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aussi en termes de persévérance. La manip est exigeante, capricieuse, parfois instable,

et demande une attention presque constante pour pouvoir être opérée de manière

optimale. Elle ne manque jamais une occasion de tomber en panne, qu’il s’agisse d’
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mener à bien toutes ces expériences et obtenir tous ces résultats.
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postdoc dans le groupe. Je tiens à vous remercier tous les deux chaleureusement pour

avoir pris le temps de me former, de me montrer les rouages de la manip et de m’en

expliquer le fonctionnement, que ce soit par l’apprentissage des bases de la physique

atomique, l’alignement d’un setup optique, ou encore l’étude des modèles de spins.
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Merci à vous deux pour ces super moments et pour cette aventure extraordinaire!

Vous allez me manquez, j’espère que l’on se revera très vite.

Passons maintenant au postdoc le plus célèbre de l’institut: Daniel Barredo. Durant
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Chapter 1
Introduction

Contents

1.1 Quantum simulation to study many-body physics problems . . 17

1.2 Overview of the various platforms for quantum simulation . . 19

1.3 Evolution of Rydberg quantum simulators . . . . . . . . . . . . 22

Over the last century, quantum mechanics has established itself as a powerful

theory for describing nature. It provides an accurate framework for predicting the

behavior of objects at a microscopic scale, such as atomic and subatomic particles,

and has led to revolutionary technologies used in everyday life. Notable examples

include the development of nanometer-scale transistors used in most electronic systems,

solar panels, atomic clocks for global positioning system calibrations, and magnetic

resonance imaging devices.

More recently, rapid technological progress has enabled physicists to isolate,

control, and study individual quantum objects. Single charged particles can be trapped

for days using electromagnetic traps [Dehmelt, 1990; Paul, 1990]; single photons can be

stored in superconducting cavities for hundreds of milliseconds [Haroche, 2013; Yang et

al., 2016]; and individual neutral atoms can be cooled and trapped in optical tweezers

for hours [Ashkin et al., 1986; Phillips, 1998; Schymik et al., 2021]. Manipulating these

quantum particles has allowed physicists to precisely test and confirm the predictions

of quantum theory including the rather counter intuitive concept of entanglement.

Entanglement describes a particular state of a system where its sub-parts cannot be

described separately, i.e., the system cannot be factorized into states of its sub-systems.

This was tested by a “violation of the Bell’s inequality” [Bell, 1964] leading to the

Nobel prize awarded to John F. Clauser, Anton Zeilinger and Alain Aspect [Aspect,

Grangier, and Roger, 1982] in 2022.

Over the last 40 years, physicists reproduced the experiment in various forms: in

particular, they showed that the conclusion remains valid for distances between the
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particles separating satellites from the ground up to 1200 km [Yin et al., 2017]. The

development of the ability to control individual quantum particles combined with

their “quantum” properties (quantum superposition of states or entanglement with

other particles) offers new opportunities for various applications.

Quantum metrology. Quantum metrology relies on the use of quantum objects

to measure physical parameters such as temperature or electric, magnetic and, in

some cases, gravitational fields [Degen, Reinhard, and Cappellaro, 2017; Mehlstäubler,

2023]. They offer a higher sensitivity to external perturbations than classical sensors.

As an example, Nitrogenvacancy (NV) centers allow scientists to perfom pT/
√
Hz

sensitive measurements [Balasubramanian et al., 2008; Maze et al., 2008] and are

already used in various fields of physics for in-situ measurements [Lesik et al., 2019;

Barry et al., 2020]. Quantum metrology also exploits entanglement as a resource

offered by quantum mechanics allowing for a significant increase in sensitivity. For

example, one of these strategies called squeezing, has evolved from proof-of-principle

experiments to applications in several areas of research, such as gravitational wave

detectors [Tse et al., 2019], atom interferometers [Hosten et al., 2016], and optical

atomic clocks [Ludlow et al., 2015; Pedrozo-Peñafiel et al., 2020; Robinson et al., 2022;

Ye and Zoller, 2024].

Quantum cryptography. Quantum cryptography consists in harnessing quantum

properties to encode, transfer, and decode information more securely than with classical

means. Introduced in the early 1990s [Bennett and Wiesner, 1992; Bennett et al.,

1992], the idea is to combine the encoding of information on quantum objects with the

ability to entangle them to make it physically impossible to hack. The most famous

examples are quantum key distribution protocols allowing people to share a secret and

detect if their communication is compromised by eavesdropping [Xu et al., 2020]. Any

attempt to intercept a message will immediately affect the properties of the key held

by the secret holders.

Quantum simulation. Quantum simulation aims at studying many-body physics

problems using a machine called quantum simulator.

Many-body physics problems are encountered almost everywhere in physics, such

as in condensed matter, nuclear and high-energy physics. In condensed matter, for

example, the objective is to understand how the interactions among the different
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system constituents lead to macroscopic objects with distinct mechanical, optical, and

electrical properties, and can give rise to emergent phenomena such as magnetism,

superconductivity, and phase transitions. Since, the behaviour of all these interacting

particles are described by the Schrödinger equation, one could in principle directly

solve the equation and calculate ab-initio the macroscopic properties of the ensemble.

However, the complexity increases exponentially with the number of particles due to

the expansion of the Hilbert space. For the simplest spin-1/2 particles, theorists can

only perform exact calculations for systems with up to approximately 50 particles,

which is far from a macroscopic system. Therefore, to simulate these systems, making

approximations is necessary. These approximations typically involve truncating the

Hilbert space, i.e., neglecting quantum effects such as particle entanglement, resulting

in an effective classical model that is easier to solve [Reif, 2009]. For instance, the mean

field approximation simplifies the many-body problem by approximating the effects of

all other particles on any given particle with an average or mean field, reducing the

many-body problem to an effective one-body problem that can be solved. However,

when quantum effects play a dominant role, this strategy fails to model certain

macroscopic behaviours. As an example one can cite high-temperature superconducting

materials [Bardeen, Cooper, and Schrieffer, 1957; Keimer et al., 2015], topological

insulators governed by the quantum Hall effect [Klitzing, Dorda, and Pepper, 1980],

or the existence of graphene theorized as impossible by the Mermin–Wagner theorem

[Mermin and Wagner, 1966; Novoselov et al., 2005]. They usually fall under the name

of strongly correlated systems.

In 1980 and 1982, Yuri Manin and Richard Feynman suggested the idea of

textitquantum simulators that would control a set of interacting quantum particles

(refereed as artificial quantum matter), that reproduces the behavior of real world

materials, i.e. the evolution of these artificial systems are governed by the same

Schrödinger equation as for the natural ones. These quantum simulators would then

provide the experimentalist direct access to measure the state of each particles, and

thus would help to solve many-body physics problems of strongly correlated systems.

Over the last few decades, multiple quantum simulation platforms based on different

particle, ranging from neutral atoms and photons to ions and superconducting circuits,

have emerged with the aim of performing quantum simulations in a regime where

numerical calculations are impossible. Thanks to recent developments in the field

[Georgescu, Ashhab, and Nori, 2014; Altman et al., 2021], quantum simulations of up
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to thousands of particles can now be performed.

The future stakes of quantum simulation are twofold. First, as mentioned, it will

enable scientists to pursue the study of quantum many-body physics with systems too

large to be classically simulated. Second, in collaboration with theorists, it will enable

to benchmark new numerical techniques for larger system sizes.

Quantum computing. Quantum computing utilizes a quantum machine to solve

complex problems more efficiently than classical computers. Quantum computers can

be seen as the digital version of quantum simulators. While simulators only aim to

solve classes of specific problems, quantum computers can be programmed to address

a larger variety of problems, making them universal.

The idea is to carry the information via quantum-bits (qubits) encoded in the

internal or external states of quantum particles, which allows using the properties of

quantum mechanics as superposition or entanglement to speed up the calculation

processes. One famous example that illustrates the power of quantum computers is the

factorization of large integers into prime factors using the Shor algorithm [Shor, 1994].

In 2019, Google® claimed that their superconducting processor reached quantum

supremacy [Arute et al., 2019], meaning no classical computer can solve the same

problem in any feasible amount of time [Preskill, 2012]. Although quantum supremacy

is a controversial concept highly debated in the community [Herrmann et al., 2023],

this event reflects the potential that a quantum computer can represent over a classical

one.

During my Ph.D., I worked on a quantum simulator based on individual neutral
87Rb atoms trapped in an configurable array of optical tweezers and interacting via

highly-excited states known as Rydberg states. In this manuscript, I describe our

quantum simulator and report the experiments I conducted for almost 4 years. This

introduction will first detail the main many-body physics problems we wish to study.

Next, I will give a brief overview of the state-of-the-art of different platforms, and

finally, I will focus on our specific quantum simulator.
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1.1 Quantum simulation to study many-body physics problems

1.1 Quantum simulation to study many-body physics problems

Condensed matter physicists seek to understand the macroscopic phenomena that

can emerge from the microscopic properties of matter. At the microscopic level, there

are usually two different classes of models used to describe the behavior of interacting

particles.

Fermi/Bose-Hubbard model The first ones are the Fermi-Hubbard model that

gives relatively simple descriptions of the electron’s motion in a crystalline structure.

More specifically, it provides an understanding of insulating, magnetic, charge density

wave, and high-temperature superconducting effects in a solid material. This model

considers an ensemble of spin-1/2 particles (representing the electrons) with spin

degrees of freedom σ = {↓, ↑}, localized at site i of a lattice (representing the nodes

of a crystalline structure). We consider two processes: first, each particle can tunnel

from site i to a neighbouring lattice site j with amplitude −t, and second, having

two particles |↑⟩ and |↓⟩ on the same site costs an energy U . The Fermi-Hubbard

Hamiltonian reads:

H = −ℏt
∑
⟨i,j⟩,σ

(
fi,σf

†
j,σ + f †

i,σfj,σ

)
+ ℏU

∑
i

ni,↑ni,↓, (1.1)

where ⟨i, j⟩ denotes the sum over neighbouring sites, fi,σ and f †
i,σ being the fermionic

annihilation and creation operators acting on site i, and ni,σ = f †
σfσ the corresponding

number operator. Although this description seems very simple, solving this model is

extremely hard. However, it turns out, that this model can already be implemented

on quantum simulators using a fermionic quantum gas loaded into an optical lattice

[Esslinger, 2010; Tarruell and Sanchez-Palencia, 2018]. It allows physicists to investigate

the phase diagram of this model by experimentally varying its parameters U and t and

observing how the behaviour of the particles is affected. In order to describe a wider

variety of materials, all class of Hubbard models have been developed using different

geometries, extending the range of the interactions beyond nearest neighbours, or

describing the motion of other particles such as spinless bosons via the Bose Hubbard

model (which is the bosonic version of the Hubbard model).
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Spin models The second class of many-body models are spin models. In contrast to

Hubbard models, they describe spin-spin interactions for particles fixed in space. For

electrons, this coupling comes from a combination of the Coulomb repulsion and the

Pauli exclusion principle. Spin models are relevant to describe a wide variety of quantum

magnetism phenomena ranging from the emergence of ferromagnetic/antiferromagnetic

orders in material to the formation of more exotic magnetic phases, like spin liquids.

For spin-1/2 particles, one common model used in the field reads:

H = ℏ
∑
⟨i,j⟩

[
J⊥(σ

x
i σ

x
j + σy

i σ
y
j ) + Jzσ

z
i σ

z
j

]
, (1.2)

with σx,y,z being the usual Pauli matrices acting on the spins, and ⟨i, j⟩ denoting the

sum runs over all neighbours sites. Depending on the ratio Jz/J⊥ this Hamiltonian

has different names and can lead to various collective phenomena:

r When J⊥ = 0, we obtain the Ising model [Ising, 1925]. The Ising model gives a

powerful description of ferromagnetic/antiferromagnetic behaviours. For instance,

if Jz < 0 in order to minimize the energy, the spins tend to point along the same

direction (along ↑ or ↓), leading to a spontaneous magnetization of the material.

On the contrary, if Jz > 0, the spins tend to point in opposite directions, leading

to an antiferromagnetic order.

r When Jz = 0, we end up with the planar XY model. This model can produce non-

trivial effects such as systems exhibiting ferromagnetic order in the (x, y) plane

but antiferromagnetic order along the perpendicular direction z. Moreover when

rewritten as J⊥(σx
i σ

x
j + σy

i σ
y
j ) ∝ J⊥(σ

+
i σ

−
j + σ−

i σ
+
j ) with σ

± = (σx ± iσy) /
√
2

the creation and annihilation operators, the Hamiltonian can be reinterpreted

as a spin transport model. An excitation (e.g. a spin ↑) can jump from one

site i to another unoccupied site j (a spin ↓) with a amplitude J⊥. Using this

interpretation allows us to link spin models with Hubbard models. Under specific

conditions, spin and Hubbard models describe the same physics; for example,

the Bose-Hubbard model combined with infinite on-site interaction t≪ U (also

called the hard-core boson Hamiltonian) is strictly equivalent to the Heisenberg

XXX model (see below).

r In the general case, when we just have Jz and J⊥ ̸= 0 we end up with the

anisotropic Heisenberg Hamiltonian (also known as the XXZ model). It is a

18



1.2 Overview of the various platforms for quantum simulation

combination of the Ising model with the XY model. When Jz = J⊥, we recover

the fully isotropic Heisenberg Hamiltonian (XXX model).

Like the Hubbard models, these spin models have several variations. We can add linear

terms δ
∑

i σ
x,y,z
i to simulate the addition of external magnetic fields (with strength δ),

modify the geometry, or increase the spatial range of interactions beyond the nearest

neighbour couplings. Changing these parameters can considerably affect the system

properties and thus can extend the range of phenomena one can study.

Having introduced these two classes of Hamiltonians commonly used to study several

many-body phenomena in the condensed-matter physics field, I now give a short

overview of the various quantum simulator platforms available today.

1.2 Overview of the various platforms for quantum simulation

In order to build a quantum simulator, we have to satisfy three requirements:

r First, we must position individual particles in a controllable geometry so as to

represent a spin or mimic a node in a crystal structure.

r Second, we must control the interaction between the particles and the external

environment as well as between the particles themselves.

r Third, we must be able to initialize the system in specific states and measure

each particle’s state.

Various platforms fulfil these three requirements with different levels of control.

Ultracold atoms in optical lattices. These platforms rely on the ability to trap

neutral atoms/molecules in a controlled spatial configuration. The most common

trapping technique uses periodic trapping potentials generated from standing waves of

off-resonant light, known as optical lattices [Bloch, 2005]. To load one particle in each

lattice sites, the experimentalists start from a quantum degenerate gas and drive it

through a phase transition into a Mott insulator [Greiner et al., 2002]. The use of a

quantum gas microscope [Bakr et al., 2009] (i.e. the combination of lattices with high

numerical aperture lenses or optical objectives) allows reaching single-site resolution
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and extends the controllability of the system by offering the ability to address each

site individually [Wang et al., 2015].

Optical lattices with fermionic particles (such as 6Li atoms) naturally implement

the Fermi Hubbard models described in Eq. 1.1, where particles can hop from one

lattice site to another. The parameters of the Hamiltonian can be varied: the geometry

can be tuned by playing on the relative phase and amplitude of the optical lattice

lasers. The ratio U/t can also be modified by varying the trap depth, thus resulting in

tunable quantum simulators of hopping Hamiltonians [Esslinger, 2010]. Several groups

have been able to measure characteristic phenomena of the Hubbards model, such

as the observation of new topologic phases [Atala et al., 2013], or the emergence of

long-range antiferromagnetic orders [Tarruell and Sanchez-Palencia, 2018]. So far, all

the platforms mentioned in this paragraph employ neutral atoms, but other particles

as polar molecules can be used. More particularly, the natural dipole-dipole interaction

occurring between polar molecules allows for the implementation of spin models [Zhou,

Ortner, and Rabl, 2011; Yan et al., 2013].

Trapped Ions. Trapped ion-based platforms rely on the trapping of individual ions

via Penning or Paul traps [Brown and Gabrielse, 1986; Paul, 1990]. Spin models can be

implemented by laser coupling the ion internal states with their collective vibrational

modes [Cirac and Zoller, 1995]. High-fidelity operations can be performed involving

tens of ions in a 1D chain [Monz et al., 2011; Lanyon et al., 2011] and in 2D crystals

[Kiesenhofer et al., 2023]. In addition, the laser coupling-based interactions allow

implementing spin Hamiltonians with various interaction ranges. The strength of the

interaction decreases as a power law 1/rα (r being the distance between two ions)

with α ranging from α = 0 (all-to-all couplings) to α = 3 (dipolar-like interactions).

This platform has probably the highest fidelity record for manipulating and reading

atom states.

Superconducting circuits. In contrast to the two previous classes of quantum

simulators, superconducting circuits do not rely on atoms or molecules but on artificial

atoms. These artificial atoms exhibit discrete atom-like electronic structures resulting

from the engineering of Josephson qubit circuits [Nakamura, Pashkin, and Tsai, 1999].

These circuits can then be coupled by exchanging microwave photons in cavities

[Wallraff et al., 2004], or by sharing mutual inductances [Chen et al., 2014]. One of the

main characteristic features of superconducting circuits is that the couplings do not rely
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on the geometrical arrangement but on interconnected wiring. Therefore this simulator

can be configured to implement a wide variety of spin Hamiltonians, including spin and

Hubbard models [Salathé et al., 2015; Barends et al., 2015]. Moreover, these platforms

exhibit high fidelity in single- and two-qubit operations [Krantz et al., 2019; Kjaergaard

et al., 2020]. They can also be integrated into a compact on-chip design, making

them very attractive for the future of quantum simulation and quantum computing

[Devoret and Schoelkopf, 2013]. Multinational companies like Google® or IBM® are

investigating in this technology. Most the superconducting circuits platforms used for

quantum simulations work in digital mode, with the recent exceptions of [Rosenberg et

al., 2024; Andersen et al., 2024].

Other platforms. Other types of platforms are also promising candidates for quantum

simulation. Among them, we can cite solid-state platforms, such as color centers (for

example, NV centers in diamond), quantum dots or excitons-based platforms. We can

also mention photons/atoms coupled to cavities-based platforms [Altman et al., 2021].

Future improvements. Independently of the technologies used, experimentalists

aim at improving their platform in four different areas. First, they seek to increase

the number of particles beyond the current limit of hundreds, which would enable

the observation of new macroscopic phenomena. Second, they aim at enhancing the

reliability of the various platforms by reducing experimental imperfections to faithfully

perform quantum simulations (depending on the platform, improving the reliability

can involve various technological improvements). Third, they seek to increase the

cycling rate of the experiment. Due to the quantum nature of the system, experiments

must be repeated multiple times to build statistics and reconstruct the wave function

of the produced state, or at least gather partial information about it. Consequently,

the frequency at which the machine operates determines the data accumulation rate.

Last, the experimentalists aim at extending the range of applications for each platform

by implementing new Hamiltonians.

After having described a variety of quantum simulators, I now focus on our Rydberg-

based platform and present an overview of its evolution.

21



Chapter 1: Introduction

1.3 Evolution of Rydberg quantum simulators

In this section, I will briefly explain the main principles of these platforms. In

Chapter 2, I will provide a detail description of the apparatus that I used during my

Ph.D. thesis.

Rydberg atoms. The idea of Rydberg platforms started in the early 2000s with

two proposals suggesting to use Rydberg atoms to build quantum gates [Jaksch et

al., 2000; Lukin et al., 2001]. A Rydberg state is a high energy state whose principal

quantum number can be increased to a large value n ≳ 20. Classically, a Rydberg

atom is represented with one of its electrons orbiting far from the nucleus and the

remaining core electrons. In this configuration, the atom behaves like an hydrogen

atom exhibiting a large electric dipole. This large electric dipole allows two Rydberg

atoms separated by a few micrometres to interact with dynamics timescales of a few

microseconds shorter than the Rydberg lifetime of few hundreds microseconds. Thus,

it ensures a long coherence time for the dynamics (see Table 1.1).

An important consequence of these interactions is known as the Rydberg blockade.

It refers to the fact that two interacting atoms cannot simultaneously be excited to

the Rydberg state due to the energy shift induced by the interaction (more details

about the nature of this interaction will be given in Sec. 4.3.1). This Rydberg blockade

generates entangled states between atoms and therefore has been proposed as a

mean of creating quantum gates. In the early 2000s, this idea motivated numerous

Rydberg gas experiments to try to show evidence of blockade in atomic gases. The

first observations were obtained in 2004, opening the field of Rydberg-based quantum

simulators/computers [Löw et al., 2012]. However, in these gas experiments, the

positions of the atoms were not controlled, leading only to poor control over Rydberg

interactions that strongly depend on the distance between them.

One solution to this problem consists in using optical tweezers to individually

trap each atom and thus pin their position at a target location.

Optical tweezer. In order to gain better control over the Rydberg interactions,

atoms can be trapped using light either via optical lattices or optical tweezers. The

experiment on which I worked during my Ph.D. uses arrays of optical tweezers to trap

individual Rubidium atoms. A beam is tightly focused to a micrometer-sized spot,
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Physical properties n scaling Order of magnitude
Binding energy En n−2 900 GHz
Energy energy En − En+1 n−3 30 GHz
Orbital radius R n2 200 nm
Rydberg lifetime τ n3 200 µs
Polarisability α [Lai et al., 2018] n7 200 MHz/(V/cm)2

Ground-Rydberg dipole dgr n−3/2 10−26 C.m
Rydberg-Rydberg dipole drr′ n2 10−29 C.m
Van der Waals interaction strength C6 n11 20 GHz.(µm)6

Resonant dipole interaction strength C3 n4 1 GHz.(µm)3

Table 1.1.: Scaling law with n of a few properties of Rydberg states. The numerical

values are calculated for one or two Rydberg atoms in the n = 60 state.

resulting in a potential where one neutral atom can be trapped via optical dipole

light shifts (more details about this trapping mechanism are given in Sec. 2.1.2). This

method developed by Philippe Grangier at Institut d’Optique (IOGS) [Schlosser et al.,

2001] enabled our team, jointly with the Mark Saffman’s group, to observe Rydberg

blockade between two atoms for the first time in 2009 [Gaëtan et al., 2009; Urban

et al., 2009]. A few months later, both teams proved the generation of entangled

states [Wilk et al., 2010] and demonstrated the realization of the two-qubit C-NOT

gate [Isenhower et al., 2010], thus starting the race towards Rydberg/tweezer-based

quantum simulators/computers.

Race towards quantum simulators/computers. Since the demonstration of the

Rydberg blockade on individual atoms in 2009/2010, the Rydberg platforms have

become promising for quantum simulation/computing and have undergone several

improvements. These improvements are threefolds:

r First, the number of atoms used in controlled experiments has risen from a few

to hundreds. Initially, the tweezer platforms suffered from stochastic loading.

The tweezers were loaded with a single atom with a probability of 1/2, limiting

the experiments to just a few atoms. In 2016, our group and the one of Mikhail

Lukin developed a new technique to move a trapped atom from one tweezer

to an other [Barredo et al., 2016; Endres et al., 2016]. It allows rearranging a

random configuration of a half-loaded tweezers array into a deterministic one

(more details in Sec. 2.1.2). This important breakthrough unlocked the number

of atoms routinely used in experiments to hundreds. Currently, tweezer platforms
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Figure 1.1: Evolution of tweezer, trapped-ion and superconducting qubit platforms

over the last decades. Left panel: Illustrations (images taken from: the Van Swinderen

Institute, the Duke University and [Arute et al., 2019]). Center panel: Scalability (the

references are: tweezer [Wilk et al., 2010; Isenhower et al., 2010; Barredo et al., 2014,

2016; Labuhn et al., 2016; Bernien et al., 2017; Scholl et al., 2021; Ebadi et al., 2021;

Schymik et al., 2022], trapped-ion [Sackett et al., 2000; Häffner et al., 2005; Monz et al.,

2011; Zhang et al., 2017], and superconducting circuit [Chuang, Gershenfeld, and Kubinec,

1998; Marx et al., 2000; MIT, 2000; Sci, 2006; Nan, 2007; Will, 2017; Conover, 2018; Kim

et al., 2023]) Right panel: Fidelity (the references are: tweezers [Wilk et al., 2010; Maller et

al., 2015; Jau et al., 2016; Levine et al., 2018, 2019; Madjarov et al., 2020; Scholl et al.,

2023], trapped-ions [Leibfried et al., 2003; Benhelm et al., 2008; Ballance et al., 2016;

Gaebler et al., 2016], and superconducting circuits [Steffen et al., 2006; DiCarlo et al.,

2009; Chow et al., 2012; Barends et al., 2014, 2019; Arute et al., 2019])

overscale the number of qubits used in other platforms, such as trapped ions or

superconducting circuit platforms (see Fig. 1.1) [Endres et al., 2016; Norcia et

al., 2024; Manetsch et al., 2024; Pichard et al., 2024].

r Second, the fidelity of quantum gates using atoms increased significantly over

the last seven years. Initially, the Rydberg/tweezer platform fidelities have

lagged behind their competitors such as trapped-ion and superconducting

circuit platforms. Recent technical improvements such as reduced-noise lasers [de

Léséleuc et al., 2018] or optimized pulse sequences via optimal control [Koch et

al., 2022] led to rapid progress over the last decade. Two atoms quantum gate

fidelities start to reach comparable efficiencies to the ones obtained with trapped

ions and superconducting platforms (see Fig. 1.1). Currently, the main obstacles
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Figure 1.2: Arrays of individual atoms using different geometries. (a)/(b)/(c)

Fluorescence image of individual Rubidium atoms (white dots) trapped in arrays of optical

tweezers in 1D (with periodic boundary conditions), 2D and 3D. The 3D image has been

take from [Barredo et al., 2020].

are primarily technical limitations. With the development of new technologies,

better efficiencies can be hoped for in the future [Scholl et al., 2023].

r Third, over the last decade, Rydberg/tweezer-based quantum simulators have

become a versatile platform allowing for the study of a wider range of Hamilto-

nians. Three main parameters can be chosen and varied. First, using a Spatial

Light Modulator (SLM) we can achieve arbitrary geometry in 1, 2 and 3D

[Barredo et al., 2016, 2018, 2020] (see examples in Fig. 1.2). Second the addition

of external fields using microwaves or light add linear terms to the Hamiltonian,

thus modifying its properties. Third, the choice of the Rydberg states to encode

the spin/qubit states corresponds to different interactions between the atoms.

Using only one species, different Hamiltonian can be implemented. For example,

for Rubidium, encoding the spin states between the ground state |g⟩ = |↓⟩ and a

Rydberg state |nS⟩ = |↑⟩ leads to off resonant dipole-dipole interactions between

the spins (also known as van der Waals interactions) that implement an effective

Ising model. If we now choose to encode the spin states between two Rydberg

states of opposite parity |nS⟩ = |↑⟩ and |nP ⟩ = |↓⟩, the atoms are coupled via

resonant dipole-dipole interactions that implement an effective dipolar XY model

[Browaeys and Lahaye, 2020].

This thesis work. When I joined in the group in october 2020, most of the studies

were focused on the 2D Ising model. During my four years as Ph.D. student, we

extended our investigations to another spin Hamiltonian: the quantum XY model,
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reading:

HXY = ℏ
∑
i,j

Ji,j
(
σx
i σ

x
j + σy

i σ
y
j

)
. (1.3)

The quantum XY spin model is particularly interesting for understanding various

materials, ranging from magnetic insulators to high-temperature superconductors, and

for studying emergent phenomena such as magnetism and spin transport properties

[Browaeys and Lahaye, 2020]. In contrast with the Ising model, this XY model is in

a sense more quantum since it does not exhibit classical ground states. Numerical

simulations and experiments showed that this model captures many non-intuitive

physical phenomena such as spin liquids, quantum criticality, continuous symmetry

breaking, superconductivity, phase transitions, quantum entanglement, and topological

order. Moreover, depending of the geometry and of the interaction range, this model

exhibits various phase diagrams. Determining the boundaries of these phase diagrams

and the nature of their corresponding quantum phase transitions is an active area of

research.

Using the recent experimental developments, we performed experiments with

up to hundreds of atoms, thus reaching a regime for which classical simulations are

extremely difficult to perform in some cases. One of my main contributions to the lab

was the development of single site manipulation of Rydberg atoms. It allowed us to

prepare a wider range of many-body states exhibiting exotic behaviours.

Thesis outline. The first part of the manuscript (Part I) describes the technical

improvements achieved during my Ph.D. Chapter 2 provides an overview of the working

principle of the experiment. Chapter 3 details the development of the single site

manipulation of Rydberg atoms using arrays of local addressing beams. Chapter 4

presents our preliminary results in addressing a current experimental limitation of the

platform called static position disorder. In the second part of the manuscript (Part

II), I present how we implement the dipolar XY model and study its ground states

on various geometries. By combining our recent ability to address single Rydberg

atoms with an adiabatic procedure, we first prepare the XY ground state on square

arrays and probe its main characteristics (Chapter 5). Then we move to the study

of the XY ground states on frustrated geometries which are expected to be exotic

phases of matter such as spin liquids (Chapter 6). The third part (Part III) focuses on

out-of-equilibrium physics also known as quench experiments. I show that the dipolar

XY model can produce scalable spin squeezing (Chapter 7). Finally, I demonstrate that
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using a method called quench spectroscopy, we can measure the dispersion relations of

the XY model (Chapter 8).
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In this chapter, I give an overview of the experimental apparatus and present the

different techniques used to control the atoms. The chapter is organized as follows:

r First, I explain how to trap individual atoms of 87Rb in arrays of optical tweezers.

r Second, I describe the different ground state manipulations we perform on the

atoms.
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r Third, I present how to excite/deexcite the atoms in/from the Rydberg manifold

and the various Rydberg state manipulations we use.

r Fourth, I end up by explaining how we control the magnetic/electric field

environment seen by the atoms.

2.1 Individual 87Rb atoms trapped in arrays of optical tweezers

2.1.1 Trapping and imaging a single atom

I begin by describing how starting from a solid piece of Rubidium, we trap one

single atom in an optical tweezer.

Magneto-Optical Trap. The first step consists in cooling and trapping a cloud of

atoms in a Magneto-Optical Trap (MOT) from which we load individual atoms in

the optical tweezers. The experiment occurs in the apparatus depicted in Fig. 2.1.

This device can be decomposed into the oven, the Zeeman slower, and the science

chamber. We use ion pumps (pink colour) to place all parts under ultra-high vacuum

and reach a pressure of a few ∼ 10−11 millibars, ensuring the isolation of the atoms

from the outside environment. A few grams of a solid piece of Rubidium are placed in

the oven and heated to 60 ◦C. Rubidium evaporates, the vapour enters the Zeeman

slower and exits into the science chamber with a typical speed of ∼ 10 m.s−1. Using

three pairs of counter-propagating beams (represented in red), we slow down the

atoms in all directions [Metcalf and van der Straten, 1999]. The light at 780 nm, is

composed of two frequencies: one slightly red-detuned from the cycling transition

(5S1/2, F = 2) ↔ (5P3/2, F = 3) ensuring the cooling and the other on resonance

with the (5S1/2, F = 1) ↔ (5P3/2, F = 2) transition repumping the atoms from

(5S1/2, F = 1) to the cycling transition. In addition, a pair of coils inside the vacuum

chamber in the anti-Helmholtz configuration generates a magnetic field gradient, thus

trapping the atoms in an MOT (more details in Ref. [Beguin, 2013; de Léséleuc, 2021;

Scholl, 2021]). This atomic cloud contains ∼ 107 atoms at a temperature of ∼ 100µK

and we will use it as a reservoir of atoms to fill the optical tweezers.

Trapping a single atom in an optical tweezer. We generate optical tweezers by

focusing 820 nm red detuned light (from the (5S)↔ (5P ) transition) in the science
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Figure 2.1: Experimental apparatus. It is composed of three parts: the oven, the Zeeman

slower and the science chamber where we trap the atoms in a MOT before loading the

optical tweezers.

chamber using a pair of aspherical lenses under vacuum with a numerical aperture of

0.5 and a focal length f = 10mm (see Fig. 2.3 and [Beguin, 2013]). The light spot is

well described by a Gaussian profile of intensity:

I(r, z) =
I0

1 + (z/zR)2
exp

(
− 2r2

w2
0 (1 + (z/zR)2)

)
, (2.1)

with a waist w0 = 1.1µm, and a Rayleigh range zR = 4.6µm. Near the light

spot, due to the induced dipolar force, an atom experiences a potential U(r, z) =

ℏΓ2
5P I(r, z)/(8∆Isat) with Γ5P and Isat the decay rate and saturation intensity of the

5P state, and ∆ = ωtweezer−ω5S↔5P the tweezer light detuning1. The trap depth is the

potential at the center of the tweezer U0 = U(x = 0, z = 0) ≃ h×20MHz ≃ kB×1mK

for a total power P = πw2
0I0/2 ≈ 3mW. The sign of ∆ being negative, this potential

is attractive. However, since the dipole force is conservative, we must slow down the

atom to trap it. The MOT beams achieve this step by applying a friction force on the

atom while it is falling into the trap.

1For a rigorous calculation of the potential, one would need to sum up all the contributions of all
the excited states as detailed in Ref. [Darquié, 2005].
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We now answer the question: what if an atom enters a trap already filled with

another one? Due to the tight focus of the tweezer light in combination with the

MOT light, the two atoms undergo fast inelastic light-assisted collisions, which causes

the ejection of both atoms from the trap [Schlosser et al., 2001]. This collisional

blockade mechanism prevents two atoms from being trapped in the optical tweezer

simultaneously. Once the trap is empty, it can load another atom again. Consequently,

the optical tweezer has only two states with 50% probability: either it contains zero or

one atom.

Imaging the atoms. Once trapped in the tweezers, the atoms scatter the MOT light

in all directions. Using the aspherical lenses, we collect the 780 nm fluorescence light

that we image on an EMCCD camera with an exposure time of 20ms (see Fig. 2.3).

Figure 2.2 shows the fluorescence signal averaged on 3 × 3 pixels centered around

the trap (green square) as a function of time. The signal is a two-level function: a

high/low signal corresponds to the presence/absence of an atom in the tweezer. Using

an adjustable threshold function (red dashed line), we detect the presence/absence of

the atom if the fluorescence signal is above/below this threshold. Figure 2.2 shows a

typical histogram of fluorescence level distribution after thousands of images. The two

level are well separated, leading to a detection error of less than 0.1%.

Lifetime of the atoms in the trap. We need to ensure that the lifetime of the

atoms in the tweezers is larger than the typical duration of an experiment of ∼ 1 s.

To measure this lifetime, we first load the atoms, image them (as in Fig. 2.2), wait,

and image again to check if the atoms are still in their traps. We then compute the

recapture probability by measuring how many atoms stay in their traps during this

waiting time. By repeating the experiment for various waiting times, we estimate

the lifetime of the atoms in the tweezers. As shown in Fig. 2.2 we measure a lifetime

of 22 s which is long enough to perform experiments. We attribute this lifetime to

elastic collisions with the background gas (at room temperature of 300K), expelling

the atoms from their trap. On another experimental apparatus, our team showed that

this lifetime can be improved up more than 2 hours by lowering the background gas

pressure using a cryogenic setup [Schymik, 2022].
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Figure 2.2: Fluorescence image. Upper left plot: Fluorescence images with/without an

atom trapped in an optical tweezer. Bottom left panel: Averaged fluorescence signal in the

green square as a function of time. Upper right plot: Survival probability as a function of

the waiting time. The solid curves is a exponential function fit with a lifetime of 22 s.

Bottom right panel: Histogram of the fluorescence signal after thousands of images.

2.1.2 Arrays of single atoms

I have presented how to trap and image a single atom. We must now trap single atoms

in an array of optical tweezers to study many-body systems. The first challenge is to

generate multiple optical tweezers, and the second is to fill all of them simultaneously.

Arrays of optical tweezers. Several methods exist to generate arrays of optical

tweezers, such as the use of an array of microlenses [Schäffner et al., 2020], Acousto

Optic Deflectors (AODs), or holographic techniques. In 2014, our team demonstrated

the generation of multiple tweezers using a Spatial Light Modulator (SLM). The idea

is to send the tweezer light on a SLM imprinting a spatially-dependant arbitrary phase

on the laser. Then, when focusing this laser in the chamber using the aspherical lens,

it diffracts in several spots. Each of these spots is used as an optical tweezer. The

2D Fourier transform of the light pattern on the SLM gives the light pattern on the

atomic plane. Since the SLM only controls the phase profile of the light and not its

intensity profile, we use a Gerchberg-Saxton (GS) algorithm [Gerchberg and Saxton,

1972] to optimize the SLM phase pattern to generate the desired array of tweezers.
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Figure 2.3: Sketch of the set-up to generate arrays of optical tweezers. The tweezers

are generated using an SLM imprinting a phase pattern on the 820 nm laser. A typical

phase pattern is shown in the panel SLM phase pattern. The light is then focused in

the science chamber diffracting in several optical tweezers. After the chamber, a camera

images the traps (the most intense light spot corresponds to the 0th order diffraction peak

of the SLM). An EMCCD camera also images the atomic plane and collect the fluorescence

light emitted by the trapped atoms. A typical fluorescence image is shown.

This method offers the advantage of easily changing the tweezer array geometry by

modifying the SLM phase pattern.

Figure 2.3 depicts the experimental setup. A control camera placed after the

chamber images the atomic plane and shows the shape of the traps. The EMCCD

camera also images the atomic plane and measures the fluorescence of the trapped

atoms. A typical fluorescence image is shown in Fig. 2.3. Each bright dot corresponds

to the presence of a single atom in a tweezer. As explained earlier, the collisional

blockade mechanism randomly fills each trap with zero or one atom, resulting in a

disordered distribution of atoms in space. As we wish to perform quantum simulations

of ordered systems such as crystalline structures, this disorder is a problem.
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From random to deterministic geometries. To fill all the tweezers, several methods

exist:

r The simplest approach consists of waiting until all the tweezers trap one atom

simultaneously. This naive method only works for a small number of atoms.

Each tweezer having a probability of pfill ≈ 0.5 to be filled, the time we need to

wait to load N traps increase exponentially as pNfill.

r The second methods consists into increasing the loading probability pfill by

overcoming the collisional blockage mechanism. As an example, the use of grey

molasses to drive light-assisted collisions in repulsive molecular states preventing

the loss of both atoms when two of them enter the same trap already showed an

improvement up to pfill ≈ 0.9 [Brown et al., 2019]. Using this procedure, we can

perform experiments with a larger number of atoms. However, this method still

suffers from the same problem. If one wants to work with N = 100 atoms, in

average, 10 atoms will be missing.

r Another idea consists in moving the atoms from one trap to another. Starting

from a random configuration (as shown by the fluorescence image of Fig. 2.3), we

rearrange the distribution of atoms across the array into a target configuration.

The main disadvantage of this method is that at least twice as many traps are

needed as the desired configuration since half of them are used as reservoir traps.

However, despite this drawback, since the first proof of principle demonstrated

by our team in 2016 [Barredo et al., 2016], this method remains the most efficient

for assembling the large arrays. I will now describe this method.

Assembling arrays of single atoms. In order to move the atoms we use a moving

tweezer. We independently generate this tweezer by sending 820 nm light through two

crossed AODs. We then combine this light with the tweezer ones before entering the

science chamber. The position and power of the moving tweezer are controlled by

varying the radiofrequency (rf) signal sent to the AODs. To move one atom from one

trap to an empty one, we follow the following procedure (see Fig. 2.4a). We first take

the atom from the initial trap by overlapping the moving tweezer and ramping its

power up to ∼ U0 in ∼ 400µs. We then move the atom to the target location with a

typical speed of ∼ 75 nm/µs. We release the atom by adiabatically switching off the

moving tweezer power in ∼ 400µs. When optimized, the transfer process is more than
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99% efficient [Barredo et al., 2016] and then can be repeated to move all the atoms to

the desired trap position.

Figure 2.4b summarizes the experimental sequence to assemble arrays. We start

by loading the atoms in the tweezers using the MOT in ∼ 200ms. We stop the loading

by switching off the magnetic field gradient, thus dispersing the atomic cloud. After

the loading, we apply the following sequence. First, we take a picture to identify which

trap contains an atom. Second, we then calculate the different atom transfers required

to end up in the target configuration [Schymik et al., 2020] (in Fig. 2.4b we target a

10× 10 square array). The list of moves is then sent to an Arduino Due® converting

the digital signals into analog ones. This step takes ∼ 50ms approximatively. Third,

the Arduinos send the analog signals to rf-generators connected to the AODs piloting

the moving tweezer and moving the atoms. This step takes ∼ 100ms for a target array

of N ∼ 100 atoms, and its time duration varies with N . Finally, we take a last image

to check that the final configuration corresponds to the expected one. As shown in

Fig. 2.4b, usually, for target arrays of hundreds of atoms, there is a chance to lose an

atom due to background gas collision or loss during an atom transfer. To overcome

these problems, we usually repeat this sequence twice before taking the final image (as

illustrated in Fig. 2.4b). For target arrays of N = 100 atoms, at each repetition of the

experiment, the probability of getting defect-free arrays (no atom missing in the traps

where we want them and no extra atoms where we do not want them) is about 15%

[Scholl, 2021].

I presented how to trap and image a single atom in an optical tweezer. I then

described how we generate arrays of optical tweezers and how we assemble them to

get target geometries. Starting from these arrays, we perform quantum simulation

experiments. The following section will give an overview of the experimental sequence.

2.1.3 A typical experimental sequence

The experimental sequence is composed of four distinct steps:

r Arrays of single atoms. We first generate an array of single atoms as described

in the previous section 2.1.2.

r Ground state manipulations. The second step consists of different ground
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Figure 2.4: Assembling arrays of single atoms. (a) Different moving tweezer steps

to move one atom from one trap to an other. (b) Experimental sequence to assemble a

random configuration into the target one (here it is a square 10× 10 array).

state manipulations to cool the atoms and prepare all of them in the same

hyperfine ground state (see the following section 2.2).

r Rydberg sequence. The third consists in performing the many-body experiment

(see Sec. 2.3). For example, for the simulation of the XY model, we isolate two

specific states of the Rydberg manifold to encode the |↑⟩ and |↓⟩ states. We

excite the atoms to these Rydberg states: either in |↑⟩, |↓⟩ or in a quantum

superposition of both. Then, we let them interact under the dipole-dipole

interaction, implementing the XY model. At the end of the dynamics, we transfer

back the |↑⟩ atoms to the ground state. This Rydberg sequence takes about

10µs.

r Measurement. After the Rydberg sequence, we take a fluorescence image. We

only image the atoms in the ground state (meaning the atoms being in |↑⟩ at
the end of the dynamics) while the others left in the Rydberg state are lost.

Thus, we map the |↑⟩/|↓⟩ state to the presence/absence of the corresponding

atom. We repeat the experiment to build statistics and assess the properties of

the many-body state we generated.
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Measuring the magnetizations. From the series of snapshots, we compute several

observables. The easiest one is the magnetization of each atom. For atom i, it reads:

⟨σz
i ⟩ = 1/Nshot

∑Nshot

l=1 σz
i (l) with Nshot the number of taken snapshots and σz

i (l) = 1

(σz
i (l) = −1) if we detect the presence (absence) of the atom in snapshot l. Since the

magnetization measurement follows a binomial law, we calculate its error bar (also

called quantum projection noise): u(σz
i ) =

√
(1− ⟨σz

i ⟩2)/
√
Nshot. Assuming that we

measure ⟨σz
i ⟩ = 0, taking 100 snapshots would give a precision of 0.1, 1000 shots give

0.03 and 10000 shots gives 0.01. The cycling rate of the experiment is between f = 1

and 2Hz. Assuming we want to reach a precision of 0.03, and that we only keep 15%

of the shots for which the initial array was perfectly assembled, then, we need to

average the data over 1000 shots/(15%× 1Hz) ≈ 2 hours for each point. The cycling

rate and the probability to prepare defect-free arrays are the main limiting factors to

the best precisions that we can achieve.

Measuring correlation functions. Measuring the magnetization of each atom

is insufficient to characterize many-body systems and in particular entanglement.

Interesting properties are only revealed upon measuring correlations between the

atoms. We can for example compute the two-body correlation function between

atom i and j defined as ⟨σz
i σ

z
j ⟩ = 1/Nshot

∑Nshot

l=1 σz
i (l)σ

z
j (l). As for the magnetization,

σz
i σ

z
j follows a binomial distribution from which we can calculate its error bar

u(σz
i σ

z
j ) =

√
(1− ⟨σz

i σ
z
j ⟩2)/

√
Nshot. The main issue with this two-body correlation

definition, is that ⟨σz
i σ

z
j ⟩ only measures classical correlations. For two independent

spins i and j exhibiting non zero magnetizations (⟨σz
i ⟩ ≠ 0 and ⟨σz

j ⟩ ≠ 0), we measure

a non-zero correlation ⟨σz
i σ

z
j ⟩ = ⟨σz

i ⟩⟨σz
j ⟩ ̸= 0. Measuring non-zero correlations for

independent spins is counter intuitive. For this reason, we prefer to use the connected

correlations defined as ⟨σz
i σ

z
j ⟩c = ⟨(σz

i − ⟨σz
i ⟩) (σz

j − ⟨σz
j ⟩)⟩ = ⟨σz

i σ
z
j ⟩ − ⟨σz

i ⟩⟨σz
j ⟩. Spins

always exhibit zero connected correlations when they are independent. Reciprocally,

measuring a non-zero connected correlation necessarily implies that the two spins are

in a statistical mixture of states, in a quantum superposition or are entangled.

2.2 Ground-state manipulations

After preparing an array of single atoms, we perform different ground state manipu-

lations. The goals are twofold: first, we reduce the temperature of the atoms in their
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trap, and second, using optical pumping, we prepare all of them in the same hyperfine

ground state before starting the Rydberg excitation (see Sec. 2.3).

2.2.1 Cooling the atoms

Motivations. There are two reasons why we wish to cool the atoms. First, the

tweezer lights apply a repulsive force on the atoms in a Rydberg state, expelling them

from the traps. Consequently, to avoid losing the atoms during the Rydberg sequence,

we switch off the trapping light and let them in free flight. During this time, if the

atomic temperature is too high, the atoms will move so far away from the center of

their trap that even if we deexcite them to the ground state and switch back on the

tweezers we will not recapture them. An atom that should be recaptured and imaged

will then be lost and counted as in |↓⟩ instead of |↑⟩.
Second, the atoms are not pinned to the center of their tweezer due to the atomic

temperature. When the traps are turned off just before starting the Rydberg sequence,

the atoms start with an initial position r0i (with respect to the center of their trap)

and an initial velocity vi. Their motion can be modelled as ri(t) = r0i + tvi. Since the

dipole-dipole interaction energy between two atoms i and j is highly sensitive to the

distance Jij ∝ 1/|ri − rj|3, its value varies during the Rydberg dynamics, fluctuates

from one pair of atoms to another (supposed to be separated by the same distance)

and differs from one repetition of the experiment to another (this latter effect is also

called shot-to-shot positional disorder). All these detrimental effects contribute to a

decrease in the fidelity of the experiment.

Motion of the atoms. The temperature of the atoms is about a few µK, much lower

than the trap depth of U0. Thus, the atoms explore a region close to the center of

the trap. The trapping potential seen by the atoms can then be approximated by a

harmonic potential with radial and longitudinal frequencies ω⊥ and ω� reading:

ω⊥ =

√
4U0

mw2
and ω� =

√
2U0

mz2R
, (2.2)

with m the mass of a 87Rb atom, w the waist, zR the Rayleigh range and U0 the trap

depth. If the energy of the atoms is higher than the zero point energy ℏω⊥,� ≪ kBT ,

the statistical distributions of positions and velocities follow a Maxwell-Boltzmann
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Figure 2.5: Release and recapture experiment. (a) Experimental sequence. (b) Sketch

of the motion of one atom in its trap. (c) Results of the release and recapture experiments

for different temperature obtained at different stages of the cooling procedure.

distribution with standard deviations of:

σ⊥,� =

√
kBT

mω2
⊥,�

and σv =

√
kBT

m
(2.3)

These statistical distributions are used to calibrate the temperature of the atoms.

Release and recapture. The standard technique to measure the temperature of the

atoms is to perform a release and recapture experiment [Tuchendler et al., 2008]. After

having loaded the atoms, we switch off the traps for a time duration tR&R, turn back on

the tweezer light and measure the probability of recapturing the atoms (see Fig. 2.5a).

We repeat the experiment for various values of tR&R. To extract the temperature, we

compare the data to a classical Monte-Carlo simulation. After a time duration tR&R

the position of an atom is ri(tR&R) = r0i + tR&Rvi with r0i and vi following a Gaussian

distribution of width σ⊥,� and σv (see Eq. 2.3). We then compared the kinetic energy

of the atom to the trapping potential at position ri(tR&R). If mv2
i /2 < U(ri(tR&R))

we consider that the atom is recaptured; otherwise we consider it is lost ((see Fig.

2.5b)). We repeat the simulation over 1000 times to compute the recapture probability.

By adjusting the temperature in this model, we fit the experimental data with the

simulation and thus infer the atomic temperature. We now move to the description of
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the cooling procedure.

Cooling the atoms. We cool the atoms in three steps:

r First, we perform Sisyphus cooling (also called polarization gradient cooling)

for 10ms [Wineland, Dalibard, and Cohen-Tannoudji, 1992]. To do so, we

reduce the MOT light intensity and red-detune its frequency by ≈ 8Γ5P3/2
from

the (5S1/2, F = 2) ↔ (5P3/2, F = 3) transition for 10ms. The temperature

decreases from T = 100µK to T = 30µK. Figure 2.5c shows the results of the

different release and recapture experiments performed before/after Sisyphus

cooling. The solid curves are the simulations described in the previous paragraph.

At T = 30µK, we observe for tR&R > 40µs a discrepancy between the data

and experiment that we have not investigated further. It could be due to the

anisotropic temperature of the atoms (T⊥ ≠ T�) or to the fact that at such

low temperatures, classical simulations are no longer good approximations to

describe the atomic motion.

r Second, we perform Raman Side Band Cooling (RSBC). When I started my

Ph.D., we installed the RSBC setup to reach lower temperatures2. We measure

the average radial vibrational number and find n̄⊥ = kBT⊥/(ℏω⊥) = 3 before

cooling and n̄⊥ = kBT⊥/(ℏω⊥) = 0.3 after cooling (averaged over all the atoms of

the array). In the release and recapture experiment, we also observe a significant

improvement in the recapture probability (see Fig. 2.5c).

r Third, we adiabatically ramp down the tweezer light intensity. This adiabatic

process (slower than 1/ω⊥,�) reduces the effective temperature, keeping the ratio

ω⊥,�/T constant. Strictly speaking, this process does not cool the atoms since

the average vibration mode occupation n̄⊥,� remains the same, and the process

is reversible. However, it allows us to modify the ratio between σ⊥,� and σv. If

we adiabatically change the intensity by a factor α the new position and velocity

distribution are given by σ⊥,�/α
1/4 and σvα

1/4. Figure. 2.5c shows the release

and recapture results obtained after reducing the trapping light intensity by

α ≈ 1/100.

2My co-worker Gabriel Emperauger dedicated a chapter in his thesis manuscript [Emperauger,
2025] to describe this experimental upgrade. Thus, I invite the reader to read his thesis for more
information.
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Figure 2.6: Optical pumping. (a) Principle of the optical pumping. (b) Summary of the

ground state manipulation sequence (including cooling and optical pumping).

2.2.2 Optical pumping

Optical pumping. Before exciting all the atoms to the Rydberg state, we need to

prepare them in the same hyperfine ground state. To achieve this, we use optical

pumping. Figure 2.6a illustrates its principle. We first change the magnetic field

configuration from anti-Helmholtz to Helmholtz configuration with a 6.7G magnetic

field along the uy axis. Along this quantization axis, we send σ+ polarized light

resonant with the (5S1/2, F = 2) ↔ (5P1/2, F = 2) transition. After a succession

of excitations to (5P1/2, F = 2) and decays back to (5P1/2, F = 2), the atoms are

optically pumped to the dark state |g⟩ =
∣∣5S1/2, F = 2,mF = 2

〉
. During this time,

we also shine the repumper to ensure we repump in (5S1/2, F = 2) the atoms decaying

to (5S1/2, F = 1). Using an independent experiment, we estimate an optical pumping

inefficiency of 1− ηopt = 0.5% [Scholl, 2021].

Ground-state manipulations sequence. Figure 2.6b summarizes all the ground

state manipulations, including cooling and optical pumping. We first perform Sisyphus

cooling for 10ms, then change the magnetic field configuration and apply the RSBC,

optical pumping and repumper beams. After 40ms of cooling, we turn off the RSBC

and continue the optical pumping for 8ms to ensure that all the atoms end up in

|g⟩. We then adiabatically ramp down the trapping light intensity while changing the

magnetic field’s orientation and strength. Finally, we switch off the traps and start the

Rydberg sequence.
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2.3 Rydberg state manipulations

I now present the different steps related to the atom manipulations involving

Rydberg states. I first show how to excite/deexcite the atoms to/from the Rydberg

states and then detail the different manipulations we perform in the Rydberg manifold.

2.3.1 Excitation and deexcitation

Rydberg excitation. We use a two-photon transition scheme to excite the atoms to

the Rydberg state. A first laser at 420 nm drives the transition between the ground state

|g⟩ and the intermediate state |i⟩ =
∣∣6P3/2, F = 3,mF = 3

〉
(see Fig. 2.7a). A second

laser at 1013 nm drives the other transition between |i⟩ and one of the Rydberg states

|r⟩ =
∣∣nS1/2,mJ = 1/2

〉
(with n the principal quantum number of the target Rydberg

state). The intermediate state has a short lifetime of 1/Γ|i⟩ ≈ 110 ns. Therefore, we

should avoid populating |i⟩ to get the best Rydberg excitation efficiencies. Several

methods exist, such as π-pulses or sweeps [Scholl, 2021]. We use a STImulated Raman

Adiabatic Passage (STIRAP) technique [Vitanov et al., 2017]. It offers the advantage

of being resilient to experimental parameter fluctuations, such as intensity or frequency

drifts. To perform STIRAP, the 420 and 1013 nm lasers are resonant with their

respective transitions. We send two Gaussian pulses as depicted in the inset of Fig.

2.7c. I now give more details about each laser and describe the measurements we

routinely perform to calibrate them.

420nm laser. The 420 nm laser is produced via second harmonic generation of

an amplified Toptica® diode laser at 840 nm. We send the 1W output laser power

through a double-path Acousto-Optic Modulator (AOM), an Electro-Optic Modulator

(EOM), and a fiber. Finally, we collimate the light beam and send it to the atoms. At

the position of the atomic plane, we measure a 1/e2 beam radius of w420 = 250µm.

We also measure ∼ 300mW of laser power on the atoms corresponding to a Rabi

frequency of Ω420/(2π) ≈ 80MHz for the |g⟩ ↔ |i⟩ transition. The light is π polarized

to |g⟩ state to |i⟩. To set the laser frequency on-resonance with |g⟩ ↔ |i⟩ transition,
we perform a depump experiment. We initialize all the atoms in |g⟩ and then send

a 420 nm pulse at low intensity. If the light is on-resonance with the |i⟩ state, the
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Figure 2.7: STIRAP. (a) Energy level diagram. (b) Orientations and polarizations of the

Rydberg laser with respect of the atomic array and the quantization axis given by the

magnetic field. (c) Rabi frequencies Ω420/1013(t) during the STIRAP sequence.

atoms are excited and, shortly after, decay to (5S1/2, F = 1) or (5S1/2, F = 2)3. If not,

they will stay in |g⟩. Therefore, we can then detect the resonances by measuring the

population in (5S1/2, F = 1). To do so, we use a push-out light beam. The push-out

light is σ± polarized at 780 nm resonant with the cycling transition (5S1/2, F = 2)↔
(5P3/2, F = 3). It allows us to heat the atoms in (5S1/2, F = 2) to expel them from

their trap, whereas atoms in (5S1/2, F = 1) are not affected and thus remain in the

tweezers. By sending the push out beam after the 420 nm one, we thus measure the

population in (5S1/2, F = 1) (see blue data in Fig. 2.8a). By repeating this experiment

for various laser detuning ω420 − ω|g⟩↔|i⟩, we identify the transition frequency (using

an Gaussian fit) and set the laser on resonance.

1013 nm. The 1013 nm laser is also produced by a Toptica® diode laser seeding an

ALS® amplifier up to 8W. The light is sent through an AOM and focused on the

atoms using cylindrical lenses. It produces a elliptical light spot with a 1/e2 radius

waist of w1013 = 60µm along the perpendicular direction of the array and 250µm

along the other allowing us to maximize the laser intensity on the atoms. The light is

π polarized to couple the |i⟩ state to |r⟩.
To measure Ω1013, we perform a depump experiment with the 1013 nm laser

turned on at maximum power and set on resonance with the |i⟩ ↔ |r⟩ transition. Due
to the Autler–Townes effect, the state |i⟩ is split into two states (|i⟩ ± |r⟩)/

√
2 shifted

3The selection rules forbid a direct decay from |i⟩ to (5S1/2, F = 1). The atoms successively decay to
others short-lived intermediate state (4D) or (6S), then in (5P ) and finally in (5S) [Scholl, 2021].
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(a) Depump experiment with/without the 1013 nm laser (red/blue data). The solid curves

are Gaussian fits. (b) Rydberg excitation using STIRAP. We plot the recapture probability

as a function of ω1013.

in frequency by ±Ω1013/2. As shown in Fig. 2.8a, by measuring this splitting, we get

Ω1013/(2π) = 41MHz (here |r⟩ =
∣∣60S1/2,mJ = 1/2

〉
). The Autler–Townes splitting is

not perfectly symmetric around |i⟩. Since the Rydberg laser is linearly polarized, they

also couple to other intermediate states of the 6P3/2 manifold that results in light

shifts breaking the symmetry of the Autler–Townes splitting. Thus, the Autler–Townes

splitting that we measure may be slightly biased by this effect but still give a good

estimate for Ω1013.

To calibrate the laser frequency ω1013, we perform Rydberg excitation using

STIRAP. After switching off the traps, we send the two Gaussian pulses and switch back

on the traps (see inset in Fig. 2.8b). Since the traps apply a repulsive ponderomotive

force on the Rydberg atoms, we only recapture and image the non-excited atoms as

shown in Fig. 2.8b. The spectrum exhibits a non-symmetric behaviour that we also

attribute to the presence of other intermediate states.

Optimizing the Rydberg excitation. Optimizing the Rydberg excitation efficiency is

a crucial point for quantum simulation. If some atoms are not excited to the Rydberg

state, they will not interact with their Rydberg atom neighbours. From the point of

view of many-body physics, it is equivalent to having holes (meaning missing atoms)

in the system. Holes affect many-body dynamics and thus can bias, reduce or even

make impossible the observation of the signals we wish to measure. Moreover, since

the non-excited atoms stay in the ground state during the Rydberg sequence, they
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Figure 2.9: Optimizing STIRAP and minimzing ε′. (a) Simulation estimating ε′ as

a function of the spontaneous emission lifetime τ (lifetime at T = 0K). (b) Recapture

probability as a function of the depumping induced light scattering from the traps. The

inset shows the experimental sequence.

will be recaptured and imaged at the end of the dynamics. As a result, we cannot

distinguish them from the atoms that took part in the dynamics, ended up in |↑⟩,
were transferred back to (5S1/2) and imaged.

To measure the Rydberg excitation efficiency, we analyze the recapture proba-

bility of Fig. 2.8b. The lowest point reaches 7.5(2)%. This value is the sum of two

contributions: detection errors ε′(60S) and Rydberg excitation inefficiency 1− ηexc. A
detection error occurs if one atom excited in the Rydberg state spontaneously decays

to the ground state before being expelled by the trap ponderomotive force. The atom is

then recaptured and imaged, whereas it was supposed to be lost. Using the simulation

described in [de Léséleuc et al., 2018], we calculate the detection error ε′ as function

of the Rydberg lifetime (see Fig. 2.9a). The Rydberg state (60S) has a spontaneous

emission lifetime of 260µs (lifetime at T = 0K) thus giving ε′(60S) = 5.5%. We then

deduce (at first order) 1− ηexc = 7.5− 5.5 = 2.0(2)%. Two effects lead to a reduction

of the Rydberg excitation efficiency: an imperfect optical pumping and STIRAP.

When I started my Ph.D., 1− ηexc was around ≈ 5%. To decrease to 2.0%, we

first manually optimized the STIRAP pulse shapes such as the amplitudes, widths and

time delays. Second, we compressed the trap adiabatic ramp-down procedure from

15ms to 5ms to reduce the depumping induced by spontaneous Raman scattering

from the traps [Miller, Cline, and Heinzen, 1993; Cline et al., 1994]. After the optical

pumping, due to eddy currents, we need to wait 25ms to change the magnetic field

configuration (see Sec. 2.4.1). During this waiting time tdepump, the atoms are slowly
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depumped from |g⟩ to other hyperfine states in (5S1/2) resulting in a decrease of

the Rydberg excitation efficiency (meaning, an increase of recapture probability).

As shown in Fig. 2.9b, to measure this depump rate, we measure the probability to

recapture the atoms after the Rydberg excitation for different values of tdepump. We

measure a lifetime of 700ms consistent with the order of magnitude of ∼ 100/1000ms

given in [Cline et al., 1994]. To reduce its effect, just after the end of the optical

pumping stage, we first perform the adiabatic ramp down of the trapping light in 5ms,

and then wait for the remaining 20ms. As the Raman scattering rate is proportional

to the trap intensity, this configuration reduces the time the atoms spend with a high

trap intensity, thus reducing the depumping.

We envisioned further optimizations to reduce 1− ηexc. We plan to use optimal

control [Ross, 2015] to optimize the STIRAP pulses. Another optical pumping beam

propagating perpendicular to the array could also be added to optically pump the

atom just before the Rydberg excitation.

Deexcitation. After the Rydberg sequence, we selectively deexcite the atoms from

|r⟩ to the ground state (5S1/2), while leaving the others in the Rydberg manifold. To

do so, we turn on the 1013 nm laser used to perform the STIRAP. The |r⟩ atoms

are then transferred to the intermediate state |i⟩ from which they spontaneously

decay back to the ground states (5S1/2) (see Fig. 2.10a). To assess the speed at which

this deexcitation occurs, we measure the recapture probability as a function of the

deexcitation pulse duration tdeexc. Figure 2.10b shows the results. The atoms undergo
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fast Rabi oscillation between the |r⟩ and |i⟩ states at frequency Ω1013 (thin solid

curve). On average, half of the population is in |i⟩, so the deexcitation rate can be

approximated by an exponential decay with a rate of Γ|i⟩/2 (thick solid curve). For

|r⟩ =
∣∣60S1/2,mJ = 1/2

〉
it gives a decay rate of 1/(Γ|i⟩/2) = 220 ns. Experimentally,

we chose a duration tdeexc = 2500 ns thus ensuring that most the |r⟩ atoms have time

to decay back to the ground state. To estimate this process fidelity ηdeexc, we analyze

the recapture probability after tdeexc = 2500 ns. It reached 1 − 0.023. We measure

that ε = εimage + εbgc = 1.3(2)% comes from detection errors: εimage = 0.3(1)% due

to losses during the 20ms of imaging and εbgc = 1.0(1)% due to losses induced by

background gas collisions with the atoms. We then deduce 1 − ηdeexc = 1.0(2)%.

During my Ph.D., we did not investigate the physical processes limiting the fidelity of

this deexcitation. Therefore, there is still room for improvement on this front.

2.3.2 Microwave control of the Rydberg states

Motivations. Once the atoms are excited to the Rydberg manifold, we use a

microwave field (MW) to transfer the atoms from one Rydberg state to another. We

perform two types of microwave transfers (see Fig. 2.11a):

r Spin states manipulation. To implement the dipolar XY model, we encode

our spin states between two Rydberg states of opposite parity [de Léséleuc et

al., 2017]. During my Ph.D., we mainly used |↑⟩ = |r⟩ =
∣∣nS1/2,mJ = 1/2

〉
and

|↓⟩ = |nPJ ′ ,mJ ′⟩. The spin states |↑⟩ and |↓⟩ are separated by ω|↑⟩↔|↓⟩/(2π) ∼
1− 20GHz and can be coupled using microwaves. It allows us to manipulate the

spins for various applications, such as preparing them in a specific initial state

(|↑⟩, |↓⟩ or in a superposition), modifying the XY Hamiltonian by adding single-

particle terms as HMW = ΩMW

∑
i σ

x,y
i or rotating the spins. These applications

require good control over the amplitude, frequency and phase of the microwaves.

r Freezing the XY dynamics. Just before the deexcitation pulse, we introduce a

microwave freezing pulse to transfer the |↓⟩ atoms to hydrogenic states. The goal

is twofold. First, it allows us to stop the XY dynamics. Since we cannot switch

off the dipole-dipole interactions between the atoms, to freeze the dynamics,

we transfer in a few nanoseconds the |↓⟩ atom population to the hydrogenic

manifold (h). Atoms in hydrogenic states are decoupled from those remaining in
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Figure 2.11: Microwave set-up. (a) Energy level diagram. (b) Sketch of the microwave

set-up.

|↑⟩, avoiding detrimental effects of the interaction during the deexcitation pulse.

Second, exciting the |↓⟩ atoms to (h) reduces the detection error ε′: the atoms

in these states cannot spontaneously decay directly to the ground state but

must use various decay channels through the Rydberg manifolds. This process

decreases the probability that a Rydberg atom decays in the ground state before

being expelled by the traps, thus reducing ε′.

Microwave set-up. The microwave set-up is summarized in Fig. 2.11(b). From

the computer, we generate the pulse waveform we wish to apply. For the |↑⟩ ↔ |↓⟩
microwave transition, we use a Vectorial Signal Generator (VSG) from Rohde &

Schwarz® (R&S®SMM100A). This device allows us to create arbitrary rf waveforms

for frequencies up to 2π × 20GHz. We send this signal to an antenna on top of the

science chamber (green signal). To generate the freezing pulse, we use a commercial

signal generator from the same company (R&S®SMB100A) generating signals up to

2π × 12.75GHz. We then amplify the signal by 30− 34 dB and send it to the axial

antenna (blue signal). Thanks to this configuration, we can independently control the

two microwave signals.

Spin states manipulations. To test our ability to perform spin state manipulations

with microwaves, we perform a single-atom Rabi oscillation between state |↑⟩ =∣∣90S1/2,mJ = 1/2
〉
and |↓⟩ =

∣∣90S3/2,mJ = 1/2
〉
(see Fig. 2.12). Using STIRAP, we
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12.97MHz. The solid curve is a fit by a damped cosine function.

first excite the atoms to |↑⟩, send a microwave pulse tuned of the resonance ω|↑⟩↔|↓⟩,

and apply the readout sequence (consisting of sending the deexcitation pulse, switching

back on the tweezers and imaging). The intrinsic low noise of the VSG, combined with

the extended lifetime of Rydberg states, allow for coherent of Rabi oscillations over

several microseconds. We observe low damping of the oscillations after 50 cycles.

Freezing pulse. To calibrate the freezing pulse frequency, we perform two spec-

troscopy experiments. In the first one, we excite the atoms in |↑⟩, transfer them to

|↓⟩ using a microwave π-pulse, send the freezing pulse (for 30 ns), and deexcite the

remaining population in |↓⟩ via another π-pulse and the deexcitation pulse (blue

curve in Fig. 2.13a). In the second one, we excite the atoms in |↑⟩, apply the freezing

pulse (for 200 ns), and readout (black curve). By applying these sequences, we mea-

sure the transfer probability from |↓⟩/|↑⟩ to hydrogenic states (h) (for, |↑⟩ we use a

longer freezing pulse duration to enhance the transfer rate). We repeat these experi-

ments with various freezing pulse frequencies. Figure 2.13a shows the spectra using

|↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =

∣∣60P3/2,mJ = −1/2
〉
. Around ∼ 2π × 7500MHz

we identify a broad three photon transition from |↓⟩ to probably (h) = (58G). Charac-

terizing all the peaks of this spectrum would be extremely difficult since any residual

electric field in the vacuum chamber would result in mixing all the states of the
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Figure 2.13: Freezing pulse. (a) Calibration of the freezing pulse microwave frequency. The

black/blue data shows the transfer probability from the states |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =

∣∣60P3/2,mJ = −1/2
〉
to the hydrogenic states (h). The insets show a sketch of

the experimental sequences. (b) Single atom microwave Rabi oscillation on the |↑⟩ ↔ |↓⟩
transition using the freezing pulse. The solid curve is a fit using a cosine function.

Rydberg manifold [Zimmerman et al., 1979]. We choose a frequency, power and pulse

duration to maximize the speed at which we transfer the |↓⟩ population to (h) while

we minimize the effect on the |↑⟩ population. The best parameters correspond to

a pulse duration of 30 ns and a frequency of 2π × 7480MHz (vertical dashed blue

line). With these parameters, we measure that a fraction εfreezing = 0.3(1)% of the

|↑⟩ population is transferred to (h), leading to an extra source of detection error.

However, this new detection error is largely compensated by the reduction of ε′ going

from ε′60P = 2.6(2)% to ε′(h) = 1.3(2)%.

We now add the freezing pulse to the readout sequence just before the deexcitation

pulse and perform another single atom Rabi oscillation on the microwave |↑⟩ ↔ |↓⟩
transition (see Fig. 2.13b). We measure that the recapture probability oscillates

between 3.4(2)% and 97.4(2)%. This contrast is consistent with the values of state

preparation errors (1− ηexc) = 2.0(2)% and detection errors ε↓ = ε′(h) = 1.3(2)% and

ε↑ = εfreezing+εimage+εbgc+(1−ηdeexc) = 2.5(4)% that we each measure independently.

Microwave limitations. Although microwaves provide an efficient tool to manipulate

the atoms in the Rydberg manifold, they suffer from two main downsides. First, as

the two antennas are placed outside the vacuum chamber, we cannot control the

microwave polarisation due to the metallic parts surrounding the atoms. Therefore,
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to isolate the |↑⟩ ↔ |↓⟩ from irrelevant Zeeman sublevels, we need to apply a 50G

quantization magnetic field perpendicular to the array (see Sec. 2.4.1). Second, the

microwave wavelength is ∼ 1 cm and significantly larger than the typical size of our

arrays of optical tweezers of ∼ 100µm. It implies that the microwaves are global for

all the atoms. To overcome this drawback, we combine the microwaves with local light

shifts induced by addressing beams to perform local operations on the atoms.

2.3.3 Local addressing beams

Applying local light shifts. To apply a local light shift on one atom, we pick up part

of the 1013 nm light from the Rydberg excitation laser and we focus it on the atoms

using the aspheric lenses creating a light spot on the atomic plane with a waist of a few

micrometers (see Chapter 3 for more detail about the optical setup). To superimpose

this addressing light spot with a target trap, we use this 1013 nm beam as an optical

tweezer. We set its power such that the light spot creates a trapping potential with a

trap depth sufficiently high to load single atoms (this power is not necessarily the one

that we will use to apply local light shifts). Thus, the fluorescence light scattered by

an atom trapped in this 1013 nm tweezer indicates us on the florescence camera, the

position of the addressing light spot. We then move the addressing beam such that the

position of the atoms trapped by this 1013 nm tweezer coincides with the one of the

atoms trapped in the 820 nm target tweezer.

The 1013 nm addressing laser is detuned by ∆addr from the |i⟩ ↔ |↑⟩ transition with

a Rabi frequency Ωaddr. It induces a light-shift on the |↑⟩ state of δaddr = Ω2
addr/(4∆addr).

The sign of δaddr is set by the sign of ∆addr, and the δaddr amplitude can be dynamically

varied during the Rydberg sequence by modulating the addressing laser intensity with

an AOM and EOM. More details about the

Calibration of the addressing-induced light shifts. To measure the light shift

induced by the addressing beam, we perform microwave spectroscopy on the |↑⟩ ↔ |↓⟩
transition. Using STIRAP and a microwave π-pulse, we first initialize all the atoms

in |↓⟩, turn on the addressing light, send a microwave pulse at frequency ωMW and

read out the atom state. In Fig. 2.14b, we plot the recapture probability for the

non-addressed atoms (grey data) and addressed atoms (red data). As expected,

we find a resonance at ω|↑⟩↔|↓⟩ for the non-addressed atoms and measure a shift of
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Figure 2.14: Light shift induced by the addressing beam. (a) Energy level diagram. The

addressing is detuned by ∆addr from the |i⟩ ↔ |↑⟩ transition to induced a light shift δaddr

on te addressed atoms. (b) Example of microwave spectroscopy to measure δaddr. Here

we use: |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
, |↓⟩ =

∣∣60P1/2,mJ = −1/2
〉
, ∆addr/(2π) ≈ 400MHz

and ≈ 300mW of light for the addressing beam. The solid curves are fits with Gaussian

functions. The inset shows the experimental sequence.

δaddr = 2π × 21MHz for the addressed atom.

Spin exchange. Historically, the addressing technique was used in the group to

prepare one atom in |↓⟩ while the others are in |↑⟩ [de Léséleuc et al., 2017; Barredo

et al., 2020; Lienhard et al., 2020]. This configuration is interesting for performing

experiments called a spin exchange. The minimalistic spin exchange experiment uses

two atoms; one initialized in |↑⟩ and the other in |↓⟩. To prepare |↑↓⟩, we first start

by initializing two atoms in |↓⟩ via STIRAP and a microwave π-pulse (the details of

this experimental sequence will be discussed in detail in Sec. 3.2.1). We then turn the

addressing light, inducing a light shift δaddr on the addressed atoms. We re-apply a

microwave π-pulse to bring down the non-addressed atom to |↑⟩. If the microwave

Rabi frequency is lower than the addressing light shift ΩMW ≪ δaddr, the microwaves

then are off-resonant for the addressed atoms and thus let them in |↓⟩ (see Fig. 2.15a).

Once we have prepared the initial state |↑↓⟩, we let the two atoms interact freely for a

time tXY under the XY Hamiltonian and read out their states. The probability to

measure |↑↓⟩ oscillates with a frequency 2J , with J being the XY interaction energy

between the two atoms (see Chapter 5). This spin exchange is routinely used as a

calibration experiment to measure J . An example of a spin exchange is shown in Fig.

2.15b.
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Figure 2.15: Two-atom spin exchange experiment. (a) Experimental sequence to

prepare |↑↓⟩. (b) Spin exchange experiment. The two atoms are separated by 30µm and

we use |↑⟩ =
∣∣90S1/2,mJ = 1/2

〉
and |↓⟩ =

∣∣90P3/2,mJ = 3/2
〉
.The probabilities P|↑↓⟩

and P|↓↑⟩ oscillate at a frequency 2J with J/(2π) = 0.79MHz. The solid curves are a fit

with a damped cosine function.

During my Ph.D. we extended the use of the addressing to two applications. First,

we demonstrated a method to perform local rotations on Rydberg-encoded spins and

measure multi-basis observables, meaning that we measure each spin along a different

axis of the Bloch sphere. Second, we showed the ability to initialize arrays of up to

N = 100 atoms in a Néel state along z, i.e. a staggered arrangement of spins |↑⟩
and |↓⟩. As we will see all along this manuscript, this initialization is particularly

interesting since it allowed us to study the ground state and out-of-equilibrium physics

of the dipolar model XY (see Chapter 5, 6 and 8). I give more details in Chapter 3,

which is devoted to the description of these two experimental improvements.

2.4 Control of the magnetic and electric field environment

Rydberg atoms are sensitive to external magnetic and electric fields [Gallagher,

2006]. Therefore, measuring and controlling the magnetic and electric environment

inside the science chamber is essential.
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2.4.1 Magnetic field

Magnetic field configuration. During the sequence, we use four different configura-

tions of magnetic field:

r Anti-Helmholtz configuration. During the loading of the atoms from the

MOT to the tweezers, we use a pair of coils inside the science chamber in the

Anti-Helmholtz configuration to generate a magnetic gradient. Using three pairs

of compensation coils placed outside the science chamber we adjust the position

of zero magnetic field, to position the atomic cloud near the tweezers.

r Zero magnetic field. During the Sisyphus cooling stages, we switch off the

magnetic field. We use the compensation coils to ensure the magnetic field is

well-cancelled (see [Scholl, 2021]).

r Helmholtz configuration along uy. During the RSBC and optical pumping

stages, we apply a 6.7G magnetic field to define the quantization axis along

uy. We use the pair of coils inside the science chamber to switch to Helmholtz

configuration. We calibrated its value using a Raman sideband spectrum (see

[Emperauger, 2025]).

r Helmholtz configuration along uz. Before starting the Rydberg sequence, we

rotate the magnetic field along uz using an extra pair of coils placed outside the

vacuum chamber. As we will see in Sec. 5.1, the dipole-dipole interaction depends

on the orientation of the quantization axis. We ensure isotropic XY interaction

between the atoms by applying a magnetic field perpendicular to the array. As

mentioned in Sec. 2.3.2, to isolate the |↑⟩/|↓⟩ Zeeman sublevels from the others,

we apply a relatively strong magnetic field of ∼ 50G. This configuration is the

one we use during the Rydberg sequence; therefore, its magnetic field must be

carefully calibrated.

Calibration of the magnetic field. We first measure the time we need to wait to

rotate the magnetic field from uy to uz. To do so, we measure the current in the

uz coils as a function of time for various values of magnetic fields (see Fig. 2.16a).

At t = 0, the current is turned on and due to the large inductance of the coils,

it follows an exponential rise up of ∼ 1/10ms. Then, we observe a transient with

damped oscillations due to an overshoot of the voltage. According to these curves, for
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Figure 2.16: Calibration of the magnetic field. (a) Measurement of the current in

the uz coils as a function of time for various values of magnetic field. (b) Energy level

diagram showing the different Zeeman sublevels of the (60S) and (60P ) manifolds. (c)

Microwave spectrum showing the different transitions between
∣∣60S1/2,mJ = 1/2

〉
and

(60P ). The solid curve shows the simulation taking only the magnetic field intensity as a

free parameters. Here B = 43G.

B = 48G, to ensure that the magnetic field has reached a steady value before starting

the Rydberg sequence, we need to wait 20ms. Independent experiments performed on

Rydberg atoms (Ramsey experiments on the |↑⟩ ↔ |↓⟩ transition) showed that the

magnetic field still exhibits small oscillations after 20ms and only reaches a stable

value after 25ms (see purple vertical dashed line).

To measure the magnetic field value, we perform a microwave spectrum. We first

initialize all the atoms in
∣∣60S1/2,mJ = 1/2

〉
, send a microwave pulse of frequency

ωMW and readout the state of the atoms. Figure 2.16c shows the recapture probability

as a function ωMW. We identify five main peaks corresponding to two transitions

to the (60P1/2) states and three to the (60P3/2) (see Fig. 2.16b). To calibrate the
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2.4 Control of the magnetic and electric field environment

magnetic field, we perform a simulation (solid curve), taking the magnetic field

strength as an adjustable parameter. By taking B = 43G, we obtain a relatively

good agreement with the experimental data4. The splitting between two Zeeman

sublevels mJ and m′
J can be calculated using the Landé factor gJ(MHz/G) ≃ 1.4×

(1 + (J(J + 1) + S(S + 1)− L(L+ 1))/(2J(J + 1))) giving in frequency a splitting of

∆ω/(2π) = gJ(m
′
J −mJ)B. As an example, if we consider the (60P3/2) manifold and

B = 43G, we calculate a frequency splitting between successive Zeeman sublevels of

gJ ×B = 88MHz consistent with the measurements. We typically use microwave Rabi

frequencies of up to ΩMW/(2π) ∼ 20MHz, so this splitting is large enough to isolate

these Zeeman sublevels since ΩMW/(2π)≪ gJ ×B.

2.4.2 Electric field

Electrodes. Due to the presence of charged particles in the science chamber, there is

a residual electric field. This residual electric field mixes Rydberg states of different

parity and thus prevents us from using a pure two-level system. To cancel this electric

field, we use eight electrodes. They are placed inside the science chamber around the

atoms, as shown in Fig. 2.17. We apply a potential ±Vx ± Vy ± Vz on each of them.

This configuration is equivalent to having three pairs of electrodes along each direction

with an applied voltage of ±Vx,y,z. We tune the three voltages Vx,y,z to cancel the

electric field seen by the atoms.

The electric field produces a Stark shift on the |↑⟩ ↔ |↓⟩ transition frequency which

reads δ(E) = δ|↓⟩(E)−δ|↑⟩(E) = 1
2
(α|↓⟩−α|↑⟩)E2 with α|↓⟩,|↑⟩ the electric polarizabilities

of states |↓⟩ and |↑⟩. To measure this shift, we perform a Ramsey experiment on the

|↑⟩ ↔ |↓⟩ transition. After having initialized all the atoms in |↑⟩, we apply a first

microwave π/2-pulse, wait tRamsey = 4µs, reapply a π/2-pulse and readout the state of

the atoms. We repeat this measurement for various values of Vx,y,z. The microwave

detuning evolves as δMW(E) = δ0MW + δ(E) with δ0MW the microwave detuning at

E = 0. Thus, the recapture probability reads P|↑⟩(E) = A cos(tRamseyδMW(E)) +B =

A cos
(
tRamsey(δ

0
MW + 1

2
(α|↓⟩ − α|↑⟩)E2)

)
+ B. As illustrated in Fig. 2.17, we measure

the recapture probability as a function of Vy. We fit the data (solid curve) using the

above formula, taking E = Vy − V 0
y . From this fit, we extract V 0

y , the potential for

4Since we do not control the power distribution in each polarization component (σ−, π, σ+) of the
microwave field, it must be calibrated. We calibrated this distribution for ωMW/(2π) ∼ 17300MHz
by measuring the Rabi frequencies between

∣∣60S1/2,mJ = 1/2
〉
and the

∣∣60P3/2,mJ

〉
states.
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Figure 2.17: Calibration of the Electric field. (a) Sketch depicted the position of

the eight electrodes (grey parts). (b) Ramsey experiment to find the zero point electric

field along uy. We perform a Ramsey experiment with tRamsey and plot the recapture

probability as a function of the applied voltage Vy. The solid curve is a fit using a cosine

function cos
(
tRamseyα(Vy − V 0

y )
2 + ϕ

)
with ϕ, α and V 0

y as free parameters. The zero

electric field is reached for Vy = V 0
y = 32.3mV. Here we use |↑⟩ =

∣∣75S1/2,mJ = 1/2
〉

and |↓⟩ =
∣∣75P3/2,mJ = −1/2

〉
.

which the electric field along y is cancelled. We repeat this procedure for all directions

and get V 0
x,y,z, the voltages to cancel the electric field.

2.5 Conclusion

In this chapter, I have presented an overview of the experimental apparatus. I

described how, starting from a rubidium vapour, we generate assembled arrays of

individual 87Rb atoms trapped in optical tweezers. I described the different stages to

cool the atoms and optically pump them to one specific ground state |g⟩. I explained
how to excite/deexcite the atoms to/from the Rydberg states. Then, I focused on the

different Rydberg state manipulations we can perform using microwaves and addressing

beams. Finally, I showed how we control the magnetic and electric environment seen

by the atoms.

The following two Chapters will focus on two major improvements. Chapter 3 will

describe in more detail the extension of the addressing technique to prepare classical

Néel states and perform multi-basis observables. Chapter 4 will focus on the correction

of the static positional disorder corresponding to the fact that the position of the
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tweezers is only precise up to 100 nm. This static positional disorder leads to spatial

inhomogeneity of the interatomic interaction energy and can thus be detrimental to

many body systems we wish to study.
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To build a fully programmable quantum simulator/computer, addressability is

an important ingredient. First, it allows initializing the system in specific states

required to observe exotic phenomena such as topological phases [Fukuhara et al.,

2013; Dumitrescu et al., 2022]. Second, it allows applying local operations on the

atoms. For example, in the context of quantum computation, these local operations

are used for benchmarking qubit gates via quantum state tomography or randomized

benchmarking [Knill et al., 2008; Gambetta et al., 2012; Gaebler et al., 2012]. For

quantum simulation, it is used to probe many-body quantum states by measuring

multi-basis observables [Roushan et al., 2017; Brydges et al., 2019] or to certify the

outcome of a simulation [Kokail et al., 2019].
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A multitude of platforms ranging from quantum gas microscopes [Impertro et

al., 2023] and trapped ions [Blatt and Roos, 2012; Monroe et al., 2021] to polar

molecules [Zhou, Ortner, and Rabl, 2011; Yan et al., 2013; Ruttley et al., 2024] and

superconducting circuits [Houck, Türeci, and Koch, 2012; Kjaergaard et al., 2020],

already routinely use local rotations. For neutral atoms platforms, this also has already

been demonstrated [Birkl and Fortágh, 2007; Isenhower et al., 2010; Xia et al., 2015]

combining ground state manipulations [Yavuz et al., 2006; Jones et al., 2007] and

addressing light. However, this procedure requires encoding the spin state in the

hyperfine ground states of the alkali atoms. Therefore, it cannot be directly applied

to our studies of the XY model, where the spin states are encoded in the Rydberg

manifold.

During my Ph.D., we combined microwave manipulations of Rydberg states with

the capability to induce local light shifts using addressing beams to perform local

rotations. We used this ability to prepare the arrays in Néel states up to N = 100 atoms

and to perform multi-basis measurements. The first part of this chapter will describe

the technical improvements (see Sec. 3.1). The second will focus on preparing Néel

states (see Sec. 3.2), and the third (see Sec. 3.3) will focus on our method to perform

multi-basis measurements.

3.1 Scaling the addressing to many atoms

3.1.1 Arrays of local addressing beams

Using an SLM for the addressing. To apply local light shifts on several atoms, we

send a 1013 nm laser light on a SLM that generates an addressing pattern on the

atomic plane that we superimpose on the atoms (see Fig 3.1a). The 1013 nm light

is produced by picking up part of the 1013 nm light from the Rydberg excitation

laser and amplified up to 8W using an ALS® amplifier. The choice of the SLM

phase pattern determines which atom we address. As an example, an illustration of a

6× 7 square array with half of the atoms addressed in a staggered configuration is

shown in Fig. 3.1b. To create one addressing light spot at position xi and yi on the

atomic plane, the SLM imprints the following phase:

ϕj(xs, ys) =
2π

λf
(xsxj + ysyj), (3.1)
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Figure 3.1: Addressability. (a) Sketch of the setup to generate the addressing beams. We

use a second SLM to generate an addressing pattern that we superimpose on the atoms.

(b) Schematic depicting an 6× 7 square. Half of the atoms are addressed using addressing

beams.

with xs, ys the spatial coordinates of the SLM, λ the addressing light wavelength, and

f the focal length of the aspherical lenses. To create several addressing light spots, we

sum all the addressing beam phases ϕj(xs, ys) resulting in the following phase:

Φ(xs, ys) = arg

(
Naddr∑
j=1

wje
iϕj(xs,ys)+iθj

)
. (3.2)

with Naddr the number of atoms to address and θj and wj being the relative phases

and weights between the phase patterns of the individual addressing beam. These two

last parameters are two degrees of freedom we can tune to vary the intensity in each

spotlight.

Homogenizing the light-shifts. We wish to address all the addressed atoms with

the same intensity to apply the same light shift. A dispersion of light shifts between

different addressed atoms would be detrimental to the application of local operations

since these atoms would undergo different rotations from each other. The aberrations

induced by the optical path and interferences between each addressing beams naturally

lead to inhomogeneities of the light spot intensities. To solve this problem, we use the

Gerchberg-Saxton (GS) algorithm that optimizes the SLM phase pattern by playing
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Figure 3.2: GS algorithm. (a) Sketch of the Gerchberg-Saxton optimization algorithm.

The intensities |Ej
meas|2 are given from the measured light shifts |Ej

meas|2 ∝ δjaddr. (b)/(c)
Light shift measurement before/after optimization. Top panel: Light shift measured by

each atom. Bottom panel: histogram of the measured light shifts showing the dispersion

(the size of the bar corresponds to the uncertainty on the light shift measurement). (d)

Measured dispersion of the light shifts σ(δaddr)/δ̄addr as a function of the number of

iteration of the GS algorithm.

on the {θj} and {wj} values to correct the intensity inhomogeneity. Previous theses

from the group already presented this algorithm in detail [Labuhn, 2016; de Léséleuc,

2021], which we use to homogenize the trap depth of each tweezer. Therefore, I will

only give a brief description and show the equalization procedure on this 6× 7 square

array shown in Fig. 3.1b. The GS algorithm is iterative. If it is the first iteration, we

randomly choose the θj values and take wj = 1. Then, using the diffraction formula,

we calculate the complex amplitude of light field Ej
calc(x, y) at position (xj, yj) on the

atomic plane:

Ej
calc =

∫∫
eiΦ(xs,ys)−iϕj(xs,ys)dxsdys (3.3)

We then compare the calculated intensities |Ej
calc|2 to the one experimentally

measured |Ej
meas|2. To get |Ej

meas|2, we measure the light shifts induced on each

addressed atom by performing microwave spectroscopy (see Sec. 2.3.3). As Ω2
addr ∝ Iaddr,
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3.1 Scaling the addressing to many atoms

the intensities |Ej
meas|2 are proportional to the light shifts. In Fig. 3.2b, we represent

the light shifts measured on each addressed atoms using the initial SLM phase pattern.

We compute a average value of δ̄addr/(2π) = 15.0 MHz with a relatively high dispersion

of σ(δaddr)/δ̄addr = 17.7%. Based on the comparisons between |Ej
calc|2 and |Ej

meas|2,
the algorithm re-attributes new values to θj and wj of the k + 1-iteration trying to

maximize the diffraction efficiency while equalizing the addressing light spot intensities:

θk+1
j = arg(Ej

calc)

wk+1
j = wk

j

(
1− α

(
1− δjaddr/δ̄addr

))−1 (3.4)

with α a gain factor 0 < α ⩽ 1. By performing a few iterations, we reduce the light

shift dispersion. Figure 3.2d shows the measured dispersion as a function of the number

of iterations. In four iterations, we reduce the dispersion down to σ(δaddr)/δ̄addr ≈ 1.9%

which is good enough to perform homogeneous rotations (see Fig. 3.2c). We observe

that additional iterations do not improve the dispersion that plateaus around ≈ 2%.

To go beyond this limit, one would need to fine-tune the optimization processes of the

GS algorithm but as we will see in the next section, one main limiting factor are drifts

misaligning the addressing pattern with the atoms.

3.1.2 Improving the addressing stability

Addressing and trap drift. During my Ph.D., we noticed that the alignment between

the addressing pattern and the traps slowly drifts with a typical time scale of a few

hours. The first consequence is that the averaged light shift δ̄addr (averaged on all the

addressed atoms) decreases by almost 40% in 14 hours. The second consequence is

that the equalization of light shifts of ≈ 2% reached with the GS algorithm degrades

with time. After 14 hours, it increases to 16%. We did not manage to identify the

sources of this drift but we suspect temperature fluctuations in the lab. To counter

this drift, we increased the waist of the addressing light spot from 1.2 to 1.7µm to

make the alignment more resilient to drifts. We also developed an active feedback

system to monitor and correct the addressing and trap positions. I will now describe

these two improvements.

Size of the addressing light spot To make the system more resilient to drifts, we

increase the waist of the addressing light spot. To do so, we apply a circular phase
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Figure 3.3: Size of the addressing light spots. (a) Energy level diagram. (b) Main

panel: Measurement of the addressing light spot size as a function of the pupil size used

on the addressing SLM phase pattern. The solid curve is a ∝ 1/(pupil size) fit. Bottom

right inset: Recapture probability as a function of the addressing displacement along ux for

a pupil size of 3 mm. The solid line is a Gaussian fit used to extract the waist w0. Top left

inset: experimental sequence.

mask on the addressing SLM phase pattern (see Fig. 3.1a). Inside this mask, the phase

pattern is the same, and outside, we apply a grating pattern to send the light far away

from the atoms. Thus, this phase mask is equivalent to an iris. By varying the size of

this mask, we change the waist of the addressing light spots. To measure the waist, we

proceed as follows. We first excite the atoms to |↑⟩ and then send an on-resonance

addressing pulse (∆addr = 0) of duration taddr. Similarly to the deexcitation mechanism

described in Sec. 2.3.1, the addressed atoms are transferred in |i⟩ from which they

spontaneously decay to the ground state (see Fig. 3.3a). By choosing Ωaddr ≪ Γ|i⟩,

and Ωaddrtaddr ≪ 2π the probability for an atom to be depumped is proportional

to ∝ Ω2
addr/Γ|i⟩ ∝ Iaddr. To assess the addressing intensity profile, we measure this

recapture probability Precap and repeat this measurement for various positions of

the addressing light spot. The bottom right inset in Fig. 3.3b shows the recapture

probability as a function of the addressing position along ux, for a pupil size of 3mm.

Then, we fit Precap by a Gaussian function from which we extract the waist. We

measure different waists ranging from 1.0µm to 3.0µm for pupil size between 2mm

and 6mm. The main drawback of increasing the waist is that it requires more power

to reach the same peak intensity. Being limited in power, we choose an intermediate

pupil size of 4 mm, increasing slightly the waist from 1.2 to 1.7µm. Once this pupil

size has been chosen, we also adapted the beam diameter of the laser to fit most of the
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Figure 3.4: Position feedback of the addressing and trap beam positions. (a) Optical

path showing of the addressing and trap beams after the science chamber. We use two

cameras to monitor the positions. (b) Using the cameras, we record the positions of the

traps and addressing light spots. We correct their positions by using the SLMs.

light power inside the iris.

Position feedback. To feed back the addressing and trap positions, we use two

cameras after the science chamber imaging the atomic plane (see Fig. 3.4a). We

take images, fit each light spot using 2D Gaussian fits, and extract the tweezer and

addressing beam positions. The uncertainties of the fitted positions correspond to a

displacement of 20 nm in the atomic plane. This uncertainty is low enough to capture

position drifts of ∼ 100 nm. If we measure a global displacement of the addressing or

trap light spots compared to reference positions, we act on the SLM pattern to move

them back to their reference positions (see Fig. 3.4b). In practice, if, on the camera,

we measure a displacement ∆x and ∆y along the ux and uy direction, we apply a new

phase pattern taking:

ϕj(xs, ys) =
2π

λf
(xs(xj −∆x) + ys(yj −∆y)). (3.5)

The above correction does not degrade the intensity homogeneities of the addressing

or trap pattern since we apply the same displacement on all the light spots. Using this

position feedback, we measure that in 14 hours, the average light shift remains the

same, and the dispersion only increases up to ≈ 5%, allowing to perform experiments

over one day before having to realign and re-homogenize the addressing pattern.

Further improvement could be envisioned to improve this feedback. For example, our

protocol only uses one degree of freedom (per axis) to compensate for position drifts.

One could add piezoelectric mirrors and additional cameras on the addressing and
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Chapter 3: Local control of Rydberg encoded spins

trap optical paths to perform beam walk alignments.

3.2 Preparation of antiferromagnetic states along z

We now move to the preparation of classical antiferromagnetic state along z (also

called Néel state), i.e., a staggered arrangement of spins |↑⟩ and |↓⟩. As we will see

all along this manuscript, this initialization is interesting as it is the starting point

of many of our experiments to study the ground state [Sørensen et al., 2010] and

out-of-equilibrium physics of the dipolar model XY. In this section, I describe how to

prepare these Néel states, discuss how to measure the fidelity and present a simple

model to describe the errors.

3.2.1 Preparation

Néel state preparation sequence. To prepare a Néel state, we first excite all the

atoms in |↑⟩ and then transfer them in |↓⟩ using a microwave π-pulse. We then turn

on the addressing beams, applying a light shift δaddr on the addressed atoms. We

then transfer back the non-addressed atoms to |↑⟩ by applying a second microwave

pulse on resonance. If the Rabi frequency of this second pulse is lower than the light

shift ΩMW ≪ δaddr, the microwaves are off-resonant for the addressed atoms and thus

leave the addressed atoms in |↓⟩. As an illustration, Fig. 3.5a shows the preparation

of a 6× 7 square array in a Néel state preparation |↑↓↑↓ · · ·⟩. Half of the atoms are

addressed in a staggered configuration (as depicted in Fig. 3.1b). The images show the

array before/after preparation. As expected, we only see the non-addressed atoms

recaptured and imaged during the read-out on the final image.

Before discussing the preparation fidelity, I first comment on the choice of this

particular sequence. A naive approach to prepare Néel states would have been to first

excite all the atoms to |↑⟩, turn on the addressing and then send the microwave pulse to

prepare the addressed/non-addressed atoms in |↑⟩/|↓⟩. This sequence is simpler as we

do not need to apply the microwave π-pulse but suffers from depumping induced by the

addressing light. The addressing light couples the short-lived intermediate state |i⟩ to
|↑⟩. Due to state mixing, the lifetime of |↑⟩ is reduced to τ ′|↑⟩ ≃ τ|i⟩ (∆addr/Ωaddr)

2 ≃ 1µs

with τ|i⟩ = 110 ns. This lifetime reduction thus leads to a fast depumping of the

addressed from |↑⟩ to the ground states, thus limiting the Néel state preparation
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Figure 3.5: Classical Néel state preparation. (a) Experimental sequence to prepare

a classical Néel. The images shows the results for a 6 × 7 square array. Here we use

|↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =

∣∣60P1/2,mJ = −1/2
〉
. The atoms are addressed

in a staggered configuration as showed in Fig. 3.1b. (b) Corresponding state histogram

measured after more than 2000 repetitions of the experiment. The desired Néel state (last

image in (a)) |↑↓↑↓ · · ·⟩ is measured with a probability of 1.6(3)%.

fidelity. This is why, to avoid this effect, before the addressing pulse, we transfer all

the atoms in the |↓⟩ state from which the addressed atoms cannot be depumped.

Measuring the preparation fidelity. The preparation fidelity is given by the proba-

bility to prepare the Néel state |↑↓↑↓ · · ·⟩. To estimate it, we apply the preparation

protocol depicted in Fig. 3.5a and measure the state of the atoms. We then repeat this

experiment and compute the probability P|↑↓↑↓···⟩ to measure the target Néel state.

For example, Fig. 3.5b shows the state histogram obtained after more than 2000

repetitions of the experiment for the 6× 7 square array. The probability to measure

the Néel state is 1.6(3)%. Due to various state preparation and detection errors,

this probability is small. Therefore, measuring P|↑↓↑↓···⟩ with good precision requires

accumulating statistics on a lot of repetitions of the experiment and thus takes a

long time, which makes it inconvenient to measure on a daily basis. Moreover, this

probability decreases even more for larger arrays and becomes unpractical to measure.

To circumvent this issue, we use other observables to estimate the preparation

fidelity. We measure the average probabilities P addr
|↓⟩ and P free

|↑⟩ to prepare the addressed

and non-addressed atoms in |↓⟩ and |↑⟩. These probabilities can be interpreted as

the probability per atom to be prepared in the correct state. Compared to P|↑↓↑↓···⟩,

71



Chapter 3: Local control of Rydberg encoded spins

0 N/2 N

Number of atoms in ∣↑⟩

0

100

200

300

400

C
ou

nt
s

Data

Binomial
distributions

0 5 10 15
Number of allowed defects

0

20

40

60

80

100

P
ro

ba
bi

lit
y 

(%
)

Binomial
distributions

Data

(a) (b)

Figure 3.6: Analysis of the Néel state preparation. The data are the same as in Fig.

3.5b. (a) Histogram of the number of atoms measured in |↑⟩ for every repetition of the

experiment. The red curve represent what would obtain if the addressed and non-addressed

follow binomial distributions of probabilities P addr
|↓⟩ = 85.7% and P free

|↑⟩ = 90.8%. (b)

Green curve: Probability to measure non-perfect Néel state as a function of the number of

allowed defects. Red curve: Expectation if the atoms follow the binomial distributions.

P addr
|↓⟩ and P free

|↑⟩ are easier to measure since they exhibit sizeable probabilities and

do not require to average on many repetitions of the experiment since we already

average on all the addressed and non-addressed atoms. Taking the same data as in

Fig. 3.5b, we measure probabilities of P addr
|↓⟩ = 85.7(2)% and P free

|↑⟩ = 90.8(2)%. From

these probabilities, we estimate the probability of measuring the target Néel state:

P|↑↓↑↓···⟩ =
(
P addr
|↓⟩

)N/2 ×
(
P free
|↑⟩
)N/2

= 0.5%, (3.6)

and compare it to the one obtained by direct measurement P|↑↓↑↓···⟩ = 1.6(3)%. We see

a difference that we attribute to correlated errors between the atoms. When using Eq.

3.6, we assume that the state of all the atoms is independent from each other, but in

reality, due to the XY interactions, the atoms interact during the preparation protocol

leading to correlated errors. However, the two probabilities P|↑↓↑↓···⟩ remain on the

same order of magnitude ∼ 1% indicating that using P addr
|↓⟩ and P free

|↑⟩ is a relatively

good proxy to estimate the preparation fidelity.

We now have a practical mean to estimate the Néel state preparation fidelity.

The fidelities we measure are small, indicating that the probability of preparing the

Néel state is small. To assess which state we really prepare, we plot (taking the same

data as in Fig. 3.5b) the histogram of the number of atoms measured in |↑⟩ for every
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3.2 Preparation of antiferromagnetic states along z

repetition of the experiment (see Fig. 3.6a). As expected, the histogram is centered

around N/2 and due to preparation errors it exhibits a non-zero standard deviation of

≈ 2. This behaviour is very well reproduced by considering that the addressed and

non-addressed atoms follow binomial distributions of probabilities P addr
|↓⟩ = 85.7%

and P free
|↑⟩ = 90.8% (see red curve). It suggests that, in average, most of the atoms

are prepared in the correct state and only a small fraction of them end up in the

wrong state. To continue the analysis, we now plot the probability of measuring

imperfect Néel states as a function of the number of defects, i.e., the number of

atoms detected in the wrong state (see Fig. 3.6b). The probability rapidly increases

towards one as we allow defects. This rise up is well explained by considering binomial

distributions taking as parameters the measured probabilities P addr
|↓⟩ = 87.2% and

P free
|↑⟩ = 90.6% (red curve), resulting in a relatively good agreement with the data.

Despite the low preparation fidelity, it suggests that most of the states we prepare

are Néel states, including a few defects. Even if imperfect, we use this preparation

protocol in experiments for probing many-body problems. To ensure that defects will

not compromise the results of these experiments, we will need to benchmark them

with a simulation, including the experimental imperfections. Therefore, we need to

provide a model describing the preparation errors that can be included in a simulation.

3.2.2 Modelling the errors

Main sources of errors. To describe the preparation errors, we first identify the

physical processes that limit the fidelity. We identify four main sources. I will describe

then and briefly comment on the optimization that we performed to minimize their

effects:

r Rydberg excitation. As described in Sec. 2.3.1, there is a non-zero probability

1− ηexc to leave the atoms in the ground state during Rydberg excitation. To

increase the Rydberg excitation fidelity, we optimized the STIRAP pulses (see

Sec. 2.3.1).

r XY interaction. The main source of preparation imperfections is the dipolar

XY interactions between the atoms. When all the atoms are in |↑⟩ or |↓⟩, the
interactions do not affect their states since |↑↑ · · ·⟩ and |↓↓ · · ·⟩ are eigenstates of
the XY Hamiltonian. However, when they are in a superposition of |↑⟩ and |↓⟩,
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Chapter 3: Local control of Rydberg encoded spins

the interactions modify the state of the atoms. Thus, it decreases the fidelity to

transfer the atoms between |↑⟩ and |↓⟩ using microwave pulses. To minimize this

effect, we need these transfers to be as fast as possible, i.e., we need to use the

highest possible microwave Rabi frequency J ≪ ΩMW (with J the XY interaction

energy between two nearest neighbour atoms). Therefore, for the first microwave

pulse (to transfer the atoms from |↑⟩ to |↓⟩), we apply a Gaussian π-pulse taking

the largest Rabi frequency amplitude of Ω/(2π) = 20MHz (limited by the

Zeeman splitting induced by the magnetic field, see Sec. 2.4.1).

r Crosstalk with the off-resonant microwaves. We only apply a finite light

on the addressed atoms. When transferring the non-addressed atoms from |↓⟩
to |↑⟩, a fraction of the addressed atoms are also transferred due to crosstalk

with the off-resonant microwaves. To minimize this effect, we must choose the

lowest microwave Rabi frequency ΩMW ≪ δaddr. Therefore, minimizing both the

impact of the interaction and of the crosstalk strongly constrains the choice

of the Rabi frequency for this pulse J ≪ ΩMW ≪ δaddr. For typical values

of J/(2π) ≈ 1MHz and δaddr/(2π) ≈ 10MHz, we experimentally found that

the most efficient microwave pulse is a Gaussian pulse with a Rabi frequency

amplitude of ΩMW/(2π) ≈ 5MHz.

r Detection errors. Strictly speaking, detection errors do not decrease the

preparation fidelity. However, they bias its measurement by introducing errors

we cannot discriminate from preparation errors.

We have described all the physical processes limiting the preparation fidelity. We now

move to the modelling of these errors.

Error tree. Taking all these errors into account in a simulation is intractable since it

would require simulating the XY dynamics, including up to N atoms. To overcome

this issue, we create a simple model to describe the errors that can be implemented

in a simulation. To do so, we divide the sequence into multiple steps, each having

a probability of success and fail (see the error tree in Fig. 3.7). During Rydberg

excitation, 1 − ηexc of the atoms remain in the ground state. Then, we apply the

microwave pulses and the addressing. We denote ηaddr and ηfree the probability to

prepare, from |↑⟩, the addressed and non-addressed atoms in |↓⟩ and |↑⟩. Then we

readout the state with detection errors of ε↑ and ε↓ (see Sec. 2.3.2). From these
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Figure 3.7: Néel state preparation: error tree. Left part: summarizes the different errors

during the Néel state preparation. Right part: summarizes the different errors during the

readout sequence.

Step Symbol Value Main physical origin

Rydberg excitation 1− ηexc 2%

Imperfect optical pumping,

laser phase noise and

spontaneous emission from

(6P3/2) [de Léséleuc et al., 2018]

Microwave and

addressing pulses

1− ηfree 7%
Effect of the interactions

during the pulses

1− ηaddr 2%

Effect of the interactions

during the pulses and

finite value of δaddr

Read-out

ε↓ 1.3%
Hydrogenic state radiative lifetime ε′(h)

see Sec. 2.3.2

ε↑ 2.5%
εfreezing + εimage + εbgc + (1− ηdeexc)

see Sec. 2.3.2

Table 3.1.: Summary of the experimental errors defined in Fig. 3.7. The values

are given for the preparation of a Néel state of a 10 × 10 square array with J/(2π) =

0.25MHz, a mean light shift per addressed atoms of δ̄addr/(2π) = 11MHz, and using

|↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =

∣∣60P3/2,mJ = −1/2
〉
.
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probabilities, we compute the probability of measuring the addressed atoms in |↓⟩. At
first order, it reads:

P addr
|↓⟩ = 1− (1− ηexc)− (1− ηaddr)− ε↓. (3.7)

Similarly, we compute the probability to measure the non-addressed atoms in |↑⟩:

P free
|↑⟩ = 1− (1− ηfree)− ε↑. (3.8)

Using a set of independent experiments, we calibrate ηexc, ε↑ and ε↓ (see Sec. 2.3).

To measure ηaddr and ηfree, we experimentally measure P addr
|↓⟩ and P free

|↑⟩ and invert Eq.

3.7 and 3.8. As a reference, Table 3.1 shows the different errors that we measure for

the preparation of a 10× 10 square array Néel state using J/(2π) = 0.25MHz and

δ̄addr/(2π) = 11MHz. The preparation errors ηaddr and ηfree depend on the interaction

energy J , on the geometry of the array and on the light shift δ̄addr we apply. We

must recalibrate these errors every time one of these parameters is changed. Once

calibrated, the preparation errors can be easily included in a Montecarlo simulation.

For each repetition of the simulation, the initial state of each atom is randomly chosen

in {|↑⟩ , |↓⟩ , (5S1/2)} following probabilities described by the error tree.

Further improvements. We have presented the protocol to prepare Néel states,

explained how to estimate the fidelity, discussed the limitations and presented a

simple error model that can be implemented in a Monte-Carlo simulation. I end up

this section by giving a few ideas to improve the preparation fidelity. One could use

optimal control to shape the microwave pulses to make the transfers of atoms between

|↑⟩ and |↓⟩ more resilient to the XY interactions while minimizing the microwave

crosstalk. Another idea would be to use the addressing light to selectively excite the

addressed atom from the ground state to |(n+ 1)S⟩ from which they barely interact

with the non-addressed atom excited in |nS⟩ = |↑⟩. An additional microwave π-pulse

would transfer the addressed atom to |nP ⟩ = |↓⟩, thus preparing the Néel state. This

sequence would require a second Rydberg excitation system for the |(n+ 1)S⟩ state
but would not suffer from the limitation in light shift and would reduce the effect of

the XY interactions during the preparations.
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3.3 Multi-basis measurements

3.3 Multi-basis measurements

We now move to the multi-basis measurements. Multi-basis measurements refer

to the fact that each spin is measured in different bases. So far, Rydberg-encoded

spins could only be measured all in the same basis: either along the z (natural basis of

the read-out) or along x, y or any axis of the Bloch sphere by applying a microwave

rotation just before the readout [Lienhard, 2019]. However, since the rotations are

global, it was impossible to perform multi-basis measurements. Recently, many theory

proposals highlighted the importance of crossed-basis observables to characterize exotic

phases of matter [Perciavalle et al., 2023; Versini et al., 2023; Ruttley et al., 2024] such

as spin liquids [Yao et al., 2018]. Motivated by the promise of expanding the range of

many-body physics problems we can address, we developed an experimental method

to perform arbitrary multi-basis measurements. This section is organized as follows:

the first part is dedicated to the description of this protocol, the second part to the

benchmarking on 3-atom entangled states and the last one to the tomography of these

states. All the results presented in this section have been published [Bornet et al.,

2024].

3.3.1 Local rotations

Experimental sequence. The protocol relies on the combination of microwave pulses

and addressing-induced light shifts to perform local rotations on the atoms before the

readout. To perform these local rotations, we use the addressing beams to induce

different light shifts on the atoms: either 0δaddr (these atoms are not addressed), 1δaddr

or 2δaddr (see Fig. 3.8). From now on, I will refer to the class of non-addressed atoms

and the classes of atoms addressed with a light shift of 1δaddr and 2δaddr as the 0δ, 1δ

and 2δ atoms. For simplicity, I will also denote δ the light shift. We use the following

procedure to perform independent rotations on the three classes of atoms. First, we

send a microwave pulse on resonance with the |↑⟩ ↔ |↓⟩ transition (at frequency ω0) to

perform a global rotation on all the atoms. We then apply the addressing beams and

send simultaneously a microwave field with two frequencies ω0 and ω0 + δ, resonant

respectively with the 0δ and 1δ atoms (see Fig. 3.8). Each frequency component is

independently controlled (relative phase and pulse duration), allowing for arbitrary

qubit rotations on the 0δ and 1δ atoms while the 2δ atoms remain unaffected by this
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Figure 3.8: Multi-basis measurement protocol. The atoms are gather in groups of three

in a equatorial configuration of length 12.3µm. The triangles are separated by 60µm.

second microwave pulse.

As an example, Fig. 3.9 shows the experimental sequence used to measure the

state of the 0δ, 1δ and 2δ atoms along the y, z and x axes. With the first microwave

pulse, we apply a π/2 global rotation around −y. We call R−y
(
π
2

)
the corresponding

rotation operator. We then turn on the addressing and apply the local rotations.

With the microwave frequency component at ω0, we apply a local rotation Rx
0δ

(
π
2

)
on

the 0δ atoms and with the one at ω0 + δ we apply Ry
1δ

(
π
2

)
on the 1δ atoms. The 2δ

atoms remain unchanged by these pulses (12δ). During the addressing pulse, the light

shifts also affect the states of the 1δ and 2δ atoms. They apply a rotation Rz
1δ (ϕ) and

Rz
2δ (2ϕ) with ϕ = δtaddr being the phase accumulated during this addressing pulse of

duration taddr. This full sequence is thus equivalent to the following rotations:

[
Rx

0δ

(
π
2

)
⊗Rz

1δ (ϕ)R
y
1δ

(
π
2

)
⊗Rz

2δ (2ϕ) 12δ

]
R−y

(
π
2

)
= Rx

0δ

(
π
2

)
R−y

0δ

(
π
2

)
⊗Rz

1δ (ϕ)R
y
1δ

(
π
2

)
R−y

1δ

(
π
2

)
⊗Rz

2δ (2ϕ)R
−y
2δ

(
π
2

)
.

(3.9)

As Rx
0δ

(
π
2

)
R−y

0δ

(
π
2

)
= Rz

0δ

(
π
2

)
Rx

0δ

(
π
2

)
and as Ry

1δ

(
π
2

)
R−y

1δ

(
π
2

)
= 11δ the sequence in

in Eq. 3.9 thus amounts to the rotations:

Rz
0δ

(
π
2

)
Rx

0δ

(
π
2

)
⊗Rz

1δ (ϕ)⊗Rz
2δ (2ϕ)R

−y
2δ

(
π
2

)
=
[
Rz

0δ

(
π
2

)
⊗Rz

1δ (ϕ)⊗Rz
2δ (2ϕ)

] [
Rx

0δ

(
π
2

)
⊗ 11δ ⊗R−y

2δ

(
π
2

)]
.

(3.10)

In this equation, the first term Rz
0δ

(
π
2

)
⊗Rz

1δ (ϕ)⊗Rz
2δ (2ϕ) corresponds to z rotations.

As when we apply the readout sequence, we project the states of the spins along the

z-basis, these z-rotations have no effect on the measured probabilities and thus can
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Figure 3.9: Ramsey experiment. Top panel: Experimental sequence to measure the 0δ,

1δ and 2δ atoms in the y, z and x basis. Bottom panel: Ramsey experiment to benchmark

the multi-basis protocol. The first global microwave a global rotation Rx cos(θ)+y sin(θ)
(
π
2

)
.

The addressing and microwave pulses at frequency ω0 (green) and ω0 + δ (orange) perform

the local rotations Rx
0δ

(
π
2

)
⊗Ry

1δ

(
π
2

)
⊗ 12δ. When θ = −π/2 the sequence corresponds

to the one shown in top panel. The solid curves are Monte-Carlo simulations with the

shaded areas representing the standard deviation.

be ignored. It leaves us with the second term Rx
0δ

(
π
2

)
⊗ 11δ ⊗R−y

2δ

(
π
2

)
, which indeed

corresponds to the rotations to be applied to measure the 0δ, 1δ and 2δ atoms in the y,

z and x bases. We can generalize this example to show that by applying the right set

of microwave rotations, we can measure the three classes of atoms in arbitrary bases.

Benchmarking. To illustrate and benchmark this protocol, we perform a Ramsey

experiment. For this experiment, the atoms are arranged in groups of equilateral

triangles, as shown in Fig. 3.8. Starting from all the atoms in |↑⟩, we apply a first global

rotation Rx cos(θ)+y sin(θ)
(
π
2

)
, followed by the local rotations Rx

0δ

(
π
2

)
⊗ Ry

1δ

(
π
2

)
⊗ 12δ

and finally read-out the states for various θ. When θ = −π/2, this sequence of rotation
is the same as the one described previously: we measure the 0δ, 1δ and 2δ atoms in

the y, z and x bases. At this angle, we thus expect to measure a zero magnetization

for the 0δ and 2δ atoms and a maximum magnetization for the 1δ ones. As we vary θ,

we expect oscillations of the 0δ and 1δ-atom magnetizations dephased by π/2 while

the 2δ one should remain constant at zero. Figure 3.9 shows the experimental results.

They are in good agreement with the expectations. However, we observe finite contrast
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Chapter 3: Local control of Rydberg encoded spins

of the oscillation magnetizations that we attribute to experimental imperfections. To

confirm this, Lucas Leclerc (working at Pasqal®) performed Monte Carlo simulations

including all the identified errors: state preparation errors (finite Rydberg excitation

efficiency ηexc), detection errors (ε↓ and ε↑) and imperfections occurring during the

local rotations sequence. We identify six physical processes limiting the rotation

fidelities:

r Crosstalk with the off-resonant microwaves. We only apply a finite light

shift of 1(2)δ/(2π) = 23(46)MHz on the addressed atoms. The light shifts are

not much larger than the microwave Rabi frequency of ΩMW/(2π) = 5MHz.

It means that the microwave frequency at ω0/ω0 + δ is not infinitely detuned

from the 1δ/0δ and 2δ atom transition. These crosstalks with the off-resonant

microwave affect the state of the atoms resulting in imperfect rotations of the

atoms.

r XY interactions during the rotations. The rotation sequence takes ∼ 100 ns,

which is not very short compared to the typical XY time dynamics 2π/J ≈ 1µs.

These residual interactions affect the rotations and thus reduce the rotation

fidelity.

r Addressing-induced depumping. Due to the spontaneous emission induced by

off-resonant coupling to the short-lived intermediate state |i⟩, the addressed atoms

are slowly depumped to the ground state (5S1/2). For ∆addr/(2π) = 400MHz and

δ/(2π) = 23MHz we experimentally measure an effective lifetime of ∼ 2.3µs and

∼ 1.1µs for the 1δ and 2δ atoms in |↑⟩ consistent with the theoretical lifetimes

τ ′|↑⟩ ≃ τ|i⟩ (∆addr/Ωaddr)
2 ∼ 1µs1.

r Addressing-induced atom losses. The tightly focused addressing beams

apply a ponderomotive force on the addressed atoms, pushing them away from

their the center of their respective traps, thus preventing them from being

recaptured. Experimentally, for δ/(2π) = 23MHz, we measure losses of 0.3(3)%

and 1.3(3)% for the 1δ and 2δ atoms when sending a 80 ns addressing pulse.

r Light-shifts inhomogeneities. As explained in Sec. 3.1, the light shifts applied

to the atoms are not perfectly homogeneous. We measured a dispersion on the

1For more precise calculations of τ ′|↑⟩, we would need to take into account all the couplings to

different Zeeman sublevels of the intermediate state (6P3/2).
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3.3 Multi-basis measurements

order of 1% after calibration that can drift up to 3% after one day without

additional calibrations. When the addressing is on, the dispersion results in a

variation of the phase accumulation of the 1δ atoms across the array. It leads to

a spread of the atom rotation angle when sending the microwave pulses for local

rotations.

r Timing jitter. We measure an electronic jitter of ±2 ns between the addressing

and the microwave pulses. Shot-to-shot, the jitter induces uncertainty of the

phase accumulation of the 1δ atoms. It thus results of a shot-to-shot fluctuation

of the atom rotation when applying the local rotation thus leading to imperfect

microwave rotations.

Taking into account all these imperfections in the simulation yields a good agreement

with the data.

Before moving to the next section, I first comment on the choice of this sequence.

Another, more natural, experimental protocol to perform multi basis measurement

would have been to apply three microwave frequencies tuned on the 0δ, 1δ and

2δ-atoms. However, residual spatial inhomogeneities on the 2δ light-shifts and time

jitter degraded the rotation fidelities. However, we believe that with a better control

of the light homogeneities, of the addressing/trap beams alignment and of the timings

sequence, this sequence would be better than the one we use. We would not need the

initial global microwave pulse, thus, the sequence would be shorter reducing the effect

of the interaction during the rotation protocols.

3.3.2 Measurement of the chirality

Chiral states preparation. I now demonstrate how the local control enables the

measurement and characterization of complex correlated states. In particular, we

investigate the entangled states of three atoms placed in an equilateral triangle

(as shown in Fig. 3.8) and interact via HXY. In this configuration, the interactions

lift the degeneracy between the states |↑↑↓⟩, |↑↓↑⟩ and |↓↑↑⟩. It leads to three

new eigenstates |W ⟩ = (|↑↑↓⟩+ |↑↓↑⟩+ |↓↑↑⟩) /
√
3 and the chiral states |χ±⟩ =(

|↑↑↓⟩+ e±i2π/3 |↑↓↑⟩+ e±i4π/3 |↓↑↑⟩
)
/
√
3 separated in frequency by 3J , as shown in

Fig. 3.10a. Although all these states exhibit the same z magnetizations and two-body

correlation functions, they can be distinguished through their chirality. The chirality χ
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Figure 3.10: W state preparation. (a) Spectrum of 3 atoms in an equilateral triangle,

interacting via the XY model. (b) Microwave Rabi oscillations. Green: single-atom Rabi

oscillations. Purple: Microwave Rabi oscillation of three interacting atoms in an equatorial

configuration with P|↑↑↑⟩ the probability to measure the three atoms in |↑⟩. The solid

curves are simulations including all identified experimental imperfections.

is a spin rotationally symmetric observable that breaks time-reversal symmetry and is

defined for three spins i, j and k as ⟨χijk⟩ = ⟨(σi×σj) ·σk⟩, with σi = σx
i x+σy

i y+σ
z
i z

[Tsomokos et al., 2008]. For a product state, ⟨χijk⟩ is bounded by ±1, as it corresponds
to the volume spanned by the three spins ⟨σi,j,k⟩. This limit can be overcome for

entangled states, which can achieve a maximum value of ±2
√
3 for the chiral states

|χ±⟩.

To prepare these states, we first prepare the atoms in |↑⟩. We then apply a

microwave pulse at frequency ω0 + 2J to couple |↑↑↑⟩ to |W ