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ainsi que son suivi tout au long de ma thèse. Cela a été un grand honneur et surtout
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m’ont apporté au-delà de la science, les repas, les cafés, les soirées, etc.
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Introduction

Active systems have become a rich field of research during the last decades which

is probably due to their versatility and multiple possibilities for their dynamics. From

micro-sized entities to macroscopic systems, they have the unique feature of being able

to convert an external or embedded source of energy into net propulsion. They can be

natural or artificial systems performing from simple to very complex interactions with

their environment in order to direct their motion. A very large number of such systems

exists in the universe, but in this thesis we focus our attention on the study of the three

following ones: a simple spherical robot, an active damped medium, and liquids in the

Leidenfrost state. We are going to show that a controlled actuation of these inherently out-

of-equilibrium systems can result into nontrivial applications such as shape recognition,

time reversal of waves or stabilization of levitating liquids. Thus, the goal of this thesis

is to demonstrate these possibilities for systems whose dynamics can be well controlled.

This manuscript is divided into three independent parts, corresponding to the

applications of each active system. In the first part, we are interested in the geometrical

information that can be obtained from random explorations of an arbitrary region in the

plane. In our case, we employ a very limited and randomly moving spherical robot that

can perform straight line motion. The first question we want to answer is whether we

can estimate the area and perimeter of the explored region. We will see that we can

address this problem by using the powerful tools given from the branch of mathematics

named statistical geometry. One of its most remarkable results states that the average

length of the random crossing chords is proportional to the ratio between the area and

perimeter of the explored region. This was first demonstrated by Cauchy in 1836 [1] for

the case of lines randomly intersecting convex shapes. More recently, it has been shown

that this invariant also holds for non-convex regions [2], Brownian motion [3] and

random distributed closed-loop trajectories crossing a region [4]. However, Cauchy’s

formula gives us only the ratio between the area and perimeter of the region of interest;

then, a second general invariant is needed to separately obtain both geometrical

quantities for any shape in 2D. We will analytically demonstrate this new invariant, and

along the way, we will find other interesting statistical geometry results. From this, we

will propose a simple strategy for recognizing any shape in 2D thanks to the space

representation given only by the area and perimeter. Finally, an extension of this idea

for reading letters and words from a text will be addressed.

5



In the second part, we study mechanical waves that propagate in an active medium

whose damping can perform a programmable abrupt change in time. This will allow us

to introduce a counter intuitive method to perform time reversal of waves thanks to the

application of damping pulses. Inspired by the instantaneous time reversal mirrors

designed for surface water waves in [5], [6], where a sudden change in the propagation

speed generates a time reversed wave, here, we are interested in the possibility of

performing a time-reversal operation of an initial propagating wave thanks to the

application of a time-controlled damping pulse. An experimental proof of concept will

be given with a system composed of magnets which repel each other and are placed on

an air cushion to remove the friction generated by the contact between the particles and

the surface. The magnets are placed one by one, and they self-arrange forming an

ordered structure of levitating magnets, corresponding to an equilibrium position. The

whole array of magnets behave like an elastic medium through which phonon waves can

propagate. An experimental time-reversed operation of an initial propagating

mechanical perturbation will be demonstrated. This procedure generates a

counter-propagating wave that interferes with the initial one, creating a time-localized

standing wave. Thus, by a second application of a damping pulse, we are able to totally

annihilate the wavefield. This idea will be finally discussed for tailoring broadband

waves via selective annihilation or concentration of their monochromatic components.

The third part of this thesis concerns the study of liquids that are in the Leidenfrost

state. This phenomenon occurs when a liquid is placed on a substrate whose temperature

is much higher than the boiling point, creating an insulating vapor layer that prevents the

contact between the hot substrate and the rest of the liquid [7]. Very small volumes of

liquid have a quasi-steady dynamics but larger volumes are unstable and create chimneys

due to the increase of the vapor pressure in the bottom part of the liquid [8]. Here, we

will propose a mechanism to stabilize these liquids thanks to a controlled evacuation of

the insulating vapor. We experimentally demonstrate that a perforated solid substrate

can totally suppress the appearance of chimneys, with a remarkable stabilization of the

levitated liquid during the slow evaporation process. We also do numerical simulations

to solve the Navier-Stokes equations coupled with capillary forces. They corroborate the

stabilization mechanism and allow us to extend our analysis to more complex geometries.

Finally, we will see that thanks to an asymmetric drain of vapor we can drive the liquid

motion. This represents a new method to propel liquids in the Leidenfrost state as an

alternative to the well-known ratchet-based propelling mechanisms [9], [10].
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1
Shape recognition via random

explorations

1.1 Introduction

In this part of the thesis, we are interested in developing a simple strategy to evaluate

and recognize a region by means of a random exploration. This problem will be addressed

by using the powerful tools provided by statistical geometry, which are going to be applied

to the study of random explorations of bounded domains. One remarkable result of this

branch of mathematics is the Cauchy formula, initially given for the mean chord length

of random distributed lines crossing a convex region [1]. An interesting fact is that this

formula was also derived by Dirac [11], when he was working on the Manhattan project

because the mean chord length resulted to be a crucial parameter for achieving stable

nuclear reactions [12]. Surprisingly, this invariant property holds in the case of random

motions, which has been recently demonstrated in [3], and experimentally verified in

multiple physical systems, for instance the mean traveled distances of populations of

animals that enter and exit a region [13], [14], or the mean path length of light after being

scattered by a complex medium [15]. We will demonstrate that Cauchy’s formula remains

also valid for the case of arbitrary closed-loop trajectories provided that no trajectory

can be completely enclosed by the domain [4]. Below this threshold, the mean arc length

differs from Cauchy’s formula as it decreases with the size of the trajectory.

The area and perimeter are two invariant properties that can give us a lot of

geometrical information about any 2D region. These two parameters are then the

natural descriptors of any arbitrary region, and they can be the first candidates to be

employed in a shape recognition strategy. The mean chord length theorem allows only

to estimate the ratio between the area and perimeter for any arbitrary region in 2D.

Although this ratio is already related to the macroscopic geometrical properties of the
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explored region, it is not sufficient to determine its area or perimeter separately. Then,

we need a second formula relating the area and perimeter of an arbitrary region to its

chord length distribution. Only a second formula exists in the literature for random

straight lines crossing convex shapes, which was demonstrated by Crofton [16], who was

able to relate the third moment of the chord length distribution to the square of the

area divided by its perimeter. Unfortunately, this formula is not valid for non-convex

regions, which are ubiquitous in nature. Thus, an important theoretical work is

requested in order to seek a second general statistical invariant that has to be also valid

for non-convex shapes. This will be introduced and demonstrated, which represents an

important theoretical achievement for shape recognition. From these two invariants,

now we have access to a direct estimation of the area and perimeter of any region in 2D.

Then, every 2D shape can be classified in a space representation given from these two

parameters and this will become the principle of a shape recognition strategy. We will

implement an experimental proof of concept of this recognition technique with a very

limited robot that can move in a random oriented straight-line motion and is only

capable to detect if it is inside of a projected region in 2D. Thanks to the use of these

statistical invariants the robot can perform an autonomous recognition of complex

regions such as the silhouettes of famous monuments. Finally, by extending this strategy

to the recognition of letters and words, we will demonstrate that a blind and disoriented

robot can also read a text.

1.2 Geometric probability

The first association of probability theory and geometry was done in the 17th century

by Newton when he was interested in the possibility of having irrational probabilities [17].

He imagined a ball falling on a circle divided in two sectors whose areas have a ratio of 2

over
√
5 (fig. 1.1a). He stated that the chances to hit one of the regions are proportional

to the area fraction. By doing this, he obtained an estimation of the area of each region by

only counting the proportion of hits. In other words, Newton was laying the foundation

for what we now know as Monte Carlo simulations [18] for the estimation of physical

parameters based on random sampling.
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(a) (b)

Figure 1.1: (a) Newton’s ball problem. A ball is randomly thrown to a circle divided in two
sectors whose areas have a ratio of 2 over

√
5. What is the probability that the ball ends up

in one of the two sectors? (b) Buffon’s needle problem. A needle is randomly thrown on a
wooden floor made of parallel floorboards. What is the probability that a randomly thrown
needle touches one of the floor edges?

Later on, in 1733 the French mathematician Buffon [19] formulated the classic

needle problem to know the probability that a randomly thrown needle touches the edge

of a wooden floor made of parallel floorboards (fig. 1.1b). He showed that the

intersecting probability is P = L/2πd, where L is the needle length and d the width of

the floorboards. It is noteworthy that this simple experiment allows us to estimate the

fundamental mathematical constant of π. More than one century later, in 1860, another

French mathematician whose name is Joseph Barbier [20], extended Buffon’s result to

the expected number of intersections between parallel lines and finite smooth curves.

The examples described above represent rather quite simple and curious problems

that demonstrate that relevant geometric information can be obtained from the random

intersection of a bounded region and basic geometrical objects such as lines, segments,

curves or closed-loop trajectories. This triggered the development of a new branch of

mathematics named geometric probability. This discipline, also called stochastic or

integral geometry [16], studies the link between expectation of random variables and

geometrical quantities such as lengths, areas perimeters, etc. Today it has become a

powerful tool for different fields of research, such as steorology [21], nuclear physics [12],

image analysis [22] and recently in biophysics for the study of animal behavior [14].
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1.3 Cauchy’s formula and extensions

1.3.1 Cauchy’s theorem

One of the most remarkable results from geometric probability is the mean chord

length theorem, proved by Cauchy in 1850 for the convex case [1]. Let us remind this

elegant result:

Theorem 1. If a convex shape of area A and perimeter P is crossed by random

and uniform distributed lines, the mean chord length < L > is proportional to the ratio

between its area and perimeter. More precisely:

< L >= π
A

P
(1.1)

(a) (b)

Figure 1.2: (a) Some random distributed lines intersecting a convex region. (b) Parametric
representation of a line using an orthogonal coordinate r ∈ R+ and a rotation angle θ ∈ (0, π)

Proof. Let us consider N uniformly random distributed lines L = {l1, l2, ..., lN}
intersecting a convex region Ω (see fig. 1.2a). Any line li ∈ L can be totally defined by

two parameters: an orthogonal coordinate r ∈ R+, and a rotation angle θ ∈ (0, π) (see

fig. 1.2b). In the limit of N → ∞, the random lines will uniformly cover the region Ω.

Then, this is equivalent to placing families of parallel lines with a random direction

associated to the angle θ (see fig. 1.3).
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.

Figure 1.3: Equivalence of Cauchy’s problem. A convex region Ω is intersected by multiple
parallel beams of lines having an infinitesimal separation dr pointing at an arbitrary rotation
angle θ ∈ (0, π)

The mean chord length is < l >= 1
N

∑N
i=1 li, with li ∈ L. The sum can be performed

by adding each family of parallel lines of corresponding angle θ, whose separation is dr.

Then, in the limit N → ∞, the mean chord length is given by the integral:

< l >=

∫∫
L∩Ω l dr dθ∫∫
L∩Ω dr dθ

(1.2)

From figure 1.3 one can observe that the numerator of the previous equation

corresponds to the area of the region Ω multiplied by π. By using the inset of figure 1.3

it is easy to see that a portion of the shape’s perimeter dP crossed by two parallel lines

satisfies the relation: dr = dP cos θ, then:

< l >=
πA

1
2

∫
dP cos θdθ

=
πA

P
(1.3)

Where a factor 1
2
has been placed in the denominator of the last equation because each

line cross two parts of the boundary of the convex region Ω. This is a simple demonstration

of Cauchy’s formula for the mean chord length in 2D. This formula can be extended to
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any dimension on space [23]. For instance, in the 3D case we have < l >= 4V
A
, for which

a demonstration based on physical principles can be found in [24].

Surprisingly, this formula was also found by Paul Dirac and Klaus Fuchs in 1943,

when they were working on the Manhattan Project. They discovered that the mean

chord of a piece of fissile material is a crucial parameter for the functioning of a nuclear

reactor [11]. This emphasized the physical relevance of this invariant, and later on, it

found applications to other fields of research such as in stereology [21], to obtain global

geometric information of arbitrary shapes, or in radiology [25], because the mean absorbed

radiation of an isotropic radiating beam depends on its average traveled length in a body

organ [26].

1.3.2 The Bertrand paradox

Cauchy’s mean chord length formula demonstrated the power of geometrical

probability to find important geometrical parameters by taking the average of random

distributed variables. However, in 1889, another French mathematician named Joseph

Bertrand [27] showed that the way we define a random distribution can lead us to

different results of a given geometric probability problem. To illustrate this statement,

let us evaluate the mean chord length of a unitary circle that is crossed by two different

random distributions of lines (see fig. 1.4). On the one hand, let us consider lines

defined in the parametric form by an orthogonal coordinate r ∈ R+, and a rotation

angle θ ∈ (0, π). This corresponds to Cauchy’s definition, then < L >= π/2. On the

other hand, let us consider lines from a random point of the circle’s boundary and

having an arbitrary direction. By performing the numerical simulations of these two

scenarios, we notice that the chords are not distributed in the same way over the circle.

We can plot the corresponding mean chord length as a function of the number of

crossing chords as it is shown in figure 1.4c, where we can observe that for the second

distribution the mean chord length converges towards < L >= 4/π, which can also be

obtained analytically [27].
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(a) (b) (c)

Figure 1.4: Illustration of Bertrand’s paradox. The way we define randomness can lead us to
different results. Intersection of a unitary circle with (a) random chords belonging to the lines
defined by (r, θ) ∈ R+ × (0, π) or (b) chords created from two random points p1 and p2 of the
circle’s boundary. (c) Corresponding mean chord length as a function of the number of chords
for both scenarios.

Betrand’s paradox is only a warning for the way we define a random distribution.

In modern terms, a probability distribution is associated to a measure whose integral

over some subspace of a measurable space corresponds to the probability for some event

to take values in this subset [28]. Bertrand pointed out in 1888 that the use of the

uniform measures on three different parameter spaces provides different answers [29]. By

comparing the figures 1.4a and 1.4b, we can notice that only the first figure has a uniform

distribution of lines without concentration on the boundary. Moreover, this distribution is

invariant under rigid transformations, which is not the case for the second defined random

distribution. In the following, we are going to consider only uniform random distributions

that do not present a bias or preferential positioning in the space. The probability density

function corresponding to this rigid invariant random distribution is called the kinematic

density (see Appendix A).

1.3.3 Non-convex shapes and Brownian motion

In the previous section, the demonstration of Cauchy’s formula was done by

considering random and uniformly distributed lines that intersect a convex object in 2D.

A natural question that arises is whether this formula remains valid for non-convex

shapes or random trajectories intersecting an arbitrary domain. Examples of such

scenarios are shown in figure 1.5. These questions have been already addressed in [2]

and [13]. In these studies, they showed that Cauchy’s formula holds for non-convex

shapes, if we take the chords independently. Moreover, they also found that this

invariance remains valid in the case of random trajectories, provided that they are

uniformly starting from the boundary of the domain. This last result represents a
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remarkable property because the mean traveled length < l > in any bounded region

depends only on its geometrical properties, and not on the specific details of the

trajectory. Experimentalists from diverse fields of research have tested this property, for

instance, biologists have verified it with different moving organisms, by measuring their

mean traveled length on an explored region [14, 30]. Additionally, this result has been

also verified with electromagnetic waves that are scattered by a complex

medium [15], [31].

(a) (b)

Figure 1.5: Generalization of Cauchy’s formula. The mean chord length theorem is also valid
in the case of non-convex regions (a) and Brownian trajectories (b). The only condition is to
consider each crossing path li separately, even if they belong to the same trajectory.

1.3.4 Mean crossing length for finite trajectories

In the previous sections we considered trajectories entirely crossing the explored

region. Another interesting problem would be the case of trajectories whose length is

finite and curved. A typical physical system could be charged decaying particles placed

in a magnetic field. Let us suppose that these particles can be randomly created in any

point of the space and move a portion of arc of fixed length L. We can perform a

numerical simulation of such a system where the explored region is a disk of radius R.

In figure 1.6a we show four different simulations of the semicircular trajectories with

four different lengths L normalized by the disk radius R. In figure 1.6b we plot the

normalized mean arc length as a function of this parameter. The heuristic formula

indicated in black fits well the trend of the mean arc length in this simple case, but for

the case of more complex trajectories it is not easy to find a simple mathematical

expression. The asymptotic limit corresponds to the Cauchy formula. This limit is

expected because the crossing trajectories become straight lines as the curvature

14



decreases. Inversely, we notice that the mean arc length decreases as the arc length L

decreases, demonstrating that Cauchy’s theorem is not valid for finite open curves. In

the next section we will analyze the case of finite closed-loop trajectories.

(a) (b)

Figure 1.6: Mean arc length for half circular trajectories randomly intersecting a disk. (a) Four
snapshots are shown for different aspect ratios between the arc length L and the disk radius R.
(b) Normalized mean arc length as a function of the normalized trajectory length. Cauchy’s
formula is the asymptotic limit for arbitrary large trajectories. The heuristic formula shown in
black, where P and A are the perimeter and area respectively, fits well the trend.

Mean arc length for circular trajectories

Until now, we have seen that Cauchy’s formula remains valid also for random

trajectories that are uniformly distributed and completely cross a bounded domain [3],

otherwise, the mean crossed length decreases as a function of the trajectory length, as

shown in fig. 1.6b. Another interesting case to study could be if instead of having open

trajectories, we consider closed contours of finite length that randomly intersect an

arbitrary bounded domain. This problem has not yet been addressed in the literature

and will be studied in the following section. In this scenario, one can be interested in

knowing the mean arc length and comparing it to Cauchy’s formula. One can expect

that if the closed-loop trajectories enclose an area which is much larger than the area of

the explored domain, the mean arc length satisfies the Cauchy formula. Inversely, if the

closed loop trajectories enclose an area much smaller than the explored region, the mean

arc length must be close to the contour perimeter. Then, the mean arc length strongly

depends on the closed-loop trajectory size, and this is going to be addressed throughout

this section.
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The simplest closed contours are circular trajectories, and they receive a particular

interest since circular motion is ubiquitous in nature. For instance, it can be performed

by electrons moving in a constant magnetic field, swimming microorganisms [32] or robots

[33]. We are going to study the case of circles exploring convex and non-convex domains,

separately. Numerical simulations are used to analyze the evolution of the mean arc length

as a function of the size of the circular trajectories. We consider two arbitrary regions

where circles of fixed radius R are randomly placed. The first region corresponds to the

convex hull of the map of France and the second one is the non-convex map of Mexico.

(a)

(b)

Figure 1.7: Mean arc length for circular trajectories exploring convex and non-convex regions.
Circles of fixed radius R randomly explore (a) the convex hull of the map of France and (b) the
non-convex shape given by the map of Mexico. In both cases, the mean arc length coincides
with Cauchy’s formula for trajectories whose radii are bigger than the one corresponding to the
largest inscribed circle in the explored region.

Numerical simulations are performed with 106 circular trajectories of fixed radius that

randomly intersect the domains depicted in figs. 1.7a and 1.7b, respectively. Figure 1.7a

shows the evolution of the mean arc length s as a function of the radius R for circular

trajectories that randomly intersect the convex hull of the map of France.
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On the left of figure 1.7a we plot some intersecting arc lengths colored in blue, for

trajectories of a fixed radius R smaller than the largest inscribed circle Rc (red circle).

Similarly, on the right, we plot a random exploration with trajectories having a radius

R > Rc. The numerical simulation shows that the mean arc length s(R) increases from

zero until reaching a plateau above a critical radius Rc which corresponds to the radius of

the largest circle that can be totally inscribed in this convex domain. Surprisingly, for all

the trajectories where R > Rc, the mean arc length verifies the Cauchy formula s(R) =

πA/P (horizontal dashed line). We remind that in the case of finite open trajectories, the

Cauchy formula was only an asymptotic limit for large trajectories. Thus, this is a new

remarkable property of closed contours.

In fig 1.7b, we plot the results for the case of randomly distributed circles exploring the

non-convex region represented by the map of Mexico. On the left we show an example

of intersecting arc lengths, colored in green, for trajectories of radius R smaller than

the largest inscribed circle Rc (brown circle). On the right, we show a case where the

trajectories have a radius R > Rc. We find a similar evolution, compared to the previous

case, for the mean arc length s as a function of the radius R for intersecting circles.

From these simulations, we have verified numerically that Cauchy’s formula can be

extended to circular trajectories of finite length, provided that their radius is larger than

the radius of the largest inscribed circle in the domain. Now let us see what happens with

more complex trajectories.

1.3.5 Mean arc length for closed-loop trajectories

In order to acquire an intuition for the case of complex closed-loop trajectories, we

perform more simulations for these types of contours that are randomly crossing an

arbitrary domain. Figure 1.8 shows two domains having the shape of a chess Rook and

Pac-Man, respectively. These domains are crossed by randomly distributed trajectories

having the shape of a chess Knight (fig. 1.8a) and of a Ghost (fig. 1.8b), respectively. In

figure 1.8c, we plot the normalized mean arc length, for both cases, as a function of the

ratio of the contour area over the region area.

17



(a) (b) (c)

Figure 1.8: Examples of exploration of domains in the shape of (a) the chess Rook and (b) a
PacMan with trajectories in the shape of a chess Knight and a Ghost respectively. (c) Evolution
of the corresponding normalized mean arc length as a function of the relative areas of the
two domains A1/A2. The inset figures show the largest fully inscribed trajectories, and their
corresponding point. The horizontal dashed line represents the normalized Cauchy formula.

From the numerical simulations, we observe that the evolution of the mean arc length

remains like the one obtained with circular trajectories, recovering Cauchy’s formula if no

trajectory can be totally inscribed inside the explored domain. This behavior motivated

us to demonstrate the following theorem:

Theorem 2. For random distributed and not fully inscribed closed-loop trajectories

crossing an arbitrary region of area A and perimeter P , the mean arc length < s > satisfies

the Cauchy formula:

< s >= π
A

P
(1.4)

Proof. The proof of this theorem is more technical, requiring several concepts from integral

geometry and two auxiliary theorems given by Blaschke and Poincaré [16]. For this reason,

the detailed demonstration is found in Appendix A. This is done on purpose to be focused

on the physical applications of these powerful mathematical results.

