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Résumé
Alors que les exigences en matière d’IA augmentent, de nouveaux paradigmes informatiques

deviennent essentiels. Les architectures traditionnelles de von Neumann peinent à répondre aux
exigences intensives de l’IA. L’informatique neuromorphique, inspirée par le cerveau, intègre
traitement et mémoire pour une computation plus rapide et efficace, idéale pour des applications
d’IA comme l’apprentissage profond et la reconnaissance de formes.

Les matériaux clés pour l’informatique neuromorphique incluent les synaptors et les neuris-
tors. Les memristors, des mémoires non volatiles fabriquées à partir d’oxydes tels que HfO2 et
TiO2, imitent le comportement synaptique en changeant d’état via des filaments à l’échelle nano-
métrique ou des transitions de phase. Quant aux neuristors, ils imitent le celui du déclenchement
des neurones en utilisant des memristors et des circuits résistance-condensateur reproduisant le
modèle LIF (Leaky, Integrate, and Fire). À température ambiante, l’isolant de Mott VO2 remplit
les fonctions neuronales en formant des chemins conducteurs volatiles. Cependant, les synaptors
et les neuristors nécessitent souvent des matériaux différents. L’optimisation de VO2 comme
synapse pourrait lui permettre de remplir les deux fonctions à température ambiante.

Étudier des systèmes à séparation de phases comme VO2 reste complexe en raison des inho-
mogénéités. Les avancées en microscopie infrarouge et optique permettent désormais d’imager
ces régions avec une résolution nanométrique. Les techniques de champ proche peuvent sonder
la conductivité locale à l’échelle nanométrique. Cependant, ces sondes ont des limites : (i) des
scans longs pour les inhomogénéités plus grandes et (ii) des transitions de phase induites par la
température causant des dérives thermiques et des comparaisons d’images difficiles. Pour y re-
médier, nous avons développé un système de microscopie optique à champ lointain pour étudier
les transitions de phase dans le VO2. Ce système exploite le contraste optique entre les phases
isolantes et métalliques, observable des nanomètres aux microns.

Nous avons mis en œuvre différents protocoles de température en imagerie continue, com-
pensant la dérive thermique et alignant des images nettes. Cela permet des traces temporelles
de pixels uniques pour indiquer les températures spécifiques de transition de phase.

Nous avons tout d’abord cartographié la température critique (Tc), la largeur de transition
(∆Tc) et leur netteté (δTc). Ces cartographies pourraient permettre d’adapter les propriétés
du VO2 pour des applications spécifiques comme les dispositifs de mémoire et les composants à
commutation rapide.

Nous avons également présenté la première imagerie optique de la mémoire à inversion de
rampe (RRM) dans le VO2, montrant l’évolution des clusters pendant l’entraînement thermique.
L’accumulation de mémoire se produit aux frontières des clusters et à l’intérieur des patchs,
suggérant une diffusion préférentielle des défauts ponctuels.
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Chapitre 0. Résumé

De plus, nous avons mené une analyse d’apprentissage automatique (ML) des motifs fractals
dans le VO2, en utilisant le ML pour classifier l’Hamiltonien, conduisant à la formation de motifs.
Notre réseau neuronal convolutionnel (CNN) a atteint une haute précision avec des données
synthétiques et expérimentales, confirmant la formation de motifs due à la proximité d’un point
critique du modèle Ising 2D à champ aléatoire. Cela, combiné à la réduction de symétrie et à la
quantification de confiance, offre un puissant nouvel outil pour analyser les transitions de phase
complexes dans les matériaux corrélés.

Notre recherche fournit une nouvelle méthode de caractérisation optique pour comprendre
la dynamique de transition du VO2 et introduit des approches innovantes pour des applications
non-mémoires. Ces perspectives posent les bases d’études futures explorant le potentiel de la
RRM et étendant les cadres ML à d’autres matériaux corrélés.

Mots-clés : circuit neuromorphique, dioxyde de vanadium, transition isolant-métal, carac-
térisation optique, mémoire non-volatile, réseau neuronal convolutionnel.
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Abstract
As AI demands grow, new computing paradigms are essential. Traditional von Neumann ar-

chitectures struggle with intensive AI requirements. Neuromorphic computing, inspired by the
brain, integrates processing and memory for faster, efficient computation, ideal for AI applica-
tions like deep learning and pattern recognition.

Key materials for neuromorphic computing include synaptors and neuristors. Memristors,
non-volatile memories made from oxides like HfO2 and TiO2, mimic synaptic behavior by swit-
ching states via nanoscale filaments or phase transitions. Neuristors emulate neuron spiking
behavior using memristors and resistance-capacitance circuits to replicate the Leaky, Integrate,
and Fire model. Mott insulators like VO2 mimic neuron-like behavior by forming volatile conduc-
tive pathways. However, synaptors and neuristors often require different materials. Optimizing
VO2 for synaptic behavior could enable it to serve both functions at room temperature.

Studying phase-separated systems like VO2 is complex due to inhomogeneities. Advances in
infrared and optical microscopy now allow imaging these regions with nanometer-scale resolution.
Near-field techniques, using atomic force microscopes coupled to IR lasers, can probe local
conductivity at the nanoscale. However, these probes have limitations : (i) long scans for larger
inhomogeneities and (ii) temperature-driven phase transitions causing temperature drifts and
difficult imaging comparisons.

To address these, we developed a far-field optical microscopy setup to study VO2 phase tran-
sitions. This setup leverages optical contrast between insulating and metallic phases, observable
from nanometers to microns. We applied different temperature protocols while continuously
imaging, counteracting temperature drift and aligning sharp images. This enables single-pixel
time traces to indicate specific phase transition temperatures.

We first mapped critical temperature (Tc), transition width (∆Tc), and transition sharpness
(δTc) in VO2. These maps could enable tailoring VO2 properties for specific applications like
memory devices and fast switching components.

We also presented the first optical imaging of ramp reversal memory (RRM) in VO2, showing
cluster evolution during thermal subloop training. Memory accumulation occurs at cluster boun-
daries and within patches, suggesting preferential diffusion of point defects. This could enhance
memory effects through defect engineering, improving memory devices’ robustness and stability.

Additionally, we pursued a machine learning (ML) analysis of fractal patterns in VO2, using
ML to classify the Hamiltonian driving pattern formation. Our convolutional neural network
(CNN) achieved high accuracy with synthetic and experimental data, confirming pattern for-
mation driven by proximity to a critical point of the two-dimensional random field Ising model.
This framework, combined with symmetry reduction and confidence quantification, offers a new

v



Chapitre 0. Abstract

powerful tool for analyzing complex phase transitions in correlated materials.
Our research provides a new optical characterization method for understanding VO2 tran-

sition dynamics and introduces innovative approaches for optimizing VO2 for non-memory ap-
plications. These insights lay a foundation for future studies that explore RRM’s potential, and
extend ML frameworks to other correlated materials.

Keywords : neuromorphic devices, vanadium dioxide, insulating-to-metal transition, optical
characterization, non-volatile memory, convolutional neural network.
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Chapter 1
Introduction

1 The Rise of Artificial Intelligence and Neuromorphic Com-
puting

Artificial Intelligence(AI) refers to the capability of machines to perform tasks traditionally
associated with human cognition [1][2]. Today, with vast amounts of data, rapid computational
power, and improved algorithms, computers can efficiently perform many cognitive tasks, such
as writing, playing games, recognizing patterns, and describing images[3]. The evolution from
using an abacus to ultra-fast calculations on modern supercomputers mirrors the journey from
simple tools to sophisticated reasoning machines, a reminiscence of Leibniz’s calculus rationator,
transforming the mechanization of arithmetic into the mechanization of thought[4].

AI has an impact now in most industries, including pharmaceutical, defense, and energy,
among others. It has also been responsible for scientific breakthroughs like the protein folding
fast prediction by AlphaFold [5]. AI utilizes more complex models as it can solve more com-
plex tasks, and for this reason, there is a need for more efficient and powerful computational
frameworks [6].

However, traditional computing architectures, based on the von Neumann model, face limi-
tations in processing speed and energy efficiency when tasked with AI workloads. For instance,
if we continue with the current ways of computation, the integration of AI into search tools like
Google could dramatically increase their electricity demand, potentially tenfold. According to
the latest report of the International Energy Agency in 2024, a typical Google search uses 0.3 Wh
of electricity, whereas an OpenAI ChatGPT request consumes 2.9 Wh. With 9 billion searches
conducted daily, this shift would require nearly 10 TWh of additional electricity annually [7].
By 2026, the AI industry’s electricity consumption is expected to be at least ten times what it
is today.

The usage of energy for the AI workload occurs in two key stages: training and inference.
Training models, which involve processing vast amounts of data, currently account for 20%
of AI’s energy use. However, once these models are deployed in the inference phase to solve
real-world problems, they consume the remaining 80% [8]. As AI becomes integral to diverse
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Figure 1.1 – Comparison between the von Neumann and Neurmorphic architectures, depicting
the operational differences. Taken from [12].

sectors, the demand for inference will skyrocket, further escalating its energy requirements and
environmental footprint.

This is where new computational paradigms are needed to improve the energetic efficiency
of AI applications. Hence we can take inspiration from nature to understand how to increase
performance. We have a remarkably efficient machine in our bodies, the human brain, which
is capable of performing an exaflop - a billion-billion mathematical operations per second with
only 20 watts of power [9][10]. By contrast, the Oak Ridge Frontier, one of the world’s most
powerful supercomputers, needs a million times more power to achieve the same calculations.

Neuromorphic computing offers an alternative approach to overcoming these limitations by
emulating the architecture and functionality of the human brain[11]. Unlike conventional com-
puters, neuromorphic systems are designed to process information in a parallel and distributed
manner, similar to neural networks in the brain. This makes them highly efficient for tasks
involving pattern recognition, learning, and adaptation, which are fundamental to AI applica-
tions.

1.1 Potential of Neuromorphic Computing

Current computers are based on Von Neumann architectures (Fig. 1.1), which have enabled
precise calculations and fast processing, especially with the incorporation of modern accelerators.
However, they have some limitations. One significant issue is that these computers consist
of separate CPUs and memory units, where all instructions and data are stored in memory.
This separation leads to a performance bottleneck known as the "memory wall," caused by the
increasing gap between CPU speed and memory bandwidth.

In contrast, neuromorphic computing uses neurons and synapses as its fundamental units.
Unlike Von Neumann architectures, instructions in neuromorphic systems are not explicitly
defined but are governed by the structure and parameters of neural networks [12]. Information
is encoded not as binary values but through the magnitude and frequency of spikes, which,
although less precise than binary encoding, is still under active development.
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Neuromorphic computing offers several advantages:

1-Highly Parallel Computations: Neurons in a neuromorphic system are highly inter-
connected, allowing for massive parallelism, similar to the brain’s neural networks. However,
current neuromorphic operations are simpler compared to the sophisticated parallel program-
ming achieved in Von Neumann architectures.

2-Unified Processing and Memory: There is no separation between processing and
memory. Neurons and synapses both process and store information, reducing the need for fre-
quent data access and mitigating the memory wall issue.

3-Energy Efficiency: Neuromorphic systems reduce energy consumption by minimizing
data access. They are designed to compute only when necessary, leveraging event-driven com-
putation, meaning they process information only when data is available. This leads to extremely
efficient computation since neurons and synapses are active only when spikes occur, and spikes
are typically sparse.

4-Scalability: Neuromorphic hardware is scalable. By adding more neuromorphic chips,
the number of neurons and synapses can be increased, as demonstrated by large-scale systems
like SpiNNaker and Loihi.

5-Robustness Against Noise: Neuromorphic systems are inherently robust against noise,
contributing to their reliability and efficiency.

1.2 Neuromorphic computing implementation approaches

The first approach to implementing neuromorphic computing involves mapping Artificial
Neural Network (ANN) algorithms, which are the algorithms currently used in AI, to be executed
using available Complementary Metal-Oxide-Semiconductor (CMOS)-based electronic devices.

To understand how ANNs work, one can draw a parallel with biological neural networks. Bi-
ological neurons consist of three main parts: dendrites, which receive signals from other neurons;
the soma or cell body, which acts as the CPU where signals are integrated and processed; and
axons, which transmit the processed signals to other neurons through synapses (Fig. 1.2(a)).
Synapses function as connectors, transferring signals from the axon terminal of one neuron to
the dendrites of the next neuron.

ANNs simplify this complex behavior into a mathematical model consisting of weighted
sums and activation functions (Fig. 1.2(b)). In an ANN, there are multiple inputs xi, with
synapses acting as valves for information, determining the flow of data through the network
and guiding input information to the relevant output. These synapses can transmit information
both positively and negatively, represented by real-valued synaptic weights wi. The weights
indicate the importance of each connection. The network performs a weighted sum operation,
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Figure 1.2 – A biological neuron in comparison to an artificial neural network: (a) human
neuron; (b) artificial neural network in mathematical representation implemented in software;
(c) artificial neural network representation for implementation in hardware; and (d) Deep Neural
Networks structure. Example as a classifier, taking the pixel of an image as input, with two
hidden layers of neurons, and giving the classification as a probability.Taken from [13].
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followed by a nonlinear activation function, such as a sigmoid or a rectified linear unit (ReLU).
This nonlinearity allows the neural network to approximate complex nonlinear functions. The
hardware equivalent is presented in Fig. 1.2 (c), where the device in charge of accumulating
memory (weights) is called synaptor, and the signal integration and activation that produces
the output is performed by a neuristor. The mechanism is analogous to the accumulation
of action potentials in biological neurons and to the spike transmission that occurs when a
biological neuron reaches a threshold.

The most implemented neural networks today are known as Deep Neural Networks
(DNNs) because they consist of many layers of neurons, ranging from four layers to hun-
dreds (Fig. 1.2(d)). A special class of DNNs is convolutional neural networks (CNNs), which
typically handle images and other types of high-dimensional data, and reduce this data to a few
output classes, identifying, for instance, whether an image contains a bird or a cat [14].

In an ANN, the input to a neuron in layer k +1 is the output of neurons in layer k multiplied
by the synaptic weights. This process is crucial for the functioning of artificial neural networks.
During the training phase, the weights are initially chosen randomly, and the network learns
the optimal weights through a process called supervised learning. In supervised learning,
labeled examples are presented to the network, and its output is compared with the desired
output to compute an error. This error is then backpropagated through the network, adjusting
each weight in proportion to its contribution to the error. After several training iterations, the
network minimizes the error and can generalize to new, unseen examples what we call inference
phase. Algortihm 1 illustrates the process of learning in a simple ANN with one hidden layer.

Implementing neuromorphic architectures using only CMOS technology presents significant
challenges. Emulating each neuron requires dozens of transistors, and additional external memo-
ries are necessary for synapses. Although transistors are tens of nanometers in size, CMOS-based
artificial neurons and synapses are typically several micrometers wide. This size discrepancy lim-
its the integration density of physical neurons and synapses. To address these challenges, two
scalable architectures have been proposed for mapping DNNs on-chip using physics: hybrid
CMOS/memristive[15] systems and photonic systems [16].

Some hybrid systems, such as those in BrainScale[17], use analog electronics to physically
implement neurons. For example, the membrane potential of each neuron is represented by the
charge stored in a capacitor, and neurons emit spikes when the capacitor’s voltage reaches a
preset threshold (Fig. 1.3(a)). These systems are hybrid because the spike is not an analog action
potential but a digital spike event communicated through a network that digitally implements
the synaptic connections.

These silicon neuromorphic computing systems require capacitors for compact neuron rep-
resentation, but miniaturizing these capacitors remains a significant challenge. In some designs,
capacitors representing neuron membrane potentials occupy up to 70% of the chip’s area. The
miniaturization is constrained by the dielectric constant of CMOS-compatible materials. While
silicon excels in memory storage, it does not easily mimic neuron-like behavior. Developing ef-
ficient and feasible neuromorphic hardware solutions necessitates exploring materials that
can naturally mimic synapses and neurons.
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Algorithm 1 Learning the function f(x) = x2

Neural network architecture:
Input layer: 1 neuron
Hidden layer: 2 neurons (ReLU activation)
Output layer: 1 neuron
Step 1: Initialization
Initialize weights and biases:
W1 = [0.1, −0.2], b1 = [0.0, 0.0]
W2 = [0.3, 0.4], b2 = 0.0
Step 2: Forward Pass
Pass input x = 1 through the network:
h1 = ReLU(x · W1,1 + b1,1) = ReLU(0.1) = 0.1
h2 = ReLU(x · W1,2 + b1,2) = ReLU(−0.2) = 0.0
ypred = h1 · W2,1 + h2 · W2,2 + b2 = 0.03
Step 3: Calculate Error
True output y = 1
Error = 1

2(ytrue − ypred)2 = 0.47045
Step 4: Backward Pass (Gradient Descent)
Learning rate α = 0.1
Compute gradients and update weights and biases:
Gradients for W2, b2:
∂Error
∂W2,1

= −0.097, ∂Error
∂W2,2

= 0.0
∂Error

∂b2
= −0.97

Update: W2,1 = 0.3097, W2,2 = 0.4, b2 = 0.097
Gradients for W1, b1:
∂Error
∂W1,1

= −0.299409, ∂Error
∂W1,2

= 0
∂Error
∂b1,1

= −0.299409, ∂Error
∂b1,2

= 0
Update: W1,1 = 0.1299409, W1,2 = −0.2, b1,1 = 0.0299409, b1,2 = 0.0
Step 5: Iterate
Repeat steps 2-4 for multiple iterations to minimize error.

6



1. The Rise of Artificial Intelligence and Neuromorphic Computing

Figure 1.3 – a) Schematic representation of a biological neuron receiving input spikes from other
neurons and triggering an ouput action potential when the membrane potential reaches the
threshold value. b) The LIF artificial neurons based on Lapicque’s model reproduce the evolu-
tion of the membrane potential thanks to a Resistance Capacitance (RC) circuit accumulating
electrical charges. The Mott artificial neuron sketched in panel (c) reproduces the LIF behavior
thanks to the accumulation of correlated metallic sites. Taken from [18].

1.3 Neuromorphic materials

Even though CMOS technology can produce full neuromorphic circuits, including artificial
neurons and synapses, as discussed in the previous chapter, large capacitors are necessary to
form a time constant of the spiking. These capacitors occupy most of the chip’s real estate,
limiting scalability. Many reviews attempt to list materials that naturally behave as artificial
synapses and neurons (see for example [19, 20, 21, 22].) Below we present selected information
useful for the comprehension of this thesis manuscript.

1.4 Non-volatile Switching - Artificial Synapse

In neuromorphic circuits, the devices that serves as the equivalent of a synaptor is the mem-
ristor, a combination of the words "memory" and "resistor." This type of non-volatile memory
can regulate the flow of electrical current and remember the amount of charge that has previ-
ously flowed through it [23]. Essential characteristics of memristors for neuromorphic computing,
along with comparisons of different switching mechanisms, are discussed in the reviews by Chen
et al. [22] and Li et al. [21]. Among the most studied synaptor materials, one can identify the
following [20]:

— Oxides (TiO2, TaO2, HfO2, see Table 1.1 for full list);

— Phase Change Memory such as Chalcogenide glasses (Ge2Sb2Te5 (GST));

— Ferroelectrics;
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— VO2 ion bombardment, E-field breakdown, gating, thermal coupling.

Oxides

One of the most common methods to achieve non-volatile memory is through the creation
and manipulation of nanoscale conductive filaments induced by an electric field. These fila-
ments bridge two metallic electrodes separated by an insulating oxide. Examples of such oxides
include hafnium oxide (HfO2) and titanium dioxide (TiO2), which exhibit resistance-switching
characteristics, scalability, and compatibility with traditional silicon-based circuits. The dy-
namic adjustment of resistance states in these oxides allows for the storage and processing of
information in a manner analogous to the modulation of synaptic strengths. The scalability of
these materials ensures that they can be integrated into dense, high-performance neuromorphic
architectures, facilitating the development of compact and efficient artificial intelligence hard-
ware. A comprehensive table with materials that are promising for these devices can be found
in [20], and a summary is presented in Table 1.1.

MRAM

Magnetoresistive Random Access Memory (MRAM) and Spin Transfer Torque Magnetore-
sistive Random Access Memory (STT-MRAM) are emerging as pivotal technologies in the realm
of neuromorphic devices, which aim to mimic the neural structures and processing capabilities of
the human brain. Traditional MRAM utilizes magnetic fields to manipulate the magnetic states
of memory cells, consisting of Magnetic Tunnel Junctions (MTJs) where two ferromagnetic lay-
ers are separated by an insulating layer [24, 25]. This magnetic state manipulation translates to
different resistance levels, enabling data storage.

On the other hand, STT-MRAM advances this concept by employing spin-transfer torque.
A typical STT cell includes a non-magnetic layer sandwiched between two nanomagnetic layers,
one with fixed magnetization (Mfixed) and the other with free magnetization (Mfree). When a
current is injected, spin torque rotates Mfree, changing the device resistance through the mag-
netoresistance effect [26]. The magnetizations can be aligned parallel (P state) or antiparallel
(AP state) based on current polarity, with SET and RESET processes controlled by sweeping
DC currents [27]. STT-MRAM, in particular, stands out due to its lower power consumption
and scalability, enabling more compact and efficient neuromorphic architectures. Furthermore,
the potential of both MRAM and STT-MRAM to be developed into multistate (or multilevel
cell, MLC) memories adds a layer of versatility [28, 29]. This capability is crucial for neuro-
morphic computing, where the synaptic weights and neural activations are often represented in
an analog or multi-level digital form. The multi-resistance states of MRAM and STT-MRAM
can closely emulate the variable strength of synapses, thus enabling more accurate and efficient
neural network implementations.
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Phase Change Memory such as Chalcogenide glasses

Phase Change Material (PCM), particularly utilizing chalcogenide glasses such as Ge2Sb2Te5

(GST), is a promising candidate for memristor technology in neuromorphic devices [30]. PCM
operates by switching between amorphous and crystalline states, which correspond to high and
low resistance levels, respectively. This capability allows PCM to mimic synaptic functions in
neuromorphic systems by providing a non-volatile, multistate memory element that can store
and process information similarly to biological synapses. The precise control over the resistance
states in GST enables the fine-tuning of synaptic weights, essential for learning and adaptation
in neuromorphic circuits. Additionally, PCM’s high endurance, scalability, and fast switching
times make it suitable for the demanding requirements of neuromorphic computing, where rapid
and reliable synaptic updates are crucial for real-time processing and learning tasks. Overall,
the integration of GST-based PCM in neuromorphic devices enhances their ability to perform
complex, brain-like computations with greater efficiency and accuracy.

1.5 Volatile Switching - Artificial Neuron

The second part of neuromorphic circuit are neuristors. A neuristor, a term coined from
the combination of the words "neuron" and "transistor," is a device that has been designed to
imitate the spiking behavior of neurons. These neuristors have been intended to replicate the
complex functions of biological neurons, including the integration and transmission of signals.
Most circuits implement a memristor that is often complemented by a Resistance Capacitance
circuit to fully emulate neural behavior. This combination emulates the Leaky, Integrate, and
Fire (LIF) behavior of biological neurons (Fig 1.3 (a)-(b)). The LIF model mimics the accu-
mulation of electric charge through the cellular membrane, a fundamental function of neuron
behavior. Increases in the membrane potential, a direct result of synaptic processes, are typ-
ically modeled as current pulses. However, when the voltage reaches a certain threshold, the
neuron fires an output electric spike. The nature of this output spike, analogous to the action
potential in biological neurons, and the subsequent reset of the capacitor charge is generally not
considered part of the model.

