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G E N E R A L I N T R O D U C T I O N

Metal–organic frameworks (MOFs) are hybrid materials composed of inorganic nodes (clusters or metal
ions) bridged by organic linkers to form three-dimensional architectures, often porous. They have been
the subject of an intensive research e�ort for over 20 years and, taking advantage of their porosity
and structural and chemical tunability, have been proposed for applications in various industrial-scale
processes, such as gas storage and separation or catalysis. Among these numerous applications, MOFs
are widely investigated as next-generation materials for CO2 separation in carbon capture, utilization
and storage (CCUS) technologies. This suite of technologies are present in multiple pathways to achieve
our collective climate goals, notably as negative emissions technologies and solutions to decarbonize
hard-to-abate emissions from heavy industries. Signi�cant research e�ort goes into reducing their costs,
by looking for new materials such as MOFs, which could be used in less energy-intensive processes
than current industrial standards.

Of the rapidly increasing number of studies of MOFs in the research literature, most are focused on per-
fectly ordered, crystalline structures, because of ease of experimental identi�cation and characterization
with common laboratory equipment. However, the dynamic nature of MOFs is a key characteristic of
these relatively weakly bonded frameworks – compared to more traditional porous solids like zeolites –
and accounts in a large part for their appeal, and some of their extraordinary chemical and physical
properties. Additionally, the de�nition of MOF does not restrict this term to crystalline phases, and
recently the number of amorphous MOF (aMOF) states reported has seen a rapid expansion. These in-
clude the recently discovered MOF liquids, MOF gels, and a large variety of glassy states and amorphous
solids, which can be produced by pressure-induced amorphization, temperature-induced amorphization,
melt-quenching, ball milling, irradiation, etc. These non-crystalline states possess useful physical and
chemical properties distinct from those achievable in the crystalline phases, such as isotropy, the absence
of grain boundaries, high transparency, and mechanical robustness, while retaining most of the intrinsic
advantages of crystals and powders. They also allow for a greater ease of processing when used in
industrial applications.

However, in balance with their promising properties, amorphous states are particularly challenging to
characterize and their framework structures at the microscopic scale are hard to determine. Indirect
structural information can be available from di�raction experiments, but unlike for crystals, it cannot be
solved into a nice periodic atomic structure as a matter of routine analysis. Moreover, the computational
description of disordered materials is also more complex than that of crystals: computational methods
to model these disordered materials are complex, and relatively few atomistic models of amorphous
MOFs are present in the literature. E�orts towards a better numerical description of aMOFs are crucial
as a complement to experimental works and to provide tools to predict novel architectures, yielding the
potential to signi�cantly accelerate the rational development of materials.

During my PhD, I explored one possible strategy which consists in simulating the phase transition
from a crystalline MOF to the amorphous state, using molecular dynamics (MD) to mimick in silico

the experimental formation routes. I used a large number of simulation methods with di�erent scopes,
time and length scales and computational costs – ab initio molecular dynamics, classical and reactive
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force �elds, and machine-learned potentials – to generate atomistic models of aMOFs and study their
properties. I studied zeolitic imidazolate frameworks (ZIFs), a subclass of MOFs closely related to
zeolites and home to a number of prototypical aMOF structures. I reviewed and compared the existing
methodologies available for the determination of microscopic models of amorphous MOFs, as well as the
structure they generated, assessing their strengths and weaknesses. I also proposed a new methodology,
with the development of machine-learned potentials which led to an excellent reproduction of the
structural properties of a number of di�erent systems. As a demonstration of the interest of performing
such molecular simulations, I have focused on the characterization of �nite temperature mechanical
properties, which are essential for MOFs to fully achieve their potential in industrial-scale processes,
but di�cult to determine experimentally.

This thesis is composed of �ve chapters. I start by presenting the broader context of CCUS and climate
change mitigation, to put into context the research on next-generation materials for CO2 separation. I
then introduce MOFs, both crystalline and amorphous, before reviewing the di�erent atomistic models
of aMOFs published to this date in the literature. In a second chapter, I present the di�erent methods
of molecular simulations employed during my PhD, �rst introducing molecular dynamics in general
and then four of its �avors: ab initio, with classical and reactive force �elds, and with machine learned
potentials. The third chapter probes the accuracy and reliability of modeling the formation and structure
of amorphous ZIFs using reactive force �elds, which have been proposed as a tractable alternative to the
successful but computationally expensive ab initio simulations. The signi�cant challenges evidenced
called for the development of new interatomic potentials, and led to the work presented in chapter
4, where I propose the �rst machine-learned potentials to generate aMOF models and evaluate their
applicability. The last chapter describes the computation of �nite temperature mechanical properties
of both crystal and glass models by critically assessing multiple computational methodologies and
molecular dynamics schemes.
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The recent and still largely uncharted family of amorphous metal–organic frameworks provides an
opportunity to look for next generation materials for CO2 separation. After putting carbon capture,
utilization and storage in the larger context of climate change mitigation, and brie�y introducing the
di�erent technologies available for CO2 separation in section 1.1, I will give an overview of metal–
organic frameworks in general with a particular focus on their amorphous phases in section 1.2. I
will �nally review in section 1.3 the di�erent atomistic models of these amorphous metal–organic
frameworks published to this date in the literature.



amorphous metal–organic frameworks for co2 separation

1.1 CO2 separation and climate change mitigation
1.1.1 Climate targets and negative emissions
The need for negative emissions to stay below 2°C
The 2015 Paris Agreement aims to strengthen the global response to the threat of climate change by
“holding the increase in the global average temperature to well below 2°C above pre-industrial levels
and pursuing e�orts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing
that this would signi�cantly reduce the risks and impacts of climate change”. 1

As the rise in temperature is primarily caused by the increase in the concentration of greenhouse gases
(GHG) in the atmosphere [1], limiting this rise implies at least stabilizing this concentration. To the �rst
order, this means that the �ow of anthropogenic GHGs into the atmosphere must be canceled out (or
even become negative), which is often referred to as zero (or negative) net emissions or carbon neutrality
[2].

If we assume that there will always be residual positive emissions caused by various human activities
(e.g. long-distance transport, agriculture, etc.), then a certain amount of GHGs will have to be removed
from the atmosphere to compensate. Figure 1.1 exempli�es, with di�erent illustrative pathways from
the latest assessment report by the Intergovernmental Panel on Climate Change (IPCC), the need for
signi�cant negative emissions in the medium term along with very ambitious reduction in absolute
emissions [3].
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Figure 1.1: Negative emissions (LUC, DACCS, BECCS) and residual emissions for each of the seven
illustrative pathways (IPs). CurPol and ModAct are illustrative of higher emissions, while �ve are
illustrative mitigation pathways (IMP) exploring various mitigation strategies. Reproduced from Ref. [3].

CO2 capture as a major source of negative emissions
Several categories of negative emissions exist with highly heterogeneous levels of maturity and potential,
most of them focusing on carbon dioxide (CO2), which represents 75% of anthropogenic GHG emissions
in tons of CO2 equivalent (tCO2eq) [4] and whose atmospheric concentration is the highest among
GHGs (excluding water vapor).

1Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015.
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These sources of negative emissions, illustrated on �gure 1.2, range from the increase of the natural sink
linked to land-use change (LUC), to carbon capture and storage (CCS) [5]. In the latter option, the CO2
can be directly captured from the atmosphere (direct air capture or DACCS), or from the combustion of
biomass (bioenergy with CCS - BECCS) [6]. The �ve illustrative mitigation pathways of the IPCC report
shown on �gure 1.1 are based on various combinations on three of these sources: LUC, BECCS and
DACCS. It is worth noting that while technologies for capturing the two other major GHGs, methane
(CH4) [7] and nitrous oxide (N2O) [8], have been proposed in the academic literature, they are far from
industrialization.
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Figure 1.2: An overview of negative emissions technologies. Reproduced from Ref. [5].

Targets in France and the European Union
While the priority is a drastic reduction in GHG emissions, a simultaneous e�ort towards increasing
negative emissions, in particular relying on CCS, are present in multiple national long-term transition
strategies, including that of France and the European Union. It should be emphasized that negative
emissions and CCUS are not a substitute for reducing emissions through more sustainable practices,
improved energy e�ciency, or conventional decarbonization.

In the latest revision exercise of the national low-carbon strategy (SNBC - Stratégie Nationale Bas-
Carbone), France aims to reach carbon neutrality in 2050 [9], a target which has been enshrined into
law in 2019. 2 In the scenario underlying it (AMS - Avec Mesures Supplémentaires) 20% of the GHG sink
in 2050 is made by CCS technologies.

Similar ambitions are shared at the European level, with the European Commission’s strategic long-term
vision depending in part on CO2 removal techniques based on CCS [10]. In this strategy, CCS represents
between 10 and 45% of the negative emissions, corresponding to various scenarios. The European
Climate Law passed in 2021 enshrined the 2050 climate-neutrality target into law. 3

1.1.2 Carbon capture, utilization and storage
Carbon capture, utilization and storage (CCUS) refers to a suite of technologies that involves the capture
of CO2 from a variety of sources, and its subsequent transport, utilization or storage. The CCUS value
chain is represented on �gure 1.3.

2Loi n° 2019-1147 du 8 novembre 2019 relative à l’énergie et au climat, JORF n°0261 du 9 novembre 2019, texte n° 1
3Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for

achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’)
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amorphous metal–organic frameworks for co2 separation

Figure 1.3: Schematic of carbon capture utilization and storage (CCUS). Reproduced from Ref. [11].

CO2 capture
CO2 can be captured from large point sources such as power generation or industrial facilities that use
either fossil fuels or biomass for fuel, or directly from the air. The goal of CO2 capture is thus to separate
the CO2 from the other gases (e.g. N2, H2O), by providing the thermodynamic minimum work required
for separation [12].

Due to the low density of CO2 in air (around 400 ppm), it is technologically easier, energetically more
e�cient, and economically more pro�table to capture CO2 in gases where it is present in high density,
than directly from the atmosphere (with DACCS) [12, 13]. As a consequence, national and international
prospective strategies often consider its deployment when less expensive alternatives (e.g. BECCS) are
no longer possible, notably when the world energy system is already close to net zero [4, 11]. Although
still in its infancy, DACCS is nonetheless the subject of active research e�orts and signi�cant technical
developments, and its place in the energy system and climate change mitigation e�orts still remains to
be clearly de�ned [14, 15].

Among the technologies that could be applied to large point sources, they are three con�gurations
of capture processes, illustrated on �gure 1.4, di�ering by the moment at which the CO2 is captured:
pre-combustion (before combustion), post-combustion (after combustion with air) and oxy-combustion
(after combustion with pure oxygen). The major advantage of post-combustion, which explains why it
is the most widely deployed technology today, is its ability to retro�t an existing installation by adding
a unit that treats its �ue gases [17].

The product of all capture processes is high-purity CO2 gas, which can then be compressed and
transported by technically mature technologies similar to those developed for natural gas (pipelines,
ships after liquefaction, etc.) [11].
Industrial sectors and potentials
A �rst use of CCUS consists in capturing CO2 from fuel-powered power plants, which has been proposed
as a solution for decarbonizing the electricity sector in countries with recent assets which considerable
investment costs are not amortized yet [11]. In bioenergy with CCS (BECSS), i.e. when biomass is
the source of energy, it allows achieving negative emissions by sequestering the CO2 captured by the
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Figure 1.4: Carbon capture con�gurations. Adapted from Ref. [16].

biomass during its growth. Estimates of the potential for BECCS at the world scale vary between 3 and
20 gigatonnes of CO2 (GtCO2) per year [18], which are signi�cant with respect to the 35 GtCO2 emitted
worldwide in 2021 [19]. In the underlying scenario of the SNBC, it is assumed that about 10 MtCO2 yr–1

would be captured with BECCS in France in 2050, compared to total territorial emissions of 80 MtCO2eq
the same year [9].

Heavy industry is another major �eld of application where CCUS represents part of the solution to
decarbonize hard-to-abate emissions. CO2 can be captured either from process emissions – inherent
to the chemical reactions involved in producing certain bulk materials (e.g. cement kiln) or chemicals
[20] – or from the �ue gases following fuel combustion for industrial heat production. Direct emissions
from the industrial sector (excluding emissions related to energy production) represent a quarter of
global emissions (8 GtCO2eq yr–1), including 2.2 GtCO2eq yr–1 for cement production, 2.1 GtCO2eq yr–1

for iron and steel production and 1.1 GtCO2eq yr–1 from the chemical industry. The potential for
decarbonization though CCUS is signi�cant, as exempli�ed by the “Clean Technology Scenario” proposed
by the International Energy Agency (IEA) in which a quarter of the industry’s emission reductions
come from CCUS (the remainder being obtained from technical progress, e�ciency gains and energy
decarbonization) [21]. This industrial capture potential for the French industry in the SNBC is of
5 MtCO2 yr–1 avoided in 2050 [9], a volume that can be compared to an estimated maximal threshold of
24 MtCO2eq yr–1 based on the current state of the industry [22].

Finally, CCUS can play a role in facilitating the production of low-carbon hydrogen for use across the
energy system and the industry. Although present in many decarbonization pathways, the demand
for hydrogen is still today met almost entirely by unabated fossil fuels with only 0.7% produced from
low-emission routes in 2021 [23]. CCUS could contribute to reducing emissions from existing hydrogen
plants and provide a least-cost pathway to scale up new hydrogen production in a number of regions
(compared to renewable energy for water electrolysis) [11].

Overall, as a result of both negative emissions and emission reductions, the contribution of CCUS
technologies to the reduction of global emissions could be signi�cant. It is illustrated by the di�erent
decarbonization scenarios of the IEA in which CCUS represents between 10 and 20% of the total
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decarbonization e�ort [11]. Figure 1.5 shows the relative impact of CCUS (in orange) compared to other
decarbonization options that need to be deployed simultaneously. It should be emphasized at this stage
that CCUS is not a silver bullet that would allow to o�set on its own the GHG emissions of a business as
usual scenario.
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Figure 1.5: Global energy sector CO2 emissions reductions by measure in the IEA “Sustainable Devel-
opment Scenario” relative to the “Stated Policies Scenario”. Reproduced from Ref. [11].

CO2 utilization: markets and potential
Today, 230 MtCO2 are used each year, mainly for the manufacture of urea as a source of fertilizer
(130 MtCO2) and as a solvent for enhanced oil recovery (EOR - 80 MtCO2) [24]. As illustrated in
�gure 1.6, a number of CO2-derived products and services can be envisaged, which could represent a
signi�cant part of the potentially captured CO2 volumes.

Figure 1.6: Theoretical potential and climate bene�ts of CO2-derived products and services. Reproduced
from Ref. [24].

However CO2 utilization cannot cover all global emissions, and the climate bene�ts di�er greatly
between di�erent products (e.g. synthetic fuels in turn emit GHGs during their use). In addition,
the costs are generally higher than current production methods, making the deployment of all these
products uncertain [24]. It is particularly the case, when the �nal product requires at least the amount of
energy released by burning a fuel (e.g. synthetic fuels) [17]. Thus, despite its signi�cant potential, CO2
utilization can only represent a fraction of the contribution of CCUS technologies to the decarbonization
of the world economy.
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1.1 co2 separation and climate change mitigation

Permanent storage
The objective of storage is to permanently immobilize the captured CO2 in order to avoid its return
to the atmosphere. Numerous methods have been considered (ocean storage, mineral carbonation),
but as of today only geological sequestration has reached a su�cient level of maturity [6]. It consists
in the injection of CO2 into a deep underground geological reservoir of porous rock overlaid by an
impermeable layer. The gaseous CO2 is usually compressed before injection to transition to its super�uid
phase with an increased density, which is retained if the reservoir depth is greater than 800 meters [17].
The main geological sites considered for CO2 storage are deep saline aquifers and depleted oil and gas
reservoirs [11].

The storage potential is still not fully known, but is estimated to be at least 2000 GtCO2 in the world [25]
and 1 GtCO2 in France [26], which would be su�cient in view of the volumes that could be captured by
2100 in most decarbonization scenarios [25].
Current state of CCUS
Today, there are 30 operational CCUS facilities around the world with a combined capacity to capture
up to 42.5 MtCO2 each year [27], and with the �rst industrial facilities having been operated since the
1980s. Early CCUS projects focused on industrial applications where CO2 could be captured at relatively
low additional cost, and virtually all the CO2 captured came from gas processing plants until the 2000s
as shown on �gure 1.7. The captured CO2 was at �rst exclusively used for enhanced oil recovery (EOR),
and is still today mainly dedicated to this use with only one quarter stored in depleted reservoirs or deep
saline formations. While EOR has the potential to deliver some climate bene�ts on its own [6, 11], it is
not one of the key applications of CCUS to get towards a net zero economy that were listed above.
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Figure 1.7: (above) Global CO2 capture capacity by source and (below) world map of CCUS facilities at
various stage of development. Reproduced from Ref. [11, 27].

As shown on �gure 1.7, the deployment of carbon capture has been concentrated in the United States,
with almost half of all operating facilities, due in large part to the availability of a CO2 pipeline network
(combined length of more than 8000 km), demand for CO2 for EOR, and public funding programs
[11]. The �rst European facility was commissioned in 1996, and the last decade saw CCUS facilities
commissioned in other regions (e.g. China, Australia, and the Middle East).
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CCUS has been the subject of renewed global interest and attention in recent years, with 10 MtCO2 of
facilities in construction and 100 MtCO2 in advanced development [27]. Although the current CCUS
capacity shows that a number of its technologies are mature and have already been deployed at an
industrial scale, there is a gap between how many CCUS facilities are operating or planned, and what
is needed in transition scenarios to provide a signi�cant contribution to meet the Paris temperature
goal [28]. In France, while a large number of laboratories and companies have been working on all
aspects of the CCUS value chain – at the laboratory scale, in pilot projects and in demonstrators [29] –
reaching the SNBC targets would require the development of concrete CCUS projects at the industrial
scale.
Costs and barriers to the development of CCUS
The cost of capturing and storing one ton of CO2 varies greatly depending on the capture technology,
source quality, mobilized transportation infrastructure, storage infrastructure and scale of the project.
According to a review on the state of the art of current installations [13], the cost of capture is typically
comprised between 20 and 110 $/tCO2 for large point sources, with considerable variation depending
on the CO2 source as indicated on �gure 1.8. Costs of the remainder of the CCS value chain also vary
signi�cantly, comprised between 1 and 15 $/tCO2 for transport and 1 and 30 $/tCO2 for storage.

Because of these signi�cant costs, CCUS may simply not make any commercial sense in the absence of
incentives or emissions penalties, especially when the CO2 has no signi�cant value as an industrial input
[11]. Still, multiple sources are already economically viable in some regions, with respect to current
trading schemes prices and existing or planned carbon taxes [30].

Figure 1.8: Levelized cost of CO2 capture by sector and initial CO2 concentration in 2019. Reproduced
from Ref. [11].

The challenges to CCUS development are, however, not only technical and economic, with a number of
other barriers to be overcome. We can cite the di�culty in securing investments, the lack of supportive
policies o�ering long-term visibility, a legal and normative framework still under construction [6], and
limited stakeholder engagement [31]. For governments which include CCUS in their decarbonization
strategies, accelerating deployment requires a massive increase in government support, with a range of
policy instruments being available [11].

1.1.3 Porous materials for CO2 separation
Among the numerous challenges that would need to be overcome to scale up the development of CCUS,
academic research in material science is mostly relevant for its contribution to cost reduction e�orts.
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1.1 co2 separation and climate change mitigation

Focusing on CO2 capture, the most expensive part of the CCS value chain, I will now compare di�erent
technologies and introduce porous materials, encompassing the materials studied in this work.
Absorption processes, mature yet costly
Patented in 1930, the amine scrubbing process which is based on absorption is still today the most
common CO2 capture process. It relies on using a solvent with a high a�nity for CO2. Schematically,
the capture is done in two steps shown on �gure 1.9: the �ue gas is �rst brought into contact with
the solvent, which absorbs the CO2, and then the solvent is regenerated in another compartment (the
stripper) by raising its temperature to release the absorbed CO2 [17]. Aqueous amine solvents (e.g.
monoethanolamine or MEA) are the most widely used and deployed at an industrial scale on multiple
large-scale facilities [6].

Figure 1.9: Schematic of a simple absorption process. Reproduced from Ref. [17].

Several limitations point to the need for better processes: the solvents are relatively unstable at high
temperatures which restricts the quality of regeneration, their lifetime is limited by the amine decompo-
sition and, most importantly, the large heat capacity of these solvents (related to that of water) is the
primary cause of the energy penalty paid during regeneration [32].

This signi�cant energy penalty is the main factor impacting the �nancial cost of capturing a ton of CO2.
It varies greatly depending on the nature of the �ue gas to be treated and the speci�c installation, and is
typically comprised between 200 and 400 kWh per tCO2 captured. It corresponds to having to dedicate
about 10-25% of the energy that a gas power plant produces to capture its own emissions [33].
Porous materials
As only incremental improvements in overall process e�ciency are anticipated for solvent-based
processes [16], several capture technologies have been proposed to overcome these limitations. A
number of promising approaches rely on porous materials, presenting within their structure voids or
cavities called pores. A key property of these materials is their large speci�c surface area (i.e. the total
surface area of a material per unit of mass) which is exploited in a number of important industrial
applications such as gas adsorption or catalysis [34].

The pores can be of various shapes, sizes and constitute di�erent networks. As it a�ects their properties,
the porous materials are categorized based on their pore size in three groups by the International
Union for Pure and Applied Chemistry (IUPAC) [35]. There are microporous solids with pores smaller
than 2 nm in diameter, mesoporous solids with pore diameter between 2 and 50 nm, and macroporous

solids with pores larger than 50 nm. Microporous and mesoporous solids are often grouped together as
nanoporous solids. Some examples highlighting the diversity of this family of materials are shown on
�gure 1.10.

The majority of porous materials produced on a large scale today are based on purely inorganic or
purely organic architectures. Some inorganic materials, such as zeolites, are particularly adapted to
post-combustion, while some organic materials, activated carbons in particular, ideally operate in pre-
combustion [36]. However, the characteristics sought are numerous in terms of performance, stability
or operability in an industrial process, and no material is perfect in every respect [32].
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Figure 1.10: Illustrative examples of porous materials relevant for CO2 adsorption. Reproduced from
Ref. [16].

Adsorption
Adsorption processes relying on porous materials have received a growing attention for CCUS due to
their potential to reduce the energy penalty of the capture process, in particular thanks to the lower
calori�c capacity of porous materials compared to aqueous solvents [16, 32]. A solvent-free process also
enables a reduction in water consumption and may limit the environmental risks posed by the toxic
compounds contained in most commercial solvents [17].

Di�erent industrial processes exist, but schematically the gas to be treated passes through a column in
which there is a “bed” (i.e. a coating of the walls) made of porous adsorbent. The bed can be �xed, as
in �gure 1.11, in which case the loading of the adsorbent and regeneration phases must be alternated
cyclically, or mobile to allow for a continuous process [37]. Regeneration can typically be induced by
heating the adsorbent to its optimum desorption (i.e. opposite of adsorption) temperature (Temperature

Swing Adsorption - TSA) or by decreasing the pressure until the captured gas desorbs (Pressure Swing
Adsorption - PSA) [32]. At the end of the cycle, the puri�ed CO2 is recovered while the porous materials,
still attached to the walls of the adsorption column, remains in place.

Adsorption technologies have now successfully passed the scale of the demonstrator for large point
sources [38]. Additionally, they are considered as a particularly promising option for DACCS, both
technically and economically [39].
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Figure 1.11: Schematic of a simple adsorption process with a �xed bed for CO2 removal from �ue gas.
Reproduced from Ref. [40].

Membranes
Other promising technologies for CO2 capture in which porous materials are particularly relevant are
based on membrane gas separation. Schematically this approach consists in separating di�erent gases
based on their di�erence in permeability in a membrane, as illustrated on �gure 1.12 [17]. Compared
to sorption processes, membrane-based separations represent an attractive option for energy-e�cient
operations as they do not require thermally driven regeneration of the liquid or solid sorbent [41].
The membrane can be made of porous materials similar to those used for adsorption processes, with
inorganic membranes and mixed matrix membranes having received a lot of attention [42].

These technologies have initially been developed for natural gas processing and CO2/CH4 separation,
and is deployed today in a number of operating industrial-scale gas separation membrane plants [43].
They are, however, not yet available commercially for CO2 removal from �ue gas, for which they are
still at the research and development stage [6].

Figure 1.12: Schematic of membrane gas separation. Adapted from Ref. [43].
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1.2 Metal–organic frameworks
Now that we have seen how porous materials can be applied to CO2 separation, I will introduce in this
section the materials studied in this work, namely amorphous metal–organic frameworks. I will start
with presenting metal–organic frameworks in general and their promises for CCUS, before introducing
the speci�c materials studied (zeolitic imidazolate frameworks) and their phases of interest for this work
(amorphous).

1.2.1 A versatile class of porous materials
Metal–organic frameworks (MOFs) are hybrid materials composed of inorganic nodes (clusters or metal
ions) bridged by organic linkers to form three-dimensional architectures, often porous. First studied in
1989 by Richard Robson and coauthors [44], the term MOF was coined ten years later by Omar Yaghi’s
team to name these materials, along with the synthesis of a new framework called MOF-5 [45]. With
its large permanent porosity and chemical tunability, the discovery of MOF-5 sparked interest in the
community and led MOFs to be the subject of an intensive research e�ort for over 20 years. Figure 1.13
shows both the stellar increase in reported MOF structures and the extremely large speci�c surface area
accessible through these materials, compared to alternative porous materials.

Figure 1.13: (a) Exponential growth in the number of structures reported in the Cambridge Structural
Database (CSD) [46] and (b) progress in the synthesis of ultrahigh-porosity MOFs. Reproduced from
Ref. [41, 47].

Diversity and tunability
The success of MOFs is largely due to the remarkable diversity of structures that can be built from
the combination of numerous inorganic clusters and organic linkers, grouped together under the term
secondary building units, and of which a small subset is shown in �gure 1.14.

With the versatility provided by the coordination and organic chemistry, the number of potential
structure is only limited by the thermodynamic and chemical stability of each combination, and also by
the existence of a synthetic route to generate the porous phase of interest [48]. Figure 1.15 shows a few
of the thousands of synthesized MOFs structures reported to date in the literature.
A multiplicity of applications
This diversity of structures makes it a priori possible to synthesize “tailor-made” materials, aiming
for sets of characteristics that traditional nanoporous materials (purely inorganic or organic) cannot
achieve. In this “design to applications” approach, one aims at producing the best structure for a given
functionality, which can be the optimization of a single metric (e.g. highest uptake of a speci�c gas [49])
or a combination of metrics [50].
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Figure 1.14: Examples of (a) inorganic clusters and (b) organic linkers. Adapted from Ref. [41].

MOFs have thus been proposed for applications in various industrial-scale processes [47] such as gas
separation [51, 52] or catalysis [53]. Among these multiple applications, a number could contribute
to the climate targets mentioned in section 1.1.1 outside of the CCUS realm. They have notably been
proposed for gas storage of hydrogen and methane as an alternative to compression or liquefaction [54].
There has also been an increased interest in the use of MOFs in other energy-related applications, such
as fuel cells, batteries, and supercapacitors [55]. They have also been proposed for other environmental
applications, demonstrating potential toward their utility in air-pollution control [56], remediation of
water pollution [57] and treatment of nuclear waste [58].

Although some MOFs have been produced at the ton scale by industrial companies, it is still a challenge
to transition from laboratory preparation to industrial production and their development for practical
applications is still ongoing [59].
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Figure 1.15: Examples of MOF structures scaled to accurately show relative size. Adapted from Ref. [41].
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1.2.2 Novel materials for CO2 separation
CO2 adsorption
Among their many applications, MOFs received a lot of attention for their application in CCUS. Their
performances can be directly compared to other porous materials, as illustrated on �gure 1.16. MOFs are
particularly promising for CO2 capture by adsorption due to their large surface area per unit volume,
and their highly customizable pore sizes and chemical a�nities [32]. This allows a level of control
in a manner that is unfeasible for other classes of adsorbents, o�ering the ability to �ne-tune the
thermodynamics and kinetics of the CO2 adsorption/desorption processes [60, 61].
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Figure 1.16: Radar charts for key sorbent selection criteria showing a qualitative assessment of key
metrics for material selection in carbon capture applications. Bold lines indicate average, with error
bars indicating typical variability. Reproduced from Ref. [16].

Additionally, the large choice of possible compositions makes it possible to customize MOFs depending
on their use case, such as post-combustion or pre-combustion processes. It is also possible to optimize
them for direct air capture, an application neither zeolites nor activated carbons can achieve e�ectively
[36]. As it is highly unlikely that there will be a “one size �ts all” adsorbent that could work in every
application and process condition (pressure, temperature, gas mixture composition, CO2 levels, etc.),
the customizability of the MOF family makes them promising candidates [61].
Desired properties for CO2 adsorption
A �rst research and development challenge is to keep searching for more e�cient materials designed
for speci�c uses, in particular through a better understanding of structure-property relationships. It will
also be necessary to better take into account the operating constraints of capture processes [62]. The
work performed during this PhD contributes to this research e�ort to discover and characterize new
materials.

The quantities to be evaluated and improved for this are multiple. First, the working capacity, CO2
selectivity and strength of the adsorbate–adsorbent interaction (i.e. heat of adsorption) greatly determine
the performance of an adsorbent with respect to CO2 capture, the amount of material needed and the
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energy penalty [32]. Additionally, mechanical, thermal and chemical stability (especially resistance to
hydrolysis) are crucial for extending the life of the material, especially because of the harsh conditions
during regeneration. The study of mechanical properties constitutes an essential part of this thesis (see
chapter 5).

In order to reach industrial scale, a number of challenges still need to be overcome in the optimization of
the regeneration, recycling, and production processes (synthesis strategy, costs, availability of resources,
feasibility of scale-up, etc.) [36]. Regarding the latter, an inspiring work has been conducted on a
zinc-based framework (CALF-20) [63] which was used on a pilot plant simulating cement �ue gases (1
ton of CO2 captured per day) [64]. It required the production of one tonne of CALF-20, a large value
compared to typical laboratory quantities, but still short of the what would be required for a typical
cement �ue gas capture plant (∼ 200 tons).
Membranes
Apart from adsorption processes, MOFs also have a role to play as new materials for membrane
technologies with their well-de�ned pore sizes [62], either as pure MOF �lms or as �llers in a polymer
matrix to create mixed-matrix membranes [41].

The use of MOFs to form membranes is particularly interesting for industrial processes carried out at
high pressure (typically 20-30 bar) [36]. Exceptional gas separation performances were achieved for
certain gas mixtures [41]. However, membrane technologies relying on MOFs require a similar, yet
even larger, research e�ort before industrialization than adsorption technologies. To be applied at an
industrial level, a membrane must, among other things, be mechanically robust and stable at operating
conditions.

1.2.3 Zeolitic imidazolate frameworks
A subclass of MOFs
Zeolitic imidazolate frameworks (ZIFs) are a subclass of MOFs and were �rst synthesized in 2006 [65].
ZIFs are built around tetrahedral single transition metal nodes such as Fe, Co, Zn, Cd or Cu, linked
together by imidazolate (denoted Im) or functionalized imidazolate linkers, favoring the formation
of tetrahedral topologies [66]. As the name suggests, the structures of ZIFs are closely related to
those of zeolites, a class of porous crystalline aluminosilicates, with a structure built around a regular
arrangement of SiO4 or AlO4 tetrahedra. In ZIFs, the angle M–Im–M between two metal centers (M)
bridged by an imidazolate is typically 145°, a value similar to that found for the Si–O–Si angle in zeolites
as illustrated on �gure 1.17.

Figure 1.17: Illustration of the analogy between ZIFs and zeolite coordination. Reproduced from
Ref. [67].

Out of the theoretically in�nite number of topologies, ZIFs with more than 100 di�erent topologies have
been synthesized and structurally characterized, with some illustrated on �gure 1.18. The topologies
can be the analogous to those found in the zeolite chemistry (which counts several hundred), but
are not limited to them [66]. They are often denoted by a lower case three-letter code following the
recommendations of the Reticular Chemistry Structure Resource (RCSR) Database [68] (e.g. rho) or
with the uppercase three-letter code of the International Zeolite Association (IZA) [69] if applicable
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(e.g. RHO). Like zeolites, the ZIF family displays rich polymorphism, i.e. di�erent topologies for the
same chemical composition, with more than 18 polymorphs reported for the Zn(Im)4 composition alone
[70].

Figure 1.18: Examples of ZIF structures possessing di�erent topologies and linkers. From left to right
are represented the topologies and the crystal structures (space in the cage indicated by a yellow ball).
Adapted from Ref. [71].

The strong interaction between the charged imidazolate linkers and the metal ions, along with the
hydrophobic nature of the aromatic linkers, give rise to high chemical and thermal stability. Additionally,
their tetrahedral structures lead to high mechanical and architectural stabilities [65].

The high robustness of these porous materials, in combination with the chemical tunability inherent
to MOFs, make them particularly interesting industrial candidates in the context of gas adsorption or
gas separation. In particular, they have been largely studied for CO2 adsorption with some choices
of functionalized linkers and pore shapes demonstrating good performances [32, 71]. They were also
investigated in mixed matrix membranes for CO2 separation, owing to their adjustable pore channels,
unsaturated sites, and facile functionalization [42, 72].
Systems studied in this work
One of the key systems throughout most of this PhD will be ZIF-4, which is built up from Zn2+ metal
nodes and imidazolate (Im) organic linkers and has a cag topology. As illustrated on �gure 1.19, its
building units are organized as Zn(Im)4 tetrahedra linked by Zn–N coordinative bonds.

I also studied other ZIF systems with di�erent ligands and topologies, but always with Zn2+ metal nodes.
Whenever it is the case, such as in chapter 4, I further describe the structures before commenting the
results.
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Figure 1.19: Representation of the assembly of ZIF-4 as a three-dimensional network of Zn(Im)4
tetrahedra.

1.2.4 Amorphous metal–organic frameworks
Beyond crystallinity
Of the rapidly increasing number of studies of MOFs in the research literature, most are focused on per-
fectly ordered, crystalline structures, because of ease of experimental identi�cation and characterization
with common laboratory equipment. However, the dynamic nature of MOFs is a key characteristic of
these relatively weakly bonded frameworks, compared to more traditional porous solids like zeolites —
and accounts in a large part for their appeal, and some of their extraordinary chemical and physical
properties. Throughout this family of materials, many authors have noted the common occurrence of
large-scale �exibility under stimulation, the presence of crystallographic defects, and the possibility of
correlated disorder [73].

Figure 1.20: (a–d) Structures of periodic and aperiodic crystallography along with (e–h) their simulated
di�raction patterns. Adapted from Ref. [74].

While the de�nition of MOFs does not restrict this term to crystalline phases [75], the reliance on
crystalline databases in counting the “number of known MOF materials” o�ers a clear example of bias
towards crystals [76]. Even among crystals, de�ned by the International Union of Crystallography
(IUC) as “any solid having an essentially discrete di�raction diagram” [77], most reported structures
are perfectly ordered systems with translational periodicity and which can be described by a unit
cell. Aperiodic structures, i.e. lacking translational periodicity in at least one of the three Cartesian
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dimensions, are only in the single digits in the Cambridge Structural Database (CSD) [46] among over
90 000 published MOF structures [74]. Figure 1.20 illustrates these di�erent structures along with
representative di�raction diagrams.

Although aperiodicity in MOFs is still a nascent �eld, in part because of the time-consuming structural
characterization required and general lack of awareness of aperiodic structures in the community, it
is an active and promising one. An illustration of this interest is the recent synthesis of TRUMOF-1,
a topologically aperiodic MOF which consists of a periodically arranged assembly of identical metal
clusters, connected uniformly in a well-de�ned but disordered fashion [78].
Emergence of amorphous MOFs
Recently, the number of non-crystalline MOF states (and porous coordination polymers) reported have
seen a rapid expansion [79] as illustrated on �gure 1.21. These include the recently discovered MOF
liquids, MOF gels, and a large variety of glassy states and amorphous solids, de�ned as possessing no
long-range order [80] and which therefore lack any translational symmetry.

Figure 1.21: Reports in the �eld of non-crystalline MOFs. Reproduced from Ref. [81].

These amorphous MOFs (aMOFs) can be produced by a variety of physical or chemical routes [79].
The majority of studies were focused on the ZIF family (introduced in section 1.2.3) owing to their
remarkable thermal stability [82], with a �rst work in 2009 on the amorphization of ZIF-8 under the
application of pressure [83]. It was followed in 2010 by a work by Bennett et al. which lead to the �rst
“well characterized” structure of an amorphous MOF, obtained from the amorphization of ZIF-4 upon
heating [84]. Amorphous ZIF-4 then became the prototypical example, later obtained by alternative
formation routes [85–87], and is the only MOF-based entry included in a recently curated database of
porous rigid amorphous materials out of 205 models of carbons, polymers, kerogens, and other material
classes [76].

Even if only a few MOFs have been observed to be able to melt upon elevation of temperature without
oxidizing or decomposing, there are multiple reported aMOF structures outside of the ZIF family such
as UiO-66 [88, 89] or Fe-BTC [82].
Amorphization strategies
They are several ways to amorphize a MOF structure, as illustrated on �gure 1.22. A number of routes are
physical, with a �rst option consisting in submitting a MOF crystal to pressures in the MPa to GPa range
with a diamond anvil cell (pressure-induced amorphization - PIA) [83, 85]. Another mechanical option
is ball-milling, which is the process of milling a material inside a shaker mill with steel balls to create
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amorphous structures from crystalline systems [87, 90]. Thermal-induced amorphization (TIA), is another
option in which amorphization is caused by heating a MOF crystal in a furnace to temperatures between
300 and 700 ℃ [84, 91]. If heated further, some systems can undergo a phase transition to a liquid
state [92] which can then be quenched to form a glass [86] by a procedure called melt-quenching. For
some frameworks the phase transitions were found to happen at lower temperatures under a combined
application of temperature and pressure, whether under static stress [93] or using in situ mechanical
vibrations [94].

Figure 1.22: Di�erent routes to the fabrication of MOF glasses. Reproduced from Ref. [79].

In addition to these physical routes, it is also possible to obtain aMOFs by chemical treatment-induced

amorphization, via removing coordinated solvent, atmospheric water-induced amorphization, amor-
phization by ligand competition, and loading induced amorphization [81]. Direct synthesis of an aMOF
has also been reported for certain frameworks [95]. It is also worth mentioning that MOFs can undergo
irradiation-induced amorphization, e.g. under a scanning electron beam [96], even if this approach
rather aims at proving the applicability of some MOFs in radiation environments (e.g. nuclear plants or
aerospace) than at producing them [97].

Polyamorphism is frequently observed, as di�erent productions routes may lead to distinct amorphous
phases, identical in composition but with di�erent physical properties (e.g. density or entropy) [98]. It
is analogous to the polymorphism of crystalline materials discussed in section 1.2.3.

In addition, variation or alternative methodologies to melt-quenching can achieve di�erent glassy
states, such as MOF blends which are created by melting and quenching a mixture of two glass-forming
MOFs [99]. It is also possible to combine crystalline and amorphous states, starting with �ux melted
MOFs which are glasses made from a glass-forming MOF and a non-glass forming MOF [100]. MOF
crystal-glass composites (MOF-CGCs) constitute another possible structure in which a crystalline MOF
is embedded within a glass MOF matrix [101]. It is also possible to combine MOF glasses with inorganic
glasses to produce composite materials [102], such as MOF glass membranes [103]. Finally, the MOF
gel state is another non-crystalline state of particular interest as it as the precursor to sol-gel MOF
monoliths [104].
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Properties and applications
Non-crystalline states of MOFs possess useful physical and chemical properties distinct from those
achievable in the crystalline phases, such as isotropy, the absence of grain boundaries, high transparency,
and mechanical robustness. They can do so while retaining intrinsic advantages of crystalline MOFs
mentioned in section 1.2.1 including high surface areas, tunable pore sizes, shapes and chemical functions
[81].

These amorphous states could allow for greater ease of processing, notably by circumventing the
performance drop due to the necessary densi�cation of the MOF powders [105, 106]. By exploring novel
material space, these disordered phases may provide new opportunities to attain chemical and physical
properties that simply cannot be reached with porous crystalline frameworks [73]. In the domain
of gas separation, an ordered crystalline state is not a requirement for gas uptake [107], and aMOFs
provide opportunities for more robust materials that could operate under realistic process conditions,
in particular for CO2 separation [16, 108]. It is therefore possible to fabricate grain-boundary-free
membranes from MOF glasses [109, 110], such as a mixed matrix membrane obtained by amorphization
of ZIF-8 for CO2/CH4 separation [111], or a polycrystalline ZIF-62 membrane on a porous ceramic
alumina support that underwent a melt-quenching treatment and which was evaluated for CO2/CH4
and CO2/N2 separation [103].

In addition to enlarging the material space, studying disorder in MOFs can be useful in better under-
standing the crystalline phases (e.g. the mechanism of crystallization [112]) and in creating alternative
properties in porous materials with multiple studies focusing on “defect engineering” [113, 114] or
“defective by design” strategies [115]. Thus, several aMOFs, including ZIFs [116], have been proposed
as candidates for drug delivery using the amorphization of the framework for the controlled release of
the drug [88]. Exploiting the phase transition between di�erent amorphous and crystalline states has
also been proposed for reversible long-term harmful substance storage [117], thermal energy storage
and conversion [118] or even phase-transition memory units [119] exploiting changes in conductive
properties [120].
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1.3 Atomistic models of amorphous MOFs
In balance with their promising properties, amorphous states are particularly challenging to characterize
and their framework structures at the microscopic scale hard to determine. Indirect structural information
can be available from di�raction experiments, but unlike for crystals, it cannot be solved into a nice
periodic atomic structure as a matter of routine analysis. Moreover, the computational description of
disordered materials is also more complex than that of crystals, �rstly due to their lack of periodicity
and symmetry [74]. As it is inherently impossible to reduce an amorphous material to a small �nite set
of atomic coordinates, each atomic structure should best be seen as representative of a plausible local
con�guration [121]. To complicate matters further, the structure and properties of many amorphous
systems – including most glasses – depend on their formation route, calling for speci�c methodological
developments of plausible numerical analogues to experimental production processes [122]. It is all the
more di�cult when the formation of the amorphous phase involves changes in coordination which
severely limits the use of every method relying on a classical description of the interactions [123].

For these reasons, there are only very few atomistic models of amorphous MOFs – mostly glasses –
available in the literature, whether from experimental or computational studies. It is unfortunate as the
possession of atomistic models has the potential to signi�cantly accelerate the rational development of
materials [124], both to complement experimental techniques [125] and to predict novel architectures
[126]. In this section, I review and compare the existing methodologies available for the determination
of microscopic models of amorphous MOFs, as well as the structure they generated, assessing their
strengths and weaknesses. This review has been published in The Journal of Physical Chemistry C (2022)
[127], and is updated in the present section with the works published since.

