = 1
1
ρn

+ ∆σ(T )
, (4.2)

where ρn is a normal resistivity in the vicinity of the critical temperature Tc. The resulting
resistance can be calculated as R(T ) = ρ(T )l

wd , where l is the length of the sample.
In Fig.4.2, the resulting fit with this fluctuation model is presented for the nanowire

A-10. Both 3D and 2D fits look well only in a very small region, but the 2D case seems to
be in better agreement and with reasonable parameters (see Tab.4.2). In fact, this expres-
sion for 2D paraconductivity is valid for quasi-bidimensional systems. In real 2D systems,
the phase transition occurs at the BKT temperature TBKT , which is lower than the crit-
ical temperature Tc, where the Aslamazov-Larkin theory no longer holds. At the same
time, the BKT theory works only close to the BKT temperature TBKT . Halperin and Nel-
son [Halperin, 1979] proposed an interpolation formula to connect these two temperature
regions. In reduced variables, it can be written as

∆σHN = aHNσn sinh2
(√

bHN tc/t

)
, (4.3)
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Model RN (Ω) d (nm) Tc (K) ξ0 (nm) b TBKT (K) w (nm) λL (nm)
2D 554 17 88.9 - - - - -
3D 592 - 89.8 1.7 - - - -
HN 517 - 89.9 - 2.7 87.2 - -

Vortex entry 750 30 88.9 2 - - 300 300

Table 4.2 – RT fit parameters

where aHN , bHN are dimensionless constants (bHN ∼ 1 and aHN = 0.37/bHN ), tc =
Tc−TBKT
TBKT

, t = T − TBKT
TBKT

.
We can see that at higher temperatures, close to Tc, it overlaps with Aslamazov-Larkin

2D fluctuations ∆σ2D and at lower temperatures it fits better in a wider range (see Fig.4.2).
Despite the fact that the fit describes part of the curve well, as the temperature decreases,
there remains a tail of resistance that is not captured by any of the models considered.
Comparing such a slow decline in resistance with other samples (see Fig.4.1), one can see a
tendency that the width of the superconducting transition is inversely proportional to the
width of the sample. This may indicate an increase in the contribution of inhomogeneities
because a decrease in the effective volume leads to a greater impact of any morphologi-
cal defects in transport measurements. For example, Benfatto et al.[Benfatto, 2009] have
shown that accounting for sample inhomogeneities at the BKT transition effectively broad-
ens the superconducting phase transition.

The second scenario is the vortex entry. According to [Qiu, 2008; Bartolf, 2010; Bu-
laevskii, 2011] the most favorable dissipation route in 2D superconducting strips is the
vortex entrance. There is a barrier for a vortex to enter that can be overcome in the vicin-
ity of Tc due to thermal fluctuations. Once the vortex enters the sample, it drags by the
Lorenz force of the bias current Ib and thus dissipates energy. Based on the Langevin equa-
tion for the vortex motion, Bulaevskii et al. [Bulaevskii, 2011] showed that the resistance
corresponding to vortex motion can be written as

Rv(T ) = 7.1RN
ξ(T )
w

(
ϵ0(T )
kBT

)3/2
exp

(
−ϵ0(T )
kBT

ln 1.47w
πξ(T )

)
(4.4)

where ϵ0(T ) = Φ2
0d/4πµ0λ

2
L(T ) is the vortex energy inside the superconductor, µ0 is the

vacuum permeability, and RN is the resistance in the normal state. For the temperature
dependence of the London penetration depth we use the Gorter-Casimir phenomelogical
law [Ouanani, 2016b; Rauch, 1993; Wolf, 2013; Johansson, 2009]

λL(T ) = λ0√
1 − t2

, (4.5)

where t = T/Tc and λ0 is the London penetration depth at zero temperature. And for
the coherence length temperature dependence we use the usual expression ξ(T ) = ξ0

1√
1−t

from the Ginzburg-Landau theory. The resulting fit is shown in Fig.4.2. We can see that it
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visually smoothly continues the 2D fit from the Aslamazov-Larkin model and fits our data
well in this region. However, parameters such as normal state resistance RN and London
penetration depth λL are significantly overestimated (see Tab.4.2). For YBa2Cu3O7−δ

thin film, London penetration depth is around λL ≈ 150 − 180 nm [Amari, 2017a; De
Nivelle, 1993], while in our case it approximately equals the width of the sample λL ≈ w.
Perhaps this overestimation is due to the way the integral is trimmed when deriving this
equation. Indeed, the region near the edge of the sample on the length of the coherence
length ξ is beyond the limits of the approximation used and must be truncated in some
way. This point is a matter of debate [Gurevich, 2012; Bulaevskii, 2012]. Also, this model
does not fit well the resistance "tail" well before the resistance drops to zero.
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Figure 4.2 – Fit of the resistance versus temperature dependence for the nanowire A-10
based on the different models: 3D and 2D fluctuations models (Eq.4.1), the Halperin-
Nelson model (Eq.4.3) and the vortex entry model (Eq.4.4). a - linear scale, b - log scale.

As we can see both models offer a partial description of our data, and both fall short
in fitting the resistance "tail". According to arguments presented in [Arpaia, 2014c], the
vortex entry model explicitly incorporates the effect of the broadening of the transition
with decreasing width of the nanowire (Eq.4.4). In contrast, the simple BKT model we
employed lacks explicit geometric dependencies. In real samples, it becomes essential
to consider morphological imperfections that could contribute to the broadening of the
superconducting transition, as mentioned earlier and also a finite size of the sample. De-
spite weighing the pros and cons of both scenarios, definitively distinguishing between
them is challenging. Further investigation involving comparisons with other dimensions
is necessary for a more comprehensive understanding. In the subsequent analysis, we will
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explore additional measurements such as current-voltage characteristics and Shapiro step
measurements, delving back into the discussion of vortex and BKT mechanisms.

3 IV characteristics

A large amount of information about the physical nature of the processes taking place
can be provided by the current-voltage characteristic or Current versus Voltage (IV)
curves. Fig.4.3 shows a typical IV curve for the nanowire D-4 from the sample CS15
with length l = 20 µm, width w = 200 nm, and thickness d = 30 nm at temperature
T = 7 K. The voltage changes by seven orders of magnitude as the current increases, so
the plot on the left is shown on a logarithmic scale. The IV curve itself is divided into
two parts: "up" with a positive current sweep from zero current to the maximum current
Imax with the step Istep, and part "down" with a negative current sweep from the maxi-
mum current Imax to zero current with the same step. These two parts partially overlap,
exposing a strong hysteresis.

3.1 Switching, returning and critical currents

Furthermore, we can define a number of important points on the plot that provide
significant information about the physical properties of the system. The first one is the
critical current Ic, which defines the maximum current that the system can provide without
dissipation. There are several ways to determine critical current. We use the threshold
algorithm: the critical current is defined as the current where voltage exceeds threshold
value Vthr = 6 mV, which is slightly above the level of noise. Further increase of current
leads to increase of voltage on the sample. This growth is very nonlinear, depends on
many parameters, and is the subject of separate studies.
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3. IV characteristics

Figure 4.3 – IV curve of the nanowire D-4 from the sample CS15. a - linear scale, b - log
scale.

After the current reaches a value called the switching current, the voltage jumps sharply
and then grows linearly. The switching current is the maximum current before the system
jumps to the normal state. By normal state, we mean the moment when the sample or
a part of the sample transitions to the normal state so that the superconducting phase
region loses cohesion along the current path. In this case, there is a large dissipation of
energy associated with Joule heating, which leads to a cascade process of superconductivity
destruction in a larger and larger part of the sample and, as a consequence, to a large
increase in voltage.

When reversing the current, the sample does not go into the superconducting state
at the switching current. Instead, the voltage decreases almost linearly with decreasing
current. The sample is said to be overheated and in a metastable state, which describes
the hysteresis of this curve. The sample enters the superconducting state only at the
return current, experiencing a series of successive jumps. We estimate the switching and
the return current by the same method using thresholds V s

thr = 1 V and V r
thr = 10 mV for

the switching current and the return current, respectively.
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Figure 4.4 – Temperature dependencies of the switching current Is, the critical current Ic
and the returning current Id for the nanowire B-6 of the sample CS16.

Temperature dependence A great deal of information can be obtained by studying
the temperature dependence of the IV curves. We have already marked three special
points on these curves and now we will analyse their temperature dependence. Fig.4.4
shows the temperature dependencies of the switching current, the critical current and the
returning current for the nanowire B-6 of the sample CS16 with length l = 500 nm, width
w = 200 nm, and thickness d = 30 nm. We will consider switching, return and critical
currents separately because their nature is different.

52



3. IV characteristics

0 10 20 30 40 50 60 70 80

T (K)

0.0

0.2

0.4

0.6

0.8

1.0

I s
/I
s
(0

)
a

IGLd fit

Is

Figure 4.5 – Fit of the switching current versus temperature dependence based on the
depairing current from the Ginzburg-Landau model (Eq.4.7) for the nanowire B-6 from
the sample CS16.

We start with the switching current. The switching current is related to the full
depletion of the order parameter that brings the system to the normal state through a
non-equilibrium process. In other words, it is the maximum possible current of the system
before it fully returns to the normal state. In superconducting samples, such a current is
the depairing current, a current whose strength destroys Cooper pairs. In terms of the
Ginzburg-Landau theory, the depairing current density can be expressed as:

jGLd (T ) = 0.385 Φ0
2πµ0λ2

L(T )ξ(T ) (4.6)

where µ0 is the vacuum permeability, Φ0 is the magnetic flux quantum, λL(T ) is the
London penetration depth, and ξ(T ) is the coherence length of the Ginzburg-Landau
theory. The temperature dependence is given by temperature dependencies of λL(T ) and
ξ(T ). Multiply the depairing current density by the nanowire cross-section wd (w is the
width and d is the thickness of the sample), we obtain the expression for the depairing
current:

IGLd (T ) = jGLd (T )dw = 0.385 Φ0wd

2πµ0λ2
L(T )ξ(T ) (4.7)

Estimating the value of the current by formula from the Eq.4.7 at zero temperature, we
obtain a value of the switching Is, six times the value of the experimental one. However,
if we plot the graphs normalised to the maximum value, we find a complete coincidence of
the shape of the curves (see Fig.4.5). Here, we use the temperature dependencies for the
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coherence length in the a-b planes of the YBa2Cu3O7−δ and for the London penetration
depths from the two-fluid phenomenological formula [De Nivelle, 1993; Kunchur, 2019], as
follows:

ξ (T ) = ξ0

(
1 −

(
T

Tc

)2
)−1/2

λ (T ) = λ0

(
1 −

(
T

Tc

)4
)−1/2 (4.8)

The used zero temperature values are ξ0 = 2 nm and λ0 = 200 nm. The good shape
fit and the discrepancy in its amplitude can be explained in terms of the phase slip lines
[Berdiyorov, 2009b; Weber, 1991; Dmitriev, 2005] or the kinematic vortices [Andronov,
1993; Berdiyorov, 2009a] induced by edge defects [Souto, 2021]. Before reaching the
switching current, there are already many vortices in the sample that are travelling at high
speed. Their motion causes dissipation of energy, which must be effectively dissipated by
the sample and its environment. If this cannot be done, the sample avalanches into a
normal state. But this requires a nucleus. Such a nucleus can be a kinematic vortex. At
high velocities, the shape of the vortex is distorted, stretching along the direction of motion.
At the same time, under these conditions, one vortex is followed by a second one and so on,
forming so-called vortex rivers or rivers of flux [Olson, 1998; Silhanek, 2010a; Dobrovolskiy,
2020b]. Further, they merge into two-dimensional phase slips, forming lines where the
order parameter is strongly suppressed. Such mechanism can lead to the subsequent vortex
instability [Larkin, 1975; Vodolazov, 2007] and transition to the normal state. And, as
it was shown in [Kramer, 1977; Kramer, 1978], these phase slips lines can occur at lower
currents than the depairing one.
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Figure 4.6 – Frozen vortex rivers adapted from [Silhanek, 2010b]. Vortex configurations,
imaged by scanning Hall probe microscopy at T = 4.2 K in a superconducting Pb film
with a periodic array of pinning sites: (a) field cooled without applied current and (b) field
cooled with applied current of 36 mA. The arrows indicate the direction of the applied
current.

On the inverse branch of the IV curve, the switching current is equivalent to the
returning current Ir - the current at which the sample returns to the superconducting
state. As we have already mentioned, the returning current is determined by the effect
of overheating during the switching. It is a thermal multifactorial process involving not
only the sample but also the substrate, which dissipates heat. The returning process
to the superconducting (at least partially) state can be described through the hot-spot
model by Skocpol, Beasley, and Tinkham (SBT) [Skocpol, 1974]. This model considers
heat propagation in a one-dimensional superconducting filament of thickness d, width w,
and length l. Under the action of current I, a hot region of the normal phase (hot-
spot) appears, the Joule heat from which propagates along the filament and the substrate.
According to this model, the balance equation for such a system is written as

− κn
d2T

dy2 + α

d
(T − Tb) =

(
I

wd

)2
ρ (| y |< y0)

− κs
d2T

dy2 + α

d
(T − Tb) = 0 (| y |> y0)

(4.9)

where κn and κs are the thermal conductivity in the normal and in the superconducting
states respectively, ρ is the film resistivity, Tb is the bath temperature, y0 is the half size
of the normal hot-spot (see Fig.4.7), and α is the thermal conductance per unit area.