New generations of ANN algorithms are being implemented in hardware. Spiking Neural
Network (SNNs), which employ spiking neurons based on the LIF model. The primary distinc-
tion between SNNs and previous generations of ANNs lies in signal dynamics. SNNs rely on the
temporal dynamics (frequency and interval) of binary incoming spikes, whereas earlier models
use spatial dynamics (amplitude of the signals) [21, 14, 31, 32]. In SNNs, the inputs are unipolar,
time-dependent spike trains that are weighted by synapses and activated by neurons. This pro-
cess leverages Spike-Timing-Dependent Plasticity (STDP), where synaptic changes are linked to
the relative timing of firing events between pre- and post-synaptic neurons. An example of how
STDP works is as follows: if a post-synaptic neuron fires a voltage spike after the pre-synaptic
neuron, the latter is considered to have directly influenced the depolarization of the former. The
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synaptic strength is increased according to the time delay (∆t) between the two firing events,
with the increase being most significant when ∆t ∼ 0, meaning the post-synaptic neuron fires
almost immediately after the pre-synaptic neuron. Conversely, the synaptic strength is reduced
if the post-synaptic neuron fires before the pre-synaptic neuron (∆t < 0). SNNs allow saving
energy since they are activated only when an event in the form of a spike occurs.Among the
most studied neuristor materials, one can identify the following [20]:

— Metal-insulator transition: Transition metal oxides (vanadates: VO2, V2O3; nickelates:
ReNiO3; manganites: LCMO, PCMO; NbO2; GaTa4Se8; NiS2−xSex);

— TaOx [20].

Transition Metal Oxides

Few materials have a neuron-like behavior, but it has been found that Mott insulators al-
low the implementation of neurons in hardware providing an alternative to traditional silicon
capacitors. Even upon miniaturization, Mott materials retain their physical phase transition.
Instead of accumulating charges, these insulators accumulate metallic sites which eventually
form a pathway in the material to conduct electricity (Fig 1.3 (c)). This process is carried out
by a single-component device based on a Mott insulator compound down to the nanometers [33].
Transition metal oxides such as VO2, V2O3, NbO2 and NdNiO3 undergo a natural Insulator-to-
metal transition (IMT) transition, creating a so-called Negative Differential Resistance (NDR)
during the transition that is further explained in Chapter 2.

Spin Torque Oscillator (STO)

A large class of oscillators, including Spin Torque Oscillators (STOs) and spin-Hall oscil-
lators, rely on the oscillatory motion of magnetic moments (spins) in ferromagnetic materials.
These oscillators utilize magnetic thin films to achieve high-frequency (in the gigahertz regime)
and high-Q oscillations. Despite their high oscillation frequency making them excellent can-
didates for high-speed computing applications and neuromorphic circuits, the interconversion
efficiency between electric and magnetic degrees of freedom is relatively low, leading to high
power requirements.

STOs perform at high frequencies with low power consumption (10−15 J/cycle). The oscilla-
tions are driven by the precession of the magnetic moment in a thin magnetic film, excited by a
spin-polarized current or the spin Hall effect. This precession alters the device’s resistance, and
the frequency can be controlled by an alternating current. The primary challenge lies in design-
ing an efficient interconnection scheme. This requires converting magnetic signals to electrical
signals and vice versa, or relying on techniques like dipolar or spin wave coupling. One proposed
design involves using an RC filter to pick up the STO signal, process it through a summing
node, and reconvert it to a magnetic signal via magnetic-field coupling. This conversion typi-
cally results in a small voltage signal (mV range). Additionally, demonstrated coupling schemes
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show interaction between closely-spaced devices, although this limits system reconfigurability.

1.6 Combining Neuristors and Synaptors on Single Chip

Oxides

Some studies have been able to combine two of these elements on a single chip. Duan et al.
[34] implemented a 4×4 fully memristive SNN by integrating volatile NbOx memristor-based
neurons and nonvolatile TaOx memristor-based synapses in a single crossbar array, showing ca-
pabilities in pattern recognition through online learning using a simplified δ-rule and coincidence
detection. A simulation based on the experimental of a 3-layer version of the memristive network
achieved 83.24% accuracy in classifying MNIST handwritten digits, demonstrating practical ap-
plication potential.

Coupled STO

Romera et al. [35] successfully trained a compact neural network comprising four STOs to
identify spoken vowels. By dynamically adjusting the frequencies of these oscillators through
real-time learning mechanisms, they achieved robust synchronization among the devices. This
synchronization proved crucial in achieving high recognition rates for the vowel classification
task. Their results illustrate the potential of leveraging the inherent oscillatory and synchroniza-
tion properties of spintronic nano-oscillators in developing efficient hardware implementations
of neural networks capable of sophisticated pattern recognition tasks. The description of the
network and the recognition results are shown in Fig. 1.4.

In another example, the coupling between STOs is achieved through a combination of MTJs
and electrical input signals [36]. This system integrates two MTJs acting as non-volatile mag-
netic memories (weights) and a larger nanopillar functioning as the STOs(neuron). The coupling
mechanism involves programming the MTJs into various resistance states, which modulate the
input signals applied to the STO. The resistances of the MTJs change based on their magneti-
zation states (parallel or antiparallel), affecting the current flow through the STO. This current
flow, in turn, influences the oscillation behavior of the STO, enabling it to perform complex
computational tasks required in neuromorphic computing.

Silicon Photonics

The process of creating artificial neurons and synapses using Vertical Cavity Surface Emit-
ting Lasers (VCSELs), Mach-Zehnder Modulator (MZMs), and PCMs involves several integrated
steps on a silicon photonic chip [37]. It begins with VCSELs generating continuous laser light.
This light is then modulated into precise optical pulses using MZMs, which split the light into two
paths, apply a varying electrical signal to create interference, and recombine the light, thereby
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modulating its intensity, phase, or frequency. These optical pulses travel through waveguides,
which direct and shape them, ensuring they reach the synaptic components. The pulses then
interact with PCMs such as GST integrated into the waveguides. The GST switches between
amorphous and crystalline states when exposed to optical pulses; a short, intense pulse melts
the GST to the amorphous state, and a longer, moderate pulse crystallizes it back. This state
change alters the optical properties of the GST, effectively adjusting the synaptic weight, sim-
ulating the synaptic strength adjustments in biological synapses during learning. The learning
process, STDP, is implemented by controlling the timing of optical pulses; if a pre-synaptic
pulse arrives just before a post-synaptic pulse, the synaptic weight increases (potentiation),
and if it arrives just after, the synaptic weight decreases (depression). This integration of light
generation, modulation, and synaptic learning on a single chip facilitates efficient, high-speed
neuromorphic computing.

The architectures above all present state of the art in implementing fully integrated neu-
romorphic systems in various fields. Although outstanding, their design remains complex and
utilizes many materials. Finding a single material that can perform both functions remains an
ongoing challenge. Interestingly, TaO2 [20] and TaOx [38] have been used in artificial synapses
and neurons independently but have not been integrated on the same chip. This is probably due
to the fact that the spiking behavior found in TaOx is not due to a metal-insulator transition
but rather from a rapidly changing insulating state with temperature [38].

In the following sections, we will elaborate on why VO2 is considered an excellent single-
material candidate and explain the reasons for focusing on this material throughout the majority
of this thesis.

Why vanadium Dioxide?

Vanadium dioxide (VO2) distinguishes itself among the transition metal oxides considered
for neuromorphic devices due to its impressive IMT near room temperature and neuristor-like
spiking behavior. Furthermore, its demonstrated synaptic memory capabilities make it a mate-
rial of significant interest in the field of neuromorphic computing.

VO2 as a neuristor

Vanadium dioxide has potential for constructing neuristors capable of performing basic spik-
ing and other neuron functions, such as activity, LIF, reset, and rate coding. Del Valle et al. [53]
demonstrated that the Joule heating-induced IMT in VO2 (explained with more details in the
following chapters) nanogaps can mimic these neuron functionalities by sending a train spikes in
a controlled manner (Fig. 1.5.) Another report explored "thermal VO2 neuristors" application
in spiking oscillators to achieve reconfigurable electrical dynamics similar to those on biological
neurons [33].
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Figure 1.4 – a) Schematic of the emulated neural network. (b) Experimental setup featuring four
spin-torque nano-oscillators connected in series and coupled through emitted microwave currents.
Two microwave signals, fA and fB, encode inputs via a strip line, generating microwave fields.
Total oscillator network output is recorded using a spectrum analyzer. (c) Microwave output
from the oscillator network: light blue shows emissions without, and dark blue with, applied
microwave signals. Peaks correspond to oscillator emissions; narrow red peaks denote input
frequencies fA and fB. (d) Evolution of oscillator frequencies as external source A frequency
varies. Oscillators phase-lock to inputs near their natural frequencies, aligning their outputs
with input frequency during locking. (e) Experimental synchronization map based on external
signal frequencies fA and fB, illustrating different synchronization states. (f) Inputs applied to
the system depicted in the (fA, fB) plane, where each color represents a different spoken vowel
associated with various speakers’ data points (Taken from [35].)
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Table 1.1 – Examples of materials and devices for Resistive Switching-based non-volatile memory
for neuromorphic computing based on [20]

Material/ System Device Struc-
ture

RS Mecha-
nism

Key Charac-
teristics

ref

HfO2 Pt/HfO2/TiN Filamentary
(Oxygen vacan-
cies)

Low power, good
endurance

[39, 40]

TiO2 Pt/TiO2/Pt Filamentary
(Oxygen vacan-
cies)

Simple structure [41, 42, 43]

Ta2O5 Pt/Ta2O5/Ta Filamentary
(Oxygen vacan-
cies)

Multilevel
switching, high
speed

[44, 45]

Ag2S Ag/Ag2S/Pt Filamentary
(Metal migra-
tion)

Low power, high
switching speed

[46]

NiO Pt/NiO/Pt Filamentary
(Oxygen vacan-
cies)

High endurance,
good retention

[47, 48]

SiOx Poly-Si/ poly-Si Filamentary
(Metal migra-
tion)

CMOS compati-
ble, high speed

[49]

SrTiO3 Pt/SrTiO3/
Nb:SrTiO3

Interface-type High endurance [50]

Graphene oxide Au/Graphene
oxide/ITO

Filamentary
(Oxygen vacan-
cies)

Flexible, trans-
parent

[51]

WOx Pt/WOx/Pt Filamentary
(Oxygen vacan-
cies)

High endurance,
good retention

[52]

Another neuromorphic computing paradigm is Oscillatory Neural Network (ONNs). Those
networks draw inspiration from the collective synchronization of human brain neurons through
oscillations, leveraging phase computing where information is encoded in the phase relationship
between oscillators [54]. VO2 acts as an oscillator neuron within ONNs, enabling the creation
of energy-efficient and compact neural networks. For instance, binary information can be repre-
sented by the phase difference between oscillators, enhancing the robustness to noise and energy
efficiency since they can potentially limit voltage amplitude [55].

Yi et al. [56] reported that VO2 neurons possess various excitability classes and can emulate
biological neuronal dynamics, demonstrating their potential for neuromorphic cortical comput-
ing. Khandelwal et al. [57] highlighted the superior energy conversion coefficients of VO2

neuristors due to their significant contrast in resistance, optical refractive index, and density
during the IMT, making them viable alternatives for micro-electromechanical systems (MEMs)
applications. Nunez et al. [58] proposed an architecture for ONNs using VO2-based nano-
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Figure 1.5 – (a) Caloritronic Neuron refers to a type of artificial neuron that uses the ther-
moelectric effect to generate electrical signals. In this design, a VO2 junction is placed under
a Ti(titanium) heating strip above it. Spiking neuron: (b) Spikes, or brief pulses of electrical
activity, are used as input and pass through the Ti heating strip. (c) As the input spikes pass
through the Ti heating strip, heat build up which causes the VO2 junction to switch between
its insulating and metallic states, generating an output spikes in the process. (d) Histograms of
the integration time (time it takes for the output spike to occur), as a function of input pulse
amplitude may show strong variability, as indicated by the red arrow (adapted from [53]). ReLU
Mott Neuron: (e) The Ti strip is heated progressively in this configuration. (f) As the Ti strip
heater heats up, the VO2 junction changes from an insulator to a metal state. This process
happens progressively, with small patches switching in the VO2 junction. (g) The resulting
output current from the VO2 junction is used to generate a ReLU(Rectified Linear Unit) curve.
This curve can show sudden changes in the output current, as some patches switch abruptly due
to local IMT avalanches. These jumps can increase as the device size is reduced (adapted from
[59]).

oscillators, emphasizing robustness and tolerance to device variability for pattern recognition
applications.

VO2 as a synaptor

The IMT in VO2 has been extensively utilized in memristors [60, 56, 61, 62]. This tran-
sition enables VO2 to switch between two distinct phases with vastly different electrical prop-
erties. Recently, new methods for creating microscopic synapse-like connections in VO2 have
been explored, including ion bombardment, electrical field breakdown, gating, and thermal cou-
pling (Fig. 1.6). Ghazikanian et al. [63] have shown that the location and shape of filaments
form through percolating during the IMT under an electric field, and results in large resistance
changes, are influenced by hard-to-control parameters, such as grain boundaries or intrinsic de-
fects, making the switching process susceptible to cycle-to-cycle and device-to-device variation.
By using focused Ga+ ion beam irradiation to selectively engineer defects in VO2 and V2O3 thin
films, they demonstrated control over the position and shape of metallic filaments, significantly
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Figure 1.6 – Various recent methods to create synaptors in VO2. Ohmic impedance coupling,
achieved through (a) ion bombardment [63], (b) E-field breakdown [64], and (c) three terminal
gating. Full impedance coupling using breadboard resistors and capacitors [65]. (d) Thermally
induced coupling has been achieved using two VO2 neuroresistors separated by 12µm [33, 66].

reducing the switching power in these materials. Cheng et al. [64] have focused on the IMT in
VO2 and its resistive switching properties. They used in situ transmission electron microscopy,
electrical transport measurements, and numerical simulations on Au/VO2/Ge vertical devices
to study the electroforming process. They observed the formation of V5O9 conductive filaments
with a pronounced IMT and found that vacancy diffusion can erase the filament, allowing the
system to "forget."

Anouchi et al. [65] demonstrated a nonvolatile memristive three-terminal transistor based
on VO2. An ultrathin VO2 layer was incorporated into a metal-oxide-semiconductor field-effect
geometry using alumina as the gate dielectric. They demonstrated that the channel’s resistance
could be modified in a nonvolatile and reversible fashion through the field effect, contingent on
the gate voltage being applied at the metallic state of VO2. This study provides a proof of prin-
ciple for developing high-performance electronic synaptic transistors utilizing Mott materials,
which simplify fabrication and enable integration with silicon-based architectures.

While each method marks significant progress, major challenges remain:

— Ion bombardment is tunable but not rewritable and requires sophisticated material prepa-
ration [63].

— Electrical field breakdown is easily achievable in any device but is not reconfigurable or
tunable due to the uncontrolled stochasticity in filament formation [64].

— Gating devices are slow and heavily dependent on sample quality, relying on electric-field-
induced ion motion towards interfaces [65].

— Thermal coupling is not reconfigurable, being fixed by the initial sample lithography [66,
33].

Thus, developing new microscopic methods that are tunable, non-stochastic, fast, and re-
programmable is essential to truly mimic analog synapse behavior in VO2 and other transition
metal oxides.

As such, VO2 can emulate the dynamic behavior of neurons and synapses, contributing
significantly to the development of devices that can learn and adapt in manners akin to the
human brain, marking a significant milestone in the field of neuromorphic computing.
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Figure 1.7 – a) Schematic illustrating the scope of the thesis

2 Aim of the thesis

The aim of this thesis is to investigate the insulating-to-metal transition (IMT) in vanadium
dioxide (VO2) and explore its potential applications in neuromorphic computing. By building
a new optical characterization method for VO2, this work seeks to bridge the gap between tra-
ditional electrical and surface probes measurements, and incorporate spatial information that
facilitates the tailoring of devices and enhances the understanding of material behavior dur-
ing its phase transition. The thesis aims to deepen the understanding of VO2 IMT and how
this material can be utilized to emulate biological neural networks, particularly how to create
and understand non-volatile memory in VO2, hence contributing to the development of novel
computing paradigms that mimic the functionality of the human brain (Fig 1.7.)

Furthermore, this thesis explores machine learning techniques to analyze and interpret the
complex patterns observed in VO2 during its phase transition, with the help of Prof. Erica Carl-
son’s group. By implementing a deep learning classifier, the study aims to identify underlying
physical models and diagnose the proximity to criticality in quantum materials. The integration
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of spatial information and temperature protocols in the study of non-volatile memory in VO2

also aims to provide new insights into the mechanisms of memory in this material. Overall,
this research aspires to contribute i) to the broader field of quantum materials by offering novel
methodologies and perspectives on the IMT in VO2; ii) to the field of machine learning by
providing new applications in materials physics; and iii) to the neuromorphic computing field
by providing a new characterization method that extracts features of VO2 thin films that are
relevant for tailoring the performance of devices.

Objectives

— Develop a new optical technique to track phase separation during the VO2 insulator-to-
metal transition.

— Use this new method to investigate ramp reversal memory, a new procedure to create
synaptic memory in VO2.

— Use a large dataset of fractal images generated by this new optical technique to demon-
strate how machine learning (ML) help understand the physical interactions present in the
system.

Here is the structure followed to accomplish the aim of the thesis:

Chapter 1: Introduction
The first chapter contextualizes the study of VO2 for artificial intelligence, discusses VO2

potential as neuristors and memristors, and presents the scope of this thesis.

Chapter 2: Background on the Insulating-to-Metal Transition in VO2 and Ma-
chine learning

In this chapter, we introduce the insulating-to-metal transition (IMT) in VO2 and explore
the characteristics that make this material compelling for applications in neuromorphic com-
puting. We review various characterization methods to study the dynamics of VO2 IMT. The
second part of this chapter is devoted to define machine learning and deep learning techniques,
like convolutional neural networks, and how those these tools are promising in the field of ma-
terials science, in particular for image processing and pattern recognition.

Chapter 3: Optical Characterization of VO2

This chapter describes the setup used to characterize VO2 thin film samples, detailing the
hardware and software employed during the automated experimental acquisition of images cap-
turing the IMT in VO2. We outline the post-experiment image processing workflow used to
align images and track the IMT over time to determine the local critical temperature.

Chapter 4: Correlated Maps to Describe IMT in VO2

Following the methodology described in the previous chapter, we extract various features of
the IMT from single-pixel time traces. Here, we demonstrate how spatial information allows us
to map hysteresis features and how optical characterization complements traditional electrical
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measurements in studying the IMT. Also, we present examples for VO2 thin film samples syn-
thesized with different methods.

Chapter 5: Non-Volatile Memory in VO2

Building on the spatial information obtained during the VO2 IMT, we applied a temperature
protocol known as Ramp Reversal Memory, which permits observing the effect of non-volatile
memory in VO2. We mapped the accumulation of metallic and insulating patches coexisting
near criticality and explored how this aids in understanding the mechanisms behind memory in
this material. This chapter combines both electrical and spatial information to study memory
in VO2.

Chapter 6: Using Deep Learning for Pattern Recognition in VO2

Many quantum materials exhibit interesting fractal patterns near criticality. This chapter
presents a deep learning classifier designed to identify a physical model that describes pattern
formation in VO2. This approach is promising for diagnosing proximity to criticality in quantum
materials that exhibit a clear phase separation.

Conclusions and future work
In the final chapter, we summarize the key findings and contributions of this thesis. We

present the IMT in VO2 and its potential for neuromorphic computing applications. We discuss
how optical characterization techniques can contribute to a comprehensive understanding of VO2

properties. The chapter also shows the interdisciplinary approach combining material science
and machine learning using a deep learning classifier to study the underlying physics driving
VO2 IMT. This chapter aims to provide a direction for future studies that can build upon the
results of this thesis.
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Chapter 2
Background on the Insulating-to-Metal
Transition in VO2 and Machine learning

The first part of this chapter gives insights into the insulator-to-metal transition (IMT) in
vanadium dioxide (VO2), detailing its impact on electrical and optical properties. We begin
by discussing the fundamental aspects of the IMT, including the associated thermal hysteresis
and structural phase changes. Next, we delve into various fabrication methods for VO2 thin
films, with a focus on RF magnetron sputtering and sol-gel techniques. Finally, we examine the
characterization methods used to study VO2, emphasizing optical techniques and their role in
understanding phase transitions and inhomogeneities at different scales.

1 IMT in VO2 films

Vanadium dioxide (VO2) is a canonical strongly correlated material that exists in various
polymorphic phases [68]. One of its most intriguing characteristics is the reversible IMT coupled
with a structural phase transformation. This transformation occurs as VO2 changes from a low-
temperature insulating phase (VO2(M)) to a metallic phase (VO2(R)) near room temperature
(Tc ≈ 340 K).

The IMT leads to sudden changes in physical properties such as resistivity and optical
transmittance [69, 70].VO2 has been proposed for use in thermochromic window elements with
switchable infrared reflectivity, functioning as "smart windows"[71, 72]. These windows increase
heating and air-conditioning efficiency by being infrared-transparent at low temperatures and
infrared-reflective at higher temperatures, without compromising visible light transparency. An-
other promising application is the Mott field-effect transistor [73], which can switch between in-
sulating and metallic phases via gate voltage application, ideally with fast turnover. Additional
practical applications of VO2 include thermally sensitive switching, infrared switching [74], in-
frared polarizers [75], fiber optic waveguides, optical data storage media[76], and electro-optical
sensing elements [77].
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1. IMT in VO2 films

Figure 2.1 – (a)Schematic depictions of the crystal structures of the low- temperature monoclinic
M1, intermediate M2, and high-temperature tetragonal rutile R phases. V-V distances are
highlighted. (b)Molecular orbital diagram depicting the electronic structure of the monoclinic
and tetragonal phases of VO2. The left MO diagram corresponds to the undistorted metallic
phase of VO2, whereas the diagram on the right shows the altered MO diagram upon transition
to the distorted insulating phase of VO2. Taken from [67].
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Structural phase transformation

Above the transition temperature (Tc), VO2 exhibits a rutile tetragonal structure where
each vanadium atom is connected to six adjacent oxygen atoms, forming an octahedral shape
(Fig. 2.1(a)). This metallic R-phase belongs to the P42/mnm space group, characterized by
lattice parameters a = b = 4.553Å and c = 2.849Å[78]. The c/a ratio is smaller than that of
an ordinary rutile compound, bringing the vanadium atoms closer along the c-axis, with V-V
distances of approximately 2.85Å[67][79].

Below Tc, VO2 adopts a monoclinic crystal structure (Fig. 2.1(a)) in the P21/c space group,
with lattice parameters a = 5.75Å, b = 4.52Å, c = 5.38Å, and β = 122.60°[78]. This transition,
which is first-order with a latent heat of about 1020 cal/mol, involves a significant reduction in
symmetry. The insulating state is marked by a zigzag arrangement along the c-axis due to the
breaking of overlapping bonds, leading to a band gap change from 0 to 0.65 eV [80]. During
this transition, the unit cell doubles in size due to the pairing and tilting of the VO6 octahedra
along the c-axis, resulting in the monoclinic M1 phase with distinct V-V bond distances of 2.65
and 3.12 Å[81].

Mechanistic aspects of phase transformation

Since its discovery in 1951 by Morin [82], there is a debate between which mechanism de-
scribes the best this phase transition: The Peierls model and Mott-Hubbarb model [83]. The
Peierls model explains that the structural distortion enhances the bonding between neighbour-
ing V atoms due to the change in the V-V dimers distance in the polymorphs passing from
a localized d-orbital in the V-V dimers in VO2(M) to a shared-orbital between all vanadium
atoms in VO2(R) (Fig. 2.1(b)). Alternatively, the Mott-Hubbarb model states that MIT would
occur when the electron density(ne) and Bohr radius(aH) satisfy ne1/3aH ≈ 0.2 and gives more
emphasis to the abnormal low conductivity in the metallic phase. Since this transition is very
fast (few picoseconds) both theories are advised to explain it.