1.3.1 Reverse Monte Carlo models
The determination of material structures from limited, indirect experimental data, is a classic example
of an inverse problem. Reverse Monte Carlo (RMC) modeling is a general method for the resolution of
such inverse problems, which in condensed matter aims to produce atomistic models based on available
experimental data, in particular from X-ray or neutron-scattering experiments [128]. Starting from an
initial con�guration provided by the user, atomic positions are iteratively adjusted using a Monte Carlo
algorithm to minimize the di�erence between calculated and experimental total structure factors. The
minimization can be performed under a set of constraints (density, coordination, bond lengths or angles,
etc.) which are added to the structure factor di�erence with customizable weights. No knowledge of
the physics or chemistry of the system is required; for example, no interatomic potential is used in
the conventional sense [129]. This makes RMC modeling applicable to any system, a very appealing
property for new classes of materials [130]. The downside is that the thermodynamical consistence
of the model is not guaranteed, as the optimized con�guration could be physically unrealistic. The
problem is also typically underconstrained, as a large number of di�erent con�gurations could equally
�t the experimental data.

For these reasons, RMC modeling was used to generate the �rst published model of an amorphous
MOF, an amorphous ZIF-4 (aZIF-4) obtained by temperature-induced amorphization [84, 131] — and
is still, to date, the only technique that has been used to construct an amorphous MOF model from
experimental data. This aZIF-4 model was constructed from neutron and X-ray total scattering data
collected at a synchrotron facility. In addition to this experimental data, it used density, connectivity
and molecular geometry constraints to preserve the network topology of the initial con�guration. Three
initial con�gurations were tested: two crystalline polymorphs (ZIF-4 and ZIF-zni), and a continuous
random network (CRN) model of a-SiO2 adapted by substituting atom groups (see next section and
�gure 1.24c for details). As shown on �gure 1.23, only the latter con�guration allowed RMC re�nements
to capture the experimental data and resolve its structure, which was therefore con�rmed to be highly
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Figure 1.23: RMC �ts (red) to experimental data (black) of the di�erential pair correlation function
D(r), neutron and X-ray total scattering functions F

N
(Q) and F

X
(Q). Calculated with three initial

con�gurations: ZIF-4 (top), ZIF-zni (middle) and an a-SiO2 CRN (bottom). Reproduced from Ref. [84].

disordered and not crystal-like. Additionally, the very process of RMC modeling with di�erent initial
con�gurations showed that the system undergoes a reconstructive (i.e. involving bond breaking and
forming events) phase transition during amorphization, and hints that the framework topology is
markedly di�erent from the crystal phases.

Later works by Keen and Bennett on di�erent ZIF systems have adopted the same method and improved
it by inputting experimental values of the density, as obtained from pycnometric density measurements.
It was �rst extended to produce a model of ZIF-8 (featuring 2-methylimidazolate ligands instead of
imidazolate) amorphized by ball milling [132], starting from the same CRN model with a change of
organic ligand. A reconstructive phase transition was also demonstrated. Then it was applied to
amorphous phases of ZIF-4 produced by two other routes, which were modeled and compared to
temperature induced amorphization: melt–quenching [92] and ball milling [87]. The atomistic models
were found to be near-identical, with indistinguishable short-range order. To have more insight into the
structural changes during the melt-quenching procedure, an intermediate model of the liquid state was
also �tted to X-ray data, although the accuracy of RMC for such complex liquids is not �rmly established
and might depend strongly on the constraints used.

1.3.2 Continuous random networks
Even though MOFs are chemically more complex than inorganic phases, the microscopic modeling
of amorphous MOFs can draw inspiration from models of long-studied disordered materials, such
as silica. The structure of amorphous silica has been consensually modeled as a continuous random
network (CRN), and there is a large body of work on this topic [133]. Random networks possess a
signi�cant degree of local order, while allowing su�cient bond distortions to have some freedom in
the medium-range order, and (as desired) exhibit no long-range order [80]. If they have no broken
bonds in reference to their ideal connectivity, they are said to be continuous. CRNs can be generated
with a variety of approaches and possess di�erent structures which can be validated by looking at the
agreement of computed properties with experimental data: the most commonly available data is the
total pair distribution function, or radial distribution functions (RDF). Just like perfect crystals, CRNs
should be considered as idealized, yet particularly insightful, structures of the real-world materials they
represent [134].

The �rst CRN model of an amorphous MOF was constructed for ZIF-4, on the basis of the structural
similarities between ZIF-4 – Zn(Im)2 – and amorphous silica a-SiO2 [84]. They both share a similar short-
range order with the tetrahedral coordination of the metal ion and a node–ligand–node angle of 145°.
They also display corresponding features in their RDFs, while their numerous crystalline polymorphs
exhibit several shared topologies. Therefore, a CRN model of a-SiO2 was adapted by substituting Si and
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O to Zn and Im (Im = imidazolate), respectively, as represented in �gure 1.24c. This experimentally
consistent [133] a-SiO2 CRN had been obtained by expanding an a-Si model (adding O atoms between
each Si as illustrated on �gure 1.24b), which was itself produced following the Wooten–Winer–Weaire
(WWW) method. This widely used procedure for tetrahedrally bonded single-component networks
starts from a crystal and proceeds to minimize an energy function using a simulated annealing algorithm
that performs successive steps of bond rearrangements shown on �gure 1.24a [135, 136].

Figure 1.24: (a) Creation of an a-Si continuous random network (right) following the WWW procedure,
starting from a crystal (left) and performing successive bond rearrangements (inset) [136]. (b) Expansion
of the a-Si CRN into an a-SiO2 model [137]. (c) Expansion of the a-SiO2 model into a model of a-ZIF,
where the Si–O–Si linkage is replaced by Zn–Im–Zn [138]. Adapted from ref. [136–138].

Used as an initial con�guration for the RMC re�nements mentioned in the previous section [84], this
�rst CRN paved the way for CRNs to be considered as representative of aZIFs atomic structure. A similar
construction procedure starting from a di�erent a-Si CRN was used for the creation of an aZIF-4 model,
which was studied after a density functional theory (DFT)-based geometry optimization [139]. The a-Si
model was constructed following a method predating WWW that starts from an initial centered cubic
system with quasirandom coordination before also minimizing the energy, albeit with alternative bond
rearrangement and minimization procedures [140]. Although this method was eclipsed by WWW which
was more successful at generating large systems of arbitrary size [135], it has the virtue of generating
fully coordinated CRNs which possess no memory of the initial crystalline phase. The resulting aZIF
model was validated by comparing its RDF with experimental data, and was su�ciently large (918
atoms) to realistically calculate the electronic structure, interatomic bonding and optical properties.
Unlike other amorphous ZIF models, it is fully coordinated by design and is of lower density than
the crystal. This surprisingly low density is caused by the enlargement of the a-Si cell before the
substitution procedure as displayed on �gure 1.24c, where an arbitrary – and seemingly excessive –
factor of 2 was applied. The elastic behavior of this model was studied in a later work by successive
steps of isotropic deformation of the cell and geometry optimization. The mechanical properties were
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computed, as well as the evolution of the electronic and optical properties under compression [141].
An insulator-to-metal transition leading to a novel phase is claimed to be observed under extreme
compression, but the apparent breaking down of the organic ligands questions the physical validity of
these simulations.

This aZIF CRN model can easily be expanded to other materials of the ZIF family, by substituting
the organic ligands and metal nodes to investigate their in�uence on derived physical properties. In
particular the change in electronic and optical properties were studied for ZIF-4 and MAF-7 (featuring
1,2,4-triazole ligands) with alternating Li/B metal nodes [138], ZIF-62 (imidazolate and benzimidazolate
ligands) for various ligand ratios [142], and ZIF-4 with halogenated imidazolates (H atoms substituted
with Cl or Br) [143]. When available (i.e. only for one ZIF-62 system with a given ratio), the system was
validated by comparing the RDF with experimental data, but this could not systematically be performed.
The physical realism of the CRN models obtained is therefore not systematically demonstrated.

1.3.3 Relying on crystalline models
Because of the di�culties of directly modeling amorphous phases, some research groups have tried to
address this issue by ad hoc adaptation of modeling strategies designed for crystalline states. One such
example is the creation of disordered models of UiO-66, MIL-140B and MIL-140C, three zirconium-based
MOFs, by incorporating defects into the crystalline model through several possible pathways [89]. Those
pathways, initially devised based on chemical intuition, were selected to display a small enough energy
penalty to be thermodynamically accessible and lead to an experimentally plausible change of lattice
constants. NMR (Nuclear magnetic resonance) chemical shift calculations of the defective structures
derived from each pathway were performed based on DFT, and the NMR spectra were compared to
experimental data. As several pathways led to a better agreement than the perfect crystalline model, it
was inferred that some of these defects are present in the amorphous structure.

Another possible strategy, which aims not only at highlighting the presence of defects but rather at
generating amorphous models, consists in simulating the phase transition from a crystalline MOF using
classical molecular dynamics. Molecular dynamics (MD), further detailed in section 2.1, reproduces the
time evolution of molecules and materials by numerically integrating Newton’s equations of motion,
based on the knowledge of atomic interactions at a given level of theory, and can be performed at
varying conditions of temperature and mechanical constraints. It is therefore a way to mimic in silico the
experimental formation routes, such as melt-quenching, by imposing adequate thermodynamic variables
such as pressure or temperature. Not only does this approach generate amorphous systems, it also
provides detailed knowledge of the underlying microscopic mechanism causing amorphization.

The most commonly used type of MD simulations for crystalline MOF phases is classical MD, where
the interatomic potential is evaluated as an analytical function of the atomic positions, called the force
�eld. That force �eld is optimized to reproduce the structure and dynamics of the framework, based on
experimental data or quantum chemistry calculations (more details in section 2.3.2). Although classical
MD simulations are routinely used for crystalline MOFs [144, 145], they cannot describe changes in the
electronic state of the atoms. In particular, they are unable to simulate bond breaking or reformation and
thus cannot simulate reconstructive phase transitions (i.e. crystal-to-crystal or crystal-to-amorphous
processes in which the coordination changes).

However, some authors have attempted to use such classical MD models to study the amorphization of
MOFs. For example, Ortiz et al. showed that while the classical force �eld could not be relied upon to
describe the nature of the amorphous phase, it could still be useful to study the mechanical stability of
the crystal before amorphization, and determine the onset of the phase transition [146]. Ortiz performed
the �rst computational study on the pressure-induced amorphization (PIA) of ZIF-8, by simulating
the crystal at various pressures in a constant-stress ensemble (N , σ, T ), which allowed to estimate
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the amorphization pressure by identifying the point at which the phase transition occurs, illustrated
on �gure 1.25. Increasing the pressure above this threshold numerically leads to a new phase, the
physical reality of which is not clear: it can be seen as a hypothetical amorphous ZIF-8 system under
the constraint that no bond breaking takes place during amorphization. The same approach was also
used in two separate studies, in one for illustrative purposes only [98] and in the other as a validation
experiment of a newly developed force �eld [147]. In the latter, the �nal amorphous system was validated
by comparing the structure factor to experimental data. However, the underlying assumption of the
non-reconstructive nature of this pressure-induced amorphization has yet to be directly con�rmed, e.g.
by in situ measurements. It is in stark contrast with other studies that found ZIF-8 amorphization by
ball milling and melt-quenching to be reconstructive [123, 132].
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Figure 1.25: Evolution of the unit cell edge length and elastic constants of ZIF-8 under hydrostatic
pressure, from classical molecular dynamics simulations, showing the onset of amorphization at P =
0.35 GPa, where the shear modulus C44 goes to zero. Adapted from Ref. [146].

Finally, Bhogra et al. developed another approach to gain insight into the amorphization process by
studying the instability of the crystalline phase [148]. They combined geometry optimization calculations
based on DFT and phonon-spectral analysis to investigate the amorphization pathways of MOF-5, a
MOF comprised of ZnO4 tetrahedra bonded with benzene dicarboxylate ligands. Starting with a strained
crystal, they proceed by �nding its unstable phonon modes (if any) to distort the structure in order
to have the atomic displacements forming linear combinations of these modes, before performing a
�nal energy minimization at �xed cell shape and volume. At su�cient strain, this last step leads to
amorphization which manifests itself as an internal structural rearrangement. Although unique in the
study of amorphous MOFs and performed in the zero-Kelvin limit, this approach has the bene�t of
hinting at the microscopic mechanism for pressure-induced amorphization — even though pressure and
temperature are not explicitly present.

1.3.4 Ab initio molecular dynamics
Unlike classical MD, ab initio molecular dynamics (AIMD) is a method that allows a full description
of the electronic state of the system at the quantum chemical level and can describe the formation
and breaking of chemical bonds. It is therefore highly suited for the modeling of reconstructive phase
transitions. AIMD, of which there are several “�avors”, combines the modeling of the equations of
motion of the nuclei and the quantum nature of the electrons and is further described in section 2.2.
More computationally demanding than classical MD, AIMD can only simulate phenomena at smaller
time and length scales. However, using modern high-performance computing resources, it is tractable
for MOFs with a few hundred atoms in the unit cell, such as most ZIFs, for times ranging from tens to
hundreds of picoseconds.

The �rst AIMD simulations in the �eld of amorphous MOFs studied the melting and subsequent
amorphization of ZIF-4 by quenching [92]. Starting from a single unit cell of the ZIF-4 crystal, several
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Figure 1.26: Visualization of a representative imidazolate (Im) exchange event in the microscopic
mechanism of ZIF-4 melting, as observed by ab initio molecular dynamics. Reproduced from Ref. [92].

distinct simulations were performed in the constant-volume (N ,V , T ) ensemble with temperatures
ranging from 300 to 2250 K, and adequate volume to reproduce the experimentally measured densities.
This procedure did not aim at generating a glass model, but rather at identifying the melting transition
and studying the microscopic mechanism involved. By presenting a representative imidazolate exchange
event at the origin of bond rearrangements, �gure 1.26 exempli�es the atomistic insight permitted by
AIMD, looking at structural and dynamical details. Additionally, AIMD was used to investigate the
thermodynamics of melting and characterize the generated liquid ZIF, in synergy (and good agreement)
with in situ variable temperature X-ray and ex situ neutron pair distribution function experiments
performed in the same study. The same procedure was subsequently performed on two other networks
with di�erent topologies: ZIF-zni, chemically identical, and ZIF-8, composed of di�erent ligands [149].
As the details of the DFT methodology are largely independent from the topology, the chemical similarity
of the frameworks ensured a smooth transferability. By computing the melting temperature of each
framework and comparing it to its experimentally determined decomposition temperature, this second
work helped explain why some frameworks are experimentally observed to melt while others collapse
before melting.

While particularly insightful into the melting dynamics, these two studies did not explicitly generate
atomistic models of ZIF glasses. This was later completed by a subsequent work simulating the entire
glass formation procedure, through melting and quenching, which highlighted the distinct structural
properties of the glasses compared to both the liquid and crystalline phases [123]. Three ZIFs crystals –
ZIF-4, ZIF-8 and SALEM-2 (which features imidazolate ligands like ZIF-4, but has the same topology
as ZIF-8) — were �rst melted at 1500 K, before being quenched to 300 K with a cooling rate of 50 K/ps.
Because the high computational cost of AIMD puts strong limits on the system size, and makes it
unfeasible in this case to study larger supercells, 10 quenching simulations were performed for each
material to reduce the impact of �nite size e�ects and get a statistically representative description of the
glasses. We should note, however, that the computational cost also limits the total simulation time, and
means that the cooling rates attained are several orders of magnitude higher than any achievable in
the laboratory [80]. We note that although this is an inherent limitation of any molecular dynamics
simulation, it is more pronounced for ab initio.

The use of the constant-pressure MD simulation in the (N , P , T ) ensemble would prove a potential
improvement of these works, as it would allow the joint study of both dynamical and thermal e�ects
without having to input the system density. However, ab initio simulations of such systems are notori-
ously challenging to equilibrate, as these frameworks respond very sensitively to small external stimuli
and thus to small deviations in the computation of the stress tensor [150]. As of today, no computational
scheme has been demonstrated to accurately describe the equilibrium between the three phases involved
(crystal, liquid and glass) and the respective values of their density.

However, AIMD was used to help study the e�ect of pressure on various types of amorphization
processes, through the application of high pressure, high temperature, or both. Widmer et al. studied the
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low-temperature melting of two ZIFs, ZIF-4 and ZIF-62, under the application of hydrostatic pressure
[93]. Multiple simulations were performed in the constant-pressure (N , P , T ) ensemble around the
thermal amorphization temperature with various pressures in the 0.1 to 5 GPa range. Similarly to the
aforementioned melting studies [92, 149] this work gave insight into the melting process under pressure,
but did not aim at providing an atomistic model of the �nal, fully equilibrated molten frameworks.

Finally, two works tackled pressure-induced amorphization by running AIMD simulations with in-
creasing pressure, going above the amorphization onset, with a di�erent methodology. Erkartal et al.
developed an ad hoc technique that proceeds by running successive short out-of-equilibrium isoenthalpic-
isobaric (N , P ,H ) MD runs at various pressures. Neither the system enthalpy nor temperature are actually
controlled in the process, making it somewhat akin to an energy minimization algorithm. The �rst work
studied the MOF-5 amorphization under hydrostatic pressure by investigating the change in structural
and electronic properties and provided the �rst amorphous MOF-5 atomistic model ever reported [151].
The second one investigated pressure-induced amorphization of ZIF-8 both under hydrostatic and
uniaxial stress. The resulting amorphous ZIF-8 was obtained without bond-breaking, and the method
was validated by comparing the RDF with experimental data [152].

1.3.5 Reactive force �elds
Despite its chemical accuracy and ability to simulate reconstructive phase transitions, AIMD signi�cant
computational cost limits its use to small systems on rather short time scales (hundreds of ps) and
all but prohibits its use for high-throughput screening. Reactive force �elds are empirical force �elds
that possess connection-dependent terms, enabling the simulation of bond breaking and reformation.
Compared to ab initio methods, they trade accuracy for lower computation cost [153]. They are further
described in section 2.3.3.

Their use to study amorphous MOFs is so far primarily focused on melt-quenched ZIF glasses. The
systems were simulated using ReaxFF, a �avor of reactive force �elds which interatomic potentials are
functions of bond order, itself calculated from interatomic distances. This was made possible by the
development of a reactive force �eld conceived for the study of Zn-Imidazolates complexes in aqueous,
validated for these systems with ab initio data [154]. This ReaxFF force �eld was then used to generate
amorphous ZIFs, after a limited preliminary validation on crystalline structures [155]. We note that this
force �eld was neither originally developed — nor subsequently shown — to accurately reproduce the
geometry of the Zn(Im)4 tetrahedra, key to the framework properties.

In a �rst work, three ZIF crystals, ZIF-4, ZIF-62 and ZIF-77 (2-nitroimidazolate ligands), were heated above
melting temperature before being quenched in the constant-pressure (N , P , T ) ensemble as illustrated
on �gure 1.27. The heating/cooling rates were of 96 K/ps, higher than the AIMD melt-quenching work
[123]. The inexpensiveness of the method allowed to simulate a (2× 2× 2) supercell, limiting the �nite
size e�ects. The approach was validated for ZIF-4 by comparing the RDF to experimental data and
several properties to the �rst ab initio work on aZIF-4 [92]. Compared to AIMD, the ReaxFF simulation
yielded the same heat capacity and reproduced the same relationship, albeit more pronounced, between
temperature and the undercoordination of Zn nodes. However, unlike ZIF-4 glasses later obtained by an
AIMD melt-quenching simulation [123] which preserved the density (1.2) and porosity of the crystal,
the ReaxFF glass was of signi�cantly higher density (1.6) and lost its porosity.

This melt-quenching procedure with ReaxFF was then replicated on various ZIFs in further works, albeit
with a slower heating/cooling rate of 24 K/ps, to study properties that would otherwise be prohibitively
expensive with AIMD. An amorphous ZIF-62 model was generated to study the fracture toughness of the
glass by inducing a precrack in an enlarged (2× 6× 4) supercell before a stepwise elongation [156]. It
was validated by comparing to experimental data the RDF and multiple mechanical properties, i.e. Young
modulus, Poisson’s ratio and fracture toughness. A subsequent study performed equivalent simulations
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Figure 1.27: Representation of the melt-quenching process applied to ZIF-4 using the ReaxFF reactive
force �eld. (a) Evolution of temperature over time. (b) Successive snapshots at three di�erent times, in
the crystal, liquid, then glass states. Reproduced from Ref. [155].

for ZIF-4 and ZIF-76 (mix of imidazolate and 5-methylbenzimidazolate ligands), before investigating the
structural origin of the facture behavior [157]. Yet another work computed the thermal conductivity
of amorphous ZIF-4, ZIF-62 and ZIF-8, which were validated by comparison with experimental values
[158]. The glass was shown to have a higher conductivity than the crystal, a very unusual relation,
and the atomistic models were key to investigate the structural origin of this phenomenon. In another
study, ReaxFF was used to simulate an irradiation process on both ZIF-4 crystal and glass models
[159]. Finally, the obtained atomistic models were used, along with experimental data, to develop a
topological constraint model which predicted the glass transition temperatures of any ZIF sharing
the topology of ZIF-4 (cag) with an arbitrary mix of three ligands (imidazolate, benzimidazolate and
5-methylbenzimidazolate) [160].

In addition to this large body of work on melt-quenched ZIFs glasses, an earlier ReaxFF-based force
�eld, initially developed for the interaction of glycine with a copper surface [161] and not validated
for MOFs, was used to study the mechanical amorphization of three copper based MOFs [162]. These
frameworks, chosen to contain non-accessible regions in their crystalline form, were subjected to shear
or compressive deformations performed in the constant-pressure (N , P , T ) ensemble. At moderate strain
levels, they displayed an enhancement of their porosity, made possible by the breakage of metal–linker
bonds which lead to partial amorphization.

1.3.6 Polymerization algorithms
Although classical MD cannot be used to simulate a reconstructive phase transition, it can still play a
role in the generation of atomistic models using simulated assembly/polymerization-based modeling.
Polymatic, a generalized simulated polymerization algorithm, was �rst developed for amorphous
polymers and later used to generate amorphous MOFs following a well-de�ned procedure illustrated
on �gure 1.28. Starting from a low-density random packing of the building units of the amorphous
material, i.e. the metal nodes and organic linkers for MOFs, successive steps of bond formation and
structural rearrangement are performed. Bond formation is only allowed between prede�ned reactive
sites and considered when two sites are within a de�ned cut-o� distance. Structural rearrangement
at turns involves energy minimizations and MD steps in the (N ,V , T ) or (N , P , T ) ensemble. When no
further bonds can be formed, the structure is annealed using a multistep MD protocol that applies for
a limited time arti�cially high pressure to compress the system to a reasonable density [163]. As the
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bonds are at all time well-de�ned, classical force �elds can and are employed for energy minimizations
and MD runs.

The �rst amorphous MOF generated with Polymatic is the well-studied ZIF-4, of which 5 atomistic
models were generated to sample di�erent regions of con�guration space [164]. The validation of
the approach was limited to the comparison of the density and pore volume fraction to experimental
values.

A more comprehensive study by Sapnik et al. modeled for the �rst time two MOFs, Fe-BTC and Basolite
F300, one of its commercial forms [82]. As illustrated on �gure 1.28, they contain two sorts of nodes,
trimer units (FeO6 octahedra that cluster around a shared oxo-anion) and tetrahedral assemblies (4
assembled trimers via an organic linker), and 1,3,5-benzenetricarboxylate anions as linkers. Before
this work, their atomic-scale structures were unknown, and they were previously being described
as either disordered, amorphous or nanocrystalline. Ab initio methods are not an option due to the
considerable number of atoms (more than 10,000) needed to describe such systems, and no reactive
force �elds are available for their chemical compositions. UFF4MOF, the extension of the Universal
Force Field parametrized for the description of MOFs [144], was used in this study after validation on
trimers and linkers with DFT. As the node ratio was unknown, three models were built: a short-range
order model (SRO) containing 100% trimers, a mixed model (MIX) containing a 50/50% mixture of
trimers and tetrahedra, and a medium-range order model (MRO) containing 100% tetrahedra. Each
model was built 5 times and properties were averaged. Guided by RDF similarity and pore analysis, the
authors concluded that two of these models could be considered representative of the atomic structure
of Fe-BTC and Basolite F300. From this they deduced a structure–property relationship between the
degree of tetrahedral assembly and porosity. A subsequent study explored the in�uence of defects
on the structural properties by generating nine amorphous models with the composition of Fe-BTC
using various node ratios (SRO, MIX, MRO) and levels of defects. [165] These two works on two
carboxylate MOFs exemplify how the comparatively low computational cost of this approach, along
with the versatility of classical force �elds, make it viable for the generation and investigation of various
disordered structures, including outside of the well-studied ZIF family.

Figure 1.28: Representation of the procedure used to build three amorphous models (SRO, MIX and
MRO, see text for details) of Fe-BTC with the Polymatic method. Adapted from Ref. [82].
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Conclusions and perspectives
In this introductory chapter, I introduced the need for negative emissions to reach our climate targets,
and how carbon capture, utilization and storage could be one out of multiple options that should
simultaneously be applied to limit the increase in temperature. Among the multiple challenges to
overcome, a signi�cant research e�ort goes into reducing the energy penalty, in part by looking for new
materials that could be used in less energy-intensive processes.

Metal–organic frameworks are a large family of porous materials which have been proposed for this task.
There is an increasing interest in the amorphous states of MOFs, which notably yield the opportunity of
increased robustness. Exploring the material space constituted by these amorphous states could lead to
much desired new materials for CO2 separation, and would bene�t from having access to the atomistic
models of numerous aMOFs.

However, the determination of the aMOFs framework structures at the microscopic scale is di�cult.
We reviewed and compared the existing methodologies available, based on both experimental data and
numerical simulations, which are Reverse Monte Carlo methods, continuous random networks, classical
and ab initio molecular dynamics, reactive force �elds, and polymerization algorithms. From that review,
it is clear that in most cases, the problem of modeling is mathematically underdetermined, and it is di�cult
to arbitrate between di�erent possible models. This is due to the relative lack of available experimental
data, with only indirect structural information obtained from di�raction measurements.

In order to improve the quality of amorphous models in the future, I think there is a clear need for
wider studies, integrating many di�erent experimental techniques, in order to provide in situ data, for
example by spectroscopic methods: infrared and Raman, NMR, etc. [166] In addition to providing direct
insight into the nature of the amorphous phases of MOFs, such data could be used as a benchmark to
test the di�erent types of microscopic models generated. Databases of amorphous porous materials
could then be expanded, along the lines of what has been done for years for the crystalline phases, and
help accelerate e�orts to model these systems [76].

I also conclude that there is, in the existing literature, a lack of direct and in-depth comparison of the
models. In particular, their geometrical, physical and chemical properties have not been systematically
compared against each other. While the generating methods vary a lot (some are purely mathematical,
some rely on physical or chemical insight, some perform direct molecular simulations), the models
produced have very di�erent characteristics that should be systematically computed and contrasted:
density, porosity, framework coordination, topology, etc.

Finally, it appears to me that no single modeling method can currently yield an accurate microscopic
representation of the MOF glasses, which suggests the development of multi-scale modeling strategies,
combining the strength of the di�erent methods already available. I have tested and commented some
of these strategies during my PhD.
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Since its emergence in the 1950s, molecular simulation has seen an ever-growing use in the �elds of
physical, chemical, and materials sciences, to the point that today numerical simulations constitute
a �eld of research in their own right and are sometimes referred to as in silico experiments [167].
Complementary to experimental techniques and pen-and-paper theoretical models, they can shed light
on some microscopic mechanisms that experimental measurements cannot grasp, for example accessing
very short space and time scales or studying experimentally inaccessible conditions. Computational
tools o�er a better understanding of multiple mechanisms which can assist experimental synthesis
works [125], and have been massively used to study gas separation in MOFs [168], notably for CO2
separation [169].
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In addition, molecular simulations o�er an opportunity to predict novel architectures, with considerable
e�ort devoted to enumerate all the plausible MOF structures constructed by the assembly of a large
diversity of inorganic and organic building blocks [126]. These hypothetical MOFs, along with the
development of large databases of experimental MOF structures [170], make it possible to search for
a MOF with a set of required properties by building on the study of structure-property relationships
and the development of various high-throughput computational screening methods [126, 171]. The
past decade has seen an increase in the use of data-driven techniques, with the application of arti�cial
intelligence (AI), in particular, machine learning (ML) [124], notably for the selection and/or prediction
of MOFs with good performance for CO2 separation [172, 173]. This computation e�ort has the potential
to signi�cantly accelerate the rational development of materials, where the traditional experimental
materials discovery process is slow [124, 174].

In this chapter I will present the di�erent computational methods I used during my PhD. Among the
many molecular simulation methods, I focused mostly on molecular dynamics which I �rst introduce in
section 2.1. I used four di�erent �avors of molecular dynamics which are presented in three separate
sections: ab initio, (section 2.2), with classical and reactive force �elds (presented jointly in section 2.3),
and �nally with machine learned potentials (section 2.4). Finally, section 2.5 aggregates multiple methods
I used for the analysis of the molecular dynamics simulations.
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2.1 Molecular dynamics simulations
2.1.1 Space and time scales
Diversity of simulation methods
To understand real materials through computation, one needs to consider a variety of e�ects from
quantum interactions at very small length scales to macroscopic properties at very large length scales.
Achieving this requires the use of a range of numerical methods tailored for di�erent purposes, which
are represented on �gure 2.1. Based on multiple levels of theory, they provide access to di�erent space
and time scales with various accuracies, and are often highly interconnected [175].

Figure 2.1: (a) Computational methodologies address systems spanning from microscopic to macro-
scopic length scales. Based on di�erent levels of theory, these methods provide (b) di�erent accuracies,
achievable simulation times, and (c) access to di�erent phenomena. Reproduced from Ref. [175].

Scales in this work
Among this multiplicity of methods, I have used in this work computational tools able to simulate
systems typically comprised between N = 200 and 10,000 atoms (corresponding to ∼ 10-100 nm),
with typical time scales found between 10 ps and 10 ns. On �gure 2.1, they correspond to “DFT”
(section 2.2), “Molecular Dynamics”, “Force �elds” (section 2.3.2 and section 2.3.3) and “machine learning”
(section 2.4).
Periodic boundary conditions
While these numerical methods are used to study atomistic models of a few hundreds atoms, the end
goal is generally to study macroscopic materials and chemical systems composed of a number of atoms
of the order of Avogadro’s number (∼ 1023 atoms). A typical way to represent these materials is to use
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periodic boundary conditions (PBC). The basic idea is the simulation of a small box containing N atoms,
called the unit cell, which is replicated throughout space to form an in�nite lattice, as illustrated on
�gure 2.2 [176]. The copies of the initial box are called images of this box.

The unit cell can be represented by three unit cell vectors – a, b, c – which de�ne the primitive axes. For
convenience, the unit cell matrix (also called unit cell tensor) h = [a, b, c] can be introduced.

−−−−−−→

Figure 2.2: Example of ZIF-4 with periodic boundary conditions showing the replication of a unit cell
(right) in all three directions to yield a (2x2x2) supercell (left). Reproduced from Ref. [177].

The periodicity of the crystals makes it easy to simulate a single unit cell and virtually extend the size
of the system by periodic boundary conditions. However, as the use of PBC introduces an arti�cial
periodicity into the system, it is harder to study defects that are inherently replicated over all the
images. Studying aperiodic (e.g. disordered) systems is even more complex, as they do not possess any
translational periodicity. They can, however, be approximated by periodic structures with large unit
cells [74].

2.1.2 Principles of molecular dynamics
Molecular dynamics (MD) is a family of numerical techniques which have in common to reproduce the
time evolution of molecules and materials by numerically integrating Newton’s equations of motion,
based on the knowledge of atomic interactions at a given level of theory. I will now brie�y outlay the
principles of MD, and recommend the following books for an in-depth description [176, 178].
Eqations of motion
In all the di�erent �avors of MD used in this work, the nuclear motion of the constituent particles obeys
the laws of classical mechanics.

Let us therefore consider an atomistic system containing N individual atoms with Cartesian coordinates
ri, masses mi and momentum pi. For convenience, let us denote r and p the set of all positions {ri} and
momentum {pi}. The interactions between the atoms are described by a potential energy U (r), with no
explicit dependence on time and p, such that the classical Hamiltonian of the system is:

H (r , p) =
N

∑
i

p
2
i

2mi

+ U (r) (2.1)
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The equations of motion of the system are therefore:

∂ri
∂t

= vi

mi

∂pi
∂t

= –∂U (r)
∂ri

(2.2)

Potential energy
A variety of approaches coexist to obtain the potential energy U (r) from a con�guration of atomic
positions r . I will detail in the next three sections the approaches used in this PhD: from quantum
calculations (section 2.2), using classical and reactive force �elds (section 2.3), and �nally using machine-
learned potentials (section 2.4). In this section we will consider that we know how to compute U (r)
from the knowledge of r .
Integration scheme
The evolution of the atomic positions and velocities of the system are obtained by integrating the
equations of motion using �nite di�erence methods and by discretizing time. Starting from an initial
con�guration at time t, these equations allow computing the positions and velocities at the next time
step t + δt.

A number of integration schemes suitable for MD simulations exist in the literature, which all possess a
number of desirable qualities for this task (satisfy the conservation laws of the system, time-reversible,
fast, accurate, etc.) [176, 178]. Most MD programs use a variant of the algorithm initially adopted by
Verlet [179], that is described here as an illustrative example. The algorithm written in its velocity Verlet
form is as follows:

v(t + δt/2) = v(t) + 1
2a(t) δt,

r(t + δt) = r(t) + v(t + δt/2) δt,
a(t + δt) = m

–1
f (t + δt),

v(t + δt) = v(t + δt/2) + 1
2a(t + δt) δt,

(2.3)

where fi = –∂U (r)/∂ri is the force acting on atom i, v = m
–1
p are the velocities, and m the mass

matrix.

For this discretization to be valid, the time step δt has to be small enough so that both the second and
higher order terms in δt are negligible, and the forces acting on each atom can be considered constant
between t and t + δt. For the systems in this work, δt was comprised between 0.25 fs and 1 fs. This is
dictated by the fastest motion in the system.

2.1.3 Thermodynamic ensembles
By default, molecular dynamics sample the microcanonical, or (N ,V , E) ensemble, which conserves
the mechanical energy E, volume V and number of particles N , as total energy is conserved in the
integration of Newton’s equations of motion.

A great strength of MD, however, is the ability to perform simulations at varying conditions of tempera-
ture and mechanical constraints. An example use case in the study of amorphous MOFs is the possibility
to mimick in silico experimental formation routes, such as melt-quenching or pressure-induced amor-
phization, by imposing adequate thermodynamic variables such as pressure P or temperature T . It
can be achieved by sampling alternative thermodynamic ensembles such as the canonical (constant
(N ,V , T )) or isothermal-isobaric (constant (N , P , T )) ensembles, illustrated on �gure 2.3.
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Figure 2.3: Schematic of the microcanonical, canonical and isothermal-isobaric ensembles. Reproduced
from Ref. [180].

Thermostats
The canonical (N ,V , T ) ensemble can be simulated by using thermostats, i.e. algorithms that control the
temperature by changing the kinetic energy of the system, or more generally by changing the velocities
of the atoms. A number of thermostats exist in the literature, with implications on the temperature
response of the studied systems [181, 182], of which I will introduce those used in this work.

A widely used thermostat to probe the correct canonical ensemble is the Nosé-Hoover thermostat
[183, 184]. In this approach, the Hamiltonian of equation (2.1) is extended to include an additional
variable s representing an extra degree of freedom:

H (r , p, s, ps) =
N

∑
i

p
2
i

2mis
2 + U (r) + p

2
s

2Q + gk
B
T ln (s) (2.4)

where (r , p, t) are virtual variables, related to the real variables (r ′, p′, t′) by

r = r
′

p = sp
′ δt = sδt′ (2.5)

and where g is a parameter essentially equal to the number of degrees of freedom of the physical system,
ps is the conjugate momentum of s, k

B
the Boltzmann constant and Q is a parameter that behaves as a

mass and which can be tuned to change the intensity of the coupling. This thermostat supplements
the physical phase space with the additional variable s which mimics the e�ect of a heat bath using a
deterministic scheme [181].

Instead of using such extended Hamiltonian methods, another approach consists in using rescaling
methods to sample the canonical ensemble. This is the basis of the Canonical Sampling through Velocity
Rescaling (CSVR) [185] thermostat, also used during my PhD, in which the velocities of all the particles
are rescaled by a properly chosen random factor. While the Nosé-Hoover thermostat can exhibit
nonergodic behavior, this version of CSVR was found to be more ergodic while still probing the correct
canonical ensemble [185].
Barostats
Controlling the pressure can be done with the same approaches as the temperature to generate the
isothermal-isobaric, or constant (N , P , T ) ensemble. In this case, the barostat aims at converging the
average value of the pressure 〈P〉 by dynamically changing the volume V . This change can be done by
�xing the cell shape, represented by the normalized unit cell tensor ĥ = V

–1/3
h, and applying a uniform

dilation of the cell, or by allowing ĥ to change.
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In this work, following the nomenclature of Ref. [182], I will refer to the �rst of these ensembles (�xed ĥ)
as (N , P(ĥ), T ), or (N , P , T ) with an isotropic cell. The (N , P , T ) ensemble with varying ĥ will be referred to
as (N , P(σa), T ), (N , P , T ) with a �exible cell or as the constant-stress ensemble denoted (N , σ, T ).

To better spot the di�erence between these ensembles, let us decompose the stress tensor σ, into the
hydrostatic pressure P = Tr(σ) and a deviatoric stress σa:

σ = P1 + σa (2.6)

While both ensembles ensure convergence of the average pressure 〈P〉 of the system, (N , P(ĥ), T ) does it
by keeping ĥ constant while (N , P(σa), T ) have 〈σa〉 converge, generally aiming for 0. Table 2.1 provides
a summary of the ensembles used in this work with the precise quantities which are �xed.

Ensemble N V E 〈T 〉 ĥ 〈P〉 〈σa〉 Alternative names
(N ,V , E) × × × ×
(N ,V , T ) × × × ×

(N , P(ĥ), T ) × × × × (N , P , T ) isotropic cell
(N , P(σa), T ) × × × × (N , P , T ) �exible cell; (N , σ, T )

Table 2.1: Thermodynamic ensembles considered in this work, with comparison of the �xed quantities
chosen among from N ,V , E, 〈T 〉 , ĥ, 〈P〉 , 〈σa〉.

Similarly as for thermostats, there are a multiplicity of barostats in the literature [181]. The Nosé-Hoover
barostat [183, 184], the only one used in this work, is based on a similar extension of the Hamiltonian to
that of the (N ,V , T ) ensemble. In the case of a �xed cell shape, this extended Hamiltonian is:

H (r , p, s, ps,V , p
V

) =
N

∑
i

p
2
i

2miV
2/3

s
2 + U (V 1/3

r) + p
2
s

2Q + gk
B
T ln (s) +

p
2
V

2W + PexV (2.7)

Where p
V

is the conjugate momentum of V , W a mass for the volume motion, Pex is the externally set
pressure, and with the virtual variables (r , p, t) now related to the real variables (r ′, p′, t′) by:

r = V
–1/3

r
′

p = V
1/3

sp
′ δt = sδt′ (2.8)

For the (N , P(σa), T ) ensemble, the equations are similar in spirit and can be found in ref. [186].

The level of coupling, quanti�ed with Q and W in the Nose-Hoover formulation reported above, is
often expressed with time constants in MD codes that we will call τ

T
and τ

P
here. Both thermostat

and barostat should have su�cient time to react to changes. In particular it means that for every
change of volume induced by the barostat, the thermostat must have time to change the velocities to
adapt the kinetic energy to the new potential energy. It translates to a larger damping constant for the
barostat than for the thermostat. In my simulations I used τ

P
= 10 τ

T
, with τ

T
being typically equal to

100 δt.
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2.2 Ab initio molecular dynamics
Ab initio molecular dynamics (AIMD) simulations rely on the computation of the forces acting on the
nuclei from electronic structure calculations. In this section I will give an overview of AIMD, and
recommend the following books for an in-depth description [187, 188].

2.2.1 Unifying MD and quantum calculations
The Schrödinger eqation
The starting point of combining MD and quantum calculations, in the framework of non-relativistic
quantum mechanics, is formalized via the time-dependent Schrödinger equation:

īh

∂

∂t
Φ(r ,R, t) = ĤΦ(r ,R, t) (2.9)

with the wave function Φ(r ,R, t) a function of both electrons and nuclei, and the Hamiltonian Ĥ
describing the electron-electron, electron-nuclear, and nuclear-nuclear Coulomb interactions:

Ĥ = – ∑
I

h̄
2

2M
I

∇2
I

– ∑
i

h̄
2

2me

∇2
i

+ 1
4πε0

∑
i<j

e
2

|ri – rj |
– 1

4πε0
∑
I ,i

e
2
Z
I

|R
I

– ri |
+ 1

4πε0
∑
I<J

e
2
Z
I
ZJ

|R
I

– RJ|

(2.10)

where ri and me describe the electrons positions and masses, R
I
, M

I
and Z

I
the positions, mass and

atomic number of the nuclei, h̄ is the reduced Plank’s constant, e the elementary charge and ε0 the
vacuum permittivity.
Born-Oppenheimer dynamics
Among the multiple AIMD schemes (e.g. Ehrenfest dynamics, Car-Parinello dynamics, etc.) I exclusively
used Born-Oppenheimer AIMD during my PhD. It relies on the Born-Oppenheimer approximation,
in which the dynamics of the electrons and the nuclei are decoupled, owing to the great di�erence of
mass between the electrons and the nuclei. This approximation means that at a given point in time,
the (quantum) electrons evolve in the constant electrostatic potential generated by the �xed (classical)
nuclei. A Born–Oppenheimer dynamics therefore consist in successive time-independent quantum
problems, requiring the resolution of the time-independent, stationary Schrödinger equation for the
electrons, performed at each MD time step.

Denoting Ψ the wave function for the electrons, the Born–Oppenheimer MD method can be written
down for the electronic ground state (Ψ0, E0) as:

ĤeΨ0 = E0Ψ0

M
I

∂R
I

∂t
= –∇

I
min
Ψ0

{
〈Ψ0|Ĥe |Ψ0〉

} (2.11)

where Ĥe is the electronic Hamiltonian:

Ĥe = – ∑
i

h̄
2

2me

∇2
i

+ 1
4πε0

∑
i<j

e
2

|ri – rj |
– 1

4πε0
∑
I ,i

e
2
Z
I

|R
I

– ri |
(2.12)
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This method is therefore conceptually identical to the general description of MD of section 2.1, with
quantum calculations only representing a way to compute the energy of the system, and therefore the
forces. The complete electronic wave function is, however, a very complicated mathematical function
with∼ 3N variables, even for a simple molecule, as each atom has several electrons. Quantum chemistry
o�ers a lot of methods to solve this problem, and we relied on density functional theory.