For the normal region, the right-hand term of the first equation in Eq.4.9 is the Joule
heating. In the left-hand side of the first equation in the Eq.4.9 the first term corresponds
to the thermal conduction of the nanowire in the normal and superconducting phase
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Figure 4.7 – Schematics of a biased current wire in the framework of the SBT thermal
model. A normal hot region of length 2y0 along the y-axis in red transfers thermal energy
laterally to the superconducting wire via heat conduction κ, and through the substrate
due to the heat transfer α. Depending on the values of α and κ, the hot region either
expands or self-heals.

respectively, while the second term represents the thermal transfers through the substrate.
As a first approach, assuming that the conductivities are identical, i.e. κ = κs = κn,

the equilibrium between these terms naturally leads to a characteristic thermal length ηh,
called the healing length, and expressed as:

ηh =
√
κd

α
(4.10)

Depending on the length l of the nanowire compared to the healing length ηh, there
are two types of behaviour. Either for l > ηh, heat is dissipated mainly through the sub-
strate, preventing the hot spot from extending across the entire width of the nanowire,
which remains in the superconducting state. For l < ηh, heat exchange within the super-
conducting nanowire dominates, and the hot spot propagates throughout the nanowire.
The result is a superconducting transition to the normal state, the signature of which is
both hysteresis and switching in the IV’s curve. To estimate ηh in our YBa2Cu3O7−δ

nanowires on a sapphire substrate, we use α ≈ 1 × 107 W· K-1· m-2 [Sergeev, 1994] and
κn ≈ 0.8 − 3 W· K-1· m-1 [Nahum, 1991]. Using these two limiting values for thermal
conductivity, the healing length of a 30 nm thick YBa2Cu3O7−δ film can be estimated to
be ηh ≈ 50 − 100 nm. In our case, the nanowires are always longer than the estimated
healing length, while their width is of the same order of magnitude or greater than the
healing length.

For long bridges l ≫ ηh, we have the following approximation for the healing current:

Ih ≈ w

√
αd
Tc
ρ

√
1 − T/Tc (4.11)

In terms of the IV curve, the healing current equals the returning current Ih ≡ Ir. Cal-
culation according to the formula Eq.4.11 gives Ir(T = 0) ≈ 0.5 mA that nearly twice
smaller than in our experimental data. The source of this discrepancy can be in possible
variations of material parameters such as ρ, α, Tc or in our estimation of the sample geom-
etry w, d, but due to the square root dependence on most of the parameters, such errors
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must peak summarily by a factor of 4, which raises the question of the applicability of the
original model as such in our case.

Last, we consider the third special point on the IV curve - the critical current Ic. The
critical current is defined by the current at which a voltage greater than the noise level
appears on the sample. This current is different in nature from the switching current and
is related to the movement of vortices in the sample. For this to happen, the vortices must
first enter the sample and secondly start to move. But, in real samples, their movement
is hampered by the pinning effect. The critical current is reached when the applied cur-
rent exceeds the pinning force at a given temperature. The pinning phenomenon is very
comprehensive (especially in HTS, where the coherence length is very small), so we will
consider only the partial results of some models describing the temperature dependence
of the critical current.
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Figure 4.8 – Fit of the critical currents versus temperature dependence for the nanowire
B-6 from the sample CS16, based on the different models described in the main text. a)
Model from Griessen et al.[Griessen, 1994] implementing the fluctuations of the critical
temperature δT or fluctuations of the mean free path length δl to the critical current
evolution in temperature (Eq.4.12). b) Model from Plain et al.[Plain, 2002] with the
contributions of both strong and weak pinning types to the critical current evolution
in temperature (Eq.4.13). c) Power α and β fits (Eq.4.14) d) Albrecht et al.[Albrecht,
2007] model with two regimes below 40K (vortex pinned on specific pinning shape and
morphology) and above 40 K (depinning is thermally activated) .

One way of treating the pinning effect is in terms of fluctuations in the critical tem-
perature or fluctuations of the mean free path length in the sample volume. In the
Ref.[Griessen, 1994], it was shown that for these two types of pinning critical current
can be written as

Ic(t) = Ic(0)(1 − t2)
5
2 (1 + t2)− 1

2 , for δl pinning

Ic(t) = Ic(0)(1 − t2)
7
6 (1 + t2)

5
6 , for δTc pinning

(4.12)

where t = T
Tc

is a reduced temperature and Ic(0) is a critical current at zero temperature.
The corresponding fit is shown in Fig.4.8a. As previously mentioned, our experimental
critical current versus temperature data Ic(T ) exhibits a rather linear behaviour. This
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contradicts the δT pinning law but aligns better with the δl pinning model, albeit with
some slight deviations. This observation supports the notion that pinning likely governs
the critical current in our sample.

However, the pinning can vary significantly in nature, and different types of pinning
exert distinct influences on the critical current across various temperature ranges. For
example, weak point-like pinning sites, such as oxygen vacancies in YBa2Cu3O7−δ, have
a strong impact at low temperatures.At higher temperatures, the so-called strong pinning
becomes more significant, attributed to morphological and structural defects in the crystal,
such as dislocations, twin boundaries, and inclusions. The study by Plain et al.[Plain,
2002] demonstrated the presence of both types of pinning in YBa2Cu3O7−δ. They also
proposed an approximation formula combining the contributions of both pinning types to
the critical current:

Ic(t) = Iwe
− T

Tw + Istre
−3( T

Tstr
)2

(4.13)

where the first term on the right side is the weak pinning contribution [Senoussi, 1988;
Christen, 1993; Blatter, 1994], with Iw as the weak pinning critical current component
and Tw as the characteristic weak pinning energy in terms of temperature and typically
in a range of 8 − 13 K. The second term on the right side represents the strong pinning
contribution [Nelson, 1993; Hwa, 1993], with Istr as the strong pinning critical current
component and Tstr as the characteristic strong pinning energy in terms of temperature,
typically in the range of 78 − 93 K for YBa2Cu3O7−δ [Gutiérrez, 2007; Polat, 2011].
In Fig.4.8b, the resulting fit is presented with temperature parameters Tw = 9 K and
Tstr = 91 K and current parameters Iw = 0.25 mA and Istr = 1.03 mA. One can see that
this model works very well with reasonable fit parameters, and these parameters indicate
a significant contribution of the strong pinning component. This is an important result for
our subsequent analysis of the other results. Despite the fact that this model satisfies us
in many respects, technically it cannot describe the dependence of the critical current on
temperature in the whole temperature range. In fact, at a temperature equal to the critical
temperature, the critical current according to the formula 4.13 is not equal to zero. But
this property is possessed by the power dependencies used in the works [Fedotov, 2002;
Ijaduola, 2006; Miura, 2011; Albrecht, 2007]. They propose the following formula for the
critical current:

Ic(t) = Ic(0)(1 − t)α

Ic(t) = Ic(0)(1 − t2)β,
(4.14)

where t = T
Tc

is a reduced temperature and typical values of α = 0.9−2 and of β = 1.2−1.5
were found in literature [Kuznetsov, 2017]. In the Fig.4.8c, we present the corresponding
fit with parameters α = 1.3 and β = 1.65. The power α fit with the first formula in the
Eq.4.14 is nearly as good as the previous fit with the strong and weak pinning model using
the formula in the Eq.4.13. Now it satisfies the condition that the critical current is zero
when the critical temperature is reached. We found that α = 1.3 fits the experimental
curve well with the power law ∝ (1−t)α in all temperature ranges, which is quite expected,
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since behaviour of the experimental data is linear.
A last model we want to present accounting for pinning contribution to critical current

deals with two main contributions of pinning in different ranges of temperature. According
to analysis by Albrecht et al.[Albrecht, 2007], the whole temperature range can be divided
into two parts: a low-temperature regime, below T ≈ 40 K and a high-temperature regime,
above T ≈ 40 K. In the high-temperature regime, the critical current should be linear
with temperature Ic ∝ (1 − t), consistent with the linear dependence of the vortex energy
ϵ(T ) ∼ 1

λ2
L

∼ (Tc−T ) on temperature in the Ginzburg-Landau theory (see Eq.1.39). In this
case, depinning is thermally activated, and the pinning energy is proportional to the vortex
energy at a particular temperature ϵ(T ). As the temperature decreases, the probability
of thermal depinning decreases, and we move into the low-temperature regime. Now, the
specific pinning shape and morphology come into play. In the work [Albrecht, 2007], the
authors found that in this case, the critical current can be estimated as Ic ∝ (1 − t)s,
where the power s depends on the particular pinning landscape and can vary from s = 1.5
to s = 2.5.

In Fig.4.8d, we present our results of the described analysis. For the fit, we use these
power laws in the form Ic = a(1 − t) + b or Ic = I0

c (1 − t)s + I0 for the corresponding
fit. Here, a is the coefficient proportional to the critical current at zero temperature,
and b simulates the depth of the pinning potential. Fitting parameters were obtained by
the least squares method. One can see that at high temperatures, the suggested model
works well and deviations from it start exactly around T ≈ 40 K. At low temperature, we
switched to the other suggested power law and found that with s = 1.5, we are able to
fit our data correctly. At the intermediate temperature regimes, change occurs, and our
simple models fail. This range is very complex since one cannot work within the limits of
high or low kBT , and contributions from many processes must be taken into account.

Based on this analysis, we can conclude that models based on the pinning mechanism
can adequately describe the temperature dependence of the critical current. Further details
can be clarified, but the general conclusion remains the same: pinning plays a crucial role
in the transport properties of our samples.

3.2 Flux Creep behavior

In this part, we will focus on the shape for the IV curves in the normal state near the
critical current and before the switching current. In Fig.4.9a and Fig.4.9b, a typical set of
IVs are plotted in linear scale and log scale, respectively, for temperatures ranging from
6 K to 70 K.
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Figure 4.9 – IV curves for different temperatures in linear scale a) and log scale b) for the
nanowire C-5 from the sample CS15.

At small currents relative to the critical current I ≳ Ic, the model associated with
vortex creep is realised. In this regime, the mobility of vortices is low, and their motion
is carried out by jumps from one pinning point to another. This vortex motion is a
result of the Lorentz force of the transport current and thermal fluctuations. In this
picture, the pinning centres represent a potential well of some depth, which in the simplest
case captures one vortex. The creep flux model was proposed by Anderson and Kim
[Anderson, 1964], and applied specifically to YBa2Cu3O7−δ by Bernstein et al.[Bernstein,
1995; Bernstein, 1997; Pannetier, 2000]. We will follow this approach in analysing our
data.

Consider a nanowire of length l and width w under the action of a transport current
I. We assume that vortices (created by an external magnetic field or by a current itself)
of density nϕ are present in the nanowire. Then, under the action of the Lorentz force,
they will come into motion, creating a voltage drop at the ends of the nanowire equal to

V = lvϕnϕΦ0 (4.15)

where vΦ is the average velocity of the vortices, Φ0 is, as usual, the flux quantum.
Considering vortex motion as a diffusion process from the nanowire edges to its centre,

we can write the following expression for the vortex density along the edges at zero external
magnetic field [Pannetier, 2000]

nϕ(w/2) = µ0(I − Ic)
2Φ0d

, (4.16)

61



Chapter 4. Transport measurements

where Ic is the critical current, and the condition I > Ic is assumed. According to the
description in the original model [Anderson, 1964], the vortex velocity can be written as

vϕ = 2v0 exp
(

− Ep
kBT

)
sinh

(
W

kBT

)
, (4.17)

where T is the temperature, v0 is the maximum vortex velocity along the edges, Ep is
the pinning energy, W is the work done by the Lorentz force. Maximum velocity can be
expressed as

v0 = ωδp, (4.18)

where ω is the thermal activation attempt frequency and δp is the jump width between
pinning sites. The Lorentz force work can be written as

W = IδpΦ0
w

. (4.19)

Combining these all equations Eqs.4.15-4.18, we can finally retrieve voltage versus
current dependence:

V = (I − Ic)
µ0lωδp
d

exp
(

− Ep
kBT

)
sinh

(
IδpΦ0
kBTw

)
. (4.20)

Before fitting our data, we need to decide on a set of parameters. Geometrical parameters,
critical current and temperature are known from the experiment with good accuracy. The
internal parameters of the model include the thermal activation attempt frequency ω, the
jump width δp and the pinning energy Ep. From literature data [De Nivelle, 1993] at
zero magnetic field, the frequency can be limited within a range 2 × 1012 − 2 × 1013 Hz.
An estimation from the Heisenberg uncertainty principle kBT ∼ ℏ ω gives a value of
the same order for temperatures T ≈ 50 − 100 K. We fix the value of the frequency to
ω = 1 × 1013 Hz. The remaining two parameters: jump length and pinning energy will
be the fit parameters.

Since this model describes only the initial part of the IV curve after the critical current,
it is necessary to manually determine the final boundary. This freedom of choice is a
separate problem when working with this kind of models because different fit algorithms,
such as the least squares method, are sensitive to the data set. This makes it much more
difficult to find the optimal fit. In our work, we will use the Akaike criterion to compare
fits with different current bounds. The general procedure can be described as follows: a
minimum current equal to the critical current is selected, then a fit with different boundary
currents starting from the critical current and ending with the switching current is made.
For each fit, the Akaike criterion is calculated and the fit with the lowest criterion value
is considered the most satisfactory. The procedure is repeated for each temperature. This
way we reduce the uncertainty in the choice of data for the fit, and the overall procedure
increases the self-consistency of the results.
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Figure 4.10 – Fit of IV curves based on the flux creep model (Eq.4.20) for the nanowire
B-6 from the sample CS16.

Fig.4.10 shows a selected set of the experimental curves from 4.9 for the sample B-6
from sample CS16 and the fit by the described model. As can be seen, the model well
describes the initial growth of IV curves in a wide range of temperatures. At high tem-
peratures, the same coincidence of experiment and theory also occurs at large values of
current close to the switching current. This is unexpected because, formally, the appli-
cability conditions in this current region are not fulfilled. Indeed, this model works in
the single vortex approximation, meaning it is restricted to the region where the mutual
interaction of the vortices starts to play a role. We can estimate this current region from
the equation that gives the current difference. However, in thin films, the vortices start to
sense each other already at the Pearl length λP , which in our case is of order and larger
than the nanowire length. In this sense, we initially do not fulfil the conditions of the
model. But such a good match between our data and the flux creep theory may be due to
the fact that the mutual interaction of the vortices is still weak compared to the Lorentz
force and the pinning force. It has already been discussed in the section that there is
good reason to believe in the presence of strong pinning centres such as twin boundaries
in this sample. For the same reason, the fit can also work at high currents when part of
the vortices are still trapped in the strong pinning centres.