Reciprocal explorations

The closed trajectories also form a closed domain, so the role of the random contours

and the explored domain can be interchanged. Let us analyze this scenario with the

domains depicted in figure 1.9. One has the shape of an egg (domain Ω1) and the other

the shape of a chicken (domain Ω2).
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Figure 1.9: Mirrored graphs of the evolution of the normalized mean arc length as a function
of the relative area for domains in the shape of an egg Ω1 and a chicken Ω2 explored by 105

random contours ∂Ω2 and ∂Ω1, respectively. The insets show examples of realizations in the
two asymptotic regimes and also the largest fully inscribed contour. The horizontal dashed line
indicates the corresponding Cauchy’s formula.

First, we can consider the egg-shaped region being crossed by 105 random distributed

chicken-shaped replicas of area A1. Then, we can perform the reciprocal exploration,

where a chicken-shaped region is crossed by 105 random distributed egg-shaped replicas

of area A2. The mirror plots shown in 1.9, illustrate the evolution of the normalized mean

arc length as a function of their area ratio. Both curves are qualitatively similar to the

ones previously presented with a steady increase from zero to a plateau satisfying the

generalized Cauchy’s formula s = πAi/Pi, where Ai and Pi are the area and perimeter of

the explored domain i = 1, 2, respectively. The mean arc length increases as a function

of the closed-loop trajectory size and a plateau, corresponding to Cauchy’s formula, is

reached for trajectories greater than the largest inscribed one.

Thus, by performing a random exploration of an arbitrary domain with arbitrary

closed-loop trajectories, we are able to get relevant information regarding the maximum

size of the scaled contour that can be fully inscribed in the domain. We can compare

this analysis with Hadwiger’s criterion [34, 35]. This gives a sufficient condition for a

domain Ω1 of area A1 and perimeter P1 to be contained into a second domain Ω2 of

area A2 and perimeter P2. If their areas and perimeters verify the following inequality:

2π(A1 +A2)− P1P2 > 0, then the smallest domain can be totally inscribed in the second

domain. However, this is only a sufficient but not necessary condition [16]. In our case,

thanks to a random sweeping through the replicas of a second domain, we can predict
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exactly when one of the regions can be fully inscribed in the other. This result can be

useful for studies of packaging optimization.

1.4 A new invariant for straight motion

Cauchy’s formula is one of the major achievements of geometric probability that is

valid even for arbitrary trajectories that randomly cross a domain. This important result

gives us the ratio of the area to the perimeter of a region in 2D or the ratio of the volume

to the area of a domain in 3D. However, this invariant is not enough to obtain the area

and perimeter, or the volume and area, separately. Then, we need a second formula or

invariant from a random exploration, in order to estimate these geometrical parameters.

In this section we will introduce a second invariant for the case of straight motion. A

second formula was discovered by M. Crofton [36] but, unfortunately, it is only valid

for convex shapes. Here, we will introduce a more general invariant that simplifies to

Crofton’s formula if the explored domain is a convex shape.

1.4.1 Crofton’s theorem

Important developments of geometric probability are also due to a British

mathematician named Morgan Crofton [19], he introduced the notion of measure for the

set of random distributed lines that intersect an arbitrary domain in 2D [16]. By using

this concept, he found another way to demonstrate Cauchy’s formula and, later on, this

allowed him to find a second invariant for the case of convex sets. Let us recall this

remarkable result:

Theorem 3. For any convex region Ω ∈ R2 of area A and perimeter P crossed by

random and uniform distributed lines, the third moment of the chord length distribution

< L3 > is:

< L3 >= 3
A2

P
(1.5)

Proof. The demonstration of this important theorem is found in B (obtained from [16]).

1.4.2 Evaluation of convex shapes

Let us consider a convex shape in 2D of area A and perimeter P , which is crossed

by random and uniform distributed lines. The mean chord length is given by Cauchy’s
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formula: < L >= πA/P . The third moment of the chord length distribution is given by

Crofton’s formula: < L3 >= 3A2/P . Then, if we divide both equations we obtain:

A =
π < L3 >

3 < L >
(1.6)

In addition, if we divide Crofton’s result by the square of Cauchy’s formula we get:

P =
π2 < L3 >

3 < L >2
(1.7)

1.4.3 Limitations of Crofton’s formula

Crofton’s formula relates the third moment of the chord length distribution of a convex

domain to its area and perimeter. One can wonder if this formula is also valid for non-

convex regions. A simple counter example would shatter any hope for this generalization.

Let us consider an annular region whose inner and outer radii are R1 = 1 and R2 = 2,

respectively (see fig. 1.10a). According to Crofton’s formula, the expected third moment

is < L3 >= 3[π(4− 1)]2/(2π(2 + 1)) = 9π/2. One can perform a numerical simulation to

evaluate the third moment of the chord length distribution. This is shown in fig. 1.10b,

where we observe that < L3 ≯= 9π/2. This simple counterexample shows that Crofton’s

formula does not apply to non-convex regions.

(a) (b)

Figure 1.10: Crofton’s formula does not apply to non-convex shapes. A simple counterexample
is given. (a) Uniformly distributed random chords in an annular region. (b) Third moment of
the chord length distribution as a function of the number of crossing chords. The plateau value
differs from the one predicted by Crofton’s formula.
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1.4.4 A new invariant for non-convex regions

Until now, we have shown that the random crossing of a convex region by straight

lines can give us a direct estimation of its area and perimeter. However, this cannot be

generalized for arbitrary regions because only Cauchy’s formula is also valid for non-convex

shapes. Here, we will introduce a more general invariant for the case straight-line motion

randomly intersecting non-convex domains in 2D. Instead of using the chord lengths, we

consider the lengths for all the possible segments given from each crossing line (see fig.

1.11). In Appendix C we demonstrate the following theorem:

Theorem 4. Let us consider an arbitrary region Ω ∈ R2 of area A and perimeter P ,

which is crossed by randomly distributed lines. A point belonging to a line L is identified

by its curvilinear abscissa ℓ along the line. For every crossing line we enumerate the

points where the line enters and exits the domain. We denote by (ei)i=1...N the entrance

points and by (si)i=1...N the exit points, as shown in fig. 1.11. The following relation is

verified for any arbitrary shape:

β =
⟨
∑

k,j|sk − ei|3−
∑

k,j|sk − si|3−
∑

k,j|ek − ei|3⟩
⟨
∑

k,j|sk − ei|−
∑

k,j|sk − si|−
∑

k,j|ek − ei|⟩
=

3A

π
(1.8)

Figure 1.11: A non-convex shape crossed by a line. A point belonging to this line is identified
by its curvilinear abscissa ℓ. We denote by (ei)i=1...N the entrance points and by (si)i=1...N the
exit points.

Proof. The demonstration is given in the Appendix C.
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One can note that in the case of convex regions, the left member of eq. 1.8 simplifies

to the ratio between Crofton and Cauchy formulas. Then, we can demonstrate Crofton’s

theorem from this new invariant.

1.4.5 Evaluation of non-convex shapes

Let us consider now a non-convex shape in 2D of area A and perimeter P , which is

crossed by random and uniform distributed lines. From the new invariant denoted β in

eq. 1.8 we have:

A =
πβ

3
(1.9)

We can use this result in Cauchy’s formula, which is also valid for non-convex shapes.

Then, the perimeter is obtained:

P =
π2β

3 < L >
(1.10)

1.5 Application to shape recognition

Many branches of science need to measure, analyze and recognize geometrical objects.

For instance, the main goal of radiology is to evaluate the health state of an organ and

look for a characteristic shape of a well-known pathology (see fig. 1.12). There exist

different physical methods that are implemented worldwide, most of them use ultrasound

or electromagnetic beams to perform the analysis. These techniques require an oriented

evaluation of the shape and employ cross sections in different directions to fully reconstruct

the region of interest [37]. This is possible through the use of certain mathematical

methods, for example, the Radon transformation [38].
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.

Figure 1.12: X-Ray beams intersecting the cross section of a non-convex region. Area and
perimeter measured by processing the binarized image and using a scale factor

If we cannot get a full reconstruction of the analyzed shape, the global geometric

characteristics such as the area and the perimeter of the object in 2D, or its volume and

surface in 3D, provide useful information of interest for many practical applications. This

problem can be addressed from the point of view of geometric probability, without the

need of a sophisticated technology to fully reconstruct the region of interest.

Thanks to the application of the formulas shown in the previous sections, we will see

that any arbitrary shape can be evaluated by means of a random ballistic exploration.

Moreover, once we find the area and perimeter of the explored region, we can define a

simple way to distinguish a shape from other ones taken among a list of known objects (a

shape dictionary). The analysis will be done for regions in 2D but this can be extended

to 3D by replacing the corresponding equations for the statistical invariants, in the same

way as it has been done for Cauchy and Crofton formulas in [39].

1.5.1 Experimental implementation

An interesting field of application for these powerful statistical results could be

robotics. A simple disoriented robot could now measure any arbitrary shape thanks to a

random exploration. This strategy can be implemented with simple robots, who can

have small memory capabilities, simple mechanical motion, and only a few sensors to

interact with the environment. Due to their simplicity, these kinds of robots have been

intensively used to study collective phenomena under multiple configurations [40–43]. In

figure 1.13, three examples of small robots are depicted. In fig. 1.13a, we show a
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hexbug. This 4 cm size robot is made of a small vibrator connected to battery and a

soft asymmetric mechanical support. It converts the vibrations into a propelling force.

In fig. 1.13b, we show a M5Stick-C robot, which is a 5 cm size robot made of a Esp32

microcontroller connected to a mechanical support that has 4 rotating motors. The

speed and direction of each motor can be individually controlled to generate complex

motion. In addition, this robot can be customized, for instance, by placing a boundary

detector and a light intensity sensor on the top. In fig. 1.13c, we show a kilobot, which

is a 3 cm size robot who has a simple mechanical support made of 3 fixed legs. It

employs 2 vibrators connected to a battery to generate different types of motion. An

infrared sensor and a light sensor are added to be programmed and communicate with

other robots.

Figure 1.13: Some robots employed in physics. (a) A hexbug. This is a 4 cm size robot made
of a small vibrator connected to battery and a soft asymmetric mechanical support. It converts
the vibrations into a propelling force. (b) A M5Stick-C robot. This is a 5 cm size robot made
of an Esp32 microcontroller connected to a mechanical support that has 4 rotating motors. The
speed and direction of each motor can be individually controlled to generate complex motion.
Some sensors can be added, in this case a boundary detector and a light intensity sensor. (c) A
Kilobot. This is 3 cm size robot which has a simple mechanical support made of 3 fixed legs. It
employs 2 vibrators connected to a battery to generate different types of motion. An infrared
sensor and a light sensor are added to be programmed and communicate with other robots.

Initially, we started the experiments with a Kilobot and also a M5Stick, but we they

cannot perform straight-line motion during a long period of time. According to our

recognition strategy, we need a random oriented ballistic motion to be able to employ

the formula presented in equation 1.8. Otherwise, the mean chord length theorem is the

only statistical invariant also valid for random motion. In this case it would correspond

to the mean path length traveled within the surface. Unfortunately, this only gives us

a ratio between its area and perimeter, without retrieving both parameters separately.

The only solution was to find a robot able to perform straight-line motion. To achieve
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this, it needs to use motor encoders for controlling the velocity on each side of the robot.

We found a perfect candidate for such a task, and this is the commercial robot named

Sphero (see www.sphero.com for more info). Due to its easy programming environment

based on JavaScript and the presence of few sensors, this robot has been used for physics

and electronics demonstrations during the last years [44], [45]. A picture of this robot is

shown in (fig. 1.14a). The Sphero is a 7 cm size robot in the form of a transparent robotic

ball whose internal technology can be seen through its acrylic shield. It has two motor

encoders who are capable of performing an almost perfect straight-line motion. It also

has a 2mm diameter light sensor, an internal clock and an accelerometer. The built-in

battery can be charged with an inductive-based charger and its base has to be connected

through a USB port. Depending on the working speed, this robot can be moving during

a time ranging from 1 to 4 hours.

We decided to use the sphero robot because it has several features that make him an

appropriate robot to be working with. Let us highlight some of them. It is constructed

with a strong polycarbonate shell that resists impacts. The working speed can be

programmed between 1 to 50 mm/s. It has a Bluetooth connection with a range of 30

meters, allowing it to communicate with a computer or any smart device. It has internal

multicolored LEDs. It is programmable through many programming languages based on

intuitive blocks, but also on JavaScript.

1.5.2 Experimental setup

We project different convex and non-convex figures on the floor with an overhead

illumination sent by a video projector. The robot is restricted to move in a bounded

arena much larger than the projected figure size. Then, the robot performs a series of

uncorrelated straight motions in this arena. An example of a random exploration of an

Eiffel tower is shown in fig. 1.14. After calibrating the light sensor, the robot can detect

whether it is inside or outside the projected shape. It records the time spent within the

region and it is converted to a series of chord lengths l1, l2, ...ln for each crossing line (see

fig. 1.14a), then, it randomly changes the orientation to generate a new straight motion

and start the process again. Thanks to a simple algorithm, which is detailed below, the

robot is able to perform a recognition of the explored shape among a list of previously

stored shapes (see fig. 1.14b).
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Figure 1.14: Experimental implementation of shape recognition with a simple sphero robot. (a)
Main components of the Sphero robot and examples of two random crossing lines with their
decomposition in inner (red) and outer (blue) chords. (b) Recognition strategy by comparison
of the measured area and perimeter with the corresponding values of the stored shapes.

The robot light sensor is programmed to flash its built-in LED when it is inside of

the projected region. In order to verify the uniform distribution of the robot’s presence

within the region, an external camera is placed on the top and it records the robot’s

motion during the whole exploration, which lasts about 4 hours. For each exploration

consisting of one thousand crossing lines, we superpose the frames taken every 10 s. This

is shown in (fig. 1.15), where we can observe a uniform distribution of the light dots,

corresponding to a uniform exploration of the regions by means of the random oriented

straight motion performed by the robot.
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Figure 1.15: Superposition of robot’s led position that flashes when the robot is inside the
explored region. These images were taken with an external camera to verify the uniformity of
robot’s presence on the explored shape. On the top, we show the superposition of 40, 200 and
1000 lines intersecting the Eiffel tower silhouette. On the bottom, we show the superposition of
1000 lines intersecting a triangle, a pyramid and a statue of Liberty, respectively.

1.5.3 Shape recognition strategy

The area and perimeter are simple geometrical parameters that can now be estimated

for arbitrary regions using the formulas we demonstrated in the previous section. From the

recording done with the external camera, we can reconstruct the chord length distribution

and compare with the estimation made by the robots and the theoretical one. Only an

analytic expression is found in the literature for regular polygons [46]. In the case of non-

convex regions, an analytic expression of the chord length distribution is difficult to obtain.

However, an approximation can be obtained using numerical simulations. The case of an

equilateral triangle intersected by randomly distributed straight lines is illustrated in fig.

1.16a, where we show the comparison of the theoretical probability density function and

the experimental histogram for the chord length distributions.
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(a) (b)

Figure 1.16: Recognition strategy based on chord measurements. (a) Some random distributed
lines intersecting an equilateral triangle and the corresponding chord length distribution his-
togram compared with the theoretical curve (red dashed line). (b) Convergence trajectories for
each explored shape in a perimeter-surface representation, as the number of crossing lines N
increases (increasing the line contrast). The ellipses represent the statistical confidence limits
for 90%, 95% and 99% and they were estimated by Monte Carlo simulations.

For each scanned object we have an estimate of its area and perimeter as a function of

the intersecting lines. This can be represented in a Perimeter-Surface color plot, as shown

in figure 1.16b for the shapes experimentally projected. A curve of a given darkening

color represent the time evolution of the estimated perimeter and surface as we increase

the number of crossing lines. The ellipses placed in this plot represent the intervals of

confidence with relative errors of 1, 5 and 10 %, respectively. The statistical confidence

was estimated by Monte Carlo simulations. From this plot, we observe that 1000 lines are

sufficient to distinguish the experimentally explored shapes within a relative error of less

than 10%. At the end of the random exploration, the robot compares the estimated values

with the ones stored in its dictionary. For each explored shape present in the dictionary

the robot displays on its screen a schematic of the recognized shape. If no shape was

recognized, the robot displays a question mark. In figure 1.17, we show the recognition

examples for the Eiffel tower, a triangle and a circle.
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(a) (b) (c)

Figure 1.17: Recognition results. After crossing the explored shape with 1000 randomly dis-
tributed lines, the sphero’s LED matrix draws the shape that was recognized. Here we show
the recognition of the Eiffel tower, a triangle and a circle. If no shape was recognized it draws
a question mark.

1.5.4 Convergence analysis

The Sphero has a limited memory and cannot store all the chord lengths. Thus, it has

to perform an iterative estimation of the region’s area and perimeter by using the formulas

given in the previous sections. After each time the robot performs a new straight motion,

it updates the area and perimeter values by computing the averages corresponding to

formulas given in eqs. 1.6 to 1.10. In figure 1.18, we plot in bold solid line the area and

perimeter experimentally estimated, as a function of the number of crossing lines. We

superpose, in light color, the results obtained from numerical simulations of 100 different

starting points.

(a) (b)

Figure 1.18: Convergence comparison between 100 simulations for each shape and a single
robotic implementation. Estimated (a) surface and (b) perimeter as a function of the number
of crossing lines

From the numerical simulations we can plot the relative error estimation for the area

and perimeter as a function of the number of crossing lines. These errors are plotted in a
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logarithmic axis in figs 1.19a-b to show the power law trend.

(a) (b) (c)

Figure 1.19: Logarithmic plots for the relative error in the estimation of the region’s (a) area
and (b) perimeter, as a function of the number of crossing lines. The insets show a power law
of −1/2 with a prefactor depending on the complexity of the region. (c) Relative error as a
function of the Kullback-Leiber divergence compared to a circle.

From the previous plots, we observe that the relative error is inversely proportional

to the square root of the number of crossing lines, as depicted in the insets of these

figures. This trend is expected because the fluctuations should converge as 1/
√
N [47].

The error prefactors for the surface (σ0S) and perimeter (σ0P ) represent the initial relative

error of the corresponding explored shape. It seems that this prefactor increases with the

qualitative complexity of the shape. One can note that the circle has the smallest prefactor

and the Eiffel Tower has the largest one. The Kullback-Leibler divergence DKL can be

used as a quantitative estimate of the complexity of a shape. This parameter measures

a type of relative entropy between the probability distribution and a second one Q used

as a reference. It is defined as DKL(P∥Q) =
∫∞
−∞ p(x) log p(x)

q(x)
dx, where p and q are the

corresponding probability densities. In our case, we compute the Kullback-Leibler for the

chord length distribution of each figure compared to the one corresponding to the circle.

In figure 1.19c we plot the prefactor error for the surface (up) and perimeter (down) as a

function of the Kullback-Leibler divergence given for each figure compared to the chord

length distribution of a circle. This plot gives a quantitative estimate of the correlation

between the prefactor value and the complexity of the explored shape. From this figure,

one can observe that the error prefactors σ0S and σ0P increase from the simplest shape,

a circle, which has a rotational invariance, to the most complex shape, the Eiffel Tower.

1.5.5 Invariance under rigid transformations

Some evaluated shapes can be composed of disconnected objects and the equations

eqs. 1.6 to 1.10 remain valid provided that the perimeter and area are replaced by the
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sum of perimeters and areas, respectively. In figure 1.20 we compare the convergence

in the estimation of the surface and perimeter of projected smileys composed of two

circular eyes and a mouth. A robot was placed on the arena and bounces for several

hours. Then, we analyze the illuminated regions corresponding to a rigid transformation

of the initial smiley. The estimated area and perimeter converge similarly towards the

same theoretical value with an error of less than 10% when the averages are made with

800 random intersecting lines. This agrees with the fact that the area and perimeter are

geometrical invariants under rigid body transformations such as translations, rotations,

mirrors, and combinations of them. Then, all the figures obtained by rearrangements in

space will have the same point in the perimeter-surface plot. This is going to be a relevant

property for analyzing more complex shapes.

Figure 1.20: Invariant convergence under rigid transformation. Different states of a smiley
present similar convergence for the estimation of the area and the perimeter of the region as a
function of the intersecting lines.

1.5.6 Reading strategies

The recognition strategy based on the perimeter-surface space representation of an

arbitrary 2D object is restricted to groups of figures which remain different after the

application of any rigid transformation. If we consider the uppercase letters of the Latin

alphabet and these forms are projected on the floor, we can perform the same robotic
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exploration as before, to estimate their area and perimeter. For each letter, we obtain

a different point in the perimeter-surface plot shown in fig. 1.21a. This allows us to

distinguish the letters by means of a random ballistic exploration. It is important to

note that this recognition is not possible if, instead of taking the uppercase letters, we

use the lowercase letters. This is because, in this case, some letters would be a rigid

transformation of another one (for example the letters d and b), retrieving exactly the

same point in the perimeter-surface plot.

(a) (b)

Figure 1.21: Recognition strategy for letters and words from a text. (a) The uppercase letters
of the Latin alphabet and (b) the first words of the preamble of the Universal Declaration of
Human Rights have a unique point in the perimeter-surface space representation.

We can extend this recognition strategy to distinguish words belonging to a text. In

Fig. 1.21b we plot the perimeter and surface of the words contained in the preamble of the

Universal Declaration of Human Rights [48], which plays the role of our word dictionary.

We find that all the words can be separated in this diagram. To illustrate this, let us

analyze the convergence for the area estimation of the word FREEDOM by means of a

random ballistic exploration. We have two ways for estimating the area of this word. The

first possibility would be to consider each word as a single object to be recognized. The

second possibility is to consider the word as an object composed of several letters that

can be individually recognized. To illustrate this, in figure 1.22a we plot an arbitrary line

that crosses the letters O and D. In the individual exploration, after exiting the letter O,

an estimation of its area and perimeter is performed, then the robot enters the letter D

and when it exits this shape a new estimation of its area and perimeter is performed. In

contrast, in figure 1.22b the exploration is performed throughout the full word which is

considered as a single object.
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Figure 1.22: Convergence comparison for the surface estimation of the word FREEDOM as a
function of the number of crossing lines. (a) Each letter is independently explored, and the
corresponding area is estimated. From Monte Carlo simulations we obtain the error prefactor
σ0Si for each letter. (b) The word is considered as a single shape to be randomly explored.
Monte Carlo simulations give us the error prefactor σ0S .