2.2.2 Density functional theory
The DFT theorems and the Kohn–Sham picture
Among the multiple ab initio methods for the computational study of materials’ ground-state properties,
density functional theory (DFT) has been arguably the most dominant and successful method over the
past half century [175]. The central idea of DFT is to solve equation (2.12) in terms of the total electronic
density n(r), de�ned for a normalized Ψ as:

n(r) =
〈

Ψ

∣∣∣∣∣ N∑
i=1

δri

∣∣∣∣∣Ψ
〉

(2.13)

where δri is the Dirac delta function δ(r – ri).

The foundations of DFT were laid down by Hohenberg and Kohn [189], which showed that the electronic
ground-state total energy E0 can be expressed as a functional of the ground-state charge density n(r),
and by Kohn and Sham [190], which showed that the ground-state charge density can be determined
by a set of self-consistent one-body equations. These equations, called Kohn-Sham equations, can be
expressed for the single electron wave functions ψi(r), called the Kohn-Sham orbitals:

[
– h̄

2

2m∇
2 + Vext(r) + VH(r) + VXC(r)

]
ψi(r) = εiψi(r) (2.14)

where Vext(r) is the potential an electron feels due to the presence of the nuclei, and VH, named the
Hartree potential, describes the repulsion between the single-electron and the total electron density.
Both can be computed directly from r and n(r) and are de�ned as:

Vext(r) = – e
2

4πε0
∑
j

Zj

|r – Rj |
(2.15)

VH(r) = e
2

4πε0

∫
n(r ′)

|r – r
′| d

3
r
′ (2.16)

The last term in equation (2.14) is the exchange-correlation contribution VXC, which is not exactly
known (except for a free electron gas) and requires the use of approximations.

Kohn-Sham equations are non-linear equations, as both V
H

and Vxc depends on {ϕi}, and are usually
solved by a self-consistent iterative algorithm called the Self-Consistent Field (SCF) method. Although
the Kohn-Sham orbitals and their eigenvalues εi do not have physical signi�cance as single particle
wave functions, they have proven to give quite accurate descriptions of band structures and bonding
characters [191].

In the end, the strength of DFT is simplifying a 3N -dimensional problem (many interacting electrons),
into a 3-dimensional problem. The computational complexity is polynomial [192], which allows the
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simulation of signi�cantly larger systems compared to the exponential scaling of the original many-body
problem.
Exchange-correlation
In principle, DFT is an exact theory for ground-state properties, but in practice, an approximation for
the exchange correlation functional E

XC
[n] is needed to perform any actual calculation and obtain a

numerical solution of the Kohn-Sham equations. The numerical solution involves multiple algorithmic
choices which are translated into the diversity of widely used electronic-structure codes available
nowadays [193].

The quest for approximations to E
XC

[n] is a fundamental one, and its choice has signi�cant in�uence
on how the energy depends on atomic positions, and thus on all calculated properties. They are many
options available in the literature, and each choice of functional is a compromise between accuracy and
computational cost [194]. In this work, I used generalized-gradient approximation (GGA) functionals
which take into account the non-local exchange and correlation e�ects. The central idea is the assumption
that E

XC
[n] can be expressed by the following form:

E
GGA

XC
[n(r)] =

∫
n(r)ε

XC
(n(r),∇n(r)) dr (2.17)

where ε
XC

(n(r),∇n(r)) is the exchange-correlation energy per particle which is assumed to depend on
both the density at each point n(r) and the �rst order gradient term ∇n(r).

Among the multiple available GGA functionals, the PBE functional [274] was shown to produce consis-
tent results in many porous systems [92] and was used in my work.
Dispersion corrections
A drawback of using information about the local density to construct the exchange-correlation func-
tionals, is that DFT calculations often have trouble reproducing long-range correlation e�ects, such as
dispersion interactions. This can be corrected by adding a dispersion correction term Edisp proposed by
Grimme et al. [196, 197] to the energy obtained by DFT (EDFT):

Etot = EDFT + Edisp (2.18)

In this work, I used the DFT-D3 version of this correction [197], expressed as:

Edisp = – ∑
J>I

[
C
I J
6

R
6
I J

f
I J

6 (R
I J) +

C
I J
8

R
8
I J

f
I J

8 (R
I J)
]

(2.19)

where the sum is over all the pairs of atoms (I , J), R
I J =

∣∣R
I

– RJ
∣∣, CI J

6 and C
I J
8 are parameters tabulated

for each pair of elements, and f
I J
n are damping functions de�ned as:
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f
I J
n (R) =


sn

1 + 6
(
R / σn

√
C
I J
8 /CI J

6

)–αn for R < Rc

0 for R ≥ Rc

(2.20)

In this expression, sn, αn and σn are parameters (with sn and σn adapted to the particular EXC used), and
R
C

is a cuto� radius.
Basis set
To solve the Kohn-Sham equations, there is a need for an accurate representation of the single-particle
orbitals ψi(r), which are usually described using a set of basis functions ϕa(r):

ψi(r) = ∑
a

caiϕa(r) (2.21)

Among the most popular basis sets, we �nd Gaussian basis sets (localized, or atom centered) and plane
wave basis sets (delocalized). The Gaussian plane wave (GPW) method [198] used in this work, combines
the two types of basis sets described above and is commonly found for simulations of materials [193]. I
have mostly used the DZVP (double-ζ valence polarized) basis sets.
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2.3 Force fields
2.3.1 Motivations and principles
Towards larger scales
Despite the accuracy and wealth of information obtainable by AIMD, this method is limited to relatively
small scale studies. Classical MD simulations, however, are routinely used to explore longer time
scales and larger systems, with simulations of several thousands of atoms over tens to hundreds of ns
reasonably tractable. They enable molecular level insights into macroscopic material properties such as
adsorption, di�usion and framework dynamics [199].

The basic idea behind classical MD is to evaluate the potential energy U (r) as an analytical function of
the atomic positions r . This is done with force �elds (FF), a term referring to the functional forms used
to describe the intra- and inter-molecular potential energies of a collection of atoms, along with the
corresponding parameters [176]. The knowledge of a force �eld therefore allows the integration of the
equations of motion (equation (2.2)).

That force �eld is optimized to reproduce the structure, dynamics and other properties of a given material
or set of materials, based on experimental data or quantum chemistry calculations. The choice and
implementation of force �elds is crucial to the accuracy obtained when resorting to this method.
Energy decomposition
U (r) is generally decomposed in several terms representing the contributions of di�erent physical
interactions. The speci�c decomposition depends on the force �eld, with a common form being:

U (r) = ∑
i,j

U
ij

pairs + ∑
α
U

α
molecular + UCoulomb (2.22)

where UCoulomb is the Coulombic interaction between charged atoms, Umolecular represent the internal
molecular energy andUpairs the interactions between non-bonded pairs (typically with the Lennard-Jones
potential).

There are multiple functional forms to describe each contribution. For example the intra-molecular
interactions Umolecular (i.e. between atoms that are linked by covalent or metal-ligand bonds) are often
further decomposed:

Umolecular = ∑
bonds

Ubond(r) + ∑
angles

Uangle(θ) + ∑
dihedrals

Udihedral(ϕ) (2.23)

Every energy term in this example only depends on the type of bonded atoms, and a single scalar
variable. These scalars are the distance r between the two atoms for bonds contributions, the 3-body
angle θ for angles contributions, and the 4-body dihedral angle ϕ or out of plane distance d for dihedral
angles contributions. These variables are illustrated on �gure 2.4.
Force field parametrization
Force �elds are parameterized to reproduce the molecular geometry or thermodynamic properties
reported experimentally or obtained from higher level ab initio calculations. All the functional forms
have one or more adjustable parameters. They are optimized to reproduce the expected energy and
physical properties of the system, in a procedure called parametrization of the force �eld.

However the parametrization of a force �eld involves a trade-o� between accuracy — i.e. how well a
given force �eld can reproduce the system properties — and transferability — i.e. how well it fares on
systems it was not trained for. A notable example of a generic force �eld that traded some accuracy
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Figure 2.4: Parameters used to compute the energy of a molecular system with a classical force �eld
for (a) bonds, (b) angles, (c) dihedral angles, and (d) improper dihedrals/out of plane distance. Adapted
from Ref. [67].

for a better transferability is the Universal Force Field (UFF) [200], which was adapted to MOFs in 2016
[144].

2.3.2 Classical force �elds
Bonded interactions
The most commonly used type of MD simulations for crystalline MOF phases relies on classical force
�elds, for which the bonds between di�erent atoms are de�ned only once over the entire course of the
MD run, along with charges which are also �xed. They are therefore unable by design to simulate bond
breaking or reformation, or changes in the electronic state of an atom.

This is typically achieved with functional forms adapted for the description of bonds and angles around
equilibrium positions, only considering the vibration of the bond length or the angle. For example, the
energy of bonds, angles and improper dihedrals can be represented as harmonic oscillators, and proper
dihedrals as cosine potentials to reproduce the periodicity of the associated energy:

Ubond(r) = 1
2kb (r – r0)2

Uangle(θ) = 1
2ka (θ – θ0)2

Uimproper dihedral(ϕ) = 1
2ki (ϕ – ϕ0)2

Uproper dihedral(ϕ) = A

[
1 + cos

(
nϕ + δ

)]
(2.24)

where (k
b
, ka, ki) are spring constants, (r0, θ0, ϕ0) equilibrium positions, A a multiplicative constant, n a

positive integer indicating the periodicity and δ a phase shift [201].
MOF-FF for ZIFs
Unfortunately, generic force �elds are not always optimal for simulating MOFs, in particular to predict
their dynamic properties. One possible trade-o� between accuracy and transferability lies in the
systematic and consistent parametrization of force �elds from �rst principles reference data. With this
approach, the low transferability of each parameterized (and accurate) force �eld is compensated by the
possession of a procedure to readily train new force �elds on new materials. During the course of my
PhD I used MOF-FF [145], a force �eld based on the MM3 functional form [202] which embodies such a
parametrization strategy.

In 2019 Dürholt et al. used MOF-FF to generate new force �elds for three ZIF-8 variants from ab initio

input data [203]. They were able to reproduce well both geometric and dynamic properties, and the FF
showed good transferability across a series of ZIF polymorphs. It also led to mechanical properties in
line with earlier FFs [204].
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MOF-FF has a speci�c parametrization for each atom type, de�ned as a combination of the atomic
species X and its coordination environment (called atypes) and where it sits in the framework (called
fragments). This nomenclature is the one used by molsys, the Python package behind MOF-FF for the
parametrization of systems [205]. For example, a Zn atom connected to 4 N and sitting in its regular
position (a fragment called zn4tet in molsys) in a ZIF-4 framework will be identi�ed by these three
characteristics, and noted zn4_n4@zn4tet in molsys.
Adaptation to glasses
Even if a few studies used classical MD to study the amorphization of ZIFs [146, 147] as discussed in
section 1.3.3, every classical FF for ZIFs published to this date has been developed with crystals in
mind, and should thus �rst be adapted and validated before any study of ZIF glasses. While developing
a new FF for glasses is beyond the scope of this study, the MOF-FF methodology for an automatic
parametrization of FFs would make such a development achievable in future works.

Adapting the FF requires to add a parametrization for coordination environments which are not present
in the crystalline framework. In the particular case of aZIF-4, it requires the parametrization of the
interaction between three-coordinated Zn atoms and their N neighbors (zn3_n3zn3tet, with a fragment
zn3tet to be de�ned). In this work I created two FF adaptations of MOF-FF for ZIFs for the glasses:
Zn3tetra and Zn3trig. In Zn3tetra, every three-coordinated Zn atom (denoted zn3_n3 in molsys
atypes format) was treated as a four-coordinated Zn (denoted zn4_n4). In Zn3trig, zn3_n3 were treated
as zn4_n4 in all their interactions with other atoms, except for the N–Zn–N angle which was changed
from the tetrahedral angle (arccos(–1/3) ≈ 109.47°) to 120°, using the same spring constant. Their
validation and use are further commented in section 5.4.1.

As the identi�cation of the building units (Zn atoms and imidazolates) of the glass models could not be
performed by molsys, due to large �uctuations in the bond angles and lengths as well as the presence
of defects, it was carried out with an ad hoc identi�cation algorithm presented in section 2.5.3, and
interfaced with molsys.

2.3.3 Reactive force �elds
Describing bond rearrangement
Although classical force �elds are well suited for nonreactive interactions, they are inadequate for
modeling changes in atom connectivity. Modeling bonds breaking and reformation motivated the
inclusion of connection-dependent terms in the force-�eld description, leading to the development of
reactive force �elds.

A number of di�erent functional forms exist to represent these reactive potentials [206], for example
by separating repulsive and attractive terms. A typical functional form of (early) reactive FF relies on
exponential functions, illustrated on �gure 2.5 for the following form [207]:

Urepulsive(r) = (1 + Q/r)A e–αr (2.25)

Uattractive(r) = ∑
n

bn e–βnr (2.26)

where (Q, α, bn, βn) are a set of parameters.
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Figure 2.5: Representative reactive pair interactions for various carbon-carbon bond types. Adapted
from Ref. [207, 208].

ReaxFF
In the past decades, the sophistication of empirical potentials has been greatly improved by employing
bond order concepts, dependent on the local chemical environment and exempli�ed by the widely used
ReaxFF method [206]. Originally developed in 2001 by van Duin et al. for hydrocarbon description
[209], ReaxFF considers each atomic interaction bond order dependent, without having to prede�ne
reactive sites [210]. Bond order BOij is calculated directly from interatomic distances rij using empirical
formulas, reproduced here for a carbon-carbon interaction:

BO′
ij

= BOσ
ij

+ BOπ
ij

+ BOππ
ij

= exp
[
pbo1 ·

(
rij

r
σo

)
pbo2]

+ exp
[
pbo3 ·

(
rij

r
πo

)
pbo4]

+ exp
[
pbo5 ·

(
rij

r
ππo

)
pbo6] (2.27)

where r0 are equilibrium bond lengths and p
bo

terms empirical parameters. A key feature of this
de�nition as a sum of three exponentials representing single, double (π bond), and triple (ππ bond)
bond order contributions, is that it involves no discontinuities through transitions between di�erent
bond characters.

The forces on each atom are derived from the system energy Esystem described by the following many-
body empirical potential terms:

Esystem = Ebond + Eangle + Etors + Eover + Ecoulomb + EvdWaals + Especi�c (2.28)

where (Ebond, Eangle, Etors) respectively describe the energy associated with forming bonds between
atoms, three-body valence angle strain and four-body torsional angle strain, Eover is an energy penalty
preventing the over-coordination of atoms, Ecoulomb and EvdWaals are electrostatic and dispersive
contributions, and Especi�c represents system speci�c terms. The overall ReaxFF procedure to compute
Esystem from the atomic positions is outlaid in �gure 2.6.

Multiple branches of ReaxFF have been developed over the years, the largest of which being the
combustion and aqueous branches [153]. Within well-designed MD platform (e.g. LAMMPS [211]), the
optimized ReaxFF potentials are capable of simulating systems larger than 106 atoms at the nanosecond
time scale [206].
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Figure 2.6: Overview of the ReaxFF total energy components. Adapted from Ref. [153].

Parametrization for ZIFs
Among the multiple branches of ReaxFF, two have been used to study amorphous MOFs: one for copper
based MOFs and one for ZIFs [155]. I detailed the di�erent works in the literature that used them in
section 1.3.5.

We should stress here that neither of these force �elds were initially developed for nor thoroughly
validated on MOFs. The force �eld used for copper based MOFs was initially developed for the interaction
of glycine with a copper surface [161], while the ReaxFF force �eld for ZIFs was conceived for the study
of Zn-Imidazolates complexes in aqueous [154]. In this PhD, I used the ReaxFF parametrization for
ZIFs.
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2.4 Machine-learned potentials
The basic idea behind machine-learned potentials (MLP) is to use data obtained at a higher level of theory
(such as ab initio) to �t interaction potentials, without relying on the analytic functional forms of classical
force �elds. In this section I will give an overview of MLPs, before further detailing neural network
potentials (NNP), the family of MLPs used in this work. I will �nish by presenting the precise architecture
used, namely equivariant message passing neural networks, implemented as NequIP [212].

For further reference, I recommend Ref. [213, 214] for a general introduction of MLPs, Ref. [215] for
their proposed applications, Ref. [216] for a general introduction to neural networks, and Ref. [217] for
a recent review of the existing NNP architectures.

2.4.1 Principles and construction
Shifting the cost-accuracy trade-off
The rapid growth of machine learning (ML) techniques in recent years has led to many applications in the
computational materials science community. In addition to high-throughput techniques to predict new
materials with targeted properties, supervised machine learning can be used to create next-generation
force �elds, called machine-learned potentials (MLP). Although many of the fundamental concepts can
be dated back to 1995 with a seminal work by Blanck et al. [218], the recent progress in computational
tools and power, data generation and analysis, and the availability of ML models in standard software
toolkits, initiated the development of a large variety of promising methods to train and apply MLPs
[175].

An MLP may be de�ned as an analytic expression for the potential energy U (r) as a function of the
atomic positions r using an ML algorithm, which is constructed using a consistent set of reference
electronic structure data, and which does not contain any ad hoc assumptions about the functional form
[219].

This absence of a �xed functional form allows in principle to approximate multidimensional real-
valued functions with arbitrary accuracy. In this regard, the construction of MLPs is a markedly
di�erent approach than the use of ML techniques to optimize force �eld parameters [220]. Because the
computational cost is lower, especially when implemented through optimized frameworks leveraging
GPU processing, MLPs enable large-space and long-time atomistic simulations beyond the reach of
direct ab initio calculations, while retaining its level of accuracy as illustrated in �gure 2.7. Furthermore,
MLPs do not distinguish between bonded and non-bonded interactions and are therefore intrinsically
reactive [215].

Figure 2.7: MLPs shown as a potential solution to the trade-o� between cost and accuracy. Reproduced
from Ref. [215].
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The construction of any MLP consists of several individual steps illustrated on �gure 2.8. First a reference
data set is constructed, then the MLP is trained by a �tting process to accurately reproduce the reference
data. Finally, a careful validation is required, before using the MLP in any simulation.

Figure 2.8: General overview of how MLPs are constructed. Adapted from Ref. [214].

Data acqisition
The reference data set, or training data, generally consists of the coordinates r and elements {Zi} of
all atoms in the system, as well as their corresponding energies Eref and forces F ref

i
. Diversity in the

training data is key for good generalization of the MLP.

One of the most straightforward procedures to obtain reference data is to extract it from existing ab initio

MD trajectories. It is, however, not necessarily the most e�cient approach, because of the structural
resemblance of consecutive time frames and long-time correlations. A solution to partially improve
the procedure is to sample high temperature trajectories, which enhance coverage of o�-equilibrium
conformations which are of crucial importance when training MLPs [215]. Alternative and more e�cient
solutions exist such as active learning [219] or enhanced sampling. The latter has been demonstrated
for the �rst time on MOFs in a recent work published in 2023 [221].

The data sets used to construct MLPs are often very large and contain tens of thousands of electronic
structure calculations, making DFT (presented in section 2.2.2) the most frequently used electronic
structure method for condensed systems.
Training
For a given data set, the values of the parameters of the MLP have to be determined. This step, called
training, is typically done by de�ning a loss function that needs to be minimized and by repeatedly
cycling through the data with a gradient-based optimization algorithm. A full presentation of the dataset
is called epoch, i.e. when every frame in the training dataset has had a chance to update the internal
model parameters once.

The error of MLPs is typically measured by the mean absolute error (MAE) or the root mean squared
error (RMSE), commonly normalized per atom:

MAE = 1
N

N

∑
i=1

∣∣∣Eref
i

– E
MLP
i

∣∣∣ (2.29)

RMSE =

√√√√ 1
N

N

∑
i=1

(Eref
i

– E
MLP
i

)2 (2.30)

where E
MLP is the predicted potential energy.
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A typical loss function for this task (e.g. NequIP default’s) is based on a weighted sum of energy and
force loss terms:

L = λ
E
L
E

+ λ
F
L
F

(2.31)

where λ
E

and λ
F

are the energy and force weightings, which relative weight depends on how the user
wants to bias the learning procedure. Other quantities can be added to the loss function in a similar
fashion, such as the stress.
Validation
Assessing the accuracy of any interatomic potential is a question as old as atomistic simulations
and not something speci�c to MLPs. However, while the approximations of classical FF might give
rise to inaccuracies or failures, their physically meaningful functional forms may provide a physical
understanding of their limitations. For MLPs the situation is di�erent as the functional form is not based
on physical interaction models. While it is an intrinsic strength of MLPs that allows to reach a much
closer agreement with reference data, it makes it very di�cult to determine the validity of an MLP
outside of its training region [219].

Failures and inaccuracies can result from choices made at every step of the MLP construction shown
on �gure 2.8: the available data, the representation of atomic environments and interactions, and the
optimization process (e.g. with the risk of getting trapped in local minimum).

Validating MLPs is therefore a crucial step before doing any production simulations, which relies both
on a number of numerical validation tools commonly used in the ML literature, and on physically
guided validation which relies on the practitioner’s domain knowledge. Ref. [222] provides a number
of best-practice recommendations for the development of MLPs. Among them, a popular way to
numerically validate an ML model is to use cross-validation. In its simplest form, this procedure involves
the separation of the complete reference dataset into a training and a validation set. The performance of
an ML model is then not judged by how well they predict the data they were trained on (which could
lead to over�tting) but by how well the model is able to predict unseen data (from the validation set)
[222, 223].

2.4.2 Neural network potentials
In recent years an increasing number of MLPs have been published, including a variety of neural network
potentials (NNPs) or Gaussian approximation potentials (GAP) [219]. In this work I used a particular
architecture of NNPs, which I will now introduce.
Generalities on neural networks
Neural networks (NN) constitute a class of machine learning algorithms (very) loosely inspired by the
human brain. Organized as a directed graph of trainable units (neurons), neural networks can learn
highly nonlinear relations between input data and output data.

As illustrated on �gure 2.9, a typical neuron is a scalar function that acts on a vector p. The inputs {pi}
are �rst multiplied by weights {w1,i} and are summed with a bias b. The sum n then goes into a transfer

function (also called activation function) f , which produces the scalar output a. In summary the output
is calculated as:
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a = f

(
R

∑
i=1

w1,ipi + b

)
(2.32)

= f (Wp + b) (2.33)

With equation (2.33) written in a matrix form with the introduction of a 1× R weight matrix W ,

The transfer function f may be a linear or a nonlinear function and is chosen to satisfy some speci�cation
of the problem that the NN is attempting to solve. Many types of activation functions can be used, such
as the hyperbolic tangent, the sigmoid function, or Gaussian functions. An example used in part of
NequIP architecture [212] is the sigmoid linear unit (SiLU) f (x) = x/(1 + e

–βx ).
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Figure 2.9: Example three-layer neural network. Adapted from Ref. [216].

The simplest neural network architecture, called feed-forward NN, consists of successive layers of
neurons as shown on �gure 2.9. Each layer i takes as input ai–1, the output of the previous layer, and
therefore comes with its own weight matrix W

i and bias vector bi. Its output is:

a
i = f

i

(
W

i
a
i–1 + b

i

)
(2.34)

The �nal layer is called output layer, while the other ones are hidden layers. Both the weights W and
biases b are adjustable parameters that will be determined according to a given learning rule so that
the neuron network meets some speci�c goal. This is typically done by employing a gradient-based
optimization algorithm to minimize a prede�ned loss function (see section 2.4.1). These gradients can
be calculated very e�ciently using a recursive scheme called backpropagation, in which the terms of
the derivatives are computed step by step starting from the output layer and progressing through the
network until the input layer is reached.

For further details on NN in general, Ref. [216] provides a thorough introduction.
Neural network potentials
Neural network potentials (NNP) are a subclass of MLPs that use neural networks to �nd a mapping
between a three-dimensional con�guration of an arbitrary number of atoms N and its corresponding
energy E.
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A prerequisite to achieve this is to �nd a suitable numerical representation of the material. Due to the
nature of NNs, systems of an arbitrary size N should be represented by input vectors of �xed dimension
which encode the complete information about the three-dimensional con�guration and preserve the
symmetries of the system [215]. A common way to proceed is to use a separate NN for each atom i in
the system, which outputs its energy contribution Ei,atomic [213]. The total energy Esystem of the system
is then obtained as the sum over all atoms in the system:

Esystem =
N

∑
i=1

Ei,atomic (2.35)

This leads to a linear scaling of the computational cost with the system size [215]. It is frequent to
constrain the atomic NNs to have the same architecture and weight parameters for each element.

Since the NNP has a well-de�ned functional form, the forces necessary to the integration of the equations
of motion, can be calculated analytically as the negative gradients of the total potential energy with
respect to the atomic positions:

Fi = –∇iEsystem (2.36)

System representation
The energy Ei,atomic of each atom is typically obtained by considering its local chemical environment
illustrated on �gure 2.10 and de�ned by a cuto� radius Rc . To have a continuous and di�erentiable energy,
necessary to enable the calculation of the forces, a cuto� function is generally used. A prototypical
example is the monotonously decaying part of the cosine function [219]:

fc(Rij) =

0.5
[

cos
(

π
Rij

Rc

)]
for Rij < Rc

0 for Rij ≥ Rc

(2.37)

where Rij = |ri – rj |.

The input of each atomic NN, which has to be a �xed size vector, can be constructed using atom-centered
symmetry functions that describe the local chemical environments and which should not change with
the number of atoms in the cuto� sphere. It is desirable for these input coordinates to incorporate the

Figure 2.10: Representation of atom centered local chemical environments as a �xed-size representation
of a system of arbitrary size. Adapted from Ref. [215].
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translational, rotational, and permutational invariances of the system. A variety of di�erent functional
forms are available for these symmetry functions. Among the radial symmetry functions, the most
commonly used consists of a sum of products of Gaussians and cuto� functions for all atoms j inside
the cuto� sphere:

G
2
i

= ∑
j

e
–η(Rij–Rs)2

· fc
(
Rij

)
(2.38)

where η is a parameter that determines the e�ective spatial extension of the radial function and Rs an
optional shift parameter.

An alternative to this use of static descriptors, where the symmetry functions are prede�ned, is to use
dynamic descriptors, i.e. to optimize the input vectors in a data-driven way. This can be done a priori,
or can be optimized during the training of the model. It is the strategy NequIP relies on to choose the
functional form of its radial basis Rα(Rij), where α is a shorthand for a set of parameters corresponding
to its architecture. It uses a multi-layer perceptron, i.e. a fully connected feed-forward NN, to implement
a learnable radial basis [224]:

Rα(Rij) = MLP
(
Rn(rij)fc(rij)

)
(2.39)

where MLP is a multi-layer perceptron and Rn are a set of Bessel basis polynomials.

2.4.3 Equivariant message passing neural networks
One of the limiting factors in the development MLPs is the collection of large training sets of ab initio
calculations, often including thousands or even millions of reference structures. In this work, we used
the Neural Equivariant Interatomic Potential (NequIP) [212], an equivariant message passing NN, which
has been proposed as a highly data-e�cient approach (requiring in some cases fewer than 1,000 reference
calculations) and has demonstrated high accuracy across a wide variety of systems, including in a recent
study on MOF systems [221] (see section 4.1 for more details). I will now present this particular NN
architecture, fully described in Ref. [212] and [224].
Message passing neural networks
NequIP is a message passing neural network (MPNN) [217, 224], meaning that is belongs to a class of
graph neural networks [225] that can parametrize a mapping from the space of labeled graphs to a
vector space of features. In a typical graph NN architecture for NNPs, atoms correspond to the nodes
of the graph, and an edge connects two nodes if their distance is less than a cuto� Rc . Figure 2.11a
represents such a graph.

In MPNN methods, the descriptors are not prede�ned but automatically learned from the geometric
structure. Each atom is described by a state σ

(t)
i

that we denote with the tuple:

σ
(t)
i

= (ri, θi, h(t)
i

) (2.40)

which contains the Cartesian position ri, a set of its �xed attributes such as the chemical element θi
and learnable features h

(t)
i

, where t denotes the message passing iteration. They are illustrated on
�gure 2.11b.
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(a) (b) (c)

Figure 2.11: (a) The system is represented with an atomic graph. (b) Each atom is described by a state
σ

(t)
i

which relies on scalar (l = 0, red), vector (l = 1, blue), and higher-order tensor (l ≥ 2, green) features
h

(t)
i

, (c) updated using message functionsMt . Adapted from Ref. [212].

In an MPNN, these learnable features are iteratively updated in a message passing phase using aggregated
messages m(t)

i
processing information about neighboring atomsN (i) as illustrated on �gure 2.11c. These

aggregated messages are obtained with learnable message functionsMt , and will change the states
σ

(t+1)
i

through learnable update functions Ut :

m
(t)
i

= ∑
j∈N (i)

Mt

(
σ

(t)
i

, σ
(t)
j

)
h

(t+1)
i

= Ut (σ(t)
i

,m(t)
i

)
(2.41)

This iterative process allows information to be propagated along the atomic graph through a series
of convolutional layers (one per t). Message passing can therefore be understood as a convolution
operation running over each node in a graph, and bene�ts from the broad adoption of convolution
neural networks in the ML literature.

Once the message passing phase has been completed after a number of steps, the resulting atomic states
are used in a readout phase to predict the atomic site energies with learnable functionsR:

Ei = R(σ(t)
i

) (2.42)

Eqivariant neural networks
Equivariant neural networks are a class of NN that are explicitly constructed from equivariant operations
to guarantee the preservation of known transformation properties of physical systems under a change of
coordinates corresponding to some symmetry operations. For example, if a molecule is rotated in space,
the vectors of its forces also rotate accordingly, while its energy remains unchanged. The symmetry
group of Euclidean symmetries in three-dimensional space, denoted E(3) and which includes translations,
rotations, and re�ections is of special interest for atomistic modeling.

A function is said to be equivariant with respect to a group if we can act with the group on the inputs or
the outputs of the function and are guaranteed to get the same answer. Formally, a function f : X → Y

is equivariant with respect to a group G that acts on X and Y if:
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D
Y

[g]f (x) = f (D
X

[g]x) ∀g ∈ G, ∀x ∈ X (2.43)

where D
X

[g]x and D
Y

[g] are the representations of the group element g in the vector spaces X and Y .
NequIP uses an underlying NN architecture equivariant with respect to E(3), called Euclidean neural
networks (e3nn) [226].

A convenient way to ensure that the outputs of a NN model transform correctly to symmetry operations
is to impose constraints on the internal representations of the model, namely the feature h

(t)
i

and
messages m

(t)
i

. In e3nn, the representations can be comprised of scalars, vectors, and higher-order
tensors as represented on �gure 2.11b.

The way they transform under rotations can be classi�ed using representations of rotations, which are
indexed by an integer l corresponding to the spherical harmonics. Scalars correspond to l = 0 (invariant
under rotation), vectors to l = 1, and higher order quantities like for instance the d, f, g atomic orbitals
transform with higher l. l is a hyperparameter in NequIP, as di�erent values of l can be chosen to
represent the feature vectors. The founding article found that the choice of l ∈ {1, 2, 3} outperformed
l = 0 in terms of sampling e�ciency [212].

Complementing the invariant scalar features (l = 0) of more established MPNNs, such as SchNet [227]
or DeePMD [228], with equivariant features is what makes equivariant MPNNs distinctive in their data
e�ciency [221].
NeqIP architecture
The Neural Equivariant Interatomic Potential (NequIP) has been proposed in 2021 by Batzner et al. [212]
as the �rst equivarient NNP architecture, shortly followed by other equivariant MPNNs. Its speci�c
architecture is detailed in Ref. [212, 224] and is shown on �gure 2.12.

Figure 2.12: Schematic of the NequIP architecture. Adapted from Ref. [224].
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The inputs of the NN are the positions ri and chemical species Zi. Features and messages are expressed
using spherical coordinates to achieve rotation equivariance. This is achieved by using, for the mes-
sage passing phase, convolution �lters S(l)

m (rij) which are products of learnable radial functions Rα(rij)
(introduced in equation (2.39)) and spherical harmonics Y (l)

m (r̂ij):

S
(l)
m (rij) = Rα(rij)Y (l)

m (r̂ij) (2.44)

The NN architecture consists in a series of blocks, starting with an embedding block which generates
initial features h(0)

i
and therefore states σ

(0)
i

. It is followed by a series of interaction blocks which encode
interactions between neighboring atoms. It corresponds to the message passing phase described by
equation (2.41), with each block having the σ

(t)
i

as input and σ
(t+1)
i

as output. The �nal output of the NN
is obtained after a readout block (equation (2.42)) which gives the total potential energy of the system E

as the sum of atomic potential energy (equation (2.35)), and therefore the forces by taking the gradients
(equation (2.36)).
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2.5 Characterizing structural properties of amorphous models
A number of structural properties can be computed by analyzing the atomic structure of every frame
of an MD trajectory. Those used in this PhD will be introduced in this section, along with the Python
package aMOF that I developed for this task and published as open source (section 2.5.5). This section
is primarily methodological, as the meaning and speci�c analysis of each property will be introduced
where relevant in the subsequent chapters.

Unlike crystals that can be entirely described by their unit cell, it is inherently impossible to reduce an
amorphous material to a small �nite set of atomic coordinates. Each atomic structure should best be
seen as statistically representative of a plausible local con�guration, and averaging is therefore crucial.
To complicate matters further, there is no unique amorphous phase per framework, as the structure and
properties often depends on the formation route.

To illustrate the diversity of aMOF structures reported in the literature detailed in section 1.3, some
properties will be computed on single frame models of aZIF-4 obtained as a CRN [139], by RMC [92] and
with ReaxFF [155]. These �les were either extracted from the supporting information or communicated
to us by the authors. They are compared to AIMD trajectories of a previous work in the group [123],
which sampling is detailed in section 3.2. For further reference, ZIF-4 is described in section 1.2.3, and
each of these models in section 1.3. Although it is merely illustrative, this direct comparison between
models has never been published in the literature before.

2.5.1 Local order
Multiple properties can be constructed to investigate the local order, to get insight into the local chemical
environment of each atom in the system.
Radial distribution function
The radial distribution function (RDF) g(r), also known as pairwise correlation function, represents
the probability of �nding an atom in a spherical shell of radius r and thickness ∆r as illustrated on
�gure 2.13a.
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Figure 2.13: (a) Illustration of atoms of a species B (green) comprised in a spherical shell around the
reference atom of species A (blue). (b) Radial distribution functions (RDF) for the Zn–N atom pairs of
various aZIF-4 models. (a) is adapted from Ref. [208].

The total RDF is de�ned as the sum of all pairwise RDF. For 2 atomic species A and B, the partial RDF
for atoms A around B is the sum over A atoms of all pairwise RDFs with B atoms and can be computed
from:

g
AB

(r) = V
cell

4πr
2∆rN

A
N
B

NA

∑
a

n
a,B(r , ∆r) (2.45)
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where V
cell

is the volume of the cell, N
A

(N
B

) the number of A (B) atoms in the cell and n
a,B(r , ∆r) the

number of B atoms in a shell of radius r and thickness ∆r around atom a.

For unambiguous de�nitions of many commonly used correlation functions, and how they relate to
scattering factors I recommend Ref. [229]. Example RDFs for the Zn–N pair in various aZIF-4 are shown
on �gure 2.13b.
Coordination number
The coordination numbers CN

AB
inside a given radius Rc , is the number of atoms of type B bonded to

atoms to type A. It can formally be obtained by integrating g(r):

CN
AB

(rc) =
∫

rc

0

N
B

V
cell

g
AB

(r) 4πr
2dr (2.46)

Although in practice it is computed by simply counting the number of atoms in each coordination
sphere of radius Rc . In this PhD, Zn–N coordination numbers are computed by taking a cut-o� radius
of 2.5 Å, a value determined based on the Zn–N potential of mean force, and validated in previous ab
initio studies [92, 123, 149]. We checked that the outcome of the calculations for ReaxFF systems is not
strongly dependent on the exact value chosen, in the 2.5–2.7 Å range. Table 2.2 contains an example for
various aZIF-4 models.

System AIMD CRN RMC ReaxFF
Zn-N coordination number 3.93 4.00 3.96 3.56

Table 2.2: Coordination numbers for nitrogen atoms around the zinc cation of various aZIF-4 models.

Bond angle distribution
The bond angle distribution of a species A with respect to species B is the histogram of the bond angles
calculated between atoms A and all their B neighbors (in their �rst coordination sphere). For an atom A

and two neighbors B and C the bond angle is:

θ
BAC

= cos–1
(

(r
B

– r
A

) · (r
C

– r
A

)
|r
B

– r
A

| |r
C

– r
A

|

)
(2.47)

where r
X

is the position of atom X [230].

This distribution depends on the cut-o� radius Rc de�ning the �rst coordination sphere, which is in this
work the same as for coordination numbers introduced above. An example is shown on �gure 2.14.
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Figure 2.14: Distribution of the N–Zn–N angle for various aZIF-4 models.
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Potential of mean force
The potential of mean force (PMF) [231] is computed from partial radial distribution functions g(r)
through the relation:

F (r) = –kBT (ln g(r) – ln gmax) (2.48)

where gmax is the maximum of g(r) over r which is used to arbitrarily enforce F (r) = 0 for the lowest
free-energy minimum [92].

The angular PMF is computed from the angle distribution P(θ) through the analog relation [232]:

Fang(θ) = –k
B
T (ln P(θ) – ln Pmax ) (2.49)

The PMF curves can highlight areas of the coordinate space where the RDF and bond angle distributions
have very small, but nonzero, values. They are not shown for the models of this section as it requires a
trajectory with a su�cient number of frames to remove the noise in g or P before taking the logarithm.
Figure 3.2 later in the thesis provides an example plot.

2.5.2 Bulk properties
Density
Although the density is straightforward to compute numerically ρ = m

cell
/V

cell
, it is a key characteristic

of amorphous systems that is particularly hard to measure experimentally. The density that can be
computed numerically corresponds to the crystallographic density, i.e. the density obtained from
di�raction experiments, sometimes called skeletal density [233]. It is di�erent from the pycnometric
density, obtained through pycnometric densities measurements, sometimes called apparent density.
This crystallographic density is particularly hard to estimate experimentally for amorphous solids as
di�raction experiments are severely complicated [233] (see section 3.2.2 for further discussion).

Table 2.3 illustrates how di�erent models show remarkably distinctive values and I will discuss later in
chapter 3 and chapter 5 the impact of the model density on the structural and mechanical properties of
the frameworks.

System AIMD CRN RMC ReaxFF
Density (g cm–3) 1.21 1.00 1.58 1.59

Table 2.3: Densities of various aZIF-4 models.

Pore statistics
Pore statistics were computed on individual frames with the Zeo++ software [234–236], which uses a
geometric decomposition of space to compute the accessible and non-accessible volume to a sphere of a
given radius. I generally report the total porous volume, which is de�ned as the sum of accessible and
non-accessible volumes. I used a helium probe of radius 1.2 Å and the high accuracy (-ha) option.

Total porous volumes of the four aZIF-4 models are reported on table 2.4. In this case it is a single value,
but distributions can be reported for trajectories with multiple frames as illustrated on �gure 3.14.

System AIMD CRN RMC ReaxFF
Total porous volume (cm3 kg–1) 68.1 111.8 4.9 7.1

Table 2.4: Total porous volume of various aZIF-4 models.
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2.5.3 Topology
While amorphous systems have no long-range order by de�nition, investigating the medium-range
order of various glasses allows contrasting their structures. Characterizing the topology [237] at larger
scale, known to be key to the properties of these framework materials [70], is usually done by examining
the coordination network. This network is built from the alternating node-ligand units, i.e. Zn and
imidazolates (Im) in the case of ZIF-4 as illustrated on �gure 2.15a.
Rings statistics
Ring analysis, routinely used to characterize zeolites [238] or amorphous systems such as SiO2 [239],
determines the number and size of rings present in the ZIF network. Ring sizes are computed by counting
the number of di�erent units (Zn and Im) in each ring; always even, they are equal to twice the T-based
ring sizes usually reported for zeolitic nets [69].

Ring statistics were computed using the R.I.N.G.S. code [239] on the Zn–Im periodic graph (due to PBC)
obtained after identi�cation of the building units. The vertices of this graph are the Zn atoms and Im
linkers, and its edges are the Zn–Im bonds.
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Figure 2.15: (a) Cartoon Zn (yellow)–Im (red) graph showing a path (5-6-7-8-9, purple), a cycle (3-4-
18-19-20-17, blue) bonds, and primitive rings of size 16 (pink) and 8 (green). (b) Distributions of size of
Zn–Im alternate rings for three aZIF-4 models. (a) is reproduced from Ref. [238].

Out of the multiple de�nitions and enumerations of rings presented in the literature [238], the de�nition
of rings used in this work corresponds to the de�nition of “primitive rings”, �rst introduced by Marians
[240] and used in the R.I.N.G.S. code [239]. Several names referring to the same mathematical object can
be found in the literature, and this de�nition is equivalent to that of “shortest path ring” by Franzblau
[241], of “minimal ring” by Guttman [242], of “irreducible ring” by Wooten [243] and of “rings” by
Goetzke and Klein [244].

A path between vertices y and z of length k is a chain of k edges joining y to z, in which at most two
edges share any vertex. A cycle is a closed path, i.e. which returns to its starting point. A ring is a
cycle of a graph which contains a shortest path for each pair of vertices. A detailed outline of this
terminology can be found in Franzblau [241] or in any of the other references above, with multiple
concepts illustrated on �gure 2.15a.

During my PhD I used a maximum search depth of 32, safely above the largest rings of the ZIF-4 crystal
(16), and checked that for the studied ZIF-4 glasses the choice of the maximum search depth did not
signi�cantly a�ect the analysis and conclusions drawn.

These distributions of ring sizes in our three examples reported on �gure 2.15b, show that aZIF-4
models have distinct topologies, highlight structures more or less ordered at medium range. ReaxFF
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is not reported as the model provided to us showed open imidazolate rings (see discussion later in
section 3.1.3).
Identification of building units
The identi�cation of building units – Zn and Im – is a prerequisite to the creation of the Zn-Im graph
that is used to compute ring statistics. As it is more challenging for glasses than for crystals, I developed
a Python module, part of the aMOF library (see section 2.5.5) to reduce the atomic structure into a
structure made of Zn and Im units.

The goal of this code is to reduce the ZIF-4 atomic structure (composed of Zn, N, C and H atoms) into a
structure made of Zn bonded to Im (C3N2H3), which requires the identi�cation of the imidazolates. It
is illustrated on �gure 2.16. Several codes exist to make this identi�cation for crystalline MOFs, such
as molsys from the Computational Materials Chemistry (CMC) group at the Ruhr-University Bochum
[205], the clustering tools of ToposPro [245], CrystalNets.jl [246], or MOFid [247].

−−−−−−→

Figure 2.16: ZIF-4 crystal before and after identi�cation of building units and reduction to a Zn-Im
graph. Zn, grey; C, brown; N, blue; H, white; Im, black.