From the resulting fit, we can also extract the model parameters: the pinning energy
and the jump length, whose dependence on (1 − t) is depicted (t = T/Tc). We have
chosen such coordinates for a simpler comparison with the Goupil work [Cristophe, 1997].
According to this work, at small magnetic fields, taking into account the presence of twin
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boundaries, the pinning energy can be written as [Kramer, 1973]:

Ep = Φ2
0l

4πµ0λ2
Lγ

ln
(
l

ξ

)
, (4.21)

where γ is the electronic anisotropy factor for YBa2Cu3O7−δ. Using classical temperature
dependencies from the Ginzburg-Landau theory, we obtain that the energy is proportional
(1 − t). As can be seen from Fig. 4.11a, our case is quite close to this simple estimate.
This indirectly further confirms our idea about the influence of twin boundaries on the
flux creep.
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Figure 4.11 – The pinning energy Ep and the jump width between pinning sites δp resulting
from the flux creep model fit for the nanowire B-6 from the sample CS16.

Fig. 4.11 b shows the dependence of the jump length. Its behaviour seems intuitive:
An increase in temperature leads to larger jumps due to a larger contribution of thermal
fluctuations, which may lead to overshooting of several pinning centres and effectively
increasing the jump length. However, comparison with literature data [Bernstein, 1997]
shows that our lengths are two orders of magnitude smaller in amplitude.

We have analysed the initial part of the IV curve within the framework of the flux
creep theory. A satisfactory fit of the experimental data was obtained and the physical
parameters of the model were extracted. The summary analysis shows that the vortex
creep may be the mechanism of the onset of pinning when the critical current is exceeded.
The temperature dependence of the pinning energy is an argument for the large role of
possible strong pinning centres in our sample. This argument agrees with the analysis
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of the temperature dependence of the critical current given in Sect. 3. The temperature
dependence of the jump length, on the other hand, agrees qualitatively with the literature
data, but is quantitatively two orders of magnitude smaller. Characteristically, the length
in the whole temperature range remains less than 1 nm. Perhaps such short jumps are
performed within twin boundaries, which leads to such an effective underestimation of the
jump length at the overall small sample size, when the contribution of each large defect can
be enormous. The strength of such a defect was also showed in a direct measurement done
by means of Scanning Tunneling Microscope (STM). Alternatively, it raises the question
of the applicability of the model at all in our case. Direct measurements and transport
measurements done simultaneously could probably provide a definitive answer.

3.3 Shapiro steps

3.3.1 RF-illumination setup

One possible method of studying vortex motion can be the perturbation of vortices by
Radio-Frequency (RF) radiation.

To do that, we placed a broad-band RF antenna several centimetres above our sample.
The antenna was supplied by Anritsu MG3692C RF signal generator which provides a
frequency range from 0.1 GHz to 20 GHz. In this setup, we cannot supply our sample
with a specific frequency due to the fixed unknown absorption spectrum of a sample holder
and wirings. Because of this, measurements of each new sample start from a scan with
a range of frequencies 1 GHz - 10 GHz searching for the best absorption of the incident
microwave.

To determine the best absorption, we use the frequency at which the critical current
is most significantly suppressed. We determine this criterion by the following procedure:
First, we measure the IV curve without any microwaves to estimate the critical current
Ic in the absence of radio-frequency radiation. Then, we choose a somewhat arbitrary
power level at the generator. It must be high enough to detect its impact on the critical
current but not too high to completely destroy the superconductivity in the sample. We
set the selected power and apply a current to the sample equals to the critical current.
Following this, we vary the frequency while measuring the voltage. The frequencies at
which the voltage is highest correspond to those frequencies where the critical current is
most suppressed - the IV characteristic is monotonic in most cases - indicating optimal
absorption by the sample. Thus, we identify a set of well-absorbed frequencies for further
investigation, starting with the highest frequency to enhance the signal-to-noise ratio as
the Shapiro steps appear at higher voltages.

In this type of measurement, we should note that the absolute value of the power
effectively supplied to the sample can not be precisely determined. Indeed, in our setup, we
only control the power supplied to the antenna. Due to the impedance mismatches between
the antenna and vacuum, as well as between the vacuum and instrumentation, a portion
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of this power is reflected, while the rest is absorbed and dissipated by various components,
including the sample, the sample holder, wires, contacts, and the cryostat itself. Moreover,
the temperature and frequency dependence introduces additional complexities, making it
challenging to achieve quantitative calibration. Thus, the power values obtained in this
experiment are relative.

On the contrary, the frequency is a well-defined parameter entirely set by us through
the oscillator. Despite potential distortions, the very quantum nature of the Shapiro steps
allows us to produce a well-measured relationship between voltage and frequency.

Returning to power, we note that the very nature of the effect gives us a number of
reference points for power through the values of the critical current. The first reference
point is the critical current when the radio-frequency generator is switched off: this is the
zero point. The second reference point is the power level at which the critical current is
maximally suppressed, often falling to zero. We mean the first minimum of the critical
current because then it can oscillate with increasing power. These two reference points
allow us to build a power scale for comparison with measurements under varying conditions
such as temperature or frequency.

3.3.2 Shapiro-like steps

Once a frequency is fixed, we measure IV curves under applied RF illumination at
different temperatures.
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Figure 4.12 – a) IV curves under RF illumination at different temperatures. b) Dynamical
resistance dV/dI versus the number of the Shapiro step for different temperatures for the
nanowire B-6 of the sample CS16.
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In Fig.4.12a, a set of IV curves for the nanowire B-6 of the sample CS16 is shown,
measured under fixed-frequency microwave illumination at f = 18.9402 GHz and fixed
source power of PRF = 10 dBm. Each curve in the set corresponds to a sample temper-
ature. Several constant voltage plateaus or steps can be seen at different voltage values.
This voltage value is correlated to the applied frequency via the second Josephson relation:

hf = n · 2eV (4.22)

where V is the voltage value at which constant voltage step appears at frequency f , and
n is the number of steps. In our case, the first step appears at voltage V1 ≈ 40 µ V .

The effect becomes more pronounced in the derivative dV/dI. We normalise the voltage
in terms of the number of the Shapiro steps using the Josephson relation, as presented
in Fig.4.12b. We can detect up to the first five Shapiro steps over a wide temperature
range from 5 K to 50 K. Additionally, at moderate temperatures, we can distinguish a
fractional step of one-half and fractional steps of one-third and two-thirds at sufficiently
low temperatures.

Nanobriges as weak links in the framework of Aslamazov Larkin and Likharev
models. It should be noted that, although there are no explicit Josephson junctions,
these phenomena are well described by the second Josephson relation. Aslamazov and
Larkin [Aslamazov, 1975a] initially demonstrated this, and Likharev [Likharev, 1975] later
generalized their findings, showing that signatures typically attributed to Josephson junc-
tions can be observed in various superconducting weak links.
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Figure 4.13 – Phase diagram of different effects in superconducting nanobridges depicting
different cases depending on lateral sizes (length l and width w) of a weak link. Adapted
from [Likharev, 1979].

Fig.4.13 illustrates a phase diagram describing different cases responsible for the ap-
pearance of the Shapiro steps as a function of lateral sizes of a weak link. Although all
effects exhibit the Shapiro steps, there are significant microscopic differences.

The first case, referred to as the Aslamazov-Larkin (AL) case, is at the lowest part of
the phase diagram 4.13. In this case, the length l of the weak link is less than the critical
length lc, and the Abrikosov vortex cannot exist. It has been shown [Aslamazov, 1969]
that, in this case, at temperatures close to the critical one T ∼ Tc the pure Josephson
effect is pronounced with a sinusoidal Current Phase Relationship (CPR). With sufficient
width, the nanobridge behaves like a long Josephson junction, with Josephson vortices
entering the nanobridge.

The upper part of the phase diagram (l > lc) is divided into two parts depending on
the width w of the nanobridge.

If the width is less than the critical width (w < wc), there is not enough room for the
Abrikosov vortex in the width, and a one-dimensional phase slip occurs when the current
reaches the critical current. This case has been extensively studied in low-temperature
superconducting nanowires both experimentally [Lau, 2001; Bezryadin, 2008; Arutyunov,
2008; Lehtinen, 2012; Arutyunov, 2012] and theoretically [Golubev, 2001; Tinkham, 2002;
Matveev, 2002; Oreg, 1999; Golubev, 2008; Mooij, 2006]. Once the width of the weak link
exceeds the critical width (w > wc), the Abrikosov vortex can enter the nanobridge at a
certain critical current. This vortex then moves under the effect of the Lorenz force due
to the transport current, resulting in vortex motion (ϕ(t) ̸= const) and, consequently, a
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finite voltage < V ≯= 0, causing the nanobridge to enter the resistive state.
In our case, where the length l and width w are much larger than the coherence length

ξ(T ), the Shapiro steps can be explained in terms of Abrikosov vortex motion synchronized
by an externally applied microwave signal. The motion of the Abrikosov vortex is the
motion of magnetic flux quanta, leading to a voltage drop V = dΦ

dt according to Maxwell’s
equations, where Φ is a magnetic flux through a superconducting surface. This voltage
drop is equivalent to the rate of change of the magnetic flux, which corresponds directly
to the speed of the vortex. Experimental observations of voltage steps in IV curve due to
vortex motion were reported by Fiory [Fiory, 1971] and Gubankov et al.[Gubankov, 1976]
in conventional superconductors. Similar observations were made by Early et al.[Early,
1994] and Nawaz et al.[Nawaz, 2013b] in YBa2Cu3O7−δ.

Our case (l, w ≫ ξ) corresponds to the Abrikosov vortex motion on this diagram. How-
ever, this diagram changes scale with temperature because of the temperature dependence
of the coherence length. In the limit of T → Tc, all weak links exhibit a pure Josephson
effect behaviour. For the case l, w ≫ ξ in one dimension, Larkin and Aslamazov [Asla-
mazov, 1975a] showed, based on the Ginzburg-Landau theory, how vortex motion under
the application of an alternating electromagnetic field leads to the Shapiro steps on IV
curves. Later, Likharev generalised this theory and calculated an approximation of CPR
for a superconducting bridge (Fig. 4.14).

Figure 4.14 – CPR for various lengths of the superconducting bridge. Adapted from
[Likharev, 1975].

From a sinusoidal Josephson CPR, with increasing bridge length l, the CPR becomes
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asymmetric, and at a certain point, it becomes multi-valued:

IS = IC
3
√

3
2

(
φ

l/ξ(T ) −
(

φ

l/ξ(T )

)3
)
, (4.23)

where IC is the critical current in the case l = ξ(T ). This approach has been applied to
the One-Dimensional (1D) nanowire and is described in [Dinsmore, 2008]. We implement
this CPR within the framework of the Resistive Shunted Junction (RSJ) model to describe
our nanowires:

dϕ

dt
+ IS = IDC + IRF sinωt+ INoise (4.24)

where IDC , IRF are the values of the corresponding Direct Current (DC) and RF current,
ω is the frequency of the RF current, and INoise is the noise current due to thermal
fluctuations.

Solving this equation numerically gives the phase versus time ϕ(t) dependency; then,
using the second Josephson relation, we calculate the instantaneous voltage V (t). Aver-
aging it over time, we obtain the average voltage < V >, which corresponds to the DC
voltage measured during an experiment. By repeating this procedure, we calculate the
IV curve for fixed values of IRF and ω. In Fig.4.15, we take a derivative of the simu-
lated IV curve to compare it with the experimental curve. Fractional steps similar to the
experimental ones are pronounced.
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Figure 4.15 – Dynamical resistance dV/dI versus the number of Shapiro step a) Experi-
mental measurements of the sample C-8 from CS15 measured at T = 6 K at f = 18.32
GHz. b) Simulations from RSJ model with Likharev’s CPR (Eq.4.23).

Although this approach qualitatively reproduces experimental IV curves, it is more of
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a mathematical approach than a physical one. Any additional harmonics in CPR will lead
to the fractional Shapiro steps on an IV curve. In general, we can consider the CPR in
the following Fourier series:

Is = i1 sin(ϕ) + i2 sin(2ϕ) + i3 sin(3ϕ) + . . . (4.25)

where i1, i2, . . . are the corresponding coefficients to be defined.
However, this does little to clarify the physical picture of this phenomenon. Even if

we admit that vortex synchronisation is at the origin of Shapiro steps in nanowires, all
the models described are 1D approximations of the vortex motion. For the measured
geometry, the vortex motion is 2D up to very high temperatures (T ≈ Tc), and an efficient
2D model should be considered.

3.3.3 Shapiro steps width

Another useful information that can be easily extracted from the experiment is the
width of the Shapiro steps.

We measured IV curves by sweeping RF power from zero to the maximum possible
power at the RF source. The resulting data can be plotted as 2D heatmaps, as shown in
Fig.4.16. Starting from zero power and monotonically increasing power, we can observe
that the critical current decreases and the Shapiro steps appear. At some point, the
critical current is fully suppressed. Further increasing the power leads to an increase in
the critical current up to a lower maximum, and then it decreases again.

The width of the Shapiro steps follows the same oscillatory behaviour but starts from
zero width at zero power. Apart from integer steps at low power, we can also observe the
power evolution of fractional steps. At some value of RF power, they transit into integer
steps and do not reappear with increasing power.
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Figure 4.16 – Color-maps of the dynamic resistance under an RF illumination at
f = 18.32 GHz as a function of bias current and the RF power for the of the nanowire
C-8 from the sample CS15 at T = 6 K.