In order to compare the convergence of both strategies, in figs. 1.22, we plot the

results of Monte Carlo simulations for the surface estimation as a function of the crossing

lines. In figure 1.22a, we show the individual convergence plots for 1000 lines crossing

each letter. Each plot corresponds to the estimated surface of each letter, normalized by

the whole word surface Sword. Below each plot we show the obtained error prefactor σ0Si
,

where i = F,R, ...,M . Their corresponding relative error as a function of the crossing lines

follows the law σSi
= σ0Si

/
√
N . In figure 1.22b, we show the analogous convergence plot

for 7000 lines crossing the whole word FREEDOM, and we also show the obtained error

prefactor σ0S. The relative error as a function of the crossing lines follows a similar law

σS = σ0S/
√
N . One can note that in the case of individual surface estimations, the error

accumulates and the final relative error would be σS =
∑

σ0Si
/
√
1000 ≈ 9% . On the other

hand, in the case of a global exploration, the final relative error is σS = σ0S/
√
7000 ≈ 7% .

This demonstrates that the surface estimation convergence is faster when we take the word

as a single 2D object. This is due to the fact that if we choose a letter-by-letter strategy,

the perimeter and surface area computation accumulates the uncertainties associated to

the individual recognition of each letter.
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1.6 Conclusions and perspectives

In this part of the thesis, we have shown that we can evaluate and recognize an

arbitrary 2D object by means of a random ballistic motion. We employed some important

results from geometric probability that were initially given for convex regions, but they

have been recently extended for non-convex regions and Brownian motion. Additionally,

we have extended Cauchy’s formula for closed-loop trajectories. After achieving relevant

mathematical developments, we found a new general invariant for a random ballistic

exploration. This allowed us to return to the initial problem of evaluating and recognizing

shapes in 2D. The combination of this new formula with Cauchy’s theorem leads us to a

direct estimation of the area and perimeter of any shape.

For each explored region, we associate a representation in the perimeter-surface plot.

This is a very simple, but powerful way to distinguish a 2D object among a group of shapes.

The proposed strategy is feasible because if we randomly take two arbitrary objects in

2D, the probability for them to superpose in this space representation is very small. This

technique has been capable of recognizing complex figures, such as the silhouettes of some

famous monuments and it was also extended to read letters and words from a text.

The proposed strategy does not require any knowledge of the absolute or relative

position, nor of the direction of movement. The only requirement is to have a uniform

random exploration of the region of interest. These ideas could find applications in micro-

robotics where the memory capabilities are very limited and no global information can

be provided. Thanks to the measurement of local quantities, a robot is able to recognize

shapes and give relevant global geometric information about the region.

A possible extension of this work could be the combination of this strategy with

machine learning. In particular, we can employ the algorithms used for clustering analysis

to achieve an unsupervised recognition strategy. This would reduce the number of random

crossing lines needed to distinguish a shape in the perimeter-surface space representation.

The use of Gaussian Mixture Models could be a good alternative to achieve this goal.
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2
Time reversal and wave engineering

with damping pulses

2.1 Introduction

Damping is ubiquitous in nature and is present in most physical systems in which it is

usually associated with a dissipation of energy [49]. This energy loss can be transferred to

the environment in form of heat, or converted into another type of energy [50]. Damping is

specially relevant for the understanding of vibrations and wave phenomena, where diverse

dissipation mechanisms are encountered [51].

In this chapter, we are going to study some interesting applications of an active

mechanical system in which elastic waves can propagate. This medium can perform a

sudden and strong time-localized damping change for an initial propagating wave. We

will demonstrate that in the limit of a high damping shock, it totally stops the wave,

maintaining only the wavefield, while its time derivative is set to zero. This action

generates two counter-propagating waves, one of them being, up to a factor of one half,

the time-reversed version of the initial propagating wave. This represents a

counter-intuitive effect because damping is usually associated with the irreversibility of a

physical system , since it breaks the time-reversal symmetry of the governing equations

of motion [52], [53], [54].

We will illustrate this new time-reversal mechanism with numerical simulations and

an experimental proof of concept is provided with a system composed of repelling magnets

that levitate on a tunable air cushion. This experimental system behaves like an elastic

medium where longitudinal waves can propagate, and a damping pulse can be applied

from the transverse direction to stop the wave. This action retains the wavefield and

annihilates its time derivative, generating the two counter-propagating waves.
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After introducing this new time-reversal mechanism, we will investigate what happens

if we apply several damping pulses at specific times. We will show that the consecutive

application of damping pulses can totally destroy a monochromatic wave, and in the case

of broad band waves, the spectrum can be tailored thanks to a selective annihilation of

specific wavelengths.

We will start by recalling a few important concepts regarding the time-reversibility of

wave phenomena and the common techniques that are employed to perform time-reversal

of waves.

2.2 The time-reversal invariance

At the microscopic level, the motion of particles is often well described by an

interacting potential, which depends only on the relative position between them (due to

electrostatic or magnetic forces). Then, their governing equations of motion, given from

Newton’s laws, are invariant under a time-reversal transformation. This means that if

we could invert the velocity of each particle at a given time, we would expect to recreate

exactly the same initial configuration of this system of particles. This idea was proposed

by Loschmidt in 1850 [55], [56], to criticize the kinetic theory of gases as being

incomplete to predict the irreversibility stated by the second law of

thermodynamics [57]. The apparent paradox was solved in the XXth century [58], by

considering the velocity of each particle as a random variable, which makes the system

highly sensitive to the initial conditions. This implies the impossibility of reconstructing

the original state due to the exponentially increasing position error as a function of

time [59].

The second Newton’s law of motion represents only an example among other equations

in physics that are invariant upon time-reversal. Another example is given from the

equation proposed in 1840 by D’Alembert [60], when he was studying the vibrations of

an elastic string. Since then, it has been found that diverse physical phenomena can be

well described by the so-called wave equation:

∆ϕ− 1

c2
∂2ϕ

∂t2
= 0 (2.1)

where ϕ is a scalar or vector-valued function of the space and time coordinates, which is

named the wavefield, and ∆ is the Laplacian operator. We can observe that this equation

is invariant under time-reversal transformation because if ϕ(r⃗, t) is a solution, then the
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function ϕRt = ϕ(r⃗,−t) is also solution of the equation. In the case of an isotropic

propagation which occurs when we have an homogeneous and stationary medium, the

equation 2.1 has also a spatial reversibility because if ϕ(r⃗, t) is a solution of the above

equation, then the function ϕRs = ϕ(−r⃗, t) is also solution of the equation. This is a

fundamental characteristic of usual waves allowing them to follow a forward or backward

propagation in space but also in time. Contrary to the case of particle systems, waves are

less sensitive to slight perturbations [61], because they are governed by a linear system

(when they are modeled by d’Alembert equation) and the errors do not grow exponentially

with time as it is the case with particle systems. In this sense, if Loschdmidt had applied

his idea to waves by inverting the time derivative of a wavefield described by D’Alembert

equation, he would have noticed the refocusing of the initial propagating wave towards

the source. Unfortunately, the first experimental realization of a time-reversal of waves

was achieved more than one century later, when diverse mechanisms were engineered

[62], [63], some of them employing sophisticated technology, while others only needing an

instantaneous disruption of the wave propagation properties [5].

2.3 Time-reversal mechanisms for waves

The time-reversal of a wave does not take place spontaneously and various techniques

have been developed to achieve this result for different wave systems, for instance, in the

case of acoustic [64], electromagnetic [65] and surface waves [6]. These common techniques

can be grouped into three categories: the phase conjugation, the time-reversal cavities

and the instantaneous time-reversal mirrors. The first two mechanisms rely on the fact

that any wavefield in a region of the space can be fully determined by knowing the field

and its derivative on its enclosing surface [66]. The last mechanism has been recently

demonstrated [5] and it requires only a sudden change of the medium properties.

2.3.1 Phase conjugation

The time-reversal mechanism obtained thanks to a phase conjugation of an initial wave

front was proposed for the first time in 1948 by Denis Gabor [67], who introduced a new

microscopy concept that he named “holography”. This principle allows us to reconstruct

an image from an interference pattern. An example of this reconstruction technique

is illustrated in fig. 2.1, corresponding to the same image presented by Gabor during

his Nobel prize lecture [68]. This principle is based on the fact that a monochromatic
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source ϕm, can be mathematically expressed as the real part of the complex representation

ϕm = Re[A(r⃗)eiωt], where A is function called the phase [69]. Then, the wave associated

with the conjugated phase is ϕc = Re[A∗(r⃗)eiωt] = Re[A(r⃗)e−iωt]. We can notice that ϕc

corresponds to the time-reversed version of the initial propagating wave ϕm.

Figure 2.1: Example of image reconstruction by the principle of holography proposed by Gabor.
On the left, we observe the original image and, on the right, we observe the reconstructed one.
The complex image at the top corresponds to the diffraction pattern between a monochromatic
source and the original image. This picture was shown during his Nobel prize lecture [68].

Gabor’s idea to reconstruct an image by means of holography consisted in a two-

step process, the first step was illuminating the object with a monochromatic source

and recording the diffraction pattern on a photographic film (see fig. 2.2a). Then, the

second step was reading the diffracting pattern [67], which was obtained by illuminating

the photographic film with a plane wave similar to the first illumination to recover the

superposition of the real image and a phase-conjugated version of this image at the focal

plane of an objective (see fig. 2.2b). Because of this overlapping, the reconstructed
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image appeared blurry, for this reason the science community lost interest in the phase

conjugation technique for several years, until the invention of the laser in 1960 [70]. It

allowed to exploit this idea of a reference recorded with the diffraction pattern off-axis, to

create the first hologram of a three-dimensional object in 1962 [71], [72]. This highlighted

the importance of the discovery made by Gabor, which led him to win the Nobel Prize in

Physics in 1971 “for his invention and development of the holographic method” [73].

Figure 2.2: The holography mechanism designed by Gabor consisted of two steps: (a) Writing
the hologram: an object is illuminated with a monochromatic source and the diffracted pattern is
recorded on a photographic film. (b) Reading the hologram: the photographic film is illuminated
with the same monochromatic source, and this generates a real and a virtual image of the object
that overlap along the optical axis. The virtual image corresponds to the time-reversed version
of the original image.

Later on, other phase conjugation mechanisms were proposed [74, 75], and they were

implemented to electromagnetic and sound waves. A common configuration employs the

properties of a non-linear medium to generate the time-reversed wave. This is the case

of the four-wave mixing technique [76], in which an initial propagating signal wave is

sent into a medium possessing a non-linearity of order 3 with two counter propagating

“pump waves”. The interacting waves generate a fourth wave which is proportional to

the time-reversed version of the initial wave. Nowadays, there exist several alternative

configurations in non-linear optics to achieve the phase conjugation [77].

2.3.2 Time-reversal cavities

The phase conjugation method was limited to the time-reversal of monochromatic

waves; thus, a new mechanism was needed in order to apply it to broad band waves. This
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was proposed by M. Fink and collaborators about 30 years ago [64], allowing them to

refocus ultrasound waves. The idea was to record the wavefield by placing transducers

on a surface surrounding the propagating region (see fig. 2.3). The propagating wave is

recorded locally at the position of each transducer and their signal is sent to a computer

to store them in a time sequence. Then, the time sequence is inverted and sent back to the

transducers to reemit the time-reversed wavefield. From the time-reversal invariance of

the wave equation, this process generates a counter-propagating wavefield in the medium

that refocuses to the source. The principle of this “digital” time-reversal method is

illustrated in the following figure, in the case of a heterogeneous propagating medium.

This heterogeneity can be of practical relevance in reducing the number of transducers

needed or to allow a sub-wavelength refocusing [61].

Figure 2.3: Time-reversal cavity for acoustic waves. (a) First, the wave field is recorded by
a network of transducers surrounding the medium. (b) Then, the signal is time-reversed on
a computer and reemitted by the transducers, generating a wave that refocuses towards the
source.

The previous experimental setup can be seen as a time-reversal cavity because the

wave is surrounded by transducers which are able to record and then reemit the

time-reversed wavefield. This idea has been exploited in nondestructive tests [78], [79],

medical imaging [80], and treatments, such as the case of lithotripsy [81], thanks to the

amplification of the refocusing wave returning towards the source [82]. The bandwidth

of this time-reversal technique is only limited by the combination of the sensing speed of

the detectors and the signal processing time [63]. This represents a relevant limitation in

the case of electromagnetic waves and cannot be used in optics where the wavefield

cannot be acquired.
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2.3.3 Instantaneous time-reversal mirrors

The previous techniques have been extensively used to perform time-reversal of

waves [83], [84], but they usually require a sophisticated technology to generate a

time-reversed version of a propagating wave. A question that could come to our minds

is whether there exists a simpler physical mechanism to generate a time-reversed wave

from an initial propagating wave. This question has been recently answered by V. Bacot

and collaborators in [5], where they demonstrated a new time-reversal technique by

performing an instantaneous change of the propagating velocity. The proposed

mechanism is illustrated in fig. 2.4, where a point source emits a wave packet at the

time t0 and propagates through a medium, which can be inhomogeneous. Then, a

sudden spatially homogeneous disruption of the wave propagation properties occurs in

the entire medium at the time tITM = t0 + ∆t. It results in the production of a

counter-propagating time-reversed wave in addition to the initial forward-propagating

wave. This counter-propagating wave refocuses at the source position at time t0 + 2∆t.

Figure 2.4: Principle of instantaneous time-reversal mirror. At the time t0, a wave source emits
a propagating wave packet in a given medium, then, a sudden spatially homogeneous disruption
of the wave propagation properties occurs in the entire medium at time tITM = t0 + ∆t. It
results in the production of a counter-propagating time-reversed wave, in addition to the initial
forward-propagating wave. This counter-propagating wave refocuses at the source position at
time t0 + 2∆t

In [5], it has been shown that in the case of a disruption made by an instantaneous

change of the propagating velocity, this generates a time-reversed wave whose amplitude

is proportional to the time derivative of the initially propagating wave. Compared to the
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time reversal cavities, the digital memory is replaced by an analog memory throughout

the entire space. The experimental realization was done by employing gravito-capillary

waves, and the instantaneous velocity change is performed with a shaker. This generates

an abrupt acceleration change in the medium, creating an instantaneous disruption of the

propagating velocity. An example of this time reversal mechanism is shown in fig. 2.5,

in which a source having the shape of a smiley is time-reversed. This principle is general

and can be applied to other types of waves. However, in the case of electromagnetic waves

the propagating speed gives an experimental limitation for employing this technique as it

would require an abrupt change of the refractive index for the entire medium [63].

Figure 2.5: Image sequence of an instantaneous time reversal experiment with a complex source
[5]. A source having the shape of a Smiley emits a divergent gravito-capillary wave. At the
instant of the ITM, the wave field features a complex interference pattern in which the original
shape is no longer apparent. As the time-reversed wave refocuses, the shape of the source
becomes visible again. The time interval between two successive images is 26 ms.

2.4 A damping driven time-reversal mechanism (DTR)

In the previous sections, we described three relevant techniques that allow one to

perform the time-reversal of an initial propagating wave. These mechanisms are based

on the time-reversal invariance of the wave equation 2.1. Here, we are going to explore

another simple but counter-intuitive method for time-reversing a wave, by adding a

damping term to the wave equation. This is counter-intuitive because damping is

usually associated with irreversibility in physical systems.

Let us imagine that we could stop a propagating wave, but totally retaining its

wavefield. This would correspond to an instantaneous “freezing” of the whole wavefield

at any time of its propagation. But what would happen if just after freezing this wave,

we suddenly release it? This is the question that we want to address in this section.
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Let us consider a wavefield ϕ (r, t) propagating, without damping, in a medium whose

dispersion relation is ω0 (k). The wavefield can be described by the d’Alembert equation,

which can be rewritten, after performing the spatial Fourier transformation [85], as:

∂2ϕ̃

∂t2
(k, t) + ω2

0 (k) ϕ̃ (k, t) = 0 (2.2)

where ϕ̃ (k, t) is the Fourier space representation of ϕ (r, t). This equation is, as

expected, also invariant under time-reversal transformation because if ϕ̃ (k, t) is a

solution then, ϕ̃ (k,−t) is also a solution. In the case of a propagating wave where there

exist multiple dissipation mechanisms, in the simplest approach they can be modeled by

including a damping term which is proportional to the first order time derivative of the

wavefield:

∂2ϕ̃

∂t2
(k, t) + ζ (k, t)

∂ϕ̃

∂t
(k, t) + ω2

0 (k) ϕ̃ (k, t) = 0, (2.3)

where ζ (k, t) is a time-dependent damping coefficient. We observe that, contrary to

the previous equation, this additional term is not time-reversal invariant, thus, it can be

seen as a source of irreversibility. In the following notations we will omit the dissipation

k-dependence only for simplicity.

Figure 2.6: A high damping pulse applied from the time t = t0 to t = t1. A strong and
instantaneous damping change is applied to an initial propagating wave. The state of the wave-

field is changed from
(
ϕ̃ (t0) ,

∂ϕ̃
∂t (t0)

)
by annihilation of its time derivative after the application

of this damping pulse, then becoming
(
ϕ̃ (t0) , 0

)

First, we consider a medium where the damping coefficient is suddenly changed from
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a very low value ζ ≪ ω0, at the time t0 to a very large value ζ ≫ ω0, staying at this

value until a time t1 = t0 +∆t, when is set back again to its original value ζ ≪ ω0. This

damping term can be rewritten as ζ (t) = ζ0Π(t), where Π(t) is a unit rectangle function

spanning from t0 to t1 and ζ0 is the dissipation amplitude (see fig. 2.6).

Under this approximation, the DTR process can be interpreted as a change of the

initial Cauchy conditions [86] for the time evolution of the wavefield
(
ϕ̃ (t) , ∂ϕ̃

∂t
(t)
)
during

the time of the application of the damping pulse. If we consider a total “freezing” of the

wavefield and an annihilation of its time derivative, then at the time t = t1, the new

state becomes
(
ϕ̃ (t1) ,

∂ϕ̃
∂t

(t1)
)
=
(
ϕ̃ (t0) , 0

)
, which can be decomposed, according to the

superposition principle [87], in two counter-propagating waves:

(
ϕ̃ (t0) , 0)

)
=

1

2

(
ϕ̃ (t0) ,

∂ϕ̃

∂t
(t0)

)
+

1

2

(
ϕ̃ (t0) ,−

∂ϕ̃

∂t
(t0)

)
(2.4)

The first term of the right member of this equation is associated (up to a factor one

half) to the exact state of the incident wavefield before the DTR. It corresponds to the

same wave shifted in time: ϕ̃> (t) = 1
2
ϕ̃i (t− t1 + t0). The second term is associated

with a wave whose derivative has a minus sign. It corresponds to the time-reversed

wave: ϕ̃< (t) = 1
2
ϕ̃i (t1 − t+ t0). In the limit of t1 → t0, the wavefield can be written, for

a time t > t0, as:

ϕ̃ (t) =
1

2
ϕ̃i (t) +

1

2
ϕ̃i (2t0 − t) , for t > t0 (2.5)

This damping driven time-reversal mechanism is illustrated in figure 2.7 where an

initial propagating wave packet in a dispersive medium is created at the time t = 0

(see fig. 2.7a). Then, at the time t = t1, a damping pulse is applied and the wavefield

is frozen (see fig. 2.7b). The damping is then removed, resulting in the creation of

two counter-propagating wavepackets with half of the amplitude of the initial one. The

forward-propagating wavepacket is identical to the initial propagating one, as if no DTR

was applied apart from the amplitude factor. The counter-propagating wavepacket is

the time-reversed (TR) version of the initially propagating one. Thus, it narrows as it

propagates, reversing the dispersion effect, until the time t = 2t1 when it returns to one

half of the initial profile.
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Figure 2.7: Principle of DTR. (a) Free propagation of a wave packet in a dispersive medium at
times t0, t1 and 2t1. (b) The same initial propagating waves in (a) but at time t = t1 a strong
sudden damping pulse is applied, “freezing” the propagating wave (red curve). The pulse splits
into two counter-propagating waves, each one having half of the initial wave amplitude and one
of them being time-reversed. At time t = 2t1, the counter-propagating wave (left) has the same
initial profile (dotted line) but half of its amplitude. This also occurs with the propagating
component (right), compared to the case of free propagation (dotted line).

Validity of this time-reversal mechanism

In the previous section, we analyzed the case of an infinite damping pulse applied

during a very short time, now let us study the physical conditions needed to fulfill the

previous approximation. A detailed analysis is provided in Appendix D and we only

recover here the relevant results in order to analyze the limits of its validity for the case

of a very large, but finite damping pulse.

Let us consider the application of a damping ζ0 ≫ ω0 such that the third term of

equation 2.3 can be neglected. Then, from a simple integration of this equation, between

the time t0 and t > t0 we obtain the following expressions for the wavefield and its time

derivative:

ϕ̃ (t) = ϕ̃ (t0) +
1

ζ0

∂ϕ̃

∂t
(t0)

(
1− e−ζ0(t−t0)

)
(2.6)
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∂ϕ̃

∂t
(t) =

∂ϕ̃

∂t
(t0) e

−ζ0(t−t0). (2.7)

During this time interval, the system can be seen as an overdamped harmonic oscillator

that returns quickly to a steady equilibrium state without oscillations. In this regime, the

relaxation time increases with dissipation so that in the high dissipation limit, the wave

amplitude does not have time to decrease. A detailed calculation shows that the amplitude

decreases as exp
(
−ω2

0

4ζ
(t− t0)

)
(see Appendix D ). We find the following condition for the

pulse duration ∆t = t1−t0, in order to retain the initial wave amplitude: 1/ζ < ∆t < ζ/ω2
0

(See Appendix D for a detailed calculation). Then, if the damping is strong enough, the

duration of the damping phase may be large compared to the period of the original wave.

At time t1, when the damping ends, the wavefield starts evolving again according to

equation with the initial conditions:(
ϕ̃ (t1) ,

∂ϕ̃

∂t
(t1)

)
=
(
ϕ̃i (t0) , 0

)
(2.8)

Under these conditions, we recover the same time evolution as it was predicted in

the equation 2.5. In the limit of total retention of the wavefield, the damping pulse

can have any duration, and when we go back to the initial damping conditions, we will

always generate two counter-propagating waves. This is a remarkable result that can seem

counter-intuitive but is only a consequence of the superposition principle.