Yet, amorphous models are by de�nition not as regular as crystals. This calls for a robust method to
identify the building units, which requires an adaptation of the routines designed for crystals. One
particular issue comes from the broad distribution of atomic positions, especially in high-temperature
liquids. For example, it is frequent in these amorphous structures to �nd a C or N atom in an imidazolate
Im1, to be closer to a C/N atom of another imidazolate Im2 than to the expected C/N atoms of Im1.
Therefore, “neighboring” atoms cannot straightforwardly be deduced from their distance.

I have developed the method presented here, and designed to be compatible with molsys [205]. It is ad
hoc for ZIF-4 and has been tested on several amorphous ZIF-4: ab initio liquids [92] and glasses [123],
RMC glasses [87, 92], a CRN glass [141], and the liquids and glasses of this present work (ReaxFF of
chapter 3 and AIMD and MLP of chapter 4).

Throughout the algorithm, two atoms are said to be “nearby” if their relative distance is smaller than
a cuto� distance. The cuto� is a function of the atomic species and computed from the covalent radii
as in molsys [205]. The explicit values used in this thesis are 1.752 Å, 1.728 Å, 1.4976 Å and 2.895 Å
respectively for C–C, C–N, C–H and Zn–N.
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Imidazolates (Im) are then identi�ed with the following procedure:

1. Construct a graph whose vertices are the C and N atoms, and with edges between nearby [C, N]
and [C, C] atoms.

2. Find every cycle C,N,C,N,C in this graph. Each atom in a given cycle is part of the same Im.
3. For every C atom, �nd nearby H atoms1 and add them to the Im containing C.

Zn and Im are considered bonded if there is an N atom in Im which is nearby Zn.

2.5.4 Characterizing liquids
Contrasting liquids from solids is crucial for the production of glass systems by melt-quenching. As it is
not straightforward to distinguish static structural properties between a liquid and an amorphous solid,
I used in my PhD two metrics to identify liquids.
Mean sqare displacement
Melting can �rst be evidenced by computing the mean square displacement (MSD). The MSD

〈
r

2〉 of an
atomic species A is de�ned as the mean-squared distance over which the atoms A have moved in a time
interval t: [178] 〈

r
2
〉

(t) = 〈(r(t) – r(0))2〉 = lim
T→∞

1
T

∫
T /2

–T /2
dτ (r(t + τ) – r(τ))2 (2.50)

de�ned when the system is at equilibrium in ] – T /2, T /2[ and T >> t [248].

For clarity, displacements r
i
(t) can formally be de�ned based on velocities v

i
(s) to implicitly consider

that the periodic boundary conditions are properly handled:

r
i
(t) – r

i
(0) =

∫
t

0
v
i
(s)ds (2.51)

In a liquid-like system, the MSD is linear with time t, following the relation:

∂
〈
r

2〉
∂t

= 6D (2.52)

where D is the di�usion coe�cient and 6 the numerical prefactor for 3D systems [178]. As illustrated
on �gure 2.17, it is therefore straightforward to contrast it from a solid for which the MSD will quickly
reach a plateau as the atoms do not migrate.

In practice, from a MD trajectory the MSD can be directly computed compared to the �rst frame:

〈
r

2
〉

(t) = 1
N
A

NA

∑
i=1

|r
i
(t) – r

i
(0)|2 (2.53)

Or when the �rst frame has no speci�c physcial meaning, it is possible to use a so-called window MSD
with a double average over time and over the atoms of the systems:

〈
r

2
〉

(t) = 1
N
A

NA

∑
i=1

1
T – t

T–t–δt

∑
τ=0

(ri(t + τ) – ri(τ))2 (2.54)

1There should be one and only one H for non-defective models
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where T is the time of the last frame of the trajectory, and δt the time step. Although both methods are
implemented in aMOF, I used the window MSD in this PhD.

Figure 2.17: Typical MSD for liquid and solid states. Reproduced from [208].

Lindemann ratio
The generalized Lindemann ratio ∆ is a property which quanti�es the liquid nature of the system [249].
A solid is usually considered to be melting when the value of this ratio is between 10 and 15%.

∆ is computed from partial radial distribution functions g(r), following the same procedure as previous
ab initio studies [92, 123, 149]:

∆ = FWHM
d0

(2.55)

where FWHM is the full width at half-maximum of the �rst peak in g(r) and d0 corresponds to the mean
interatomic distance. d0 is calculated as the distance r corresponding to the maximum of the �rst peak
of g(r). FWHM is estimated by a Gaussian �t, illustrated on two examples on �gure 2.18. To be able to
�t a Gaussian on noisy data (e.g. high temperature, few neighbors and time steps), I �rst used signal
processing routines from scipy [250] to �nd the peaks. A Gaussian was then �tted on the upper part
(g(r) ≥ FWMH

peak
) of the �rst peak. Both MSD and ∆ are shown on the same trajectories later in the

manuscript in �gure 3.11.
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Figure 2.18: Computation of the FWHM with a Gaussian �t on (a) nicely de�ned and (b) noisy RDFs
depending on the temperature (T ) and atom pair.
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2.5.5 aMOF, a Python library
To systematize all the trajectory analyses performed during my PhD, I developed aMOF, a Python
package gathering a collection of tools to analyze MD trajectories of aMOFs
Functionalities
This package brings together a number of analyses that can be performed on every MD trajectory (not
necessarily MOFs), heavily using both other Python packages and non-Python codes. It can compute
the following properties:

• Radial distribution functions (RDF), based on ASAP, an ASE calculator [251].
• Bond angle distributions
• Coordination numbers
• Mean square displacement (MSD)
• Elastic constants from cell properties, and mechanical properties from elastic constants by calling

ELATE [252]
• Pore analysis by wrapping Zeo++ [234–236], reusing code from pysimm [253]
• Ring statistics by wrapping the R.I.N.G.S. code [239]

The backend for manipulating trajectories is the atomic simulation environment (ASE) [251], by using
ASE trajectory objects.

A module called coordination allows the identi�cation of the di�erent building blocks of amorphous
MOFs with an ad hoc approach per MOF system. Only ZIF-4 is o�cially supported in the current stable
release, although any (Zn, Im) or (Zn, mIm) ZIFs are a priori supported.

This code is designed to be compatible with molsys [205], and can be used to generate input �les in the
mfpx format.
Availability
aMOF is available online on https://github.com/coudertlab/amof. This github repository also
contains example analyses as well as instructions to construct the documentation.

aMOF can be installed directly from source or alternatively from PyPI:

pip install amof
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I �rst explained in chapter 1 that the determination of the framework structure of amorphous MOFs at
the microscopic scale is experimentally di�cult, with di�raction experiments only providing indirect
structural information. I then highlighted that in order to work around or alleviate this challenge, an
array of computational methods coexist to model these disordered materials, with di�erent scopes,
scales and computational costs. One possible strategy consists in simulating the phase transition from
a crystalline MOF to the amorphous state using molecular dynamics (MD) to mimick in silico the
experimental formation routes. It is this strategy that I have explored during my PhD and that I will
describe in detail in the next two chapters.

In prior work in my group by Romain Gaillac, ab initio molecular dynamics have successfully been
used to model the melting of crystalline MOFs into liquids [92, 93, 149], and generate con�gurations of
melt-quenched glasses [123]. However, this approach has a very signi�cant computational cost which
limits its use to small systems and short time scales. Classical MD simulations, routinely used for
crystalline MOFs, do not provide a computationally e�cient alternative as they are unable to simulate
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bond breaking or reformation, two processes inherent to the formation of most amorphous MOFs
[146].

Reactive force �elds have then been proposed as a trade-o� between chemical accuracy and computation
cost. These empirical force �elds, which principles have been detailed in section 2.3.3, possess connection-
dependent terms that enable the simulation of bond breaking and reformation [153]. We saw in
section 1.3.5 that, starting with the work of Yang et al. [155], several studies relied on reactive force
�elds to generate models of zeolitic imidazolate frameworks (ZIFs) glasses by melt-quenching. However,
I want to highlight that in the existing literature, the generated models have not been subjected to direct
and in-depth comparison with those obtained by alternative approaches.

In this chapter, I probe the accuracy and reliability of modeling the formation and structure of amorphous
ZIFs using the ReaxFF reactive force �eld. I �rst reproduced the melt-quenching procedure used in prior
works [155], highlighting several di�culties and suggesting adaptations to the scheme. I then detailed
the structure of the resulting glasses and compared it to ab initio data [123], contrasting their properties
and commenting on some peculiarities of the glasses obtained with reactive force �elds. This study has
been published in The Journal of Physical Chemistry C (2022) [254].

72



3.1 producing glass models with in silico melt-qenching

3.1 Producing glass models with in silico melt-qenching
In order to generate atomistic models of ZIF glasses, I have decided to follow the melt-quenching route,
reproducing with molecular dynamics simulations the increase in temperature to produce a liquid
ZIF [92], followed by a quench back to room temperature to produce a glass. This general procedure,
mimicking the experimental reality (albeit at length and time scales that are much shorter), has long
been used to model the structure of multiple glass-forming materials such as chalcogenide compounds
or silicates [121, 122, 255]. It has previously been used in simulations of ZIFs, both with a reactive force
�eld [155] and with ab initio MD [123].

In this work, I followed the same general melt-quenching procedure with small adaptations. Using the
ReaxFF force �eld introduced by Yang et al. [155], an initial crystalline structure was prepared and heated
up to 300 K, allowing us to measure the properties of the ZIF in its crystalline phase. Then, the system
was melted by heating it up to a maximal temperature (well above the melting point). The produced
liquid was then quenched to room temperature, transitioning into the glass state. Finally, the system
was equilibrated, and its structural and dynamic properties were calculated. Both the melt-quenching
and the equilibration were performed in the constant-pressure (N , P , T ) ensemble to be able to capture
changes in density during the formation. The four steps of this procedure are represented on �gure 3.1
and are detailed in the following sections.
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Figure 3.1: Temperature as a function of time during the glass formation procedure with ReaxFF,
consisting of preparation (orange), melting (red), quenching (green) and equilibration (blue). Plateaux
are present to collect statistics during melt-quenching. For clarity, only the start of the equilibration is
shown, and a moving average over 250 fs is used. An enlarged plot of the preparation is presented on
�gure 3.3.

3.1.1 System and methods
Our system throughout this study will be ZIF-4, which is built up from Zn2+ metal nodes and imidazolate
(Im) organic linkers and that I previously described in section 1.2.3. The �rst discovered amorphous
MOF [84], it has since been the subject of numerous studies, both experimental and numerical (see
chapter 1), thus providing a prototypical amorphous ZIF system.

All simulations were performed using LAMMPS [211, 256], with the ReaxFF force �eld introduced by
Yang et al. [155] and further detailed in section 1.3.5 and section 2.3.3. A timestep of 0.25 fs was used in
the MD runs and, the temperature (and pressure when applicable) were controlled using a Nosé–Hoover
thermostat (and barostat), introduced in section 2.1.3. Unless otherwise speci�ed, temperature and
pressure damping parameters were �xed at 100 fs and 1000 fs respectively. At every stage, several values
were tested to check the relevance of this range. By default, constant-pressure (N , P , T ) simulations
were performed using an isotropic cell, using the LAMMPS keyword iso. To reduce �nite size e�ects, a
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(2× 2× 2) supercell of ZIF-4 with 2176 atoms was simulated with PBCs, as in Yang et al. [155]. I checked
that it does not signi�cantly a�ect the properties of the generated glasses, as shown on �gure 3.2.
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Figure 3.2: (a) Radial distribution functions (RDF) and (b) potentials of mean force (PMF) for the Zn–N
atom pair of ReaxFF glasses generated with di�erent supercells, after 1 ns of equilibration in the (N ,V , T )
ensemble.

3.1.2 Preparation of the crystal
While it may seem trivial to equilibrate the crystal structure at room temperature, I want to detail
this here because I have found that it is a crucial step. This is true in particular when one wants to
simulate with ReaxFF structures that originate from di�erent levels of theory or come from experiments,
therefore with di�erent structural characteristics — for which features of the original model should be
retained. I do this by imposing constraints on the energy, temperature and volume of the system, and
successively releasing them. The entire procedure is represented on �gure 3.3
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Figure 3.3: Temperature as a function of time during the crystal preparation procedure with ReaxFF,
consisting in the use of various thermodynamic ensembles (constant-volume (N ,V , T ) and constant-
pressure (N ,V , T )) and temperature damping parameters (T

damp
). A moving average over 250 fs is

used.
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After an initial energy minimization, the system is relaxed at a very low temperature, using a constant–
volume (N ,V , T ) ensemble at 20 K for 5 ps with a temperature damping parameter of 10 fs (necessary to
avoid having too large forces and a high temperature in the initial dynamics, as can be seen otherwise
by checking the thermodynamic properties of this initial low-temperature relaxation).

The system then needs to be brought to 300 K, staying in the (N ,V , T ) ensemble to decouple temperature
and pressure equilibration. I tried various heating rates from 2.5 K/ps to 116 K/ps, the value chosen in
Yang et al. [155]. I found that rates above 10 K/ps lead to the breaking of Zn–N bonds, with a coordination
number dropping from the expected value of 4. This undesirable and unphysical decoordination has
consequences on the �nal structural properties of the obtained crystals, illustrated with the potentials
of mean force (PMF) shown in �gure 3.4. Due to the reactive nature of this force �eld, it is advised to
carefully check that no bond breaking happens in the crystalline state [92]. I therefore chose a safe
value of 5 K/ps for the heating rate of the preparation.
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Figure 3.4: Potential of Mean Force (PMF) for Zn–N of ReaxFF crystals prepared with two di�erent
heating rates, after 1 ns of equilibration in the (N ,V , T ) ensemble.

Finally, once 300 K is reached, we switched to the constant-pressure (N , P , T ) ensemble at P = 0 Pa,
with a pressure damping parameter of 1000 fs and using an isotropic cell. After a short equilibration
period of 30 ps, we found that this constant-pressure simulation led to an increase in density from 1.21
to 1.3. I checked that using a longer equilibration period of 500 ps does not change the properties of the
resulting glass. I tried using a �exible cell (LAMMPS keyword tri) and found that it led to a dramatic
increase in density (up to 1.6), shown in �gure 3.5. The goal being the system stabilization, it led us to
keep the isotropic constraint on the cell shape. This tendency to densify will be discussed in the �nal
section 3.3.1. Several pressure damping parameters in the range of 250 to 4000 fs were tested, leading to
no signi�cant change in the �nal density.

3.1.3 Melt-quenching
The equilibrated ZIF-4 crystal is then heated up above its melting temperature before being cooled down,
with constant heating and cooling rates. While these rates are necessarily several orders of magnitude
higher than in any achievable experiment, due to the small time scales tractable by MD simulations
[122], they should be low enough to simulate a quasistatic process. Yang et al. opted for 96 K/ps [155]
and the subsequent ReaxFF works used the lower value of 24 K/ps [156–158]. A cooling rate of 50 K/ps
was chosen for the ab initio work to ensure the tractability of the simulation but was then seen as a
limitation of the work [123]. Using the computational e�ectiveness of reactive force �elds, I opted here
for heating and cooling rates of 2.5 K/ps.

To monitor structural properties as a function of temperature during melt-quenching, such as the radial
distribution function (RDF) plotted on �gure 3.6, I opted for subsequent steps of temperature ramp up
of 100 K at 5 K/ps and plateaux of 20 ps. Shown on �gure 3.1, this succession of steps is equivalent to
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Figure 3.5: Crystal �nal density after 500 ps of equilibration in the (N , P , T ) ensemble with various
pressure damping parameters and cell types. The horizontal line is the density of the crystallographic
crystal (1.21 g cm–3) before its preparation with ReaxFF.

e�ective heating and cooling rates of 2.5 K/ps. I checked that the presence or absence of plateaux (with
the same e�ective rate) has no in�uence on the �nal glasses properties, as expected for a quasistatic
simulation. I also checked, and demonstrate on �gure 3.7, that in the 1.25 – 5 K/ps range, the precise
value does not signi�cantly change the outcome of the simulation. I note here again that melt-quenching
simulations were performed in the (N , P , T ) ensemble with an isotropic cell, as the use of a �exible
cell led to an undesirable fast density increase in the �rst tens of picoseconds, which a�ects the �nal
properties of the melt-quenched glass.
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Figure 3.6: Radial distribution functions (RDF) for Zn–N shown for di�erent temperatures during
melting of the ReaxFF crystal. RDFs are computed over the constant temperature plateaux, each lasting
20 ps.

3.1.4 Choice of the melting temperature
The choice of the maximal temperature, necessarily above the melting temperature, is a trade-o� between
the need to gather statistics on relatively rare events during the relatively short times explored in MD
[92], and the necessity to preserve the physical consistency of the model. A value of 1500 K was chosen
for both the previous ab initio [123] and ReaxFF [155–158] works. While ab initio MD simulations
of the liquid ZIF have been performed up to 2000 K while preserving the integrity of the imidazolate
linkers [92], no published work investigated the temperature stability of ReaxFF simulations of the ZIF
liquid.

During melting with a 2.5 K/ps heating rate, I report that when the maximal temperature exceeds 1300 K
for more than a few tens of ps, the system vaporizes (as shown on �gure 3.8). This e�ect is kinetically
hidden when using the faster heating rates of 24 – 96 K/ps that do not provide su�cient time for the
system to equilibrate, explaining why it was not observed in the previous ReaxFF works [155–158]. It
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suggests a tendency of this reactive force �eld to be overly favorable to zinc–imidazolate bond breaking
events, which is exacerbated at such high temperatures.
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Figure 3.7: (a) Radial distribution functions (RDF) and (b) potentials of mean force (PMF) for the Zn–N
atom pair of ReaxFF glasses generated with various heating/cooling rates and a maximal temperature
of 1100 K, after 1 ns of equilibration in the (N ,V , T ) ensemble. For values below 3.75 K/ps we see no
noticeable di�erence in the �nal properties of the glasses, con�rming the choice of 2.5 K/ps. The larger
cooling rates in the 10 – 50 K/ps range do not lead to signi�cantly di�erent properties, although they
may have hastened the phase transition.
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Figure 3.8: Density as a function of time and temperature during two melt-quenching ReaxFF trajectories
with maximum temperatures Tmax of 1300 K and 1500 K. Above 1300 K, the density drops to 0 g cm–3 as
the system transitions into a gas.

Additionally, we observe that when the system temperature is above 1100 K for a su�ciently long time,
a number of imidazolates are no longer properly treated, for example with an opening of the imidazolate
ring as reported on �gure 3.9. This unphysical treatment of the organic linkers, which should be stable
at the melting temperature [92], is more visible for lower heating/cooling rates as they lengthen the
time spent at high temperatures and increase the proportion of open rings. It could nonetheless be
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observed when we reproduced the high melting rate of 96 K/ps and maximal temperature of 1500 K of
Yang et al. [155].
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Figure 3.9: Proportion of broken (i.e. open) imidazolate cycles (Im) as a function of time for a melt-
quenching ReaxFF trajectory with a maximum temperature of 1300 K. Detected during the cycle search
step of the code identifying the building units described in section 2.5.3.

Changing the maximal temperature to 1100 K to avoid these undesired e�ects has signi�cant implications
for the computed structural properties. As shown on table 3.1, the decoordination of the Zn atoms
compared to the crystal is now in better agreement with ab initio data [123] than in previous ReaxFF
works. Similarly, the Zn–N potential of mean force (PMF) shown on �gure 3.10, indicates a higher free-
energy barrier to bond breaking, closer to the ab initio structure (see next section 3.2). This suggests that
these imidazolate breaking events are frequent enough to statistically change the structural properties,
and thus we recommend verifying that they do not appear during melt-quenching.

This work Yang et al. [155] ab initio [123]
Maximal temperature 1100 K 1300 K 1500 K 1500 K

Zn–N average coordination 3.85 3.59 3.56 3.93

Table 3.1: Coordination numbers for nitrogen atoms around the zinc cation of ZIF-4 glasses for di�erent
maximal temperatures, compared to previous ReaxFF [155] and ab initio [123] works.
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Figure 3.10: Potential of Mean Force (PMF) for Zn–N of melt-quenched ReaxFF glass produced with
two di�erent maximal temperatures.

Having opted for a lower maximal temperature of 1100 K, it is crucial to check that this value is still high
enough for the crystal to melt. This is �rst evidenced by computing the mean square displacement (MSD)
over time, shown in �gure 3.11a for Zn. At temperatures above 1000 K, I identify a di�usive behavior
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for the system, as expected for a liquid. In addition, similarly to previous ab initio works [92, 149], we
computed the generalized Lindemann ratio [249] from the width of the �rst peak in the Zn–N partial
RDF. A solid is usually considered to be melting when the value of this ratio, which quanti�es the liquid
nature of the system, is between 10 and 15%. Although less precise than the MSD, this estimate, shown
on �gure 3.11b, provides further evidence that the system is in a liquid state at 1100 K.
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Figure 3.11: Evidence of melting during the ReaxFF glass generation. (a) Mean square displacement
(MSD) as a function of time for Zn for temperatures ranging from 300 K to 1100 K. (b) Generalized
Lindemann ratio, as a function of temperature, calculated for Zn–N interatomic distances. The orange
horizontal line represents a “critical ratio” at 10%.

3.1.5 Equilibration
Finally, after the melt-quenching procedure, the glass model obtained was then equilibrated for 20 ps
in the same (N , P , T ) ensemble as during melt-quenching, the duration of one constant temperature
plateau. The simulation was then further run for production during 1 ns in the (N ,V , T ) ensemble
to gather statistics of structural and dynamical properties of the glass. I checked that up to 10 ns of
further equilibration in the (N , P , T ) ensemble, even with a �exible cell, does not perceptibly change the
measured properties of the glass.
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3.2 Properties of the glass models
In order to quantitatively evaluate the validity of the ReaxFF melt-quenched glass model, I have compared
its structural characteristics with that of glass models generated at a higher level of theory, namely the
ab initio models of the work by Gaillac et al. [123], obtained with density functional theory (DFT)-based
molecular dynamics. Such ab initio simulations allow for a full description of the electronic state of the
system at the quantum chemical level, and still represent the most reliable atomistic description of ZIF-4
glasses published to date in the literature as discussed in section 1.3.

Due to the signi�cant computational cost of ab initio MD, a faster melt-quenching procedure was used:
only the quenching from a 1500 K liquid was simulated, with a faster cooling rate (50 K/ps), on a smaller
system (unit cell) and with a shorter equilibration (∼ 100 ps). To limit the impact of �nite size e�ects,
10 quenched glasses were generated and their properties averaged. Due to the di�culty of performing
(N , P , T ) ab initio simulations of such �exible frameworks [150], all ab initio simulations were performed
in the (N ,V , T ) ensemble. Although the in�uence of the density on the crystal and liquid properties
was evaluated in a previous work [92], the inability to capture changes in density remains an important
limitation of this ab initio methodology. The ab initio simulation of a crystal at 300 K reported here
comes from the same work [92, 123].

Unless explicitly stated in the legend, properties were averaged over an (N ,V , T ) trajectory of 1 ns for
ReaxFF systems and 60 ps for ab initio. For ReaxFF simulations, frames were taken every 125 fs for the
radial distribution function (RDF), bond angle distribution and coordination number, every 250 fs for
the mean square displacement (MSD), every 10 ps for ring statistics and every 25 ps for pore statistics.
For ab initio, those intervals are respectively of 0.5 fs, 5 fs, 0.5 ps and 0.5 ps. The computed properties
are extensively described in section 2.5.

3.2.1 Local order: interatomic distances and bond angles
I �rst investigated the di�erence in local order between ReaxFF and ab initio glasses by examining the
metal–ligand bonds (Zn–N), central to the Zn(Im)4 tetrahedral structure represented on �gure 1.19. For
the two models, I plot and compare the partial radial distribution functions (RDF) g(r) for the Zn–N and
Zn–Zn atom pairs on �gure 3.12. As outlined in table 3.2, we �nd a shift in Zn–N atomic distances of
0.2 Å between ReaxFF and both the ab initio and experimental values. To contrast the di�erences of
the partial RDF in the region between the �rst two peaks, I also present it in the form of a potential of
mean force (PMF). From the resultant free energy pro�les, we observe similar values for the free energy
barriers (' 23 kJ/mol), although with di�erent shapes. The wider well and narrower barrier for the
ReaxFF glass suggest a tendency of ReaxFF to allow Zn–N bonds to break more easily.

Zn–N (Å) Zn–Zn (Å)
ReaxFF glass 2.21 6.35
AIMD glass 2.00 5.97

AIMD crystal 2.00 5.97
Experimental crystal 1.97 (XRD [65]), 1.98 (NMR [166]) 5.87 (XRD [65])
Experimental glass 1.99 (RMC [92]) 5.95 (RMC [92])

Table 3.2: Interatomic distances (Zn–N and Zn–Zn) of the ReaxFF ZIF-4 glass compared to ab initio and
experimental values. Experimental data is obtained from X-ray di�raction (XRD) studies [65] and NMR
(Nuclear magnetic resonance) [166] for the crystal, and from a Reverse Monte Carlo (RMC) re�nement
of Neutron and X-ray scattering data of a melt–quenched glass [92].

Yet, the most stringent distinctive feature of the ReaxFF glass compared to its ab initio counterpart lies in
the N–Zn–N bond angle distribution P(θ), shown on �gure 3.13. From the Zn(Im)4 tetrahedral structure,
we expect a unimodal distribution around 109° for the crystal. Experimentally measured by NMR [166],
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Figure 3.12: (a) Radial distribution functions (RDF) and (b) potentials of mean force (PMF) for the Zn–N
atom pairs of the ReaxFF glass (blue), ab initio glass (orange) and ab initio crystal (red). (c) RDF for the
Zn–Zn atom pair of the same systems.

this feature is well reproduced for the ab initio crystal. Due to the undercoordination of a small fraction
of the Zn2+ nodes in the glasses, a small deviation is expected, and observed for the ab initio glass, with
a wider distribution and tail at higher angle values. However, the ReaxFF glass distribution is very
di�erent, with a broad distribution of angles on the 70–170° spectrum. This distribution is unphysical,
and does not reproduce the known tetrahedral chemistry of the system, suggesting ill-adjusted angle
constraints in the force �eld. The angular PMF shown on �gure 3.13 further evidences the tendency of
this force �eld to have the ReaxFF glass deform too easily.

Despite the importance of the N–Zn–N angle for the framework properties, key to the features of ZIFs,
I found that statistical distributions of bond angles have never been published in the existing literature
on ReaxFF simulations of these materials: Yang et al. showed the results of a single frame [155] while
a later work by To et al. only looked at the average bond angle [157]. I recommend computing and
reporting this distribution, in the same way as it is routinely done for the development of classical force
�elds [203].
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Figure 3.13: (a) Distribution and (b) potentials of mean force (PMF) of the N–Zn–N angle for the ReaxFF
glass (blue), ab initio glass (orange) and ab initio crystal (red).
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3.2.2 Bulk properties: density and porosity
By allowing exaggerated deformation of the framework, the underconstrained Zn–imidazolate interac-
tions described above impacts the bulk properties of the ReaxFF glass. I report from our simulations a
density of 1.68 g cm–3, signi�cantly larger than the crystal density of 1.21 g cm–3. Comparison with the
ab initio glass is not possible as they were generated using a constant-volume (N ,V , T ) ensemble, which
does not capture changes in density. Direct experimental comparison of these densities computed from
the atomic structure is limited: they correspond to crystallographic densities, while almost all densities
measurements performed for glasses utilized pycnometry [233]. Nevertheless, pycnometric densities
of 1.63 g cm–3 for the glass and 1.50 g cm–3 for the crystal [86] indicate that a larger value is expected
for the glass. Although we could expect the di�erence in crystallographic densities between the glass
and crystal to be much smaller, the complex di�usion behavior of helium into the ZIF-4 pores makes
pycnometric densities measurements di�cult to interpret. As an alternative to pycnometry, a recent
work determined the crystallographic density for the ZIF-4 glass from CO2 physisorption studies [233].
Estimated to be 1.38 g cm–3, this value hints that ReaxFF overestimates the glass density.

Additionally, I computed the porosity of the glasses (see �gure 3.14) and found a total porous volume
of 4.6 cm3 kg–1 for the ReaxFF glass, down from the 54 cm3 kg–1 of the crystal (computed for ab initio).
As the porosity is greatly impacted by the density of a system, direct comparison to the ab initio glass
(68 cm3 kg–1) is limited but does suggest that the ReaxFF glass porosity is one order of magnitude too low.
This all but complete loss of porosity also contradicts the experimental measurements of the porosity of
a ZIF-4 glass made by positron annihilation lifetime spectroscopy (PALS) [164], and further con�rms
that the density of the ReaxFF glass is excessively large.
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Figure 3.14: Total porous volume of the ReaxFF glass (blue), ab initio glass (orange) and ab initio crystal
(red).

3.2.3 Topological properties of the coordination network
Finally, I investigated the di�erences in the medium-range order of the glasses, highlighted by their
contrasting structure factors shown on �gure 3.15, by examining the coordination network built from
the alternating Zn–Im (imidazolate) units. I �rst calculated the average Zn–N coordination numbers
and found a lower coordination of 3.85 for the ReaxFF glass compared to 3.93 for the ab initio glass,
con�rming the ReaxFF tendency to underconstrain Zn–N bonds.

In order to characterize the topology at larger scale, known to be key to the properties of these framework
materials [70], I computed Zn–Im ring statistics. This analysis, routinely used to characterize amorphous
systems such as SiO2 [239] and �rst applied to amorphous MOFs for the ab initio glasses [123], determines
the number and size of rings present in the ZIF network. Ring sizes are computed by counting the
number of di�erent units (Zn and Im) in each ring; always even, they are equal to twice the T-based ring
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Figure 3.15: X-ray total-scattering structure factors F (Q) of the ReaxFF glass (blue), ab initio glass
(orange) and ab initio crystal (red). Computed following the same methodology as in Gaillac et al. [92].

sizes usually reported for zeolitic nets [69]. These distributions of ring sizes, reported on �gure 3.16,
show that both glasses have topologies that deviate from the crystal perfectly de�ned 8, 12 and 16 rings.
However, the two glass models display very di�erent topologies, with the ReaxFF glass having a higher
proportion of larger rings than the ab initio glass. It demonstrates that it is less ordered at medium
range, a result arising from the too weak constraints on the Zn–imidazolate interactions.
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Figure 3.16: Distributions of size of zinc–imidazolate alternate rings for the ReaxFF glass (blue), ab
initio glass (orange) and ab initio crystal (red).
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3.3 Challenges in using ReaxFF
In addition to generating a glass model markedly di�erent from its ab initio counterpart, I identi�ed
several challenges when using the ReaxFF force �eld for ZIFs. I highlight them here, as they should be
kept in mind and may be applicable to other molecular simulations of MOF glasses.

3.3.1 (N , P , T ) ensemble and densi�cation
Molecular dynamics simulations in the constant-pressure (N , P , T ) ensemble are remarkably insightful,
notably for the study of mechanical and thermal properties [146, 257]. In particular, the use of a �exible
cell, more general than an isotropic cell, enables the computation of multiple mechanical properties as
we will see in chapter 5.

Yet, previous work has shown that (N , P , T ) are particularly challenging to use with soft porous materials,
due to the sensitive response of these frameworks to small external stimuli, in particular for ab initio
calculations [150]. While every published work on ZIFs with ReaxFF used (N , P , T ) ensembles, no
systematic validation has been published to this day.
System description
In order to evaluate the robustness of such constant-pressure simulations, we equilibrated at T = 300 K
and P = 0 Pa several ZIF-4 systems with a �exible cell:

• The ReaxFF glass prepared in the �rst section, equilibrated for 10 ns.
• The crystal prepared in the �rst section, equilibrated for 5 ns.
• Three ab initio glasses obtained from the work by Gaillac et al. [123] that went through the same

preparation process as the crystal (see section 3.1.2). I took (2× 2× 2) supercells of these systems
to have the same system size as the ReaxFF glass and the crystal (2176 atoms). Their equilibration
times were comprised between 7 ns and 18 ns. Densities reported in the article are averaged over
the three glasses.

• A glass obtained by Reverse Monte Carlo (RMC) modeling [129] in another work by Gaillac et al.
[92] The system, made of 8704 atoms, was prepared as the crystal, and was then equilibrated for
22 ns.

The criteria for the convergence of the cell shape was the convergence of the elastic constants obtained
from the cell parameters by the strain-�uctuation method [146, 258]. We note that it can be a lengthy
process for some systems as illustrated on �gure 3.17 for the RMC glass.
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Figure 3.17: Volume as a function of time during a long 22 ns equilibration in the (N , P , T ) ensemble
with a �exible cell for the RMC glass. The red part of the �gure corresponds to the region where the
convergence of the elastic constants was achieved. The orange line shows a moving average over 100 ps.
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Impact on the density
As reported on table 3.3, we see that the density of every equilibrated system is in the range of 1.5 to
1.7 g cm–3, regardless of their initial density. I conclude that the large density observed for the ReaxFF
glass may not be due to its speci�c structure, but is rather a symptom of ReaxFF tendency to densify
systems.

Initial density
(g cm–3)

Density after
equilibration (g cm–3)

Crystal 1.21 1.61
ReaxFF glass 1.68

RMC glass 1.58 1.56
ab initio glass 1.21 1.57

Table 3.3: Densities after preparation and equilibration in ReaxFF for the ZIF-4 crystal and three ZIF-4
glasses, compared to their initial densities.

I have found that using an isotropic cell for the crystal and ab initio glasses reduces the magnitude
of the densi�cation respectively by 0.25 g cm–3 (see �gure 3.5) and 0.14 g cm–3 (see �gure 3.18). This
di�erence, which should a priori not be observed for the crystal as the cell shape is not supposed to
vary much, highlights once again that this ReaxFF force �eld is very sensitive and does not fare well
when we reduce the number of constraints on the system. Nevertheless, I recommend using an isotropic
cell if one has no interest in the �uctuations of the cell, as it provides a behavior closer to the physical
reality.

Glass 1 Glass 2 Glass 3
1.2
1.3
1.4
1.5
1.6
1.7
1.8

De
ns

ity
 (g

cm
3 )

flexible 
cell
isotropic 
cell

Figure 3.18: Final density of three ab initio glasses after 500 ps of equilibration in the (N , P , T ) ensemble
with isotropic or �exible cells. The horizontal line is the density of the ab initio glasses (1.21 g cm–3)
before their preparation with ReaxFF.

Another option to avoid this undesired densi�cation may consist in staying in the constant-volume
(N ,V , T ) ensemble, similarly to what was done in the ab initio works [92, 123]. For example, pressure
equilibration can be achieved by successive slow deformation of the cell until zero pressure is reached.
When I performed this procedure in the case of the ZIF-4 crystal, it leads to a density of 1.26 g cm–3, not
far from the experimental crystal density. However, although this approach could �x the troublesome
densi�cation, we end up losing all the bene�ts of the (N , P , T ) ensemble that every ReaxFF work published
so far was interested in.

3.3.2 Description of the crystal
Surprisingly, I found that the ReaxFF parametrization for Zn-based ZIFs have not been systematically
validated on any crystalline structure in the existing literature. Therefore, I report here the properties of
a ZIF-4 crystal prepared as described in the �rst section 3.1.2. The goal is to di�erentiate the intrinsic
properties of the ReaxFF glass from the numerical artifacts linked to the use of this force �eld. Due to
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the ReaxFF tendency to densify the crystal, I investigated various equilibration procedures using either
(N ,V , T ) or (N , P , T ) ensembles.
System description
Four ReaxFF crystal systems are compared to the ab initio crystal in the �nal section. The starting
point of these crystals is the last (N ,V , T ) state of the prepared crystal at 300 K of section 3.1.2. Before
computing their properties – gathered during a 1 ns equilibration in the (N ,V , T ) ensemble – these
systems went through di�erent preliminary equilibration procedures:

• (N ,V , T ) initial density: no preliminary equilibration, implying no change in density from the
crystallographic crystal.

• (N ,V , T ) zero pressure: successive (N ,V , T ) runs of slow deformations of the system volume were
applied until a state of zero pressure was achieved. The system went through three sequences of
250 ps of isotropic volume reduction by 1.5% and 250 ps of equilibration. During the deformation,
each dimension of the box changed linearly with time from its initial to �nal value.

• (N , P , T ) isotropic cell: (N , P , T ) run of 500 ps with an isotropic cell.
• (N , P , T ) �exible cell: (N , P , T ) run of 500 ps with a �exible cell. I checked that there is no signi�cant

di�erence in the computed properties compared to an equilibration time of 5 ns.

All these simulations are performed at 300 K and – if applicable – 0 Pa, using the same temperature and
pressure damping parameters than for the preparation (respectively 100 fs and 1000 fs).
Structural properties
These various strategies led to ReaxFF crystals of di�erent densities, reported in table 3.4, which
ineluctably lead to di�erent porosities (see �gure 3.19).
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Figure 3.19: Total porous volume of the ReaxFF crystals with four di�erent equilibrations compared to
the ab initio crystal.

Under (N ,V , T ) simulations, I systematically found no change in the connectivity (see table 3.4) or
topology of the crystal (see �gure 3.20). However, this does not hold true for the (N , P , T ) schemes for
which we observe a small deviation, evidencing that an (N , P , T ) equilibration at 300 K causes undesired
bond breaking, even when enforcing an isotropic cell.

An investigation of the local order with the RDF and PMF (see �gure 3.21), evidence a similar shift in
interatomic distances compared to ab initio data than what was observed for the glass. Additionally,
we observe a signi�cant lowering of the free energy barrier in the PMF between the �rst two minima
compared to the ab initio data, even for the crystal systems that never went through an (N , P , T )
ensemble.
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Density (g cm–3) Zn–N coordination number
ReaxFF (N ,V , T ) initial density 1.21 3.99

(N ,V , T ) zero pressure 1.27 4.00
(N , P , T ) isotropic cell 1.30 3.95
(N , P , T ) �exible cell 1.59 3.98

ab initio 1.21 4.00

Table 3.4: Densities and coordination numbers of crystal systems with di�erent preliminary equilibra-
tions in ReaxFF.
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Figure 3.20: Distributions of size of zinc–imidazolate alternate rings for the ReaxFF crystals with four
di�erent equilibrations compared to the ab initio crystal.

This tendency to systematically underconstrained the Zn–N interaction is further evidenced by the
unphysical bond angle distribution shown on �gure 3.22.

Unphysical angles are also observed on two other ZIF crystals – ZIF-8 and SALEM-2 – evidencing that
this issue is not linked to the choice of ZIF-4 as a prototypical system (see �gure 3.23). I conclude that
the unphysical description of the zinc–imidazolate coordination in the ReaxFF force �eld is also manifest
in the detailed analysis of the structural properties of the crystalline phase, further questioning the
validity of this force �eld.

88



3.3 challenges in using reaxff

3 4 5 6 7

r (Å)

0.0

0.2

0.4

0.6

R
D

F
Z

n
Z

n
(r

)

system

NPT flexible cell

NPT isotropic cell

NVT initial density

NVT zero pressure

ab initio crystal

2 3 4 5 6

r (Å)

0

10

20

30

P
M

F
Z

n
N
(r

)
(k

J/
m

o
l)

2 3 4 5 6

0

2

4

6

8
R

D
F

Z
n

N
(r

)
system

NPT flexible cell

NPT isotropic cell

NVT initial density

NVT zero pressure

ab initio crystal

(a)

(b)

(c)

Figure 3.21: (a) Radial distribution functions (RDF) and (b) potentials of mean force (PMF) for the Zn–N
atom pair of the ReaxFF crystals with four di�erent equilibrations, compared to the ab initio crystal. (c)
RDF for the Zn–Zn atom pair of the same systems.
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Figure 3.22: (a) Distribution and (b) potentials of mean force (PMF) of the N–Zn–N angle for the ReaxFF
crystals with four di�erent equilibrations, compared to the ab initio crystal.
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Figure 3.23: Distribution of the N–Zn–N angle of the crystalline phases of (a) ZIF-8 and (b) SALEM-
2, simulated with ReaxFF (blue) and ab initio MD (red). ReaxFF crystals are prepared with the same
procedure as the ZIF-4 crystal detailed in this paper, and their properties are computed over a subsequent
100 ps of equilibration in the (N ,V , T ) ensemble. Ab initio data is obtained from the same previous
work the ZIF-4 glasses and crystal were obtained [123], consisting of between 80 and 100 ps of (N ,V , T )
equilibration.
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Conclusions and perspectives
In this work, I have reported the results of an extensive study of the use of the ReaxFF reactive
force �eld to generate atomistic models of ZIF glasses. I demonstrated that the molecular simulations
performed so far in the literature are extremely sensitive to the choice of simulation methodology and
parameters: thermodynamic ensemble, damping parameters, heating/cooling rate, maximal temperature,
etc. The physical consistency of the system should always be carefully checked, for example by drawing
inspiration from the procedure presented in this study.

I have also shown that the glass models generated with ReaxFF are markedly di�erent from their ab initio
counterparts, with extensive di�erences in both local environment, medium-range and bulk properties.
This is due in large part to an underconstrained representation of the Zn–N interactions in the ReaxFF
model, which do not faithfully reproduce one of the key characteristics of the chemistry of ZIFs, namely
the directional nature of the Zn–N coordination. This issue in the intermolecular potential, in turns,
signi�cantly impacts the crystal properties obtained through molecular simulations. Additionally, I have
reported and analyzed a tendency of simulations performed in the constant-pressure (N , P , T ) ensemble
to densify the system.

All these observations suggest that structural properties obtained from the use of ReaxFF force �eld for
ZIFs should be interpreted with caution, and makes a strong case for the use of alternative methodolo-
gies, or the further optimization of the ReaxFF force �eld. They also call for further methodological
development to assess the possibility to explore mechanical properties of these soft porous materials
with ReaxFF. Moreover, I think it is imperative, for future developments of ZIF reactive force �elds,
to systematically check their ability to simulate an (N , P , T ) equilibration of the crystal at ambient
conditions. A good example of such practice is the recent development of a ReaxFF force �eld for
zirconium-based MOFs by the same group, for which the authors reported the density pro�le for a 1 ns
equilibration [259].

Finally, this work exempli�es the need for direct and in-depth comparison of the di�erent models of
ZIF glasses available by systematically contrasting their properties. It shows that, apart from expensive
ab initio calculations, no molecular dynamics scheme used to this date in the literature can yield an
accurate microscopic representation of the ZIF melt-quenched glasses, and suggests the development of
multi-scale modeling strategies that I will explore in the next chapters.
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As ReaxFF represented the only tractable alternative to ab initio molecular dynamics published in the
literature to generate ZIF glasses, the signi�cant challenges evidenced in chapter 3 left us with no
o�-the-shelf option and the necessity to develop new potentials for ZIFs. One area of active research that
appeared very promising was the development of machine-learned potentials (MLP) for the description
of atomic interactions [213]. I have given a description of MLPs in section 2.4. Their use could lead
to a new generation of speci�c and accurate reactive potentials for the description, in particular, of
the coordination interactions that are key to the metal–ligand bond breaking and formation during
amorphization, as well as in the glassy state.