This behaviour in general is typical for the Shapiro steps in the Josephson junctions
but has several peculiar features.

The first feature is the almost linear decrease of the critical current with increasing
RF power. This is more easily seen in Fig.4.17a, which shows the dependence of the
width of each Shapiro step (the critical current is numbered as the Shapiro step number
0) on the irradiated power. In some sense, this almost linear dependence is similar to
the temperature dependence of the critical current. Taking into account the pinning
model as an explanation of the temperature dependence, we can describe this behaviour
by replacing the thermal energy kBT by the energy of the quantum of electromagnetic
radiation hf . The greater the power, the more quanta that allow the vortices to escape
from the potential pinning hole. We will resort to the replacement of thermal energy by
electromagnetic energy again later to explain another effect.
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Figure 4.17 – a) RF power evolution of the critical current (step 0) and width of the
Shapiro steps (step number > 0) of the nanowire C-8 from the sample CS15 at T = 6 K.
b) Zoom in µA range showing the evolution of the Shapiro steps width with RF power

The second notable feature is the observed enhancement of the critical current Ic in-
creases with increasing RF power in some region. This effect was observed by Gubankov et
al.[Gubankov, 1976] in Sn nanobridges and by Rudenko et al.[Rudenko, 1991] in YBa2Cu3O7−δ

microbridges. The first theoretical explanations were made by Eliashberg [Eliashberg,
1970] and then by Aslamazov et al.[Aslamazov, 1978]. According to their models RF il-
lumination acts as a rescale of the quasiparticle spectrum that leads to a larger effective
superconducting gap. But this explanation as well as the observed effect are restricted to a
very narrow range of the RF power close to zero microwave power. Conditions of Aslama-
zov’s model are hardly fulfilled in our sample and increasing of the critical current with RF
power appears rather at sufficient powers in contrast to other experimental observations
in microbridges of a conventional superconductor [Gubankov, 1976] or in YBa2Cu3O7−δ

microbridges [Rudenko, 1991]. Perhaps a potential explanation lies also in the behaviour
of Abrikosov vortices as it was also suggested [Rudenko, 1991]. Possibly there is a kind of
analogue of the peak effect. But this requires further research.
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Figure 4.18 – Series of IV curves at different RF powers of the nanowire C-8 from the
sample CS15 at T = 6 K. a) Uniform scale, b) log-log scale.

Fig.4.17 shows the evolution of the Shapiro step width with increasing electromagnetic
radiation power. It can be seen that the steps experience the same oscillatory behaviour
as the Shapiro steps in the Josephson tunnel contact, but the shape is very different. The
fractional Shapiro steps also oscillate. It can be seen that the above-described effect of the
increasing the critical current occurs at the same power at which the first step minimum
1/2 is observed.
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Figure 4.19 – Series of IV curves at different RF powers with the corresponding power law
fits. a) Linear scale, b) log-log scale.

We have considered what happens at different power with Shapiro steps, now let us
consider the evolution of IV curves with changing power.

Fig.4.18 shows a series of IV curves at different powers near the first minimum of the
critical current. It can be seen that not only the critical current but also the curvature of
the IV curves changes with increasing power. Plotting the same graph on a logarithmic
scale (see Fig.4.18b), we can see that on this scale the curves are straight lines, which
means the dependency is of power law type V ∝ In. This kind of a power law dependence
appears in various models, for example, collective flux creep [Vinokur, 1995], flux creep
model proposed by Zeldov et al.[Zeldov, 1990; Zeldov, 1994], Thermally Activated Vortex
Motion (TAVM) [Tafuri, 2006; Repaci, 1996], BKT systems [Halperin, 1979] and others.

Without reference to any particular model, we, following the previous considerations,
will consider an array of vortices moving in the pinning potential under the action of the
Lorentz force from the sum of DC bias current and RF current, considering the antenna
as a current source.

In general, the power law IV curve can be defined as

V =
(
I

Id

)n
, (4.26)

where Id is some characteristic current, n is some critical exponent. By applying our fit
procedure described in Section 3.2, we can obtain the dependencies of these parameters
on the power of the signal fed to the antenna.
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Figure 4.20 – Extracted the power n from the power law fitting of the series of IV curves
for a) different RF powers, b) different temperatures T .

Fig.4.19 shows the fit using the formula for several power values. It can be seen that
such a simple formula gives a satisfactory match with the experimental curves. The de-
pendencies for the parameters obtained from the fit are shown in Fig.4.20a. The behaviour
of power n qualitatively and quantitatively resembles the similar dependence in the work
where the TAVM model was applied. In this model, the thermal activation of the vortex
is considered and the corresponding degree is given by formula [Tafuri, 2006].

n(T ) = 1 + Φ2
0

8π2λP (T )kBT
(4.27)

where Φ0 is the magnetic flux quantum, T is the temperature, λP (T ) is the Pearl length.
However, the corresponding estimate of the Pearl length in this case gives the value
λP (0) ≈ 200 µm that is much larger than the expected value for a thin film 30 nm
thick YBa2Cu3O7−δ thin film of λP = 2λ2

L
d ≈ 3 µm.

It should also be noted that the original model considers thermal activation and tem-
perature dependence, while we study the microwave power dependence. The good nu-
merical agreement of these different results may indicate the heating of the sample by
microwave absorption. A complete analogy with the operation of a microwave oven is pos-
sible. To test this analogy, we provide the same fitting procedure for IV curves at different
temperatures without RF illumination. The resulting dependency of the parameter n ver-
sus the temperature T is shown in Fig.4.20b. One can see qualitative and quantitative
agreement between two plots. This can be an additional argument that in this case RF
source acts as a heat source locally heating the sample while all surrounding stays at a
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base temperature.
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Figure 4.21 – Color-maps of the dynamic resistance under an RF illumination at f = 18.32
GHz as a function of bias current and the RF power for the nanowire C=8 of the sample
CS15 at a) 6 K, b) 20 K, c) 50 K, and d) 70 K.
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3.3.4 Shapiro steps temperature dependence

High critical temperature allows us to study this coherent vortex motion induced by
microwave irradiation over a wide temperature range. We measured color-maps like in
Fig.4.16 at different temperatures and resulting plots are presented in Fig.4.21. The
general trend is a smoothering of all effects with increasing temperature due to increasing
thermal fluctuations. These fluctuations help vortices escape pinning sites and provide
continuous vortex flow.

With increasing temperature, the color-map region where the critical current and
Shapiro steps oscillate also increased. At high temperature, the analogy with the Joseph-
son effect is now even more complete. Fractional Shapiro-like steps preserve up to 50 K
that somehow define a pinning force of defects inside the sample. And up to temperature
50 K the region where fractional steps should be widens, and these regions are now also
manifested at higher-order steps.

As we will show in Chapter 6, the motion of even one vortex can lead to fractional
Shapiro steps, so the appearance of their hints with increasing temperature can speak
about the increase of the general mobility of vortices and about the nature of this mobility.

4 Conclusion

This chapter presents the results of our transport measurements. Analysing our results
using existing models, we tried to find a consistent and self-consistent explanation for
the maximum number of effects and observations. Such an explanation seems to be the
explanation through the motion of Abrikosov vortices. It is widely known that Abrikosov
vortices play an enormous role in the transport properties of the superconductor of the
second kind, which is YBa2Cu3O7−δ. For example, the broadening of RT curves can
be explained by the peculiarities of the surface barrier of vortex entry. This barrier may
significantly depend on morphological defects and inhomogeneities of the film. Penetrating
inside, the vortex moves under the action of the Lorentz force and thermal fluctuations in
the pinning landscape, getting stuck in deep minima. Such a picture of the vortex creep
allows us to fit well the temperature dependence of the critical current and the initial
part of the IV curves. The behaviour of the switching current and the return current is
much more complicated because thermal processes in the sample and substrate are actively
involved.

The effects associated with irradiation can also be explained as a synchronised vortex
motion. Such synchronisation was previously predicted and observed as Shapiro steps in
various samples. Here, in addition to integer steps we also observed fractional Shapiro
steps. The evolution of these steps from the RF power was measured at different temper-
atures, allowing us to trace the thermal evolution. The effect of increasing critical current
with increasing RF power in a narrow power range was also found.

Despite self-consistency, there are some inconsistencies in the explanation through the
vortex motion, such as the large value of λ obtained at the resistance versus temperature
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curve fit. Such a problem can, for example, be removed in the model of Josephson vortices.
In the work by Sonin et al.[Sonin, 1989], it was shown that the effective length λ in the
grid of Josephson vortices can exceed the Pearl length λP . The Josephson mesh is another
possible explanation of the transport properties in such samples. It is known that twin
boundaries are a frequent phenomenon in the growth of YBa2Cu3O7−δ films and at the
same time they are natural Josephson contacts. It is very difficult to separate one type
of vortices from another in our case, because the consequences of their motion measured
in the experiment are very similar. Under some conditions they can even transform into
each other.
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Chapter 5
Simulation of vortex dynamics

The aim of this chapter is to provide a comprehensive description of the nu-
merical simulation of vortex dynamics using the Time-Dependant Ginzburg-
Landau (TDGL) framework. The discretization scheme, as well as the solving
algorithm, is described.

Objectives
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1. System of equations

1 System of equations

In chapter 1, we have introduced TDGL equations that provide an appropriate and
well-known approach for modeling the dynamics of Abrikosov vortices. As these partial
differential equations cannot be solved analytically in most interesting cases, we present a
numerical solution procedure.

To facilitate the analysis, it is convenient to work in a dimensionless form, requiring
the selection of appropriate units and scales. Following the approach by Sadovskyy et
al.[Sadovskyy, 2015], the TDGL equations in dimensionless form can be written as follows:

u (∂τ + ıµ)ψ = ϵ(r)ψ − |ψ|2ψ + (∇ − ıA)2ψ

κ2∇ × (∇ × A) = JN + JS
(5.1)

where

— u is a dimensionless parameter that defines diffusion of the order parameter, and it
varies on a specific superconductor material (in all our simulations it is set to u = 1
as we are not interested in times of creation and destruction of vortices)

— ψ - is an order parameter in units of ψ0 =
√

|a|/b

— µ is the scalar potential in units of µ0 = ℏ
2eτGL

, where τGL = 4πσλ2
L/c

2 is a unit of
time and σ is a normal conductivity.

— A is the vector potential and is measured in units of Hc2ξ, where Hc2 = ℏc
2eξ2 is the

second critical field, κ = λL/ξ is a Ginzburg-Landau parameter.

— lengths are in units of the coherent length ξ.

The normal and superconductor current density in these dimensionless units is written
as:

J = JS + JN

= Im [ψ∗(∇ − ıA)ψ] − (∇µ+ ∂τA)
(5.2)

where the current density is in a unit of J0 = eℏψ2
0

mξ .

The disorder and pinning sites are introduced via the dimensionless function

ϵ(r) = Tc(r) − T

T
. (5.3)

That allows us to vary the critical temperature over the sample volume, modeling δT -
pinning [Kwok, 2016]. In superconducting regions, ϵ(r) = 1, while in regions where local
critical temperature Tc(r) is suppressed, ϵ(r) < 1.

Metallic inclusions can be simulated by values ϵ(r) < 1.

The important property of this system of equations is invariance to the following gauge
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transformation:
ψ 7→ ψeiχ

A 7→ A + ∇χ
µ 7→ µ− ∂χ

∂t

(5.4)

where χ(t, r) is a scalar twice continuously differentiable function. The arbitrariness in
the choice of the function χ(t, r) can be used to efficiently simplify the system. In our
work, we use the so-called zero scalar potential gauge setting µ = 0. Thus, we eliminate
the scalar potential from both equations of our system.

Finally, in this gauge our system is written as

∂τψ = ϵ(r)ψ − |ψ|2ψ + (∇ − ıA)2ψ

∂τA = Im [ψ∗(∇ − ıA)ψ] − κ2∇ × (∇ × A)
(5.5)

Here, the value u = 1 is already taken into account.

Boundary and initial conditions To get a unique solution for the defined partial
differential equation, we must satisfy it with appropriate boundary and initial conditions.
Here, we use two types of boundary conditions: the superconductor-vacuum condition and
the superconductor-metal condition.

For the first one we set:
n · (∇ − ıA)ψ = 0 (5.6)

where n is a normal vector to the superconductor-vacuum boundary. This condition means
that superconducting current cannot flow to the vacuum.

The superconductor-metal boundary situation is a bit more complicated because Cooper
pairs, and so the order parameter can diffuse inside normal metal as well as normal
electrons into a superconductor. The last process happens on some length where nor-
mal electrons transform into Cooper pairs. De Gennes [De Gennes, 2018] suggested
superconductor-metal boundary conditions in a form

n · (∇ − ıA)ψ = ıγ0ψ (5.7)

where γ0 is a real constant that measures the characteristic length of this proximity effect.
In our work, we use a simplified approach by setting γ0 = 0 and applying the following

condition for metal-superconductor interface:

n · (∇ − ıA)ψ = 0 (5.8)

This choice has negligible impact on our results, since the region of interest is located far
from the superconductor-metal boundaries where the order parameter is suppressed.
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For vector potential, boundary conditions are based on the requirement that, at the
superconductor‘s boundary, the magnetic field equals the external magnetic field:

∇ × A = Hext (5.9)

where Hext is the externally applied magnetic field.
Initial conditions are defined based on two widespread experimental techniques: zero-

filed cooling (ZFC) and field-cooling (FC). For the ZFC case, the initial value of the order
parameter is set ψ ≈ 1 everywhere inside superconducting regions, while for the FC case,
the order parameter is initially set randomly.

2 Discretization scheme

2.1 Link-variables

An important property of the TDGL equations is their invariance under the gauge
transformation. It is crucial to preserve this invariance in the numerical scheme.

This can be done by the so-called link-variables approach, which was developed for
gauge fields in lattice theories. Hereinafter, we describe only the 2D case, because it is
used in our work, but this scheme can be easily upscaled into 3D.