It is still unclear whether the structural phase transformation is necessary for the electronic
metal-insulator phase transition. However, current evidence suggests that the two phenomena
might be independent if the material achieves a sufficient carrier density. In other words, a
metallic phase could potentially be induced without a structural phase transformation if the ex-
citation of carriers through optical, thermal, or gate-voltage methods reaches a certain threshold
density. This finding is crucial for understanding the nature of the phase transition [67].

1.1 Electrical properties of the IMT

Depending on the VO2 films, the IMT results in a resistivity change of several orders of
magnitude (Fig. 2.2 (a)). There are several stimuli that can induce the IMT. Here, we are
going to discuss how thermal and electrical triggers, and different kind of irradiations affect the
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electrical properties on VO2.

Thermally-induced phase transition

The IMT in VO2 happens as a function of the temperature, so naturally the first method
described is a thermal induction. When applying a temperature sweep, we can induce the IMT
on VO2 films, by changing the phase when temperature goes beyond the specific Tc, and con-
versely, cooling down from a higher temperature. One characteristic of the thermally induced
IMT in VO2 is thermal hysteresis, which is a common feature of first-order phase transitions
[84]. This phenomenon is observed in both the resistance and optical properties of VO2 when
the temperature is cycled across the Tc in both heating and cooling branches [85]. The hystere-
sis width can range from a few degrees to tens of degrees in macroscopic materials and can be
less than 1℃ in single crystals [86]. Factors such as the crystalline structure (single crystal vs.
polycrystalline), presence of defects, and doping affect hysteresis width [87, 88, 89].

Electrically-induced phase transition

Several studies support the theory that the electrically-driven phase transition in VO2 is
triggered by Joule heating. Mun et al. [90] and Radu et al. [91] demonstrated that increased
ambient temperature reduces the power needed for the transition, indicating a temperature-
triggered process. Lee et al. [92] found similar results using low-frequency input signals. Zim-
mers et al. [93] used fluorescent particles to monitor local temperature, finding it consistent
with the expected phase transition temperature of 68℃, showing that the transition mainly has
thermal origin.

However, some evidence suggests a non-thermal transition mechanism. Gopalakrishan et al.
[94] proposed that the phase transition occurs below the critical temperature, with Joule heating
subsequently raising the temperature above Tc. Fast voltage or light pulse measurements [95,
96] suggest a transition too rapid for a thermal process. The phase transition often proceeds
through filament formation [97], with Li et al. [98] showing filament temperatures can reach
Tc. Aetukuri [99] argued that insulating resistance dependence on temperature supports a Joule
heating mechanism.

Recent studies, such as Kalcheim et al. [100], suggest defects play a crucial role. They found
that in high-quality VO2 nanowires, the transition is temperature-driven, but in defected wires,
the transition occurs before reaching Tc, likely due to the Poole-Frenkel effect. This indicates
that the phase transition mechanism in VO2 devices remains unclear, especially for those on
lattice-mismatched substrates where defects significantly impact the IMT.

Photo-induced phase transition

A number of studies demonstrate that the application of different types of irradiation, in-
cluding electron beams[101], X-Rays[102] , and UV light[103, 104, 105], can alter the electrical
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Figure 2.2 – (a) Hysteresis graph depicting the drop in resistance upon the IMT in a VO2 thin
film.(b)Micrographs of the VO2 samples used for the experiment of the present work. There is
a color change between the insulating (light gray) and metallic phases (dark gray).

properties of VO2. In the context of in-sensor computing, Li et al. in [104] engineered VO2

films with oxygen stoichiometry under UV irradiation to achieve non-volatile, multi-level con-
trol. This enabled the creation of a neuromorphic UV sensor that integrates sensing, memory,
and processing at room temperature, proving its potential for silicon-compatible and wafer-scale
integration. The sensor demonstrated linear weight updates with optical writing, increasing
metallic phase proportion nearly linearly with light irradiation. An artificial neural network
using this sensor improved recognition accuracy from 24% to 93%, highlighting the potential for
advanced neuromorphic vision systems.

Dietze et al. [102] observed a significant resistivity decrease in VO2 upon localized X-ray
illumination at room temperature, without transitioning to the high-temperature tetragonal
phase. The transition reverted over tens of hours at room temperature but fully recovered in
minutes with thermal cycling. This behavior was modeled using random local-potential fluctua-
tions and discrete recombination sites, shedding light on residual photoconductivity mechanisms
in VO2. Zhang et al. [101] demonstrated that focused electron beam irradiation could lower
the IMT temperature of VO2 nanowires to room temperature without prepatterning. This
radiolysis-assisted IMT (R-IMT) technique created a gradual IMT zone several times the beam
size, allowing precise control over the metal/insulator phase ratio. This process offers potential
for precisely engineering nanodomains with diverse electronic properties in functional material-
based devices, promising advancements in renewable energy, information storage, and sensor
technologies.
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Wegkamp et al. [106] investigated the ultrafast dynamics of the photoinduced phase transi-
tion (PIPT) in VO2 from monoclinic insulator to rutile metal. Using femtosecond time-resolved
photoelectron, optical, and coherent phonon spectroscopy, they disentangled electronic and crys-
tallographic contributions to the IMT. Their findings highlighted two non-equilibrium dynamics
branches: an instantaneous collapse of the insulating gap and a lattice potential symmetry
change initiating the crystallographic transition. They proposed that the PIPT threshold in
optical experiments is likely driven by lattice potential changes rather than the IMT itself, pre-
dicting a transiently metallic, monoclinic state of VO2 that decays on ultrafast timescales.

Note that various methods have also been able to change the IMT on VO2, such as ion
bombardment [107], electrical gating [108], strain [109], and doping [89].

Current-Voltage Characteristics of Coplanar VO2 Devices

To analyze the current-voltage (I-V) characteristics of VO2 devices, we focus on coplanar
devices whose architectures are similar to those studied in this thesis (Fig. 2.2).

In 1971, Duchene et al. [110] introduced a coplanar VO2 device structure consisting of a
VO2 film on a substrate with metallic electrodes separated by gaps of 30 − 200µm. The I-V
characteristics of these devices exhibit two distinct regions: a linear pre-switch region and a
nonlinear switched region. The latter is caused by Joule heating, which leads to electrothermal
instability and dynamic equilibrium at lower voltages. Most of the current flows through a highly
conductive thermal filament in the high-temperature phase of VO2, which can be optically
observed due to a significant change in the refractive index.

Figure 2.3 shows a classic non-equilibrium example of I-V curve of a VO2 device. Initially,
the device is in its insulating state, acting as a high impedance resistor. As the applied voltage
increases, the power dissipated as Joule heat raises the local temperature of the device. Upon
reaching a threshold voltage (VT H), the device undergoes an insulator-to-metal transition. Dur-
ing this transition, the measured voltage decreases even as the current increases, a characteristic
of negative differential resistance (NDR) [111]. NDR occurs when an increase in voltage results
in a decrease in current through the device. After the transition, the device stabilizes at a low
resistance value. When the applied voltage is subsequently lowered, the device reaches a thresh-
old voltage (VT L) for the metal-to-insulator transition, switching back to its high impedance
state.

The stability of the switching properties in VO2 coplanar devices is influenced by an inter-
face layer between the VO2 film and substrates like quartz or sapphire. This layer, typically
500 − 1000Å thick, consists of VO2 doped with substrate metal atoms [112]. For thin films on
sapphire substrates, this interface layer does not affect the conductivity transition. The stability
of electrothermal switching is correlated with the electronic state of the film-substrate interface.
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Figure 2.3 – The current vs. voltage characteristic of a VO2 device presents three regions: at
first, the device is in its insulating state. As the voltage drop across the device is high enough to
trigger the phase transition, the material undergoes the phase change and a negative differential
resistance regime is formed. Lastly, the device stabilizes in its metallic state. The measurement
was conducted sourcing a current and measuring the voltage across a VO2 device. Taken from
[113].

Thus, quartz substrates exhibit stable switching due to a well-delocalized interface, while sap-
phire substrates show unstable switching with irreversible changes due to localized electronic
states [112].

Optical properties of the IMT

In our study, we observed a reflectance difference of 20-30% between the insulating and metal-
lic phases of VO2, enabling far-field optical characterization. This difference was also noted by
Currie et al. in the visible spectrum (red curve representing the insulating phase before the IMT
and green curve representing the metallic phase after the IMT). Temperature-dependent optical
transmittance and reflectance measurements were performed in [114] using a broad-spectrum
source with coarse temperature intervals (10℃), as shown in Fig. 2.4(a). Additionally, measure-
ments at a single wavelength (1550 nm) with finer temperature resolution (<1℃) were conducted
to capture optical hysteresis more precisely, as illustrated in Fig. 2.4(b).

The most significant changes in optical transmittance and reflectance occurred in the infrared
region, as shown in Fig. 2.4(a). Due to spectra weight conservation, in the visible region, the
optical transmittance and reflectance exhibited a small change opposite to the infrared trends.
In Fig. 2.4(b), the slope of the phase transition during heating becomes steeper as the film
thickness increases from 8.6 to 30 nm.
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Figure 2.4 – (a) Temperature-dependent optical reflectance and transmittance spectra for the
30-nm VO2 film thickness for temperatures of 20, 60, 70, 80, and 99℃. (b) Optical transmittance
at 1550nm for 8.6, 12.5, 18, 30, 44, and 57-nm VO2 film thicknesses shows the hysteretic nature
of the transition (red: heating, blue: cooling) . Taken from [114].

1.2 Fabrication methods of VO2 thin films

For some VO2 thin films practical applications, they must exhibit sharp hysteresis loops, high
transition contrast, and significant resistance drops during the IMT. However, achieving these
desirable characteristics is often hindered by phase inhomogeneity due to non-stoichiometry and
interfacial mismatch between the film and the substrate. Depending on the application, phase
inhomogeneity can also be explored since it can broaden the hysteresis loop and reduce the
transition contrast. In this section, we briefly introduce fabrication methods for VO2 thin films.

RF Magnetron Sputtering

RF magnetron sputtering is a widely used technique for depositing VO2 thin films [115]. In
this method, Argon ions are accelerated by an RF electric field to bombard a vanadium target,
causing the ejection of vanadium atoms which then deposit onto the substrate to form a thin
film. This method has been shown to produce high-quality films with good control over thickness
and composition, although it requires careful optimization to minimize phase inhomogeneity and
interfacial mismatch.

— Precursors: Typically, a high-purity vanadium target is used.

— Substrates: Common substrates include quartz, sapphire, and silicon. The choice of sub-
strate affects the film’s crystallinity and phase purity.

Key Parameters:

— RF Power: Influences the sputtering rate and energy of ejected atoms.
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— Argon Gas Pressure: Affects the mean free path of sputtered atoms and their deposition
rate.

— Substrate Temperature: Critical for ensuring proper film crystallization and stoichiometry.

— Oxygen Partial Pressure: Essential to achieve the correct oxidation state of vanadium.

Sol-Gel Method

The sol-gel method is a solution-based technique involving the preparation of a vanadium-
containing sol, which is then deposited onto the substrate and transformed into a gel [81]. This
gel is subsequently dried and annealed to form a crystalline VO2 film. The sol-gel method of-
fers several advantages, including low-cost and large-area film production. It allows for precise
control over the chemical composition and stoichiometry of the films. However, the quality of
the films can be highly dependent on the precursor materials, the pH of the sol, the deposition
conditions, and the annealing parameters. Proper optimization is required to achieve films with
sharp IMT characteristics and minimal defects.

— Precursors: Common precursors include vanadium alkoxides, vanadium chloride, and vana-
dium acetylacetonate.

— Substrates: Typically, silicon wafers, glass, and sapphire substrates are used.

Key Steps:

— Sol Preparation: Mixing the vanadium precursor with a solvent (e.g., ethanol) and stabi-
lizing agents.

— Deposition: Techniques like spin-coating or dip-coating are used to apply the sol onto the
substrate.

— Gelation: The sol transitions into a gel as it undergoes hydrolysis and condensation reac-
tions.

— Drying and Annealing: The gel is dried to remove the solvent and annealed at high tem-
peratures to form crystalline VO2.

Chemical Vapor Deposition (CVD)

CVD involves the reaction of vapor-phase chemicals to deposit solid thin films on a substrate
[72].

— Precursors: Vanadium oxytrichloride (VOCl3) and oxygen.

— Substrates: Commonly used substrates include silicon and sapphire.

— Key Parameters: Reaction temperature, gas flow rates, and chamber pressure.
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Figure 2.5 – Schematic diagram of the IMT in the VO2 film. (a)The metallic domains start to
form nucleation droplets in the film surface sporadically, as T approaches Tc. (b)The domains
grow larger and start to form clusters as T increases further.(c) Above Tc, the metallic domains
form an infinite cluster. Taken from [134].

Pulsed Laser Deposition (PLD)

PLD utilizes a high-energy laser pulse to ablate a target material, which then deposits onto
a substrate [116].

— Targets: Various target materials can be used, including vanadium metal, V2O5, and VO2.

— Substrates: Quartz, silicon, and sapphire.

— Key Parameters: Laser energy, pulse frequency, oxygen pressure, and substrate tempera-
ture.

1.3 Characterization methods to study VO2 IMT

Optical studies of phase-separated systems, such as VO2, are complex due to their inherent
inhomogeneities [135]. Advances in infrared (IR) and optical microscopy have enabled imaging
of phase-separated regions in strongly correlated materials[84, 136]. Nanometer-scale inhomo-
geneities can be detected using near-field techniques, which achieve spatial resolutions of 8–10
nm, below the diffraction limit [118, 137]. The highest spatial resolution in infrared experiments
is achieved using near-field instruments based on atomic force microscopes coupled to IR lasers,
which can probe local conductivity at the nanoscale, but limited to a few scans. For larger
inhomogeneities and tracking fractal patterns, on the order of tens of microns, conventional
microscopy is effective.

Macroscopic probes

Historically, many studies have described the thermal hysteresis observed in VO2 systems,
but the dynamic evolution, such as spinodal decomposition and domain growth, received lit-
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Figure 2.6 – (I)Images of the near-field scattering amplitude over the same 4µm × 4µm area
obtained by SNOM operating at the infrared frequency ω = 930 cm−1. These images are
displayed for representative temperatures in the insulator-to-metal transition regime of VO2 to
show percolation in progress. The metallic regions (light blue, green, and red colors) give higher
scattering near-field amplitude compared with the insulating phase (dark blue color).Taken
from [84]. (II)Work function maps using KPFM at (a)285, (b)305, (c)335 and (d)355K during
heating. The color scale is the same for all images. The larger work function (red) represents
the insulating phase and the smaller work function (blue) represents the metallic phase. (e)The
surface morphology of the region used to obtain the work function maps. The scale bar is 100
nm.Taken from [130].
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tle attention until the mid-1990s. Choi et al. [134] investigated the temperature-dependent
IR properties of a VO2 film near the critical temperature (Tc). They obtained the dielectric
constant and conductivity from reflectance and transmittance spectra in the 1600–400 cm−1 fre-
quency region, at temperatures between 20°C and 90°C. They found that the dielectric constant
on the insulating side increases as the temperature approaches Tc. To explain this behavior,
they introduced a composite-medium model, considering the film as an inhomogeneous medium
composed of metallic and insulating domains. They treated the IMT in VO2 as a percolation
transition, attributing the dielectric anomaly near Tc to increased capacitive coupling between
the metallic grains near the percolation threshold.

Following this description, low-temperature insulating phase can exist above Tc as a metastable
phase, just as the high-temperature metallic phase can exist below Tc. As temperature rises,
metallic phase nucleation droplets form across the sample, leading to spinodal decomposition
and phase separation, rather than a sudden transition from one phase to the other. As temper-
ature increases further, metallic droplets cluster and eventually form a large connected cluster,
creating a conductive pathway through the sample (Fig. 2.5(a-c)).

Local probes

Near-field measurements, SNOM, have revealed the percolative nature of the IMT in VO2

([84] cited 1672 times on Google Scholar.) These scans show that metallic regions nucleate and
grow with increasing temperature, eventually interconnecting (Fig. 2.6 I). This phase separation
is influenced by intrinsic factors like the first-order nature of the transition and extrinsic effects
such as local strain, deviations from stoichiometry, and grain boundaries.

In VO2, electrically constrained paths have shown resistance avalanches, which were inter-
preted in terms of the universality class of uncorrelated percolation by Ramirez et al. [138].
Liu et al. in [139] argued that the first-order metal-insulator transition in VO2 is also near a
critical endpoint that can be reached by tuning disorder. By applying cluster network analy-
sis techniques to the SNOM on VO2 images acquired with the already mentioned method by
Qazilbash et al. in (Fig. 2.5, [84]), they demonstrated, using six different critical exponents,
that the critical endpoint of the Mott transition falls within the universality class of the random
field Ising model. This finding reveals an interplay between interaction between domains and
disorder in these systems. Moreover, the random field Ising universality class has also been
shown to account for the spatial structure of locally oriented domains observed via STM on
cuprate superconductors [140], which also exhibit a clear phase separation.

Kelvin Probe Force Microscopy (KPFM) has also been particularly versatile for investigating
local surface potential under ambient conditions. KPFM results provide the local surface work
function of a specific area without the need for numerical analysis [141]. KPFM measurements
of the local surface work function (WS) have been used to reveal the phase transition behaviors
of VO2/TiO2 thin films [130]. WS maps show the spatial distribution of metallic and insulating
domains during the transition, with the evolution of the metallic domain fraction explaining
the temperature dependence of resistivity based on the 2D percolation model( Fig. 2.6 II). The
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KPFM measurements also revealed the fractal nature of the domain configuration. According
to percolation theory, metallic clusters form a fractal surface, which can explain the impedance
spectra; however, explicit experimental evidence for this has been lacking. The domain size
is tens of nanometers at intermediate temperatures. The perimeter and area of the metallic
domains follow power-law behaviors, with a power exponent larger than 1/2 suggesting that the
metallic domains are fractal objects.

Time resolved probes

Recent experimental studies have indicated that the electronic IMT in VO2 often precedes
the structural phase transition [125], motivating time-resolved optical and structural studies.
Ultrafast optical spectroscopy, spanning from the far infrared to the visible spectrum, and time-
resolved X-ray and electron diffraction studies have been used to investigate the IMT in VO2.
These experiments aim to discern the relative influence of structural distortions and correlation
effects on the IMT, leveraging the temporal resolution of ultrafast optical spectroscopy.

All the above considerations raise the question of how to directly observe the metallic and in-
sulating domain configurations of VO2 thin films and their evolution throughout the transition.
Conventional techniques like X-ray Diffraction (XRD), photoemission spectroscopy, and optical
spectroscopies provide macroscopic-scale averages. However, nanoscale probe-based tools such
as Scanning Tunneling Microscopy (STM) and scanning probe microscopy (SPM) offer superior
spatial resolution. The dielectric constant from optical spectra and the lattice constant from
diffraction patterns can be obtained only after model-based fittings, in which the associated
sample states and fitting parameters are chosen subjectively. Scanning Near-field Optical Mi-
croscopy (SNOM) and hard X-ray nanoprobe (HXN) measurements have been used to observe
metallic and insulating domains in VO2 thin films as they undergo the IMT [124]. Different
methods to study the IMT transition macroscopically and dynamically are summarized in Table
2.1.
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Characterization
Method

Characteristics Resolution Applications Ref.

Optical Spec-
troscopy

Probes anisotropy
in macroscopic
specimens; effec-
tive for materials
with inhomo-
geneities smaller
than light wave-
length

Macroscopic Studying
anisotropic
properties in
phase-separated
systems

[117]

Atomic Force Mi-
croscopy (AFM)

Coupled with IR
lasers for high-
resolution spatial
mapping

8–10 nm Probing local
conductivity and
phase transitions
at the nanoscale

[118, 119]

Time-Resolved
Spectroscopy

Investigates ultra-
fast dynamics of
phase transitions

Subpicosecond Studying pho-
toinduced phase
transitions; dis-
cerning structural
and electronic
contributions to
IMT

[120, 121, 106, 122]

X-ray Diffraction
(XRD)

Provides averaged
structural infor-
mation at the
macroscopic scale

Macroscopic Investigating
structural phase
transitions and
lattice distortions

[123, 124, 125]

Photoemission
Spectroscopy

Probes electronic
structure and
properties

Macroscopic Studying elec-
tronic phase
transitions

[126, 120, 127]

Scanning Tunnel-
ing Microscopy
(STM)

Offers superior
spatial resolution
for investigating
local electronic
properties

Nanoscale Probing local elec-
tronic properties

[128, 129]

Kelvin Probe
Force Microscopy
(KPFM)

Measures local
surface work
function under
ambient condi-
tions

Nanoscale Mapping spatial
distribution of
metallic and in-
sulating domains;
studying local
phase transition
behavior

[130]

Scanning Near-
Field Optical Mi-
croscopy (SNOM)

Combines optical
and near-field
techniques for
high-resolution
imaging of phase-
separated regions

8–10 nm Studying optical
properties and
phase separation
at the nanoscale

[84, 124, 119]

Time-Resolved X-
ray Diffraction

Provides temporal
and structural in-
formation of phase
transitions

Subpicosecond to 15 ps Investigating
structural changes
during photoin-
duced phase
transitions

[131, 132]

Time-Resolved
Electron Diffrac-
tion

Offers high tem-
poral resolution
for studying dy-
namics of phase
transitions

Subpicosecond Investigating
rapid structural
changes

[133]

Table 2.1 – Characterization methods and their characteristics to study phase transitions on
VO2.
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2 Machine learning in materials science

The field of materials science has developed significantly, moving beyond conventional meth-
ods. It now involves the use of mathematical theories, computer simulations, and experimental
research. The initial approach was based solely on instinct, without any concrete scientific foun-
dation. The second stage in this transformation involved the use of mathematical models and
physical principles like thermodynamics. The introduction of computers marked the third stage,
allowing for the simulation of intricate real-world scenarios.

Machine learning (ML) is an expansive domain within the field of artificial intelligence that
has emerged as a game-changer in materials science research by enabling rapid and precise
analysis of complex material properties, predicting new materials with desired characteristics,
and optimizing fabrication processes. It equips computers with the ability to learn from and
interpret data in order to make informed decisions or predictions. With the current data avail-
ability and new technologies that provide insights into the molecular and atomic behavior of
materials, machine learning enhances discovery, design, and performance prediction. As these
technologies advance, they hold immense potential to transform our understanding, utilization,
and innovation within materials science.

We now have the ability to construct models that can accurately predict the microscopic
properties of materials, allowing for atomic-scale behavior prediction with unseen precision and
speed. These models utilize sophisticated algorithms for materials characterization and imaging,
thereby enabling comprehensive information extraction from large datasets. Moreover, these
data-driven insights facilitate the identification of hidden correlations and trends within material
property analyses. The use of predictive models accelerates the process of materials discovery
and design, fostering the rapid development of novel compounds with custom-made properties.

However, to fully exploit the potential of ML in materials research, several challenges must be
addressed. Key among these is the acquisition of high-quality data and the integration of domain
knowledge into the ML models. Advanced algorithms are needed to account for the intricate
relationships and complex behaviors exhibited by materials to ensure accurate predictions.

ML comprises an array of techniques and methods, which are primarily classified into two
categories: supervised and unsupervised learning. In supervised learning, as the name suggests,
the system learns through supervision in the form of labeled data [142]. The model is trained
using a designated dataset where the correct output is known and provided. This helps the model
to learn and understand the correlation between the input features and the corresponding output.
It is analogous to learning with a teacher who provides guidance and corrects the student when
they make a mistake.