2.5 An experimental proof of concept with levitating magnets

In order to experimentally illustrate the DTR mechanism, we designed a physical

system able to perform a very fast time-controlled damping change for an initial wave that

propagates through it. In other words, the system has to be able to suddenly “freeze”

an initially propagating wave. This can be only achieved if the applied damping pulse is

much faster than the propagating wave velocity. If we employ electromagnetic waves, we

need a time-varying medium able to change its dielectric properties at a speed comparable

to the speed of light which represents a very difficult task. If we want to use sound waves,

we need a damping mechanism able to stop the molecules of the propagating medium. We

could not find a straightforward implementation to fulfill a fast freezing and unfreezing

of the medium compared to the wave oscillation period. Thus, we decided to create

an artificial medium to perform DTR on phononic waves. We chose simple spring-like
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interactions in a 2D system. However, we cannot use real springs because of their inherent

damping, which prevents any time-reversal operation. The goal was to build an almost

perfectly elastic medium able to perform a quick damping change, much faster than the

propagating velocity of the mechanical waves that can propagate through it. If we were

interested in a 1D implementation, we could have built a linear wave machine similar to

the one designed by Shive in the 1960s [88]. We would only have had to design a system

capable of stopping it completely at any time during its propagation. However, the 1D

system cannot illustrate the wave refocusing that occurs after a time reversal operation,

which generates a converging wave from an initially diverging wave. For this reason, we

decided to design and create a 2D system, and the solution that came to our minds was

to employ levitating magnets, which are repelling each other, creating an effective elastic

medium, where oscillating and vibrating phenomena have been already observed [89].

If we place them on an air cushion, they will behave like an almost frictionless elastic

medium. The only challenge is to stop all of them at once, and, for this purpose we

use 4 high-speed pneumatic pistons that actuate a transparent PDMS plate to go down

and stop them in less than 10 ms, achieving an almost perfect freezing of the wavefield.

Several attempts were made with different configurations and porous media, but at the

end, we achieved a nice experimental setup able to verify our proposed DTR mechanism.

The details of the successful experimental implementation are described below.

2.5.1 Experimental setup

The experimental setup is shown in figure 2.8 and it consists of 200 magnetic disks

made by gluing 5 mm diameter neodymium magnets (Supermagnete N35) on flat plastic

disks whose diameter is 1.5 cm (fig. 2.8b) and their thickness is 1 mm. They are placed

with the same magnetic orientation to have a repulsive interaction and they are confined

within a 40 cm wide square. The boundaries of the square arena are also repulsive

magnetic walls, which are filled with similar oriented magnets. This prevents the contact

between the magnets and the boundaries to avoid energy dissipation. In order to have

an almost frictionless system, the disks are sustained by a uniform air cushion that was

obtained by injecting compressed air through a porous plate (Metapor BF100-AL). This

reduces considerably the friction coefficient, allowing a small mechanical perturbation to

propagate from one side of the system with a negligible energy loss. The disks were placed

one by one, generating a self-organization resulting from the balance between repulsion

and confinement. This is shown in figure 2.8c, where we can observe a slightly different

concentration of magnets in the center. This is due to the small vertical deformation of
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the porous medium as a result of the injected compressed air.

Figure 2.8: Experimental setup consisting of 200 red plastic disks with 5 mm diameter glued
magnets. They have the same magnetic orientation. (a) The disks are confined in a square
arena made of repulsive magnets. (b) An air cushion system is employed to drastically reduce
the friction between the disks and the porous substrate. The abrupt change in damping is
obtained with four pneumatic pistons that move down a PDMS sheet that totally stops the
wavefield. (c) Top view of a steady self-assembled arrangement before the propagation of the
mechanical excitation.

We control the amount of injected air to achieve an initial steady state, then we

increase the amount of air to have a practically frictionless system. Once this equilibrium

position is reached (see fig. 2.8c), mechanical excitations are sent through the magnetic

array by moving a 12 cm wide magnetic bar that is placed on one edge and is also

magnetically repulsive (see fig. 2.8a). The mechanical excitations are sinusoidal arches

of amplitude equal to 1.9 ± 0.05 cm and a duration of 0.6 ± 0.01 s. This generates a

traveling mechanical perturbation moving with a velocity of around 20 cm/s which is

slow enough to be stopped by means of pneumatic actuators. The high damping pulse

is generated with a vertical actuation of a transparent PDMS sheet that can go down to

stop the system in less than 10 ms. It totally stops the wave field during 0.35 ± 0.05 s,

then, it goes up again, releasing the magnets in less than 10 ms. The evolution of the

system is recorded with a camera Basler acA1300-200uC at 50 fps, and the images are

analyzed in Matlab, in order to track the disks positions over time.
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2.5.2 Numerical simulations

We also performed numerical simulations of our experimental system. The levitating

repulsive lattice of magnets was modeled as frictionless particles with spring-like

interactions, and we implemented a Velocity-Verlet algorithm to solve the individual

equations of motion. The details of this sympletic algorithm are given in [90]. The

mechanical excitations were simulated by moving 12 cm of the upper boundary, with the

same oscillating excitations as we did experimentally. The damping pulse in the

simulations corresponds to a reset of the particle velocities, retaining only the positions

from the time t0 to t1, corresponding to the duration of the experimental damping pulse.

This corresponds to the high damping approximation where τ0 ≫ ω0.

2.5.3 Experimental and numerical results

An experimental realization of a DTR of a single mechanical excitation is illustrated

fig. 2.9a, where we plot in red the emission trajectories and, in green, the refocusing

trajectories. We can observe that the individual time-reversed trajectory of each particle

does not perfectly overlap the corresponding initial one. This is due to the small noise

added by the damping pulse. Here, we are interested in measuring the average

displacement of the particles around the source to quantify the quality of the time

reversal operation. In fig 2.9b, we plot the average longitudinal displacement for the

magnets surrounding the excitation source (disks with dark blue circles in 2.9a). The

“freezing” is performed between the times t0 = 0.60 s and t1 = 0.95 s.

The application of a DTR produces a counter-propagating mechanical excitation with

a time-reversed profile relative to the initial propagating one, with approximately one half

of the initial amplitude. We also plot the results obtained from numerical simulations,

considering harmonic interactions (dashed lines), showing a good agreement with the

experimental observations. A comparison is made between the DTR case (green plot)

and the case of a free propagation (red plot), where only a small vibration of the source is

observed. A DTR of a double mechanical excitation was also experimentally achieved and

the results are shown in fig. 2.9c, in which the damping pulse occurs between the time

t0 = 1.35 s and t1 = 1.75 s. The DTR generates the time-reversed version of the initially

propagating wave with approximately one half of the initial amplitude. As it was done for

the case of a single pulse, the evolution is also compared with the free propagation (red

plot). The dashed lines correspond to the results obtained from numerical simulations.

50



2.5.4 Validation and discussion

A way to measure the quality of the DTR is to calculate the experimental and

numerical fidelities. This is performed by computing the normalized cross-correlation

between the initial excitation profile from t = 0 to t = t0 and the time-reversed profile

after t = t1. In figs. 2.9d-e we plot the normalized cross-correlations corresponding to

the time reversal of a single, and a double mechanical excitation, respectively. In both

figures, we observe a maximum in the cross-correlation when the back-propagation time

equals the forward-propagation time. It reaches a value of 0.44 and 0.45, for the

experiments with one and two excitations pulses respectively, in close agreement with

the expected value of 0.5, in the case of an ideal elastic system. The minor discrepancy

is presumably due to the remaining friction between the magnets and the porous

substrate as well as the imperfection of the freezing process, adding a small noise in the

magnets position during the DTR operation.

Figure 2.9: DTR of a mechanical wave with a single pulse profile (a) and a double pulse profile
(b-c). Time evolution of the mean displacements in the longitudinal y direction of the six blue
disks surrounding the excitation source. Experiments with a DTR performed between time t0
and time t1 (green circles) and control experiments without DTR (red square). The dashed lines
correspond to the results obtained from numerical simulations. (d-e) Cross-correlation between
the initial excitation profile from t = 0 to t = t0 and the time-reversed profile after t = t1.
Each plot corresponds to the time reversal of a single, and a double mechanical excitation,
respectively.

We have achieved an experimental demonstration of DTR of elastic waves that

propagate through a lattice composed of levitating magnets. The propagating waves can
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be written as a superposition of the normal vibration modes for this crystal. Then, they

can be seen as traveling phonon waves. The kinetic energy associated with the time

derivative of the field ∂ϕ̃i

∂t
vanishes when the high damping is activated, while the

potential energy associated with the wavefield ϕ̃i remains unchanged. In the case of an

initially propagating wave, the energy of the wave is equally partitioned between

potential and kinetic energy. Thus, half of the initial energy is lost in the DTR process,

resulting in a quarter of the initial energy being refocused to the source, while another

quarter is diverging from it.

If instead of a traveling wave, we have a standing wave, the effect of the DTR would

depend on its applied time, since the wave energy alternates between kinetic and potential.

In the following sections we will discuss this idea to tailor the amplitude and spectrum of

an initial wavefield by successive applications of DTRs.

2.6 Wave engineering via damping pulses

In the previous sections we have introduced a counter-intuitive method to perform

damping-driven time-reversal of waves (DTR). We demonstrated that the application of

an abrupt time-localized damping pulse to an initial propagating wave splits it in two

counter-propagating waves with half of the amplitude before the DTR. As these waves

move in opposite direction, they can interfere. In this section, we are going to analyze

what happens if we perform multiple DTRs to the initial propagating wave. We will

see that a time-controlled application of successive DTRs allows us to annihilate specific

monochromatic components of a broadband spectrum. This can be useful to tailor any

wave field by filtering only the frequencies we are interested in.

2.6.1 Standing waves created via DTR

A standing wave can be created thanks to a DTR operation. To illustrate this, let

us consider a simple monochromatic traveling plane wave ϕi (x, t) = A sin(kx− ωt+ φ),

as shown in fig. 2.10, and we apply a DTR at the time t0 = 0. Then this wave splits,

according to eq 2.5, in the two following counter-propagating waves:

ϕ (x, t) =
A

2
[sin (kx− ωt+ φ) + sin (kx+ ωt+ φ)] , for t > 0 (2.9)
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which can be rewritten as:

ϕ (x, t) = A sin (kx+ φ) cos (ωt), for t > 0 (2.10)

This corresponds to a standing wave whose energy oscillates between potential and

kinetic with an oscillating period T = 2π/ω . Hence, the DTR operation applied to

this monochromatic wave, generates a standing wave whose total energy is half of the

initial energy, which can be verified by averaging the last equation over a period T . This

standing wave generation based on a DTR is shown in the following figure.

Figure 2.10: The application of a DTR to a monochromatic wave generates a standing wave
that oscillates between kinetic and potential energies.

A DTR applied to a quasi-monochromatic wavepacket

A monochromatic source is ideal and due to duration limitations [91], a real source

can only generate finite quasi monochromatic pulses, as the one depicted in figure 2.11.

In this case, a DTR operation will create two counter-propagating monochromatic pulses

that interfere only when there exists overlapping between them. This is illustrated in

figure 2.11, where a source starts to send a monochromatic pulse at the time t0, which

propagates through space. At the time t0 = 1.5 s, a DTR operation is performed creating

two counter-propagating waves that interfere.
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Figure 2.11: (left) A DTR opperation to a monochromatic pulse generates two counter-
propagating wave pulses that interfere for a finite period. (right) During this interfering period,
the total energy oscillates between kinetic and potential energy until the time when the wave
pulses are separated enough to reach one half of the initial kinetic and potential energies.

On the left part of fig. 2.11, we plot the evolution of these wave pulses at different

times. On the right, we plot the sum of their potential and kinetic energies, which oscillate

when the counter-propagating pulses interfere. Before and after the interference period,

both energies are constant because there is no overlapping between both waves. This

is expected from the wave splitting given by the eq. 2.5, which predicts two counter-

propagating waves, each one having one half of the initial amplitude.
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2.6.2 Wave annihilation by applying two DTRs

In the previous section, we have shown that if we apply a DTR at the time t = 0 to

an initial propagating monochromatic wave ϕi (x, t) = A sin(kx − ωt + φ), we generate

the standing wave ϕ (x, t) = A sin (kx+ φ) cos (ωt) which has the same oscillating period

T = 2π/ω. Then, if a second DTR is applied at the time t = t0, this standing wave splits,

according to eq. 2.5, in two standing waves:

ϕ (x, t) =
A

2
sin (kx+ φ)[cos (ωt) + cos (ω(2t0 − t))] for t > 0 (2.11)

If the second DTR is applied at the time t0 = T/4 = π/(2ω), we have:

ϕ (x, t) =
A

2
sin (kx+ φ) [cos (ωt) + cos (π − ωt)] = 0, for t >

T

4
(2.12)

Then, we achieve a total annihilation of the wavefield by applying the second DTR

at the moment when the wave energy is purely kinetic.

If a the second DTR is applied at the time t0 = T/2 = π/ω, we have:

ϕ (x, t) =
A

2
sin (kx+ φ) [cos (ωt) + cos (2π − ωt)], for t >

T

2
(2.13)

In this case, we recover the initial standing wave: A sin (kx+ φ) cos (ωt). Then, the

application of a second DTR at this time does not have any effect on the wavefield that

was present before its application.

This idea can also be implemented in the case of monochromatic wave packets, but

in this case the wave annihilation would not be perfect. The reason is because the finite

extension of the wave packets prevents the total destructive interference of the oppositely

propagating wave fields (see fig. 2.12). However, if the amplitude of the remaining

wavefield is much smaller compared to that of the initial traveling wave, we note that the

initial wavefield is almost annihilated. In figure 2.12, we show the results of a numerical

simulation where a monochromatic Gaussian pulse of period T is generated at the time

t = 0. At the time t = t0, a first DTR is applied, generating two counter-propagating

pulses with half of the initial amplitude. They interfere and, during this interference

period, a second DTR is applied at a precise time. If it is applied at the time t = t0+T/4,

the wave field will be almost annihilated. However, if the second DTR is applied at the

time t = t0 + T/2, corresponding to the moment of constructive interference, the wave

field does not suffer any change. This happens because no kinetic energy is present at
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this moment, then, the application of a second DTR at this moment does not have any

effect, and both waves continue their motion as if nothing had happened.

Figure 2.12: Two DTRs applied to a quasi-monochromatic wave packet. The first DTR applied
at the time t = t0 generates two counter-propagating waves that interfere when they are spatially
overlapping. If a second DTR pulse is applied, the wave amplitude can be controlled depending
on the time when this damping pulse takes place. For an application time corresponding to
destructive interference (left), the second DTR annihilates the wavefield. For an application
time corresponding to a constructive interference (right), the second DTR does nothing to the
wavefield.

This can be easily understood from the fact that standing waves are alternating

between kinetic and potential energy. We know that they reach their maximum

amplitude when they have zero kinetic energy and they reach their maximum velocity

when they have zero potential energy. We can do an analogy with a pendulum’s motion,

whose position has the same mathematical expression as a stationary wave, with

oscillations between potential and kinetic energies. In this sense, the position of an

oscillating pendulum of natural angular frequency ω = 2π/T , can be seen as a

monochromatic standing wave of period T . The first DTR applied at t = t0 resets the

oscillation, starting now from this point. Then, the pendulum’s motion will be totally
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stopped if a second DTR is applied at the time t = t0 + T/4. This analogy is depicted in

the following figure.

Figure 2.13: A monochromatic standing wave of period T can be seen as an oscillating pendulum
whose natural frequency is ω = 2π/T . After the application of a first DTR at t = t0, the
oscillation starts now from this point and will be totally stopped if a second DTR is applied
at the time t = t0 + T/4. This would correspond to a pendulum being in its maximum kinetic
energy position, then, the second DTR will stop it forever.

2.6.3 Case of two monochromatic components

Let us consider now two sources emitting plane waves whose angular frequencies are

ω1 and ω2, with ω2 > ω1. A traveling wavefield is: ϕi (x, t) = A sin (k1x− ω1t+ φ1) +

B sin (k2x− ω2t+ φ2), where A and B are the amplitudes associated with each source.

Then, after a first DTR applied at the time t0 = 0 the wavefield becomes:

ϕ (x, t) = A sin (k1x+ φ1) cos (ω1t) +B sin (k2x+ φ2) cos (ω2t), for t > 0 (2.14)

If we apply a second DTR at T1/4 = π/(2ω1), the first wave component is annihilated,

and a part of the second wave component remains if and only if it does exist an integer

n ∈ N, such that ω2 ̸= ω1(1 + 2n).
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On the other hand, if we apply a second DTR at the time T1/2 = π/ω1, the first

wave remains unaffected while the second wave component is annihilated if and only if

ω2 = ω1(1/2 + n), where n ∈ N

Thus, a second application of DTR can be used to control the relative amplitude of

any monochromatic wave if it is applied at the correct time. This technique can be useful

for filtering the undesirable monochromatic components of a wavefield.

Chromatic filtering case of two quasi-monochromatic sources

The previous idea can be applied to the case of two monochromatic wave packets

whose angular frequencies are ω1 and ω2 = 3
2
ω1, respectively. To illustrate this, we

perform a numerical simulation in 2D, with two sources emitting monochromatic wave

packets whose angular frequencies are ω1 and ω2 = 3
2
ω1, respectively. Each extended

source can be considered as a superposition of point sources that are emitting a Gaussian

radially propagating monochromatic pulses similar to the one shown in figure 2.11. We

solve the wave equation at each time step by employing a centered finite difference scheme

satisfying the Courant-Friedrich-Levy stability criterion, as detailed in [92].

In figure 2.14, we show the snapshots corresponding to the results of the simulation

of two monochromatic wave packets that start to emit at the time t = 0. The moon-

shaped source emits a wave packet at a frequency w1 = 10 Hz and the sun-shaped source

emits a wave packet at a frequency w2 = 3
2
ω1 = 15 Hz. The wavefield is composed

of the superposition of both sources and propagates through space. At the time t =

1.5 s, a first DTR is applied, splitting each monochromatic component in two counter-

propagating waves. Then, a second DTR is applied at the time t = 1.5 + T1/2 ≈ 1.53 s,

which annihilates one of the monochromatic components, corresponding in this case to

the yellow wave, initially emitted by the sun-shaped source. The only remaining wavefield

corresponds to the superposition of the monochromatic component initially emitted by

the moon-shaped source and its time-reversed version that was generated at the time

t = 1.5 s, both having one half of the initial propagating amplitude at the moment when

the first DTR took place. Finally, at the time t = 3 s we observe a refocusing of the

time-reversed wavepacket which will recover the shape of its corresponding source (the

moon). We additionally observe the pattern corresponding to the initial traveling wave

that only underwent an amplitude change after the application of the first DTR. The

superposition of both waves causes a slight distortion during the refocusing process at

t ≈ 3 s.
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Figure 2.14: Chromatic filtering of a quasi-monochromatic wave packet. At the time t = 0 s, a
moon-shaped source emits a wave packet at an angular frequency w1 = 10 Hz and a sun-shaped
source a wave packet at an angular frequency w2 = 3w1/2. A double DTR is applied with
a time delay of T1/2 = π/w1. Both wave packets are damped by a factor 1/2 after the first
DTR. The second DTR leaves the counter-propagating waves associated to w1 unchanged, while
annihilating the waves associated to w2.

2.6.4 Spectral tailoring of a broadband wave

We can directly extend our “wave killer” strategy discussed in the previous sections

to the case of a broadband wave. This is possible because a broadband wave can be seen

as a linear combination of monochromatic wave sources having different frequencies ωs.

Then, the wavefield can be written as:

ϕ (x, t) =

∫ w2

w1

A sin (kx− ωst+ φ)dws, for t < 0 (2.15)

After applying a first DTR at the time t = 0 the wavefield becomes:

ϕ (x, t) =

∫ w2

w1

A sin (kx+ φ) cos(ωst)dws, for t > 0 (2.16)

which corresponds to a superposition of standing waves. According to our previous
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analysis, a monochromatic wave component having the angular frequency ωl ∈ [ω1, ω2] is

annihilated if a second DTR is applied at t = Tl/2. Consequently, this will also annihilate

all the monochromatic components of angular frequency ωs = ωl(1+2n), with n ∈ N such

that ωs ∈ [ω1, ω2]. This second DTR will also considerably decrease the amplitudes of the

monochromatic components that are close to these values (see fig. 2.15). However, the

second DTR does not have any effect on the monochromatic components whose angular

frequency is ωr = ωl(2n), with n ∈ N such that ωr ∈ [ω1, ω2] (see fig. 2.15).

In order to illustrate this spectral tailoring, we perform a numerical simulation with

the normalized spectrum shown on the left part of the figure 2.15, where an arbitrary

monochromatic component ωl is chosen and we apply two consecutive damping pulses.

The first DTR occurs at the time t = 0, re-scaling the spectrum energy by a factor of

one half (dashed line of fig.2.15). The second DTR occurs at the time t = π/(2ωl).

The resulting spectrum after these two DTR operations is shown on the right part of the

figure 2.15. One can note that the monochromatic components with corresponding angular

frequencies 3ωl and 5ωl are also annihilated. However, the monochromatic components

whose angular frequencies are 2ωl and 4ωl remain with the same amplitude as before the

application of the second DTR.

Figure 2.15: Spectrum tailoring by consecutive applications of two DTRs. The annihilation
of a monochromatic wave component ωl will automatically annihilate all the monochromatic
components of angular frequency ωs = (1, 3, 5, ...)ωl. However, the monochromatic components
of angular frequency ωr = (2, 4, 6, ...)ωl remain with the amplitude obtained after the first DTR
(black dashed line).
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2.6.5 Discussion

The selective monochromatic annihilation for a polychromatic source can be easily

understood by performing again a pendulum analogy. In this case, the first DTR generates

a superposition of multiple standing waves described by the equation 2.16, which can be

associated with multiple pendulums, each one having an oscillating period Ts = 2π/ωs,

with s ∈ N (see fig. 2.16). If a second DTR is applied at the moment when a pendulum

has a maximum kinetic energy, it will be stopped forever. This will be also the case for

all the other pendulums that also reach their maximum kinetic energy at the time of the

second DTR. However, the pendulums that are at the maximum amplitude at the time

of the second DTR, will not suffer any effect and they continue their motion as if nothing

had happened.

Figure 2.16: Analogy between a polychromatic source and multiple pendulums. After applying
a first DTR to a polychromatic source, standing waves can be interpreted as multiple oscillating
pendulums having the same frequencies. Then, if a second damping pulse is applied, the pen-
dulums that synchronize at the moment when they have the maximum kinetic energy will be
stopped.

2.7 Conclusions and perspectives

In this chapter, we introduced a counter-intuitive way to perform time-reversal of

waves by means of time-controlled damping pulses. This complements the instantaneous

mirror techniques [5], where a sudden disruption in the propagating medium generates two
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counter-propagating waves. In our case, the Cauchy analysis in terms of initial conditions

allowed us to predict the evolution after the application of a high damping pulse. In

the limit of a high damping shock, we modify the initial conditions of a propagating

field
(
ϕi,

∂ϕi

∂t

)
to (ϕi, 0), then, as a consequence of the superposition principle, the DTR

produces two counter-propagating waves 1
2

(
ϕ (t0) ,

∂ϕ
∂t

(t0)
)
+ 1

2

(
ϕ (t0) ,−∂ϕ

∂t
(t0)
)
. One of

these two waves is proportional to the time-reversed version of the initial propagating

wave, and the other one is proportional to the initial propagating wavefield. The DTR

is a general concept that could be applied to any type of waves by means of an abrupt

damping change of the corresponding wave field. For instance, in optics, this could be

done by abruptly changing the conductivity of the medium [93], in acoustics by using an

electric-actuated change of the medium rheology [94].

In contrast with the instantaneous mirror approach based on wave velocity changes

[5,6] and standard digital time-reversal methods [95,96], the backward-propagating wave

is directly proportional to the TR of the original. From that perspective, the DTR has

thus no spectral limitations and can be applied to broadband wave packets. This results

in higher fidelity and enhanced broadband capabilities compared to other methods. The

limitation in time-reversing wide spectral range comes from the ability to freeze the field

sufficiently fast in comparison with the phase change in the wave packet. This restricts

the maximum value for the angular frequency ω0 ≪ ζ and also represents a challenge for

time-reversing electromagnetic waves.

In the work presented here, we studied only the regime corresponding to a high

damping pulse. It is evident that other regimes exist and do not allow a complete

retention of the wavefield, then, they will only generate a partial reversal of the

wavefield. These interesting regimes could be the subject of future research, where we

could make an analogy with the propagation of waves in time varying media, a

fast-growing field of research that has focused attention in recent years, with relevant

applications in the case of electromagnetic waves [97].

Finally, we present an interesting application of the DTR when it is performed on

waves that propagate in a homogeneous medium. We have shown that consecutive DTRs

can annihilate specific monochromatic components and tailor a broadband wave. Thus, we

have conceived a new absorbing mechanism that can be interpreted as a type of “spectral

hole burning”, which is widely used in spectroscopy [98].

62





3
Stabilization and propulsion of

Leidenfrost puddles

3.1 Introduction

In this chapter, we study a new mechanism to stabilize a well-known active system:

a liquid in the so-called Leidenfrost state [7]. This phenomenon can be observed when a

liquid is deposited on a solid surface whose temperature is much higher than the boiling

point for that liquid. There is an instantaneous formation of an insulating vapor layer at

the interface between the substrate and the liquid, preventing the direct contact between

these phases. Then, the evaporation process takes place very slowly, allowing a tiny

droplet to last several minutes in the liquid state before being totally evaporated by

the hot substrate. This phenomenon is counter-intuitive because the temperature of

the substrate is much higher than that of the boiling point and the evaporation rate is

suddenly decreased. A liquid in the Leidenfrost state can be considered active because it

needs a constant flux of energy from the substrate in order to maintain itself in a state of

levitation by means of a permanent generation of vapor under the liquid.

Liquids in the Leidenfrost state have a very rich dynamics which has been the subject

of numerous fundamental and applied studies, as a result of the persistent interaction

between the solid, liquid and vapor phases [99–108]. Moreover, due to the absence of

contact between the liquid and the solid substrate, the liquid phase has a very high

mobility and several propelling mechanisms have been engineered [8, 9, 109].

In the case of liquids that are deposited on flat substrates, only small droplets are

stable during the evaporation process [110], whereas large volumes of liquid are unstable

because of the overproduction of vapor under the liquid [111]. This vapor can constantly

deform and move a large volume of liquid in all directions, generating an agitated state

63



with no preferential direction of motion. Moreover, after exceeding a characteristic size, we

observe a random formation of bubbles which release the vapor pressure. These bubbles

are created from the bottom part of the liquid and can eventually burst. When the puddle-

shaped Leidenfrost liquids present these Rayleigh-Taylor type of instabilities, they enter

in the so-called chimney regime [8, 110].

Here, we are interested in designing a mechanism to stabilize big amounts of liquid

that are naturally unstable in the Leidenfrost state. It has been already shown that

the chimney regime can be suppressed by increasing the concavity of the surfaces where

the liquids are placed [103, 106, 112]. However, the liquids deposited on these concave

surfaces can develop other instabilities, for instance, the breathing mode [113], and the

star-shaped oscillating patterns [114]. This motivated us to propose a new method to

stabilize large volumes of liquid in the Leidenfrost state, preventing also these oscillating

instabilities. To achieve this, we got a rather simple idea: decreasing the pressure of the

insulating vapor layer that is supporting the levitated liquid. In order to do that, we need

a way to release a small fraction of the generated vapor below the liquid. This stabilizing

mechanism is going to be addressed throughout this chapter. Finally, we will see that a

slight modification can allow us to perform a directed propulsion of arbitrary big volumes

of liquids.

This chapter is organized as follows. First, we will start with a brief introduction to

this fascinating phenomenon, describing its most relevant dynamics. Then, we present

the stabilizing mechanism for large liquid puddles deposited on flat surfaces with holes

to release the vapor pressure. This is experimentally validated with water deposited

on hot aluminum substrates that were perforated employing a homemade open source

computerized, numerical controlled (CNC) drilling machine. Finally, by performing a

slight modification of the stabilizing mechanism, we will show that directed motion can

be achieved for the whole levitated liquid. This represents an alternative method to the

ratchet symmetry-braking based [10], and other propelling mechanisms [115,116], without

any size restriction for the levitated liquid.

3.2 The Leidenfrost phenomenon

A very interesting and rather counter-intuitive phenomenon can be observed in the

kitchen if we place a water droplet on a very hot pan, compared to the boiling point of

water (see fig. 3.1). Instead of having a very quick evaporation, we will be surprised
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to observe that the droplet remains as if it was not touching the plate. Indeed, the

droplet levitates on a cushion of vapor that prevents the contact between the droplet

and the hot surface, resulting in a very slow evaporation. The first observation of this

phenomenon was reported by Herman Boerhaave in 1732 [117], however, it was named

after Johann Gottlob Leidenfrost, a German doctor who did the first detailed description

of this phenomenon in 1756 [7].

Figure 3.1: Leidenfrost phenomenon in the kitchen. When water droplets are deposited on a
pan heated above 200°C they levitate on a cushion of vapor that supports the rest of the liquid.

Due to the very low thermal conductivity of the vapor, this layer insulates the rest of

the liquid from a direct contact with the hot substrate. Thus, the drop evaporates much

slower than if the temperature of the plate was close to the boiling point. The Leidenfrost

phenomenon can be also observed when liquid nitrogen is spread on the floor. The room

temperature is much higher than the boiling point for this liquid (-195 °C at 1 atm), then,

the heat transferred from the ground instantaneously evaporates the lower part of the

drop of liquid nitrogen, creating an insulating cushion of gaseous nitrogen that lifts the

rest of the liquid.

During the last decades, the Leidenfrost phenomenon has been extensively studied

under different conditions and experimental configurations [8], resulting in diverse

dynamics for the levitated liquid. Examples of the different scenarios that appear are:

oscillating star-shaped patterns [118], random production of bubbles in the so-called

chimney regime [110], and self-propelling droplets [9]. Moreover, the Leidenfrost effect

has been also observed on liquid substrates [119] and sublimating solids [120]. Much

effort has been made to understand the underlying mechanisms of the Leidenfrost

phenomenon because of its relevance for diverse engineering applications, in particular
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those related to liquid based heat transfer [100, 121, 122], drag reduction [105, 123],

transport of liquids [101,124] and energy harvesting [125,126].

The Leidenfrost temperature

The Leidenfrost temperature of a liquid is usually defined as the temperature

corresponding to the abrupt change in the evaporation rate as the temperature of the

substrate changes [8] (which can be solid or liquid). Several studies showed that the

minimum temperature to achieve the Leidenfrost state depends directly on the physical

properties of the heated liquid [127], the surface on which the liquid is

deposited [128, 129], the ambient conditions associated with the boiling point of the

liquid [130, 131] and gravity [132]. For the case of flat polished solid substrates, the

Leidenfrost temperature for water ranges from 150 °C to 210 °C [128], whereas modified

metallic surfaces can reach a Leidenfrost temperature above 1000°C [133]. Finally, when

the heated substrate is a viscous liquid, it results to be very close to the boiling

temperature of the levitated liquid [132].

Figure 3.2: Lifetime measurement τ as a function of the substrate temperature for the case of a
water droplet of radius R = 1 mm which is deposited over a polished aluminum plate (adapted
from [8]). We observe a sharp increase at the temperature TL for which a thick film of vapor
sets between the plate and the liquid, preventing the whole evaporation of the liquid. This
temperature is defined as the Leidenfrost Temperature.
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3.3 Different dynamics

Liquids in the Leidenfrost state can develop different dynamics due to the interaction

between the vapor and liquid phases, combined with the substrate and liquid properties.

Here, we are going to recall the most important dynamics reported in the literature.

3.3.1 Stable regime

The stable regime corresponds to an absence of liquid agitation or rapid deformations

due to the instability of the interface. Thus, the surface of the drop seen from above

is a disk which slowly decreases during the evaporation process without changing its

shape. Such a state can be seen as a sequence of perfectly quasi-steady non-wetting

scenarios where a liquid is placed on a superhydrophobic surface [8]. Small volumes of

liquid in the Leidenfrost state can develop a quasi-steady surface evolution when they

are placed on smooth surfaces. Droplets in such a state acquire a spheroid or puddle-like

shape, according to their characteristic length compared to the capillary length of the

levitated liquid, denoted λc. This physical parameter corresponds to the ratio between

surface tension and gravitational forces, and it is defined as λc =
√

γ
ρg
, where γ is the

surface tension of the fluid interface, ρ is the density of the liquid, and g is gravitational

acceleration.

Spherical droplets

When a droplet is smaller than the capillary length, surface tension forces dominate

over gravity and the liquid takes the shape that minimizes the area for a given volume.

Therefore, the droplet shape is almost spherical, as depicted in figure 3.3a, for a millimetric

droplet placed on a smooth metallic substrate heated at 300 °C [8]. Only a very small

portion of the bottom part of the liquid is flattened by gravity. However, even if these

tiny droplets can have a quasi-steady evaporation (that can last several minutes in the

case of water), it has been shown that they can also perform a spontaneous jump at the

end of their evaporation process [134].

Puddle-like shapes

A volume of liquid whose characteristic size is larger than the capillary length takes

the appearance of a puddle, as it is flattened by gravity, with a typical thickness of twice

the capillary length λc, as a result of the equilibrium between the hydrostatic and surface
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tension pressures [8]. An example of this puddle like shape is shown in figure 3.3b. In

the case of liquids deposited on flat surfaces, only small volumes can have a stable puddle

shape, because large puddle-shaped liquids become unstable due to the Rayleigh–Taylor

instability [135]. The vapor layer pushes the liquid, and a pocket of vapor can grow from

the insulating layer to rise in a form of bubble with a sudden burst at the top of the liquid

surface [110].

Figure 3.3: Stable shapes of Leidenfrost droplets placed on a smooth metallic surface heated at
300°C [8]. (a) Small droplets acquire a spherical shape, whereas big amounts of liquid acquire a
puddle shape because they are flattened by gravity.

3.3.2 Unstable regimes

The Leidenfrost state of a liquid possesses a very high mobility due to the absence

of direct contact between the liquid phase and the solid substrate. Consequently, several

complex dynamics can take place if one increases the amount of deposited liquid [110,136],

applies an external forcing [132, 137] or modifies the surface properties of the substrate

[138], the heating mechanism [107, 139] or the ambient conditions [140]. Here, we are

going to recall the three most relevant dynamics that have been intensively studied in the

literature.

Chimneys

The vapor layer can become unstable for sufficiently large droplets. It creates bubbles

ascending from the bottom part of the droplet with a liquid dome which eventually burst

[110]. In the case of concave substrates, the vapor pocket transported by this chimney can

eventually travel towards the edges, before bursting and generating strong oscillations for

the levitated liquid [141]. These chimneys are created as a result of the Rayleigh-Taylor

instability that occurs when a fluid of high density is at the top of another one of lower

density [142]. The gravitational force competes with the surface tension force of the
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droplet when this has a radius larger than the capillary length. On flat surfaces, it has

been demonstrated that the chimney regime appears for a flattened droplet whose radius

is approximately four times the capillary length [110] [136]. Examples of puddles of liquid

presenting this regime are shown in figure 3.4, where vapor bubbles distort the surface

of the liquid. The outline of each bubble appears as a clear ring thanks to an external

lighting. We observe that the number of generated chimneys increases with the amount

of deposited liquid.

The dynamics of this chimney regime is still not fully understood, but it has been

shown that variations in the shape of the substrate, and also its phase, can affect the

instability [103, 106, 119]. In particular, an external forcing can be used to suppress this

instability, but generating other meta-stable states [143].

Figure 3.4: Chimney regime on flat surfaces. Large puddles of water on a slightly concave
aluminum plates heated at 300 °C present the formation of bubbles that suddenly burst. The
number of chimneys increases with the amount of liquid that is deposited on the hot substrate.

Oscillating stars

The formation of oscillating star-shaped patterns of a levitated liquid has been

reported in the literature for different levitating mechanisms, for instance in vertically

vibrated liquids placed on hydrophobic surfaces [144, 145], acoustically or magnetically

levitated drops [146, 147], and drops excited with an alternating gas flow [148]. As this

regime has been encountered in such diverse scenarios with different levitating

mechanisms, it has been suggested that the origin of this oscillating star-shaped

patterns is purely hydrodynamic, due to an oscillating thickness that gradually transmit

the vibrating modes to the edges of the droplet [111]. In the case of Leidenfrost liquids

this metastable state has also being encountered in concave surfaces [106], [114].
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The appearance of these oscillating star-shaped patterns can be associated to a

temporal modulation of the eigenfrequency modes of the drop, due to the self-forcing,

thus inducing a parametric instability [149]. In the case of highly viscous liquids, the

vibration transmitted from the vapor layer is considerably damped and only a few

modes can appear [150]. Examples of these star-shaped patterns are depicted in figure

3.5, corresponding to the case of Leidenfrost drops placed on concave aluminum surfaces

heated at T = 350 °C. The oscillation modes with n = 2 to n = 13 are shown when the

lobes are at their maximum displacement [118].

Figure 3.5: Star-shaped oscillation patterns of Leidenfrost drops placed on concave aluminum
surfaces heated at T = 350 °C. Oscillation modes with n = 2 to n = 13 are shown when the
lobes are at their maximum displacement. The scale bar corresponds to 2 cm [118].

Self propulsion

The Leidenfrost droplets are a very good example of an almost frictionless system.

They can be set in motion by means of a simple symmetry breaking of the vapor flow

coming out from the insulating layer that prevents the contact between the liquid and

the substrate. A well-known symmetry breaking vapor flow mechanism was obtained

by employing ratchet shaped surfaces [9]. These devices induce self-propulsion for small

droplets in the opposite direction to the teeth orientation as it is shown in figure 3.6a.

Diverse configurations based on the same propelling principle have been studied [102,120,

151, 151, 152]. Additionally, other symmetry breaking configurations have been achieved
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by engraving herringbone patterns on solid substrates [153] (fig. 3.6b) , turbine inspired

shapes [154] (fig. 3.6c) and micro-surface tailoring (fig. 3.6d) [138,155,156]. Furthermore,

in recent studies, instead of applying a modification of the substrate topography, a directed

vapor flow has been obtained by means of a selective heating [139] or a temperature

gradient [107]. Examples of some of these propelling mechanisms are shown in figure 3.6.

(a) (b)

(c) (d)

Figure 3.6: Several propelling mechanisms have been engineered for propelling small volumes
of liquid. (a) Linke’s device appearing in [8]. A liquid drop placed on a hot ratchet with teeth
of depth a = 0.2 mm and length L = 1.5 mm, moves in the direction shown in the snapshots.
The time interval between the successive pictures corresponds to 40 ms. (b). Self-propulsion
on a herringbone [153]. A drop of acetone self-propels when it is placed on the axis of a hot
herringbone engraved in brass heated at T=400 °C. Each herringbone channel has a depth H
= 0.2 mm and a width W = 1 mm. The wall thickness between channels is 0.2 mm. The time
interval between the images is 0.2 s. (c) A continuously operating Leidenfrost rotor [154]. The
liquid is supplied through a pump to have a constant amount of liquid in Leidenfrost state.
The substrate engraved with a turbine-inspired pattern rectifies the vapor to produce work,
which is observed on the rotation of the solid component placed at the top of the liquid. (d)
Self-propulsion mechanism for a Leidenfrost droplet placed on a hot surface with wettability
gradient [155]. Schematics for the mechanism of directional droplet motion on a micropillared
surface with an increasing spacing.
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3.4 Stabilization with a perforated substrate

On flat surfaces, it has been demonstrated that a Leidenfrost droplet becomes unstable

for a critical radius of around four times the capillary length [110] [136]. Above this size,

a volume of vapor will grow and eventually burst, as a result of the Rayleigh-Taylor

instability [110] in the so-called chimney regime. In the literature, it has been shown

that big amounts of liquids can be stabilized by placing them on concave surfaces [103,

106] which suppress the Rayleigh-Taylor instability [114]. Examples of this stabilizing

mechanism are shown in figure 3.7, where big amounts of liquid are placed on a conical

surface (a) and a concave ring (b). Both concave surfaces are able to suppress the chimney

regime, but other meta-stable states can take place [106]. In the case of a levitated torus,

polygonal instabilities can take place, as a result of the competition between surface

tension and inertial forces [157].

Figure 3.7: Large amounts of liquid suppress the chimney regime when they are placed on
concave surfaces. (a) Levitating water placed on a conical shape [106]. The liquid presents
high mobility on the conical shape without generating any bubble. (b) Levitating tori of water
showing a polygonal pattern that is formed at the inner side of the tori, without the appearance
of chimneys [103].

Here, we are interested in the possibility of creating another mechanism for stabilizing

large amounts of liquids instead of using concave surfaces. The key idea is decreasing the

overpressure induced by the vapor that would otherwise destabilize the bottom part of

the liquid by enabling it to be released through another path. In the case of a liquid

placed on a hot concave surface, the lateral escaping of vapor can prevent the chimney

formation but the concavity has to be increased as we increase the volume of levitated

liquid [106]. Furthermore, other metastable states may appear, for instance, star and

polygonal shapes [103, 106]. If instead of a lateral vapor flow, the vertical downward

direction could be used to release the vapor, this would prevent the formation of chimneys

and avoid destabilization due to the lateral drag. This mechanism would also stabilize the
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levitated liquid as a result of a local pressure drop. This can be achieved by doing small

perforations connected to external ambient pressure. However, the perforation size must

be limited and properly chosen to maintain the liquid layer as a competition between the

hydrostatic pressure, the surface tension and the vapor pressure.

Let us analyze in more detail this stabilizing mechanism based on small perforations to

release a small fraction of the generated vapor under the drop. A qualitative comparison

of the evaporation dynamics for a liquid in the Leidenfrost state deposited on a flat surface

and on a perforated surface is depicted in figure 3.8, where a droplet of radius larger than 4

times the capillary length λC is deposited. In the first case, the instability grows creating

a bubble that can burst through the liquid surface [110], whereas in the second case, the

vapor drained through the orifice releases excess pressure, which prevents the formation

of bubbles. However, this orifice could deform the bottom part of the liquid surface, due

to the pressure difference between the liquid and the vapor escaping through it. Then, a

quantitative analysis is needed in order to estimate the maximum hole size.

Figure 3.8: Shape of a droplet whose radius is larger than 4 times the capillary length λc (a)
Without any escaping mechanism, a bubble grows from the central part of the liquid and bursts.
(b) The droplet is stabilized by releasing part of the vapor generated from the bottom part of
the liquid.

3.4.1 Maximum perforation size

The droplet shown in fig. 3.8b could be “sucked” by the hole due to the pressure

difference between the bottom part of the liquid and the pressure inside the hole, which

can be considered to be close to the atmospheric pressure. Let us consider a cylindrical

hole of radius Rh and a hemispherical deformation of radius R above this hole, whose

protuberance thickness is ϵ. These parameters are sketched in the following figure.

73



Figure 3.9: Hemispherical deformation on the bottom part of a Leidenfrost droplet placed on a
holed substrate. A portion of this hemisphere of thickness ϵ is going to be deformed and pop
out to compensate the hydrostatic pressure.

The equilibrium between the hydrostatic and surface tension forces gives us:

ρg(2λC + ϵ) = 2γ/R (3.1)

The limit case of the previous equation corresponds to a dripping state of the liquid,

where ϵ = R, totally filling the hole radius Rh. Then, by replacing these parameters in

the previous equation we get a second-degree equation for the hole radius Rh:

R2
h + 2λCRh − 2λ2

C = 0 (3.2)

This equation has two solutions: Rh1 = (
√
3 − 1)λc and Rh2 = (−

√
3 − 1)λc. Then,

the only physical solution is Rh ≈ 0.73λc. In the case of water close to its boiling, point

this corresponds to a maximum hole radius Rh ≈ 1.7 mm.

The previous result actually overestimates the maximum perforation size that can

be drilled in the substrate. The calculation was done neglecting the escaping vapor flow

through the hole which generates a tangential force that could drive the liquid into the

hole. Moreover, the hole size must be smaller than this limit also to prevent local boiling

on the sharp hole boundary. In our experiments, we did perforations of around 1 mm in

diameter.

3.4.2 Rayleigh-Taylor instability

On flat solid substrates big puddle-shaped droplets are not stable if their radius is

bigger than 4λc, and the chimney regime starts to appear as a result of the Rayleigh-Taylor
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instability [135]. This value was also found in the case of droplets that are levitated on

an air cushion [136] and, more recently, by means of a refined numerical study of the

Leidenfrost phenomenon [158]. Here, we are going to perform a similar instability study

to the one presented in [159], where they applied electric fields to suppress the instability.

We consider the same axisymmetric system, including a perforation placed in the center.

If the liquid–vapor interface below the Leidenfrost drop presents an unstable sinusoidal

profile of the form z(r) = ϵ(1 + cos(πr/R)), as shown in fig. 3.10, the instability only

grows if there exists an unbalance between the surface tension and the hydrostatic forces

as well as the pressure drop ∆P due to the vapor loss through the orifice.

Figure 3.10: A sinusoidal perturbation growing in a perforated substrate. A bubble can grow
only if the vapor pressure in the insulating layer is enough to overcome the surface tension and
hydrostatic forces, as well as the pressure drop ∆P due to the vapor flow through the orifice.

By calculating the pressure difference between the center point and the edge of the

vapor/liquid interface, we find the following equilibrium condition:

ρg[z(0)− z(R)] + γ[2z′′(0)− z′′(R)] = ∆P (3.3)

The first term of the previous equation corresponds to hydrostatic pressure difference,

whereas the second one corresponds to the Laplace pressure difference. After computing

the derivatives, this equation simplifies to:

ρgϵ[2 + 3(πλc/R)2] = ∆P (3.4)

We note that in the case of ∆P = 0, the equilibrium of pressures gives an estimation

of the maximum stable droplet radius Rm ≈ 3.85λc, (as found in [110]). Unfortunately,

we do not know precisely the pressure drop due to the ejection of vapor through the

orifice. This pressure drop depends on the flow velocities, then, we cannot easily estimate
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maximum stable droplet size for a liquid placed on a perforated substrate. Nonetheless,

the limit case for flat surfaces gives us an idea of the largest separation between the holes

in order to prevent the formation of bubbles. However, this distance must be smaller than

Rm ≈ 3.85λc, because of the small amount of drained vapor through the orifices compared

to the radial flow. A uniform hole distribution throughout the substrate will add more

releasing points for the created vapor. In addition, the pressure in the vapor layer will

have a spatial modulation with low pressures regions close to the position of the holes.

This imposes the instabilities to occur essentially in the region between the orifices. Thus,

the Rayleigh-Taylor instability is spatially restrained by the average spacing between the

orifices. In figure 3.11, we show a qualitative representation of the stabilization of a big

Leidenfrost puddle when the hole separation is small enough to completely suppress the

Rayleigh-Taylor instability.

Figure 3.11: Suppression of the Rayleigh-Taylor instability for Leidenfrost puddles placed on
holed substrates. A sufficiently small separation d between the holes prevents the appearance
of chimneys.

3.4.3 Experimental verification

In order to verify our proposed stabilizing mechanism, we machined aluminum plates

of 15 cm in diameter and 1 cm thick, with an almost negligible concavity (2 mm depth

at the center). Different hole densities and distributions were obtained by drilling the

plates with a homemade open-source CNC-3018 machine (see fig. 3.12a), employing a 1

mm diameter tungsten drill bit. The 3D modeling was done on OpenScad [160], then the

images were converted into a g-code to be interpreted on GRBL, an open source CNC

software. Figures 3.12b-c show two examples of holed substrates with different densities.

The top images correspond to the top and bottom views of the same 3D design, whereas

the bottom images show the top and bottom views of a final aluminum CNC machined

substrate, which has higher hole density. In the bottom part of the perforated substrates,

we engraved evacuation channels that connect the holes to atmospheric pressure.
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Figure 3.12: CNC machined aluminum substrates. (a) Programmable homemade CNC machine
used to perforate the substrates. (b) Top and bottom views of a 3D model and (c) a final
piece. Several substrates having different hole densities were machined. In the bottom part, we
engraved evacuation channels that are in contact with the atmospheric pressure.

The substrates were polished and cleaned before being placed on a hot plate (Fisher

Scientific, Series 11–110) at T = 400°C, corresponding to a higher temperature compared

to the Leidenfrost temperature for this liquid and this substrate (around 250 °C). This

temperature value also prevents spontaneous heterogeneous boiling that can occur on

some perforated boundaries, due to the sharp angle geometry. We wait 15 minutes to

reach a steady temperature, then, preheated deionized water at 80 °C is deposited with a

syringe to get initial puddles that stabilize after a few seconds thanks to the radial flow

of vapor under the liquid, but also due to the escaping vapor through the orifices that are

connected to the ambient conditions.

The evaporation dynamics is recorded with a camera Basler (ac-A2040-35gc) at 200

fps, which allows us to track the individual chimney creation and bursting. Another

possibility was to record the top view with an IR camera (Optris PI-400i), in order to

also track the inner flows. We observe a contrasted dynamics when we increase the hole

density on the aluminum substrates and for a sufficient high density, we achieved a total

chimney annihilation, as shown in the infrared images of fig. 3.13, in which a puddle

shaped liquid is placed on a flat substrate (fig. 3.13a) and a perforated substrate (fig.

3.13b). The infrared camera allows one to observe the temperature gradients between 85

and 95° C and the associated convection motion my means of the heat transfer between

the hot substrates and the levitated liquid. When bubbles form, they appear lighter
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because the thin layer of liquid heats up due to the hot vapor below whose temperature is

higher than the boiling point. One can observe the quasi-steady state for the liquid when

it is deposited on a perforated substrate.

Figure 3.13: Infrared images showing the contrasting dynamics of Leidenfrost puddles. (a) A
10 cm diameter water puddle placed on a flat substrate showing yellow disks corresponding to
bubbles whose temperature is approximately 95 °C. (b) A 8 cm diameter water puddle placed
on a perforated substrate. The vapor flow through the orifices stabilizes the Leidenfrost water
puddle on the drilled substrate. In both images, the substrates appear dark (low temperature),
which is due to its IR reflection on the metallic polished surface.

A sketch of the experimental setup is shown in figure 3.14a. On the top, two cameras

were placed to record visible and infrared images. In figure 3.14b, we show a comparison

of the evaporation dynamics between a liquid puddle deposited on a flat plate and on

a perforated plate. In both cases, the substrates were heated to reach a temperature

of 400 °C. Some infrared pictures taken at the indicated times are shown to illustrate

the contrast in their respective dynamics. For the non-perforated case, we observe the

appearance of chimneys, whereas the holed substrate totally suppresses this regime and

generates a stable slow evaporation. One can observe that the presence of holes can

reduce evaporation rate compared to the flat case. However, for higher hole densities, the

opposite effect is expected, as we are increasing the amount of drained vapor from the

bottom part of the substrate. This is going to be discussed in the following section.
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Figure 3.14: (a) Experimental setup with a visible or an infrared camera. (b) Comparison of the
surface evolution for a liquid deposited on a perforated flat plate and a non-perforated flat plate
which is heated to reach a temperature T = 400°C. The IR snapshots illustrate the difference
in their evaporation dynamics for initial puddles of 14 cm diameter.

In order to quantify the decrease in the chimney formation as a function of the hole

density, four plates with hole densities n = 0.8, 1.2, 2 and 2.5 hole/cm2 were machined,

then polished and heated at T= 400°C. After waiting 15 minutes to ensure thermal

equilibrium, deionized water is poured on the substrates, and we follow the evaporation

dynamics of puddles with same initial surface A0 = 34 ± 0.1 cm2. We analyze the

recorded videos on Matlab and we track every event corresponding to the creation or

destruction of an existing chimney. In figure 3.15a, we plot the chimney production rate

for the same initial puddle placed on different perforated substrates. In figure 3.15b we

plot the normalized frequency of generated chimneys for averaged over 10 s. The

maximum values of the histograms give us the most frequent number of chimneys

present on the corresponding plate, for a given volume of liquid.

79



Figure 3.15: Evaporation dynamics for different hole concentrations. (a) Chimney production
rate for the same puddle as a function of time. (b) Normalized frequency of generated chimneys
for a puddle of area A0 = 34cm2 averaged over 10 s.

From figure 3.15a, we observe that the chimney production decreases with time as a

result of the decrease of the contact area of the liquid. Moreover, the chimney production

rate suddenly decreases when the hole density changes from 1.2 to 2 holes/cm2 and is

totally annihilated for hole densities larger than 2 holes/cm2. The insets shown in fig.

3.15b, demonstrate the motion stabilization by means of this mechanism. For puddles

without chimneys, the evaporation dynamics takes place in a quasi-steady state, just as

the case of small droplets placed on a smooth surface [110]. Thus, we have achieved also

a total stabilization of arbitrary big levitated puddles thanks to this partial evacuation of

vapor under the liquid.

These results prove that the presence of holes in the substrate enabling the release

of the vapor produced in the isolating layer between the puddle and the substrate can

efficiently prevent the appearance of chimneys. The critical density satisfies the criterion

given by the characteristic length of 4λc for the onset of the Rayleigh-Taylor instability (see

previous section). Huge puddles can be stabilized using this technique and the maximum

amount of levitated liquid is only limited by the size of our perforated substrates, but this

principle can be employed to levitate arbitrary large volumes of liquid that will be only

flattened by gravity, creating a liquid layer whose thickness is 2λc.

Evaporation rate comparison

We studied the evaporation rate for the different experimental hole densities in order

to be compared with the flat case. In figure 3.16, we plot the surface evolution during
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the evaporation process for the same initial amount of liquid deposited on the substrates

heated at 400°C. We observe that, according to the perforation densities, the evaporation

rate can be slower or faster compared to the flat case, even if we have less chimney

production. This variable evaporation rate can be understood from the fact that, as we

increase the number of perforations in the substrate, more vapor will be released through

these holes and the distance between the liquid and the substrate decreases inducing a

higher rate of evaporation. However, at some point the amount of drained vapor would

be higher compared to vapor evacuated by the chimneys. Thus, an optimum density can

give us the slowest evaporation rate. In figure 3.16a we observe that for the available hole

densities, the minimum evaporation rate is obtained for a density of n = 1.2 holes/cm2.

In figure 3.16b, we plot the total evaporation time for the same initial amount of liquid,

for the experimental hole densities. The maximum evaporation time is obtained for a hole

density n = 1.2 holes/cm2, in agreement with the previous plot, confirming the existence

of an optimal hole density to considerably reduce the evaporation rate of a Leidenfrost

liquid.

Figure 3.16: Evaporation dynamics for different hole concentrations. (a) Surface evolution as
a function of time. (b) Evaporation time for the same initial volume of liquid placed on the
substrates with different hole densities.

These experimental results show that with an increased density of holes, the vapor can

be drained away more easily and the vapor layer is thinner which induces an increase of

the evaporation rate. The decrease of the evaporation rate compared to the flat substrate

is less intuitive, since a formation of bubbles should increase the thickness of the vapor

layer locally and thus decrease the evaporation rate. However, the other regions of the

liquid puddle are closer to the substrate and, on average, the global evaporation rate ends

up being less important with a low-density perforated substrate than a flat substrate.
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An attempt to reconstruct the vapor layer

The shape reconstruction of the insulating vapor layer for a liquid in the Leidenfrost

state is an experimental challenge, and only an interferometric technique has been able

to get a full reconstruction, employing transparent flat substrates [161]. Here, we cannot

use the same interferometric method because we are working with metallic substrates.

For this reason, we decided to use a technique based on total internal reflection on the

lower liquid interface, where fringes are projected on a prism, which is placed on the top

of the liquid. The pattern has a deformed reflection due to the liquid-vapor interface,

and this is recorded with a fast camera. An example of an image obtained with this

technique is shown in figure 3.17. However, the action of placing the prism on the top

of liquid changes totally the dynamics as a result of the wetting on the glass surface. In

particular, we noticed a random re-appearance of chimneys. In addition, this method to

reconstruct the vapor layer profile is not straightforward, due to the large deformation of

the interface and the constant fluctuations in space and time. However, a combination of

this approach and artificial intelligence could be used to trace the geometric profile of the

interface. This is a work in progress that is being developed by a group of collaborating

engineers from the ESPCI.

Figure 3.17: Surface reconstruction attempt of the vapor layer via the fringe projection tech-
nique. Projected fringes cross a glass prism placed on the top of the liquid and these are reflected
by the deformed liquid/vapor interface. Then, the pattern is recorded by a high-speed camera.
Unfortunately, the dynamics is perturbed by the hydrophilic glass surface, which induces the
re-appearance of some chimney events.
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3.4.4 Numerical simulations

We performed numerical simulations of the Leidenfrost phenomenon for liquids placed

on holed substrates. To do that, we solved the Navier-Stokes equations adapted to these

experimental conditions.

First, we consider the case of a Leidenfrost puddle placed on a single-hole substrate.

This system has a radial geometry, and the liquid deformation is modeled by a Level-Set

method. This technique was introduced for the first time in [162], and allows one to

include the surface tension forces and track the topological changes of the interfaces.

The details of this technique can be found in [163]. The main idea is to represent the

interface by a certain isocontour of a globally defined function, the level set function,

which is coupled with the system of partial differential equations. This method has been

already used to study the Rayleigh-Taylor instability [164], and other fluid dynamics

problems including capillary forces [165, 166]. The numerical simulations were done in

COMSOL Multiphysics, a software based on finite element method to solve partial

differential equations [167]. Our model is easy to implement, thanks to the

Computational Fluid Dynamics interface. This software has been already used to

simulate the propulsion mechanism for a Leidenfrost droplet that is deposited on a

ratchet patterned substrate [151], obtaining a good agreement with the

experiments [101]. A more refined model including thermal contributions was recently

described in [158], showing very slight discrepancies compared to the model that neglect

thermal effects.

The numerical simulations of the Leidenfrost puddle placed on a single-hole substrate

were done with an initial spherical drop of volume V = 32πλ3
c in order to create a

puddle-shaped droplet of radius R = 4λc, after being flattened by gravity. The droplet is

placed 1 mm above the center of the holed substrate, in which we place a uniform vapor

flow escaping in the vertical direction with different constant velocities in the range of

v ∈ [1, 10] cm/s. This velocity range corresponds to the typical downwards vapor velocity

of a Leidenfrost droplet placed over a flat substrate [151]. In the middle of the substrate,

we draw a hole of different radiusRh ∈ [0, 2] mm. The simulations employed a non-uniform

triangular mesh of variable size for the vapor and liquid phases, as their thicknesses differ

from two orders of magnitude. Both phases had approximately 105 elements to obtain

the convergence of the finite element built-in solver. The time discretization was done by

selecting a time step of ∆t = 1 ms, which is small enough to capture the full dynamics.

Initially, the viscosity of the liquid is increased 10 times and then decays exponentially to
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its real value during the first 0.5 s of the numerical simulations. This is done in order to

prevent convergence crashing, in accordance with [158].

The numerical study considers a uniform vapor injection from the substrate surface

that is localized below the liquid. This vapor flow will deform the droplet surface and will

create similar conditions compared to the ones found in the Leidenfrost phenomenon. This

comparison has been already used in [136] to predict the maximum size of drops levitated

by an air cushion. It has been found that, for this levitating mechanism, the critical radius

is Rc ≈ 4λc, for which the chimney regime starts to appear. This value is approximately

the same value found in [110], for Leidenfrost droplets. Thus, this numerical model can

be implemented to study the Rayleigh-Taylor instability of a holed substrate to give us

relevant information about the maximum hole size that can be perforated in the solid

substrate. Typical Leidenfrost experiments are done with drop sizes ranging from 1 mm

to a few cm. The corresponding insulating vapor layer has a thickness having two orders

of magnitude smaller, which represents a computational challenge. This is the reason

why we use the model without including the heat transfer between the substrate and the

liquid. Thus, we only consider the liquid levitated by a cushion of vapor created at a rate

fixed by the substrate temperature. Despite the simplification, this model can be useful

for predicting the Rayleigh-Taylor instability, as it was done for the flat case in [136].

The figure 3.18 shows a comparison of the numerical results obtained for a spherical

droplet of radius R = 7 mm placed on three different substrates with vapor flowing in

the perpendicular direction at a velocity of 1 cm/s. This flow is redirected to the radial

direction, as a result of the confinement between the liquid and the substrate. Due to

gravity, the droplet acquires a puddle-like shape of radius R0 ≈ 4λc. In fig. 3.18a we

show the formation of a chimney when this droplet is placed on a flat substrate. In this

numerical simulation the chimney bursts at the center of the droplet. In fig. 3.18b, we

observe that the droplet is stable on a substrate having a perforation radius Rh ≈ 1 mm.

The perforation prevents the Rayleigh-Taylor instability and no chimney is observed. In

fig. 3.18c we observe an unstable regime for a droplet placed on a substrate having a

hole radius Rh ≈ 2 mm. In this case, the droplet starts dripping through the hole and,

eventually, is totally drained through the orifice as a result of the liquid weight.
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Figure 3.18: Morphology of a Leidenfrost puddle-shaped droplet of radius R = 4λc, placed on
different substrates. The images correspond to the numerical results obtained with COMSOL
Multiphysics. (a) Droplet placed on a flat surface presenting a chimney as a result of the
Rayleigh-Taylor instability. (b) Stable droplet when placed on a 1 mm diameter holed substrate.
(c) Unstable droplet drained through a perforated substrate with a 2 mm diameter hole.

According to the numerical simulations, the droplet can present a chimney regime if

the hole size is small enough to neglect the draining of vapor through the orifice. An

opposite scenario can also occur if the hole size is big enough to allow a full draining of

liquid through the orifice. Between these two regimes we observe the regime

experimentally studied, in which the small fraction of drained vapor can suppress the

Rayleigh-Taylor instability and prevent bubble formation. The results of this numerical

analysis confirm the theoretical predictions provided in the previous section. However,

for the case of water, we experimentally observed that if the holes are larger than 1.5

mm in diameter some spontaneous boiling can occur on the sharp edges of some orifices.

The numerical simulations were done neglecting the substrate temperature, then, they

predict a larger possible perforation size without having draining of liquid through the

orifices. This can be understood if we take a look of the flow of a droplet placed on a

holed surface. The figure 3.19 shows the streamlines for the three different possible

scenarios. Figure 3.19a shows the flow field for the case of a drop placed on a flat

substrate. We observe that the vapor pushes the center area of the liquid in the upper

direction and the surface tension forces cannot compensate the driven liquid that ends

with a chimney explosion. Figure 3.19b shows the flow field for a drop placed on a

perforated substrate with a 1 mm diameter hole. We observe that the vapor pushing the

liquid is compensated by the evacuation of a part of the vapor and the shear stress

forces are not big enough to create a chimney. Figure 3.19c shows the flow field for a

droplet placed on a perforated substrate with a 4 mm diameter hole. In this case, we

observe that the capillary and vapor pressures are not big enough to compensate the

hydrostatic pressure, which drives the levitated liquid to pass through the orifice.
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Figure 3.19: Streamlines showing the flow inside of a Leidenfrost droplet that is deposited on
substrates whose perforation radius are: (a) Rh = 0 mm, (b) Rh = 0.5 mm, and (c) Rh = 2
mm. The close-ups are added to show the flow near the holes in more detail.

The flow field inside of Leidenfrost droplets has been recently study to understand the

propelling mechanism of the so-called Leidenfrost wheels [168]. Our simulations reproduce

similar inner flows even if we have neglected the thermal convection. Thus, the vapor

flow under the liquid is the main responsible for creating an inner flow by means of its

viscosity. The level-set method allowed us to get insight about the convection that occurs

in a Leidenfrost droplet and represents a very powerful technique for a numerical analysis

of this phenomenon on different substrate geometries.

3.5 A new propelling mechanism

Until now, we have shown that we are able to stabilize an arbitrary large liquid puddle

by means of the vertical release of vapor in the insulating layer. In this section, we are

going to show how we can take advantage of this stabilizing mechanism for also controlling

the horizontal motion of a large puddle of liquid. The main idea is to break the rotational

symmetry of the perforated pattern. This will induce an asymmetric flow which will

propel the whole levitated liquid, as it has been already demonstrated for ratchet based

propelling mechanisms [154]. In our case, we can achieve this, by drilling a swirl-shaped

pattern (see fig.3.20a).

3.5.1 Experimental realization

Different swirl shaped engines were designed in OpenScad and then drilled with our

homemade CNC machine. An example of a final holed patterned engine is shown in

figure 3.20a. This simple asymmetric design was able to turn the whole liquid, being

capable of reaching angular speeds up to around 4 rad/s (fig. 3.20c). The rotation speed
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was measured by tracking the rigid rotation of a piece of paper placed on the top of the

liquid (see fig. 3.20a). Additionally, it is possible to obtain the velocity field over the entire

puddle using the infrared camera. In figure 3.20b, we plot the velocity field, obtained from

the analysis of the IR videos with PIV-Lab [169]. The averaged flow rotation gives us a

rigid rotation with a similar value compared to the paper strip technique. We also studied

the influence of the substrate temperature on the rotation speed of the puddle driven with

this propelling technique. Figure 3.20c shows the rotation velocity as a function of the

temperature of the substrate. We observe a steady decrease of this rotation with increasing

temperature.

Figure 3.20: A new Leidenfrost engine for arbitrary large volumes of liquid. (a) A top picture of
a big puddle of liquid that is rotating on the aluminum substrate having an asymmetric swirl-like
pattern. A small piece of paper is placed on the top to track the global rotation. (b) Flow field
obtained with PIVlab [169] from an IR video that follows the evolution of the turning liquid
placed on this engine. (c) Maximum angular velocity for different substrate temperatures.

The rotation takes place in the opposite direction compared to the case of solid

substrates that are engraved with a similar swirl-like pattern [154]. This happens

because the vapor flow is the responsible propelling mechanism, originating from the

creation of a shear stress which constrains the liquid to follow the vapor flow. This

propelling mechanism is analogous to that encountered in ratchets and other

asymmetric designs [120, 153]. For each fabricated Leidenfrost engine, we found that the

maximum rotating speed decreases with the substrate temperature. This could seem

counter-intuitive as we are heating more and we are getting less mechanical energy. A

possible explanation is the increase of the radial flow component for the vapor at high

temperature due to the increase of the net evaporation flux in the cushion layer (see fig.

3.21a).
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3.5.2 Numerical simulations

We performed numerical simulations in order to study the proposed propelling

mechanism. The simulations are based on the numerical model presented [151], where

they neglect the liquid deformation. The thermal effects are also neglected and we

consider a vapor flow going in the upward vertical direction with a velocity of 5 cm/s.

The simulations were performed on COMSOL multiphysics, employing the CFD module

to solve the steady version of the Navier-Stokes equations in 3D, which are enough to

demonstrate a net propulsion. We consider a non-slip condition on the top layer,

corresponding to the bottom part of the liquid phase, and also a non-slip condition for

the bottom part which corresponds to the substrate surface. The vapor thickness is set

to 100 µm, corresponding to the order of magnitude of the insulating vapor layer

thickness [8].

Three different swirl-like engines were created in OpenScad, then they were imported

in COMSOL. Examples of the designed engines are shown in figure 3.21, where three

swirl designs with 6, 8, and 10 spiraling branches are depicted. The branch curvature was

arbitrary chosen to break the rotational symmetry. The black arrows are tangential to

the streamlines and indicate the direction of the vapor flow. The color map represents

the pressure distribution in the insulating vapor layer. At the bottom of this figure, we

place the corresponding contour plots for the vapor velocities in each respective plate, the

maximum values for both colormaps are colored in red, whereas the minimum values are

colored in dark blue.

The numerical simulations illustrate the competition between the outside radial escape

of the vapor and its flow through the orifices. From fig. 3.21b, we note the existence of

areas with a minimum flowing velocity. The radial escaping flow is isotropic and radial.

It does not generate a global rotation. On the contrary, the flowing vapor that enters the

swirl pattern can generate a global rotation of the levitated liquid. The liquid viscosity

is the responsible of this propulsion, in analogy to what has been argued for the ratchet

surfaces [151].
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Figure 3.21: Numerical validation of the propelling mechanism due to an asymmetric evacuation
through swirl-like patterns that are removed from the solid substrates. (a) Swirl engine designs
with 6, 8, and 10 spiraling branches. The branch curvature was arbitrary chosen to break
the rotational symmetry. The black arrows are tangential to the streamlines and indicate the
direction of the vapor flow. (b) Contour plots for the vapor velocities in each respective plate.
The maximum values for both colormaps are colored in red, whereas the minimum values are
colored in dark blue.

3.5.3 Propulsion force estimation

Leidenfrost liquids levitate on a vapor layer whose thickness is much smaller than

the characteristic liquid size. Then, the lubrication approximation [170] can be

employed to estimate the propelling force of a liquid placed on a perforated substrate.

This approximation is not verified inside the holes, but considering their negligible area

compared to the area covered by the puddle, the global flow profile can be well

described under this approximation. This will give us an order of magnitude of the

torque applied to the levitating liquid.

The vapor flow can be described by the continuity equation combined with the

incompressible and steady form of the Navier-Stokes equations. Under these conditions

and using cylindrical coordinates, we show in Appendix E that the vapor pressure

verifies:
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where η is the vapor viscosity, δ the vapor layer thickness, and vn the normal vapor

flow which is emanating from the bottom side of the liquid puddle, as a result of the

phase transition in the region closest to the hot substrate. One can note that equation

3.5 corresponds to Poisson’s equation ∆P = 12ηvn, whose solution can only be found

numerically for a given engine geometry. In figure 3.22a, we show the results of the

numerical solution of eq. 3.5 for a swirl-like engine having 8 branches, where vn = 1

cm/s and δ = 0.1 mm. We added the streamlines to indicate the vapor flow direction.

The pattern seems more complex compared to the engine designs depicted in fig. 3.21.

However, the streamlines demonstrate a clock-wise rotating motion.

Figure 3.22: Numerical estimation of the propulsion force of a swirl-like engine having 8 branches.
(a) Pressure distribution and streamlines indicating the flow direction. (b) Torsional shear stress
distribution acting on the levitated liquid.

The torsional shear stress τθ can be approximated as τθ ≈ η ⟨vθ⟩
δ
. This can be written

in terms of the pressure gradient in the angular direction (see Appendix E):

τθ ≈
δ

12r

∂P

∂θ
(3.6)

In figure 3.22b we plot the torsional shear stress distribution acting on the levitated

liquid, for the case of a normal vapor flow vn = 1 cm/s and δ = 0.1 mm. From this, we

can calculate the magnitude of the total torque acting on the levitated liquid of radius R:

||T||=
∫ R

0

r2dr

∫ 2π

0

τθ dθ (3.7)
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This torque generates an angular acceleration α that can be obtained from the rota-

tional law of motion, which gives us:

α =
2||T||

ρlπR4λc

(3.8)

where ρl is the liquid density and λc its capillary length. From this numerical

simulation we obtained α ≈ 0.1 rad/s2, which corresponds to the maximum angular

acceleration because the actual experimental system has a non-negligible friction. In our

experiments we found a maximum α ≈ 0.08 rad/s2, which was measured from the

recorded videos. Thus, the angular velocity found numerically has the same order of

magnitude compared to that measured experimentally.

3.5.4 Engineering the liquid motion

The propelling mechanism described above could be used to generate complex

dynamics thanks to a controlled flow of the vapor from the bottom part of the liquid

which, in the present case, results from the Leidenfrost effect. Let us illustrate this idea

with an alternating rotation, that, in principle, would be obtained if we drill swirl-like

patterns with opposite chirality on the same aluminum substrate, as shown in figure

3.23. We added a small laser-cut piece of paper in the shape of a dolphin to help the

visualization of the global liquid motion. The substrate was heated to reach a stable

temperature of 400°C and colored water was poured until reaching puddle radius of 14

cm in diameter. This corresponds to a bigger area compared to the drilled region. We

recorded the evaporation process with the same camera that was employed in our

previous experiments, and we noted that different dynamics appear according to the

liquid size compared to the perforated region.

For puddles that are larger than the perforated pattern, we observed a chimney

instability on the region external to the drilled area and no global rotation was observed

(see fig. 3.23a). Then, when the puddle size is comparable to the one of the region

having the external swirl pattern, a counterclockwise rotation occurs (see fig. 3.23b).

Finally, when the puddle reaches the internal swirl of opposite chirality, a clockwise

rotation takes place (see fig. 3.23c).
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Figure 3.23: Snapshots of a large rotating Leidenfrost puddle placed on two opposite concentric
swirls. (a) Levitating puddles larger than the perforated pattern present a chimney instability
on their perimeter and no rotation is observed. (b) A counter-clockwise rotation occurs when
the puddle size reaches the external swirl pattern. (c) A clockwise rotation takes place if the
puddle fits into the internal swirl.

This was only an example of engineered liquid motion that we could design by placing

opposite chiral perforated patterns. Different designed configurations can take advantage

of this propelling mechanism, which could be particularly useful to control the motion of

quasi-frictionless liquids. Moreover, the combination of an asymmetric pattern and some

uniform perforations can lead to the creation of massive Leidenfrost engines, which could

move arbitrary large levitated liquids, as there is no limitation in size for this mechanism.

In the case of these large applications, we could use air cushion systems and directly

pattern the surface in order to achieve any programmed motion for the levitated object.

3.6 Conclusions and perspectives

In this chapter, we were interested in stabilizing and controlling the motion of large

volumes of liquids in the Leidenfrost state. This was possible thanks to a selective

evacuation of a small fraction of the insulating vapor, created under the liquid, by using
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a perforated substrate. We achieved a complete annihilation of the chimney regime,

which is always present in large Leidenfrost puddles, by releasing a part of the vapor

that nourishes the insulating layer. For each temperature, there exists a minimum hole

concentration capable of preventing the bubble formation. On one hand, holes need to

be small enough so that the Laplace pressure prevents the liquid to drain through the

holes. On the other hand, the density of holes must be high enough to avoid the

Rayleigh-Taylor instability of the lower interface of the puddle. Under these conditions,

the liquid in the Leidenfrost state evolves with an almost steady evaporation.

Numerical simulations were performed with a simplified model that neglects the

thermal effects and considered the Leidenfrost puddle shaped liquid as if it was

levitating on a pre-existing vapor cushion. The numerical solutions of the Navier-Stokes

equations, coupled with the surface tension forces, were able to give us important

qualitative and quantitative insights for the maximum hole size that is needed to

stabilize the levitated liquid. These simulations were also a crucial tool for

demonstrating our propelling mechanism based on an asymmetric evacuation of vapor

below the liquid. In the future, we can refine this model to include thermal effects, but

we will need to overcome some important computational challenges. In this regime we

cannot employ the lubrication approximation and we will face the full Navier-Stokes

equations coupled with thermal effects and surface tension forces.

An experimental demonstration of a global directed motion for the whole levitated

liquid was performed. To achieve this, we design and drill asymmetric patterns, allowing

us to create a stable “Leidenfrost engine” that set in rotation arbitrary large volumes

of liquids. The proposed engine represents an alternative to set into motion a liquid in

the Leidenfrost state compared to the ratchet-based and other propelling mechanisms.

Furthermore, this propelling method can be engineered to generate complex motions. In

our case, alternating rotations were obtained by drilling swirl-like shapes of alternating

chirality on the same aluminum substrate. This could be interesting for creating automatic

locomotive processes in industry or increasing the complex motion capabilities for liquids.

The Leidenfrost engine efficiency could be improved, and the numerical simulations

developed in this work represent a starting point. In order to get the most efficient

engine, we must perform more simulations, with an exhaustive design testing of different

asymmetric vapor evacuation patterns. Numerical analysis will avoid a direct

experimental testing on a very limited number of perforated substrates.
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Conclusions

Active systems have a rich phenomenology with multiple fields of application as it

was illustrated in this thesis. We have been interested in studying three active systems

that can be useful for robotic exploration, wave manipulation and propulsion liquids in

the Leidenfrost state.

In the first part, we have investigated the usefulness of random motion to measure

and recognize shapes without seeing them. For this purpose, we have employed the tools

provided by statistical geometry. In particular, we used the mean chord theorem, which is

one of the most important results of this branch of mathematics. This statistical invariant

allows us to calculate the ratio between the area and the perimeter of an arbitrary region

when it is crossed by straight or brownian trajectories. We extended the formula for

closed-loop trajectories, which gives a criterion for knowing when a shape can be totally

inscribed in a region. Afterwards, we have found a second statistical invariant which

gives us the area of an arbitrary region when it is crossed by straight trajectories. By

combining these two formulas, we can retrieve the area and the perimeter of an arbitrary

2D region, which can be non-convex and non-connected. We implemented this result

to robotic exploration, using a simple, non-oriented robot that randomly explores an

arbitrary region. We have shown that, from simple one-dimensional measurements, a

blind robot can acquire global geometric information of the explored region. In this case,

the robot was able to determine the area and perimeter of several explored regions, and

then employed these parameters in a robust strategy to recognize the shape, using a shape

dictionary. Finally, this strategy was proven to be useful for reading letters and words in

a text.

In the second part, we have studied the propagation of waves through a medium

capable of performing an abrupt change of damping. We showed that the application of a

damping shock can create a time reversed version of an initial propagating wave. This is

only a result of a quick modification of the initial conditions at the application time of a

damping pulse. The initial traveling wave splits into two counter-propagating waves, one

of them corresponds, up to a factor one half, to the time-reversed version of the initial

propagating wave. The other one is the same initial propagating wave multiplied only

by a factor of one half. This approach offers an alternative to the instantaneous time

mirror technique, in which a sudden disruption in the propagating medium generates two
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counterpropagating waves. We implemented this time-reversal approach using an array

of repelling magnets placed on an air cushion to remove the damping. Phononic waves

in this 2D crystal were time reversed by inducing a sudden freezing and release of the

magnets.

The proposed time reversal mechanism is a general concept that could be applied

to any type of waves by an abrupt change in the damping of the corresponding wave

field. Unlike other time-reversal methods, this method has a higher fidelity, because the

backpropagated wave is proportional to the time-reversed version of the initial propagating

wave. From this perspective, this technique has no spectral limitations and can be applied

to broadband wave packets. The only condition is to be able to apply the damping shock

fast enough compared to the wavefield velocity. Then, this represents a challenge for time

reversing electromagnetic waves with this technique. Finally, we present an interesting

application of successive damping shocks, which can annihilate specific monochromatic

components. This represents a new wave-shaping mechanism, which may be interesting

for tailoring specific frequencies of a spectral broadband wave.

In the third part, we were interested in the stabilization and propulsion of large

volumes of liquids in the Leidenfrost state. This was possible thanks to a partial

drainage of the vapor present in the insulating layer. For this purpose, we employed a

homemade machine to drill small holes in solid substrates, which had to be connected to

ambient pressure. Thanks to this, we managed to prevent the chimney regime, above a

given concentration of holes, which is associated to the Rayleigh-Taylor instability.

Under these conditions, the liquid evolves with an almost steady evaporation. Numerical

simulations were also carried out to solve the Navier-Stokes equations coupled to the

surface tension forces. These simulations corroborated our mechanism of liquid

stabilization in the Leidenfrost state. Subsequently, we modified the hole distribution to

break the rotational symmetry, achieving a new propelling mechanism for liquids in the

Leidenfrost state. Since the chimney regime disappears, our mechanism generates a

global rotation of arbitrarily large liquid volumes. Finally, we have fabricated substrates

with different asymmetric hole distributions which could generate complex motions,

such as alternating rotations. This shows that the design of the hole patterns makes it

possible to engineer the desired movement of the liquid, which is particularly interesting

for creating automatic locomotion processes in industry or fluidic devices. The

optimization of this propelling mechanism by means of more engineering design could

create an alternative way to propel large amounts of liquids.
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A
The mean arc length theorem for

closed loop trajectories

Objects and properties in integral geometry are quantified by means of the kinematic

dK-measure [16]. It is a measure invariant under rigid transformations. In the following,

we designate the explored bounded domain Ω1 with an area A1 and perimeter P1 and the

trajectory by ∂Ω2 defined as the contour of a second domain Ω2 of area A2 and perimeter

P2. We restrict the Ω1 topology to connected domains without internal holes.

A region Ω1is fixed in the frame XY while a contour ∂Ω2 is placed in a moving frame

X’Y’, that can perform rigid transformations in relation to XY. These are performed by

a rotation dθ and a translation along (dx, dy) (see Fig. A.1). The kinematic measure of

a function f relating the domain Ω1 and the replicas of the contour ∂Ω2 is defined by the

integral f(Ω1,Ω2)dK over all the rigid transformations of ∂Ω2, where dK = dxdydθ is the

kinematic density. The integration is restricted to the situations in which whether ∂Ω2

or Ω2 overlaps the region Ω1.

Let us recall two central theorems of integral geometry. The first theorem is the Blaschke’s

formula which gives the kinematic measure of the length of congruent contours inside a

domain [16]. The kinematic measure of the arc length s(∂Ω1∩∂Ω2) that lies inside of the

domain Ω1 for a replica of the contour ∂Ω2 is given by:

S =

∫
s(Ω1 ∩ ∂Ω2)dK = 2πA1P2 (A.1)

The integration is realized over all points in Ω1, for all possible replica of Ω2 such that

∂Ω2 ∩ Ω1 ̸= ∅.

The second theorem, called Poincare’s formula [16], refers to the number of intersections

between an arbitrary curve of finite length and the homogeneous and isotropic replicas of
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Figure A.1: Schematic representation of the measure of a domain Ω1 by rigid transformed
replicas of a contour ∂Ω2 [4]. (a) The region 1 (light green) is fixed in the frame XY , while
the contour ∂Ω2 (dark blue) is placed in a moving frame X ′Y ′ which can perform a rigid
transformation relative to XY . Replicas of ∂Ω2 (light blue) are obtained by (b) rotations dθ
and (c) by translations along the vector (dx, dy).

another arbitrary curve. The kinematic measure of the intersections n of the contour of

domain Ω1, ∂Ω1, with the replicas of the contour ∂Ω2 is given by:

Ni =

∫
n(∂Ω1 ∩ ∂Ω2)dK = 4P1P2 (A.2)

The integration is realized over every point in Ω2, for all possible replica of Ω2 such

that ∂Ω2

⋂
∂Ω1 ̸= ∅.In the case of closed contours ∂Ω2, n is an even number for each

intersecting arc. Hence, the Ni is twice that of the number of intersecting arcs.

Provided that no contour is fully included in the domain, which would have no crossing

with the boundary of ∂Ω1, Ni/2 is exactly the number of arcs that are involved in eq.

1 to compute S. Hence, when this condition is fulfilled, the mean value arc length s̄ for

closed contour trajectories is thus given by the ratio of S (eq. A.1) over Ni/2 (eq. A.2).

This yields to:

s̄ = 2
S

Ni

=
πA1

P1

(A.3)

This is a generalized Cauchy formula valid for any arbitrary closed trajectory exploring

any arbitrary bounded domain whether convex or not, provided no trajectory can be fully

included in the domain.
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B
Demonstration of Crofton’s formula

Figure B.1

We define a convex domain Ω of surface A. We denote ∂Ω its external border and Pext

the length of ∂Ω. We consider a line L intersecting Ω. A point belonging to the line L is

identified by its curvilinear abscissa ℓ along the line. For every line we denote e1 and s1

the curvilinear abscissa at which the line enters and exits the domain. Such a

configuration is illustrated in the Figure B.1.

We consider P1 and P2 two points belonging to a line L and being inside the domain.

ℓ1 and ℓ2 refer their curvilinear abscissa. We denote r the distance between P1 and P2.

Following [16], for any given integer n, we consider the integral

Jn =

∫
(P1,P2)∈Ω×Ω

rnd2P1d
2P2 (B.1)
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We remark again that for n = 0

J0 =

∫
(P1,P2)∈Ω×Ω

d2P1d
2P2 =

∫
P1∈Ω

d2P1 ×
∫

P2∈Ω

d2P2 = A× A = A2. (B.2)

The streamline of the demonstration is as follows. We calculate first Jn in term of the

internal chords and will equate the result with Eq. B.2 for the specific case n = 0.

d2P1d
2P2 can be expressed in the system of the line coordinates with a Jacobian given

in [16]

d2P1d
2P2 = |ℓ2 − ℓ1|dℓ1dℓ2dL (B.3)

with dL being the Poincaré kinematic measure. It gives

Jn =

∫
|ℓ2 − ℓ1|n+1dℓ1dℓ2dL (B.4)

The integration on dL is realized over every possible lines L intersecting the external

border ∂Ω while the integration on dℓ1 and dℓ2 are realized in the interval [e1, s1]. It gives

Jn =

∫
L;L∩∂Ω̸=∅

dL

∫ s1

e1

dℓ1

∫ s1

e1

dℓ2|ℓ2 − ℓ1|n+1 (B.5)

We split the integral depending on the relative sign of ℓ2 − ℓ1.

Jn =

∫
L;L∩∂Ω̸=∅

dL

∫ s1

e1

dℓ1

[∫ ℓ1

e1

dℓ2(ℓ1 − ℓ2)
n+1 +

∫ s1

ℓ1

dℓ2(ℓ2 − ℓ1)
n+1

]
(B.6)

which gives

Jn =
2

(n+ 2)(n+ 3)

∫
L;L∩∂Ω̸=∅

dL(s1 − e1)
n+3 (B.7)

For n = 0, we get

A2 =
1

3

∫
L;L∩∂Ω̸=∅

dL(s1 − e1)
n+3 (B.8)

We denote Cn+3(L) = (s1− e1)
n+3 and evaluate ⟨C3(L)⟩L the mean value of C3(L) among

all possible lines L uniformly and isotropically distributed. The probability p(L)dL to
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measure a line L intersecting ∂Ω corresponds to the kinematic probability

p(L)dL =
dL∫

L;L∩∂Ω̸=∅
dL

(B.9)

The Poincaré theorem of integral geometry gives
∫

L;L∩∂Ω̸=∅
dL = Pext. The probability

density being defined we have

⟨C3(L)⟩L =

∫
L;L∩∂Ω̸=∅

C3(L)p(L)dL =

∫
L;L∩∂Ω̸=∅

C3(L)dL∫
L;L∩∂Ω̸=∅

dL
=

∫
L;L∩∂Ω̸=∅

C3(L)dL

Pext

=
3A2

Pext

(B.10)

This is another elegant result from integral geometry which relates the third moment of

the chord length distribution of a convex domain to its area and perimeter.
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C
A new generalized invariant for

ballistic motion

Illustration with a banana shape

Figure C.1

We define a non-convex domain Ω of surface A. We denote ∂Ω its external border and

Pext the length of ∂Ω. We consider a line L intersecting Ω. A point belonging to the line

L is identified by its curvilinear abscissa ℓ along the line. For every line we enumerate

the points where the line enters and exits the domain. With N being the number of

exits for a given line L, we denote by (ei)i=1...N the curvilinear abscissa of the entries

and by (si)i=1...N the curvilinear abscissa of the exit. For a convex body, we have N = 1

for any possible lines intersecting ∂Ω. However for a non-convex domain, there exits a

family of lines such that N > 1 corresponding to multiple entries/exits. Such a line is

illustrated in the Figure C.1. In this chapter we consider non-convex shape such that

N = 1, 2.
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We consider P1 and P2 two points belonging to a line L and being inside the domain. ℓ1
and ℓ2 refer their curvilinear abscissae. We denote r the distance between P1 and P2. For

any given integer n, we consider the integral

Jn =

∫
(P1,P2)∈Ω×Ω

rnd2P1d
2P2 (C.1)

We remark again that for n = 0

J0 =

∫
(P1,P2)∈Ω×Ω

d2P1d
2P2 =

∫
P1∈Ω

d2P1 ×
∫

P2∈Ω

d2P2 = A× A = A2. (C.2)

The streamline of the demonstration is as follows. We calculate first Jn in term of

internal and external chords and will equate the result with Eq. C.2 for the specific case

n = 0.

We call f the characteristic function so that f(P ) = 1 if P ∈ Ω and f(P ) = 0 if P /∈ Ω.

The d2P1d
2P2 can be expressed in the system of the line coordinates with a Jacobian

similar to that above

d2P1d
2P2 = |ℓ2 − ℓ1|dℓ1dℓ2dL (C.3)

with dL being the Poincaré kinematic measure. It gives

Jn =

∫
f(P1)f(P2)|ℓ2 − ℓ1|n+1dℓ1dℓ2dL (C.4)

The integration on dL is realized over every possible lines L intersecting the external

border ∂Ω while the integrations on dℓ1 and dℓ2 are such that P1 and P2 remain in Ω. It

gives

Jn =

∫
L;L∩∂Ω̸=∅

dL

∫
dℓ1f(P1)

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1 (C.5)

We separate the sets of lines L into two sets L1 and L2. A line L1 enters once in the

domain at a point e1 and exits once at a point s1. A line L2 have two entries (e1; e2) and

two exits (s1; s2) in the domain. A line L2 is exemplified in the Figure C.1. It yields

Jn =
2∑

j=1

∫
Lj ;Lj∩∂Ω̸=∅

dLj

∫
dℓ1f(P1)

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1 (C.6)
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that we write into a compact form

Jn =
2∑

j=1

J (j)
n (C.7)

The computation of J
(1)
n is strictly equivalent to that done in the previous chapter and

gives

J (1)
n =

2

(n+ 2)(n+ 3)

∫
L1;L1∩∂Ω ̸=∅

dL1(s1 − e1)
n+3 (C.8)

For a line L2 the point P1 can be either in or out of the domain Ω by sliding along

the line L2. It means that ℓ1 must be integrated along two intervals [e1; s1] and [e2; s2]

corresponding to P1 being in Ω. It yields

J (2)
n =

∫
L2;L2∩∂Ω̸=∅

dL2

 s1∫
e1

dℓ1

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1+

s2∫
e2

dℓ1

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1


(C.9)

Then for every piece of integral we must pay attention to the sign of ℓ2 − ℓ1. The first

piece of integration
∫ s1
e1

dℓ1 . . . gives

s1∫
e1

dℓ1

∫
dℓ2f(P2)|ℓ2−ℓ1|n+1=

s1∫
e1

dℓ1

 ℓ1∫
e1

dℓ2 (ℓ1 − ℓ2)
n+1 +

s1∫
ℓ1

dℓ2 (ℓ2 − ℓ1)
n+1 +

s2∫
e2

dℓ2 (ℓ2 − ℓ1)
n+1


(C.10)

The second piece of integration
∫ s2
e2

dℓ1 . . . gives

s2∫
e2

dℓ1

∫
dℓ2f(P2)|ℓ2−ℓ1|n+1=

s2∫
e2

dℓ1

 s1∫
e1

dℓ2 (ℓ1 − ℓ2)
n+1 +

ℓ1∫
e2

dℓ2 (ℓ1 − ℓ2)
n+1 +

ℓ1∫
e2

dℓ2 (ℓ2 − ℓ1)
n+1


(C.11)

All these integral can be performed explicitly which yields

The Figure C.2 gives a illustrative representation of each elements under the integral.

Figure C.2
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For n = 0 we get the result

A2 =
1

3

∫
L1;L1∩∂Ω̸=∅

dL1(s1 − e1)
3+

1

3

∫
L2;L2∩∂Ω̸=∅

dL2

([
(s2 − e1)

3 + (s1 − e1)
3 + (s2 − e2)

3 + (e2 − s1)
3
]
−
[
(s2 − s1)

3 + (e2 − e1)
3
])

(C.12)

For a line L1 having only one entry in e1 and one exit s1, we denote

Cn+3(L1) = (s1 − e1)
n+3. (C.13)

For a line L2 having two entries and two exits in Ω we define the quantity

Cn+3(L2) =
[
(s2 − e1)

n+3 + (s1 − e1)
n+3 + (s2 − e2)

n+3 + (e2 − s1)
n+3
]
−
[
(s2 − s1)

n+3 + (e2 − e1)
n+3
]
.

(C.14)

We now want to evaluate ⟨C3(L)⟩L the mean value of C3(L) among all possible lines

L uniformly and isotropically distributed. The probability p(L)dL to measure a line L

intersecting Ω corresponds to the kinematic probability

p(L)dL =
dL∫

L;L∩∂Ω̸=∅
dL

(C.15)

Then, we have

⟨C3(L)⟩L =

∫
L;L∩∂Ω̸=∅

C3(L)p(L)dL =

∫
L;L∩∂Ω̸=∅

C3(L)dL∫
L;L∩∂Ω ̸=∅

dL
=

3A2∫
L;L∩∂Ω̸=∅

dL
(C.16)

General case

We define a non-convex domain Ω of surface A. We denote ∂Ω its external border and

Pext the length of ∂Ω. We consider a line L intersecting Ω. A point belonging to the line

L is identified by its curvilinear abscissa ℓ along the line. For every line we enumerate

the points where the line enters and exits the domain. While N being the number of

exits, we denote by (ei)i=1...N the curvilinear abscissa of the entries and by (si)i=1...N the

curvilinear abscissa of the exit. Such a line is illustrated in the Figure C.3. In this chapter

we consider non-convex shapes such that N = 1, 2, 3, . . . ,N .
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Figure C.3

We consider P1 and P2 two points belonging to a line L and being inside the domain. ℓ1
and ℓ2 refer their curvilinear abscissae. We denote r the distance between P1 and P2. For

any given integer n, we consider the integral

Jn =

∫
(P1,P2)∈Ω×Ω

rnd2P1d
2P2 (C.17)

We remark again that for n = 0

J0 =

∫
(P1,P2)∈Ω×Ω

d2P1d
2P2 =

∫
P1∈Ω

d2P1 ×
∫

P2∈Ω

d2P2 = A× A = A2. (C.18)

The streamline of the demonstration is as follows the same as in previous chapter. We

calculate first Jn in term of internal and external chords and will equate the result with

Eq. C.18 for the specific case n = 0.

We call f the characteristic function so that f(P ) = 1 if P ∈ Ω and f(P ) = 0 if P /∈ Ω.

The d2P1d
2P2 can be expressed in the system of the line coordinates with a Jacobian

similar to that above

d2P1d
2P2 = |ℓ2 − ℓ1|dℓ1dℓ2dL (C.19)
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with dL being the Poincaré kinematic measure. It gives

Jn =

∫
f(P1)f(P2)|ℓ2 − ℓ1|n+1dℓ1dℓ2dL (C.20)

The integration on dL is realized over every possible lines L intersecting the external

border ∂Ω while the integrations on dℓ1 and dℓ2 are such that P1 and P2 remain in Ω. It

gives

Jn =

∫
L;L∩∂Ω̸=∅

dL

∫
dℓ1f(P1)

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1 (C.21)

The set of lines intersecting ∂Ω can be classified accordingly to the number of pairs entry-

exit. We call LN a line with N ≤ N entries (e1, . . . , eN) and N exits (s1, . . . , sN). It

gives

Jn =
N∑

N=1

∫
LN ;LN∩∂Ω̸=∅

dLN

∫
dℓ1f(P1)

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1 (C.22)

and we write the equation above into a compact form

Jn =
N∑

N=1

J (N)
n (C.23)

with

J (N)
n =

∫
LN ;LN∩∂Ω̸=∅

dLN

∫
dℓ1f(P1)

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1 (C.24)

While sliding along the line LN , the point P1 can be either in or out of the domain

Ω. It means that ℓ1 must be integrated along N intervals [e1; s1], [e2; s2], . . . , [eN ; sN ] ,

corresponding to P1 being in Ω. It yields

J (N)
n =

∫
LN ;LN∩∂Ω̸=∅

dLN

N∑
k=1

∫ sk

ek

dℓ1

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1 (C.25)

We treat the sum
∑N

k=1 in three terms k = 1 and k = N and
∑N−1

k=2 .
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J (N)
n =

∫
LN ;LN∩∂Ω̸=∅

dLN

∫ s1

e1

dℓ1

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1+

∫
LN ;LN∩∂Ω ̸=∅

dLN

N−1∑
k=2

∫ sk

ek

dℓ1

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1+

∫
LN ;LN∩∂Ω̸=∅

dLN

∫ sN

eN

dℓ1

∫
dℓ2f(P2)|ℓ2 − ℓ1|n+1

(C.26)

For every piece of integral we have to pay attention to the sign of ℓ2 − ℓ1 and split the
integration over ℓ2.

J
(N)
n =

∫
LN ;LN∩∂Ω̸=∅

dLN

∫ s1

e1

dℓ1

[∫ ℓ1

e1

dℓ2(ℓ1 − ℓ2)
n+1 +

∫ s1

ℓ1

dℓ2(ℓ2 − ℓ1)
n+1 +

N∑
k=2

∫ sk

ek

dℓ2(ℓ2 − ℓ1)
n+1

]
+

∫
LN ;LN∩∂Ω̸=∅

dLN

N−1∑
k=2

∫ sk

ek

dℓ1

k−1∑
i=1

∫ si

ei

dℓ2(ℓ1 − ℓ2)
n+1 +

∫ ℓ1

ek

dℓ2(ℓ1 − ℓ2)
n+1 +

∫ sk

ℓ1

dℓ2(ℓ2 − ℓ1)
n+1 +

N∑
i=k+1

∫ si

ei

dℓ2(ℓ2 − ℓ1)
n+1

+

∫
LN ;LN∩∂Ω̸=∅

dLN

∫ sN

eN

dℓ1

[
N−1∑
i=1

∫ si

ei

dℓ2(ℓ1 − ℓ2)
n+1 +

∫ ℓ1

eN

dℓ2(ℓ1 − ℓ2)
n+1 +

∫ sN

ℓ1

dℓ2(ℓ2 − ℓ1)
n+1

]
(C.27)

The integrals can be computed and expressed into a compact form

J (N)
n =

2

(n+ 2)(n+ 3)

∫
LN ;LN∩∂Ω̸=∅

dLN

 N∑
k=1

N∑
j=1

|sk − ei|n+3−
N∑

k=1

N∑
j=1

|sk − si|n+3−
N∑

k=1

N∑
j=1

|ek − ei|n+3


(C.28)

with j = 1, . . . , N and k = 1, . . . , N . For a line LN having N ≤ N entries and N exits

in Ω we define the quantity

Cn+3(LN) =
N∑
k=1

N∑
j=1

|sk − ei|n+3−
N∑
k=1

N∑
j=1

|sk − si|n+3−
N∑
k=1

N∑
j=1

|ek − ei|n+3 (C.29)

that generalizes the definition in the two previous chapters. We now want to evaluate

⟨C3(L)⟩L the mean value of C3(L) among all possible lines L uniformly and isotropically

distributed. The probability p(L)dL to measure a line L intersecting ∂Ω corresponds to

the kinematic probability

p(L)dL =
dL∫

L;L∩∂Ω̸=∅
dL

(C.30)
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Then, we have

⟨C3(L)⟩L =

∫
L;L∩∂Ω̸=∅

C3(L)p(L)dL =

∫
L;L∩∂Ω̸=∅

C3(L)dL∫
L;L∩∂Ω ̸=∅

dL
=

3A2∫
L;L∩∂Ω̸=∅

dL
(C.31)

that we write under the form

⟨
∑
k,j

|sk − ei|3−
∑
k,j

|sk − si|3−
∑
k,j

|ek − ei|3⟩L =
3A2∫

L;L∩∂Ω̸=∅
dL

(C.32)

In order to simplify the previous equation, let us calculate the generalized first moment

⟨C1(L)⟩L

⟨C1(L)⟩L = ⟨
∑
k,j

|sk − ei|−
∑
k,j

|sk − si|−
∑
k,j

|ek − ei|⟩L (C.33)

If we take the oriented distances, this equation simplifies to

⟨C1(L)⟩L = ⟨
∑
k,j

|sk − ek|⟩L (C.34)

This corresponds to the length of the crossing portion of line. The measure of this length

is the region’s area multiplied by π, then

⟨
∑
k,j

|sk − ei|−
∑
k,j

|sk − si|−
∑
k,j

|ek − ei|⟩L =
πA∫

L;L∩∂Ω̸=∅
dL

(C.35)

Thus, by combining eqs. C.32 and C.35 we obtain

⟨
∑

k,j|sk − ei|3−
∑

k,j|sk − si|3−
∑

k,j|ek − ei|3⟩L
⟨
∑

k,j|sk − ei|−
∑

k,j|sk − si|−
∑

k,j|ek − ei|⟩L
=

3A

π
(C.36)
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D
Transient regime analysis of a DTR

Let us consider the Fourier transform of the wave equation 2.1 where we add a damping

term −ζ (k) ∂ϕ
∂t

(r, t)

∂2ϕ̃

∂t2
(k, t) + ζ (k)

∂ϕ̃

∂t
(k, t) + ω2

0 (k) ϕ̃ (k, t) = 0, (D.1)

We consider the regime of high dissipation, so that we assume ζ (k) > 2ω0 (k). is thus the

equation of a damped harmonic oscillator in the overdamped regime, whose solutions are

given by

ϕ̃ (k, t) = Ae
− ζ(k)

2

(
1+

√
1−

ω2
0(k)

ζ2(k)

)
(t−t0)

+Be
− ζ(k)

2

(
1−
√

1−
ω2
0(k)

ζ2(k)

)
(t−t0)

(D.2)

with A and B two constants. Given the initial conditions of continuity of the field and its

time derivative, we obtain

ϕ̃ (k, t) =

(√
1− ω2

0(k)

ζ2(k)
− 1

)
ϕ̃i (k, t0)− 2

ζ(k)
∂ϕ̃i

∂t
(k, t0)

2
√

1− ω2
0(k)

ζ2(k)

e
− ζ(k)

2

(
1+

√
1−

ω2
0(k)

ζ2(k)

)
(t−t0)

+

(√
1− ω2

0(k)

ζ2(k)
+ 1

)
ϕ̃i (k, t0) +

2
ζ(k)

∂ϕ̃i

∂t
(k, t0)

2
√

1− ω2
0(k)

ζ2(k)

e
− ζ(k)

2

(
1−
√

1−
ω2
0(k)

ζ2(k)

)
(t−t0)

(D.3)
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Developing at first order in ω0(k)
ζ(k)

→ 0 in front of and (at order 2) inside the exponential

terms

ϕ̃ (k, t) = − 1

ζ (k)

∂ϕ̃i

∂t
(k, t0) e

− ζ(k)
2

(
2− 1

2

ω2
0(k)

ζ2(k)
+o

(
ω2
0(k)

ζ2(k)

))
(t−t0)

+(
ϕ̃i (k, t0) +

1

ζ (k)

∂ϕ̃i

∂t
(k, t0)

)
e
− ζ(k)

2

(
1
2

ω2
0(k)

ζ2(k)
+o

(
ω2
0(k)

ζ2(k)

))
(t−t0)

(D.4)

where we used the fact that 1
ζ(k)

∂ϕ̃i

∂t
(k, t0) is of order one in ω0 (k) /ζ (k). Taking the zeroth

order inside the exponential yields to the expressions presented in 2.4.

Equation D.4 also reveals that the wave amplitude decreases like e−
ω2
0(k)

4ζ(k)
(t−t0) in the long

run.
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E
The lubrication approximation

We consider that the vapor flow located under the drop can be described by the incom-

pressible and steady Stokes equation.

η∆ v⃗ = ∇P (E.1)

This flow must also satisfy the continuity equation:

∇ · v⃗ = 0 (E.2)

Due to the aspect ratio between the drop radius and the vapor layer thickness R/δ >

102, we can use the lubrication approximation [170], which can be written in cylindrical

coordinates

∂2vr
∂z2

=
1

η

∂P

∂r
(E.3)

∂2vθ
∂z2

=
1

η

∂P

r∂θ
(E.4)

We can integrate twice these equations with respect to z between z = 0 and z = δ,

applying the non-slip conditions for vθ and vr. We obtain

vr =
z(z − δ)

2η

∂P

∂r
(E.5)

vθ =
z(z − δ)

2rη

∂P

∂θ
(E.6)
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These equations can be replaced in E.2. to eliminate the velocity field. After integrating

between z = 0 and z = δ and considering a constant vapor thickness δ one finds

1

r

∂

∂r

(
r
∂P

∂r

)
+

1

r

∂

∂θ

1

r

∂P

∂θ
=

12ηvn
δ3

(E.7)

This is the Poisson equation written in cylindrical coordinates with a source term f =

12ηvn/δ
3.

The torsional shear stress τθ can be approximated as τθ ≈ η ⟨vθ⟩
δ
, which can be written in

terms of the pressure gradient:

τθ ≈
∂vθ
∂z

∣∣∣∣
z=δ

=
δ

2r

∂P

∂θ
(E.8)
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cous mechanism for leidenfrost propulsion on a ratchet,” EPL (Europhysics Letters),
vol. 96, no. 5, p. 58001, 2011.

[121] M. Gradeck, N. Seiler, P. Ruyer, and D. Maillet, “Heat transfer for leidenfrost drops
bouncing onto a hot surface,” Experimental Thermal and Fluid Science, vol. 47,
pp. 14–25, 2013.

[122] A. Shahriari, J. Wurz, and V. Bahadur, “Heat transfer enhancement accompanying
leidenfrost state suppression at ultrahigh temperatures,” Langmuir, vol. 30, no. 40,
pp. 12074–12081, 2014.

[123] I. U. Vakarelski, J. O. Marston, D. Y. Chan, and S. T. Thoroddsen, “Drag reduction
by leidenfrost vapor layers,” Physical Review Letters, vol. 106, no. 21, p. 214501,
2011.

[124] L. E. Dodd, D. Wood, N. R. Geraldi, G. G. Wells, G. McHale, B. B. Xu, S. Stuart-
Cole, J. Martin, and M. I. Newton, “Low friction droplet transportation on a sub-
strate with a selective leidenfrost effect,” ACS Applied Materials & Interfaces, vol. 8,
no. 34, pp. 22658–22663, 2016.

121



[125] G. G. Wells, R. Ledesma-Aguilar, G. McHale, and K. Sefiane, “A sublimation heat
engine,” Nature communications, vol. 6, no. 1, pp. 1–7, 2015.

[126] S. R. Waitukaitis, A. Zuiderwijk, A. Souslov, C. Coulais, and M. Van Hecke, “Cou-
pling the leidenfrost effect and elastic deformations to power sustained bouncing,”
Nature Physics, vol. 13, no. 11, pp. 1095–1099, 2017.

[127] J. D. Bernardin and I. Mudawar, “A cavity activation and bubble growth model of
the leidenfrost point,” J. Heat Transfer, vol. 124, no. 5, pp. 864–874, 2002.

[128] J. Bernardin and I. Mudawar, “The leidenfrost point: experimental study and as-
sessment of existing models,” 1999.

[129] H. Kim, B. Truong, J. Buongiorno, and L.-W. Hu, “On the effect of surface
roughness height, wettability, and nanoporosity on leidenfrost phenomena,” Applied
Physics Letters, vol. 98, no. 8, p. 083121, 2011.

[130] M. A. van Limbeek, O. Ramı́rez-Soto, A. Prosperetti, and D. Lohse, “How ambient
conditions affect the leidenfrost temperature,” Soft matter, vol. 17, no. 11, pp. 3207–
3215, 2021.

[131] D. Orejon, K. Sefiane, and Y. Takata, “Effect of ambient pressure on leidenfrost
temperature,” Physical Review E, vol. 90, no. 5, p. 053012, 2014.

[132] L. Maquet, M. Brandenbourger, B. Sobac, A.-L. Biance, P. Colinet, and S. Dorbolo,
“Leidenfrost drops: Effect of gravity,” EPL (Europhysics Letters), vol. 110, no. 2,
p. 24001, 2015.

[133] M. Jiang, Y. Wang, F. Liu, H. Du, Y. Li, H. Zhang, S. To, S. Wang, C. Pan, J. Yu,
et al., “Inhibiting the leidenfrost effect above 1,000° c for sustained thermal cooling,”
Nature, vol. 601, no. 7894, pp. 568–572, 2022.

[134] G. Graeber, K. Regulagadda, P. Hodel, C. Küttel, D. Landolf, T. M. Schutzius, and
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MOTS CLÉS

Système actif, reconnaissance de forme, retournement temporel, filtrage spectrale, caléfaction.

RÉSUMÉ

Les systèmes physiques autopropulsés, également appelés actifs, possèdent une phénoménologie riche avec de multi-

ples domaines d’application. Il s’agit de systèmes naturels ou artificiels constitués d’un ou plusieurs individus qui conver-

tissent une source d’énergie interne ou externe pour se mouvoir. Dans ce travail, nous étudions quelques applications de

trois systèmes actifs que nous pouvons contrôler à volonté. Premièrement, nous étudions la dynamique d’un robot qui ex-

plore de manière aléatoire une région de forme arbitraire. Grâce à l’utilisation d’un nouveau théorème, nous démontrons

qu’il est capable de mesurer la surface et le périmètre d’une région quelconque. Ainsi, nous développons une stratégie

pour reconnaître des formes préalablement sauvegardées dans un dictionnaire. Dans une deuxième partie, nous étu-

dions un autre système expérimental composé d’aimants en lévitation sur un coussin d’air et se repoussant mutuellement.

Ce réseau magnétique se comporte comme un milieu élastique dans lequel les ondes mécaniques peuvent se propager.

Nous démontrons qu’une onde propagative peut être inversée temporellement par l’application d’un changement violent

de l’amortissement du milieu. L’application successive des chocs d’amortissements nous permet d’absorber sélective-

ment des composantes monochromatiques d’une onde dont le spectre est large bande. Enfin, nous nous intéressons

au contrôle des liquides en état de caléfaction. Nous introduisons un nouveau mécanisme de stabilisation basé sur un

drainage partiel de la couche de vapeur qui supporte le liquide pour empêcher l’instabilité de Rayleigh-Taylor. Finalement,

nous montrons qu’un contrôle local de la direction de l’évacuation de la vapeur nous permet de propulser des liquides et,

ainsi de fabriquer une nouvelle génération de moteurs hydrodynamiques.

ABSTRACT

Self-propelled physical systems, also called active systems, have a rich phenomenology with multiple application domains.

They are natural or artificial systems consisting of one or more individuals that convert an internal or external energy

source to move. In this work, we study some applications of three active systems that we can control at will. First, we

study the dynamics of a robot that randomly explores a region of arbitrary shape. Thanks to the use of a new theorem,

we demonstrate that it is able to measure the area and perimeter of any region. Then, we develop a strategy to recognize

shapes previously saved in a dictionary. In the second part, we study another experimental system made of magnets

levitating on a cushion of air and repelling each other. This magnetic network behaves like an elastic medium in which

mechanical waves can propagate. We demonstrate that a propagating wave can be time-reversed by applying a violent

change in the damping of the medium. The successive application of damping shocks allows us to selectively absorb

monochromatic components of a wave with a broadband spectrum. Finally, we are interested in the control of liquids in the

Leidenfrost state. We introduce a new stabilization mechanism based on a partial draining of the vapor layer supporting

the liquid to prevent the Rayleigh-Taylor instability. Finally, we show that a local control of the vapor evacuation direction

is able to propel liquids and, thus, to build a new generation of hydrodynamic engines.

KEYWORDS

Active system, shape recognition, time-reversal, spectral filtering, Leidenfrost.
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