We introduce link-variables Ux, Uy as

Ux(x, y) = exp
(

−i
∫ x

x0
Ax
(
x′, y

)
dx′
)

Uy(x, y) = exp
(

−i
∫ y

y0
Ay
(
x, y′) dy′

) (5.10)

where x0, y0 are coordinates of the arbitrary point on the computational grid, Ax, Ay are
corresponding components of the vector potential.

These link-variables are complex-valued and unimodular, Uµ∗ = [Uµ]−1, and can be
defined by the vector potential components Axand Ay:

Ax = − i

2

(
Ux∗∂U

x

∂x
− Ux

∂Ux∗

∂x

)
Ay = − i

2

(
Uy∗∂U

y

∂y
− Uy

∂Uy∗

∂y

) (5.11)

With this definition of link-variables, we can rewrite TDGL equations in a covariant
way that preserves the gauge invariance.

The second-order differential operator in the first TDGL equation (Eq.5.5) can be
written with link-variables as follows:

(∇ − iA)2ψ = Ux∗∂
2 (Uxψ)
∂x2 + Uy∗∂

2 (Uyψ)
∂y2 (5.12)
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The first-order differential operator in the second TDGL equation with link-variables
can be rewritten as follows:

( ∂
∂x

− iAx)ψ = Ux∗∂ (UxΨ)
∂x

( ∂
∂y

− iAy)ψ = Uy∗∂ (UyΨ)
∂y

(5.13)

2.2 Computational grid

We solve TDGL equations using the finite-difference method on a 2D rectangular grid.
We consider a uniform grid with spacing dx = dy, and the total number of grid

points is (Nx + 1) × (Ny + 1), where Nx,y is a number of grid points in x or y direction
correspondingly. The discrete version of the order parameter can be written in a following
form ψi,j , where i = 1, . . . , Nx + 1 and j = 1, . . . , Ny + 1 are grid points.

In discrete form, the link-variables are defined on cell edges (halfway between grid
points, see Fig. 5.1). Due to this displacement in the grid, the link-variables are discretized
as

Uxi,j where i = 1, . . . Nx and j = 1, . . . , Ny + 1,
Uyi,j where i = 1, . . . , Nx + 1 and j = 1, . . . , Ny

(5.14)

To reduce operating memory consumption Winecki and Adams [Winiecki, 2002] sug-
gested using real valued variables ϕxi,j , ϕ

y
i,j introduced as Uxi,j = exp

(
−iϕxi,j

)
and Uyi,j =

exp
(
−iϕyi,j

)
correspondingly. This is possible because the original link-variables are uni-

modular |Uxi,j | = |Uyi,j | = 1.
The second order derivative with respect to x and y can be approximated using central

difference as follows:

(∇ − iA)2ψ = Ux∗∂
2 (Uxψ)
∂x2 + Uy∗∂

2 (Uyψ)
∂y2 (5.15)

For a discrete form of the TDGL equations, we use second order derivative approxima-
tion for spatial derivatives and first order derivative approximation for time derivatives.
An integral in the link-variables definition is approximated by second order approximation
as

Uxi,j = exp
(
−iAxi,jdx

)
Uyi,j = exp

(
−iAyi,jdy

) (5.16)

where Axi,j , A
y
i,j are discrete versions of vector potential which are defined on cell edges.
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Figure 5.1 – Computational grid for the finite-difference method using link variables ap-
proach.

The first order differential operator is discretized as

(
∂

∂x
− iAx

)
ψ →

Uxi,jψi+1,j − ψi,j

dx
=

exp
(
−iϕxi,j

)
ψi+1,j − ψi,j

dx(
∂

∂y
− iAy

)
ψ →

Uyi,jψi,j+1 − ψi,j

dy
=

exp
(
−iϕyi,j

)
ψi,j+1 − ψi,j

dy

(5.17)

The Laplacian differential operator is discretized as

(∇−iA)2ψ →
Uxi,jψi+1,j − 2ψi,j + Uxi−1,jψi−1,j

dx2 +
Uyi,jψi,j+1 − 2ψi,j + Uyi,j−1ψi,j−1

dy2 . (5.18)

Using the discretization defined above, the first TDGL equation in discrete form can
be written as:

∂τψi,j =
exp

(
iϕxi−1,j

)
ψi−1,j − 2ψi,j + exp

(
−iϕxi,j

)
ψi+1,j

dx2 +

+
exp

(
iϕyi,j−1

)
ψi,j−1 − 2ψi,j + exp

(
−iϕyi,j

)
ψi,j+1

dy2

+
(
1 − |ψi,j |2

)
ψi,j

(5.19)

Using the vector relation ∇ × (∇ × A) = ∇2A − ∇(∇A), we can write the second
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TDGL equation in the following discrete form:

∂τϕ
x
i,j = κ2

h2
y

(
ϕxi,j+1 − 2ϕxi,j + ϕxi,j−1

)
+ κ2

h2
y

(
−ϕyi+1,j + ϕyi,j + ϕyi+1,j−1 − ϕyi,j−1

)
+ Im

(
exp

(
−iϕxi,j

)
ψ∗
i,jψi+1,j

)
∂τϕ

y
i,j = κ2

h2
x

(
ϕyi+1,j − 2ϕyi,j + ϕyi−1,j

)
+ κ2

h2
x

(
−ϕxi,j+1 + ϕxi,j + ϕyi−1,j+1 − ϕyi−1,j

)
+ Im

(
exp

(
−iϕyi,j

)
ψ∗
i,jψi,j+1

)
(5.20)

For calculation of the time step, we use the first-order accurate one-step forward Euler
method:

ψi,j(τ + dτ) = ψi,j(τ) + ∂τψi,jdt

ϕxi,j(τ + dτ) = ϕxi,j(τ) + ∂τϕ
x
i,jdt

ϕyi,j(τ + dτ) = ϕyi,j(τ) + ∂τϕ
y
i,jdt

(5.21)

where dt is a time step. This explicit method is stable only for a sufficiently small time
step dt. For the TDGL equations, the time step must satisfy a condition [Winiecki, 2002]:

dτ <
d2

2κ2 (5.22)

where d = max(dx, dy) is the biggest grid dimension. In all our simulations, we use
κ = 4, dx = dy = 0.5 (in terms of the coherence length ξ) and dτ = 0.001 (in terms of the
GL characteristic time τGL) that to ensure that this condition is satisfied.

2.3 Boundary conditions

For the numerical solution of TDGL, it’s crucial to apply the correct discrete form
of boundary conditions. In our work, we use two types of boundary conditions for the
order parameter. On the boundaries x = 0, Nx+1, we implement superconductor-vacuum
condition (5.6), setting zero superconducting current through these boundaries. In discrete
form, it is written as:

ψ1,j = ψ2,j(t) exp
(
−iϕx1,j

)
ψNx+1,j = ψNx,j(t) exp

(
iϕxNx,j

) (5.23)

On the boundaries y = 0, Ny + 1, we set order parameter equals zero:

ψi,1 = 0
ψi,Ny+1 = 0

(5.24)

The boundary conditions for the vector potential A are defined via the magnetic field
B. In 2D geometry, the magnetic field has only a component Bz perpendicular to the
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calculation grid. Using link variables, the magnetic field can be expressed as:

Bz
i,j = 1

dxdy

(
ϕxi,j − ϕxi,j+1 − ϕyi,j + ϕyi+1,j

)
(5.25)

Based on this equation, boundary conditions for the vector potential A through ϕx, ϕy are
written as:

ϕxi,1 = Bextdxdy + ϕxi,2 + ϕyi,1 − ϕyi+1,1

ϕxi,Ny+1 = −Bextdxdy + ϕxi,Ny
− ϕyi,Ny

+ ϕyi+1,Ny

ϕy1,j = −Bext + ϕx1,j − ϕx1,j+1 + ϕy2,j

ϕyNx+1,j = Bext − ϕxNx,j + ϕxNx,j+1 + ϕyNx,j

(5.26)

where Bext is an external magnetic field perpendicular to the calculation grid.
With these boundary conditions for variables ψi,j , ϕxi,j , ϕ

y
i,j , it is possible to get a unique

solution for the TDGL equations. Code for solution of these equations was written in Julia
language, as it represent a fast and free version of Matlab.

3 Conclusion

In this chapter, we presented the numerical scheme for solving the TDGL equations,
which will be used in the subsequent chapter for modelling superconducting nanowires.
This scheme relies on the use of the so-called link-variables to preserve the gauge invariance
of the discrete scheme. The discretization is performed on a rectangular 2D staggered mesh
using the finite difference method. For the time step, we implement the Euler method.
The resulting solution allows us to observe the temporal and spatial dynamics of the
order parameter and the magnetic field. From this data, various physical observables can
be extracted, including the amplitude of the order parameter, the superconducting and
normal current components, and voltage.
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Chapter 6
Vortex patterns

This chapter is devoted to the theoretical study on the vortex motion in current-
carrying superconducting nanowires. We show how the landscape of disorder
influences the vortex dynamics and, as a result, DC- and AC- current response
of the system. By implementing linear defects, we achieve a complex vortex
dynamics which, in some specific cases, leads to the current response similar
to the experimentally observed one as discussed in chapter 4. The vortex mo-
tion along closely located defects is correlated enabling various synchronization
effects and even dynamic metastable energy levels. Some results presented in
this chapter are subject of the submitted paper.

Objectives
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1. Model

In the chapter 4, we delved into the discussion that many transport properties of
YBa2Cu3O7−δ nanowires can be explained through the motion of vortices or phase slips.
This motion, however, can be very intricate due to the complex morphology of YBa2Cu3O7−δ

films which own grain boundaries playing role of weak links. In this case, vortices are af-
fected not only by external fields and their mutual interactions but also by the disorder.

Here, we focus on a relatively straightforward case involving a type-II superconducting
nanowire with linear defects. Despite its simplicity, we show that this model is enough
to reproduce some peculiarities in our experimental results such as Shapiro steps, voltage
jumps, and Negative dynamic resistance (NDR).

1 Model

As a computational model, we consider a rectangular superconducting sample, repre-
senting the central part of a typical nanobridge, as shown in Fig. 6.1a. The model bridge
has a length of L = 60ξ and a width of W = 40ξ, where ξ represents the Ginzburg-Landau
(GL) coherence length. Real width can vary due to oxygen diffusion from the boundaries.
In this 2D case, we neglect all variations of the order parameter in the third (z) direction.
We investigate the transport properties of this superconducting nanobridge within the
framework of TDGL equations using a zero potential gauge. In a dimensionless form (see
chapter 5), these equations can be expressed as:

∂tψ = ϵ(r)ψ − |ψ|2ψ + (∇ − ıA)2ψ

κ2∇ × (∇ × A) = JS + JN
(6.1)

where JS, and JN are superconducting current density and normal current density, corre-
spondingly.

Within the chosen gauge, these can be written, in a dimensionless form, as:

JS = Im [ψ∗(∇ − ıA)ψ]
JN = −∂tA.

(6.2)

This system of equations must be satisfied with appropriate boundary conditions. On
boundaries y = 0 and y = L, we set ψ = 0 and ∇ × A = 0. On boundaries x = 0 and
x = W , we set n · (∇ − ıA)ψ = 0 and ∇ × A = Hext.

To compare our simulation results with experiments, we simulate transport properties
and retrieve IV curves. We consider the external transport current Itr to flow between y =
0 and y = L sides producing an eventual voltage drop V . To apply the external transport
current, we use the boundary conditions for the vector potential at the boundaries x =
0,W as ∇ × A = HI , where HI = 2πItr/c represents the magnetic field induced by the
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Chapter 6. Vortex patterns

Figure 6.1 – a) Scanning Electron Microscope image of a typical nanobridge studied in
experiments [Amari, ]. b) and c) Two sample geometries studied theoretically, representing
the central (narrowest) part of the real device. They contain one (b) or two (c) linear
defects (grey regions). Edge defects situated at the ends of linear defects are indicated by
black rectangles. The direction of the transport current is shown by arrows. The voltage
is calculated between the two blue dashed lines. Further details are provided in the text.

transport current.
On the other boundaries, we set ∇ × A = 0. Applying voltage in that direction, the

corresponding voltage difference V is determined by calculating the voltage V between
y = 0 and y = L boundaries.

In the chosen gauge, the electric field is written as E = −∂tA. The corresponding
instantaneous voltage drop Vy1,y2 between two arbitrary points y1, y2 in y-direction can be
calculated as:

Vy1,y2(x, t) = −
∫ y2

y1
Ey(x, y, t) dy =

∫ y2

y1
∂tAy(x, y, t) dy (6.3)

By averaging this voltage over the sample width and time, we get the DC-voltage ⟨V ⟩
measured in experiments. To avoid the voltage drops at y = 0, L boundaries, we calculate
the voltage inside the bridge where the order parameter is fully restored (ψ = 1), as
indicated by the blue dashed lines in Fig. 6.1 b and c.

When simulating the Shapiro step experiments, the microwave illumination is added as
an AC-current of amplitude IAC and frequency fAC . The total transport current through
the bridge is therefore:

Itr = IDC + IAC sin(2πfAC t) (6.4)

The state of the bridge is determined by calculating the voltage V between y = 0 and
y = L boundaries for each value of transport current. Averaging this voltage over the
sample width and time one gets the DC-voltage ⟨V ⟩ measured in experiments.
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Discretization and solution procedure are presented in the chapter 5. We use a
quadratic grid with a mesh side dx = dy = 0.5ξ. Code was written in Julia, which is
a fast and convenient language for scientific computations. For a stability reasons, as
described by eq.5.22, we set a time step as dτ = 0.001. As a material parameter, we set
κ = 4. While we have used a lower value for κ (κ = 4) in our simulations compared to typ-
ical HTS superconductors (κ ≈ 100), it can be assumed that, for most effects, κ serves as a
scale of interaction within a specific geometry. Our results are applicable within a certain
scale. For instance, a similar behavior involving the flux flow of vortices and antivortices
was observed in a study by [Berdiyorov, 2014] for κ = 10. Nevertheless, our results can
be extrapolated to conventional type-II superconductors, making them somewhat general
in that sense.