On the other hand, unsupervised learning works with unlabeled data, uncovering hidden
structures, patterns, and relationships within the data without any pre-existing labels or clas-
sifications to guide the process. It resembles to learning on one’s own without any explicit
instructions or guidance. This ability to learn from raw, unstructured data allows unsupervised
learning to reveal deeper, often surprising insights, making it particularly useful in exploratory
analysis, anomaly detection, or understanding complex phenomena.
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In the following subsections, our primary focus will be on supervised learning.

2.1 Supervised learning

Supervised learning algorithms are used extensively in classification tasks, such as spam
detection, where emails are classified as ’spam’ or ’not spam’, and image classification, which
involves categorizing images into predefined classes. These tasks require the algorithm to learn
from labeled training data and apply this learned knowledge to classify new, unseen data. During
the training step, the algorithm identifies patterns within the training dataset, which consists of
sample sets and labels. Then, it transforms these patterns into a mathematical model. In the
inference step, This model is used to make predictions about samples not encountered during
the training phase.

Another application example of supervise learning is in regression tasks such as predicting
house prices. In these cases, the algorithm learns from a dataset of known prices and property
features (like square footage, number of bedrooms, etc.) and models the relationship between
these features and the price. Once trained, this model can predict the price of a house given its
features. Common supervised learning algorithms include Linear Regression, Logistic Regres-
sion, Decision Trees, Random Forests, Support Vector Machines (SVMs), and Neural Networks.

2.2 Deep learning

Deep learning (DL) is a subset of machine learning characterized by the use of artificial neu-
ral networks with multiple layers, known as deep neural networks (DNNs), to model complex
patterns in data [143]. Unlike shallow learning, which typically involves models with one or
two nonlinear feature transformation layers (such as Gaussian Mixture Models, Logistic Regres-
sion, and Support Vector Machines), deep learning can have many layers, enabling it to learn
hierarchical representations of data.

DL builds on linear regression and activation functions to create interconnected classifiers.
While the theoretical understanding of the relationship between model performance, complexity,
and computational requirements in deep learning is still evolving, it is clear that DL relies heavily
on processing power. This is due to the problem of over-parameterization, which becomes more
pronounced as more training data is used to improve model performance.

Large amounts of data are better handled with DL, besides it is particularly well-suited for
complex pattern recognition tasks such as image recognition, natural language processing, and
speech recognition. Its ability to learn hierarchical representations from raw data makes it highly
effective in these domains. Some of the most popular deep learning algorithms include Convo-
lutional Neural Networks (CNNs) for image-related tasks, Recurrent Neural Networks (RNNs)
for sequential data, and Transformer models like GPT (Generative Pre-trained Transformer) for
natural language processing.

The advantages of DL include its ability to automatically extract features from raw data,
reducing the need for manual feature engineering. It also has the capacity to model intricate
patterns and dependencies in data, which makes it particularly powerful for tasks that involve

35



Chapter 2. Background on the Insulating-to-Metal Transition in VO2 and Machine learning

large and complex datasets. As computational power and data availability continue to increase,
the potential applications and impact of deep learning are expected to grow significantly.

2.3 Machine learning in image processing

ML has revolutionized image processing, leading to a wide range of applications. This
progress is largely due to improved data accessibility and increased processing capabilities [144].
Modern ML systems interpret image data in ways similar to the human brain’s processing of
visual information. DL, in particular, has greatly influenced this field through its ability to
independently learn hierarchical representations from raw image data [145].

For instance, it is possible to identify and precisely localize objects within images, which is
particularly advantageous for computer vision applications, such as the detection of defective
products in a production line or the protection of pedestrians on the roads [146]. Image classifi-
cation is key in several AI applications, including the detection of anomalies in chemical analysis.
Precise boundaries are drawn in a process called image segmentation [147], which has been used
to tag different objects within an image. There are also generative models in which the algo-
rithm encodes underlying patterns and creates new visual representations based on them. These
models have been particularly used in the discovery of new compounds with specific features,
for example, in pharmaceutical applications, that are feasible to work in nature.

DL methodologies are also used for image understanding and analysis, which involves iden-
tifying features and corresponding data from images for interpretation. Technologies such as
Convolutional Neural Networks (CNNs), Residual Neural Networks (ResNet), and Advanced
Convolutional Neural Networks for Machine Vision can be employed for this purpose. This
process typically involves extracting knowledge representation from the image data, conducting
real-time examination and processing of the image based on the extracted representation, and
exploring intricate patterns to discover features.

During this thesis, we are going to process images from optical microscopy, and for this
reason, we are going to focus on CNNs.

2.4 Convolutional neural networks

Convolutional Neural Networks (CNNs) are a type of DNN known for their highly struc-
tured organization and translation invariance, ensuring that the network can recognize objects
regardless of their position in the frame. In a CNN, a large number of neurons are arranged first
into channels and then into layers, creating a systematic, hierarchical transformation of input
data as it passes through the network.

Different components of the CNN learn different information. For example, different net-
work components like neurons, channels, and layers tend to learn different concepts [149]. The
complexity of CNN filter representations also increases gradually as the filter positions move
deeper into the network (Fig. 2.7). The hierarchical representation in CNN components results
in the convolution layers of a CNN performing feature learning, while the final fully connected
layers are considered to perform prediction.
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Figure 2.7 – Illustration of the hierarchical feature representation within CNNs. A Comparison
of concepts contained in different network levels (neuron, channel, and layer). b Visualization
of CNN filters from different layers of an imageNet pretrained VGG16 network. Note that the
filter representations become more and more complicated as filter positions move deep along
the network. The early layer filter representations are relatively primitive, while the top layer
filter representations are highly complicated. The VGG16 architecture is plotted using the plot
neural net library. Filter representations are visualized using the convolutional neural network
visualizations library. Taken from [148].
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Figure 2.8 – Convolutional neural network structure
.

A CNN is particularly suited for processing data with a grid-like topology, such as an image.
Each neuron in a CNN works within its own receptive field, similar to how neurons in the human
brain process visual data. The layers of a CNN are designed to detect simpler patterns first (like
lines and curves) and more complex patterns (like faces and objects) further along, essentially
mimicking the way humans visually perceive the world.

A typical CNN architecture consists of three main layers ( Fig. 2.8): a convolutional layer, a
pooling layer, and a fully connected layer. The convolutional layer, the core building block of a
CNN, carries out most of the network’s computational load. This layer performs a dot product
between two matrices, one being the set of learnable parameters or the kernel, and the other
being the restricted portion of the receptive field.

CNNs consist of three primary types of layers: convolutional layers, pooling layers, and fully
connected layers. Each type of layer has a distinct function in processing and transforming the
input data.

Convolutional Layer
The core building block of a CNN, this layer performs a convolution operation that involves

sliding a set of learnable filters (kernels) over the input data. Each filter captures specific features
such as edges, textures, and patterns. The convolution operation produces a feature map, which
preserves the spatial information of the learned features at various positions in the input.

Convolution layers leverage sparse interactions, parameter sharing, and equivariant repre-
sentations, reducing computational requirements and enhancing statistical efficiency.

Pooling Layer
This layer reduces the spatial dimensions of the feature maps, lowering the number of pa-

rameters and computations in the network. Common pooling operations include Max pooling,
which selects the maximum value in a region, and average pooling, which calculates the average
value in a region.

Fully Connected Layer
Neurons in this layer are fully connected to all neurons in the previous layer, similar to

a traditional neural network. This layer maps the learned features to the output, performing
classification or regression tasks. It integrates the features extracted by the convolutional and
pooling layers, enabling complex decision-making processes.

To introduce non-linearity into the network, activation functions are applied after convolu-
tional layers. Common activation functions include:
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Figure 2.9 – Schematic diagram of the IMT in the VO2 film. (a) STM spectroscopic images
of La1−xCaxMnO3(with x of about 0.3) showcasing the insulating (paramagnetic, light colors)
and metallic (ferromagnetic, dark colors) of a thin film of 0.61µm × 0.61µm. [150] (b) Images
of the near-field scattering amplitude of 4µm × 4µm thin film of VO2 showing that the metallic
regions (light blue, green, and red colors) and the insulating phase (dark blue color) [84]. (c)
High-resolution co-localized near-field images of coexisting phases antiferromagnetic insulator
(blue) to paramagnetic metal (red) phase; 6µm × µm[151]. (d) MFM images of a LPCMO
8µm × 8µm thin films showing the antiferromagnetic (blue) and the ferromagnetic (red) phases
[152]. (e) The AFM domain map at 130K (warming cycle) is binarized to highlight the AFM
domains insulating (yellow) and paramagnetic-metallic domains (blue) [153]. (f) Na-CCOC
images (4 nm ×4nm)of∆2R(Laplacian) computed from R maps. Large R (yellow) means that
the corresponding tunneling spectrum is more symmetric,whereas low R (blue) means that it is
more asymmetric [154].

Sigmoid: Compresses the output to a range between 0 and 1.

f(x) = 1
1 + exp(−x) (2.1)

Tanh: Maps the output to a range between -1 and 1, zero-centered.

f(x) = exp(x) − exp(−x)
exp(x) + exp(−x) (2.2)

ReLU (Rectified Linear Unit): Allows for faster and more reliable convergence.

R(x) = max(0, x) (2.3)

2.5 Material characterization and imaging

Materials characterization and data analysis play a crucial role in understanding material
behaviors, optimizing for specific purposes, discovering new materials, and furthering materials
science research. Analyses that involve ML face challenges due to the frequently short training
sets used for ML models [155].

Materials science has evolved to encompass mathematical theory, simulations, and exper-
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imental research. Material properties can be characterized using both macroscopic and mi-
croscopic descriptions. Computational modelling and experimental measurement are the most
common techniques for examining these properties. However, they involve complex procedures
and setups, making it difficult to accurately represent the intricate logical connections between a
material’s qualities and the factors affecting them. Given these complexities, the development of
intelligent and high-performance prediction models is crucial for accurately predicting material
properties efficiently, both in terms of time and computational resources.

Recent advancements in high-resolution imaging techniques provide novel opportunities for
ML to swiftly and quantitatively analyze functional materials both statically and dynamically
[156]. This complements traditional methods such as modeling, simulations, and synthesis.

By utilizing surface probes such as Atomic Force Microscopy (AFM), STM, and SNOM, we
can reveal intricate electronic pattern formations spanning multiple length scales on the surfaces
of correlated quantum materials. Some examples of those are pattern formations are shown in
Fig. 2.9. VO2, with its self-similar metal and insulator domains across various scales, serves
as a prime example. Similarly, manganites exhibit pattern formations where ferromagnetic
and antiferromagnetic regions coexist over multiple length scales [152]. The electronic glass
in cuprates features unidirectional stripe domains forming fractal patterns with correlations
extending over four orders of magnitude in length scale [154]. Additionally, magnetic domains
in NdNiO3 display fractal textures [153].

Also, modern imaging methods, such as scanning transmission electron microscopy Scanning
Transmission Electron Microscopy (STEM), STM, and AFM allow for direct visualization of
atomic-level structures and functional features in complex materials. Concurrently, enhancing
ML-driven image recognition facilitates real-time data analysis, reduces workflow bottlenecks in
materials development, and aids in knowledge extraction using physics-informed models.

For instance, a study by Ma et al. [157] employed an ML approach to map microstructure
images to processing conditions in uranium-molybdenum nuclear fuel alloy, achieving a strong
classification accuracy with an F1 score of 95.1%. This method successfully differentiated be-
tween micrographs related to ten distinct thermo-mechanical processing conditions. Another
study by Ziatdinov et al. [158] used Gaussian process regression-based extrapolation for con-
tact KPFM, incorporating an interactive Google Colab notebook for comprehensive analysis.
Vasudevan et al. [159] demonstrated the use of Bayesian inference to enhance the reliability of
interpreting scanning probe microscopy data in ferroelectric thin films, highlighting the integra-
tion of prior material knowledge and model selection within the Bayesian framework.

Studies have demonstrated the effective use of CNNs in analyzing images from material char-
acterization methods. Kondo et al. in [160] used heat maps to understand semantic features
from microstructure images to predict the ionic conductivity of yttria-stabilized zirconia (YSZ),
a solid electrolyte ceramic material. Their CNN model employed a technique similar to class
activation mapping (CAM) and gradient-weighted class activation mapping (Grad-CAM). The
model’s design connected the top convolution layer to the first fully connected layer via global
average pooling (GAP), creating clear correspondences between convolution filters and fully
connected layer neurons. This setup allowed the authors to generate heat maps showing regions
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contributing to high or low ionic conductivity. They found that voids in the microstructure
were indicative of low ionic conductivity, while defect-free areas correlated with high conduc-
tivity. These findings aligned with experimental evidence and increased confidence in the CNN
model’s ability to capture physically reasonable features. Additionally, the heat maps helped
in determining the optimal representative volume element (RVE) size for the material, guiding
further characterization and data collection.

Oviedo et al. in [161] applied a similar heat map explanation technique to diagnose model
errors in predicting the space group and crystallographic dimensionality of thin-film materials
from XRD spectra. Their CNN architecture included three 1D convolution layers, a GAP
layer, and a final dense layer with softmax activation, treating XRD patterns as 1D pseudo-
image inputs. Heat maps were generated for individual XRD patterns and averaged within
each space group class to identify patterns. Comparing these heat maps allowed the authors to
investigate misclassifications. They observed that the heat map of a correctly classified input
closely matched the average heat map of its space group class. In contrast, the heat map of
a misclassified input resembled the average heat map of the incorrect class, revealing the lack
of discriminative features in some inputs. This method confirmed the CNN’s effectiveness in
analyzing and interpreting XRD patterns, despite the differences between spectrum and image
data.

In summary, machine learning is a powerful tool in materials science, providing new ways to
analyze data, understand materials, and predict their properties. These advancements enable
more efficient research and development, paving the way for innovative materials and applica-
tions.
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Chapter 3
Optical characterization of VO2

High spatial resolution characterization techniques such as surface probes, namely AFM
[162], KPFM [130], SNOM [84], and STM [163], have been used to image VO2 intricate patterns
near criticality. While these techniques allow a resolution of a few nanometers, they are limited
in showing and tracking the formation of the metallic/insulating phases over a wide tempera-
ture range in a single experiment, and they take a lot of time to scan larger surfaces. Not only
the scanning time presents a drawback, but also the technical aspects of each characterization
method. For instance, STM lacks resolution near room temperature and lacks accuracy as the
temperature is modified [164]. Conductive AFM allows the construction of an IMT temperature
map of a VO2 sample, by scanning it at 25 different temperatures around the transition temper-
ature, however, the substrate must be conductive which sets constraints to the geometry of the
device [162]. Therefore, displaying the dynamics of the metallic/insulating phase formation near
room temperature requires a more adaptable technique with more time(temperature) resolution.

We aim to use a time-resolved characterization method to study VO2 during its IMT, taking
advantage of:

— the optical contrast in the visible spectrum,

— the well-defined phase separation between metallic and insulating sites,

— the observation of critical behavior across different length scales.

In this chapter, the experimental set-up to obtain hundreds micrographs of VO2 for a whole
hysteresis loop in a single experiment is presented, including details on the equipment used
for the measurements, the methods followed, the challenges we faced during the experiments,
and ways to overcome them, and a description of the software used to automate the process of
acquiring the digital images.
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Figure 3.1 – Experimental set-up displaying the microscope hardware, optics, and temperature
controller to perform the characterization of the samples.
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1 Materials and methods

1.1 Instrumentation- experimental set-up

Microscope hardware The experimental set-up (Fig. 3.1) consists of a thin film VO2

sample placed on a Peltier heater or a Linkam's temperature control system stage under a Nikon
reflected light microscope (epi-illumination). Micrographs are captured using a Charge-coupled
device (CCD) camera while the temperature is ramped up and down for a defined number of
cycles.

Optics.The samples were measured around the focal point of 1mm in the visible range using
a magnification M = 150 dry Olympus objective lens with a numerical aperture of NA = 0.9.
The theoretical lateral resolution is estimated to be Resolution(r) = λ/(2NA) = 278nm in the
visible range using the Rayleigh criterion. Images were captured with a CCD camera (DMK
33UX252) and stored with 2048 × 1536 - pixel resolution in BMP format.

Motors.The sample holder can be translated in the X-Y directions in two ways: manually,
using the stage control knobs, and automatically, controlling two stepper motors through Lab-
VIEW drivers in a computer. For focusing purposes, the objective is moved in the vertical axis
using a PI PIFOC piezo nanofocusing system (PD72Z1C), also controlled in the computer.

Temperature controller. The temperature control is performed by a LINKAM control system
THMS350V which uses a 100 Ohm platinum sensor (Pt100) with a temperature stability <0.1℃.
This equipment is capable of working for a broad range of temperatures (<-195℃ to 350℃ with
LNP96 cooling pump). In the experiments, we used a temperature range of 27℃ to 90℃. We
specified and set parameters for the applied temperature protocols such as starting and end
temperature for each ramp, waiting time in between ramps, and temperature rate using the
manufacturer software.

In addition to the applied temperature control, we placed a Pt100 resistance thermometer
close to the sample which at 0℃ has a resistance of 100Ω. The output reading from this sensor
was recorded in a Labview program described in details in Fig. 3.6.

The most simple temperature protocol consists on ramping the temperature up making sure
it surpassed the critical temperature Tc and ramping the temperature down, to obtain the
hysteresis loop.

1.2 VO2 samples

VO2 thin films are used in all the experiments since they are able to dissipate heat through
the substrate and to withstand the distortions caused by repeatedly applying heating and cooling
cycles, hence a small lattice distortion along the c-axis is produced.

We used samples prepared with two different preparation methods and substrate orientations:
Sample A
Vanadium dioxide thin films were prepared by reactive RF magnetron sputtering of a V2O3

target (> 99.7%, ACI Alloys, Inc.) on an r-cut sapphire substrate. A mixture of ultrahigh purity
(UHP) argon and UHP oxygen was used for sputtering. The total pressure during deposition
was 4mTorr, and the oxygen partial pressure was optimized to 0.1mTorr (2.5% of the total
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Figure 3.2 – Schematics of the microscope and image analysis created specifically to measure
spatial maps of clusters in VO2 during the IMT while recording resistivity R(T) simultaneously.
The sample was positioned on a Peltier heater or Linkam Thms350V temperature controller to
apply temperature ramps (bottom left). The sample height was varied by steps of 80nm via a
piezoelectric actuator placed under it or in the objective. The best-focused images were chosen
post-experiment using an image compression method and Tenengrad function. The height focus
of the sample was thus controlled within 80nm throughout the experiment. Fine xy plane
drift correction within a single pixel was performed post-experiment. Camera sensitivity was
normalized throughout the recording. Using this fully stabilized image series, black and white
thresholds were applied for each pixel individually, accurately determining if it is in the metallic
or insulating state. We use this information to construct spatial maps of the local transition
temperature Tc, hysteresis width ∆Tc and transition width δTc. The map size displayed in this
figure is 33.6 µm × 27.6 µm.

Figure 3.3 – The structure of the primary planes of the sapphire crystal corresponding to the
structure system of sapphire. Taken from [165].
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Figure 3.4 – Micrographs of the VO2 samples used for the experiment of the present work. The
samples have different electrodes geometry. Green colored area represents VO2; pink area, gold
electrodes; and blue area, sapphire substrate. The white bar is 10 µm wide. (a) Sample A
prepared by RF magnetron sputtering on a r-cut sapphire substrate. (b) and (c) Sample B (84
nm) and C (136 nm), both prepared by sol-gel method on a c-cut sapphire substrate.

pressure). The substrate temperature during deposition was 600 ℃ while the RF magnetron
power was kept at 100W. Sample is 100nm thick. For samples prepared in a similar fashion with
thickness of 100nm and 150nm, grain sizes were 40nm and 130nm respectively. The sample is
found to have a relative 27% optical change in the visible range when passing the IMT. Gold
electrodes were deposited on top of the film, separated by 30µm (Figure 3.4 a).) The VO2 area
of the simple after lithography and Reactive-ion etching is 30µm × 35µm and show a clear IMT
above 68 ℃ as evidenced by a drop in resistivity of 4 orders of magnitude.

Sample B and C
The VO2 films of different thickness (84 nm (B), 136 nm(C)) were grown on a c-cut sap-

phire substrate (Al2O3, (0001)) by a sol-gel method. Vanadium pentoxide (V2O5 , 99%, Acros
Organics) and oxalic acid (H2C2O4, ≥ 99.0%, Sigma-Aldrich) were selected as the starting ma-
terials. Specifically, 5 mmol V2O5 and 15 mmol H2C2O4 were evenly mixed in a three-necked
flask. Next, for the film with a thickness of 84 nm, the mixed powder was dissolved by 25
mL of ethanol whilst stirring. For the film with a thickness of 136 nm, the mixed powder was
dissolved by 20 mL of ethanol whilst stirring. The solution was heated at 120 ℃ for 12 h under
reflux, then the deep blue precursor solution was formed. C-cut sapphire substrate was cleaned
ultrasonically in soapy water, acetone, and ethanol, followed by a 30-minute ozone cleaning to
ensure that substrates have a good hydrophilicity. Subsequently films were coated on the sap-
phire substrate at a spin rate of 3000 rpm for 50 s. Then the as-prepared films were dried at
100 ℃ for 3 minutes to remove the excess solvent, followed by an annealing process. For the 84
nm and 136 nm films, annealing was performed at 450 ℃ for 90 minutes and 300 minutes under
vacuum conditions, respectively.

Sapphire substrate
All samples used in the present work have Sapphire (Al2O3) as the substrate ( Figure 3.3.)It

exhibits unique properties such as large linear thermal expansion coefficient around room tem-
perature (∼ 5.5x10 − 6/K), and light transmitting properties. During processes like thin-film
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deposition, lithography, and annealing, the substrate and the films deposited on it undergo
temperature changes. The ability to manage thermal expansion ensures that the substrate can
handle the thermal stresses without deforming or causing damage to the thin films. A large
linear thermal expansion coefficient in sapphire is important when applying several temperature
ramps because it ensures mechanical stability, thermal compatibility with other materials, main-
tains optical integrity, and enhances process efficiency. All these are reasons why it is extensively
used in SoS chips integrated circuits and photovoltaics. The R-plane is the non-polar plane of
sapphire which is highly suitable for optical applications since it has a low optical index.

1.3 Image acquisition

In this work, we developed an image acquisition workflow which automates the process of
capturing the micrographs during an experiment. The automated microscopy has many advan-
tages: increased productivity, gathering more data in less amount of time; higher reproducibility,
ensures the experiment is performed following the same steps; more reliability, as it reduces man-
ual operation it is less likely to introduce human errors.

However, the automation of the image acquisition presented two main challenges. Firstly,
capturing the best-focused micrographs out of a stack of images, and secondly, having the sam-
ple in place and focus until the temperature protocol finishes, since we have thermal drift in all
directions.

Thermal drift compensation

z direction: During the collection of images we observed a drift in the axial position, as we
are taking a stack of images we needed a fast response, that is the reason to use a piezo since it
has a high precision and exhibits low hysteresis.

xy direction: A piezo response is faster, but it has a limited travel distance. That is the
reason why for x-y directions, we use two stepper motors integrated to the stage, one for each
direction. We keep the samples in a set starting position with a variation of maximum 20 pixels
between each image. This variation will ensure the VO2 area is kept a margin from the edge of
the CCD where the camera sensitivity can change significantly.

Selection of best-focused images

Capturing well-focused images is key for any automatic microscopy system [166], and in partic-
ular for this application where blurred images could introduce problems in the alignment and
tracking of each pixel over time. To get images in focus, we used a spatial domain focus measure,
the Tenenbaum gradient Tenengrad (eq. 3.1) [167][168]. This method assumes that a higher
gradient represents sharper edges, meaning a large intensity difference between neighboring pix-
els. It relies on the maximization of the sum of the squared Sobel gradient magnitude value (eq.
3.2), for the vertical (Sx) and horizontal (Sy) components.
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Figure 3.5 – Tenengrad of a stack of 20 micrographs. The sharpest image corresponds to the
maximum Tenengrad value.