Several MLPs have successfully been developed either for MOFs [221, 260] or to generate amorphous
systems or glasses [261, 262], but none was ever used to model amorphous MOFs so far. This work
ambitions to bridge the gap between these two bodies of work, by developing the �rst MLP used to
generate amorphous MOF, focusing on the example of aZIFs.

This chapter relates an ongoing work performed in collaboration with Jack D. Evans from the University
of Adelaide. He performed the training of the MLPs, while I focused on the generation of the training
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data and use of the trained MLP to run MDs. His contributions are explicitly mentioned where relevant
in this manuscript. In this chapter, after discussing the literature on MLPs for MOFs and amorphous
systems, I introduced the prototypical MLPs for ZIF-4 we developed, which I then used to generate
realistic aZIF-4 models by melt-quenching. Finally, I generated an enlarged training set as a �rst step
towards the training of a universal MLPs for ZIFs. Due to the ongoing nature of this work, this chapter
is rather a proof of concept than a de�nitive answer. I nonetheless evidenced that the MLP route is
particularly promising and mentioned the next steps that we will take in this research.
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4.1 MLPs for MOFs and amorphous systems
4.1.1 MLPs for MOFs
Despite the dramatic increase in the use of MLPs for both molecules and materials, only �ve articles
proposed MLPs for MOFs at the time of writing, all of them consisting of neural network potentials
(NNP). MOFs are particularly challenging for multiple reasons, in particular because of the di�erent
interactions that need to be correctly modeled – from strong covalent bonds and ionic interactions
to weak van der Waals interactions –, along with their chemically complex composition. In addition,
the (often) large unit cell size impedes ab initio simulations from generating training data [260, 263].
Approaches based on parametrization (e.g. MOF-FF described in section 2.3.2) have been much more
used in this community.

In 2019, Eckho� and Behler [260] proposed the �rst MLP for a MOF system, using the prototypical
MOF-5 [45]. They circumvented the need for large ab initio calculations by using DFT calculations of
small molecular fragments to train their MLP for the periodic bulk framework. This neural network
potential [219], constructed using the RuNNer code [264], was used to predict a number of properties
(energies, forces, thermal and mechanical properties) which the authors found to be in good agreement
with ab initio calculations. This method was re�ned and further validated in a later work from the same
group [265].

Two other works published in 2022 followed this approach, relying on molecular fragments for the
construction of MLPs for the bulk material. Yu et al. [266] constructed a NNP for MOF-808 – a Zr-
based MOF –, using the Large-scale Atomic Simulation with neural network Potential (LASP) software
[267], to investigate adsorption and migration mechanisms of Pt clusters inside the framework. It
is illustrated on �gure 4.1. Another NNP was developed by Tayfuroglu et al. [268] to study the
isoreticular metal–organic framework (IRMOF) series and predict a number of structural and mechanical
properties. It was an invariant message-passing neural network (MPNN) (see section 2.4.3 for details)
constructed using SchNet [227], which was shown to work on multiple frameworks (IRMOF-n with
n ∈ {1, 4, 6, 7, 10}).

Figure 4.1: (a) MOF-808 structure and (b) examples of molecular fragments used for the construction of
a NNP by Yu et al. [266]. Adapted from Ref. [266, 269].
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However, the molecular fragments approach su�ers from a lack of universal method to choose the
fragments working on all MOFs, and from the sensitivity of its predicted energies to the choice of
fragments. To overcome its shortcomings, Achar et al. [263] used for the �rst time periodic DFT
calculations on the primitive cell of the framework to train a NNP for UiO-66. They relied on DeePMD
[228], another popular invariant MPNN, to construct a NNP that predicted a number of dynamic
properties with good accuracy and was used to study di�usion.

This work, however, did not solve the high computational cost of running ab initio simulations with
large unit cells. One option proposed by Vandenhaute et al. [221] in a very recent work published in
February 2023 was to use a data-e�cient NNP to reduce the number of ab initio calculations. They
employed NequIP [212], an equivariant MPNN with proved data e�ciency described in section 2.4.3, and
developed an active learning strategy [219] to train NNPs for two representative frameworks: UiO-66
(Zr) and MIL-53(Al). The NNPs were shown to possess good transferability, evaluated by considering
a set of 10 similar frameworks which di�ered from MIL-53(Al) and UiO-66(Zr) in either the topology
or the organic ligand. Interestingly, this work demonstrated that it was possible to simulate a phase
transition for MOFs with MLPs, although the transition was non-displacive and did not involve any
bond breaking.

4.1.2 Generation of glass models with MLPs
While they were not concerned with MOFs, multiple studies have successfully developed MLPs for the
simulation of amorphous solids – including multiple glass-forming materials – such as oxide glasses
[270], chalcogenide compounds [271], silicates [261] or amorphous carbons [262]. These studies were
made possible by the reactive nature of MLPs which enables simulating various phase transitions
such as vitri�cation. They further bene�ted from the low computational cost of MLPs, which could
accommodate slower cooling rates and much larger systems than AIMD (e.g. 100,000 Si atoms in [261]),
allowing probing the medium and long-range orders of such amorphous systems. MLPs are typically
trained on data generated by high-temperature MD trajectories, to enhance coverage of o�-equilibrium
conformations and potentially include bond-breaking and reforming events.

A number of these studies used MPNNs, with DeePMD [228] being used to study liquid silica [272] or
amorphous carbon [262]. The latter work is of particular interest as it focused on the transferability of
the MLPs over multiple carbon allotropes. It was achieved by using training data made of liquid carbon
at di�erent densities and temperatures, as well as various crystalline phases.

In our work we ambition to bridge the gap between these two bodies of work and develop the �rst MLP
used to generate MOF glasses, by drawing inspiration from both corpora.
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4.2 Construction of MLPs for ZIF-4
In this work, we chose to generate ab initio reference systems composed of entire unit cells, combined
with a data-e�cient architecture. We used the Neural Equivariant Interatomic Potential (NequIP), an
equivariant MPNN described in section 2.4.3, which has demonstrated high accuracy across a wide
variety of systems, including MOFs [221] and amorphous solids [212]. To evaluate the potential of the
NequIP architecture to obtain MLPs for ZIFs, we �rst focused on ZIF-4, the same framework investigated
with ReaxFF in chapter 3 and extensively described in section 1.2.3. The developed MLPs should be able
to successfully describe the di�erent phases necessary to obtain melt-quenched glasses, i.e. the crystal,
liquid and glassy phases.

4.2.1 Ab initio reference data
Reference data was extracted from ab initio molecular dynamics (AIMD) simulations (see section 2.2 for
the method). We started with limited training data by only considering two AIMD trajectories performed
in the (N ,V , T ) ensemble: one simulating the ZIF-4 crystal at 300 K and another a ZIF-4 liquid at 1500 K.
These trajectories were taken from the work by Gaillac et al. [92] (described in section 3.2) and were
rerun to obtain at least 100 ps of simulation data for each system.

DFT-based Born-Oppenheimer MD simulations were performed using the Quickstep module [198] of
the CP2K software package [273], a general open source quantum chemistry and solid-state physics
simulation package. I used parameters already �ne-tuned for several ZIFs (ZIF-4, ZIF-8, ZIF-62, ZIF-zni,
SALEM-2) in previous works by Gaillac et al. [92, 93, 123, 149].

As mentioned in section 2.2, I used the hybrid Gaussian and plane wave method GPW [198], the exchange–
correlation energy was evaluated in the PBE approximation [274], and the dispersion interactions were
treated at the DFT-D3 level [197]. The multigrid system was set up with four di�erent grids, a plane
wave cuto� for the electronic density of 600 Ry, and a relative cuto� of 40 Ry. Valence electrons were
described by double-ζ valence polarized basis sets and norm-conserving Goedecker–Teter–Hutter
[275] pseudopotentials, all adapted for PBE (DZVP-GTH-PBE) for H, C, and N or optimized for solids
(DZVP-MOLOPT-SR-GTH) in the case of Zn.

Simulations were performed in the constant-volume (N ,V , T ) ensemble with a �xed size and shape of
the unit cell. A time step of 0.5 fs was used in the MD runs, and the temperature was controlled by
velocity rescaling [185] with a time constant of 1000 fs.

4.2.2 Training
Unlike the rest of this chapter 4, the work presented in this section 4.2.2 was mainly performed by Jack
D. Evans, as part of a collaboration that I started during my PhD project.
Network architecture and training procedure
We used NequIP version 0.5.5 [212], and tested several hyperparameters. All MLPs presented in this
manuscript were trained with the network architecture described in table 4.1 and in the remainder of
this paragraph. Training was performed with the Adam optimizer [276] with a learning rate of 0.005.
We employed a batch size of 5, and disabled the learning rate decay scheduler. The weights used during
validation or test error evaluation were obtained after an exponential moving average �lter, with weight
0.999. Among the multiple parameters, it is worth mentioning that we tested several rotation orders in
l ∈ {1, 2, 3} (de�ned in section 2.4.3) and found that l = 2 led to the best compromise between precision
and e�ciency.

Out of a given trajectory of 100 ps, corresponding to 200 000 frames, 2500 were taken randomly to
constitute the training dataset, and 100 other to be used as validation data. Therefore, each frame
was on average separated from the others by 75 fs, leaving room for improvement in the reduction of
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Cuto� radius Rc 6 Å
Number of interaction layers 4

Maximum rotation order l 2
Parity even and odd

Number of radial basis functions 8

Table 4.1: Network architecture parameters for every MLP presented in this work.

correlation between frames. The data e�ciency of the training, and the amount of time required to
separate di�erent con�gurations should be explored further in future work.
Multiple MLPs
Despite having all these hyperparameters in common, MLPs discussed in this manuscript di�er in their
training data and choice of loss function. Most MLPs were trained on the high temperature trajectory,
which we consider to be more promising as it contains more diverse con�gurations (explores better the
con�guration space). To enable comparison, some MLPs were trained on the crystalline trajectory, at
300 K.

Several loss functions were used to simultaneously minimize the errors on the energy (E), forces ({F i})
and stress (σ). The respective contribution of each error in the total loss functions are parameterized by
three weights λ

F
, λ

E
, λσ. In all models presented here λ

F
= λ

E
= 1. For some MLPs we wanted to bias

learning for stress by choosing large λσ. We otherwise used λσ = 1, which in practice led to similar
results than λσ = 0 due to the choice of prefactor for each error.

Let us denote the di�erent MLPs as MLP(system|L), where “system” refers to the training data (either
crystal or liquid), and L is the loss function which is denoted by the relative weights λ

F
: λ

E
: λσ.

λσ 1 10 100 1000
Energy MAE (meV/atom) 0.396 0.775 0.899 1.01

Forces MAE (meV Å–1) 19.2 20.9 19.7 22.6
Stress MAE (MPa) 351 163 75.8 73.4

Table 4.2: MAEs of the trained models for MLP(liquid|1:1:λσ) with λσ ∈ {1, 10, 100, 1000}, evaluated on
unseen frames of the liquid trajectory.

Figure 4.2 compares the learning curves for MLP(liquid|1:1:λσ) for λσ ∈ {1, 10, 100, 1000}, and highlights
that although forces are well learned in every case, one needs to �nd a balance between an accurate
reproduction of the energies (λσ = 1), and any actual learning of the stress (λσ ∈ {100, 1000}). We found
satisfying �nal mean absolute errors (MAE) on energy and forces reported in table 4.2, compared to
previous NequIP works on liquid systems [212] and MOFs [221]. Stress MAEs however, are satisfying
only for λσ ∈ {100, 1000}.

In the remainder of this thesis, I will use MLP(sys) and MLP(sys|σ) as shorthands for respectively
MLP(sys|1:1:1) and MLP(sys|1:1:100). They respectively represent MLPs learned without and with
stress.
transferability of learned properties
While the various MAEs showed that the training was successfully performed, it is necessary to further
validate the generated MLPs, for example by investigating their transferability.

A �rst option is to compute the MAEs of the learned properties (E, {F i}, σ) for a system other than the
one used for training. Table 4.3 compares how two MLPs, learned either on the crystalline or liquid
trajectory, reproduce the properties of the AIMD crystalline trajectory. It evidences that both the energy
and forces learned on the liquid trajectory su�ce to predict the crystal properties. However this result
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Figure 4.2: (a) Loss function and mean absolute errors (MAE) for (b) normalized energy E/N , (c) forces
{F i} and (d) stress (σ) as the function of epoch for MLP(liquid|1:1:λσ) with λσ ∈ {1, 10, 100, 1000}.

do not hold for the stress, which do not appear to transfer to the crystal structure at low temperature,
suggesting that the procedure for learning stress is perfectible.

MLP MLP(crystal|σ) MLP(liquid|σ)
Energy MAE (meV/atom) 1.26 1.29

Forces MAE (meV Å–1) 7.17 8.69
Stress MAE (MPa) 23.7 322

Table 4.3: MAEs of the trained models for MLP(crystal|σ) and MLP(liquid|σ), evaluated on unseen
frames of the crystal trajectory.

A similar comparison showed that MLPs learned on the crystalline trajectory do not transfer well to the
liquid structure, as expected because the latter contains con�gurations too far from the training dataset
(e.g. undercoordinated Zn atoms). Both observations con�rm that MLPs learned on the liquid trajectory
are promising candidates to be used on multiple structures.

4.2.3 Reproducing structural properties
To further evaluate the quality of the generated MLPs, I looked at the same structural properties
investigated for ReaxFF in chapter 3 for both systems used for training: the crystal and the liquid.
MD with NeqIP
MD simulations with NequIP can be performed either using the atomic simulation environment (ASE)
[251] or using LAMMPS [211]. Although LAMMPS was generally prefered, due to its extensive, robust
and validated methods, along with better performance, the (N , P , T ) ensemble is not yet implemented
for NequIP potentials. In this chapter, I therefore stick to the (N ,V , T ) ensemble and, unless other-
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wise mentioned, used LAMMPS. I nonetheless checked that both simulation engines gave consistent
results.

By default, a time step of 0.5 fs was used in the MD runs, which could occasionally be changed to 0.25 fs
to simulate high temperatures (above 1500 K). The temperature was controlled using a Nosé–Hoover
thermostat with a temperature damping parameter �xed at 100 fs. Several values were tested, with
the 50-400 ps range leading to satisfying behaviors. In most cases, I report simulations of the unit cell,
although the impact of the use of supercells was explored.

Unless explicitly stated in the �gure caption, properties were averaged over an (N ,V , T ) trajectory of
100 ps for NequIP simulations. Frames were taken every 100 fs for the radial distribution function (RDF),
bond angle distribution and coordination number, every 500 fs for the mean square displacement (MSD),
every 1 ps for ring statistics and every 10 ps for pore statistics. Ab initio properties were computed as in
section 3.2.

A typical (N ,V , T ) simulation of a ZIF-4 unit cell (272 atoms) for 100 ps, required around 5 hours of
computation on a single NVIDIA V100 GPU. It is a signi�cant speedup compared to AIMD, for which 4
days and 160 CPUs (4 nodes of Intel Cascade Lake 6248) are required for the same system and duration.
As a comparison, a ReaxFF simulation for the same system (with the parameters than in section 3.1.1
except for the system size) required one hour on one node (40 CPUs).
Evaluation on the trained systems
Structural properties were evaluated over two (N ,V , T ) trajectories of crystal and liquid for three
models: MLP(crystal), MLP(liquid) and MLP(liquid|σ). The crystal trajectory was started from the
crystallographic reference structure, immediately raised to 300 K and was then equilibrated for 100 ps.
The liquid was started from the same crystallographic reference structure immediately raised to 1500 K,
and consisted of a melting part of 100 ps, followed by another 100 ps to collect statistics. While every
MLP was used to simulate the crystal, MLP(crystal) could not be used for the liquid as it contained
con�gurations too far from its training dataset. This was manifested by the systematic crashing of
LAMMPS simulations at 1500 K.

Figure 4.3 shows three local properties (RDF, PMF and angle distributions) for the di�erent combinations
of phases (liquid or crystal) and MLPs. In every case, we note an excellent reproduction of the ab

initio properties. Both MLP(liquid) and MLP(liquid|σ) emulate the crystal properties as accurately as
MLP(crystal), thus demonstrating excellent transferability on this system. It is also worth mentioning
that MLP(liquid) and MLP(liquid|σ) lead to the same reproduction of local properties, despite the
di�erence in energies and forces MAEs reported above.

Additionally, no change in coordination nor ring statistics is observed for the crystal. Similarly, Zn–
N coordination numbers for the liquid are almost identical (≤ 1% di�erence between MLPs and ab

initio). However, ring statistics are not straightforwardly interpretable, as their convergence on liquid
trajectories would require much longer equilibration times. Finally, the computed porous volumes are
fairly similar for every phase, another evidence of the excellent reproduction of the structural properties
of both the system they were trained on, and the crystal.
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Figure 4.3: (a) Radial distribution functions (RDF), (b) potentials of mean force (PMF) for the Zn–N
atom pairs, and (c) distribution of the N–Zn–N angle for the ZIF-4 crystal (left) and liquid (right) with
multiple MLPs compared to AIMD.

Validation on ab initio glasses
To further explore the transferability on these MLPs, I deployed the same strategy, i.e. MD runs and
computation of structural properties, for unseen ZIF-4 systems consisting in the 10 ab initio glasses
generated by Gaillac et al. [123] I introduced in section 1.3.4.

Ten (N ,V , T ) MD simulations were run at 300 K for 100 ps starting from the glass models, with
MLP(crystal), MLP(liquid) and MLP(liquid|σ). All reported structural properties were averaged over
the ten glasses. Their local properties are reported on �gure 4.4, which demonstrates the excellent
reproduction of the ab initio RDF by every MLP. However, a closer investigation with the PMF highlights
di�erences between MLPs. MLP(crystal) is shown to fail to reproduce the region between the two �rst
minima in the PMF, a region absent from the crystalline training data (see �gure 4.3). On the contrary,
both MLP(liquid) and MLP(liquid|σ) were able to describe this region, with MLP(liquid) performing
better. The gain in accuracy of MLP(liquid) over MLP(liquid|σ) is also visible on the angle distribution,
for which MLP(liquid|σ) led to a slight deviation from the ab initio properties. Additionally, no change
in coordination between every MLP and AIMD data was reported, with coordination numbers and ring
statistics being identical.
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Figure 4.4: (a) Radial distribution functions (RDF), (b) potentials of mean force (PMF) for the Zn–N
atom pairs, and (c) distribution of the N–Zn–N angle for the ZIF-4 ab initio glasses with multiple MLPs
compared to AIMD.

At this stage, we were therefore con�dent that the strategy employed in this work to train MLPs is
promising. It suggests that the data contained in the liquid trajectory are su�cient to model a variety of
ZIF-4 phases. Among the multiple models developed, MLP(liquid) led to an overall higher accuracy and
was therefore chosen for the rest of this chapter.
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4.3 Generating aZIF-4 glass models
Using MLP(liquid) as a prototypical MLP to model ZIF-4, I used the same methodology as the work
done with ReaxFF in chapter 3. I generated glass models and then compared their properties to ab initio

data to evaluate the applicability of MLPs for this task.

4.3.1 Producing glass models by melt-quenching
Production procedure
The melt-quenching procedure is similar to the one devised for ReaxFF in section 3.1. Starting with an ini-
tial preparation of the crystalline structure at 300 K, the system was �rst melted to 1500 K, then quenched
to room temperature, leading to the creation of a glassy state. The system was �nally equilibrated for
100 ps to collect statistics. The four steps of this procedure are represented on �gure 4.5.
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Figure 4.5: Temperature as a function of time during the glass formation procedure, consisting of
preparation (green), melting (red and orange), quenching (grey) and equilibration (blue). For clarity, a
moving average over 25 fs is used.

The entire procedure was performed in the (N ,V , T ) ensemble, as (N , P , T ) simulations are not yet
supported in LAMMPS with NequIP (see section 4.2.3). The preparation only consisted of a simple
(N ,V , T ) run at 300 K, as I found that MDs with MLPs are not as sensitive as with ReaxFF. To reduce
�nite size e�ects, a (2× 2× 2) supercell of ZIF-4 with 2176 atoms was simulated, with periodic boundary
conditions. I checked that the use of a supercell did not signi�cantly a�ect the properties of the
generated glasses, compared to only simulating one unit cell. I also checked that the use of MLP(liquid)
and MLP(liquid|σ) led to glasses of very close structural properties.
Melt-qenching
As discussed in section 3.1.3, melt-quenching is mainly parameterized by the maximal temperature
Tmax and the heating/cooling rate r . Consistently with the previous ab initio work [123], I aimed for a
maximal temperature of 1500 K, and chose a rate of 20 K/ps.

Contrary to ReaxFF simulations which led to excessive decoordination, MD simulations with MLP did
not melt that easily. After a procedure consisting of only two ramps (one for heating, one for cooling),
as with ReaxFF, the �nal system was still crystalline for Tmax = 1500 K and r in the 50–2.5 K/ps region.
Either lowering the rate to r = 1 K/ps, or increasing the temperature to Tmax = 1900 K, both led to the
successful formation of glasses. However the �rst option requires rather long simulations, while the
second leads to an increased risk of loss of physical integrity.

Even if no breaking of the imidazolate rings was observed for T ∈ [1500 K; 1900 K], I chose a safer third
option which consisted in keeping Tmax = 1500 K and spending more time at the maximal temperature
as represented on �gure 4.5. A plateau of 50 ps at Tmax was enough to ensure melting, and therefore
obtain a glass as highlighted on �gure 4.6. I tested di�erent plateaux in the 50–300 ps which all led to
glasses of similar properties.
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Figure 4.6: Evidence of melting and glass generation. (a) Mean square displacement (MSD) as a function
of time for Zn during the 1500 K plateau. (b) Zn–N coordination number as the function of time with
the �nal value for the glass system distinct from that of the initial crystal.

The option used for the ab initio glasses – i.e. starting straight away at 1500 K from the crystallographic
crystal without a slow ramp up – was also tested. While it also led to glassy states, the low computational
cost of MLPs makes a smooth ramp-up in temperature too a�ordable to justify an abrupt heat-up.

4.3.2 Properties of the glass models
I then investigated the exact same properties looked for the ReaxFF glass in section 3.2, and compared
then to the same ab initio crystal and glasses.
Local order
I �rst investigated the local order by examining the Zn–N bonds. On �gure 4.7 I plot the partial RDFs
for the Zn–N and Zn–Zn atom pairs, which highlights a remarkable agreement of the MLP glass with
its ab initio counterpart. To contrast the di�erences in the region between the �rst two peaks, the Zn–N
PMF is shown on the same �gure. Although the PMF of the MLP glass resembles that of a glass, with
the region between the �rst two peaks populated, its pro�le is distinct from the one of the ab initio glass
and shares some features of the crystalline PMF. In particular, the free energy barrier is larger for the
MLP glass than for the ab initio one, with a value of ' 32 kJ/mol.

I then investigated the N–Zn–N angle, key to the features of ZIFs, by plotting the bond angle distribution
on �gure 4.8a. The MLP glass demonstrates an excellent reproduction of the ab initio data, while ReaxFF
failed to do so. The angular PMF shown on �gure 4.8b further con�rms this accuracy, while hinting at
small deviations for angles away from the 109° of the Zn(Im)4 tetrahedral structure. Once again, the
MLP glass shows intermediate properties between those of the ab initio crystal and glass.
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Figure 4.7: (a) Radial distribution functions (RDF) and (b) potentials of mean force (PMF) for the Zn–N
atom pairs of the MLP glass (blue), ab initio glass (orange) and ab initio crystal (red). (c) RDF for the
Zn–Zn atom pair of the same systems.
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Figure 4.8: (a) Distribution and (b) potentials of mean force (PMF) of the N–Zn–N angle for the MLP
glass (blue), ab initio glass (orange) and ab initio crystal (red).
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Bulk properties
I computed the porosity of the glasses (see �gure 4.9) and found a total porous volume of 61 cm3 kg–1 for
the MLP glass, comprised between the 54 cm3 kg–1 of the crystal and 68 cm3 kg–1 of the ab initio glass.
This is in good agreement with the experimental measurements of the porosity of a ZIF-4 glass made by
positron annihilation lifetime spectroscopy (PALS) [164]. Due to the reliance on the (N ,V , T ) ensemble,
no comment can be made on the density of the MLP glass. This will be a key issue to characterize and
validate in future work.
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Figure 4.9: Total porous volume of the MLP glass (blue), ab initio glass (orange) and ab initio crystal
(red).

Topological properties
Finally, I investigated the di�erences in the medium-range order of the glasses, by examining the
coordination network built from the alternating Zn–Im units. I �rst calculated the average Zn–N
coordination numbers and found a coordination of 3.94 for the MLP glass, in excellent agreement with
the value of 3.93 found for the ab initio glass.

4 6 8 10 12 14 16 18 20

Ring size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
u
m

b
e
r 

o
f 

ri
n
g
s/

ce
ll 

(n
o
rm

a
liz

e
d
)

MLP glass

ab initio crystal

ab initio glass

Figure 4.10: Distributions of size of zinc–imidazolate alternate rings for the ReaxFF glass (blue), ab
initio glass (orange) and ab initio crystal (red).

In order to characterize the topology at a larger scale, I also computed Zn–Im ring statistics. Figure 4.10
evidences that both glasses have topologies that deviate from the crystal perfectly de�ned 8, 12 and 16
rings. While not identical, the two glass models display rather similar topologies.

Overall, these elements show that the generated MLP glass model demonstrates an excellent reproduction
of a number of properties of the ab initio glasses, all the more when compared to how ReaxFF fared. It is
interesting to note that a number of the properties of the MLP glass are intermediate between those
of the ab initio crystal and glass models. While not identical to ab initio glass models, the MLP model
is unambiguously a glass, with characteristics in line with known experimental data [92]. It provides
strong evidence that aZIF models can be generated by MD simulations of melt-quenching.
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4.4 Towards a universal MLP for ZIFs
In the previous two sections, we limited ourselves to ZIF-4 and its di�erent phases to develop a proof of
concept. Our current work aims at going beyond this single system by going towards a “universal” MLP
for ZIFs, which should work on multiple ZIF structures. To do that I generated ab initio training data
for di�erent structures, volumes and phases, aiming to build liquid trajectories. At the time of writing,
training is still an ongoing work, as part of my collaboration with Jack D. Evans. I present in this thesis
the general approach and some preliminary results.

4.4.1 Multiple ZIF structures
First, I selected several Zn-based ZIF structures, chosen to display diverse topologies and a selection of
linkers. The latter are described on �gure 4.11.

Figure 4.11: Di�erent linkers present in the structures investigated: imidazolate (IM), benzimidazolate
(bIM), 2-methylimidazolate (MeIM) and 4,5-dichloroimidazole (dcIM). Adapted from Ref. [71].

The di�erent ZIFs are described in table 4.4 along with their composition, topology and number of atoms
of unit cell Natoms. The table also mentions the source of the structural �les, which were either taken
from previous works of the group or straight from the CSD [46] and CoRE MOF [170] databases.

ZIF-n Composition Net Zeolite Natoms Source
ZIF-4 Zn(IM)2 cag – 272 [92]
ZIF-7 Zn(bIM)2 sod SOD 522 [65, 170]
ZIF-8 Zn(MeIM)2 sod SOD 276 [149]
ZIF-11 Zn(bIM)2 rho RHO 1392 [65]
ZIF-62 Zn(IM)1.75(bIM)0.25 cag – 296 [93]
ZIF-71 Zn(dcIM)2 rho RHO 816 [46, 71]

Table 4.4: ZIF structures for which training data was generated long with their composition, structure,
topology, number of atoms in the unit cell Natoms and source of the structural �le. Topology is expressed
both with net three-letter abbreviations and the corresponding zeolite symbol (if it exists), described in
Ref. [66] and retrieved from Ref. [65, 71].

Structures �rst went through a full geometry optimization (atomic positions and unit cell parameters)
of the crystallographic �les at 0 K, before being used in any MD simulation. I used for ZIF-7,11, and 71
the same con�guration as the one used by Gaillac et al. for ZIF-4, 8 and 62 [92, 93, 149]. I used the same
ab initio parametrization as the one thoroughly tested on multiple ZIFs and described in section 4.2.1.
The only adaptation concerned Cl atoms, which were treated in a similar fashion to Zn atoms, i.e. they
were described by double-ζ valence polarized basis sets and norm-conserving Goedecker–Teter–Hutter
[275] pseudopotentials optimized for solids (DZVP-MOLOPT-SR-GTH). It is worth noting that ZIF-7,11,
and 71 have considerably larger cells than the previously studied ZIF-4, 8, and 62. It is therefore more
computationally demanding to run AIMD simulation of these systems, and I chose to generate fewer
trajectories per ZIF structure.

4.4.2 Multiple volumes
While (N ,V , T ) simulations are an e�cient way to generate training data at high temperature, we
ambition to develop an MLP that could also be used for (N , P , T ) simulations, which therefore requires
to an accurate reproduction of the stress. An option is to learn from structures simulated at di�erent
volumes, by applying deformation to the initial cell of the crystal.
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For each ZIF crystal, I created four (N ,V , T ) trajectories at 300 K with di�erent deformations. Successive
simulations at di�erent volumes were performed, consisting in an instantaneous and isotropic volume
change by 2% from the previous volume, followed by an equilibration time of around 10 ps. The �nal
volume deformations were {2%, 0%, –2%, –4%}, as exempli�ed in the case of ZIF-8 with �gure 4.12. These
small changes in volume did not lead to many changes to the crystalline structure, with the local
structural properties staying similar as exempli�ed on �gure 4.12a, and the coordination remaining
unchanged. Porosity is however impacted, with �gure 4.12b highlighting the expected decrease in
porous volume associated with a reduction of the total volume.
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Figure 4.12: (a) Potentials of mean force (PMF) for the Zn–N atom pair and (b) total porous volume of
the ZIF-8 crystal at various volume deformations. The volume deformation of 0% corresponds to the
state of crystallographic density. Properties are averaged over the entire (N ,V , T ) trajectory of each
volume.

4.4.3 Simulation of liquid systems
Once the 300 K crystal models at various volumes are prepared, they must be heated up to obtain
high temperature trajectories, that should preferably simulate liquid systems. The choice of the high
temperature value is a trade-o� between the need to gather statistics on relatively rare events, and the
necessity to preserve the physical consistency of the model. While previous ab initio MD simulations of
the liquid ZIF-4 have been performed up to 2000 K while preserving the integrity of the imidazolate
linkers [92], I found that for another system (ZIF-7) 2000 K was enough to break its linkers. Previous
work on the melting of ZIFs [92, 149] showed that a duration of 50 ps is often su�cient to observe
melting. I therefore ran multiple (N ,V , T ) trajectories of 50 ps at either 1200 K, 1500 K and 1750 K.

As previously discussed in section 3.1.4, detecting melting is insightful but not straightforward. If a
trajectory is su�ciently long, it is possible to identify melting by spotlighting a loss in coordination as
table 4.5 or a change in the behavior of the MSD as in �gure 4.13a.
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Volume change (%) -4 -2 0 2
Average Zn-N coordination number 3.84 3.76 3.59 3.64

Table 4.5: Coordination numbers for nitrogen atoms around the zinc cation for 1500 K MD trajectories
of ZIF-4 with various deformations. Computed over the last 10 ps of each trajectory.
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Figure 4.13: Evidence of melting during 1500 K MD trajectories of ZIF-4. (a) Mean square displacement
(MSD) as a function of time for Zn with various deformations. (b) Number of zinc–imidazolate alternate
rings of di�erent sizes as the function of time for the trajectory with a deformation of 2%. For clarity,
only rings of size comprised between 8 and 22 are shown.

As a complement, ring statistics can provide clear evidence of the onset of the melting transition. By
monitoring the number of rings of di�erent sizes as the function of time, as shown on �gure 4.13b, one
can easily identify a transition from the ring statistics of the crystal towards a less ordered system. This
had not been used before, but I think it is a powerful descriptor to detect melting.

The choice of the temperature required to observe melting is not straightforward, as I found that it could
depend on the deformation. Table 4.5 and �gure 4.13a provide evidence in the case of ZIF-4 at 1500 K
that systems with volume deformations of 0% and 2% ended up melting after a few tens of picoseconds,
while –2% and –4% did not. Interpreting the relationship between deformation and melting behavior is
not forthright, as the opposite behavior was observed for ZIF-8 at 1500 K (–2% and –4% melted while 0%
and 2% did not).

As a result, I tried to melt every framework by raising the temperature up to 1750 K. Table 4.6 reports
the di�erent 50 ps runs that were performed at various temperatures, and whether they yielded solid or
liquid systems. While melting was observed for four frameworks, I did not manage to obtain liquids of
either ZIF-7 or ZIF-11. Heating up the system at 2000 K was tried, but led to the loss of the physical
integrity of the linkers.
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ZIF-n T = 1200 K T = 1500 K T = 1750 K Ntrajectories N
liquids

ZIF-4 2 solids, 2 liquids 2 liquids 6 4
ZIF-7 4 solids 1 solid 5 0
ZIF-8 2 solids, 2 liquids 2 liquids 6 4
ZIF-11 4 solids 1 solid 5 0
ZIF-62 4 solids 4 liquids 8 4
ZIF-71 4 solids 1 liquid 5 1

Table 4.6: Total number of 50 ps solid and liquid trajectories generated per system and temperature. For
each ZIF, the total number of trajectories Ntrajectories and the number of liquid ones N

liquids
are reported.

An open question that should be tested when training the next MLPs, is whether these “hot solids”
contain enough information about the potential energy surface of these frameworks for accurate training.
If we consider all these high-temperature trajectories and still use 2500 frames for training, two frames
will on average separated by typically 0.5–1 ps, ensuring a weak correlation [221]. If only the liquid
trajectories end up being used, frames will be more correlated but still far less than for our ZIF-4 test
case, which already showed promising results.
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Preliminary conclusions and perspectives
In this chapter, I provided strong evidence that the development of MLPs can pave the way towards the
generation of multiple amorphous MOF models and the study of their properties. Using a limited dataset
consisting of ab initio trajectories of ZIF-4, we trained MLPs that led to an exceptional reproduction of
the structural properties of multiple phases – crystal, liquid and several glasses – of ZIF-4.

By generating new aZIF-4 models by melt-quenching, I demonstrated the potential of these MLPs to
generate disordered models of MOFs at a fraction of the computational cost of AIMD. A next step would
consist in overcoming the reliance on the (N ,V , T ) ensemble, to capture the e�ects of vitri�cation on
the system density.

While this work is promising, multiple challenges await to be overcome before being able to generate
aZIFs for a larger variety of ZIF structures. As a �rst step towards the development of a more universal
MLP for ZIFs, I generated multiple ab initio high-temperature trajectories of various ZIFs under di�erent
deformations. Our ongoing work is dedicated to the use of this training data to obtain and validate new
MLPs that ought to be used on a variety of frameworks.

Finally, this work opens multiple perspectives that we plan to explore in the group. A �rst extension
could consist in the exploration of even larger scales with another neural network architecture, Allegro
[277], which uses a similar framework for training and MD simulations than NequIP. Another possible
extension would be to use of the generated MLPs to simulate large aZIF structures generated by other
means, for example using polymerization algorithms [82, 163] described in section 1.3.6.
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I presented in chapter 1 the signi�cant potential of MOFs for a series of applications, including CO2
separation. However, while their mechanical stability is also essential for MOFs to fully achieve their
potential in industrial-scale processes – in particular for processing (extrusion and pellet formation) –,
the study of how these materials respond to mechanical stress is comparatively still emerging [278, 279].
aMOFs are particularly promising in this regard, as they yield the potential of increased mechanical
robustness and would allow for greater ease of processing, notably by circumventing the performance
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drop due to the necessary densi�cation of the MOF powders [105, 106]. However mechanical properties
of aMOFs are di�cult to determine experimentally.

In this chapter, building on the knowledge about aZIF models and MD schemes acquired in chapter 3
and chapter 4, I extensively investigated the computation of �nite temperature mechanical properties of
ZIF-4 in the crystal and glass phases. I critically assessed computational methodologies including ab

initio molecular dynamics (section 5.2), reactive force �elds (section 5.3), classical force �elds (section 5.4),
and machine-learned potentials (section 5.5) based on a variety of glass models. I found that ZIF-4
glasses have a larger bulk modulus than the crystal and con�rm previous studies that the density is
larger for the glass phases. Moreover, I con�rmed in the case of ZIF glasses the relationship between
density and bulk modulus, showing that obtaining models of correct density is key to the prediction of
physical properties for these systems. At the exception of section 5.5 on machine-learned potentials
which is an ongoing work, this study has been published in Chemistry of Materials (2023) [280].
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5.1 Computation of mechanical properties with molecular
dynamics

5.1.1 Extracting mechanical properties from simulations
While a series of experimental techniques have successfully been employed to determine the mechanical
properties of crystalline MOFs, there is a lack of studies on the amorphous phases [81]. Some methods
such as those relying on high-pressure X-ray di�raction [281] are not straightforwardly applicable to
disordered materials, and many others require large bulk glass samples which are challenging to prepare
[81, 282]. Fortunately, the same mechanical properties can be studied by computational simulations
[167], which have been used extensively as a complement to experiments on MOF crystals and can lead
to systematic studies of the structure–property relationships [283, 284].

We saw in section 1.3 that despite the challenges in the determination of the framework structure of
amorphous states at the microscopic scale, several methodologies are available to generate the atomistic
models which are a prerequisite of any computational determination of the mechanical properties. One
family of approaches to computing �nite temperature mechanical properties consists in using molecular
dynamics (MD), either to mimic in silico the high-pressure experiments [285–287] or by using the strain-
�uctuation method [257, 258]. Unlike most computational works which led to the determination of
mechanical properties at 0 K, often using the stress-strain approach [288], the temperature dependence
of these methods allows for a better prediction and understanding of the mechanical strength and
stability of the studied materials [289]. It is key for disordered MOFs which can display complex pressure
and temperature behaviors at both low and high temperature [93, 290].

In this work, I used a range of MD schemes to extract the �nite temperature mechanical properties of
ZIF crystals and glasses. I �rst report in section 5.2 how ab initio MD can be used to obtain reference
values, which have never been determined for a MOF glass in the literature before. I then investigate
three MD schemes with lower computational cost: reactive force �elds (section 5.3), classical force �elds
(section 5.4) and machine-learned potentials (section 5.5).

Out of the many �nite temperature mechanical properties that characterize anisotropic materials, in
this study I will mostly focus on the bulk modulus (K) which characterizes the variation of the volume
(V ) of a solid under uniform hydrostatic pressure (P). It is de�ned as [291]:

K = –V
(

∂P

∂V

)
T

(5.1)

Values of K reported in this work correspond to the equilibrium volume. This property is the most readily
available experimentally, and provides key information relating to applications, including about the
MOF stability during the shaping process [292] or pressure swing adsorption (PSA) cycles [278].

Two approaches were used in this work to obtain �nite temperature mechanical properties: �nite
di�erence methods and strain-�uctuation methods.

5.1.2 Finite di�erence methods
The �nite di�erence approach consists in �rst establishing the P–V relationship, and then �tting it
with an equation of state (EoS). Widely used experimentally [85, 293], it is also within the reach of
computational methods that can generate P – V data by running multiple MD simulations at various
values of pressure or volume. This computational approach has been used on multiple materials such
as molten salts [287, 294], ceramics [295] or silicates [285], and can be used with MD schemes ranging
from ab initio [286, 287, 294] to classical [285, 295] and reactive [296] force �elds.
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P–V data is generated by running multiple MD simulations, enforcing either various values of pressure
(stress) or volume (strain), and measuring the other variable. I will talk about the �nite strain di�erence

method if the MD simulations are performed in the constant-volume (N ,V , T ) ensemble by enforcing
the volume V , with the resulting pressure P(V ) of the equilibrated system being measured. Alternatively,
if they are performed in the constant-pressure (N , P , T ) ensemble, with the volume V (P) being measured
for a given P , I talk about the �nite stress di�erence method.

In both cases, the well-behaved region of the P–V data was �tted with the second order Birch–Murnaghan
EoS [291, 297]:

P = 3Kf
E

(1 + 2f
E

)5/2 (5.2)

where V0 is the volume at zero pressure and f
E

the Eulerian strain de�ned as

f
E

= 1
2

[(
V0
V

)2/3
– 1
]

(5.3)

In addition to providing K , this EoS �t returns V0 and thus the density at zero pressure ρ0.

I systematically tried to use the third order Birch–Murnaghan EoS, and found that it leads to over�tting
in the large majority (> 80%) of cases due to the small number of P – V data points, therefore it is not
reported in this work.

5.1.3 Strain-�uctuation method
Mechanical properties at a given temperature T can also be evaluated from the �uctuations of a system
at equilibrium, simulated under a constant stress in the (N , σ, T ) ensemble [258]. The bulk modulus can
be obtained directly from the �uctuations of the volume [258]:〈

(∆V )2
〉

= k
B
T 〈V 〉
K

(5.4)

where k
B

is the Boltzmann constant, ∆V = V – 〈V 〉, and 〈X〉 denotes the time average of any quantity
X .

With this method, it is possible to obtain more than the bulk modulus, and access anisotropic mechanical
properties. The elastic sti�ness tensor C can be obtained from the �uctuations of the unit cell matrix h

through the following relation [257, 258]:(
k
B
T

V

)
C

–1
ijkl

= 〈εijεkl〉 – 〈εij〉 〈εkl〉 (5.5)

Figure 5.1: Schematic diagram of (a) Young’s modulus (E), (b) shear modulus (G), (c) bulk modulus ( K)
and (d) Poisson’s ratio (ν) illustrated for aZIF-4. Red and blue arrows respectively represent the exerted
stress and response. Adapted from Ref. [300].
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In this equation, C
ijkl

are the components of the fourth-order tensor C, called elastic constants, and ε is
the unit cell strain de�ned by: [298]

ε = 1
2

((
h0

T

)–1
h
T
hh0

–1 – 1
)

(5.6)

with h0 the reference unit cell, corresponding to the �rst frame of the equilibrated trajectory.

From this elastic sti�ness tensor, multiple mechanical properties — bulk modulus K , Young’s modulus E,
shear modulus G, and Poisson’s ratio ν — were computed using the ELATE code [252] and are illustrated
on �gure 5.1. Values reported in this work were obtained with the Hill averaging scheme [299].

The computation of C was performed using the Python library aMOF, presented in section 2.5.5, in
which I adapted and implemented a code developed for previous works in the group [93, 257].

5.1.4 Mechanical properties of ZIFs
Systems of this study
Systems throughout this study belong to two di�erent phases of ZIF-4: the crystal and the melt-quenched
glasses [92]. ZIF-4 was further described in section 1.2.3.

Several structural analyses are presented in this chapter. They were performed using the parameters
used and further detailed in section 2.5. Unless explicitly stated in the caption, properties are averaged
over an (N ,V , T ) trajectory of 1 ns for classical MD simulations and 60 ps for ab initio simulations. For
classical MD, frames are taken every 1 ps for the radial distribution function (RDF) and bond angle
distribution, and every 50 ps for pore statistics. For ab initio MD, those intervals are respectively of 0.5 fs
and 0.5 ps.
Previously reported bulk moduli
To this date, multiple experimental and computational values for the ZIF-4 crystal have been determined
and are listed in table 5.1. K is comprised in the 1.4–2.7 GPa range for systems at a density (ρ0) around the
crystallographic density [65] of 1.22 g cm–3, corresponding to a phase called open-pore (op) in the two
latest experimental works that have focused on low-pressure behavior [290, 293]. Comparison between
experiments and computational works is not straightforward as the measurements are complicated
by subtle di�erences between MOFs from di�erent batches (e.g. unintended defects incorporation
during synthesis and di�erent degrees of activation) and are dependent on the experimental setup (e.g.
pressure transmitting medium) [293, 301]. Additionally, computational values reported so far are either
computed at 0 K [302–304] or performed at a low level of theory [93, 257], with no ab initio value at
�nite temperature reported in the literature for the ZIF-4 crystal.

Though some mechanical properties of amorphous ZIF-4 such as the Young’s modulus [86] or the
fracture toughness [157] have been determined [306], studies are signi�cantly scarcer than for crystals.
There are only two reported values of a bulk modulus, which stems from computational studies with
the stress-strain approach performed on the same Continuous Random Network (CRN) model. A �rst
work [141] found a bulk modulus of 8.88 GPa for a density of 1.07 g cm–3, while a second one [300]
reported K = 4.47 GPa and ρ0 = 0.99 g cm–3. However, the physical realism of the CRN model has not
been thoroughly demonstrated in the �rst place (see section 1.3.2), notably as it features a surprisingly
low density (see section 3.2.2). Additionally, the mismatch in reported K values was left unexplained in
the latest study, leaving us with no reliable value.
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Method Ref. K (GPa) ρ0 (g cm–3) Phase
Exp. High-Pressure

Crystallography
[85] 2.6 ± 0.1 1.21
[293] 2.01 ± 0.05 1.22 (op)

4.39 ± 0.20 1.56 (cp)
Mercury intrusion [290] 1.42 1.22 (op)

4.88 1.53 (cp)
Comp. Strain-�uctuation with

classical FF [305]
[257] 2.58 1.31
[93] 2.69 1.31

Stress-strain from
�rst principles [288]

[302] 2.41 1.16
[303] 1.54 1.03
[304] 1.76 1.18

Table 5.1: Bulk moduli (K) and densities at zero pressure (ρ0) of crystalline ZIF-4, as reported in
previous experimental (top panel) and computational (bottom panel) works. With the exception of
values computed by stress–strain (at 0 K), they are measured or computed at room temperature. The two
most recent experimental works identi�ed two low-pressure phases, open-pore (op) and closed-pore
(cp), which are both reported.
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5.2 Ab initio molecular dynamics
As we saw in section 2.2, ab initio methods, and in particular density functional theory (DFT)-based
methods, allow for a full description of the electronic state of physical systems at the quantum chemical
level. They are commonly used to compute mechanical properties at 0 K using the stress–strain approach
[288], and have been applied to many MOF systems including for the ZIF-4 crystal [302–304] (see ta-
ble 5.1). Combining the precision of ab initio methods with molecular dynamics allows the determination
of �nite temperature mechanical properties and can account for potential phase transitions that may
occur under the application of both temperature and pressure [93, 290, 293]. Already applied to molten
salts [287, 294] and metals [286], ab initio molecular dynamics (AIMD) has never — to my knowledge
— been used to this aim for any MOF system. Despite its signi�cant computational cost, AIMD can
provide much needed reference values for ZIF glasses, where there are no experimental results currently
available.

5.2.1 Systems and methods
As detailed in section 1.3, AIMD has successfully been used in prior works to model the melting of the
ZIF-4 crystal [92], and to produce atomistic con�gurations of melt-quenched glasses [123]. All these
models have been generated and equilibrated in the (N ,V , T ) ensemble, and thus are all at the same
density (taken to be the crystallographic density 1.22 g cm–3). Although this di�culty in capturing
changes in density has been identi�ed as an important limitation of the ab initio methodology [92],
such glass models still represent the most chemically accurate atomistic description of ZIF-4 glasses
published to date in the literature as seen in section 1.3.

Here, I have computed the bulk modulus K for four of these systems: the crystal and three melt-quenched
glasses, chosen to preserve the diversity found in the Zn–N coordination environments. This restriction
to 3 out of the 10 original glass models was guided by the signi�cant computational cost of ab initio
MD. AIMD simulations were performed using CP2K [273] with the exact same parameters presented in
section 4.2.1.

5.2.2 Finite strain di�erence method
Due to the di�culty of performing (N , P , T ) ab initio simulations of soft porous crystals [150] and to the
reduced computational cost of (N ,V , T ) MD runs, I employed the �nite strain di�erence method. All ab
initio simulations were performed in the (N ,V , T ) ensemble to enforce a volume V and compute the
resulting pressure P(V ) of the equilibrated system. Successive simulations at di�erent volumes were
performed, consisting in an instantaneous and isotropic volume change by 2% from the previous volume,
followed by an equilibration time of around ∼ 100–200 ps. Convergence was determined by monitoring
the pressure as a function of time with a su�ciently large moving average of 5 ps, as illustrated on
�gure 5.2.

The value of the pressure for a given volume was taken as the average over the last 50 ps of the simulation.
To estimate the uncertainty due to the �uctuations and limited simulation time, the last 50 ps were
divided into blocks of 5 ps. The average pressure of each block was computed, and a standard deviation
was calculated on these 10 values. Both the bulk modulus K and the extrapolated density at zero pressure
ρ0 were obtained by �tting the P –V data with the second order Birch-Murnaghan EoS [291, 297]. Results
are shown on table 5.2. The P – V plot with the standard deviations as well as the �tted EoS is shown on
�gure 5.3 in the case of the crystal.
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Figure 5.2: Pressure as a function of time for di�erent deformations of the crystal. A moving average
over 5 ps is used and deformation is de�ned as relative volume change to the reference volume of the
crystal.
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Figure 5.3: Pressure as a function of volume for the crystal, �tted with the second order Birch-
Murnaghan Equation of State (red). Each volume corresponds to an (N ,V , T ) simulation with �xed
deformation. Pressure is computed as the average over the last 50 ps of simulations. Error bars are the
standard deviations of the pressure averaged with a rolling window of 5 ps.

Crystal Glass
K (GPa) 1.39 2.43 ± 0.09

ρ0 (g cm–3) 1.29 1.34 ± 0.03

Table 5.2: Bulk moduli K and densities at zero pressure ρ0 for the ZIF-4 crystal and glasses obtained by
AIMD [123] with the �nite strain di�erence method. Glass values are averaged over 3 models.
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The same procedure was then used for the glass models, although the complex energy landscapes of
ZIF systems — prone to polyamorphism [70, 307] — meant that it was not straightforward to observe
a well-behaved P(V ) regime for a large range of volumes. As illustrated on �gure 5.4, a structural
rearrangement of the system caused by a large strain can lead to a change in the �nal pressure, although
this structural change is not visible in local structural properties. Although 5 P – V data points (as for
the crystal) were obtained for one glass, fewer points were obtained for the other two glasses, which
nonetheless con�rm the results.
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Figure 5.4: Pressure as a function of volume for one glass system, illustrating potential polymorphism.
Each volume corresponds to an (N ,V , T ) simulation with �xed deformation. Pressure is computed as
the average over the last 50 ps of simulations. Error bars are the standard deviations of the pressure
averaged with a rolling window of 5 ps.

5.2.3 Reference values
As shown on table 5.2, I obtain a bulk modulus of Kcrystal = 1.39 GPa, in reasonable agreement with
previous experimental and computational works. It is in the lower range of values (see table 5.1),
but further interpretation is limited, as the precise value determined depends on the computational
methodology and – for experiments – also on subtle di�erences between MOFs from di�erent batches or
on the experimental setup [293, 301]. However, the comparison between two di�erent systems within
the same methodology is meaningful, and I �nd that the ZIF-4 glasses are less soft with K

glass
= 2.43 ±

0.09 GPa. This new result complements a previous nanoindentation study [86] that found that ZIF-4
melt-quenched glasses showed larger Young’s modulus (Eglass = 8.2 GPa) than in their parent crystalline
phase (Ecrystal = 4.6 GPa) [91].

Interestingly, this �nite strain di�erence approach also yields the density at zero pressure ρ0 which is of
1.29 g cm–3 for the crystal and of 1.34± 0.03 g cm–3 for the glass. We note that the glass density is higher
than for the crystal, as expected from pycnometric measurements [86] (ρglass =1.63 g cm–3 and ρ

crystal
=

1.50 g cm–3) and from a recent CO2 physisorption study [233] (ρglass = 1.38 g cm–3 which allows direct
comparison to the crystallographic density [65] ρcrystal = 1.22 g cm–3). An extended discussion can be
found in section 3.2.2. However, the di�erence is not as large as what could be expected from these
experiments and may come from the ab initio methodology, which led to glass models of the same
density as the crystal before any deformation step.

It is worth mentioning that in the case of the crystal, the system was deformed enough to reach the
density at zero pressure ρ0, without change in the local structural properties as shown on �gure 5.5.
However, no glass system was brought to its extrapolated ρ0.
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Figure 5.5: (a) Potentials of mean force (PMF) for the Zn–N atom pair, (b) distribution of the N–Zn–N
angle, and (c) total porous volume of the ab initio crystal at various volume deformations. The volume
deformation of 0% corresponds to the state of crystallographic density, while the volume deformation of
-6% corresponds to the state of zero pressure. Properties are averaged over the entire (N ,V , T ) trajectory
of each volume. All the local structural properties are similar, and the coordination is unchanged
(evaluated with coordination numbers and ring statistics as in chapter 3, not reported here). As expected,
the porous volume is decreasing with total volume.

In spite of the limitations discussed above, I �nd that ab initio simulations provide a reference value for
the bulk modulus at room temperature of ZIF-4 glasses, which may be thought of as a lower bound due
to the low density of the particular glass models used. We note that such a quantity had never been
determined before at the quantum chemical level. By comparing two states of similar densities, it further
demonstrates the in�uence of the system topology on the mechanical properties of ZIF-4 systems. It
complements previous results on the high-density states which found the closed-pore ZIF-4 phase bulk
modulus (∼ 4.4 to 4.9 GPa) [290, 293] to be much lower than its polymorph ZIF-zni (∼ 14 GPa) [308],
while they all show similar densities (1.53 to 1.56 g cm–3).
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5.3 Reactive force fields
With a reference value now at hand, it is possible to develop and validate more computationally e�cient
alternatives for the determination of �nite temperature mechanical properties. To develop a method
able to screen the mechanical properties of a large number of ZIF glasses, it would be convenient and
consistent to use the same MD scheme for the glass model generation and the subsequent determination
of its properties. An option is the use of reactive force �elds (presented in section 2.3.3), which have
been proposed to generate models of ZIF glasses by melt-quenching with the development of a ReaxFF
parametrization for ZIFs [155] as we saw in section 1.3.5. They have previously been used to compute
mechanical properties [156, 157, 159] and are a natural candidate for the task at hand. Able to explore
larger spatial and time scales, they could in principle be used to obtain the bulk modulus with several
methods while reducing the �nite size e�ects inherent to AIMD. However, I showed in chapter 3 the
atypical structural properties of the glasses obtained with this approach, and there is still no in-depth
validation of the mechanical properties obtained with this force �eld in the existing literature.

In order to o�er a meaningful comparison to other MD schemes, I consider several glass models: the
ReaxFF glass obtained in chapter 3, the same three ab initio glass models studied in the previous section
[123] and a glass obtained by Reverse Monte Carlo (RMC) modeling [92, 129]. MD simulations were
performed using LAMMPS [211, 256] with the exact same parameters presented in section 3.1.1.

5.3.1 Finite strain di�erence method
To allow direct comparison to our ab initio results, I �rst computed K with the �nite strain di�erence
method. The reduced computational cost allowed for smoother volumetric deformations (1.5% change
over 250 ps) and a longer equilibration (250 ps, shown on �gure 5.6) than was possible with AIMD.
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Figure 5.6: Finite strain di�erence method for the crystal with ReaxFF. (a) Pressure as a function of
time for di�erent deformations, shown with a moving average over 5 ps. (b) Pressure as a function
of volume �tted with the second order Birch-Murnaghan EoS (red). Each volume corresponds to an
(N ,V , T ) simulation with �xed deformation. Pressure is computed as the average over the last 100 ps of
simulations. Error bars are the standard deviations of the pressure averaged with a rolling window of
10 ps.
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All these systems were already introduced in section 3.3.1, and notably went through a careful preparation
process. I took (2× 2× 2) supercells of the crystal and ab initio glasses to have the same system size as
the ReaxFF glass, and reported properties (K and ρ0) for the ab initio glasses are averaged over the three
models. For the �nite strain di�erence method, the ReaxFF glass was taken at the last 300 K plateau of
the quenching process, and the other systems were taken at the last (N ,V , T ) step of the preparation
process. Therefore the latter still possess the initial model densities. They all went through a long
(N ,V , T ) equilibration of 1 ns before any volume deformation.

Volume deformation in the (N ,V , T ) ensemble was a continuous process, during which each dimension
of the box changed linearly with time from its initial to �nal value to achieve a volume reduction by
1.5%. The well-behaved region of the P – V data for the �t with the second order Birch-Murnaghan EoS
was selected to have 5 points at maximum and to include the region of zero pressure. While 5 points
were found for the crystal, ReaxFF and RMC glasses, only between 3 and 4 points could be obtained for
the ab initio glasses.

This approach led to well-behaved P – V plots and to the values presented in table 5.3. Although of
reasonable density, the ReaxFF crystal shows a larger bulk modulus by comparison with AIMD and
experimental results. The bulk moduli and densities reported for the ab initio glasses do not contrast
with the values computed for the crystal as clearly than with AIMD. The glass models which display
higher K , represent states of considerably higher densities than the AIMD glass model and than the
experimentally determined crystallographic density of ZIF-4 glasses [233], and are therefore not directly
comparable.

Crystal ReaxFF glass RMC glass Ab initio glass
K (GPa) 3.15 10.36 6.29 3.57 ± 0.75

ρ0 (g cm–3) 1.26 1.67 1.55 1.31 ± 0.03

Table 5.3: Bulk moduli K and densities at zero pressure ρ0 for multiple ZIF-4 models obtained with the
�nite strain di�erence method with ReaxFF.

5.3.2 Finite stress di�erence method
An alternative option is the use of the �nite stress di�erence method, in which the MD simulations
are performed in the constant-pressure (N , P , T ) ensemble at a given P , before measuring the volume
V (P). It is illustrated on �gure 5.7. This approach is more commonly used in conjunction with classical
and reactive force �elds [296]. I evaluate the method using two possible variants, with an isotropic or a
�exible cell (respective LAMMPS keywords iso and tri), as I have shown that this choice can impact the
description of the glass. Section 2.1.3 provides a description of these thermodynamic ensembles.

For this method with a �exible cell, the initial systems for the �nite strain di�erence method (see above)
were taken and were further equilibrated in the (N , P , T ) ensemble until convergence of the volume. The
equilibration times teq are reported in table 5.4. For the �nite stress di�erence method with an isotropic
cell, at the exception of the ReaxFF glass, the initial systems for the �nite strain di�erence method were
taken and were further equilibrated for 500 ps in the (N , P , T ) ensemble. For the ReaxFF glass, the initial
system is the same as with the �exible cell.

Crystal ReaxFF glass RMC glass Ab initio glass
Finite stress di�erence

with a �exible cell 5 10 20 7-7.5

Strain-�uctuation 5 10 22 7-18

Table 5.4: Equilibration times teq (in ns) spent in the (N , P , T ) ensemble with a �exible cell for two
methods.
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Figure 5.7: Finite stress di�erence method with a �exible cell (LAMMPS keyword tri) for the crystal
with ReaxFF. (a) Volume as a function of time for di�erent pressures, shown with a moving average over
5 ps. (b) Pressure as a function of volume �tted with the second order Birch-Murnaghan EoS (red). Each
volume corresponds to an (N , P , T ) simulation with �xed pressure. Volume is computed as the average
over the last 100 ps of simulations. Error bars are the standard deviations of the pressure averaged with
a rolling window of 10 ps.

Successive simulations at di�erent pressures were applied, consisting in ramping up the pressure from
0 MPa to Pmax by step of Pstep and tstep. Pmax , Pstep and tstep values for the di�erent systems are reported
in table 5.5. The well-behaved region of the P – V data was composed of 4 or 5 points for the crystal,
ReaxFF and RMC glasses, and between 3 and 5 points for the ab initio glasses (average of 4.2).

System cell Pmax (atm) Pstep (atm) tstep (ps)
Crystal tri 1000 250 250

iso 1000 250 500
ReaxFF glass tri/iso 2000 500 500

RMC glass tri 1000 250 250
iso 1000 250 500

Ab initio glass tri 1000 250 1000
iso 1000 250 500

Table 5.5: Maximal pressure Pmax (in atm), pressure increment Pstep (in atm) and time spent at each
pressure tstep (in ps) for di�erent systems and cell types, used for the �nite stress di�erence method
with ReaxFF.

While this method yields results for every studied system, as reported on table 5.6, the signi�cant
mismatch between values computed with di�erent cell types, which should not exist for the crystal,
severely questions the results and illustrate once again the tendency of ReaxFF to densify systems I
highlighted in section 3.3.1. Additionally, the only two low-density states (the crystal and the ab initio

glasses with an isotropic cell), have lower values than what was obtained with AIMD, the opposite of
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what yielded the �nite strain di�erence method with ReaxFF. This seriously discourages using the �nite
stress di�erence method with ReaxFF.

cell Crystal ReaxFF glass RMC glass Ab initio glass

K (GPa) iso 0.91 7.64 1.83 1.87 ± 0.75
tri 6.11 10.60 7.89 4.07 ± 1.52

ρ0 (g cm–3) iso 1.31 1.74 1.50 1.36 ± 0.06
tri 1.61 1.68 1.57 1.46 ± 0.08

Table 5.6: Bulk modulus K and density at zero pressure ρ0 for multiple ZIF-4 models obtained with the
�nite stress di�erence method with ReaxFF, either using an isotropic (iso) or a �exible (tri) cell.

5.3.3 Strain-�uctuation method
Another approach to obtain mechanical properties at a given temperature T is to evaluate them from
the �uctuations of the unit cell of an equilibrated system simulated under a constant-stress (N , σ, T )
ensemble [258]. Unlike the previous �nite di�erence methods which only yield one property at a time,
it leads to the estimation of the entire tensor of second-order elastic constants C

ij,kl which in turns is
linked to mechanical properties such as Young’s modulus, shear modulus, and Poisson’s ratio [252].
This approach, already used for the ZIF-4 crystal with a classical force �eld [93, 257], requires long
equilibration times (∼ 5 – 10 ns). While out of reach of AIMD simulations, it is tractable with ReaxFF.
The bulk modulus can also be directly computed from the �uctuations of the volume [258], a second
method I used as a validation.

Starting from the initial systems for the �nite strain di�erence method, I performed further (N , P , T )
simulations with a �exible cell, corresponding to the (N , σ, T ) ensemble required by the method, until
convergence of the volume (see �gure 5.8) and elastic constants (see �gure 5.9), which may be a bit
longer than the sole volume. It required a total equilibration time teq comprised between 5 ns and 22 ns,
detailed in table 5.4. The elastic constants, the volume �uctuations and the volumes were computed
over the last 3 ns of the simulation for the crystal, RMC glass and two ab initio glasses, and over the last
2.5 ns for the two other systems.

From the resulting bulk moduli, shown on table 5.7, we see that both strain-�uctuation methods are
consistent. While such a long ReaxFF equilibration only yields highly densi�ed states, with large K as
a consequence, the results are consistent with the high-density states explored with �nite di�erence
methods.

Crystal ReaxFF glass RMC glass Ab initio glass
K - volume �uctuations (GPa) 5.65 12.73 7.47 4.30 ± 0.64

K - elastic constants (GPa) 7.58 12.85 7.62 4.77 ± 0.88
ρ0 (g cm–3) 1.61 1.68 1.56 1.46 ± 0.07

Table 5.7: Bulk moduli K and densities at zero pressure ρ0 for multiple ZIF-4 models obtained with two
strain-�uctuation methods with ReaxFF.

128



5.3 reactive force fields

1 2 3 4 5
Time (ns)

26000

26500

27000

27500

Vo
lu

m
e 

(Å
3 )

Figure 5.8: Volume as a function of time during a long 5 ns equilibration in the (N , P , T ) ensemble with
a �exible cell for the crystal. Elastic constants were computed on the red part of the �gure. The orange
line shows a moving average over 100 ps.
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Figure 5.9: (a) Convergence of the elastic constants Ci,j as function of time for the crystal with ReaxFF
during a long 5 ns equilibration in the (N , P , T ) ensemble with a �exible cell. (b) At time t, the represented
Ci,j(t) corresponds to the elastic constant computed from the 2 ns to (t + 2) ns part of the trajectory. The
Ci,j used for the computation of the mechanical properties thus correspond to the �nal t = 3 ns.
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Figure 5.10: Bulk modulus K as function of the density at zero pressure ρ0 for multiple ZIF-4 models
and methods with ReaxFF.

This additional method con�rms the very direct relationship between large K and ρ0, apparent on
�gure 5.10, which is found almost irrespective of the model — crystal or glass — and of the method used
to compute K . It is therefore di�cult to separate the in�uence of the topology (e.g. between di�erent
glasses) from the density, or to study low-density glass models. As a consequence, I cannot recommend
the use of the ReaxFF parametrization for ZIFs [155] to compute mechanical properties, especially at
�nite temperature, and suggest that every work that intend to use it should �rst go through a detailed
validation.

130



5.4 classical force fields

5.4 Classical force fields
Considering the strong limitations of the ReaxFF parametrization for ZIF glasses, no computationally
e�cient MD scheme published to this date in the literature can both generate ZIF melt-quenched glasses
and provide their �nite temperature mechanical properties. In this section, I look into a possible strategy
to separate these two aspects and investigate the use of classical force �elds (presented in section 2.3.2)
to analyze the crystal and glass models generated by AIMD [92, 123] studied in the �rst section. Owing
to the computational e�ciency of classical MD, all 10 con�gurations of the melt-quenched glasses were
simulated.

5.4.1 Adaptation of the force �elds
As detailed in section 2.3.2, every classical FF for ZIFs published to this date has been developed for
crystals and should thus �rst be adapted and validated before studying ZIF glasses. In my study, I chose
to use the recently developed MOF-FF for ZIFs by Dürholt et al. [203], presented in section 2.3.2. This
force �eld showed good transferability across a series of ZIF polymorphs, indicating that it can handle
various network topologies, and led to mechanical properties in line with earlier FFs [204]. Developing
a new FF for glasses from scratch is beyond the scope of this study, but the MOF-FF methodology
for an automatic parametrization of FFs would make such a development achievable in future work
[145].
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Figure 5.11: Distribution of the N–Zn–N angle for (a) every Zn atom and (b) only three-coordinated Zn
atom, for the MOF-FF crystal (blue) and glasses (red and orange) compared the ab initio crystal (green)
and glass (grey).

While ZIF-4 crystals are made only of Zn(Im)4 tetrahedra, a number of three-coordinated Zn ions can
be found in ZIF-4 glasses, which are not readily parametrized in MOF-FF. On the N–Zn–N bond angle
distribution of the ab initio glass shown on �gure 5.11, we see that these three-coordinated Zn deviate
from the 109° angle of the tetrahedra. To reproduce the glass properties and test the sensitivity of our
results to our adaptation of MOF-FF, I introduced and evaluated two adaptations of the FF, which I name
Zn3tetra and Zn3trig which respectively shift the N–Zn–N angle of the three-coordinated Zn towards
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109° or 120° as shown on �gure 5.11. Their construction is detailed in section 2.3.2. As it features no
under-coordinated Zn atoms, the ZIF-4 crystal is simulated with the original FF.

In order to evaluate the validity of these FF adaptations, I compared the structural characteristics of
ZIF-4 systems simulated with MOF-FF to the original ab initio models, using the same metrics as in
chapter 3 on ReaxFF. An investigation of the local order with the partial radial distribution functions
(RDF) and potentials of mean force (PMF) (see �gure 5.12a,b), evidences an excellent reproduction of
interatomic distances and similar energy landscapes close to the energy minima. The region between
the two minima in PMF is qualitatively di�erent, as MOF-FF is unable by design to simulate non-bonded
but nearby Zn-N atoms. Despite di�erences in the angle distribution of the three-coordinated Zn atoms,
�gure 5.11 shows that the total distribution is similar for both FF adaptations, which reproduce the
wider distribution of angles for the glasses than for the crystal. Although a�ected by the small di�erence
in geometry imposed by the FF adaptations, both FF adaptations lead to glass models of higher porosity
than the crystal, as shown on �gure 5.12c. Finally, as classical MD cannot simulate bond breaking, the
coordination and topology (e.g. ring statistics) are automatically preserved. Despite not being developed
for ZIF glasses, both FF adaptations reasonably reproduce the structural properties of the ab initio

systems, at least compared to the only force �eld available in the literature for amorphous ZIFs, namely
ReaxFF.
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Figure 5.12: (a) Radial distribution functions (RDF), (b) potentials of mean force (PMF) for the Zn–N
atom pairs, and (c) total porous volume of the MOF-FF crystal (blue) and glasses (red and orange)
compared the ab initio crystal (green) and glass (grey).
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Classical MD simulations were performed using LAMMPS [211]. A timestep δt of 1 fs was used in the
MD runs and, the temperature (and pressure when applicable) were controlled using a Nosé–Hoover
thermostat (and barostat). Temperature and pressure damping parameters Tdamp and Pdamp were �xed
at 1 ps and 10 ps respectively.

5.4.2 Validation with AIMD results
I investigate the applicability of these classical FF adaptations by computing �nite temperature bulk
moduli, with the same methods I used on ReaxFF, starting with the �nite strain di�erence method
(illustrated on �gure 5.13) to allow direct comparison with AIMD results.
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Figure 5.13: Finite strain di�erence method for the crystal with MOF-FF. (a) Pressure as a function
of time for di�erent deformations, shown with a moving average over 5 ps. (b) Pressure as a function
of volume �tted with the second order Birch-Murnaghan EoS (red). Each volume corresponds to an
(N ,V , T ) simulation with �xed deformation. Pressure is computed as the average over the last 100 ps of
simulations. Error bars are the standard deviations of the pressure averaged with a rolling window of
10 ps.

The crystal [92, 123] and ten glasses [123] were prepared following a simpli�ed preparation procedure
compared to what was done for ReaxFF. It consisted in an initial energy minimization, followed by an
(N ,V , T ) run at 300 K for 250 ps with the default temperature damping parameter of 1 ps. All the systems
then went through a long (N ,V , T ) equilibration of 1 ns before any volume deformation. (2× 2× 2)
supercells of each system were considered, and reported properties (K and ρ0) of the glasses are averaged
over the ten models.

Successive simulations at di�erent volumes were applied, consisting of a volume deformation by 1.5% and
lasting 500 ps from the previous volume followed by an equilibration time of 500 ps. Volume deformation
in the (N ,V , T ) ensemble was the same continuous process as for ReaxFF, the only di�erence being
the longer time τ∆V

= 500 ps. The well-behaved region of the P – V data was chosen as for ReaxFF.
5 points were found for the crystal, 4.3± 0.9 for the Zn3trig glasses and 4.7± 0.5 for the Zn3tetra

glasses
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Crystal Glass w/ Zn3trig Glass w/ Zn3tetra
K (GPa) 1.48 3.01 ± 1.15 2.46 ± 0.65

ρ0 (g cm–3) 1.22 1.29 ± 0.06 1.31 ± 0.05

Table 5.8: Bulk modulus K and density at zero pressure ρ0 for ZIF-4 crystal and ab initio glasses obtained
with the �nite strain di�erence method with two di�erent adaptations of MOF-FF.

From the results, summarized in table 5.8, we see that both FF adaptations lead to larger bulk moduli for
the glasses than the crystal. As shown on �gure 5.14, K values are in reasonable agreement with AIMD,
where ReaxFF failed to di�erentiate the crystal from the glasses. The densities are also consistent with
both AIMD and experiments.
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Figure 5.14: Bulk modulus K for ZIF-4 crystal and ab initio glasses with the �nite strain di�erence
method and di�erent MD schemes. Average and standard deviation for classical FF are computed over
every glass and FF adaptation.

We note, however, that there is an important variance in the bulk moduli of the glasses, with potentially
divergent values with respect to the FF adaptation for the same glass model, as shown on �gure 5.15. It
highlights the importance of using a large enough number of glass con�gurations to obtain average
mechanical properties for models with a small system size.
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Figure 5.15: Bulk modulus K for ZIF-4 ab initio glasses obtained with the �nite strain di�erence method
with two di�erent adaptations of MOF-FF.

5.4.3 Exploring other methods
Finite stress difference method
I then investigated the use of the (N , P , T ) ensemble with our two FF adaptations, again with both an
isotropic and a �exible cell as done for ReaxFF (see �gure 5.16).

For the �nite stress di�erence method with an isotropic cell (iso), the initial systems for the �nite
strain di�erence method were taken and were further equilibrated for 500 ps in the (N , P , T ) ensemble.
For the �nite stress di�erence method with a �exible cell (tri), the initial systems for the �nite strain
di�erence method with an isotropic cell were taken and were further equilibrated in the (N , P , T )
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Figure 5.16: Finite stress di�erence method with a �exible cell (LAMMPS keyword tri) for the crystal
with MOF-FF. (a) Volume as a function of time for pressures, shown with a moving average over 5 ps. (b)
Pressure as a function of volume �tted with the second order Birch-Murnaghan EoS (red). Each volume
corresponds to an (N , P , T ) simulation with �xed pressure. Volume is computed as the average over the
last 100 ps of simulations. Error bars are the standard deviations of the pressure averaged with a rolling
window of 10 ps.

ensemble until convergence of the volume. The equilibration times are 6 ns for the crystal and 11 ns for
the glasses.

Successive simulations at di�erent pressures were applied, consisting in ramping up the pressure from
0 atm to 2500 atm by step of 250 atm and 500 ps. The well-behaved region of the P – V data with an
isotropic cell was composed of 3 points for the crystal, 4.0± 0.9 for the Zn3trig glasses and 3.9± 0.8
for the Zn3tetra glasses. With a �exible cell, those numbers are of 5 points for the crystal, 4.7± 0.6 for
the Zn3trig glasses and 4.6± 0.7 for the Zn3tetra glasses.

We see on the results presented in table 5.9 that no system reaches a state of unreasonably high density
(unlike with a reactive force �eld). In particular, MOF-FF handles better the additional degree of freedom
brought by the free shape of the cell than does ReaxFF, although a �exible cell still leads to a larger
densi�cation, particularly for the crystal. We note that both FF adaptations give similar average results,
with still a signi�cant variance over the di�erent glass models. Finally, K values are consistent with the

cell Crystal Glass w/ Zn3trig Glass w/ Zn3tetra

K (GPa) iso 1.00 2.16 ± 0.89 2.24 ± 0.94
tri 1.80 2.77 ± 0.98 2.59 ± 1.04

ρ0 (g cm–3) iso 1.21 1.33 ± 0.08 1.31 ± 0.06
tri 1.39 1.35 ± 0.08 1.35 ± 0.06

Table 5.9: Bulk modulus K and density at zero pressure ρ0 for ZIF-4 crystal and ab initio glasses
obtained with the �nite stress di�erence method with two di�erent adaptations of MOF-FF, either using
an isotropic (iso) or a �exible (tri) cell.
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�nite strain di�erence method, and the previously observed trends of Kglass > Kcrystal and increasing K

with respect to ρ0 are found again.
Strain-fluctuation method
Finally, to obtain additional mechanical properties, I applied the strain-�uctuation method. The initial
systems for the �nite stress di�erence method with an isotropic cell were taken and were further
equilibrated in the (N , P , T ) ensemble with a �exible cell until convergence of the volume (see �gure 5.17)
the elastic constants. The equilibration times are 6 ns for the crystal and 21 ns for the glasses. The
elastic constants, the volume �uctuations and the volumes were computed over the last 4 ns for every
system.
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Figure 5.17: Volume as a function of time during a long 5 ns equilibration in the (N , P , T ) ensemble
with a �exible cell for the crystal with MOF-FF. Elastic constants were computed on the red part of the
�gure. The orange line shows a moving average over 100 ps.

From the results shown in table 5.10, we see that the values obtained from the elastic constants are
consistent with the more robust volume �uctuations. While the values for the glass are consistent
with the �nite di�erence methods, the strain-�uctuation methods with MOF-FF fail to highlight the
di�erence in K between the crystal and the glasses as shown on �gure 5.18, which may be explained by
the unreasonably large density of the crystal equilibrated in the (N , P , T ) ensemble with a �exible cell.
We note, however, that the value for the ZIF-4 crystal is similar to what was achieved in previous works
[93, 257] with the strain-�uctuation method but another classical FF [305], and which reported K to be
2.6–2.7 GPa for a density of 1.31 g cm–3 (see table 5.1).
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Figure 5.18: Bulk modulus K for ZIF-4 crystal and glasses with di�erent methods and two di�erent
adaptations of MOF-FF.
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Crystal Glass w/ Zn3trig Glass w/ Zn3tetra
K - volume �uctuations (GPa) 2.67 2.66 ± 0.55 2.42 ± 0.82

K - elastic constants (GPa) 2.76 3.05 ± 0.57 2.71 ± 0.83
ρ0 (g cm–3) 1.39 1.35 ± 0.08 1.35 ± 0.06

Table 5.10: Bulk modulus K and density at zero pressure ρ0 for ZIF-4 crystal and ab initio glasses
obtained with two strain-�uctuation methods using two di�erent adaptations of MOF-FF.

The important similarity between crystal and glasses is also present in the other mechanical properties
computed with this method – Young’s modulus E, shear modulus G, and Poisson’s ratio ν – which are
reported in table 5.11. For example, while nanoindentation studies found E to be signi�cantly larger for
the glass than for the crystal (respectively 8.2 GPa [86] and 4.6 GPa [84]), this e�ect is not convincingly
captured by this approach (3.22 ± 0.74 GPa compared to 2.51 GPa). Carrying an (N , P , T ) simulation
of the ZIF-4 crystal with a �exible cell while preserving the low crystallographic density, previously
known to be challenging with AIMD (see section 1.3.4) and ReaxFF (see section 3.3.1), would require
further work on MOF-FF for ZIFs.

Crystal Glass Zn3trig Glass Zn3tetra
Bulk modulus K (GPa) 2.76 3.05 ± 0.57 2.71 ± 0.83

Young’s modulus E (GPa) 2.51 3.48 ± 0.80 2.95 ± 0.57
Shear modulus G (GPa) 0.93 1.33 ± 0.32 1.13 ± 0.21

Poisson’s ratio ν 0.35 0.31 ± 0.02 0.31 ± 0.03

Table 5.11: Mechanical properties for the ZIF-4 crystal and ab initio glasses obtained with the strain-
�uctuation method with the elastic sti�ness tensor using two di�erent adaptations of MOF-FF.

Despite this challenge, all �nite di�erence methods are overall consistent, as illustrated on �gure 5.18,
albeit with a large variability across glass con�gurations. Both FF adaptations yield similar results, sug-
gesting they are not ill adapted and that this procedure is not very sensitive to such a small perturbation
in the MOF-FF parametrization. I thus showed that the �nite di�erence methods with classical FFs are
ready to be deployed, and that the development of a speci�c MOF-FF parametrization for amorphous
ZIFs could prove useful.
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5.5 Machine-learned potentials
While adapted classical FFs seem promising to evaluate the mechanical properties of aZIFs, they cannot
be used for the systematic generation and subsequent study of the mechanical properties of multiple ZIF
structures. Machine-learned potentials (MLP), whose principles are presented in section 2.4, represent
potential candidates. Multiple studies showed that they can be used to study various mechanical
properties, including three on MOFs. Two studies employed the stress-strain method to obtain elastic
constants and bulk moduli [221, 260], while one computed K using the strain-�uctuation method
[268].

In chapter 4, I reported the development of preliminary MLPs for ZIF-4 that led to an excellent repro-
duction of the ab initio structural properties of both ordered and disordered systems. In this section,
I investigate their use to obtain �nite temperature mechanical properties of ZIF-4 solids by using the
same methods explored for other MD schemes. As chapter 4, this is an ongoing work whose goal is not
to provide �nal answers but to probe whether this path is worth following. The results will have to be
con�rmed after the more universal MLPs for ZIFs under development will be ready for production.

5.5.1 Finite strain di�erence method with NequIP
The �nite strain di�erence method, studied with every other MD scheme, is used as the platform for
most of the evaluations of the developed MLPs. As mentioned in section 4.2.3, stress support in LAMMPS
[211] was not yet implemented for NequIP at the time when I started this work. I therefore resorted to
the use the atomic simulation environment (ASE) [251], using a Nosé–Hoover thermostat shipped with
NequIP.

Unlike LAMMPS or CP2K, this thermostat is not set up by a time constant but by a damping factor Q.
Unlike in equation (2.4) presented in chapter 2, and according to the notes accompanying the NequIP
code, this Q is of dimension

[
M L2], where M, L respectively designate mass and length. Using ASE

default units (eV fs2), I tested a range of values in the 10–10 000 eV fs2 and chose Q =400 eV fs2, as the
100–1000 eV fs2 range provided consistent results. Unlike otherwise mentioned, I used single unit cells
to speed up calculations in this development phase.

Successive simulations at di�erent volumes were performed, consisting in an instantaneous and isotropic
volume change by 1.5% from the previous volume, followed by an equilibration time of 200 ps. The
value of the pressure for a given volume was taken as the average over the last 100 ps of the simulation.
For simulations with a (2× 2× 2) supercell, only 100 ps in total were simulated.

Figure 5.19 illustrates, in the case of the crystal with two di�erent MLPs the pressure convergence and
the P – V data. We see that in these two cases the �nite strain di�erence method worked accurately, in
the sense that it provided well-behaved P – V data and Birch-Murnaghan �ts. It is worth noting that the
pressure �uctuations were di�erent depending on the model, with MLP(liquid) (trained without biasing
for stress) having larger �uctuations than MLP(liquid|σ) (trained by biasing for stress). In both cases,
these �uctuations were signi�cantly reduced by the use of a (2× 2× 2) supercell.

supercell K (GPa) ρ0 (g cm–3)

MLP(liquid|1:1:1) 1 1.31 1.24
(2× 2× 2) 1.37 1.24

MLP(liquid|1:1:100) 1 0.84 0.80
(2× 2× 2) 0.82 0.80

Table 5.12: Bulk modulus K and density at zero pressure ρ0 for ZIF-4 crystal obtained with the �nite
strain di�erence method with multiple MLPs and di�erent supercells.
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Before further study of the di�erent MLPs, it is worth mentioning that the use of a supercell did not
seem to signi�cantly impact the resulting bulk moduli K and density at zero pressure ρ0. Table 5.12
shows that for a ZIF-4 crystal, both tested MLPs led to almost identical results.
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Figure 5.19: Finite strain di�erence method for the crystal with MLP(liquid) (left) and MLP(liquid|σ)
(right). (a) Pressure as a function of time for di�erent deformations during the last 100 ps of simulation,
shown with a moving average over 10 ps. (b) Pressure as a function of volume �tted with the second
order Birch-Murnaghan EoS (red). Each volume corresponds to an (N ,V , T ) simulation with �xed
deformation. Pressure is computed as the average over the last 100 ps of simulations. Error bars are the
standard deviations of the pressure averaged with a rolling window of 10 ps.

5.5.2 Accurately training for stress
In section 4.2.2, I introduced and contrasted several MLPs that di�ered in their training data (liquid or
crystal), and choice of loss function L. This L was parameterized by three weights (λ) representing the
respective in�uence of the energy (E), the forces ({F i}) and the stress (σ) during training, and is denoted
by λ

F
: λ

E
: λσ.

Figure 5.20 clearly evidences that the pressure outputs were singularly di�erent depending on whether
the loss function is biased for stress, regardless of the training data. Strongly biased systems displayed
pressure ranges located far from the state of zero pressure, resulting in the extremely low values for the
�tted ρ0 reported in table 5.13. Additionally, the associated values of K varied signi�cantly as a function
of the chosen value λσ ∈ {100, 1000}, providing further evidence to discard these MLPs. On the contrary,
the unbiased MLPs – MLP(crystal) and MLP(liquid)– led to K and ρ0 values in line with each other and
with previous AIMD results. It suggests that training MLPs on energy and forces only is su�cient to
reproduce the mechanical properties with reasonable accuracy.
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Figure 5.20: Pressure as a function of volume for the ZIF-4 crystal with di�erent MLPs obtained by the
�nite strain di�erence method.

Training data L K (GPa) ρ0 (g cm–3)
crystal 1:1:1 1.21 1.37
crystal 1:1:100 0.85 0.81
liquid 1:1:1 1.31 1.24
liquid 1:1:100 0.84 0.80
liquid 1:1:1000 1.57 0.91

Table 5.13: Bulk modulus K and density at zero pressure ρ0 for ZIF-4 crystal obtained with the �nite
strain di�erence method with multiple MLPs. MLP(sys|L) are de�ned by their training data and their
loss function L denoted by λ

F
: λ

E
: λσ

5.5.3 Reproduction of aZIF-4 mechanical properties
Unbiased MLPs were therefore employed for the computation of �nite temperature mechanical properties.
MLP(liquid) was chosen, provided that the di�erence between MLP(liquid) and MLP(crystal) was not that
signi�cant on the ZIF-4 crystal, and that MLP(liquid) led to better transferability (see section 4.2).

In order to o�er a meaningful comparison to other MD schemes, I considered several glass models:
the same three ab initio glass models studied with AIMD and ReaxFF, and the MLP glass obtained by
melt-quenching in section 4.3. The original size of the systems was preserved, i.e. a single unit cell for
both the crystal and the ab initio glasses, and a (2× 2× 2) supercell for the MLP glass.

Crystal Ab initio glass MLP glass
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MD scheme AIMD MLP

K 
(G

Pa
)

Model origin

Figure 5.21: Bulk modulus K for the ZIF-4 crystal and two glasses with the �nite strain di�erence
method with MLP(liquid) compared with AIMD.

As evidenced in table 5.14, calculations with MLP(liquid) reproduced the trend previously identi�ed
with other MD schemes, where glasses have both larger K and ρ0 than the crystalline phase. Reported
values were in very good agreement with AIMD data, as shown on �gure 5.21, making a strong case for
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the use of MLPs to obtain the mechanical properties of aZIF-4. We note, however, that the �uctuations
are larger than for the ab initio glasses, which can be reduced in the future by computing the mechanical
properties on all ten ab initio glasses as done in section 5.4 with classical FFs.

Crystal ab initio glass MLP glass
K (GPa) 1.31 2.39+/-0.70 2.50

ρ0 (g cm–3) 1.24 1.37+/-0.10 1.31

Table 5.14: Bulk modulus K and density at zero pressure ρ0 for the ZIF-4 crystal and two glasses
obtained with the �nite strain di�erence method with MLP(liquid).

While it is interesting to note that both the ab initio and MLP glasses display very similar values,
only one glass model generated with MLP was chosen. Further investigation on the in�uence of the
melt-quenching parameters (rate, length of high-temperature plateau) should be in order once the �nal
MLP for multiple ZIFs is ready. Another methodological question worth investigating is that of the
comparison between the use of multiple single cell models against a single model generated with a
larger supercell.

5.5.4 Exploratory use of the (N , P , T ) ensemble
I also investigated the use of the (N , P , T ) ensemble with our prototypical MLP. As LAMMPS was not
yet supported, I used ASE which only supported an isotropic cell, therefore only enabling the use of the
�nite stress di�erence method at the expense of the strain-�uctuations method.

I used a Nosé–Hoover–Parrinello–Rahman thermostat/barostat [251] with a temperature damping
constant τ

T
of 50 fs and pressure damping constant τ

P
of 500 fs. The barostat constant required as input

by ASE was calculated as τ
P

2 ∗ B, where B is a typical bulk modulus for the studied materials, set up at
B = 1 GPa. I �rst set up τ

T
by disabling the barostat and probing the 10–1000 fs range, before �xing τ

P

by exploring the 10–10 000 fs range. Starting from the initial structural �les, successive simulations at
di�erent pressures were applied, consisting in ramping up the pressure from 0 MPa to 250 MPa by step
of 25 MPa and 100 ps, as illustrated on �gure 5.22.

I �rst tested the �nite stress di�erence methods by studying the ZIF-4 crystal with multiple MLPs: both
biased and unbiased for stress, and trained either on the crystal or the liquid. As reported in �gure 5.23,
both K and ρ0 were consistent across both �nite di�erence methods. We note that systems biased for
stress converge to states of unreasonably low density, con�rming the low ρ0 �tted with the �nite strain
di�erence method.

Using the previously chosen MLP(liquid), I applied the �nite stress di�erence method on both the ZIF-4
crystal and the same three ab initio glasses. Table 5.15 highlights that although K and ρ0 values for the
crystal were consistent between methods, it did not hold true for the ab initio glasses. Therefore, the
use of the (N , P , T ) ensemble is not yet ready to use for production and should be further evaluated. A
safer option may be to wait for the support of (N , P , T ) simulations with NequIP in LAMMPS to bene�t
from its more robust and consistent methods.

Method Crystal ab initio glass

K (GPa) Stress 1.07 1.24±0.38
Strain 1.31 2.39±0.70

ρ0 (g cm–3) Stress 1.24 1.14±0.05
Strain 1.24 1.37±0.10

Table 5.15: Bulk modulus K and density at zero pressure ρ0 for the ZIF-4 crystal and ab initio glasses
obtained with MLP(liquid) and with the �nite stress di�erence method compared to the �nite strain
method.
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Figure 5.22: Finite stress di�erence method with an isotropic cell for the crystal with MLP(liquid). (a)
Volume as a function of time for pressures, shown with a moving average over 5 ps. (b) Pressure as a
function of volume �tted with the second order Birch-Murnaghan EoS (red). Each volume corresponds
to an (N , P , T ) simulation with �xed pressure. Volume is computed as the average over the last 100 ps of
simulations. Error bars are the standard deviations of the pressure averaged with a rolling window of
10 ps.
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Figure 5.23: Bulk modulus K as function of the density at zero pressure ρ0 for the ZIF-4 crystal with
di�erent MLPs for the �nite strain and �nite stress di�erence methods.

Overall, I provided strong evidence that MLPs for ZIFs may constitute a promising option to generate
�nite temperature mechanical properties of aZIFs. This will have to be con�rmed when our �nal version
of a MLP for ZIFs is ready for production.
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Conclusions and perspectives
In this chapter, I have extensively investigated the computation of �nite temperature mechanical
properties of ZIF-4 in the crystal and glass phases. I have compared di�erent molecular dynamics
schemes and computational methods on a series of glass models. This is important because such
mechanical properties are di�cult to access experimentally, especially for the glasses.

Demonstrating for the �rst time the applicability and accuracy of the �nite strain di�erence method with
ab initio molecular dynamics to MOF systems, I provided the �rst reliable value for the bulk modulus
of an amorphous ZIF in the literature. I found that ZIF-4 glasses have a larger bulk modulus than the
crystal, and con�rm previous results which found the density to be larger for the glass phase. Not only
does this study provide intrinsically valuable data, it yields reference values for the computation of
�nite temperature mechanical properties, making it possible to validate alternative methods with less
computationally expensive MD schemes.

I have investigated the use of ReaxFF, the only alternative MD scheme present in the literature that
could be used to both generate melt-quenched glass models and study their mechanical properties. I
have reported and analyzed a tendency of ReaxFF simulations to densify the systems, particularly if they
are performed in the constant-pressure (N , P , T ) ensemble, making it all but inapplicable to low-density
models. Additionally, I have shown that the bulk moduli reported were primarily a function of the
density and not of its phase or topology. All these observations suggest that mechanical properties
obtained from the use of the ReaxFF force �eld for ZIFs should be interpreted with caution, and makes a
strong case for the use of alternative methodologies, or for the further optimization of the ReaxFF force
�eld.

Looking for another tractable alternative, I examined the use of classical force �elds for the computation
of mechanical properties of models created through other methodologies, demonstrating that all �nite
di�erence methods were consistent, and that the values were in good agreement with AIMD. I have
thus shown that this method is ready to be deployed, and that the development of a speci�c MOF-FF
parametrization for amorphous ZIFs could prove useful.

Finally, I investigated the use of machine-learned potentials as a novel alternative. Using the �nite strain
di�erence method, I showed that the MLPs developed in chapter 4 led to a satisfactory reproduction
of the AIMD mechanical properties, provided that learning was not overly biased for stress. However,
methods relying on the (N , P , T ) ensemble are not yet ready for production. I nonetheless provided
strong evidence that MLPs constitute a promising option to be used on multiple aZIF models. Further
work is ongoing and the results will have to be con�rmed with the �nal MLPs when released.
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G E N E R A L C O N C L U S I O N S

The work presented in this thesis contributed to a broader research e�ort to characterize and discover
new materials for applications in various industrial-scale processes, with a focus on CO2 separation.
I investigated the relatively uncharted territory of amorphous MOFs, and compared and developed
computational methods to obtain atomistic models and study their properties. In addition to exploring the
material space of MOFs, progress in the study of non-crystalline states is bene�cial to the understanding
of a number of phenomena in the MOF �eld, as the role of disorder is increasing investigated and linked
to novel features at the macroscopic level.

I reviewed and compared the existing methodologies available in the literature for aMOFs, based on
both experimental data and numerical simulations, and chose during my PhD to focus on molecular
dynamics to simulate the phase transition from a crystalline MOF to an amorphous state by mimicking
in silico one of the most common experimental formation routes. Using ZIF-4 as a test case, I employed
several simulation methods with di�erent scopes, scales and computational costs – ab initio molecular
dynamics, classical and reactive force �elds, and machine-learned potentials – to generate atomistic
models of aMOFs and study their properties.

I have �rst extensively studied the use of the ReaxFF reactive force �eld to generate atomistic models of
ZIF glasses, which have been proposed as a tractable alternative to the successful but computationally
expensive ab initio simulations. I have demonstrated that the molecular simulations performed so far
in the literature with ReaxFF were extremely sensitive to the choice of simulation methodology and
parameters, and showed that the glass models it generated were markedly di�erent from their ab initio
counterparts. All these observations demonstrate that structural properties obtained from the use of the
ReaxFF force �eld for ZIFs should be interpreted with caution, and makes a strong case for the use of
alternative methodologies, or for the further optimization of this force �eld by drawing inspiration from
this work.

Having shown that no tractable MD scheme used to this date in the literature could yield an accurate
microscopic representation of the ZIF melt-quenched glasses, the development of new reactive inter-
atomic potentials appeared as an attractive alternative. Therefore I proposed in this thesis the �rst
machine-learned potentials to generate aMOF models. Using a limited training dataset consisting of ab
initio trajectories of ZIF-4, I obtained MLPs that led to an exceptional reproduction of the structural
properties of multiple phases and were used to generate new aZIF-4 models by melt-quenching. As a
step towards the development of a more universal MLP for ZIFs, I generated multiple ab initio high-
temperature trajectories of various ZIFs under di�erent deformations. This was performed as part of a
collaboration with Jack D. Evans (University of Adelaide) and is a direction that will continue in the
group in the future.

Finally, as a demonstration of the interest of this methodology of molecular simulations, I have computed
�nite temperature mechanical properties which, while essential for MOFs to fully achieve their potential
in industrial-scale processes, are di�cult to determine experimentally. Demonstrating for the �rst time
the applicability and accuracy of the �nite strain di�erence method with AIMD to MOF systems, I
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provided the �rst reliable value for the bulk modulus of an aZIF in the literature. This reference value was
then used to compare and validate alternative methods with less computationally expensive MD schemes.
I �rst investigated the use of ReaxFF, and showed that the bulk moduli reported are primarily a function
of the density of the models and not of their phase or topology, calling for alternative methodologies. I
then examined the use of classical force �elds adapted to aZIFs and machine-learned potentials (MLP)
developed in this work, which both provided values in good agreement with AIMD, and could therefore
be applied on other ZIF systems.

Overall, this thesis evidenced the too often lack of direct and in-depth comparison of the models in the
existing literature despite their signi�cant di�erences, and exempli�ed how such a comparison could be
performed.

The work performed during this PhD opens multiple perspectives for the development and use of aMOF
models, by building on the expertise built with multiple MD schemes on the prototypical ZIF-4 system.
First, the ongoing development of a more universal MLP for ZIFs should enable the generation of
multiple ZIF glasses, and their structural characterization. It could in turn lead to a systematic screening
of the �nite temperature mechanical properties of these glasses. If MLPs fail to materialize their promises
regarding the computation of mechanical properties, they could alternatively be obtained with the
parametrization of a classical force �eld for aZIFs.

More generally, and in order to improve the quality of amorphous models in the future, I see the need for
wider studies, integrating many di�erent experimental techniques (e.g. infrared and Raman, NMR, etc),
in order to provide in situ data. In addition to providing direct insight into the nature of the amorphous
phases of MOFs, such data could be used as a benchmark to test the di�erent types of microscopic
models generated. Databases of amorphous porous materials could then be expanded, along the lines
of what has been done for years for the crystalline phases, and help accelerate e�orts to model these
systems.

Finally, as it appears that no single modeling method can currently yield an accurate microscopic
representation of the MOF glasses, the development of multi-scale modeling strategies could prove
fruitful. It would enable to combine the strength of di�erent methods already available, such as those
devoted to the generation of amorphous structures (i.e. polymerization algorithms), and MD schemes to
analyze them such as classical force �elds or MLPs.

146







L I S T O F P U B L I C AT I O N S

Published
1. Nicolas Castel and François-Xavier Coudert. “Atomistic Models of Amorphous Metal–Organic

Frameworks”. In: The Journal of Physical Chemistry C 126.16 (Apr. 2022), pp. 6905–6914. doi:
10.1021/acs.jpcc.2c01091.

2. Nicolas Castel and François-Xavier Coudert. “Challenges in Molecular Dynamics of Amorphous
ZIFs Using Reactive Force Fields”. In: J. Phys. Chem. C 126 (45 2022), pp. 19532–19541. doi:
10.1021/acs.jpcc.2c06305.

In Press
3. Nicolas Castel and François-Xavier Coudert. “Computation of Finite Temperature Mechanical

Properties of Zeolitic Imidazolate Framework Glasses by Molecular Dynamics”. In: Chemistry of

Materials (2023). doi: 10.1021/acs.chemmater.3c00392.

149

https://doi.org/10.1021/acs.jpcc.2c01091
https://doi.org/10.1021/acs.jpcc.2c06305
https://doi.org/10.1021/acs.chemmater.3c00392




B I B L I O G R A P H Y

[1] IPCC. “Summary for Policymakers”. In: Climate Change 2021: The Physical Science Basis. Con-

tribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on

Climate Change. Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger,
N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews,
T. K. Maycock, T. Water�eld, O. Yelekçi, R. Yu, and B. Zhou. Cambridge, United Kingdom and
New York, NY, USA: Cambridge University Press, 2021.

[2] Q. Perrier, C. Guivarch, and O. Boucher. “Zéro émissions nettes: Signi�cation et implications”.
In: Note scienti�que 34 (2018).

[3] K. Riahi, R. Schae�er, J. Arango, K. Calvin, C. Guivarch, T. Hasegawa, K. Jiang, E. Kriegler,
R. Matthews, G. Peters, A. Rao, S. Robertson, A. Sebbit, J. Steinberger, M. Tavoni, and D. Van
Vuuren. “Mitigation pathways compatible with long-term goals.” In: IPCC, 2022: Climate Change

2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment

Report of the Intergovernmental Panel on Climate Change. Ed. by P. Shukla, J. Skea, R. Slade, A. A.
Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi,
A. Hasija, G. Lisboa, S. Luz, and J. Malley. Cambridge, UK and New York, NY, USA: Cambridge
University Press, 2022. Chap. 3. doi: 10.1017/9781009157926.005.

[4] IPCC. “Summary for Policymakers”. In: Climate Change 2022: Mitigation of Climate Change.

Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel

on Climate Change. Ed. by P. Shukla, J. Skea, R. Slade, A. A. Khourdajie, R. van Diemen, D.
McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz,
and J. Malley. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2022. doi:
10.1017/9781009157926.001.

[5] J. C. Minx, W. F. Lamb, M. W. Callaghan, S. Fuss, J. Hilaire, F. Creutzig, T. Amann, T. Beringer,
W. de Oliveira Garcia, J. Hartmann, T. Khanna, D. Lenzi, G. Luderer, G. F. Nemet, J. Rogelj, P.
Smith, J. L. Vicente Vicente, J. Wilcox, and M. del Mar Zamora Dominguez. “Negative emissions—
Part 1: Research landscape and synthesis”. In: Environ. Res. Lett. 13 (6 2018), p. 063001. doi:
10.1088/1748-9326/aabf9b.

[6] M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A.
Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland,
M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott,
N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox, and N. Mac Dowell. “Carbon capture
and storage (CCS): the way forward”. In: Energy Environ. Sci. 11 (5 2018), pp. 1062–1176. doi:
10.1039/C7EE02342A.

[7] R. B. Jackson, E. I. Solomon, J. G. Canadell, M. Cargnello, and C. B. Field. “Methane removal and
atmospheric restoration”. In: Nat Sustain 2 (6 2019), pp. 436–438. doi: 10.1038/s41893-019-0299-
x.

[8] T. Ming, R. de_Richter, S. Shen, and S. Caillol. “Fighting global warming by greenhouse gas
removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough

151

https://doi.org/10.1017/9781009157926.005
https://doi.org/10.1017/9781009157926.001
https://doi.org/10.1088/1748-9326/aabf9b
https://doi.org/10.1039/C7EE02342A
https://doi.org/10.1038/s41893-019-0299-x
https://doi.org/10.1038/s41893-019-0299-x


BIBLIOGRAPHY

technologies”. In: Environ Sci Pollut Res 23 (7 2016), pp. 6119–6138. doi: 10.1007/s11356-016-
6103-9.

[9] Ministère de la Transition écologique et solidaire. Stratégie Nationale Bas-Carbone. 2020.
[10] European Commission. A Clean Planet for all. A European strategic long-term vision for a prosper-

ous, modern, competitive and climate neutral economy. 2018.
[11] International Energy Agency. Energy Technology Perspectives 2020 - Special Report on Carbon

Capture Utilisation and Storage. 2020. 174 pp. doi: 10.1787/208b66f4-en.
[12] J. Wilcox. Carbon capture. Springer New York, NY, 2012.
[13] S. Budinis, S. Krevor, N. M. Dowell, N. Brandon, and A. Hawkes. “An assessment of CCS costs,

barriers and potential”. In: Energy Strategy Reviews 22 (2018), pp. 61–81. doi: 10.1016/j.esr.
2018.08.003.

[14] S. Chiquier, P. Patrizio, M. Bui, N. Sunny, and N. Mac Dowell. “The E�ciency, Timing and
Permanence of CDR Pathways: A Comparative Analysis”. In: Proceedings of the 16th Greenhouse

Gas Control Technologies Conference. 2022. doi: 10.2139/ssrn.4298436.
[15] M. Erans, E. S. Sanz-Pérez, D. P. Hanak, Z. Clulow, D. M. Reiner, and G. A. Mutch. “Direct air

capture: process technology, techno-economic and socio-political challenges”. In: Energy Environ.
Sci. 15 (4 2022), pp. 1360–1405. doi: 10.1039/D1EE03523A.

[16] R. L. Siegelman, E. J. Kim, and J. R. Long. “Porous materials for carbon dioxide separations”. In:
Nat. Mater. 20 (8 2021), pp. 1060–1072. doi: 10.1038/s41563-021-01054-8.

[17] B. Smit, J. A. Reimer, C. M. Oldenburg, and I. C. Bourg. Introduction to Carbon Capture and

Sequestration. Imperial College Press, 2014. doi: 10.1142/p911.
[18] C. Azar, K. Lindgren, M. Obersteiner, K. Riahi, D. P. van Vuuren, K. M. G. J. den Elzen, K.

Möllersten, and E. D. Larson. “The feasibility of low CO2 concentration targets and the role
of bio-energy with carbon capture and storage (BECCS)”. In: Climatic Change 100 (1 2010),
pp. 195–202. doi: 10.1007/s10584-010-9832-7.

[19] International Energy Agency. World Energy Outlook 2022. 2022. 524 pp. doi: 10.1787/3a469970-en.
[20] C. Chung, J. Kim, B. K. Sovacool, S. Gri�ths, M. Bazilian, and M. Yang. “Decarbonizing the

chemical industry: A systematic review of sociotechnical systems, technological innovations,
and policy options”. In: Energy Research &amp; Social Science 96 (2023), p. 102955. doi: 10.1016/
j.erss.2023.102955.

[21] International Energy Agency. Transforming Industry through CCUS. 2019. 62 pp. doi: 10.1787/
09689323-en.

[22] ADEME. Le Captage et Stockage géologique du CO2 (CSC) en France. 2020.
[23] International Energy Agency. Global Hydrogen Review 2022. 2022. 284 pp. doi: 10.1787/a15b8442-

en.
[24] International Energy Agency. Putting CO2 to Use. 2019. 86 pp. doi: 10.1787/dfeabbf4-en.
[25] B. Metz, O. Davidson, H. d. Coninck, M. Loos, and L. Meyer. “IPCC special report on carbon

dioxide capture and storage”. In: (July 2005).
[26] O. Bouc, H. Fabriol, E. Brosse, F. Kalaydjian, R. Farret, P. Gombert, P. Berest, V. Lagneau, J.-M.

Pereira, and T. Fen-Chong. Lignes de conduite pour la sécurité d’un site de stockage géologique de

CO2. Tech. rep. 2011.
[27] Global CCS Institute. Global Status of CCS 2022. 2022. 69 pp.
[28] S. Smith, O. Geden, G. Nemet, M. Gidden, W. Lamb, C. Powis, R. Bellamy, M. Callaghan, A. Cowie,

E. Cox, et al. The State of Carbon Dioxide Removal. 2023.
[29] I. Czernichowski-Lauriol, V. Czop, F. Delprat-Jannaud, A. El Khamlichi, L. Jammes, S. Lafortune,

D. Nevicato, and D. Savary. “The Gradual Integration of CCUS into National and Regional
Strategies for Climate Change Mitigation, Energy Transition, Ecological Transition, Research
and Innovation: An Overview for France”. In: Proceedings of the 15th Greenhouse Gas Control

Technologies Conference. 2021, pp. 15–18.

152

https://doi.org/10.1007/s11356-016-6103-9
https://doi.org/10.1007/s11356-016-6103-9
https://doi.org/10.1787/208b66f4-en
https://doi.org/10.1016/j.esr.2018.08.003
https://doi.org/10.1016/j.esr.2018.08.003
https://doi.org/10.2139/ssrn.4298436
https://doi.org/10.1039/D1EE03523A
https://doi.org/10.1038/s41563-021-01054-8
https://doi.org/10.1142/p911
https://doi.org/10.1007/s10584-010-9832-7
https://doi.org/10.1787/3a469970-en
https://doi.org/10.1016/j.erss.2023.102955
https://doi.org/10.1016/j.erss.2023.102955
https://doi.org/10.1787/09689323-en
https://doi.org/10.1787/09689323-en
https://doi.org/10.1787/a15b8442-en
https://doi.org/10.1787/a15b8442-en
https://doi.org/10.1787/dfeabbf4-en


BIBLIOGRAPHY

[30] International Energy Agency. Exploring clean energy pathways. 2019. 105 pp. doi: 10.1787/
c76b829e-en.

[31] E. Dütschke, S. Alsheimer, R. Bohn Bertoldo, A. Delicado, V. Duscha, S. Germán, L. Gonçalves,
L. Kappler, S. López-Asensio, C. Mays, C. Oltra, M. Poumadere, A. Prades, S. Preuß, J. Rowland,
L. Schmidt, and F. M. L. Veloso. “Engaging the Public with CCUS: Re�ection on a European
Project Approach”. In: Proceedings of the 16th Greenhouse Gas Control Technologies Conference.
2022. doi: 10.2139/ssrn.4284094.

[32] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, and
J. R. Long. “Carbon Dioxide Capture in Metal–Organic Frameworks”. In: Chem. Rev. 112 (2 2012),
pp. 724–781. doi: 10.1021/cr2003272.

[33] S. Vasudevan, S. Farooq, I. A. Karimi, M. Saeys, M. C. Quah, and R. Agrawal. “Energy penalty
estimates for CO2 capture: Comparison between fuel types and capture-combustion modes”. In:
Energy 103 (2016), pp. 709–714. doi: 10.1016/j.energy.2016.02.154.

[34] S. Kitagawa. “Future Porous Materials”. In: Acc. Chem. Res. 50 (3 2017), pp. 514–516. doi: 10.1021/
acs.accounts.6b00500.

[35] J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay,
K. S. W. Sing, and K. K. Unger. “Recommendations for the characterization of porous solids
(Technical Report)”. In: 66 (8 1994), pp. 1739–1758. doi: 10.1351/pac199466081739.

[36] Z. Hu, Y. Wang, B. B. Shah, and D. Zhao. “CO2 Capture in Metal-Organic Framework Adsorbents:
An Engineering Perspective”. In: Adv. Sustainable Syst. 3 (1 2019), p. 1800080. doi: 10.1002/adsu.
201800080.

[37] S. A. Rackley. Carbon capture and storage. Butterworth-Heinemann, 2017. doi: 10.1016/C2015-0-
01587-8.

[38] J. Zhang, P. A. Webley, and P. Xiao. “E�ect of process parameters on power requirements of
vacuum swing adsorption technology for CO2 capture from �ue gas”. In: Energy Conversion and

Management 49 (2 2008), pp. 346–356. doi: 10.1016/j.enconman.2007.06.007.
[39] National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies

and Reliable Sequestration: A Research Agenda. Washington, DC: The National Academies Press,
2019. isbn: 978-0-309-48452-7. doi: 10.17226/25259.

[40] L. Espinal, D. L. Poster, W. Wong-Ng, A. J. Allen, and M. L. Green. “Measurement, Standards,
and Data Needs for CO2Capture Materials: A Critical Review”. In: Environ. Sci. Technol. 47 (21
2013), pp. 11960–11975. doi: 10.1021/es402622q.

[41] Q. Qian, P. A. Asinger, M. J. Lee, G. Han, K. Mizrahi Rodriguez, S. Lin, F. M. Benedetti, A. X. Wu,
W. S. Chi, and Z. P. Smith. “MOF-Based Membranes for Gas Separations”. In: Chem. Rev. 120 (16
2020), pp. 8161–8266. doi: 10.1021/acs.chemrev.0c00119.

[42] W. Guan, Y. Dai, C. Dong, X. Yang, and Y. Xi. “Zeolite imidazolate framework (ZIF)-based mixed
matrix membranes for CO2 separation: A review”. In: J Appl Polym Sci 137 (33 2020), p. 48968.
doi: 10.1002/app.48968.

[43] U. W. Siagian, A. Raksajati, N. F. Himma, K. Khoiruddin, and I. Wenten. “Membrane-based carbon
capture technologies: Membrane gas separation vs. membrane contactor”. In: Journal of Natural
Gas Science and Engineering 67 (2019), pp. 172–195. doi: 10.1016/j.jngse.2019.04.008.

[44] B. F. Hoskins and R. Robson. “In�nite polymeric frameworks consisting of three dimensionally
linked rod-like segments”. In: J. Am. Chem. Soc. 111 (15 1989), pp. 5962–5964. doi: 10.1021/
ja00197a079.

[45] H. Li, M. Eddaoudi, M. O’Kee�e, and O. M. Yaghi. “Design and synthesis of an exceptionally
stable and highly porous metal-organic framework”. In: Nature 402 (6759 1999), pp. 276–279. doi:
10.1038/46248.

153

https://doi.org/10.1787/c76b829e-en
https://doi.org/10.1787/c76b829e-en
https://doi.org/10.2139/ssrn.4284094
https://doi.org/10.1021/cr2003272
https://doi.org/10.1016/j.energy.2016.02.154
https://doi.org/10.1021/acs.accounts.6b00500
https://doi.org/10.1021/acs.accounts.6b00500
https://doi.org/10.1351/pac199466081739
https://doi.org/10.1002/adsu.201800080
https://doi.org/10.1002/adsu.201800080
https://doi.org/10.1016/C2015-0-01587-8
https://doi.org/10.1016/C2015-0-01587-8
https://doi.org/10.1016/j.enconman.2007.06.007
https://doi.org/10.17226/25259
https://doi.org/10.1021/es402622q
https://doi.org/10.1021/acs.chemrev.0c00119
https://doi.org/10.1002/app.48968
https://doi.org/10.1016/j.jngse.2019.04.008
https://doi.org/10.1021/ja00197a079
https://doi.org/10.1021/ja00197a079
https://doi.org/10.1038/46248


BIBLIOGRAPHY

[46] C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. “The Cambridge Structural Database”.
In: Acta Crystallogr B Struct Sci Cryst Eng Mater 72 (2 2016), pp. 171–179. doi: 10 . 1107 /
S2052520616003954.

[47] H. Furukawa, K. E. Cordova, M. O’Kee�e, and O. M. Yaghi. “The Chemistry and Applications of
Metal-Organic Frameworks”. In: Science 341.6149 (Aug. 2013). doi: 10.1126/science.1230444.

[48] O. M. Yaghi, M. J. Kalmutzki, and C. S. Diercks. “Linkages in Covalent Organic Frameworks”. In:
Introduction to Reticular Chemistry. John Wiley & Sons, Ltd, 2019. Chap. 8, pp. 197–223. isbn:
9783527821099. doi: 10.1002/9783527821099.ch8.

[49] T. Tian, Z. Zeng, D. Vulpe, M. E. Casco, G. Divitini, P. A. Midgley, J. Silvestre-Albero, J.-C. Tan,
P. Z. Moghadam, and D. Fairen-Jimenez. “A sol–gel monolithic metal–organic framework with
enhanced methane uptake”. In: Nat. Mater. 17 (2 2018), pp. 174–179. doi: 10.1038/nmat5050.

[50] M. Witman, S. Ling, A. Gladysiak, K. C. Stylianou, B. Smit, B. Slater, and M. Haranczyk. “Rational
Design of a Low-Cost, High-Performance Metal–Organic Framework for Hydrogen Storage
and Carbon Capture”. In: J. Phys. Chem. C 121 (2 2017), pp. 1171–1181. doi: 10.1021/acs.jpcc.
6b10363.

[51] J. Liu. “Potential Industrial Applications of Metal–Organic Frameworks for Gas Separations”. In:
Gas Adsorption in Metal-Organic Frameworks. CRC Press, 2018, pp. 481–510.

[52] E. Ren and F.-X. Coudert. “Thermodynamic exploration of xenon/krypton separation based
on a high-throughput screening”. In: Faraday Discuss. 231 (2021), pp. 201–223. doi: 10.1039/
D1FD00024A.

[53] L. Yang and M. A. Carreon. “Green deoxygenation of fatty acids to transport fuels over metal-
organic frameworks as catalysts and catalytic supports”. In: Metal-Organic Frameworks (MOFs)

for Environmental Applications. Ed. by S. K. Ghosh. Elsevier, 2019, pp. 285–318. isbn: 978-0-12-
814633-0. doi: 10.1016/B978-0-12-814633-0.00004-1.

[54] D. P. Broom and J. W. Burress. “Gas Storage in Metal–Organic Frameworks”. In: Gas Adsorption
in Metal-Organic Frameworks. CRC Press, 2018, pp. 393–450.

[55] R. Shah, S. Ali, F. Raziq, S. Ali, P. M. Ismail, S. Shah, R. Iqbal, X. Wu, W. He, X. Zu, A. Zada, Adnan,
F. Mabood, A. Vinu, S. H. Jhung, J. Yi, and L. Qiao. “Exploration of metal organic frameworks
and covalent organic frameworks for energy-related applications”. In: Coordination Chemistry

Reviews 477 (2023), p. 214968. doi: 10.1016/j.ccr.2022.214968.
[56] K. Dedecker, E. Dumas, B. Lavédrine, N. Steunou, and C. Serre. “Metal-organic frameworks for

the capture of volatile organic compounds and toxic chemicals”. In: Metal-Organic Frameworks

(MOFs) for Environmental Applications. Ed. by S. K. Ghosh. Elsevier, 2019, pp. 141–178. isbn:
978-0-12-814633-0. doi: 10.1016/B978-0-12-814633-0.00007-7.

[57] P. Zhang, Q. Wang, Y. Fang, W. Chen, A. A. Kirchon, M. Baci, M. Feng, V. K. Sharma, and
H.-C. Zhou. “Metal-organic frameworks for capture and degradation of organic pollutants”. In:
Metal-Organic Frameworks (MOFs) for Environmental Applications. Ed. by S. K. Ghosh. Elsevier,
2019, pp. 203–229. isbn: 978-0-12-814633-0. doi: 10.1016/B978-0-12-814633-0.00009-0.

[58] C. Xiao and S. Wang. “Radionuclide sequestration by metal-organic frameworks”. In: Metal-

Organic Frameworks (MOFs) for Environmental Applications. Ed. by S. K. Ghosh. Elsevier, 2019,
pp. 355–382. isbn: 978-0-12-814633-0. doi: 10.1016/B978-0-12-814633-0.00011-9.

[59] Q. He, F. Zhan, H. Wang, W. Xu, H. Wang, and L. Chen. “Recent progress of industrial preparation
of metal–organic frameworks: synthesis strategies and outlook”. In:Materials Today Sustainability

17 (2022), p. 100104. doi: 10.1016/j.mtsust.2021.100104.
[60] O. M. Yaghi, M. J. Kalmutzki, and C. S. Diercks. “CO2 Capture and Sequestration”. In: Introduction

to Reticular Chemistry. John Wiley & Sons, Ltd, 2019. Chap. 14, pp. 313–338. isbn: 9783527821099.
doi: 10.1002/9783527821099.ch14.

[61] S. Mukherjee, A. Kumar, and M. J. Zaworotko. “Metal-organic framework based carbon capture
and puri�cation technologies for clean environment”. In: Metal-Organic Frameworks (MOFs) for

154

https://doi.org/10.1107/S2052520616003954
https://doi.org/10.1107/S2052520616003954
https://doi.org/10.1126/science.1230444
https://doi.org/10.1002/9783527821099.ch8
https://doi.org/10.1038/nmat5050
https://doi.org/10.1021/acs.jpcc.6b10363
https://doi.org/10.1021/acs.jpcc.6b10363
https://doi.org/10.1039/D1FD00024A
https://doi.org/10.1039/D1FD00024A
https://doi.org/10.1016/B978-0-12-814633-0.00004-1
https://doi.org/10.1016/j.ccr.2022.214968
https://doi.org/10.1016/B978-0-12-814633-0.00007-7
https://doi.org/10.1016/B978-0-12-814633-0.00009-0
https://doi.org/10.1016/B978-0-12-814633-0.00011-9
https://doi.org/10.1016/j.mtsust.2021.100104
https://doi.org/10.1002/9783527821099.ch14


BIBLIOGRAPHY

Environmental Applications. Ed. by S. K. Ghosh. Elsevier, 2019, pp. 5–61. isbn: 978-0-12-814633-0.
doi: 10.1016/B978-0-12-814633-0.00003-X.

[62] United States Department of Energy. Accelerating Breakthrough Innovation in Carbon Capture,

Utilization, and Storage. 2017. 291 pp.
[63] J.-B. Lin, T. T. T. Nguyen, R. Vaidhyanathan, J. Burner, J. M. Taylor, H. Durekova, F. Akhtar,

R. K. Mah, O. Gha�ari-Nik, S. Marx, N. Fylstra, S. S. Iremonger, K. W. Dawson, P. Sarkar, P.
Hovington, A. Rajendran, T. K. Woo, and G. K. H. Shimizu. “A scalable metal-organic framework
as a durable physisorbent for carbon dioxide capture”. In: Science 374 (6574 2021), pp. 1464–1469.
doi: 10.1126/science.abi7281.

[64] P. Hovington, O. Gha�ari-Nik, L. Mariac, A. Liu, B. Henkel, and S. Marx. “Rapid Cycle Tempera-
ture Swing Adsorption Process Using Solid Structured Sorbent for CO2 capture from Cement
Flue Gas”. In: Proceedings of the 16th Greenhouse Gas Control Technologies Conference. 2022. doi:
10.2139/ssrn.3814414.

[65] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Kee�e, and
O. M. Yaghi. “Exceptional chemical and thermal stability of zeolitic imidazolate frameworks”.
In: Proceedings of the National Academy of Sciences 103.27 (July 2006), pp. 10186–10191. doi:
10.1073/pnas.0602439103.

[66] O. M. Yaghi, M. J. Kalmutzki, and C. S. Diercks. “Zeolitic Imidazolate Frameworks”. In: Introduction
to Reticular Chemistry. John Wiley & Sons, Ltd, 2019. Chap. 20, pp. 463–479. isbn: 9783527821099.
doi: 10.1002/9783527821099.ch20.

[67] G. Fraux. “Molecular simulation of �uid adsorption in �exible nanoporous materials at multiple
scales”. Theses. PSL Research University ; Chimie ParisTech, June 2019.

[68] M. O’Kee�e, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi. “The Reticular Chemistry Structure
Resource (RCSR) Database of, and Symbols for, Crystal Nets”. In: Acc. Chem. Res. 41 (12 2008),
pp. 1782–1789. doi: 10.1021/ar800124u.

[69] C. Baerlocher, L. B. McCusker, and D. H. Olson. Atlas of Zeolite Framework Types (Sixth Edition).
Amsterdam: Elsevier Science B.V., 2007. isbn: 978-0-444-53064-6. doi: 10.1016/b978-0-444-
53064-6.x5186-x.

[70] R. N. Widmer, G. I. Lampronti, S. Chibani, C. W. Wilson, S. Anzellini, S. Farsang, A. K. Kleppe,
N. P. M. Casati, S. G. MacLeod, S. A. T. Redfern, F.-X. Coudert, and T. D. Bennett. “Rich Poly-
morphism of a Metal–Organic Framework in Pressure–Temperature Space”. In: Journal of the
American Chemical Society 141.23 (May 2019), pp. 9330–9337. doi: 10.1021/jacs.9b03234.

[71] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Kee�e, and O. M. Yaghi. “High-
Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture”. In:
Science 319 (5865 2008), pp. 939–943. doi: 10.1126/science.1152516.

[72] Y. Liu, J. H. Pan, N. Wang, F. Steinbach, X. Liu, and J. Caro. “Remarkably Enhanced Gas Separation
by Partial Self-Conversion of a Laminated Membrane to Metal-Organic Frameworks”. In: Angew.
Chem. Int. Ed. 54 (10 2015), pp. 3028–3032. doi: 10.1002/anie.201411550.

[73] T. D. Bennett, F.-X. Coudert, S. L. James, and A. I. Cooper. “The changing state of porous
materials”. In: Nature Mater. 20 (9 2021), pp. 1179–1187. doi: 10.1038/s41563-021-00957-w.

[74] J. J. Oppenheim, G. Skorupskii, and M. Dincă. “Aperiodic metal–organic frameworks”. In: Chem.

Sci. 11 (41 2020), pp. 11094–11103. doi: 10.1039/D0SC04798H.
[75] S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M.

O’Kee�e, M. Paik Suh, and J. Reedijk. “Terminology of metal–organic frameworks and coordina-
tion polymers (IUPAC Recommendations 2013)”. In: Pure Appl. Chem. 85 (8 2013), pp. 1715–1724.
doi: 10.1351/PAC-REC-12-11-20.

[76] R. Thyagarajan and D. S. Sholl. “A Database of Porous Rigid Amorphous Materials”. In: Chemistry

of Materials 32.18 (Aug. 2020), pp. 8020–8033. doi: 10.1021/acs.chemmater.0c03057.

155

https://doi.org/10.1016/B978-0-12-814633-0.00003-X
https://doi.org/10.1126/science.abi7281
https://doi.org/10.2139/ssrn.3814414
https://doi.org/10.1073/pnas.0602439103
https://doi.org/10.1002/9783527821099.ch20
https://doi.org/10.1021/ar800124u
https://doi.org/10.1016/b978-0-444-53064-6.x5186-x
https://doi.org/10.1016/b978-0-444-53064-6.x5186-x
https://doi.org/10.1021/jacs.9b03234
https://doi.org/10.1126/science.1152516
https://doi.org/10.1002/anie.201411550
https://doi.org/10.1038/s41563-021-00957-w
https://doi.org/10.1039/D0SC04798H
https://doi.org/10.1351/PAC-REC-12-11-20
https://doi.org/10.1021/acs.chemmater.0c03057


BIBLIOGRAPHY

[77] International Union of Crystallography. “Report of the Executive Committee for 1991”. In: Acta
Crystallogr A Found Crystallogr 48 (6 1992), pp. 922–946. doi: 10.1107/S0108767392008328.

[78] E. G. Meekel, E. M. Schmidt, L. J. Cameron, A. D. Dharma, H. J. Windsor, S. G. Duyker, A. Minelli,
T. Pope, G. O. Lepore, B. Slater, C. J. Kepert, and A. L. Goodwin. “Truchet-tile structure of a
topologically aperiodic metal–organic framework”. In: Science 379 (6630 2023), pp. 357–361. doi:
10.1126/science.ade5239.

[79] T. D. Bennett and S. Horike. “Liquid, glass and amorphous solid states of coordination polymers
and metal–organic frameworks”. In: Nature Rev. Mater. 3 (11 2018), pp. 431–440. doi: 10.1038/
s41578-018-0054-3.

[80] S. R. Elliott. Physics of amorphous materials. London and New York: Longman, 1984. isbn: 0-582-
44636-8.

[81] J. Fonseca, T. Gong, L. Jiao, and H.-L. Jiang. “Metal–organic frameworks (MOFs) beyond crys-
tallinity: amorphous MOFs, MOF liquids and MOF glasses”. In: J. Mater. Chem. A 9 (17 2021),
pp. 10562–10611. doi: 10.1039/D1TA01043C.

[82] A. F. Sapnik, I. Bechis, S. M. Collins, D. N. Johnstone, G. Divitini, A. J. Smith, P. A. Chater,
M. A. Addicoat, T. Johnson, D. A. Keen, K. E. Jelfs, and T. D. Bennett. “Mixed hierarchical local
structure in a disordered metal–organic framework”. In: Nature Commun. 12 (1 2021), p. 1213.
doi: 10.1038/s41467-021-22218-9.

[83] K. W. Chapman, G. J. Halder, and P. J. Chupas. “Pressure-Induced Amorphization and Porosity
Modi�cation in a Metal-Organic Framework”. In: Journal of the American Chemical Society 131.48
(Nov. 2009), pp. 17546–17547. doi: 10.1021/ja908415z.

[84] T. D. Bennett, A. L. Goodwin, M. T. Dove, D. A. Keen, M. G. Tucker, E. R. Barney, A. K. Soper, E. G.
Bithell, J.-C. Tan, and A. K. Cheetham. “Structure and Properties of an Amorphous Metal-Organic
Framework”. In: Phys. Rev. Lett. 104 (11 2010), p. 2272. doi: 10.1103/PhysRevLett.104.115503.

[85] T. D. Bennett, P. Simoncic, S. A. Moggach, F. Gozzo, P. Macchi, D. A. Keen, J.-C. Tan, and A. K.
Cheetham. “Reversible pressure-induced amorphization of a zeolitic imidazolate framework
(ZIF-4)”. In: Chem. Commun. 47 (28 2011), p. 7983. doi: 10.1039/c1cc11985k.

[86] T. D. Bennett, Y. Yue, P. Li, A. Qiao, H. Tao, N. G. Greaves, T. Richards, G. I. Lampronti, S. A. T.
Redfern, F. Blanc, O. K. Farha, J. T. Hupp, A. K. Cheetham, and D. A. Keen. “Melt-Quenched
Glasses of Metal–Organic Frameworks”. In: Journal of the American Chemical Society 138.10
(Mar. 2016), pp. 3484–3492. doi: 10.1021/jacs.5b13220.

[87] D. A. Keen and T. D. Bennett. “Structural investigations of amorphous metal–organic frameworks
formed via di�erent routes”. In: Phys. Chem. Chem. Phys. 20 (11 2018), pp. 7857–7861. doi:
10.1039/C7CP08508G.

[88] C. Orellana-Tavra, E. F. Baxter, T. Tian, T. D. Bennett, N. K. H. Slater, A. K. Cheetham, and D.
Fairen-Jimenez. “Amorphous metal–organic frameworks for drug delivery”. In: Chem. Commun.

51 (73 2015), pp. 13878–13881. doi: 10.1039/C5CC05237H.
[89] T. D. Bennett, T. K. Todorova, E. F. Baxter, D. G. Reid, C. Gervais, B. Bueken, B. Van de Voorde,

D. De Vos, D. A. Keen, and C. Mellot-Draznieks. “Connecting defects and amorphization in
UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational
study”. In: Phys. Chem. Chem. Phys. 18 (3 2016), pp. 2192–2201. doi: 10.1039/C5CP06798G.

[90] T. D. Bennett, P. J. Saines, D. A. Keen, J.-C. Tan, and A. K. Cheetham. “Ball-Milling-Induced
Amorphization of Zeolitic Imidazolate Frameworks (ZIFs) for the Irreversible Trapping of Iodine”.
In: Chem. Eur. J. 19 (22 2013), pp. 7049–7055. doi: 10.1002/chem.201300216.

[91] T. D. Bennett, D. A. Keen, J.-C. Tan, E. R. Barney, A. L. Goodwin, and A. K. Cheetham. “Thermal
Amorphization of Zeolitic Imidazolate Frameworks”. In: Angew. Chem. Int. Ed. 50 (13 2011),
pp. 3067–3071. doi: 10.1002/anie.201007303.

156

https://doi.org/10.1107/S0108767392008328
https://doi.org/10.1126/science.ade5239
https://doi.org/10.1038/s41578-018-0054-3
https://doi.org/10.1038/s41578-018-0054-3
https://doi.org/10.1039/D1TA01043C
https://doi.org/10.1038/s41467-021-22218-9
https://doi.org/10.1021/ja908415z
https://doi.org/10.1103/PhysRevLett.104.115503
https://doi.org/10.1039/c1cc11985k
https://doi.org/10.1021/jacs.5b13220
https://doi.org/10.1039/C7CP08508G
https://doi.org/10.1039/C5CC05237H
https://doi.org/10.1039/C5CP06798G
https://doi.org/10.1002/chem.201300216
https://doi.org/10.1002/anie.201007303


BIBLIOGRAPHY

[92] R. Gaillac, P. Pullumbi, K. A. Beyer, K. W. Chapman, D. A. Keen, T. D. Bennett, and F.-X. Coudert.
“Liquid metal–organic frameworks”. In: Nature Mater. 16 (11 2017), pp. 1149–1154. doi: 10.1038/
nmat4998.

[93] R. N. Widmer, G. I. Lampronti, S. Anzellini, R. Gaillac, S. Farsang, C. Zhou, A. M. Belenguer, C. W.
Wilson, H. Palmer, A. K. Kleppe, M. T. Wharmby, X. Yu, S. M. Cohen, S. G. Telfer, S. A. T. Redfern,
F.-X. Coudert, S. G. MacLeod, and T. D. Bennett. “Pressure promoted low-temperature melting
of metal–organic frameworks”. In: Nature Mater. 18 (4 2019), pp. 370–376. doi: 10.1038/s41563-
019-0317-4.

[94] S.-X. Peng, Z. Yin, T. Zhang, Q. Yang, H.-B. Yu, and M.-H. Zeng. “Vibration assisted glass-
formation in zeolitic imidazolate framework”. In: J. Chem. Phys. 157 (10 2022), p. 104501. doi:
10.1063/5.0109885.

[95] Z. Lin, J. J. Richardson, J. Zhou, and F. Caruso. “Direct synthesis of amorphous coordination
polymers and metal–organic frameworks”. In: Nat Rev Chem 7 (4 2023), pp. 273–286. doi: 10.
1038/s41570-023-00474-1.

[96] S. Conrad, P. Kumar, F. Xue, L. Ren, S. Henning, C. Xiao, K. A. Mkhoyan, and M. Tsapatsis.
“Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using
Electron-Beam-Induced Amorphization”. In: Angew. Chem. Int. Ed. 57 (41 2018), pp. 13592–13597.
doi: 10.1002/anie.201809921.

[97] C. Volkringer, C. Falaise, P. Devaux, R. Giovine, V. Stevenson, F. Pourpoint, O. Lafon, M. Os-
mond, C. Jeanjacques, B. Marcillaud, J. C. Sabroux, and T. Loiseau. “Stability of metal–organic
frameworks under gamma irradiation”. In: Chem. Commun. 52 (84 2016), pp. 12502–12505. doi:
10.1039/C6CC06878B.

[98] T. D. Bennett, J.-C. Tan, Y. Yue, E. Baxter, C. Ducati, N. J. Terrill, H. H. .-M. Yeung, Z. Zhou, W.
Chen, S. Henke, A. K. Cheetham, and G. N. Greaves. “Hybrid glasses from strong and fragile metal-
organic framework liquids”. In: Nature Commun. 6 (1 2015), p. 974. doi: 10.1038/ncomms9079.

[99] L. Longley, S. M. Collins, C. Zhou, G. J. Smales, S. E. Norman, N. J. Brownbill, C. W. Ashling,
P. A. Chater, R. Tovey, C.-B. Schönlieb, T. F. Headen, N. J. Terrill, Y. Yue, A. J. Smith, F. Blanc, D. A.
Keen, P. A. Midgley, and T. D. Bennett. “Liquid phase blending of metal-organic frameworks”.
In: Nat Commun 9 (1 2018), p. 882. doi: 10.1038/s41467-018-04553-6.

[100] L. Longley, S. M. Collins, S. Li, G. J. Smales, I. Erucar, A. Qiao, J. Hou, C. M. Doherty, A. W.
Thornton, A. J. Hill, X. Yu, N. J. Terrill, A. J. Smith, S. M. Cohen, P. A. Midgley, D. A. Keen,
S. G. Telfer, and T. D. Bennett. “Flux melting of metal–organic frameworks”. In: Chem. Sci. 10 (12
2019), pp. 3592–3601. doi: 10.1039/C8SC04044C.

[101] J. Hou, C. W. Ashling, S. M. Collins, A. Krajnc, C. Zhou, L. Longley, D. N. Johnstone, P. A. Chater,
S. Li, M.-V. Coulet, P. L. Llewellyn, F.-X. Coudert, D. A. Keen, P. A. Midgley, G. Mali, V. Chen,
and T. D. Bennett. “Metal-organic framework crystal-glass composites”. In: Nat Commun 10 (1
2019), p. 15016. doi: 10.1038/s41467-019-10470-z.

[102] L. Longley, C. Calahoo, R. Limbach, Y. Xia, J. M. Tu�nell, A. F. Sapnik, M. F. Thorne, D. S. Keeble,
D. A. Keen, L. Wondraczek, and T. D. Bennett. “Metal-organic framework and inorganic glass
composites”. In: Nat Commun 11 (1 2020), p. 974. doi: 10.1038/s41467-020-19598-9.

[103] Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldho�, X. Cao, Y. Li, F. Pan, and Z. Jiang. “A MOF
Glass Membrane for Gas Separation”. In: Angew. Chem. Int. Ed. 59 (11 2020), pp. 4365–4369. doi:
10.1002/anie.201915807.

[104] J. Hou, A. F. Sapnik, and T. D. Bennett. “Metal–organic framework gels and monoliths”. In: Chem.

Sci. 11 (2 2020), pp. 310–323. doi: 10.1039/C9SC04961D.
[105] T. D. Bennett and A. K. Cheetham. “Amorphous Metal–Organic Frameworks”. In: Acc. Chem.

Res. 47 (5 2014), pp. 1555–1562. doi: 10.1021/ar5000314.

157

https://doi.org/10.1038/nmat4998
https://doi.org/10.1038/nmat4998
https://doi.org/10.1038/s41563-019-0317-4
https://doi.org/10.1038/s41563-019-0317-4
https://doi.org/10.1063/5.0109885
https://doi.org/10.1038/s41570-023-00474-1
https://doi.org/10.1038/s41570-023-00474-1
https://doi.org/10.1002/anie.201809921
https://doi.org/10.1039/C6CC06878B
https://doi.org/10.1038/ncomms9079
https://doi.org/10.1038/s41467-018-04553-6
https://doi.org/10.1039/C8SC04044C
https://doi.org/10.1038/s41467-019-10470-z
https://doi.org/10.1038/s41467-020-19598-9
https://doi.org/10.1002/anie.201915807
https://doi.org/10.1039/C9SC04961D
https://doi.org/10.1021/ar5000314


BIBLIOGRAPHY

[106] M. I. Nandasiri, S. R. Jambovane, B. P. McGrail, H. T. Schaef, and S. K. Nune. “Adsorption,
separation, and catalytic properties of densi�ed metal-organic frameworks”. In: Coordination
Chemistry Reviews 311 (2016), pp. 38–52. doi: 10.1016/j.ccr.2015.12.004.

[107] W. Jeong, D.-W. Lim, S. Kim, A. Harale, M. Yoon, M. P. Suh, and J. Kim. “Modeling adsorption
properties of structurally deformed metal–organic frameworks using structure–property map”.
In: Proc. Natl. Acad. Sci. U.S.A. 114 (30 2017), pp. 7923–7928. doi: 10.1073/pnas.1706330114.

[108] O. Smirnova, S. Hwang, R. Sajzew, A. Reupert, V. Nozari, S. Savani, C. Chmelik, L. Wondraczek,
J. Kärger, and A. Knebel. “Precise control over gas transporting channels in zeolitic imidazolate
framework glasses”. In: ChemRxiv (2023). doi: 10.26434/chemrxiv-2023-b8nnx.

[109] M. Pera-Titus. “Porous Inorganic Membranes for CO2 Capture: Present and Prospects”. In: Chem.

Rev. 114 (2 2014), pp. 1413–1492. doi: 10.1021/cr400237k.
[110] S. Horike, S. S. Nagarkar, T. Ogawa, and S. Kitagawa. “A New Dimension for Coordination

Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids”. In: Angew.
Chem. Int. Ed. 59 (17 2020), pp. 6652–6664. doi: 10.1002/anie.201911384.

[111] A. Kertik, L. H. Wee, M. Pfannmöller, S. Bals, J. A. Martens, and I. F. J. Vankelecom. “Highly
selective gas separation membrane using in situ amorphised metal–organic frameworks”. In:
Energy Environ. Sci. 10 (11 2017), pp. 2342–2351. doi: 10.1039/C7EE01872J.

[112] B. Jin, S. Wang, D. Boglaienko, Z. Zhang, Q. Zhao, X. Ma, X. Zhang, and J. J. De Yoreo. “The
role of amorphous ZIF in ZIF-8 crystallization kinetics and morphology”. In: Journal of Crystal
Growth 603 (2023), p. 126989. doi: 10.1016/j.jcrysgro.2022.126989.

[113] E. Massahud, H. Ahmed, R. Babarao, Y. Ehrnst, H. Alijani, C. Darmanin, B. J. Murdoch, A. R.
Rezk, and L. Y. Yeo. “Acoustomicro�uidic Defect Engineering and Ligand Exchange in ZIF-8
Metal–Organic Frameworks”. In: Small Methods (), p. 2201170. doi: https://doi.org/10.1002/
smtd.202201170.

[114] Y. Fu, A. C. Forse, Z. Kang, M. J. Cli�e, W. Cao, J. Yin, L. Gao, Z. Pang, T. He, Q. Chen, Q.
Wang, J. R. Long, J. A. Reimer, and X. Kong. “One-dimensional alignment of defects in a �exible
metal-organic framework”. In: Science Advances 9.6 (2023). doi: 10.1126/sciadv.ade6975.

[115] T. D. Bennett, A. K. Cheetham, A. H. Fuchs, and F.-X. Coudert. “Interplay between defects,
disorder and �exibility in metal-organic frameworks”. In: Nature Chem 9 (1 2017), pp. 11–16. doi:
10.1038/nchem.2691.

[116] A. M. Bumstead, C. Castillo-Blas, I. Pakamorė, M. F. Thorne, A. F. Sapnik, A. M. Chester, G.
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Les réseaux métallo-organiques (MOF) sont des matériaux hybrides composés d’ions métalliques reliés
par des ligands organiques qui forment des réseaux tridimensionnels. Du fait de leur porosité et de leur
grande versatilité structurale et chimique, ils constituent des candidats prometteurs pour de nombreuses
applications industrielles, notamment pour la séparation du CO2. Même si la majorité de la littérature
se concentre sur des structures cristallines, un nombre croissant de MOF amorphes (aMOF) ont été
synthétisés, qui conservent à la fois les avantages intrinsèques des cristaux tout en possédant des
propriétés physiques et chimiques distinctes.

Cependant, la détermination expérimentale de la structure microscopique de ces phases amorphes
est complexe, avec des expériences de di�raction qui n’o�rent que des informations indirectes. Un
ensemble de méthodes numériques coexistent pour résoudre leurs structures et modéliser ces matériaux
désordonnés, qui sou�rent cependant d’un manque de comparaison directe et systématique. Durant
ma thèse, j’ai utilisé plusieurs méthodes de simulation moléculaire aux buts, échelles et coûts de calcul
di�érents – dynamique moléculaire ab initio, champs de force classiques et réactifs, et potentiels ML –
a�n de générer des modèles microscopiques d’aMOF et d’étudier leurs propriétés.
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1 Des MOF amorphes pour la séparation de CO2

Objectifs climatiqes et émissions négatives
L’Accord de Paris de 2015 vise à « contenir l’élévation de la température moyenne de la planète nettement
en dessous de 2 °C par rapport aux niveaux préindustriels et en poursuivant l’action menée pour limiter
l’élévation de la température à 1,5 °C par rapport aux niveaux préindustriels, étant entendu que cela
réduirait sensiblement les risques et les e�ets des changements climatiques ». L’élévation de température
étant principalement causée par l’augmentation de la concentration des gaz à e�et de serre (GES) dans
l’atmosphère [1], la limiter suppose a minima de stabiliser cette concentration. Au premier ordre cela
signi�e que le �ux de GES anthropogéniques vers l’atmosphère devra s’annuler (voire devenir négatif) :
on parle alors d’émissions nettes nulles (ou négatives) ou de neutralité carbone.

Si l’on suppose qu’il restera toujours des émissions positives causées par l’activité humaine dans certains
secteurs (transport, alimentation, etc.) alors cela signi�e qu’il faudra simultanément retirer des GES de
l’atmosphère, autrement dit produire des émissions négatives. Plusieurs catégories d’émissions négatives
existent avec des niveaux de maturité et volumes permis très hétérogènes [5], dont l’augmentation du
puits naturel lié à un changement d’usage des sols (LUC - land-use change) et le captage et stockage du
carbone (CCS – carbon capture and storage). Jugés plus matures et crédibles, ils sont présents dans la
majorité des scénarios reproduits par le dernier rapport du GIEC comme illustré �gure R1.

Figure R1: Émissions négatives (LUC, DACCS, BECCS) et émissions résiduelles pour cinq scénarios
d’atténuation (IMP - illustrative mitigation pathways). Figure adaptée de Ref. [3].

Cet objectif de neutralité carbone est repris par la France et l’Union européenne qui ont inscrit dans la loi
l’atteinte de cet objectif en 2050. Bien que la réduction drastique des émissions de GES reste la priorité,
les documents stratégiques proposent un e�ort simultané d’augmentation des émissions négatives, en
particulier en s’appuyant sur le CCS. Ainsi dans le scénario sous-tendant la dernière Stratégie Nationale
Bas-Carbone (SNBC) [9], le puits de GES en 2050, égal aux émissions, est composé à 20% de CCS. La
vision stratégique à long terme de la Commission européenne précise quant à elle une répartition des
émissions négatives avec une part du CCS allant de 10 à 45% selon les scénarios [10].
Le captage, le stockage et la valorisation de CO2
Derrière les termes captage, stockage et valorisation de CO2 (CCUS – carbon capture utilization and

storage) on trouve un ensemble de technologies et d’applications industrielles qui ont comme point
commun de piéger des molécules de CO2 pour ensuite valoriser ce gaz ou le stocker [11]. En raison
de la faible densité du CO2 dans l’air (de l’ordre de 400 ppm), il est technologiquement plus facile,
énergétiquement plus e�cace, et économiquement plus rentable de capter du CO2 dans des gaz où il est
présent en forte densité, typiquement en sortie d’usines ou de centrales électriques, que directement
dans l’atmosphère (DACCS - direct air capture).

Un premier usage du CCUS consiste à capter le CO2 en sortie des centrales électriques thermiques à
biomasse (BECCS - bioenergy with CCS), permettant de réaliser des émissions négatives en séquestrant le
CO2 capté par la biomasse lors de sa croissance [18]. L’industrie est un autre domaine d’application ma-
jeur pour capter soit les émissions directes de CO2 inévitablement produites par les réactions chimiques
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des procédés (ciment et sidérurgie notamment), soit celles liées à une consommation d’énergie (par
exemple le chau�age à haute température) produite par des sources fossiles [21]. Finalement, le CCUS
peut servir pour la production d’hydrogène bas-carbone, vecteur présent dans de nombreux scénarios de
décarbonation [23]. Dans l’ensemble, la contribution du CCUS à la réduction des émissions mondiales est
chi�rée entre 10 et 20% selon les di�érents scénarios de l’Agence Internationale de l’Énergie [11].
Voies technologiqes actuelles et apports des matériaux poreux
Le procédé aujourd’hui le plus commun, déployé à l’échelle industrielle sur plusieurs sites, est la capture
par un solvant présentant une a�nité pour les molécules de CO2 [6]. La capture se fait en deux temps :
les gaz de combustion sont d’abord mis en contact avec le solvant, qui se charge en molécules de CO2,
puis le solvant est « régénéré » dans un autre compartiment en élevant sa température pour libérer
les molécules de CO2 qui s’y étaient �xées [17]. Plusieurs limitations laissent envisager l’apparition
de meilleurs procédés : les solvants sont relativement instables à haute température ce qui restreint
la qualité de la régénération, la durée de vie est limitée par la décomposition des amines et surtout la
capacité calori�que élevée de ces solvants (liée à celle de l’eau) est la cause de la principale dépense
d’énergie lors de la régénération [32].

Comme on ne s’attend qu’à des améliorations incrémentales de l’e�cacité globale des procédés à
base de solvants [16], plusieurs autres technologies de capture ont été proposées pour surmonter ces
limitations. Un certain nombre d’approches prometteuses reposent sur des matériaux poreux, c’est-à-dire
présentant dans leur structure des vides ou des cavités appelés pores, à commencer par l’adsorption de
gaz. Contrairement à l’absorption où les molécules de CO2 pénètrent dans la phase liquide, l’adsorption
est un phénomène où les molécules se �xent à la surface d’une phase solide. L’utilisation d’adsorbants
solides poreux permet de réduire la pénalité énergétique de la capture notamment en vertu de leur plus
faible capacité calori�que [16, 32]. Se passer de solvants liquides permet aussi de réduire le besoin en
eau et de limiter les risques environnementaux liés aux composés toxiques contenus dans ces solvants
[17]. Les technologies reposant sur l’adsorption ont aujourd’hui passé l’échelle du démonstrateur avec
succès [38].

En dehors des procédés d’adsorption, les matériaux poreux ont aussi un rôle à jouer en tant que
nouveaux matériaux pour des technologies de séparation membranaire du CO2 [17]. Ne nécessitant pas
de régénération thermique du sorbant liquide ou solide, les technologies membranaires constituent une
option énergétiquement intéressante [41].

Figure R2: Exemples de structures de réseaux métallo-organiques (MOF). Figure adaptée de Ref. [41].
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Les réseaux métallo-organiqes
Les réseaux métallo-organiques ou MOF (pour metal-organic frameworks) constituent une nouvelle
famille de matériaux découverte au début des années 2000 [45] combinant éléments organiques et
inorganiques, assemblés à l’échelle microscopique pour former des millions de structures potentielles
dont quelques-unes sont présentées à titre d’exemple en �gure R2. Les MOF sont composés de deux types
de briques élémentaires, assemblées di�éremment selon les besoins : des briques inorganiques, contenant
un ion métallique et des briques (« ligands ») organiques. Cela permet de synthétiser des matériaux
« sur mesure » présentant des jeux de caractéristiques que les matériaux nanoporeux traditionnels ne
peuvent atteindre [49, 50].

Les MOF sont particulièrement prometteurs pour le captage du CO2 par adsorption ou par membranes
grâce à leur grande surface par unité de volume, des tailles de pores et des a�nités chimiques hautement
personnalisables grâce au choix des briques moléculaires, et leur potentiel d’être produits à l’échelle
industrielle [32]. Ce large choix de compositions possibles permet d’optimiser les MOF pour di�érentes
con�gurations industrielles [36, 61].
MOF amorphes : une nouvelle classe de matériaux à explorer
Jusqu’à très récemment, les MOF ont été appréhendés essentiellement en tant que matériaux cristallins.
Pourtant leur production (illustrée �gure R3) par amorphisation, par augmentation de température, de
pression ou encore par broyage mécanique, présente un grand intérêt tant sur le plan des mécanismes
de changement de phase à l’œuvre – susceptibles d’apparaître dans les procédés industriels lors des
cycles d’adsorption - que des applications potentielles des phases amorphes obtenues. Un ensemble de
MOF amorphes (aMOF) ont été produits, dont des liquides, gels et verres de MOF [79].

Figure R3: Di�érentes voies de fabrication des verres de MOF. Figure tirée de Ref. [79].

Les phases amorphes des MOF possèdent des propriétés physiques et chimiques utiles, non accessibles aux
phases cristallines (isotropie, absence de joints de grains, grande transparence, etc.), tout en conservant
les avantages intrinsèques des MOF cristallins (surfaces élevées, porosité, personnalisation, etc.) [81].
Ces phases désordonnées peuvent ainsi o�rir de nouvelles combinaisons de propriétés distinctes de
celles des structures cristallines connues [73].

En outre l’intégration des phases amorphes dans les procédés industriels est facilitée du fait de leur
grande robustesse mécanique et de la possibilité d’éviter la transformation des poudres de MOF cristallins
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(par compression, ajout de liant) qui induit une perte de capacité d’adsorption [105, 106]. En plus de ces
utilisations pour l’adsorption les aMOF sont un matériau de choix pour les technologies membranaires,
notamment car ils ne possèdent pas les nombreux e�ets de bords des cristaux [109, 110].

2 Étude des aMOF par simulation moléculaire
Modèles microscopiqes d’aMOF
Cependant, malgré leurs propriétés prometteuses les états amorphes sont particulièrement di�ciles à
caractériser, tout comme leurs structures à l’échelle microscopique sont complexes à déterminer. Bien
que des informations structurales indirectes puissent être obtenues par di�raction, elles ne peuvent pas,
contrairement aux cristaux, mener facilement à la résolution des structures atomiques [74]. En outre, la
description numérique des matériaux désordonnés est plus complexe que celle des cristaux, avec un
ensemble de méthodes numériques qui coexistent et relativement peu de modèles microscopiques de
MOF amorphes présents dans la littérature.

Dans cette thèse, j’ai listé et comparé les méthodologies existantes pour les aMOF, basées à la fois sur
des données expérimentales et des simulations numériques : Reverse Monte Carlo (RMC) [84], Continuous
Random Networks (CRN) [139], dynamique moléculaire classique [146] et ab initio [92], champs de force
réactifs [155] et algorithmes de polymérisation [164].

Après examen, il ressort clairement que dans la plupart des cas le problème de la modélisation est
mathématiquement sous-déterminé et qu’il est di�cile d’arbitrer entre di�érents modèles. En outre,
les comparaisons directes et approfondies des modèles sont rares dans la littérature existante, et les
propriétés géométriques, physiques et chimiques des modèles n’ont pas été systématiquement comparées
entre elles.
Méthodes de simulation moléculaire
Les simulations numériques utilisées pour l’étude de systèmes chimiques et physiques constituent
aujourd’hui un champ de recherche à part entière. Parfois appelées expériences in silico, elles sont
complémentaires des expériences et des théories analytiques. Elles permettent tout d’abord d’éclairer les
mécanismes microscopiques à l’œuvre quand les mesures expérimentales ne donnent qu’une vue globale
du phénomène, d’accéder à des échelles de temps très courtes et autrement inobservables et d’étudier
des conditions inaccessibles expérimentalement [167]. Une meilleure compréhension des mécanismes et
leur caractérisation permettent notamment d’interpréter et de guider les travaux expérimentaux visant à
améliorer les procédés existants et synthétiser de nouveaux matériaux [125]. En outre, le développement

Figure R4: Illustration de multiples méthodes de simulations moléculaires qui donnent accès à di�é-
rentes échelles avec une précision variable. Figure tirée de Ref. [215].
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d’importantes bases de données de structures de MOF, avec un nombre de structures et combinaisons
considérable, rend le criblage à haute fréquence possible et désirable. Cette approche repose sur les
progrès des sciences d’exploitations des données (apprentissage automatique, etc.) et tire béné�ce des
modèles numériques spéci�ques aux MOF [172, 173]. Elle permet d’explorer à très faible coût les millions
de structures possibles a�n de détecter les plus prometteuses avant de les synthétiser, ou encore de
fournir des informations sur des grandeurs qui n’ont pas été mesurées expérimentalement sur des MOF
déjà synthétisés et répertoriés [126, 171].

Au cours de mon doctorat, j’ai eu recours à une stratégie possible de production de modèles d’aMOF
consistant à simuler la transition de phase de l’état cristallin vers la phase amorphe par dynamique mo-
léculaire (MD) a�n d’imiter in silico les voies de formation expérimentales. Les dynamiques moléculaires
permettent de suivre l’évolution d’un système de particules au cours du temps, formant un échantillon du
matériau, sur des échelles allant typiquement de la picoseconde à la nanoseconde, et ainsi d’observer des
mécanismes inaccessibles directement par l’expérience [176]. Il y a autant de dynamiques moléculaires
qu’il y a de façon de décrire les forces s’exerçant entre les atomes, avec des portées, échelles et coûts
de calcul di�érents, comme représenté �gure R4. Parmi elles, j’ai utilisé des dynamique moléculaire ab

initio [187], avec des champs de force classiques [145] et réactifs [206], ou encore des potentiels ML
[213], pour générer des modèles atomistiques d’aMOF et étudier leurs propriétés.
Les zeolitic imidazolate frameworks comme objets d’étude
Durant ma thèse j’ai étudié les zeolitic imidazolate frameworks (ZIF), une classe de MOF construits autour
de nœuds tétraédriques composés de métaux de transition, liés entre eux par des ligands imidazolates,
formant des topologies tétraédriques [66]. Les ZIF concentrent la majorité des études dédiées aux MOF
amorphes en raison de leur remarquable stabilité thermique [65, 82].

En particulier, je me suis essentiellement focalisé sur ZIF-4, le premier aMOF bien caractérisé [84] qui
sert depuis d’exemple prototypique de MOF amorphe. Construit à partir de nœuds métalliques Zn2+ et
d’imidazolates (Im), il est représenté �gure R5.

Figure R5: Représentation de l’assemblage de ZIF-4 sous la forme d’un réseau tridimensionnel de
tétraèdres Zn(Im)4.

3 Défis de la simulation d’aZIF par champs de force réactifs
Champs de force réactifs
Dans des travaux antérieurs, la dynamique moléculaire ab initio (AIMD) a été utilisée avec succès
pour modéliser des MOF liquides par fusion de la phase cristalline [92, 93, 149], et ensuite générer
des con�gurations de verres [123]. Cependant, cette approche est très coûteuse en temps de calcul,
ce qui limite son utilisation à de petites échelles temporelles et spatiales. Les dynamiques classiques,
couramment utilisées pour les MOF cristallins, ne constituent pas une alternative e�cace, car elles sont
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incapables de simuler la rupture ou la reformation des liaisons, deux processus pourtant inhérents à la
formation de la plupart des MOF amorphes [146].

Des champs de force réactifs ont ainsi été proposés comme compromis entre la précision chimique et le
coût de calcul, permettant de simuler la rupture et la reformation de liaisons [153]. À partir des travaux
de Yang et al. [155], plusieurs études se sont appuyées sur des champs de force réactifs (ReaxFF) pour
générer des modèles de verres de ZIF par trempe [156, 158], c’est-à-dire en simulant la fonte d’un cristal
suivi d’un rapide refroidissement.
Production de verres par trempe
Cette procédure de trempe, qui reproduit la réalité expérimentale (à des échelles spatiales en temporelles
beaucoup plus réduites), est utilisée depuis longtemps pour modéliser la structure de multiples matériaux
vitreux tels que les silicates [121, 255]. Dans ce travail, j’ai adapté la procédure de trempe des travaux
précédents, pour obtenir celle représentée �gure R6. Une structure cristalline est d’abord préparée puis
chau�ée à 300 K, avant d’être fondue en la chau�ant au-dessus du point de fusion. Le liquide produit
est ensuite refroidi à température ambiante, donnant un verre. Ce dernier est en�n équilibré a�n de
calculer ses propriétés structurales et dynamiques.
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FigureR6: Température en fonction du temps pendant la procédure de formation du verre avec ReaxFF,
comprenant la préparation (orange), la fusion (rouge), la trempe (vert) et l’équilibrage (bleu).

Les modèles générés avec ReaxFF n’avaient jusqu’alors dans la littérature pas été soumis à une com-
paraison directe et approfondie avec ceux obtenus par des approches alternatives. J’ai démontré que
les simulations réalisées étaient pourtant extrêmement sensibles au choix de la méthodologie et des
paramètres de simulation. Cela m’a conduit à recommander de toujours soigneusement véri�er la
cohérence physique du système, à chaque instant de la dynamique moléculaire.
Comparaison des propriétés structurales
A�n d’évaluer quantitativement la validité du modèle de verre trempé produit avec ReaxFF, j’ai comparé
ses caractéristiques structurales avec celles de modèles de verre générés à un niveau théorique plus
élevé, à savoir les modèles ab initio du travail de Gaillac et al. [123].

J’ai montré que les modèles de verre générés avec ReaxFF sont nettement di�érents de leurs homologues
ab initio, avec des di�érences structurales considérables à la fois dans l’ordre à courte et moyenne
distances, ainsi que dans leurs propriétés macroscopiques. Le contraste le plus saisissant se trouve dans
la distribution des angles N–Zn–N, reproduite �gure R7. Alors que la structure tétraédrique Zn(Im)4 fait
que l’on s’attend à des distributions unimodales autour de 109°, la distribution du verre ReaxFF est très
di�érente avec une large distribution d’angles dans le spectre 70–170°. Cela est dû en grande partie à une
représentation sous-contrainte des interactions Zn–N par ReaxFF, qui ne reproduit pas �dèlement l’une
des caractéristiques clés de la chimie des ZIF qu’est la nature directionnelle de la liaison Zn–N.
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Figure R7: Distribution de l’angle N–Zn–N pour le verre ReaxFF (bleu), le verre ab initio (orange) et le
cristal ab initio (rouge).

Toutes ces observations suggèrent que les propriétés structurales des ZIF obtenues à partir de ReaxFF
doivent être interprétées avec prudence, et incitent soit à recourir à d’autres méthodologies, soit à
attendre un nouveau développement de ReaxFF pour les ZIF (qui pourrait s’inspirer de ce travail).

4 Potentiels ML pour la production de modèles d’aZIF
Une nouvelle génération de potentiels réactifs
Devant les di�cultés rencontrées avec ReaxFF, le développement de nouveaux potentiels interatomiques
s’impose, qui doivent être capables de décrire la rupture et à la formation des liaisons métal–ligand
pendant l’amorphisation, tout en étant plus économes en temps de calcul que les dynamiques ab

initio.

Une solution particulièrement prometteuse est le développement de potentiels interatomiques par
apprentissage automatique, ou potentiel machine-learned (ML) [213]. L’idée de base des potentiels ML
(MLP) est d’utiliser des données obtenues à un plus haut niveau de théorie (typiquement ab initio)
pour ajuster des potentiels interatomiques, sans s’appuyer sur les formes fonctionnelles analytiques des
champs de force classiques ou réactifs [219]. Plusieurs MLP ont été développés avec succès pour des
MOF [221, 260] comme pour la génération de systèmes amorphes [261, 262], mais encore jamais pour
modéliser des MOF amorphes,

La construction d’un MLP se fait en plusieurs étapes et commence par la construction d’un ensemble
de données de référence, sur lesquelles le MLP est ensuite entraîné pour les reproduire avec précision.
Puis une validation minutieuse est �nalement nécessaire avant de pouvoir utiliser le MLP. La collecte
d’une grande quantité de données d’entraînement à partir de calculs ab initio étant l’un des facteurs
limitant le développement de MLP, j’ai utilisé dans ce travail NequIP (Neural Equivariant Interatomic

Potential) [212], une architecture très e�cace en termes de données et qui a fait ses preuves sur une
grande variété de systèmes, dont des MOF [221].
MLP pour ZIF-4
L’ambition de ce travail est de développer le premier MLP utilisé pour générer des MOF amorphes, en
se concentrant sur les aZIF et en commençant par ZIF-4. À partir d’un ensemble limité de données
d’entraînement constitué d’une trajectoire de ZIF-4 liquide, j’ai obtenu des MLP reproduisant avec une
précision exceptionnelle de multiples propriétés structurales de plusieurs phases (cristal, liquide, verres).
Ce travail a été réalisé en collaboration avec Jack D. Evans de l’Université d’Adélaïde.

J’ai ensuite réitéré le travail e�ectué avec ReaxFF en générant de nouveaux modèles de verres trempés
avec les MLP, que j’ai ensuite comparé aux données ab initio. Dans l’ensemble on observe une excellente
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reproduction des propriétés structurales, à l’instar de la distribution angulaire N–Zn–N reproduite
�gure R8 à titre d’exemple.
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Figure R8: Distribution de l’angle N–Zn–N pour le verre MLP (bleu), le verre ab initio (orange) et le
cristal ab initio (rouge).

Vers un MLP universel pour les ZIF
Après le succès rencontré avec ZIF-4, le travail actuel vise à aller au-delà de ce système en cherchant à
développer un MLP universel pour de multiples structures de ZIF. Pour ce faire, j’ai généré des données
d’entraînement ab initio sur di�érentes structures, volumes et phases dans le but de construire des
trajectoires de liquides. J’ai d’abord sélectionné plusieurs structures de ZIF à base de Zn avec di�érentes
topologies et ligands, puis j’ai simulé quatre trajectoires à 300 K avec di�érentes déformations pour
chaque cristal. Une fois tous les modèles de cristaux préparés, ils ont été chau�és à haute température
(1200-1750 K) a�n d’obtenir des trajectoires, idéalement liquides, pour l’entrainement des MLP.

5 Propriétés mécaniqes à température finie des aZIF
L’étude des propriétés mécaniqes
Bien que la stabilité mécanique des MOF soit essentielle pour les processus à l’échelle industrielle, la
réponse de ces matériaux aux contraintes mécaniques constitue un domaine d’étude encore relativement
émergent [278, 279]. Alors que de multiples techniques expérimentales ont été employées avec succès
pour déterminer les propriétés mécaniques des MOF cristallins, il y a un manque d’études sur les
phases amorphes [81]. Certaines méthodes, notamment reposant sur la di�raction des rayons X à haute
pression [281], ne sont pas directement applicables aux matériaux désordonnés, et beaucoup d’autres
nécessitent de grands échantillons de verre qui sont di�ciles à préparer [81, 282]. Heureusement, les
mêmes propriétés mécaniques peuvent être étudiées par des simulations numériques [167].

Parmi les nombreuses propriétés mécaniques à température �nie, je me suis concentré sur le module
d’élasticité isostatique (K) qui caractérise la variation du volume (V ) d’un solide soumis à une pression
hydrostatique uniforme (P) et est dé�ni par K = –V (∂P/∂V )

T
. Il fournit des informations clés pour les

applications, notamment sur la stabilité du MOF lors des processus de préparation [292] ou des cycles
d’adsorption par inversion de pression [278]. J’ai utilisé de multiples formes de dynamiques moléculaires
et méthodes de calcul des propriétés mécaniques à température �nie, que j’ai évaluées sur un ensemble
de modèles de cristaux et verres de ZIF-4.
Valeurs de référence par dynamiqe ab initio

Utilisant pour la première fois la méthode de la di�érence �nie couplée à des dynamiques moléculaires
ab initio pour un MOF (illustré �gure R9), j’ai proposé la première valeur �able du K d’un ZIF amorphe
dans la littérature. J’ai ainsi obtenu un module d’élasticité isostatique pour le ZIF-4 cristallin de Kcristal =
1.39 GPa, en accord avec les précédents travaux expérimentaux [290, 293] et numériques [302, 303]. En
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FigureR9: Pression en fonction du volume pour le cristal. Chaque volume correspond à une dynamique
moléculaire ab initio à volume �xé.

outre, j’ai montré que les verres de ZIF-4 ont un module d’élasticité isostatique plus important que le
cristal avec Kverre = 2.43 ± 0.09 GPa, tout en con�rmant des précédents résultats qui trouvaient que
ZIF-4 possédait une densité plus importante dans sa phase vitreuse [233].
Évaluation de dynamiqes moléculaires plus économes
J’ai ensuite pu utiliser ces valeurs de référence pour valider des méthodes de dynamiques moléculaires
moins coûteuses en temps de calcul : champs de force réactifs, classiques et potentiels ML. Pour chacun
des types de dynamique moléculaire, j’ai comparé di�érentes méthodes de calcul sur un ensemble de
modèles de cristaux et de verres de ZIF-4.

Crystal Glass
0

1

2

3

4 MD scheme
AIMD
ClassicalFF
MLP
ReaxFFK 

(G
Pa

)

Figure R10: Module d’élasticité isostatique K pour le cristal et les verres ab initio du ZIF-4, obtenu par
di�érences �nies pour plusieurs formes de dynamiques moléculaires.

Comme présenté �gure R10, les valeurs de K des champs de force classiques et potentiels ML sont en
accord raisonnable avec les calculs ab initio, là où ReaxFF n’a pas réussi à di�érencier le cristal des
verres. Les densités pour ces deux premières méthodes sont également cohérentes avec les dynamiques
ab initio et les expériences [233]. Cela montre que les champs de force classiques comme les potentiels
ML sont prêts à être déployés pour une évaluation plus large et systématique des propriétés mécaniques
de multiples ZIF.
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Conclusions
Durant ma thèse, j’ai utilisé plusieurs méthodes de simulation moléculaire pour générer des modèles
microscopiques d’aMOF et étudier leurs propriétés. Utilisant ZIF-4 comme prototype d’aMOF, j’ai étudié
l’utilisation de champs de force réactifs pour générer des modèles de verre par trempe, et mis en évidence
leur incapacité à reproduire �dèlement des caractéristiques clés de la chimie des ZIF. A�n d’o�rir une
alternative numériquement e�cace permettant la génération de modèles de verres de ZIF, j’ai construit
des potentiels ML qui reproduisent très précisément les propriétés structurales des modèles ab initio.
Finalement, j’ai étudié en détail le calcul des propriétés mécaniques à température �nie de cristaux et
verres de ZIF-4, en appliquant une série de méthodes et de formes de dynamique moléculaire. Dans
l’ensemble cette thèse a permis de mettre en évidence l’absence trop fréquente de comparaison directe
et approfondie des modèles dans la littérature existante, et a souligné les propriétés géométriques,
physiques et chimiques très di�érentes des multiples modèles proposés.

Ce travail ouvre des perspectives pour le développement et l’utilisation de modèles d’aMOF, en s’ap-
puyant sur l’expertise acquise avec ZIF-4. Tout d’abord, le développement en cours d’un MLP plus
universel pour les ZIF devrait permettre la génération de multiples verres de ZIF, leur caractérisation
structurale, et l’examen de leurs propriétés mécaniques à température �nie. Si les MLP ne tiennent pas
toutes leurs promesses, les propriétés mécaniques pourraient alternativement être calculées avec le
développement d’une paramétrisation de champs de force classiques adaptés aux ZIF amorphes.

Plus généralement et a�n d’améliorer la qualité des modèles amorphes à l’avenir, des études plus larges
seraient nécessaires, intégrant de nombreuses techniques expérimentales di�érentes (infrarouge et
Raman, RMN, etc.), pour fournir des données in situ. En plus de fournir un aperçu direct de la nature
des phases amorphes des MOF, ces données pourraient être utilisées comme référence pour tester
di�érents modèles microscopiques. Des bases de données de matériaux poreux amorphes pourraient
alors être développées, à l’instar de celles pour les phases cristallines, et contribuer à accélérer les
e�orts de modélisation de ces systèmes. Finalement, le développement de stratégies de modélisation
multi-échelles pourrait s’avérer fructueux en permettant de combiner les atouts des di�érentes méthodes
déjà disponibles.
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RÉSUMÉ

Les réseaux métallo-organiques (MOF) sont des matériaux hybrides composés d’ions métalliques reliés par des ligands
organiques qui forment des réseaux tridimensionnels. Du fait de leur porosité et de leur grande versatilité structurelle
et chimique, ils forment des candidats prometteurs pour de multiples applications industrielles, notamment pour la sé-
paration du CO2. Même si la majorité de la littérature se concentre sur des structures cristallines, un nombre croissant
de MOF amorphes (aMOF) ont été synthétisés, qui conservent à la fois les avantages intrinsèques des cristaux tout en
possédant des propriétés physiques et chimiques distinctes. Cependant, la détermination expérimentale de la structure
microscopique de ces phases amorphes est complexe, avec les expériences de diffraction qui n’offrent que des informa-
tions indirectes. Afin de résoudre leurs structures et modéliser ces matériaux désordonnés, un ensemble de méthodes
numériques coexistent, qui souffrent cependant d’un manque de comparaison directe et systématique entre modèles.

Durant ma thèse, j’ai utilisé plusieurs méthodes de simulation moléculaire aux buts, échelles et coûts de calcul différents –
dynamique moléculaire ab initio, champs de force classiques et réactifs, et potentiels ML – pour générer des modèles mi-
croscopiques d’aMOFs et étudier leurs propriétés. Utilisant ZIF-4 en tant que prototype d’aMOF, j’ai étudié l’utilisation de
champs de force réactifs pour générer des modèles de verre par trempe, et mis en évidence leur incapacité à reproduire
fidèlement des caractéristiques clés de la chimie des ZIFs. Afin d’offrir une alternative numériquement efficace pour la
génération de modèles de verres de ZIF, j’ai construit des potentiels interatomiques par apprentissage automatique (ML)
qui reproduisent très précisément les propriétés structurelles des modèles ab initio. Finalement, j’ai étudié en détail le
calcul des propriétés mécaniques à température finie de cristaux et verres de ZIF-4, en appliquant une série de méthodes
et de formes de dynamique moléculaire.
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ABSTRACT

Metal–organic frameworks (MOFs) are hybrid materials composed of inorganic nodes bridged by organic linkers to form
three-dimensional architectures. Taking advantage of their porosity and structural and chemical tunability, they have been
proposed for applications in various industrial-scale processes, notably for CO2 separation. While the majority of studies
in the literature are focused on crystalline structures, a growing number of amorphous MOFs (aMOFs) have been reported,
which retain intrinsic advantages of crystals and powders but possess distinct physical and chemical properties. However,
the determination of the framework structure of these aMOFs at the microscopic scale is experimentally difficult, with
diffraction experiments only providing indirect structural information. In order to work around or alleviate this challenge, an
array of computational methods coexist to model these disordered materials, with a lack of direct and in-depth comparison
of the models.

During my PhD, I used various simulation methods with different scopes, scales and computational costs – ab initio
molecular dynamics, classical and reactive force fields, and machine-learned potentials – to generate atomistic models
of aMOFs and study their properties. With the prototypical aMOF structure ZIF-4 as a test case, I investigated the use
of reactive force fields to generate glass models by melt-quenching, and found that it failed to faithfully reproduce key
characteristics of the chemistry of ZIFs. To provide another tractable alternative to the generation of ZIF glasses, I
developed machine-learned potentials and found that they lead to an excellent reproduction of the structural properties of
ab initio data. Finally, I have extensively investigated the computation of finite temperature mechanical properties of ZIF-4
crystals and glasses, by applying a range of methods and molecular dynamics schemes.
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molecular simulation, porous materials, metal–organic frameworks, amorphous materials, CO2 separation
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