In the model, we neglect all non-equilibrium quasiparticle processes. For all considered
frequencies, the RF illumination only affects vortices as an additional periodic Lorentz
force.

1.1 One grain boundary

As a starting point, we consider a single linear defect, as illustrated in Fig. 6.1b,
simulating a grain boundary crossing the bridge. This type of defect is prevalent in
YBa2Cu3O7−δ thin films and significantly influences vortex motion in such systems [Maggio-
Aprile, 1997].

Additionally, wer introduce two point defects at the ends of the linear defect, repre-
senting suppressed superconductivity in the locations where the grain boundary reaches
the sample edges. This mimics a strong suppression of superconductivity on the edges in
real samples due to fabrication process.

In our model, this defect is introduced by depending on the spatially varying parameter
ϵ(r), which is associated with the local critical temperature Tc(r) and the global sample
temperature T :

ϵ(r) = Tc(r) − T

T
(6.5)

The superconducting part of the bridge is described by ϵ = 1, while the defects are
characterized by a locally reduced critical temperature Tc(r) and are described by a lower
ϵ(r). For instance, the linear (grey) defect of width 1 × ξ crossing the bridge is charac-
terized by ϵ = 0.5. It represents an extended structural defect, such as a grain boundary
crossing the real sample or an artificial weak-link. At a given temperature T , this defect is
superconducting, but its local critical temperature is 3/4 of the critical temperature Tc in
the rest of the sample. The two point defects at the edges, presented by black rectangles
2ξ × 5ξ, are characterized by ϵ = 0, corresponding to fully suppressed superconductivity.
These edge defects appear at the ends of the grain boundaries as a result of a damage
caused during the nanobridge fabrication processes.
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Chapter 6. Vortex patterns

The results of the calculations are presented in Fig. 6.2.

When the transport current Itr is well below a critical value Ic, the order parameter in
the bridge is steady. It is depleted at the two local edge defects and at the linear defect,
as shown in Fig. 6.2a, following the imposed ϵ(r).

At Itr ≲ Ic, one vortex and one anti-vortex are already pinned on the two edge defects.
The entire bridge remains in the superconducting state, with V = 0, as expected. This is
because only a vortex motion introduces dissipation into the system.

Figs. 6.2c-e are snapshots of the temporal evolution of the order parameter amplitude
when a constant Itr = 0.10 > Ic is applied. Under this condition, one vortex and one
antivortex simultaneously enter the bridge, as shown in Fig. 6.2c. They accelerate towards
each other under the action of the Lorentz force, experience mutual attraction, as depicted
in Fig. 6.2d, and annihilate, as illustrated in Fig. 6.2e. The process is periodic, with the
period and details of the vortex-antivortex dynamics depending on the applied transport
current Itr and the TDGL parameters. Moving vortices dissipate energy and generate an
instantaneous voltage difference V (t) between the top and bottom part of the nanobridge,
proportional to the relative vortex velocity. Fig. 6.2f illustrates the evolution of V (t),
with points c-e correspond to snapshots in Figs. 6.2c-e. At the moment (c), the voltage
rapidly rises as vortices accelerate due to their interaction with the edges and the transport
current. In (d), V crosses a local minimum as the vortex velocity drops in a region where
interaction with the edge is already sufficiently small, and the transport current is reduced
on the scale of ∼ λ. A sharp increase in the vortex velocity due to the vortex-antivortex
attraction just before annihilation produces a peak in V (t) at moment (e). The Fourier
spectrum of V (t) is presented in Fig. 6.2g. It contains the fundamental frequency of an
amplitude V1 and several harmonics with comparable amplitudes. Both V (t) and the
spectrum indicate the strong anharmonicity of the vortex motion. It is important to note
that the fundamental frequency is not fixed but grows with Itr [Al Luhaibi, 2022] as the
increasing Lorentz force pushes vortices to move and annihilate faster.

By repeating the calculations for different IDC and time-averaging ⟨V (t)⟩, we retrieve
⟨V ⟩(IDC ) dependencies measured in experiments.

Plots in Fig. 6.3 are the result of these calculations for the range of IDC around the tran-
sition from the non-dissipative to the dissipative state. The plots are presented in reduced
coordinates ⟨V ⟩/µ0 vs IDC/(J0W ). The shape of the curve resembles the V (I) charac-
teristics of an ordinary Superconductor-Normal metal-Superconductor (SNS) Josephson
junction. The latter, represented by the dashed line in Fig. 6.3, was calculated using the
RSJ model. Both curves exhibit a non-dissipative branch at low currents, a rise at some
critical current, and a smooth increase at higher currents.

However, the resemblance is limited. First, in the present case, the SNS junction
does not exist, and the intrinsic critical (depairing) current of the bridge ∼ 0.301J0W

is much higher than the calculated value Ic ≃ 0.072J0W . Second, in SNS junctions,
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1. Model

Figure 6.2 – Vortex dynamics in single linear defect with no AC current applied (IAC =
0). a) Static map of the order parameter amplitude |ψ(r)| at low transport currents
IDC ≪ Ic. b) Static |ψ(r)| map at IDC ≲ IC indicates the presence of one vortex and
one anti-vortex at the edge defects, ready to enter. d)-e) Snapshots of |ψ(r)| at different
moments of vortex propagation for a fixed IDC = 0.10 > Ic. f) Periodic temporal evolution
of the instantaneous voltage V (t) at the same conditions. The dots c, d and e on the
graph correspond to snapshots c), d) and e). The period of V (t) oscillations provides the
fundamental frequency f1 of the process. g) Fourier spectrum of V (t).

93



Chapter 6. Vortex patterns

0.06 0.07 0.08 0.09 0.10 0.11

Current (a.u.)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

V
ol

ta
ge

(a
.u

.)

1/4

1/3

1/2

2/3

1

S
h

ap
ir

o
st

ep

Iac = 0.0

Iac = 0.01

Iac = 0.03

Iac = 0.05

RSJ

1/4

1/3

1/2

2/3

1

S
h

ap
ir

o
st

ep

Figure 6.3 – Transport properties of the nanobridge with one linear defect. Solid lines
represents normalized ⟨V ⟩(IDC ) characteristics calculated for different values of the AC
component IAC of the total transport current. The right vertical axis displays the num-
bers of Shapiro plateaus. Dashed line - V (I) characteristic of a SNS Josephson junction
calculated within the RSJ model [Stewart, 1968; McCumber, 1968]. To fit the curve into
the plot window, its vertical scale was divided by a factor of 10.

the ⟨V ⟩(IDC ) curve asymptotically approaches the normal branch ⟨V ⟩ = RNIDC as IDC

increases. Meanwhile, the bridge "resistance", ⟨V ⟩/IDC × (J0W/µ0), remains much lower
than its normal state resistance RN ∗. Third, the RSJ model fails to reproduce an almost
linear rise of ⟨V ⟩(IDC ) for I > Ic. These deviations originate from the fact that, contrary
to SNS junctions where the voltage appears as a result of the suppression of the proximity-
induced superconducting correlations in the normal part, in the nanobridges , it is due to
individual vortex motion inside a still superconducting device. This difference is essential,
leading to unique transport properties that we focus on in this work.

The SNS-like behaviour of the bridge is further evidenced by simulating its response
to RF illumination. When an AC current is added, the resulting oscillating voltage V (t)
can be locked to the frequency fAC of this external drive, resulting in plateaus of constant
voltage on ⟨V ⟩(IDC ) curve, as shown in Fig. 6.3. This effect resembles the well-known
Shapiro steps observed in ordinary Josephson junctions under RF illumination, where
the nth voltage plateau is defined by the locking condition f1 = n · fAC (where n is an
integer) and the second Josephson relation ⟨V (t)⟩ = hf1/2e, where f1 is the fundamental
(Josephson) frequency.

In addition to the integer Shapiro plateaus, the fractional ones are also revealed. These

∗. this is why the vertical scale of the RSJ curve was reduced to fit it in the plot window
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plateaus appear in Fig. 6.3 at voltages satisfying the general condition

n

k
· hfAC = 2e⟨V (t)⟩, (6.6)

where n and k are integers.
The presence of fractional plateaus is directly linked to a high anharmonicity of V (t)

oscillations in Fig. 6.2f.

The Fourier spectrum of V (t), presented in Fig. 6.2g, is indeed characterised by high
amplitudes Vk of kth voltage harmonics (at a frequency fk) that are comparable to the
amplitude V1 at its fundamental frequency f1. This enables efficient locking of these
harmonics to the AC-drive when fk = kf1 = nfAC .

In Fig. 6.4, the instantaneous voltage V (t) and its spectrum for the Shapiro plateau
1
3 are shown. When the frequency fAC is slightly detuned from fk/n, a low-frequency
envelope of a beat frequency |fAC − fk/n| is observed. This effect allows for the detection
of higher harmonics experimentally, even when their magnitude is small and imperceptible
in ⟨V ⟩(IDC ) curves in the Shapiro step experiment. Consequently, by tuning the amplitude
and frequency of the AC excitation, it becomes possible to induce fractional Shapiro step
when fAC is not only a multiple of f1 but a multiple of higher fk harmonics. All of these
features reveal a rich spectral characteristic of the system under consideration. It should
be mentioned that when the amplitude IAC becomes comparable to IDC , the AC excitation
cannot be considered anymore as a perturbation. Instead, one should think of a complex
dynamical system whose spectrum (amplitudes Vk and frequencies fk) depends on both
components of Itr.

The presented results show that, even in such a simple geometry, we can repro-
duce some remarkable features of our experimental results, such as integer and fractional
Shapiro steps. The origin of the integer Shapiro steps lies in the frequency lock of the
periodic system by a sinusoidal external AC drive. This effect is very general and is
known in the theory of dynamical systems as Arnold’s tongues [Rosenblum, 2003; Kli-
menko, 2013]. This provides a robustness of this effect, and integer Shapiro steps due to
the vortex motion were observed not only in constricted nanobridges [Gubankov, 1976;
Sivakov, 2003; Schneider, 1993; Nawaz, 2013b] but also, for example, in pinning arrays
[Fiory, 1971; Martinoli, 1978; Van Look, 1999; Reichhardt, 2000; Al Luhaibi, 2022]. In our
experiments, this robustness is confirmed by the fact that fractional Shapiro steps were
only observed at low temperatures, and their amplitudes were small. In contrast, integer
Shapiro steps persisted to higher temperatures and exhibit large amplitudes. The key
ingredient contributing to the occurence of the fractional Shapiro steps is the high anhar-
monicity of the vortex motion realized in our experiment. In the Section 3.3, we discussed
and applied the RSJ model for a nanobridge that was based on the CPR function from
pioneering works [Aslamazov, 1975b; Likharev, 1975]. These works predicted similarities
between the transport properties of Josephson junctions and those of nanobridges crossed
by vortices (or phase-slips). Although qualitatively obtaining the same results, we now
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Figure 6.4 – Evolution of the instantaneous voltage V (t) for the Shapiro plateau 1/3 of
Fig.3. a) V (t) at constant IDC and IAC for the detuned frequency fAC = 0.625 f3. The
low-frequency envelope due to the beat effect is visible. b) V (t) at the resonance fAC = f3.
c) Frequency spectrum of V (t) in the case (b).

present them based on the mean-field TDGL theory. This approarch allows us to connect
our results to material and geometric parameters and provides a foundation for exploring
much more complex cases in a real 2D dimension.

1.2 Two identical grain boundaries

In experimentally studied nanobridges, the disorder is rarely represented by only one
grain boundary. Most non-epitaxial superconducting films exhibit granularity on a scale
of 20 − 200 nm, which can be significantly shorter than the nanobridge width W . For
instance, nano-meanders studied in [Amari, 2017b] were elaborated out of YBa2Cu3O7−δ

thin films. They possess a specific morphology [Mannhart, 1996] and form a network of
grain boundaries. Statistically, several such boundaries can cross the bridge.

The vortex motion in these networks is much more complex than in a single grain
boundary studied above. While the vortex cores are confined within the grain boundaries
[Maggio-Aprile, 1997], the vortex currents extend far beyond; they circulate on a scale
of λL or, in ultrathin films, on an even larger scale of the Pearl penetration depth λP

[Pearl, 1964]. This results in a mutual interaction between vortices present in different
grain boundaries, affecting their collective motion.

As a step towards accounting for this complexity, we now consider two linear defects
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(grain boundaries) characterized by ϵ = 0.5. The defects are separated by a distance
l = 5ξ ∼ λL, Fig. 6.1c, thus inducing an interline vortex-vortex interaction.

The calculated ⟨V ⟩(IDC ) characteristics in the case of two identical linear defects are
presented in Fig. 6.5. When considering the curve without AC current IAC = 0, we observe
that the shape of this curve is almost identical to that obtained in the case of a single
linear defect. As in the previous case, at DC-currents just above the critical one IDC ≳ Ic,
one vortex-antivortex pair enters the nanobridge and moves along one of the two linear
defects, generating a non-zero voltage. The only difference with the single defect case is
that after vortex-antivortex annihilation in one line, a new vortex-antivortex pair enters
the other line, and the process repeats. Further increase in the DC-current leads to an
acceleration of vortices and, consequently, an increase in voltage ⟨V ⟩.

At a high enough DC-current, the system enters a new state in which the second vortex-
antivortex pair enters into the second line before the first pair annihilates in the first one.
This moment is witnessed by a slight inflexion of ⟨V ⟩(IDC ) curve at IDC ≃ 0.084. In this
state, there are two vortex-antivortex pairs in the nanobridge at the same time. Due to
the mutual repulsion of vortices of the same sign, they attempt to position themselves as
far from each other as possible while remaining inside linear defects. This leads to a lateral
x-shift of the vortex positions in neighbouring lines, as shown in Fig. 6.6a. This dynamic
vortex pattern is reminiscent of the static Abrikosov vortex lattice. As time advances,
the vortex-antivortex pair in the bottom line annihilates, the one in the top line advances
towards the centre, and a new one enters the bottom line.

By adding a low AC current, Shapiro plateaus appear that closely resemble those
observed in the single defect case (see line IAC = 0.01 in Fig. 6.5). Though, at higher
AC currents IAC > 0.01, new features emerge. Large 2/3 Shapiro plateaus on ⟨V ⟩(IDC )
curves with a rapid voltage rise on their left side and a voltage drop on their right side
(hand-added smooth dashed lines help are included to help appreciate the amplitude of
the effect). Unlike other plateaus, the width of the 2/3 plateau rapidly grows with the AC
current, as seen in the curves at IAC = 0.02, 0.03, and 0.05).

To understand the origin of this phenomenon, let us consider the dynamics of the
system close to the voltage drops. In the specific case of IAC = 0.03, this occurs at
Idrop

DC
≃ 0.076, as indicated by the arrow on the ⟨V ⟩(IDC ) curve in Fig. 6.5.

The calculations show that just above Idrop
DC

, the vortex-antivortex motion in the two
defects is sequential, as presented in Fig. 6.6a, while just below Idrop

DC
(that is on the

plateau) it is synchronous: Vortex-antivortex pairs enter the defects simultaneously, move
in parallel to each other (see the snapshot Fig. 6.6b), and annihilate at the same time.
This leads to high peak-to-peak voltage spikes in V (t), as those visible on the left side of
Fig. 6.6c.

The synchronous configuration itself is not stable. Indeed, when a vortex in one line
is located under a vortex in the other, the projection of a vortex-vortex repulsion force
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Figure 6.5 – ⟨V ⟩(IDC ) characteristics for different values of IAC in the case of two identical
linear defects (displayed in Fig. 6.1c). The right vertical axis displays the numbers of
Shapiro steps. Dashed lines are used as eye-guides (refer to the text for details).

on a x-axis is zero. Any x-shift of their position gives rise to the x-axis component of
vortex-vortex repulsion which drives the system out of this unstable balance towards a
more stable chequerboard configuration, illustrated in Fig. 6.6a. Thus, the metastable
configuration of Fig. 6.6b is stabilized by the external AC-drive, acting as a periodic
force. If the amplitude of this force (proportional to IAC ) is sufficient, the configuration
is stabilized, in some range of external parameters, giving rise to a plateau on ⟨V ⟩(IDC )
curve.

When the DC current is slightly increased above Idrop
DC

, the Lorentz force increases,
and the system jumps down to the stable configuration of Fig. 6.6a. The corresponding
evolution of V (t) is presented in Fig. 6.6c.

After a few periods of high peak-to-peak voltage oscillations, the system transitions to
oscillations with a nearly twice lower peak-to-peak voltage (compare left and right parts
of Fig. 6.6c). This change is due to the fact that in the metastable state, the vortex-
antivortex annihilation takes place simultaneously in the two lines, while in the stable
configuration, the process is sequential. The system is no longer locked to the 2

3 Shapiro
step in the stable configuration.

The motion of vortices in the two close linear defects can be seen as a system of
two coupled identical anharmonic oscillators. In this representation, the two oscillation
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Figure 6.6 – Vortex dynamics in the case of two identical linear defects of Fig. 6.1c. a)
and b) Snapshots of the order parameter amplitude in the stable (a) and metastable (b)
states near the transition (see in the text). c) Evolution of V (t) at the transition from the
metastable to the stable state at IAC = 0.03. The initial DC current IDC = 0.076 switches
to IDC = 0.077 at the moment t = 500. A movie illustrating the oscillatory dynamics of
this transition is provided by the link.
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patterns of Fig. 6.6 can be seen as two modes, one of which is low in energy E0 and
therefore stable, while the other, at higher energy E1, is metastable. Each of these modes
depends on DC current IDC , and the evolution of the lowest mode corresponds to ⟨V ⟩(IDC )
curve at IAC = 0. The other mode can only be achieved with an external excitation, in a
certain range of pumping powers and frequencies.

The calculated Fourier spectra of V (t) in the states E0 and E1 are presented in Fig. 6.7.
In the metastable configuration E1, the AC-drive locks to the third harmonic of the

system as 2fAC = 3f1. The Josephson frequency is f1 = (2/3)fAC and, consequently, the
DC voltage measured in the experiment is ⟨V (t)⟩ = (2/3)hfAC/2e. This voltage remains
constant as long as the system is locked to the drive, resulting in the unusual 2

3 Shapiro
plateau in Fig. 6.5. Immediately after the drop, the drive locks to the second harmonic as
fAC = 2f1, that is f1 = (1/2)fAC , resulting in a lower DC voltage ⟨V (t)⟩ = (1/2)hfAC/2e.
In principle, it could be the usual 1

2 Shapiro plateau due to anharmonicity. Although, when

the AC current increases and the width of the unusual 2
3 plateau rapidly grows, the plateau

1
2 shrinks and disappears (compare the curves at IAC = 0.02, 0.03 and 0.05 in Fig. 6.5).
Note that as IDC is further increased above Idrop

DC
, the Lorentz force increases, pushing

vortices to move faster, the corresponding frequencies grow, and the lock to the fixed
frequency of the AC-drive is lost. This roller-coaster ride between different metastable,
stable locked, and unlocked states is reflected in voltage spectra and, as a consequence, in
a ⟨V ⟩(IDC ) curve.

Returning to the described analogy we provide a toy example: we consider a system of
two coupled identical anharmonic oscillators such as two mathematical pendulums coupled
via spring. Each pendulum is an anharmonic oscillator because restoring gravitational
force is proportional to sin(θ). Using the angles of each pendulum as variables we can
write the Lagrangian of the system in the small-angle approximation as:

L = 1
2ml

2
(
θ̇2

1 + θ̇2
2

)
−mgl (2 − cos θ1 − cos θ2) − 1

2kl
2 (θ2 − θ1)2 , (6.7)

where m is the mass of each pendulum, g is gravitational acceleration, k is the spring
constant and l is the length of each pendulum (see Fig. 6.7b).

The corresponding system of equations is

θ̈1 + g

l
sin θ1 + k

m
(θ1 − θ2) = 0

θ̈2 + g

l
sin θ2 − k

m
(θ1 − θ2) = 0.

(6.8)

Solving this system of equations in the small-angle approximation, we achieve two
characteristic frequencies (or modes) of this motion ω1 =

√
g
l , ω2 =

√
g
l + 2 k

m . One of
these frequencies is bigger than the other and consequently, the corresponding energy of
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Figure 6.7 – a) Schematic energy diagram of the states considered in Fig.6. Stable (E0)
and metastable (E1) states are presented along with their frequency spectra. b) a sketch
of two coupled oscillators

the system is bigger. In classical mechanics, this consequence is given by the general
expression T =

√
2m

∫ dx√
E−U(x)

, where E is the total energy of the system and U(x) is
the potential energy. The energy difference between these two modes is proportional to
∼
√

k
m and is associated with the energy of a spring deformation. In a low-energy mode ω1,

pendulums move in phase and their relative distance does not change during oscillations,
thus spring’s length does not change. In a high-energy mode ω2, the pendulums are out
of phase and the spring deforms all the time, adding an additional component to the total
energy. In our system, the same role plays as the force of the vortex-vortex repulsion.

1.3 Two different grain boundaries

Until now, we have considered a very idealistic case where the two coupled linear
defects were identical. This situation could be realised in artificial stacks of SNS junctions
[Berdiyorov, 2013], periodic pinning arrays [Al-Khawaja, 2005; Van Look, 1999], but not
in nanobridges made of films in which the intrinsic pining landscape is aperiodic, and the
inter-grain coupling varies from one grain boundary to the other. To account for this
diversity, we also studied asymmetric linear defects. To introduce this asymmetry we keep
the value of ϵ of the bottom line the same as before ϵ1 = 0.5 while now changing the local
critical temperature in the top line via parameter ϵ2.

In the Fig. 6.8 ⟨V ⟩(IDC ) curves for different values of ϵ2 are presented.
Now, when the symmetry is broken, transport properties become more complex. We

can notice several new features in comparison to the previous symmetric case. The first
feature is the abrupt voltage jump that never happens in the symmetric case without an
external AC drive. When two lines are different the degeneracy is left and the first vortex-
antivortex pair enters into the one energetically more favorable line. This leads to the
appearance of nonzero voltage V (t) ̸= 0, defining the critical current Ic. Further increasing
the transport current IDC leads to the entry of the second pair in the second line at some
value of the current force. The mutual interaction of vortices leads to perturbations of
motions of the whole system due to the lines coupling through vortex-vortex interaction.
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Chapter 6. Vortex patterns

As a consequence, it leads to a larger resultant voltage due to 1) an increase in the number
of moving vortices in the nanobridge and 2) a change in their velocities. The dependence
of the critical current Ic on different values of the local critical temperature of the top line
is shown in Fig. 6.8. This dependence is not monotonic, with a maximum at the value
ϵ2 = 0.5 i.e., in the symmetric case.
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Figure 6.8 – a) ⟨V ⟩(IDC ) characteristics for different values of ϵ2 with fixed ϵ1 = 0.5 in
the case of two different linear defects (displayed in Fig. 6.1c). b) Corresponding critical
current Ic versus ϵ2 dependency.

It would be logical to assume that this dependence increases monotonically with in-
creasing ϵ2, since the pinning force in this line increases, pinning in the line with ϵ1 is
always higher, and the critical current is determined by the line with ϵ2. Having reached
the maximum in the symmetric case when ϵ1 equals ϵ2, a further increase in the pinning
force through ϵ2 should not change the situation, since now the critical current is deter-
mined by ϵ1. The graph should go into saturation. However, the calculation shows that
this is not the case. Further increase of ϵ2 leads to a decrease of the critical current.

We can give a semiclassical picture in a manner of the Resistive Capacitive Shunted
Junction (RCSJ) model.

Let us represent vortices as point particles and pinning centres as potential wells with
depth proportional to the pinning force. Each vortex is in its own pinning trench, but
they interact with each other. This interaction is repulsive and can be represented in the
classical case by a connecting spring. Moreover, our defect lines are at such a distance
that the spring is initially compressed. By applying a current we lower the barriers in this
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potential trench similarly to the RCSJ model with a washboard potential.
Now, we fix the epsilon value of one line and consider two cases: ϵ2 < ϵ1 and ϵ2 > ϵ1.

The sweep of the transport current IDC leads to the lowering and tilting of the vortex
entry barriers. The height of the barriers is proportional to the local critical temperature
and, correspondingly, to the ϵ. The critical current Ic is determined by the current at
which our particle overcomes the barrier.

In the first case, we have ϵ2 < ϵ1. Taking into account this condition, we obtain that
critical current is proportional to the ϵ2, Ic ∼ ϵ2, which is consistent with the calculations
(see Fig. 6.8). Now consider the second case when ϵ2 > ϵ1. Then the first pair of vortices
will always enter the line with ϵ1 because now the weakest point is here. It would seem
that now the critical current should not change, but calculations show the opposite - the
critical current is inversely proportional to ϵ2, Ic ∼ 1

ϵ2
.

Let us consider how the interaction of vortices in different lines changes as ϵ2 increases.
Our vortices-particles are locked in their trenches, so we are interested only in the pro-
jection on the x-axis of their repulsive force. When the potential is shallow, the vortices
oscillate in potential pits relative to each other and the total force on the x-axis is zero.
As ϵ2 increases, the barrier increases and the vortex in this line is more strongly localised,
the amplitude of its oscillations along the x-axis decreases. Because of this, the total
component of the force on the x-axis appears, because the second vortex (in the line with
ϵ1) is now part of the time in the x-axis region inaccessible to the second vortex. This
additional force helps to push the vortex into the nanobridge volume, reducing the critical
current. And the larger ϵ2 is, the more localised the vortex is in this line and the more
force it pushes the second vortex out. In the limit, this localised vortex can be considered
as an additional source of current of a complex shape. Essentially the maximum critical
current will be when this force is equal to zero, i.e. both barriers are the same, hence.
Which corresponds to the results in the Fig. 6.8b.

The repulsive vortex-vortex force is defined by the current distribution created by each
of them. According to the Ginzburg-Landau theory, the kinetic energy of superconducting
electrons that is proportional to ∼ |(∇ − iA)ψ|2 and so is proportional to |Js|2, where
Js is a superconducting current density. In Fig. 6.9, we plot the superconducting current
density Js as a function of coordinates (x,y) for ϵ2 = 0.83 and ϵ2 = ϵ1 = 0.5 at a bias
current that is slightly below the critical current. As we can see just below the critical,
current kinetic energy density is distributed nonequally between the lines for the case
ϵ2 = 0.83: current lines are squeezed into the nanobridge more than the line with ϵ1.

The nonmonotonic dependence of the critical current on the pinning centres is not
unique to our system.

A similar effect was also found in Ref. [Koshelev, 2016; Haddon, 2022; Grishakov, 2012].
According to Koshelev et al.[Koshelev, 2016], there are two reasons for this behaviour: the
first is an increase in the hopping mobility of vortices at the pinning centres and the
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Figure 6.9 – Color-maps of the superconducting current density Js distribution when the
DC current IDC is set just below the critical current Ic for two cases a) ϵ2 = 0.83 and b)
ϵ2 = ϵ1 = 0.5

second is a decrease in the effective volume of the superconductor due to an increase in
the percentage of defects and nonsuperconducting inclusions and, as a consequence, a
decrease in the current-carrying capacity.

In our case at zero magnetic field, the edges play the largest role. From this point on,
the critical current is determined by the roughness of the edges. The effect of the edges on
the vortex entrance and notion was studied in the Refs.[Benfenati, 2020; Kimmel, 2019].

Additionally, the question of the influence of defects at the boundary on the critical
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Figure 6.10 – Dynamics of states with (a,c) and without (b,d) NDR for the case ϵ2 = 0.042.

current was studied, for example, in the works [Glatz, 2020; Sadovskyy, 2016a; Sadovskyy,
2017; Sadovskyy, 2019; Kimmel, 2017]. The search for an optimum with respect to the
maximum critical current is a separate problem, which leads to the whole area under the
paradigm critical current by design [Sadovskyy, 2016b].

The second feature is the regions of Negative dynamic resistance (NDR).
In these regions, average voltage ⟨V ⟩ decreases with the increasing current IDC . They

appear after a sharp voltage rise when the vortex-antivortex pair enters the second line
defect and they are well pronounced if two linear defects differ ϵ1 ≈ ϵ2 slightly. If this
is the case, in a picture of coupled pendulums we have two coupled pendulums with
slightly different eigenfrequencies. DC current IDC plays the role of a constant force that
acts on the system. Sweep the current we drive the system through different states.
As we discussed earlier, several modes exist in this system. It is possible to mix them
and synchronize vortex-antivortex pairs motion in neighbouring lines. Because of defects
mismatch, this synchronization is not perfect but only partial. In Fig. 6.10a,c voltage
versus time and corresponding spectrum for a value IDC = 0.083 that corresponds to a
before the dip for ϵ2 = 0.042 are presented. One can see that the spectrum is not as narrow
as in the case of the NDR region. This indicates that before the NDR region, the system
was more chaotic with a bunch of different modes, some of which are high-energy and
yield higher voltage. On the other side in the NDR region, instantaneous voltage is more
periodic which can be seen in both direct signal (Fig. 6.10b) and its spectrum (Fig. 6.10d).
Much fewer oscillation modes appear. And all of them are low-energy checkmate modes.

When AC excitation is added, integer and fractional Shapiro steps are observed, the
latter stemming from the anharmonic nature of vortex motion. The transitions to/from
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metastable modes are also observed, although their number is larger, their shape is more
complex and intricate than in the case of identical defects. Clearly, the vortex dynamics
in the presence of asymmetric defects lead to a greater variety of collective motion modes.

Figure 6.11 – ⟨V ⟩(IDC ) characteristics for different IAC in the case of two different linear
defects, ϵ = 0.5 and ϵ = 0.42. The right vertical axis displays the numbers of corresponding
Shapiro steps.

The evolution of Shapiro features in Figs. 6.5,6.11 with increasing IAC is not trivial. At
low AC excitation, IAC ≪ IDC , conventional Shapiro plateaus are narrow and no signatures
of metastable states are seen. In this regime, the AC component acts as a probe that locks,
at a fixed fAC , onto the spectrum of the vortex motion, solely determined by the main
driving (Lorentz) force ∼ IDC . As IDC increases, the vortices move faster, f1 and fk

increase. At some IDC , a given fk gets close enough to nfAC , and the motion locks to
fAC ; f1 remains fixed in some range of IDC . As IDC increases further, the locking effect is
lost. This results in a series of integer and fractional Shapiro plateaus visible on ⟨V ⟩(IDC )
curve at IAC = 0.02.

When IAC increases and becomes comparable with IDC , two phenomena appear. The
first one is the well-known enlargement of Shapiro plateaus, due to a stronger locking
effect at higher AC-currents. The second one is related to the perturbation of the vortex
motion spectrum by the oscillatory force ∼ IAC , whose amplitude becomes comparable to
the Lorentz force due to the AC current. The combined action of IDC and IAC allows the
existence of metastable states. They can be locked to fAC , resulting in jump-plateau-drop
features as observed in Fig. 6.5. The same phenomenon takes place in Fig. 6.11, where
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many more voltage bumps and drops are observed (some jumps to metastable states are
indicated by black arrows) as compared to Fig. 6.5. The lift of degeneracy, resulting in a
more rich and complex metastable state spectrum, is certainly behind these differences.
Finally, the DC current range where the feature appears rapidly extends with increasing
IAC .

In the limit of a dense, on the scale of W , network of defects, one would expect
a huge number of apparently chaotically arranged voltage jump-bump-drops to appear
on ⟨V ⟩(IDC ) curves, reflecting a vast number of accessed vortex motion modes and the
complexity of the related spectra. The term "chaotic" is justified here due to the high
sensitivity of the accessed metastables configurations to external parameters such as IDC ,
IAC , fAC , the disorder landscape, etc. Indeed, after unlocking from one metastable state,
the system can jump down to a more stable configuration or lock up to another metastable
state, from the available set. As a result, the position and shape of bumps-drops on
⟨V ⟩(IDC ) curves would appear arbitrary (see Fig. 6.11), while they are deterministic.

The revealed voltage drops correspond to a negative dynamic resistance dV/dI(IDC ).
The latter has been experimentally observed in periodic pinning arrays subject to a spe-
cific external magnetic field [Gutierrez, 2009; Misko, 2006; Reichhardt, 1997], where a
complex collective dynamics of vortices led to multiple phase transitions in their collective
motion, with no need for additional AC-drive, resulting in various features in the V (I)
characteristics [Gutierrez, 2009; Misko, 2006; Reichhardt, 1997]. Another system is a per-
forated Nb film put in an external magnetic field, where the negative dynamic resistance
can appear due to the Ratchet effect under AC drive [Dobrovolskiy, 2017]. More recently,
both Shapiro steps and negative dynamic resistance were observed in a MoN strips with
artificial cut [Ustavschikov, 2022]. The authors attributed the negative dynamic resistance
to the chaotic aperiodic vortex motion at high AC-excitation amplitude.

The ability to use AC excitation both as a pump and as a probe opens up interesting
possibilities for realization, spectroscopy and control of metastable states in supercon-
ducting weak-links. The obtained results demonstrate the potential for designing artificial
disorder landscapes to achieve desired responses to AC-amplitude and/or frequency. The
general nature of weak-links suggests that there would be multiple ways of experimen-
tal realization of these functionalities. One of the straightforward routes is to engineer
superconducting films with a controlled disorder using a focused ion beam approach [Do-
brovolskiy, 2017] or to deposit superconducting materials onto faceted structures [Soroka,
2007]. By carefully designing the spatial distribution of defects or grain boundaries, one
could tailor the response of the weak-links to both DC- and AC-excitation. Another av-
enue is to overlap superconducting weak-links by ferromagnetic strips that can locally
suppress the superconducting order parameter due to the inverse proximity effect [Cara-
pella, 2016a; Carapella, 2016b; Dobrovolskiy, 2020a; Jaque, 2002; Yuzhelevski, 1999]. This
can introduce additional complexity in the vortex dynamics and lead to novel effects under
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microwave excitation.

2 Conclusion

In this work, we conducted a numerical investigation into the transport properties of
superconducting nanobridges carrying current and exposed to microwave illumination. To
account for the granularity observed in experimental devices, we introduce one or two linear
defects, simulating grain boundaries, oriented perpendicularly to the applied current. Our
study unveil the rich and complex dynamics of the vortex motion along these defects. The
pronounced anharmonicity in the system enabled us to lock its spectrum with an external
periodic drive, resulting in the observation of both integer and fractional Shapiro plateaus
in DC voltage-current characteristics.

In the case of two close linear defects, the inter-vortex coupling leads to the appearance
of collective modes of correlated motion, featuring multiple stable and metastable states.
These transitions manifest as regions of negative differential resistance dV/dI(IDC ) in the
current-voltage characteristic. Manupulating the amplitude and frequency of the external
drive provides a mean to pump the system into higher-resistance metastable modes and
stabilise it within a finite range of DC transport currents. Stepping beyond this range
initiate a relaxation to lower-resistance modes. The ability to control and stabilise different
modes of the vortex motion opens up new possibilities for designing superconducting
devices with tunable transport properties and novel functionalities.
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Conclusion

This work aims to investigate the critical behaviour in nanoscale superconducting
filaments, both experimentally and theoretically. Recent progress in the fabrication of
HTS-based nanoscale devices has stimulated our research. Low-temperature supercon-
ductors have already found applications in various fields, including medicine and quantum
information science. It is desirable to have all the useful properties of these devices at
higher temperatures. The discovery of HTS was promising for practical applications, but
their unique nature and difficulty in handling them posed challenges. Although massive
studies of HTS have been carried out since its discovery, it is only relatively recently
that significant success has been achieved in the fabrication of devices that are close to
real-world applications. This understanding is due to the accumulated experience with
these materials and knowledge of their properties, as well as the development of nanoscale
manufacturing technologies. Further progress in improving the performance of these de-
vices can lead to enhancement of the SSPD domain or used in Magnetoencephalography
(MEG).

This manuscript describes the method used to fabricate nanoscale YBa2Cu3O7−δ wires
because wires are the basic building block of various devices, and at the same time, this
geometry is simple enough to compare with existing theoretical models. Fabricating such
samples is challenging because of the material’s high sensitivity to oxygen doping and the
presence of defects that significantly affect the transport properties. Simultaneously, we
use the sensitivity to disorder to form the nanowires themselves using ion irradiation.

A major part of this work has been the investigation of the transport properties of
the fabricated nanowires. We measured IV curves over a wide range of temperatures. In
order to find a consistent explanation for the observed effects, we attempted to interpret
the data using various existing models. The vortex scenario appeared to be the most
likely. As part of our testing process, we utilized the Shapiro steps measurement to obtain
additional data. This involved conducting transport measurements under RF illumination.
The results obtained from this method were quite unusual, with some things remaining
unexplained and requiring further investigation. In the following section of our work, we
attempt to provide explanations for some of these results.

The second main part is devoted to the theoretical study of the motion of Abrikosov
vortices in superconducting nanowires with linear defects.
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Conclusion

On the basis of numerical solution of TDGL equations, we managed to show that
vortex motion leads not only to the appearance of integer Shapiro steps, but also to the
appearance of fractional ones.

The observations at relatively low temperatures align with our experimental findings,
and the emergence of these phenomena is attributed to the intricate anharmonic motion of
vortices and antivortices. The presence of an additional linear defect in the neighbourhood
preserves the existing effects, but under certain conditions qualitatively new ones appear.

Specifically, in the presence of RF radiation, the system exhibits transitions to metastable
states that were previously inaccessible due to their high energy. These transitions man-
ifest as regions with negative dynamical resistance on IV curves. Our predicted effect is
strongest in the sterile symmetric case, but we also discuss its stability under variations in
defect parameters. Importantly, the predicted effect is not confined to specific conditions
and had potential realizations in various other superconducting systems.
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MOTS CLÉS

Supraconducteurs, Cuprates, Nanofils, Simulations numériques, Ginzburg Landau dépendant du temps, Vor-

tex Abrikosov

RÉSUMÉ

Les détecteurs de photons uniques basés sur des nanofils supraconducteurs à basse température ont déjà démontré
d’excellentes propriétés et des performances remarquables dans diverses applications en dessous de 1K, allant de
l’information quantique au test de circuits intégrés. Dans ce contexte, l’idée de créer un tel détecteur basé sur des
supraconducteurs à haute température fonctionnant autour de 40 K est très séduisante. Cependant, la tâche s’avère
difficile, non seulement en raison des obstacles technologiques liés à la fabrication de nanofils ultraminces, mais aussi
en raison de la nature distincte de la supraconductivité dans ces matériaux.
Ce travail est divisé en deux parties : une étude expérimentale des caractéristiques de transport des nanofils YBCO et
une étude numérique de l’influence du mouvement vortex sur les caractéristiques de transport des nanorubans supra-
conducteurs.
Dans la partie expérimentale, nous présentons la fabrication de nanofils supraconducteurs à l’aide de la technique
d’irradiation ionique. Leur caractérisation par transport DC et RF a permis de démontrer le rôle de la dynamique des
vortex sur les propriétés supraconductrices critiques.

Les observations expérimentales sont soutenues par notre étude numérique, développée spécifiquement pour la

géométrie de notre système et consacrée aux effets du mouvement vortex d’Abrikosov sur les propriétés de trans-

port. Dans le cadre de la théorie de Ginzburg-Landau dépendante du temps, nous avons confirmé les signatures de

la synchronisation des vortex conduisant à l’apparition de marches de Shapiro fractionnaires et, dans un paysage de

désordre spécifique, cette synchronisation peut créer des états métastables dynamiques, observés dans nos nanofils

supraconducteurs.

ABSTRACT

Single-photon detectors based on low-temperature superconducting nanowires have already demonstrated excellent
properties and remarkable performance in various applications below 1K, ranging from quantum information to inte-
grated circuit testing. In this context, the idea of creating such a detector based on high-temperature superconductors
operating around 40 K is highly appealing. However, the task is proving challenging not only due to technological barriers
associated with the manufacture of ultra-thin nanowires but also because of the distinct nature of superconductivity in
these materials.
This work is divided into two parts: an experimental study of the transport characteristics of YBCO nanowires, and a
numerical study of the influence of vortex motion on the transport characteristics of superconducting nanostripes.
In the experimental part, we present the fabrication of superconducting nanowires using the ion irradiation technique.
Their characterisation by DC and RF transport has enabled demonstrating the role of the vortex dynamics on critical
superconducting properties.

The experimental observations are supported by our numerical study, developed specifically for the geometry of our

system and devoted to the effects of Abrikosov vortex motion on the transport properties. Within the framework of the

time-dependent Ginzburg-Landau theory, we have confirmed the signatures of vortex synchronisation leading to the

appearance of fractional Shapiro steps. Moreover, in a specific disorder landscape, this synchronisation can create

dynamic metastable states, leading to phenomena experimentally observed in the studied nanowires.

KEYWORDS

Superconductivity, Cuprates, Nanowires, Numerical simulations, Time Dependent Ginzgurg Landau,

Abrikosov vortices
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