FT enengrad =
M−1∑
i=2

N−1∑
j=2

(∇S(x, y)2) (3.1)

∇S(x, y) =
√

∇Sx(x, y)2 + ∇Sy(x, y)2 (3.2)

The criteria followed to select the best images for further analysis included: (i) the sharpest
image has a clear maxima in the gradient in comparison with the blurrier images. (ii) this
is found approximately in the middle of the stack, if xy repositioning works properly and if
temperature ramp is lower than 5 ℃/min. We achieved the criteria taking the z-series at steps
of 1µm. Fig 3.5 displays an example for the selection of the sharpest image out of a stack of 20
micrographs.

In the case of a camera the focal depth will vary according to number of pixels of CCD,
magnification M, and numerical aperture NA. We can compute the theoretical smallest distance
that can be resolved e using eq. 3.3 where P is the pixel size of the CCD sensor. Considering
that the camera uses a sensor with a pixel size of 15µm we found a theoretical e = 0.2µm.

2P = Me (3.3)

Following the equation3.4 that relates the depth of field (DOF) and numerical aperture of
a microscope objective, suggested for Nikon microscopes, from the previous result, we get a
DOF = 0.618µm. The steps taken are smaller than two times the theoretical DOF, therefore
finding the sharpest image in between is possible.

DOF = λη

NA2 + ηe

M(NA) (3.4)
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Figure 3.6 – Flowchart displaying the logic of the Labview program for the automatic acquisition
of the sharpest micrographs.
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1.4 Imaging workflow for micrographs automated acquisition

To start acquiring images with the microscope, we first make sure the sample is correctly
placed in the Peltier heater. This helps us see the borders of the electrodes clearly and acts as
our starting point. We do this part manually by adjusting knobs in the x and y directions. After
that, we launch a program in LabVIEW, following the steps shown in details in the flowchart in
Figure 3.6. Once LabVIEW is running, we use a pre-set temperature protocol that heats and
cools the sample at specific rates (typically 1 ℃/min, but it can go up to 5 ℃/min). This is
done with through the utilization of Linkam’s software.

Initalization

The program begins by setting up the directories for saving the images. Next, it positions the
stage at an initial location by activating the two stepper motors. It also initializes the voltage
output responsible for adjusting the piezo in the z-axis. A calibration image is then captured
to set coordinates for tracking the edges of the VO2 sample. Once the program identifies these
corners, it uses them as references to move the motors and position the sample at specified
coordinates. The program stops if encounters difficulty identifying any of the corners.

Continuos voltage reading

Three physical channels are created as voltage analog inputs via a National Instruments
acquisition card. The first channel, VPt100, measures the voltage drop across the Pt100 sensor,
enabling the conversion to temperature. Additionally, we apply a voltage of 1.3 V between the
gold electrodes of the sample, denoted as Vapplied. The resulting voltage drop across the VO2

sample is then measured and converted to determine the current resistance in the VO2. This
readings are run continuously and saved in .txt files as lists of resistance and temperatures once
the program started even when is not acquiring images.

Continuos image acquisition

For continuous image acquisition, a series of images along the z-axis is captured. Initially,
the piezo is lowered to a starting position, and micrographs are taken in increments of 3µm. This
action brings the sample in and out of focus. The Tenengrad is then calculated for each image,
and the index of the image with the largest gradient is determined. This process is repeated
for ten cycles. A more refined scan to identify the sharpest image is subsequently conducted by
moving the piezo in 1µm steps. During this step, the Tenengrad is calculated, and the mean
grayscale is recorded. The image with the highest gradient, indicating sharpness, is kept. This
process is iterated for a total of 20 cycles. The resulting index, time of micrograph acquisition,
temperature, resistance, and their corresponding times are recorded in a .txt file named "general
table."

Additionally, the Tenengrad of the last image is calculated to correct for temperature drift,
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provided it exceeds 20 pixels. It is essential to note that there may be a backlash of xy motors
when changing directions, especially during transitions from heating to cooling or vice versa in
the ramping process. The entire image selection process permits the selection of one image every
10 seconds. Thus, we have chosen a temperature rate of 1 ℃/min to have 6 images/ ℃.

2 Image processing for applications

We ran most of the image processing codes on Purdue University’s supercomputing facilities
due to the large dataset requiring extensive memory. We have access to these resources thanks
to our collaboration with Professor Erica Carlson’s group.

2.1 Obtaining single pixel time trace

The correct alignment of the micrographs is crucial for the analysis and applications described
in the following chapters, since we are tracking changes in intensity for each single pixel at a
certain recorded temperature to analyze the dynamics of VO2 MIT over time. Each pixel
represents a 37 nm wide sample. The flowchart in Figure 3.7 illustrates the operations over the
raw micrographs to obtain the single pixel time traces.

Divide temperature cycles
First, we take the file containing the frame number and the recorded temperature associated

to the images to get the initial and last frame for every warm and cooling ramp. The function
finds the temperature local minima and maxima to return the turning points. We then create
a new file with temperature and frame information for every hysteresis loop in the temperature
protocol.

High frequency noise was filtered in the temperature data taken using the Pt100 by fitting
a linear slope through the large temperature sweeps. This matched the internal temperature
sensor slope of the Linkam Thms350V temperature controller.

Collect all raw images
We treat the images a 2D arrays in Python using the numpy library. We collect the raw mi-

crographs with full field of view saving them in 3D numpy memory arrays. The third dimension
correspond to the frame number associated with the image.

Fit background illumination
Before alignment, it is important to decrease as much as possible the effect of the field cur-

vature on the CCD surface, which is a common aberration in optical microscopy. We take a
micrograph of only the sapphire area of the sample. In the python script the code generates
a fitted surface of a paraboloid, the function returns the optimized parameters for the used
background. The VO2 area is centered experiencing shifts from the center of the micrograph of
±1µm − 2µm.Hence, we assume it is in the center of the paraboloid.

51



Chapter 3. Optical characterization of VO2

Figure 3.7 – Flowchart followed to process raw micrographs and obtain single-pixel time trace
of the VO2 area.
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2. Image processing for applications

Correct for non-uniform illumination
Each frame is divided by the calculated change in illumination according to the fitted surface

data of the background.This procedure is performed over the raw images.

Find translational shifts
The code used to find the shifts in the X and Y axes is based on the method mentioned in

[169]. This method relies on upsampled cross-correlation of all image points. It detects a cross-
correlation peak by a a FFT (fast Fourier transform) and further enhances the shift estimation
by performing upsampling of the Discrete Fourier Transform (DFT.) We defined to compute it
within a hundred of a pixel. We registered the shifts in a .csv file.

A mathematical formula for cross-correlation in image processing is presented in Eq. 3.5,
where r is the reference image and f is the image to be aligned. The images are normalized by
subtracting the mean and dividing by the standard deviation.

Crosscorrelation = 1
n

∑
x,y

( 1
σf σt

f(x, y)r(x, y)) (3.5)

Alignment
Taking the .csv file from the previous step, we aligned the images taking into account the

shifts for each direction, obtaining a new image size depending on the maximum shift in each axis.

Drift correction and crop VO2 area
Once the images are properly aligned we select the VO2 area to analyze. The variations

we observe in reflected intensity from the VO2 region are primarily due to changes in local re-
flectivity due to the IMT. However, there can be other contributions to this spatial variation,
including effects such as surface height variations from sample warping, variations in film thick-
ness, minor surface defects, and even shadows cast from the 150nm thick gold leads. There can
even be differences in pixel sensitivity in the camera itself. Because each of these contributions
is independent of temperature (i.e. constant in time), their effects can be distinguished from
that of the temperature driven IMT.

The strategy we employed to decrease the effects of drift in the VO2 mean intensity (VO2[i])
caused by variations in illumination involves division by the change in a selected sapphire area.
This approach is based on the fact that sapphire’s reflectivity exhibits minimal changes within
the range of temperatures applied. However, we found a change in reflectivity of ∼ 2% related
to the automatic repositioning of the objective. There are also external factors that contribute
to sapphire’s reflectivity changes such as ambient light and lamp illumination changes. To
take into consideration this variability, we computed a linear regression correlating the sapphire
mean intensity (Sapphire[i]) with the frame number i. We select the initial point of the linear
regression (LRSapphire[0]) to estimate the change of the average sapphire reflectivity on each
frame assessed following the equation 3.6.
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Chapter 3. Optical characterization of VO2

CorrectedIntensityV O2[i] = V O2[i] × LRSapphire[0]
Sapphire[i] (3.6)

Alignment for sample B and C There is an extra step to perform for flat samples with small
number of signatures to detect. We apply a Sobel filter to threshold the edges, so the peaks
are detectable when applying the cross correlation. Then the standard protocol for alignment
is followed.

Single pixel time trace
We can visualize the intensity with respect to the frame number to obtain the single pixel

trace over time. We observe a step down indicating that VO2 switches from high intensity
insulating to low intensity metallic for the warming ramp, and equivalently a step up when
cooling down. Therefore we can obtain a complete hysteresis loop in terms of relative intensity
for each single pixel (a 37 nm wide VO2 sample), finding a novel way to characterize this
material during the IMT when conventional methods involve electrical measurements of the
global resistance change.

2.2 Time domain convolution

Automation of the micrographs capture allows us to obtain a series of images (∼ 500 images
at 1 ℃/min for a complete hysteresis loop) sufficient to have enough points in the time trace
to filter high frequency noise. By applying a convolution filter based on a Gaussian operator
(σ = 2.5), we are able to isolate the changes in local reflectivity due to the IMT and significantly
reduce the white noise.

Figure 3.9 shows a single pixel’s time trace transitioning from fully insulating to fully metal-
lic. We observe that the raw time trace is noisy in the transition midpoint. If we apply a 3-point
convolution, the time trace becomes smoother and it only crosses the midpoint once in compar-
ison to the raw time trace. We perform this method to reduce the noise of the images classified
by the deep learning classifier which is explain in details in Chapter6.

Finding Tc
VO2 samples with well-characterized transition temperatures enable control and manipu-

lation of the material’s behavior so that it can be used in devices and study the emergent
phenomena in the critical temperature range. The method to get the Tc for each pixel consists
on smoothing the raw time trace with a 11-point convolution, then taking the minimum and
maximum intensity value, and selecting the midpoint. A frame number is associated to the
midway point intensity, and also referred to a recorded temperature.

In order to know at what intensity to set the threshold between metal and insulator in each
pixel, a.k.a Tc, we calculate the pair connectivity correlation length in a series of images, as a
function of different intensity thresholds. It quantifies how the probability that two pixels are in
the same connected cluster decreases with distance. Near the critical point, the pair connectivity
correlation length diverges, indicating long-range correlations. In Figure 3.8, we plot the evolu-
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2. Image processing for applications

Figure 3.8 – Pair connectivity correlation length ξpair vs. temperature during the warming
branch of an extremal hysteresis loop, as a function of different threshold values for determining
metal and insulator domains in sample A. The correlation length diverges when the system is
closest to criticality.

tion of the pair connectivity correlation length during the warming branch of a hysteresis loop.
Circles are depicted with colors representing different threshold values. Each pixel’s threshold is
set by a percentage of the difference between the saturated metal and saturated insulator values
of intensity. Pixel’s threshold set at the midway point are depicted in blue for that temperature
range and presents the longest correlation length.

Liu et al. in [170] studied spatial complexity in VO2 during its IMT using SNOM images.
They set the theoretical threshold according to the longest correlation length since it is an indi-
cator of the system’s proximity to criticality. For this reason, we set the threshold at the midway
point (blue circles in Figure 3.8). We verified this result computing the derivative to calculate
the inflection point for each transition, and we found the same frame number.

Getting scaled and binary images
Scaled images are obtained by applying a linear normalization of the images to bring the

intensity values to another range so there is consistency in the dynamic range for each set
of images. The advantage of scaling the image is that it suppresses temperature-independent
spatial variations that are not due to the IMT. The transformation takes each pixel of the 2D
grayscale images I : {X ⊆ R2} → {Min, .., Max} with intensity values in the range (Min, Max)
into a new set of images IN : {X ⊆ R2} → {NewMin, .., NewMax} with intensity values in the
range (0, 255).
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Chapter 3. Optical characterization of VO2

Figure 3.9 – (a) Single pixel time trace of intensity. The blue curve is the raw time trace of
the measured optical intensity of pixel (127,734) in sample A. The orange curve is a Gaussian
convolution (σ=2.5) of the same time trace over 3 frames. The double crossing at the midway
is eliminated in the smoothed data set. (b) Binary black and white image (frame 260) of the
sample generated by thresholding at midway the single pixel time traces as presented in (a). (c)
Smoothed out binary black and white image (frame 260) of the sample generated by thresholding
at midway the 3 frame convoluted single pixel time traces as presented in (a). Frame 260 map
size is is 33.6 µm × 27.6 µm.

The formula to compute the linear normalization is

IN = (I − Min)NewMax − NewMin

Max − Min
+ NewMin (3.7)

Binary images showing metallic and insulating domains are useful to track the dynamics
and pattern formation during the IMT. We took the criterion discussed previously where every
intensity value higher than Tc becomes a 1 (white, insulating), and every intensity lower than
this threshold becomes a 0 (black, metallic).

2.3 Resolution limitation

The optical characterization method presented here, like all imaging techniques, is limited
by its resolution. For example, the resolution of SNOM is 15 nm, while that of optical imaging
is 300 nm. This means that any metal-insulator domains smaller than these resolutions will
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be averaged within each pixel’s signal. Given our pixel size of approximately 37 nm, signals
from adjacent pixels will overlap and convolve, leading to a loss of finer details. This averaging
effect is analogous to a real-space block renormalization procedure. In such a procedure, smaller
structures are grouped into blocks, and their properties are averaged, simplifying the system by
treating these blocks as single units.

3 Main achievements

This technique enables the optical measurement of phase separation, opening up new possi-
bilities for studying this phenomenon. The development of an automatic image acquisition setup
that operates while ramping the temperature enhances the efficiency and precision of data col-
lection. Additionally, the workflow established for post-acquisition image processing, including
alignment and obtaining single-pixel time traces, allows for the determination of local critical
temperatures and the study of VO2 dynamics.

High-resolution optical microscopy used in this technique permits measurements over longer
length scales and finer temperature steps compared to other characterization methods. The
technique can operate across a broad temperature range, from –195°C to 350°C, accommodating
various experimental conditions. It also supports a wide range of sample sizes, from 10 × 10µm

up to 100 × 100µm, making it versatile for different research needs.
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Chapter 4
Correlated maps to describe IMT in VO2

In the previous chapter, we found the methodology for the optical characterization that
allows us to obtain Tc for each single pixel of the analyzed sample for a complete hysteresis
loop. Therefore, we can map Tc for all pixels for a warming, a cooling ramp, or both. By
mapping Tc, we can identify the mean transition temperature and which areas of the sample
switch at higher or lower temperatures. We can also map other features present in the hysteresis
loop which provides a better description of the sample like the sharpness and broadness of the
IMT. Those maps are going to be described in the subsequent sections.

A typical acquired optical image of VO2 during its IMT is shown in Fig. 4.1 (a). This image
corresponds to VO2 in an insulating state (light gray) that will undergo a color change (dark
gray) above Tc. The two gold electrodes are the trapezoidal pads in the upper and bottom of the
image, and the darkest area corresponds to the sapphire substrate. The gold presents structures
similarly to the VO2 which are invariant with time. These inherent structural irregularities
play a crucial role in facilitating image alignment through the utilization of the cross-correlation
algorithm, thereby effectively compensating for any spatial drifts along the xy plane at the pixel
level.

Once the whole set of images is aligned, we have the intensity value for each temperature
assigned to a frame, what we refer to as single pixel intensity time trace (4.1 (b).) Given the
susceptibility of grayscale values to fluctuations in illumination conditions, normalization of
intensity is indispensable to ensure uniformity and accuracy in data representation.
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Figure 4.1 – (a) Optical image of VO2 sample A during the insulator (light gray) to metal (dark
gray) transition (warming cycle), two gold leads are seen at the top and bottom. These electrodes
also display some structure (spots) due to gold surface imperfections. Sapphire substrate is the
dark surface. Scale bar is 10µm. (b) Single pixel intensity curve defining critical temperature Tc,
hysteresis width ∆Tc and transition width δTc. Tc were determined at midways as explained in
the main text. Hysteresis width was determine by taking the temperature differences between
heating and cooling cycles Tc

up-Tc
down. Transition width was determined by fitting (smooth

curve) the single time trace to a hyperbolic tangent: −1
2(tanh(T −Tc

δTc
)-1). (c) Local critical

temperature Tc map, (d) ∆Tc maps, (e) δTc map (presented here for the temperature ramping
up branch). Image are 27.6µm high. Histograms (with mean and standard deviation of maps
a), b) and c) are shown in Fig. 4.2.
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Chapter 4. Correlated maps to describe IMT in VO2

1 Transition temperature maps

The local critical temperature Tc map in VO2 sample A is shown in Figure 4.1(c).
This map shows a significant spatial variability in Tc, displaying intricate pattern formation
across tens of microns, similar to SNOM sub-micron measurements [84] but acquired with a fast
imaging speed that allows for a broader range of temperatures at finer time steps. During SNOM
measurements, the tip could interact with the near-field of the sample, in contrast, the optical
characterization method uses non-invasive illumination. The spatial variation in Tc coupled with
the precise knowledge of where they are located can be exploited to optimize memory elements
by addressing specific regions of the sample.

2 Hysteresis width maps

The hysteresis width ∆Tc map found in Fig. 4.1 (d) is obtained by subtracting Tc
up-Tc

down

(see the caption of Fig.4.1 (b) for the definition.) The average width is 4.3 ± 1.1 ℃ as seen in
macroscopic transport measurements. Few regions have small ∆Tc, in the range [0 ℃- 1℃]
(small blue clusters in Fig. 4.1 (d)). Investigating these regions with other local probes could
help understanding why this property occurs on certain areas of the sample. Hysteresis-free
domains are promising for enhancing switching functionalities within optical and optoelectronic
components. Previous research has demonstrated that a large hysteresis in VO2 complicates its
usage as an optical sensor [171].

3 Transition width maps

Fig. 4.1(e) displays the transition width δTc map for sample A. The transition width
gives information about how fast each pixel switches from insulating to metallic. It is calculated
by fitting single pixel scaled intensity time traces to a hyperbolic tangent: −1

2(tanh(T−Tc
δTc

)-1)
as Tc is known from our time trace analysis. The average transition width of the pixels as
measured in optics is 2.8 ± 1.1 ℃ with extremes from 0 ℃ to 8 ℃. Some pixels show more
than one step during a transition (see for example first pixel (305,300).This phenomenon could
be caused from the overlap between multiple metal or insulator domains influencing a single
pixel or from structures smaller than the pixel size itself. As the pixel size is approximately 10
times smaller than the resolution, the complexity arises either from information from neighboring
pixels affecting the signal at a given pixel. SNOM has observed inhomogeneities on scales smaller
than those depicted in the optical maps [84].

A noteworthy observation is that the standard deviation of local Tc values across the sample,
denoted as σTc (1.2 ℃), is smaller than the average transition width of pixels, δTc (2.8 ℃),
as shown in the histograms of the maps (Fig. 4.2 (a) and (c). An intriguing open question is
whether the self-similar metal-insulator domain patterns discussed in [139] could account for
this observed difference.

60



4. Tc maps reproducibility

Figure 4.2 – Histograms of maps presented in Fig. 4.1 and 4.3. (a) Tc maps (upon warming);
(b) ∆Tc map; (c) δTc map and (d) and (e) two difference maps Tc2 − Tc1 and Tc3 − Tc2

4 Tc maps reproducibility

To study reproducibility, we set a temperature protocol consisting of three hysteresis loops
at same temperature ramping rate. Then, we computed the difference between the Tc maps
of the warming ramps of two consecutive loops(Figure 4.3). The warming ramps start at 38
℃ up to 80 ℃. The results are presented in the histograms of Figure 4.2(d) and 4.2(e). We
observe that Tc remains unchanged for a vast pixels majority. In other words, Tc values are
reoccurring at a particular location. Some pixels present an increment or decrement of the Tc,
but its mean value prevails. The location and Tc of the nucleation sites triggers rapid changes
in the electronic properties of the material leading to the formation of metallic patches reflected
in the resistivity measurements.

A previous study in the macroscopic transport measurements of a VO2 device reported
discrete jumps in resistivity during the transition [172]. It may indicate that the transition
occurs in avalanches rather than being a continuous process. Electrical measurements over 8
hysteresis loops show the most abrupt resistivity jumps occur at different temperatures from one
cycle to the next one. The stochasticity is also observed in the optical Tc maps which suggests
the patterns are strongly influenced by an underlying random field present in the thin film or
substrate.

61



Chapter 4. Correlated maps to describe IMT in VO2

Figure 4.3 – (a)Three Tc maps while cycling through the IMT (warming) at 1°C/min. (b)
Difference maps Tc2-Tc1 and Tc3-Tc2 between cycles. Global patterns are generally reproducible
(σTc/Tc = 0.6°C/68°C= 1%). However some small regions present deviations up to ±2°C. Maps
size is 33.6 µm × 27.6 µm.

Figure 4.4 – Correlations between Tc (upon warming), ∆Tc and δTc. Each of the 666,000 pixels
(900x740) is represented. Tc vs. ∆Tc (panel (a) shows a slight diagonal trend meaning that
pixels with low Tc tend to have low ∆Tc (i.e. close to zero) and vice versa (see red dashed line.)
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5 Correlations between maps

We present scatter plots relating the different features of the hysteresis loop Tc, ∆Tc, and δTc

to examine the correlations among them. Each point in the scatter plots presented in Fig. 4.4 is a
pixel.The patterns that we observe in this correlation maps are mainly horizontal lines originating
from multiple spatially close pixels switching at the same temperature during warming, and
diagonal lines, arising from multiple adjacent pixels switching at the same temperature during
cooling. While these patterns align with what is observed in avalanches, a more in-depth analysis
is required to fully understand the underlying dynamics.

In the three correlation maps, no discernible trend is apparent in Tc vs. δTc and∆Tc vs.
δTc. However, Tc vs. ∆Tc reveals a slight positive correlation (see dashed red line in Fig. 4.4
(a).) This implies that pixels with low Tc tend to exhibit low ∆Tc values (i.e., close to zero), and
conversely, pixels with high Tc tend to have higher ∆Tc. This positive correlation in Fig. 4.4(a)
should not be confused with the few diagonal and horizontal lines in this panel due to finite
temperature steps.

6 Deliberate pixel selection in search of specific thermal hys-
teresis characteristics

The pursuit of utilizing VO2 in high-performance devices in practical applications has driven
a continuous investigation into and customization of the physical properties of VO2 through its
IMT. For such applications i.e. neuromorphic devices, key parameters such as Tc, the abruptness
of the transition, and the resistance difference between its metallic and insulating phases hold
more importance. The maps described in the section above (Fig. 4.1 c, d and e) present a spatial
differentiation of those key parameters so we are able to identify parts of the sample (each pixel
in the map) with desired thermal hysteresis characteristics. Some pixels in the map present two
steps during the IMT, which can be detected from their anomalously high error on the fit to the
hyperbolic tangent function when computing δTc.

Figure 4.5 shows the Tc map of the sample A with six pixels displaying different proper-
ties.The characteristics that we are presenting within these six pixels are not exclusive to the
37nm square pixel location;rather, they are applicable to numerous pixels around the xy coor-
dinates reported. The pixel designated as “std ”(representing standard) exhibits a transitioning
profile with Tc, ∆Tc, and δTc values close to the average values observed in the distribution of
these three parameters (refer to Fig. 4.2 a, b, and c).

Pixels A and B show the most common type of local characteristics found in the maps: when
Tc is high, ∆Tc is high; when Tc is low, ∆Tc is low. This positive correlation is evident at a
global level in Fig. 4.4 (a). However, on a local level, individual pixels can have a large deviation
from the global average behavior. Pixel A characteristics could be used in optical memory-type
applications since it has a large ∆Tc, and Pixel B characteristics are useful for VO2 sensors
(bolometers) in which a small hysteresis width is preferable [173].

Pixel E displays a exceptionally low ∆Tc (0.3 ℃ ) with a relatively low Tc (66.3 ℃ ) closer
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Chapter 4. Correlated maps to describe IMT in VO2

Figure 4.5 – Tc map (33.6 µm × 27.6 µm) with six pixels chosen to illustrate specific character-
istics in the hysteresis loops. The table shows the numerical values of Tc, ∆Tc and δTc for each
pixel. The numbers in bold highlight the unique characteristic of each pixel.
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to the mean value of the map. This case where ∆Tc is within the lower values [0 ℃ -1 ℃ ]
presents an almost non-hysteretic behavior. Small hysteresis width in opto-electronic devices
prevents optical detectors improves the temperature response of the switching between heating
and cooling cycles [171] [174]. Likewise, in neuromorphic devices, small hysteresis allows lowering
the voltage threshold needed for spiking [175].

Pixels C and D illustrate the case where the width δTc of the transition is sharp (0.5 ℃ )
or significantly wide (5 ℃ ). Pixel C specifically exemplifies a sharply transitioning pixel, where
the transition unfolds in an avalanche-like manner within temperature steps of 0.17 ℃ . A more
detailed examination to identify the locations and mechanisms of these avalanches will be pursue
in future work.

7 Analysis of parameters involved in the IMT

The maps discussed in the preceding sections were derived from samples prepared via the RF
sputtering method (Sample A), offering numerous advantages inherent to physical deposition
techniques. These benefits include the attainment of a uniform coating, precise control over
film thickness, and the deposition of highly pure materials [176]. However, given the absence of
commercially available thin-film VO2 samples and our interest in exploring alternative charac-
teristics, our research group at LPEM opted to embark on sample preparation using a sol-gel
method.

The sol-gel method, a wet chemical approach to thin-film coating fabrication, offers distinct
advantages over physical vapor deposition techniques. Notably, it stands out for its economic via-
bility and straightforward implementation, contrasting with the complexity and facility-intensive
nature of physical vapor deposition processes. Furthermore, the chemical manipulation inherent
to the sol-gel method enables the synthesis of new functional compositions, rendering it more
conducive to tailored material design compared to conventional methods like PVD.

We characterized electrically and optically two VO2 samples of different thicknesses Sample
B and Sample C, both synthesized on a c-cut substrate following the sol-gel synthesis method
described in Chapter 2. From the XRD measurements, we found that sample B exhibits a well-
defined crystallographic orientation (epitaxy), whereas sample C shows a non-epitaxial structure
(Fig. 4.6(a)). The electrical characterization of the samples shows a resistance drop of three
orders of magnitude for both the epitaxy and the non-epitaxy during the IMT. The epitaxial
sample exhibits a lower resistance in its insulating state as well.

Differential resistivity-temperature curves were plotted to extract IMT features (Fig. 4.6(c)
and (d)). The hysteresis loop parameters derived from these measurements indicate that the
non-epitaxy sample has a broader transition width and a notably higher Tc (20 ℃) upon heat-

Sample
Code Substrate Preparation method Thickness[nm] Transition temperatureTc[℃] Width of hysteresis ∆Tc[℃] Sharpness δTc [℃] Resistance change

A r-cut RF magnetron sputtering 100 68.2 4.3±1.1 2.8±1.1 104

B c-cut sol-gel 84 66 7.9±0.4 6.2±0.3 103

C c-cut sol-gel 136 86 23.9±2.2 5.7± 0.9 103

Table 4.1 – IMT chacteristics of VO2 thin films on Sapphire substrates.
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Figure 4.6 – (a) Room temperature XRD patterns of VO2: Sample B epitaxy (preferentially
oriented, red curve) and Sample C non epitaxy (gray curve). (b) Hysteresis loop of Sample B
(gray curve) and Sample C (red curve). (c) and (d) Critical temperature values Tc

up, Tc
down,

and ∆Tc, derived from the electrical characterization of Sample B and C respectively.

ing. The thinner sample displays transition temperatures of 58 ℃ during cooling and 66 ℃
during heating, whereas the thicker sample exhibits temperatures of 61 ℃ and 86 ℃ during the
respective processes. This implies distinctive electrical and structural behaviors between the
epitaxial and non-epitaxial VO2 samples. A study on the epitaxial growth of VO2 films on sap-
phire demonstrated that it significantly influences the hysteresis loop width and the transition
temperature [177].

We generated Tc maps and histograms for a sample area measuring 15µm×15µm to analyze
hysteresis loop characteristics and leverage spatial information obtained through optical char-
acterization. In Figure 4.7(a), the epitaxial sample exhibits a more uniform map over a 10 ℃
range compared to the non-epitaxial sample shown in Figure 4.7(b). This trend is also evident
in the histograms presented in Figure 4.8, where the non-epitaxial sample displays a broader
distribution with an average ∆Tc of 23.9 ± 2 ℃, while the epitaxial sample has a narrower
distribution with an average ∆Tc of 7.9 ± 0.4 ℃.

Furthermore, the sharpness of the transition, represented by δTc, is more pronounced in the
non-epitaxial sample. Although the average difference in δTc between the non-epitaxial and
epitaxial samples is less than 1 ℃, certain pixels in the non-epitaxial sample undergo faster
transitions (< 5 ℃.)

Both the substrate and the growth process influence and affect the overall properties of VO2

films, since they affect the growth orientation and surface morphology of the samples. Yang
et al. in [44] realized a comparative study between VO2 thin films grown on r-cut and c-cut.
They found that r-cut samples presented a lower transition width and a sharper switching. This
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Figure 4.7 – Tc maps of VO2 samples: (a) Sample B Preferentially oriented (Epitaxy), (b)
Sample C Non preferentially oriented (Non epitaxy) at the same scale (temperature range of 10
℃), (c) Zoom over the range of temperatures for the epitaxy samples. It is observed that the
epitaxy sample is more homogenous in Tc values over a range of 10 ℃ than the non epitaxy one.
The analyzed area of the VO2 samples is 15 µm × 15 µm.
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Figure 4.8 – Histograms of VO2 samples: (a) Sample C ∆Tc of , (b) Sample C δTc, (c) Sample
B ∆Tc at same scale, to show the sharpness difference in the distribution of the samples B and
C, (d) Sample B δTc.

was attributed to c-cut samples having a broader range of nucleation barriers, resulting in a
transition occurring over a wider temperature range and by a higher-in plane misorientation
between the grains.

The hysteresis width in VO2 films is closely associated with the nature of grain boundaries,
as discussed by Zhang et al. [178]. Specifically, a smaller transversal grain size corresponds to a
larger ∆Tc. Conversely, as the transverse grain size diminishes, the likelihood of heterogeneous
nucleation decreases, leading to an increase in the hysteresis loop width. Additionally, the role
of elastic stresses accompanying the phase transition becomes more pronounced with decreasing
grain sizes [179].

In this work, variations in the shape and width of the hysteresis loop could be driven by
changes in film thickness. The impact of strains generated during the phase transition becomes
more prominent as the film thickness decreases. In the case of very thin films, the appearance of
a hysteresis loop with two steps can be elucidated by considering that vanadium dioxide resides
in two crystallographic orientations [180]. For instance, the c-axis may align with the substrate
plane in some grains while being perpendicular in others. We can observe a bump in the cooling
branch hysteresis graph of the non-epitaxy sample that could be explained by the formation of
a metastable between the monoclonic (M1) and rutile (R) phases [181].
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8 Main achievements

The main achievements of our study encompass three key aspects. Firstly, we successfully
mapped the critical temperature (Tc), the width of the phase transition ∆Tc, and the sharpness
of the transition (δTc) of VO2 samples. This was achieved by tracking the intensity of each pixel
over time, thus providing both spatial and dynamic insights into the transition process. This
mapping not only offers an understanding of the transition behavior but also sheds light on the
intricate interplay of factors influencing the phase transition dynamics.

Secondly, our research shows the potential for tailoring sample characteristics to suit diverse
applications, particularly for memory and fast switching functionalities, which are of importance
in neuromorphic computing paradigms. By discerning the distinct requirements for these appli-
cations, we can strategically select VO2 samples with specific properties optimized for desired
functionalities. This flexibility in sample design opens up new opportunities for the development
of neuromorphic computing systems with enhanced performance and efficiency.

Lastly, this method allows the characterization of VO2 samples synthesized through differ-
ent techniques. By obtaining statistical information for each segment of the sample, we gain
valuable insights into the influence of various preparation methods on the material properties
and transition characteristics. This systematic approach not only enriches our understanding of
VO2 behavior but also provides valuable guidance for optimizing sample fabrication processes
to achieve desired performance metrics.
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Chapter 5
Ramp Reversal Memory

Neuromorphic computing is presenting new paradigms for electronic devices tailored for
artificial intelligence Artificial Intelligence (AI) applications. At the core of cognitive functions
lies memory - the ability to encode, retain, and recall information. In biological neural networks,
memory hinges on synaptic weights, representing the strength of connections between nodes.
Similarly, AI algorithms draw inspiration from this biological blueprint.

Among the contenders aiming to replicate synaptic functionality, Phase Change Material
PCM devices offer precise control over conductance levels through reversible phase changes.
This versatility in phase modulation lays the groundwork for exploring resistance shifts, when
looking for alternatives in memory research.

While previous studies have explored memory effects in strongly correlated materials such
as manganites, it wasn’t until 2017 [182] that Ramp Reversal Memory (RRM), a non-volatile
memory effect, was reported in VO2 and NdNiO3. This effect, characterized by resistance in-
crease at specific temperatures, manifests during the IMT induced by reversing the temperature
ramp from heating to cooling. As explained in the introduction, this potentially allows creating
a neuristor and synaptor in a single material.

Having a non-volatile memory in VO2 means that the output resistance at a specific temper-
ature is dependent on the past resistance level in the previous temperature ramp and this effect
is retained until a high temperature far from Tc is applied. The RRM temperature protocol
followed to achieve this memory effect is explained in more details in the subsequent sections.

Several conditions must align for the RRM, according to a heuristic model based on three
properties commonly observed in temperature-driven first-order phase transitions of correlated
oxide thin films found in [183]. Firstly, spatial phase separation must occur, delineating dis-
cernible insulating and metallic patches. Secondly, electronic phase transition correlates with
a crystallographic reorientation from monoclinic insulating to tetragonal metallic structural ar-
rangements. Finally, strain alterations influence the critical temperature, further modulating
memory behavior. A microscopic origin has been put forward but needs to be validated.

To do so, our optical characterization provides invaluable spatial insights, unraveling the
localization and aggregation of distinct phases. In the scope of RRM, this spatial resolution
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1. Following the Ramp Reversal Memory temperature protocol

Figure 5.1 – (a) Ramp Reversal temperature protocol. Major loop labels are as follows: ML1-W
stands for Major Loop 1 upon warming; ML1-C stands for Major Loop 1 upon cooling, and
similarly for other major loops. In the subloops, temperature is varied repeatedly between a
low temperature of TLn = 59.5oC and a high temperature of THn = 68oC, through a total of
n=11 complete subloops. (b) Average intensity vs. frame number. Intensity is on a grayscale of
0 (black) to 255 (white), after accounting for illumination variation (detailed elsewhere). The
light gray dashed line follows the average intensity at the end of each subloop. Inset: Fit of
the average intensity at the end of each subloop (i.e. at THn), vs. subloop index n, to an
exponential saturation. The time constant is nτ = 3.1 ± 0.5 subloops.

yields a non-volatile memory framework capable of spatially resolving memory states. Moreover,
this technique not only elucidates memory encoding mechanisms in VO2 but also serves as a
tool for identifying defects and knowing areas of increased critical temperature (Tc).

In the following sections, we present details on the RRM protocol followed for the measure-
ments and image acquisition of this effect in VO2 sample A, the accumulated memory maps,
and changes in the critical temperature maps, as well as a point defect model in collaboration
with Purdue university.

1 Following the Ramp Reversal Memory temperature protocol

We based the temperature protocol on the report by Vardi et al. where they observed a
non-volatile memory effect on VO2 and NdNiO3. This protocol is described in Fig. 5.1(a).
Initially, we go through a warming-cooling cycle, where the sample starts from a completely
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Figure 5.2 – (a) Hysteresis curves of average intensity vs. temperature throughout the Ramp
Reversal protocol of Fig. 5.1. (d) Zoom showing the progressive increase after each subloop of
the averaged intensity around the high temperature turning point TH=68oC.

insulating to a fully metallic state, and then back again (ML1) in the temperature range of 38
℃ - 80℃.This cycle occurs between frames 1 and 500. Subsequently, a sequence of temperature
cycles, referred to as minor loops, is performed, wherein the warming ramp ascends to a specified
peak temperature within the transition region, denoted as TH, and descends to TL during
each minor loop iteration. This sequence occurs between frames 500 and 1900. At TH, the
transition partially occurred and the VO2 junction is a mixing of metallic and insulating phases.
Following the end of the last minor loop, three subsequent major loops (ML2, ML3, and ML4)
are performed (corresponding to frames 2000 to 3500 approximately.)

During the whole protocol we acquired micrographs of Sample A with the method described
in Chapter 3 and we also recorded the resistance of the junction simultaneously. By examining
the relationship between average intensity and temperature across all images in the protocol, we
observe a RRM with similar features to the one shown in [182], which depicted resistance rather
than reflectivity. The average intensity of the images is plotted in Fig. 5.1(b) as a function
of the frame number and in Fig. 5.2 as a function of the temperature. During the first major
cycle loop, the intensity drops from 95 in the insulating phase to 65 in the metallic phase. We
note the increment in average intensity implying a concurrent increase in resistance across each
subloop. Furthermore, this elevation in average intensity adheres to an exponential trend, as
evidenced by the fitting showcased in Fig. 5.1 (b) inset. In the hysteresis graph, the average
intensity at TH exhibits a evident rise as the bump of the red/orange/green curves. This can
be seen in Fig. 5.2 (a) and zoomed-in portion (b).

During the sequence of minor loops, the intensity drops from 93 (at TLn) to a value situated
between 80 and 82 (at THn). A plot of the evolution of the average intensity at each TH is
shown in Fig. 5.1 (b) inset. The intensity is not varying randomly, it is following a monotonic
increase, although the junction was heated up to the same value TH. This is also visible in Fig.
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Figure 5.3 – (a) and (b) R(T) measurement of the metal-insulator transition during the full
ramp reversal sweep. ML1, ML3, ML4 curves overlap as seen previously.[182] (c) At TH=68℃,
resistance rises from 30kΩ at TH0 to 53kΩ at TH11 with a characteristic time of 2.2 subloops.
(d) ∆R/R between ML1 and ML2 reaches 350% increase around 68.8℃.

5.2(b) with the shifts of the red, orange and green curves. This indicates that we have less
metallic domains formed within the junction.

The increase of the intensity during the sequence of subloops can be fitted as an exponential
function:

y = Ae−n/nτ + B (5.1)

As previously observed in [182], resistance increases at each TH turning point. This trend
is shown in Fig. 5.3(b). From the fit, we find nτ = 3.1 ± 0.3 subloops. Simultaneously, the
same effect is observed in the resistance measurements, shown in Fig. 5.3(a) and Fig. 5.3(b). In
that case, the measured characteristic time is nτR = 2.2 ± 0.3 subloops (see a fit in Fig. 5.3(c)),
which is very similar to the optical measurement. Physically, this means that at every subloop,
we have less metallic domain formed in the junction. Every time a subloop is performed, a
fraction of the grains in the junction remains insulating, and the resistance increases although
the temperature is the same. This is an evidence of the memory effect in VO2.

Furthermore, let us now have a look at the second major loop (ML2), performed just after the
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minor loop sequence. This loop is represented by the green curve in Figs. 5.1 and 5.2. We can
see that near and above TH, the average intensity and the resistance are shifted from the original
major loop curve (ML1, represented by the black curves). This second major loop is therefore
different from the first one, as it was influenced by the subloop sequence and the structural
modification of the VO2 junction. To recover the initial behavior, the junction has to be
heated up further than TH in order to erase the memory effect. This is confirmed by
making other major loops (ML3 and ML4) that perfectly superimpose to the first one ML1. The
amplitude of the memory effect is characterized by the difference in resistance (∆R) between
ML1 and ML2. We plotted in Fig. 5.3(d), the evolution of ∆R/R as a function of temperature.
We have a maximum normalized difference equal to 3.5 at the transition temperature 68.8 ℃.
This value is much larger than the one reported in ref [182] where only 0.2 was measured.

Consequently, the memory observed in resistivity curves in this sample is found to be 17
times stronger and 6 times faster than reported previously. Discrepancies could arise from
various factors such as sample preparation details, ramp speed, or variations in the turning
point temperature.

We tested the effect of RRM at different temperature rates (0.2 ℃/min, 0.4 ℃/min, 0.6
℃/min, 0.8 ℃/min, and 1 ℃/min), and computed the time constant and amplitude to study
changes in memory capacity, finding they are independent on the temperature rate. Also, doing
a reverse ramp reversal, meaning going from a high temperature beyond the transition and
cooling to a lower temperature does not have memory effect.

2 Finding Tc maps differences with RRM

Once we processed the entire set of images, we obtained Tc maps for the major loops to
analyze the spatial changes in local Tc before and after applying the RRM protocol. In Fig.
5.4(a), the Tc maps of ML1 in the warming branch are depicted before the application of
11 subloops, while Fig. 5.4(b) illustrates ML2 in the warming branch immediately after the
subloops. A noticeable increase in the ruggedness of the Tc map is observed after the subloops,
indicative of the accumulated RRM, which is evident in the increase of yellow, orange and red
regions in ML2-W, as also evidenced by the broader distribution found in the histogram of Fig.
5.4(c). Examining the distribution, the average Tc is slightly shifted from 68.12 ℃ to a higher
temperature (68.36 ℃), consistent with the increase in average intensity. The elevation of both
local Tc and the standard deviation (σ, representing ruggedness) of ML2-W demonstrates these
metrics are adequate in gauging the ramp reversal memory state. In panel (d), we first see the
increase on average Tc and σ after the RRM training at the warming branch of ML2-W. Then
upon heating the sample at 80 ℃ much higher than the local Tc, the average Tc and σ values
for ML3 and ML4 warming branches values revert to pre-subloop, indicating a reset and erasure
of the memory effect.

We also calculated the disparity between the Tc maps of the warming branches of the first
major cycle before subloops and the last reset major cycle (ML4-W - ML1-W, Fig. 5.5(a)),
and the latter with the major loop just after subloops (ML4-W - ML2-W, Fig. 5.5(c).) The
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Figure 5.4 – (a) Tc map acquired during the warming branch of the first major loop (called
ML1-W). The analyzed area of the VO2 sample has a map size of 33.6 µm × 28 µm (900 pixels
× 750 pixels). (b) Tc map acquired during the warming branch of the second major loop (ML2-
W) after 11 subloops memory training. (c) Histograms of ML1-W and ML2-W maps. (d) Plot
of the average transition temperature and standard deviation for all 4 major loops.
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Figure 5.5 – (a) Difference in Tc maps between ML4-W and ML1-W. (b) Difference in Tc maps
when cycling through two transition [n] and [n-1] as presented in Chapter 3; (c) Difference in
Tc maps between ML4-W and ML2-W (i.e. with ramp reversal memory). Panels (d) (e) and
(f) are corresponding histograms. Maps size is 33.6 µm × 28 µm (900 pixels × 750 pixels).

ML4-ML1 map and histogram (panels a and d) are centered around zero, with a σ of 0.6 ℃. This
closely resembles the map and histogram observed during a simple reproducibility test (panels
b and e) outlined in Chapter 4 (Fig. 4.2.) When intrinsic memory is present (panels c and
f), the average Tc, µ, is shifted by -0.2 ℃. This suggests that the ramp reversal memory was
entirely erased after subjecting the sample to high temperatures, within the fluctuations and
stochasticity from one cycle to the next one characteristic of this material.

Merely examining the Tc maps makes it challenging to discern areas where there is a slight
increase or decrease in Tc between cycles. To pinpoint spatial changes in Tc locally, we conducted
thresholded differences between the Tc maps (Fig. 5.6 (b)). Regions exhibiting an increase in Tc

are highlighted in red, while those showing a decrease are in blue. This approach provides visual
insights into regions where memory accumulates in ML2-W (here, once again the increase of the
insulating phase as an increase in Tc is clear), and where it is erased in ML4, complementing
the information gleaned from histograms.

Figure 5.7 presents a more detailed insight into the memorization process through a four-color
map, distinguishing regions where Tc is originally higher or lower than average and whether it
increases or decreases during ramp reversal. The coexistence of all four possibilities underscores
the complexity of this process. Panel (c) highlights numerous regions within insulating clusters
at TH where high Tc values increase (orange), and within metallic clusters where low Tc values
diminish (cyan). Conversely, examples of the opposite behavior (dark and light gray) are also
observed. This indicates that memory is store throughout the sample, encompassing areas near
metal-insulator boundaries at TH as well as deep within these clusters.
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Figure 5.6 – (a) Tc maps from ML1-W and ML2-W (as shown in Fig. 5.4) side by side with Tc

maps ML3-W and ML4W after ramping the sample to high temperatures. The frame color code
(green or black) is the same as in Fig. 5.1 and Fig. 5.4. (b) Thresholded difference between the
Tc maps of ML1-W and ML2-W (left panel) and between ML4-W and ML2-W (right panel).
Tc has risen in red regions and has lowered in blue regions. White regions (±0.1℃ around
0℃) identify where Tc only changes within the temperature resolution (∼0.17℃), and thus the
temperature remains the same within error bars. Maps size is 33.6 µm × 28 µm (900 pixels ×
750 pixels).
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Figure 5.7 – Experimental ML1-W maps thresholded at the average Tc = 68.13℃. White patches
have high Tc; black patches have low Tc. (b) Difference between ML2-W and ML1-W Tc maps,
thresholded at ∆Tc=0℃. White patches in this panel, Tc became higher when passing from ML1
to ML2; Black patches, Tc became lower when passing from ML1 to ML2. (b) incorporating
temperature resolution considerations. A two color difference map is used here for simplicity.
(c) 4 color maps using (a) and (b). Orange patches have a high ML1 Tc and an even higher Tc

in ML2. Cyan patches have a low ML1 Tc and an even lower ML2 Tc. In dark gray regions,
a high ML1 Tc changed to a lower ML2 Tc. In light gray regions, a low ML1 Tc changed to a
higher ML2 Tc. As the sample is cycled through the ramp reversal protocol, some extreme Tc’s
become more extreme as seen by the presence of orange and cyan patches in (c). Maps size is
33.6 µm × 28 µm (900 pixels × 750 pixels).
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3 Mapping memory accumulation

In a similar fashion to observing spatial hysteresis features, we discern the accumulation
of memory within the sample during the minor loops. To obtain the memory maps, we em-
ploy thresholded images that only present the metallic and insulating phases, following the
methodology outlined in Chapter 3. Figure 5.8 illustrates the initial state corresponding to the
image at TH0, with a pixel count revealing a comparable quantity of pixels in both metallic
and insulating states. After, each image is compared to TH0, retaining the same color for pixels
exhibiting sustained metallic or insulating properties, while newly formed phases are highlighted
in yellow (insulator) and blue (metallic). This allows us to observe the augmentation of insu-
lating patches and their distribution. The memory probe, ML2, denotes the sample state with
the highest memory accumulation. Following major loops reset to a balance of insulating and
metallic patches. To validate these findings, ML3-W and ML4-W are compared to ML1-W,
which takes place before the memory training, leading to consistent conclusions.

Successive panels illustrate the evolution of metal and insulator domains at the end of every
other subloop THn, from n = 2 to n = 10, relative to TH0. Unchanged pixels are shaded dark
or light grey depending on their metallic or insulating nature, while yellow and blue indicate
the growth of insulating and metallic patches, respectively. On average, the sample gradually
transitions to a more insulating state with subloop training, although specific regions exhibit a
metallic shift.

ML2(TH)-TH0, labeled "Memory probe," represents the state with the most accumulated
memory patches, coinciding with the highest average Tc. "Reset 1" and "Reset 2" maps, labeled
in the top right panels, highlight the difference between ML3-W(TH) and ML4-W(TH) concern-
ing TH0. A similar analysis using ML1(TH) as a reference gives the same results as expected.

Memory maps at different TH

After gathering all the insights on memory accumulation maps at TH = 68 ℃, we conducted
the RRM protocol at various turning points (Fig. 5.9). By varying TH in the ramp reversal
protocol, we examined its effects on memory accumulation, intensity change amplitude, and
time constant. Fitting the average intensity at each turning point revealed that the amplitude
differences behaved as expected: at TH = 70 ℃, near the metallic phase, there was a decrease in
intensity; at TH = 67 ℃, the amplitude was higher; and the highest amplitudes were observed at
TH = 68 ℃and TH = 69 ℃. The time constant peaked at TH = 69 ℃, though with considerable
error bars. Future work could involve applying these temperature protocols for n > 12 to deter-
mine if the curve saturates or diverges, which would indicate proximity to criticality. Optimal
conditions for application include a fast response and increased amplitude, ideally achieved at
temperatures around 68 ℃ and 69 ℃, as shown in graph 5.10.
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Figure 5.8 – Memory maps: (a) Experimental evolution of the spatial map of metal and insu-
lator domains upon training with successive temperature subloops. Top left panel: Metal and
insulator patches right before the first subloop begins, at TH0. Metallic patches are colored
dark gray, and insulating patches are colored light gray. Image is 28µm high. (b) Bottom panels
show the corresponding histograms during training and reset.
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Figure 5.9 – Memory maps as shown in Fig.5.8 at different TH. VO2 area is 33.6 µm × 28 µm
(900 pixels × 750 pixels).
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Figure 5.10 – Exponential fit for all TH. There is a peak in the time constant for TH= 69 ℃ while
the amplitude peaks around 68 - 69 ℃, however the changes between these two temperatures
are within error bars.
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4. Explaining RRM with a minimal model of point defect motion

To explain this memory effect in VO2, Vardi et al. proposed a scar model that suggests the
formation of "scars" at metal-insulator boundaries at each TH. These scars are static, quasi-1D
deformations in the material’s lattice structure that have a higher local critical temperature (Tc)
than the surrounding material, meaning they require a higher temperature to change phase.
The scar model explains the memory effect observed in temperature-driven IMT in certain
materials. As the material is heated, metallic domains appear within the insulating material
and grow. When the temperature is reversed and the material is cooled, these metallic domains
shrink, and insulating regions grow back. This transition occurs through phase coexistence, near
criticality, where both metallic and insulating phases exist simultaneously in different regions of
the material.

When the material is reheated after cooling, the scars at the phase boundaries prevent
the original metallic regions from easily growing past them. Instead, new metallic domains
nucleate and grow, forming new phase boundaries. As the temperature is cycled, more scars
develop, reinforcing the memory effect. However, if the material is heated to a sufficiently
high temperature, the metallic domains can overcome the scars, "healing" them and erasing the
memory. Upon cooling from this high temperature, new scars form corresponding to the new
maximum temperature reached.

However, comparing the model with our accumulated memory maps reveals significant dis-
tinctions:

(i) Insulating patches around metallic domains do not necessarily form closed loops, indi-
cating the repeated advancement of metallic puddles to the same spots in successive subloops.
(ii) Yellow patches, signifying insulating regions, extend beyond domain boundaries, forming
large 2D shapes rather than localized 1D lines. (iii) Memory accumulation is not confined to
metal-insulator boundaries but extends deep within insulating domains. (iv) Contrary to the
scar model’s prediction of solely increased local Tc, our memory maps depict regions with both
higher (brighter yellow and red), and lower (deeper blue) Tc, as evident in ML2-W compared
to ML3-W.

These observations suggest a more intricate mechanism underlying the ramp reversal memory
effect in VO2 than initially proposed by the scar model.

4 Explaining RRM with a minimal model of point defect motion

The spatially resolved optical microscopy maps in this study challenge the explanation of the
scar model, which primarily addresses macroscopic resistivity curves. While the scar model offers
a plausible macroscopic explanation, it falls short of explaining the accumulation of memory deep
within metallic and insulating patches, as well as the occurrence of lowered Tc in certain regions.

In response to this challenges, Carlson’s group propose a model based on the diffusion of
point defects in the metal-insulator phase separation regime. The results of the theoretical
model are published along the experimental results in this work. This model aims to account
for the ramp reversal effects observed both macroscopically and microscopically. They employ
the diffusion-segregation equation to describe defect motion in the presence of phase segregation

83



Chapter 5. Ramp Reversal Memory

into metal and insulator domains, based on Equation 9 of reference [184], where x is the spatial
coordinate, ρ and ρeq are the actual and thermal equilibrium concentrations at x, the later as a
step function convolved with a gaussian kernel with ξ = 5, and D is the point defect diffusivity.

∂ρ

∂t
= ∂

∂x

[
D(x)

(
∂ρ

∂x
− ρ

ρeq

∂ρeq

∂x

)]
(5.2)

This model is initialized using the Tc map obtained experimentally from the warming branch
of the first major loop (ML1-W) of this work. The density of defects at the beginning of ML1-W is
adjusted using the gradient descent method to ensure consistency with experimental conditions.
As the model progresses through subsequent simulated warming - cooling cycles, it undergoes
the same process as observed in our experiment, starting from identical initial conditions.

According to the assumptions made, defects accumulate in the metal during the ramp re-
versal process, while being depleted from the insulator whenever phase segregation of metal
and insulator domains occurs. Physically this could arise from the fact that rutile unit cells
expands compare to monoclinic and creates more strain. Adding point defects preferentially in
this phase could help relieve this strain. Moreover, as metal clusters diminish while the temper-
ature decreases, they carry defects along with them. This mechanism of purging defects from
the rest of the sample resembles the floating zone technique used in semiconductor purification.
Consequently, through successive iterations of the ramp reversal protocol, defects migrate from
their original locations in the insulator patches at TH0 toward the regions of lowest Tc in the
sample. Since defects typically reduce transition temperatures, this relocation of defects out
of the insulating regions and into the metallic regions leads to an overall increase in transition
temperature in the cleaner regions of the sample (the insulator) and a decrease in regions with
higher defect concentration (the metal). This results in transition temperature maps exhibit-
ing greater ruggedness, as depicted in the ML2-W panel of Fig. 5.4. Instead of undergoing
abrupt changes, the equilibrium concentration of these mobile defects must vary smoothly at a
metal-insulator boundary.

The equilibrium solution to the diffusion-segregation equation reveals the spatial dependence
of defect distribution, crucial for understanding the observed phenomena. However, while theory
predicts that regions of low Tc should decrease further during the ramp reversal protocol due to
defect accumulation, experimental observations deviate from this prediction( Fig. 5.11). Several
factors may contribute to this discrepancy, including non-linear mappings between Tc and defect
density changes, annealing effects, and limitations in defect mobility.

It is worth noting that the proposed model offers new insights for future experiments, in-
cluding those involving local probes such as STM and SNOM, as well as investigations into
the effects of film/substrate strain, film thickness, and temperature ramp time on RRM. While
the optical experiments provide indirect evidence of defect movements, further experiments are
needed to validate and refine the proposed model. These future experiments will aid in refining
existing models and further elucidating the underlying mechanisms of ramp reversal memory.
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Figure 5.11 – Accumulated memory maps: (a) Experimental and (b) simulated averaged metal
and insulator domains at the end of each subloop. The images are a direct average over 10
subloops of the THn-TH0 images. Dark gray denotes regions that are metallic at TH; light
gray denotes regions that are insulating at TH. Yellow regions are places where the insulator
advanced as compared to TH0. Blue regions are places where the metal advanced as compared
to TH0. Light yellow regions are typically regions that became insulating only at the end of the
10 subloops. Bright yellow regions however are regions that became insulating at the beginning
of the subloops. Red contours mark the original metal-insulator boundaries at TH0, before the
subloops begin. Maps size is 33.6 µm × 28 µm.

5 Main achievements

In this chapter, we present the first optical imaging of ramp reversal memory in VO2. These
experiments offer a detailed insight into the spatial distribution of metal and insulator clusters
and their evolution during thermal subloop training. Our findings reveal a progression of clusters
from one subloop to the next, culminating in a more rugged transition temperature map after
applying the RRM protocol. This suggests that memory accumulation extends beyond cluster
boundaries at the transition temperature (TH), permeating deep into both metal and insulator
patches across the sample.
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Chapter 6
Using Deep Learning for pattern recognition
in VO2

The study of materials science has long relied on traditional experimental and theoretical
approaches to understand the underlying physics and to identify patterns that govern material
behavior. However, machine learning ML capabilities have changed this field, providing pow-
erful tools for data-driven insights and predictive modeling. Now, we have more data coming
from surface probes that have elucidated pattern formation in quantum materials across several
length scales.

ML has been effectively used for pattern recognition, which involves the automatic discovery
of regularities in data and subsequent action based on these patterns. For instance, ML can
classify images into categories based on identified patterns, allowing us to extract important
features and gain a better understanding of the underlying physics [185]. ML methods require
large amounts of data to train neural networks to predict and generalize with high performance.
The increasing data from surface probes can be exploited for this purpose [186].

There has been tremendous growth recently in the application of ML methods to condensed
matter physics [187, 188, 189, 190]. ML is being applied to various problems, including disor-
dered and glassy systems [191], quantum many-body problems [192, 193], quantum transport
[194], and big data in materials science [195]. ML also benefits from physics, an area known as
physics-inspired ML theory [188]. Applied to experimental data, ML has been used to detect
the phase of matter a physical system is in and to aid in the experimental detection of the glass
transition temperature [196]. Other common uses of ML for experimental data include extract-
ing material parameters from experiments or using ML to replace lengthy and time-consuming
fitting procedures [197, 198].

In the context of phase transitions, ML has been used to identify the phase of matter in
theoretical configurations and to determine the transition temperature of those configurations,
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typically assuming a specific Hamiltonian [189, 199]. However, the critical region, characterized
by domains exhibiting power-law structures over multiple length scales, has received relatively
little focus.

To address this gap, we developed a method that utilizes the rich spatial correlations available
in near-critical configurations to detect which Hamiltonian should be used to describe a
physical system, applying the method to experimentally derived data. Convolutional neural
networks (CNNs), which are heavily used in image classification, are key in our model.

CNNs offer several advantages for this task. They are highly effective in recognizing pat-
terns in images due to their ability to capture spatial hierarchies in data through convolutional
layers. This makes them particularly well-suited for analyzing the intricate patterns formed by
electronic domains in materials like VO2. Additionally, CNNs can handle large amounts of data
efficiently, making them ideal for processing the extensive datasets.

ML offers new theoretical frameworks for understanding why patterns form in strongly corre-
lated materials, as most traditional theoretical tools are designed for understanding and describ-
ing homogeneous electronic states. Other method is cluster analysis techniques for interpreting
these images, which have already uncovered universal behavior among disparate quantum mate-
rials [139, 200]. However, these methods are limited to systems near criticality and for sufficiently
large fields of view. Powerful image recognition methods from ML hold the potential to com-
plement and extend these analyses into new regimes.

This thesis chapter explores the application of ML techniques to uncover the fundamental
physics and recognize patterns in materials, with a specific focus on VO2. In particular, we
are going to study images coming from Scanning Near-field Optical Microscopy SNOM and our
optical characterization set-up. We present a deep learning (DL) classifier for pattern recogni-
tion using a CNN in spatial configurations from several different Hamiltonians. We test the DL
classifier on experimental image data of VO2 obtained via SNOM we compare the results with
the well-established cluster network analysis, and then apply it to new optical microscope images
of VO2, showing that using only simulated data for training, we have developed a robust deep
learning classification model capable of identifying the Hamiltonian driving pattern formation
from experimental surface probe images.

1 Hamiltonian models that could describe pattern formation

We present three different kind of Hamiltonians that might explain the multiscale textures
observed during the metal-insulator transition in VO2. The domain configurations derived from
these Hamiltonians will help train the deep learning model to identify the physics behind the
pattern formation in this material. The simulations based on the following models were per-
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formed by collaborators in Prof. Carlson’s group at Purdue University.We focus on models near
a second order phase transition, because the multiscale behavior inherent to criticality is capa-
ble of driving the multiscale pattern formation often seen in spatially resolved experiments on
quantum materials.

Clean Ising model

First, we consider a simple interacting Hamiltonian. The Ising model is a mathematical
model used in statistical mechanics that is commonly used to describe ferromagnetism in ma-
terials. It consists of discrete variables called "spins" that can be in one of two states: up or
down. In the Ising model, each lattice site (a point on the grid) can be in one of two states,
similar to how a material can have regions that are either metallic or insulating. The interaction
between neighboring spins (or domains) determines the overall properties of the system. If a
metallic domain is surrounded by other metallic domains, it tends to stay metallic, similar to
how a spin-up prefers to align with neighboring spin-ups. In our case, the grid is composed by
the pixels in one image.

We assume that the interaction energy between neighboring domains is lower when the
domains are alike rather than different. Imagine a checkerboard where each square can be either
black (spin down) or white (spin up). The state of each square depends on its neighbors. If
a square is white, it prefers its neighbors to be white as well, similar to how metallic domains
prefer to be near other metallic domains.This tendency for neighboring domains to be similar is
modeled using a nearest-neighbor Ising Hamiltonian:

H = −J
∑
⟨i,j⟩

σiσj −
∑

i

hσi (6.1)

where σi = ±1 is a two-state local order parameter, representing metal (e.g., σ = 1) and
insulator (e.g., σ = −1) domains. The first term in the equation accounts for the energy due
to the interaction between neighboring domains. J is the coupling constant representing the
strength of the interaction between neighboring domains. The second term accounts for the
energy due to the interaction of each domain with an external magnetic field.

This model is mapped to the temperature-driven IMT in VO2, assuming that a temperature
change in experiments corresponds to a combination of temperature and field changes in the
model.

The simulations have configurations near the critical point, as this is where the Hamilto-
nian can create structures across multiple length scales. Using Monte Carlo simulations, they
generate typical multiscale patterns of insulator and metal domains that arise from the clean
Ising Hamiltonian. Complex domain configurations appear near the critical points of this model.
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Simulation Methods:

Monte Carlo Updates: The simulation uses Monte Carlo methods to update the state of
the system. Specifically, it uses a combination of two types of updates:

— Parallel Checkerboard Metropolis Update: This method divides the lattice (a grid repre-
senting the system) into a checkerboard pattern and updates the spins (magnetic moments
of particles) in parallel, alternating between the two colors of the checkerboard.

— Wolff Algorithm: This is another type of Monte Carlo update that is efficient for simulat-
ing the Ising model, especially near critical points. It works by flipping clusters of spins
instead of individual spins, which helps reduce autocorrelation times.

Thermalization:

The system is first thermalized, meaning it is allowed to reach thermal equilibrium. This is
done by performing 100,000 steps of the parallel checkerboard Metropolis updates interleaved
with 10,000 Wolff updates.

Saving Spin Configurations:

After thermalization, spin configurations (the arrangement of spins in the lattice) are saved
periodically. Specifically, configurations are saved after performing 10 parallel checkerboard
Metropolis updates followed by 10 Wolff updates.

System Size and Boundary Conditions:

The simulated system is a 3D lattice of size 100 × 100 × 100

Boundary Conditions:

— Open Boundary Conditions (OBC) in the z-direction: Spins at the boundaries in the
z-direction are not influenced by spins outside the system.

— Periodic Boundary Conditions (PBC) in the x and y directions: The lattice is treated as
if it wraps around on itself in the x and y directions, creating a continuous loop.

Saving 2D Spin Configurations:

After thermalization, 2D slices of the 3D lattice are saved for analysis. These include:

— Two open surfaces: The outermost layers of the lattice in the z-direction.

89



Chapter 6. Using Deep Learning for pattern recognition in VO2

— Three parallel 2D slices from the interior: These slices are taken from within the lattice
and are spaced equally to minimize correlations between them.

Additionally, 2D configurations are saved from the orthogonal directions:

— Four configurations perpendicular to the x-direction: Equally spaced slices in the y-z plane.

— Four configurations perpendicular to the y-direction: Equally spaced slices in the x-z plane.

Figures 6.1(a) - (d) show some configurations near the critical temperature T 2D
c on a 100x100

lattice, with periodic boundary conditions. Figures 6.1(e)-(h) show some representative config-
urations near T 3D

c on a 100x100x100 lattice.

Random Field Ising model

The Random Field Ising Model (RFIM) is a variation of the Clean Ising model. In the stan-
dard Ising model, each spin can be in one of two states (up or down), and spins interact with
their nearest neighbors. The RFIM introduces a random external field, adding disorder to the
system. This random field can cause each spin to experience a different local environment, lead-
ing to more complex behavior. Besides interaction energy between domains, material disorder
also influences the shapes of metal and insulator domains. Since disorder can make certain
regions more favorable to being an insulator and others more favorable to being metal, we use
a random-field Ising model (RFIM) to simulate these effects:

H = −J
∑
⟨i,j⟩

σiσj −
∑

i

(hi + h)σi (6.2)

The first term is the clean Ising model (Eq. 6.1.) In the second term, the uniform field h

and the local random fields hi interact directly with the local order parameter. The random
fields hi are chosen from a Gaussian distribution with a width R, where the probability of hi is
P (hi) = exp(−h2

i /(2R2))
√

2πR2. In VO2, the IMT is temperature-driven. In the model, this
transition appears as a combination of temperature and uniform field h. When both temperature
and disorder are non-zero, the random field dominates the behavior near the phase transition.
This means that in the renormalization-group sense, the temperature becomes irrelevant, while
the random field remains relevant over a broad range. This means that the random field’s effects
become more pronounced and critical as the system is viewed at larger scales. The random field
strongly influences the system’s macroscopic behavior near the transition. To understand the
patterns of metal and insulator domains, the model is studied at zero temperature by varying
the uniform field h. At zero temperature, the model undergoes a phase transition at a random
field strength of Rc ≈ 2.27J in an infinite three-dimensional system (RF-3D). In two dimensions
(RF-2D), the critical disorder strength approaches zero in the infinite size limit, although for
finite systems, Rc is non-zero. For our field of view (FOV), Rc ≈ J for RF-2D.
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Near the critical point of the random field model, as the uniform field is varied, intri-
cate patterns develop over multiple length scales near the coercive field strength, where the
metal/insulator domain fraction changes rapidly with respect to the uniform field h. Figures
6.1(i)-(l) show representative configurations of RF-2D on a 100×100 lattice. Figures 6.1(m)-(p)
show configurations on the surface of a 100 × 100 × 100 lattice near the 3D critical disorder
strength R3D

c .

Percolation model

In some cases, domains may not interact with each other as described in the above Hamil-
tonians. Instead, each domain could act independently. In the corresponding uncorrelated
percolation model, a site is labeled as "metallic" with a probability p; otherwise, it is labeled as
"insulating." When p ̸= 0.5, this process is like flipping a biased coin, where p is the probability
of getting heads.

This model also exhibits a second-order phase transition based on the value of p, showing
structure across multiple length scales near its critical point. The critical percolation threshold,
pc, is identified by the presence of a percolating cluster that spans the entire system, touching
both sides.

In a two-dimensional system on an infinite square lattice, this threshold occurs at p2D
c ≈ 0.59.

In a three-dimensional system on an infinite cubic lattice, it occurs at p3D
c ≈ 0.31. Figure 6.1(s)

shows a percolation configuration of size 100 × 100 at p2D
c = 0.59. Figure. 6.1(q) shows a

percolation configuration of size 100 × 100 × 100 at p3D
c = 0.31.

To improve the deep learning (DL) model’s ability to tell apart configurations near a critical
point from those that aren’t, we also create additional training images using a method called
uncorrelated percolation, but away from critical points (Fig. 6.1(q) and Fig. 6.1(t).) To avoid
the complex, fractal-like patterns that appear near critical points, we generate these images
within specific ranges of p = 0.02 − 0.2;0.48 − 0.52;0.8 − 0.98.

— The first range (0.02-0.2) produces images that are mostly black.

— The second range (0.48-0.52) produces images that are "white noise" (such as in Fig. 6.1(r).

— The third (0.8-0.98) range produces images that are mostly all white (like those in Fig.
6.1(t).)

By using these different ranges, we ensure that the model learns to identify and distinguish
between various types of configurations, not just those near the critical point.

Other than P, the models each have a second order phase transition, at which the spin con-
figurations display power law behavior, with structure on all length scales up to the correlation
length, which diverges at the critical point.
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Figure 6.1 – Typical critical configurations generated from simulations of clean and random field
Ising models and percolation models. Each simulation image is 100 × 100 pixels.
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2 Synthetic images dataset

The DL model needs to learn the features of the pattern forms by each one of the models
described in the previous section. For this aim, enough example images have to be fed for the
training stage of the model. In total, a set of 64,000 synthetic images was generated to train
the CNN. This included 8,000 images for each model near its transition, except for the percola-
tion model, which produced 16,000 images due to variations away from the 2D and 3D critical
percolation strengths.

To increase the diversity of training sets, data augmentation is often employed. This prevents
overfitting and enhances model generalization and performance. Common transformations for
data augmentation include geometric transformations and noise injections.

In our system, the entire phase space associated with typical configurations generated by
the models exhibits certain symmetries. These symmetries can be exploited to generate more
configurations and augment the training data. For instance, the clean Ising model satisfies the
Z2 symmetry σi → −σi. Similarly, the RFIM is symmetric under the simultaneous operations
σi → −σi with hi → −hi, and the percolation model is symmetric under the operations σi → −σi

with p → 1 − p. Additionally, for the square domain configurations we use as training data, the
statistical weight of typical configurations in phase space is symmetric under all operations of
the dihedral group of the square, D4. This symmetry allows us to increase the training set by
a factor of 16 for the square-shaped images of domain patterns.

Instead of traditional data augmentation, an alternative method is utilized: symmetry re-
duction. This method involves reducing the symmetry of each configuration as much as possible
before feeding them into the neural network. Symmetry reduction is as effective as data aug-
mentation but significantly reduces the time needed to train the neural network. For symmetry
reduction to be effective, all data must undergo this process before being fed into the CNN for
both training and validation stages.

The symmetry operations applied to these spin configurations, while preserving the statistical
weight of typical configurations in phase space, include:

Ising Z2 symmetry σi → −σi: If a domain configuration has a majority of spins down, we
flip all spins to make it a majority spin-up configuration.

Rotations: The configuration is rotated by 0, π/2, π, or 3π/2 such that of the four quad-
rants, quadrant I has the most spins up.

Transpose (reflection about the xy diagonal): If quadrant IV has more spins up than
quadrant II, we transpose the configuration to ensure that quadrant II has more spins up than
quadrant IV.

This method is described in Fig. 6.2. By applying these symmetry reduction techniques, we
effectively prepare the data for the neural network, ensuring both efficiency and consistency in
training.

93



Chapter 6. Using Deep Learning for pattern recognition in VO2

Figure 6.2 – Symmetry reduction method, as described in the text.
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3 Model architecture

A CNN was employed to classify binary images into one of the seven Hamiltonians (Fig.
6.3). The code uses TensorFlow as the framework to implement the classifier in Python within a
Jupyter notebook. The input is a 100x100 one-channel image, which is fed into the first convolu-
tional layer (Conv2D) with 32 filters and a kernel size of (5, 5). This is followed by a Max Pooling
layer of size (2, 2) to reduce the spatial dimensions of the feature maps and prevent overfitting.
Another Conv2D layer with 64 filters and another Max Pooling layer follow. The output is then
flattened into a 1D layer with 1024 units. After the fully connected layer, a Dropout layer with
a rate of 0.5 is added. The final output layer uses a softmax activation function that allows a
multiclass classification in one of the seven hamiltonians (C-2D, C-3D, RF-2D, RF-3D, P-2D,
P-3D, and P*). The classes are mutually exclusive and with equally importance. The model
employs the Adam optimizer and a cross-entropy loss function for parameter adjustment in the
CNN.

For the training stage, 80% of the synthetic data for each category was used for training,
while the remaining 20% was reserved for model validation. In deep learning, various methods
are used to assess the performance and learning of classifiers from the training data. Two key
metrics are accuracy, which measures the proportion of correct predictions, and training loss,
often referred to as error, which quantifies the difference between predicted and actual outcomes.

We use accuracy as a metric that tells how well the classifier is predicting across all models,
by computing the percentage of correct predictions with respect to the total number of predic-
tions. For instance, if an image of the training set is correctly classified as C-2D and it matches
the true label then it is accurate. The model has an accuracy of 99.64 % when tested on the
training set, and 99.67 % when tested with similar images that has not seen before.

The training error is calculated summing over all images of the training set after each batch.
In a similar way, the validation error is calculated after an epoch. An epoch is finished when
the training iterates over all images in the training set. We selected training the model for 4
epochs to prevent overfitting. Figure 6.4 shows that the classification errors are less than 0.5 %
at this point. Setting the ”number of epochs” tells how many times the learning algorithm will
process the whole training set and adjust the parameters accordingly.

3.1 Outliers detection method

The softmax output is a probability distribution over the input classes, producing a vector
of predicted probabilities for the different models. The probabilities sum to 1, with the highest
probability assigned as the label for a given classified image, making the output directly inter-
pretable. The softmax function is defined in Eq. 6.3, where n is the number of models and vj

are the values for the output layer.
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Figure 6.3 – Convolutional Neural Network. The multi-dimensional output 2b is flattened into
a one-dimensional array (3a) before it is fed into the fully connected layer. We use the Adam
(Adaptive moment estimation) optimization algorithm to train the network. The output label
is determined using softmax activation on the output layer.
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Figure 6.4 – Error in the training and validation set vs. the number of epochs. Epochs cor-
respond to the number of times the training set went through a training process. To prevent
overfitting we chose epoch=4 for testing with experimental images. Training/Validation accu-
racy = 99.64%/99.67%.

Yi
softmax = exp(vi)∑n

j=1 exp(vj) (6.3)

However, there could be cases where none of the models correctly describe the Hamiltonian
governing the pattern formation, yet the image is still classified as one of the seven models. This
issue is especially relevant when classifying images from experimental acquisitions. To detect
outliers, several methods can be employed. One approach is setting a threshold for the probabil-
ities, but since images are taken at different temperatures and the CNN is trained on synthetic
data close to criticality, they may contain varying amounts of information. Another strategy
involves adversarial networks, which modify the training set and learn to detect suspicious clas-
sifications, but this is limited by the amount of presented cases.

In our work, we propose examining the distribution of data points in the hyperspace gener-
ated from the training examples, specifically by analyzing the last fully connected layer. Each
data point in the graph can be thought as a particle. For two particles to be included in the same
group (cluster), they have to be within a specified distance range. We observed that the classes
form well-separated clusters (Fig. 6.5). The centroids (center of mass) of each cluster which are
data points representing the center of the cluster are calculated by computing the arithmetic
mean of data points assigned to the cluster. Since we have seven models, those centroids are
seven-dimensional vectors.
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Figure 6.5 – Distribution of values of the output nodes for each class in the last fully connected
layer, for all of the training sets. These clusters inhabit a 7-dimensional ’model’ space. The
two representations in the figure are projections of the same 7-dimensional information onto two
different 3-dimensional subspaces.

However to be able to visualize the clusters, we plotted them in 3D. Figure 6.5 shows the
representation of each cluster in different colors, plotting the values for each data point for the
2D hamiltonians coordinates in one side, and the 3D hamiltonians in the other. An example of
classification is as follows: A data point representing a classification is depicted as an orange
dot. This orange dot is close to the cluster in cyan corresponding to the RF-3D and the distance
from the centroid of this cluster is within 1 σ, so we have confidence on this classification. On
the other hand, the black dot would be also classified as RF-3D since it is closer to that cluster
in comparison with the other models, however, it is located further than 1 σ, hence we are not
confident on this result since it could be better explained by a model the CNN wasn’t trained
on. Thus, we can consider the black dot as an outlier.

4 Vetting the Deep Learning model with experimental data

We first tested the performance of the trained CNN on an experimentally derived dataset,
where the Hamiltonian that best describes the pattern formation is already known. The ex-
perimental data consists of images taken with SNOM on a thin film of VO2. Four images at
different temperatures were considered for the test, including one near criticality, where phase
coexistence between metallic and insulating puddles occurs. The field of view for SNOM images
is 4µm.

Previous studies used cluster network analysis to understand the physics underlying the pat-
tern formation [170]. These studies showed that the patterns are fractal in nature, exhibiting
spatial correlation from the pixel size (20 nm) up to the field of view. The quantitative geometric
characteristics and avalanche statistics matched those of RF-2D.
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Figure 6.6 – Classification results of our deep learning model applied to SNOM images on a thin
film of VO2. The top row shows the thresholded data showing insulating (white) and metallic
(black) patches. The total percentage of classifications for a particular model are reported in
the bar charts of panels (a)-(d). Classification percentages that fall within 1σ of a cluster in the
training set are indicated in parentheses. Classifications that fall more than 1σ away from the
edge of the corresponding cluster in the training set are colored darker in the bar chart. SNOM
images are 4 µm × 4 µm (256 × 256 pixels).
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SNOM measurements provide intensity as a continuous variable at each pixel, resulting in
single-channel images. Since the CNN input must be a binary image, we thresholded the im-
ages, assigning SNOM values of a<2.5 as insulating and a>2.5 as metallic. These values are
consistent with previous work showing that the geometric characteristics of the pattern for-
mation are insensitive to threshold changes within about 15% of this value. SNOM images
are 256x256 pixels, so to utilize the entire field of view, we computed a sliding window of size
100x100, taking strides of one pixel for a total of 157x157 classifications per image.

Figure 6.6 shows the SNOM images classified by the CNN, along with the percentage of clas-
sification indicated by bars below them. At the first temperature, furthest from criticality, there
is little pattern formation, resulting in low classification confidence. The highest classification
confidence is achieved at T = 342 K, with 57.7% of the image classified as RF-2D within one
standard deviation and 81.9% when counting all classified values. These results are consistent
with previous studies.

We also examined the distribution of data points in hyperspace (Fig. 6.7), visualizing data
classified within 1σ in orange and other classified values in black. The orange points are con-
sistently close to the RF-2D model, becoming more pronounced as the system approaches
criticality.
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Figure 6.7 – Distribution of values of the output nodes for each class in the last fully connected
layer, for the VO2 SNOM data, superimposed on the distribution for the training sets shown in
Fig. 6.5. Results for the VO2 data that are within one 7-dimensional standard deviation of a
training set are indicated by orange dots. Results for the VO2 data that are farther away are
indicated by black dots.
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5 Classifying VO2 images acquired with optical set-up

After verifying the classification of images acquired from a VO2 thin film with SNOM, we
proceeded to test the CNN using images obtained with our experimental optical setup described
in Chapter 3. For this purpose, we applied a 3-point convolution to reduce high-frequency noise
and thresholded the images using the midpoint of each single pixel time trace. This process
resulted in images displaying only metallic and insulating phases. The image size was 760x760
pixels, with a field of view of 28µm × 28µm, leading to 6612 classifications per image.

Figure 6.8 shows the classification results for four images at different temperatures, varying
in proximity to criticality. The results mirrored those from SNOM images, but the classification
percentage increased to 89.42% within 1σ and 99.98% overall at T = 341.35 K, identifying the
RF-2D model. The distribution of weights shows the orange cloud of high-confidence points
closely aligning with the RF-2D model (Fig. 6.9).

Identifying the Hamiltonian as RF-2D indicates that material disorder and interactions be-
tween spatially proximate metallic and insulating sites drive the pattern formation. For this
reason, the Preisach model that describes hysteresis in systems as made up of many indepen-
dent hysteretic elements is not suitable. Random-field critical points exhibit extreme critical
slowing down: barriers to equilibration grow as a power law as the system nears criticality,
causing the characteristic relaxation time to grow exponentially [201]. This leads to highly
nonequilibrium behavior, including hysteresis, glassiness, coarsening, and aging. Moreover, the
model has an anomalously large region of critical behavior: a system 85% away from the critical
point can still display two decades of scaling [202]. Thus, it is relatively easy within this model
to enter a regime that exhibits pattern formation across multiple length scales, including fractal
textures.

In Chapter 4, we observed that the distribution of the Tc map is non-symmetric, but the
histogram of the difference is symmetric, this could mean that the switching mechanism of some
part of the samples is not governed by the RFIM, but by other mechanisms. These differences
might be cause by the presence of defects such as grain boundaries.

In the optical setup, we can acquire more images at various temperatures, allowing us to
classify the entire range of images during a warming ramp, as shown in Fig. 6.10. The classifi-
cation percentage increases smoothly as the system approaches criticality, suggesting this could
be a valuable new tool for diagnosing proximity to criticality.

Classified images coming from experiments that are close to the metallic and insulating
phase do not exhibit pattern formation, so there is less information available to distinguish the
underlying model and they are classified as P*. We expect that as the images are taken at
temperatures closer to Tc, the detection of the model will peak at that particular temperature.
Proximity to criticality is typically discerned through correlation lengths, which are expected to
diverge as a power law near the critical temperature, following ξ ∝ 1/|T − Tc|ν .
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Figure 6.8 – Classification results of our deep learning model applied to new 28 µm × 28 µm
optical microscopy images of a VO2 thin film showing metallic(black) and insulating (white)
patches. The total percentage of classifications for a particular model are reported in the bar
charts of panels (a)-(e). Classification percentages that fall within 1σ of a cluster in the training
set are indicated in parentheses. Classifications that fall more than 1σ away from the edge of
the corresponding cluster in the training set are colored darker in the bar chart.

However, the maximum correlation length our CNN can detect is limited by the field of
view of the experimental data. The CNN does not return a length scale but shows that the
proximity of experimentally derived data’s cluster of output values in the last fully connected
layer approaches and then retreats from the training set cluster as a function of temperature.
This is evidenced by the nonmonotonic behavior of the height of the bright green bars with
temperature in Fig. 6.10. This supports our hypothesis that the average distance of the cluster
from that of the training set can measure proximity to criticality.

For both experimental datasets, whether from SNOM or optical microscopy,
the CNN determined that the pattern of metal and insulator patches was governed
by the RF-2D physics. For the SNOM data, this matches the previous identification of the
study using the same images in [170]. For the microscope data, it was known prior to the CNN
application that a 2D Hamiltonian should drive the pattern formation because the film thick-
ness (100 nm) is comparable to the instrument’s lateral resolution. Thus, the spatial correlations
measured are firmly in the two-dimensional limit. The CNN’s identification of a two-dimensional
model, rather than a three-dimensional one, further validates our method.
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Figure 6.9 – Distribution of relative weights of each class in the last fully connected layer, for
the VO2 optical data (square sample presented in Fig. 6.8), superimposed on the distribution for
the training sets shown in Fig. 6.5. Results for the VO2 data that are within one 7-dimensional
standard deviation of a training set are indicated by orange dots. Results for the VO2 data that
are farther away are indicated by black dots.
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Figure 6.10 – All CNN predictions from optical data during a temperature ramp up of data
presented in Fig. 6.8. Darker colors denote classifications that are more than 1 standard deviation
from the identified training set.

6 Main achievements

Using binary images, taken at fine temperature steps, we proposed a machine learning-based
criterion for diagnosing proximity to criticality, validated by successfully classifying Hamiltonians
in SNOM and optical microscopy images of VO2 thin films, confirming that pattern formation
is driven by the two-dimensional random field Ising model (RF-2D) near a critical point.

We have demonstrated that the CNN achieves over 99% accuracy in classifying synthetic
data and approximately 83-89% accuracy with experimental data, highlighting the model’s per-
formance.

We introduced a symmetry reduction method that significantly reduces training time without
compromising accuracy and a distribution-based method for quantifying confidence in multilabel
classifier predictions, eliminating the need for adversarial training sets.
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Artificial intelligence is transforming the way we relate to the world and is applied in a broad
range of fields. However, implementing it with the current architectures is energetically expen-
sive and is reaching what is known as von Neumann’s bottleneck. Neuromorphic computing,
which takes inspiration from nature, i.e., the biological neural networks that are highly intercon-
nected, parallel, and energetically efficient, is an alternative to conventional architectures aimed
at solving this bottleneck and accelerating AI algorithms. Despite this, the architectures alone
do not address the issues associated with the current CMOS-based electronic devices used to
implement them. There is a need for materials that can closely emulate these biologically and
electrically relevant features.

A variety of materials, including transition oxides, have been explored for their potential in
mimicking neuron-like behavior. Among these, vanadium dioxide (VO2) is especially notewor-
thy since it exhibits an insulating-to-metal transition (IMT) near room temperature, making
it potentially practical for real-world applications. This switch could be finely tuned and ma-
nipulated, enabling the material to "remember" its state. This is reminiscent of the synaptic
functions observed in biological systems, where synapses can strengthen or weaken over time,
effectively "remembering" information. Moreover, VO2 can act as a neuristor, by accumulating
phases - metallic sites on an insulating matrix over time - and then reaching a threshold that
causes a resistance drop of several orders of magnitude, it ’spikes’, similar to the action potential
observed in biological neurons.

In this thesis, we investigate the IMT in VO2 and assess its potential applications in neu-
romorphic computing by studying memory in the material. VO2 changes the refractive index
from the insulating to metal phases, so we have enough optical contrast in the visible range
to apply optical microscopy to study the dynamics of the IMT. This exhibits a distinct phase
separation near criticality that reveals a fractal pattern. This phenomenon, observable from
the nanometer to micrometer scale, displays the fractal nature of pattern formation.The optical
characterization method for VO2 allowed us to incorporate spatial information which, in turn,
improved our understanding of material behavior during its phase transition and facilitated the
tailoring of devices. In this comprehensive study, we explored various aspects of the IMT in
VO2, covering characterization, fabrication methods, and advanced imaging techniques.
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The main achievements of our research are highlighted in the following key aspects:

Chapter 3: Mapping Transition Dynamics and Tailoring Sample Characteristics

First, we successfully mapped the critical temperature (Tc), the width of the phase transition
(∆Tc), and the sharpness of the transition (δTc) in VO2 samples. This was achieved through a
novel approach of tracking pixel intensity over time, providing both spatial and dynamic insights
into the transition process. This mapping not only enhances our understanding of the transi-
tion behavior but also elucidates the complex interplay of factors influencing phase transition
dynamics.

Several new experimental steps were necessary to align, focus, and calibrate the raw grayscale
images recorded. These achievements enabled us to accurately track the spatial distribution of
metal and insulator clusters, resulting in detailed binary black and white images, time traces,
and maps. We observed micron-sized patterns that were largely reproducible through multiple
temperature sweeps. The ∆Tc hysteresis width map exhibited an average hysteresis width of 4.3
℃ consistent with macroscopic resistivity hysteresis but with significant local variation, ranging
from approximately 0 ℃ in certain small regions to about 8 ℃ in others.

These findings open new opportunities to access local properties of VO2, such as electrically
contacting specific parts of the sample to select unique parameter combinations for electrical
and optoelectronic devices. The positive correlation between the Tc value and hysteresis width
could enable new approaches for tailoring the material’s response to external triggers. Addition-
ally, these observations provide new perspectives for studying open questions in the theory of
hysteresis. Future work could focus on exploring these local properties further and investigating
how different external conditions affect the transition dynamics at a microscopic level.

Second, our research demonstrates the potential for tailoring sample characteristics to meet
diverse application requirements, particularly in memory and fast switching functionalities es-
sential for neuromorphic computing paradigms. By identifying the distinct needs for these
applications, we can strategically select and design VO2 samples with specific properties op-
timized for desired functionalities. This adaptability in sample design opens up new avenues
for developing advanced neuromorphic computing systems with improved performance and effi-
ciency.

Lastly, this method facilitates the characterization of VO2 samples synthesized through dif-
ferent techniques. By obtaining statistical information for each segment of the sample, we gain
valuable insights into the impact of various preparation methods on the material properties
and transition characteristics. This systematic approach not only enriches our understanding of
VO2 behavior but also provides critical guidance for optimizing sample fabrication processes to
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achieve desired performance metrics.

Chapter 4: Optical Imaging of Ramp Reversal Memory in VO2

In this chapter, we present the pioneering optical imaging of ramp reversal memory (RRM)
in VO2. These experiments provide detailed insights into the spatial distribution of metal and
insulator clusters and their evolution during thermal subloop training. Our findings reveal a
progression of clusters from one subloop to the next, culminating in a more rugged transition
temperature map after applying the RRM protocol. This suggests that memory accumulation
extends beyond cluster boundaries at the transition temperature (TH), permeating deeply into
both metal and insulator patches across the sample.

These insights into the RRM mechanism could pave the way for novel memory devices with
enhanced robustness and stability. Our findings reveal that clusters evolve by front propagation
from one subloop to the next. In successive and accumulated memory maps, we observed that
the transition temperature map becomes more rugged after all subloops, indicating that mem-
ory accumulates not only at the cluster boundaries at TH but also deep inside the metal and
insulator patches throughout the sample.

Furthermore, our experiments show that the subloop-trained memory disappears as expected
when the sample is heated to T = 82℃, just above the closing of the major hysteresis loop. This
finding supports the connection between ramp reversal memory and defect mobility. Further
work is needed to identify the species of defects contributing to this effect.

The observation of spatially resolved nonvolatile memory encoding in VO2 paves the way
for developing multi-level memory synaptors for neuromorphic computing applications. Addi-
tionally, the proposed connection between RRM and defect mobility opens the possibility of
enhancing the memory effect through defect engineering methods, such as using dopants, ion
irradiation, or tuning material synthesis conditions.

Chapter 5: Machine Learning-Based Criterion for Diagnosing Proximity to Crit-
icality

We proposed a machine learning-based criterion for diagnosing proximity to criticality,
validated by successfully classifying Hamiltonians in scanning near-field infrared microscopy
(SNOM) and optical microscopy images of VO2 thin films. Our results confirm that pattern
formation in VO2 is driven by the two-dimensional random field Ising model near a critical point.

We demonstrated that the convolutional neural network (CNN) achieves over 99% accuracy
in classifying synthetic data and approximately 83-89% accuracy with experimental data, un-
derscoring the model’s robustness. Additionally, we introduced a symmetry reduction method
that significantly reduces training time without compromising accuracy, and a distribution-based
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method for quantifying confidence in multilabel classifier predictions, eliminating the need for
adversarial training sets. These advancements in machine learning methodologies could signifi-
cantly enhance the analysis of complex phase transitions in correlated materials.

Future Work and Perspectives

The detailed understanding of phase transition dynamics in VO2 and the ability to tailor
material properties for specific applications hold great promise for the development of next-
generation memory devices and neuromorphic computing systems. The optical imaging tech-
niques and machine learning approaches introduced in this study provide powerful tools for
further exploration of phase transitions in strongly correlated materials. Future research could
focus on optimizing the optical characterization set-up for different kinds of triggers like laser
or electric pulses, exploring the full potential of RRM in practical devices, and expanding the
machine learning framework to other correlated material systems. The study also set out to
deepen comprehension of VO2 IMT and explore how this material could emulate biological neu-
ral networks, specifically as neuristors and memristors, thereby contributing to the development
of innovative computing paradigms that mirror the functionality of the human brain.

Other opportunities include using an alternative temperature protocol called Ringdown to
study how disorder affects the insulator-metal transition (IMT). By analyzing images from the
Ringdown protocol and RRM with the developed deep learning classifier, we can determine if
there is a shift in the detection of criticality. Additionally, ramping the temperature at rate
slower than 1℃/ min, allows us to study avalanches during the IMT and track cluster formation
over time. Grayscale images, combined with simultaneous resistance measurements, have also
proven valuable in developing a resistor network model that can predict resistance values at a
given temperature based solely on the grayscale image of the VO2 area.
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Figure 7.11 – An overview of the applications derived from the optical characterization setup
reveals that Tc maps have been used to identify hysteresis features in VO2 samples synthesized
using different methods, such as sol-gel and RF sputtering. The sol-gel samples were provided by
Z. Fang from ESPCI, while Professor Schuller from USCD supplied the RF sputtering samples.
These maps not only enhance our understanding of the RRM mechanism but also serve as a
valuable tool in other areas. For instance, thresholded images that distinctly depict the insulating
and metallic phases are utilized in the deep learning classifier, the tracking of avalanches, and
RRM.
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MOTS CLÉS

circuit neuromorphique, dioxyde de vanadium, transition isolant-métal, caractérisation optique, mémoire non-

volatile, réseau neuronal convolutionnel

RÉSUMÉ

Si l’IA continue de progresser, l’informatique traditionnelle peine à suivre le rythme. Inspirée par le cerveau, l’informatique

neuromorphique combine traitement et mémoire pour créer des systèmes optimisés pour les tâches d’IA. Les matériaux

clés pour cette technologie sont les synaptors, matériaux à mémoire non-volatile, et les neuristors, matériaux pulsants

électriquement. Cependant, les matériaux fonctionnant bien comme synaptors ne fonctionnent souvent pas comme

neuristors et vice versa. VO2, connu pour être un bon neuristor, peut potentiellement se comporter en synaptor à tem-

pérature ambiante. Pour étudier cela, une nouvelle technique de microscopie optique a été développée pour suivre en

température la transition isolant-métal dans VO2. Celle-ci nous a permis de cartographier pour la première fois la mé-

moire non-volatile et de dévoiler la physique sous-jacente, par analyse en apprentissage automatique, conduisant à la

formation de motifs fractals.

ABSTRACT

As AI continues to advance, traditional computer designs struggle to keep up. Inspired by the brain, neuromorphic

computing combines processing and memory to create faster and more efficient systems, perfect for AI tasks like deep

learning and pattern recognition. Key materials for this technology are synaptors implemented as non-volatile memory

materials and neuristors, electrically spiking materials. However, materials that work well as synaptors often don’t work

as neuristors and vice versa. VO2, known to be a good spiking neuristor, is a promising synaptor near room temperature.

To study this, a new optical microscopy technique was developed to track insulator-to-metal maps in VO2 using various

temperature ramps. This technique allowed us to map for the first time non-volatile memory in VO2 and to unveil the

underlying physics, using new machine learning analysis, driving the formation of fractal patterns in VO2.

KEYWORDS

neuromorphic devices, vanadium dioxide, insulating-to-metal transition, optical characterization, non-volatile

memory, convolutional neural network
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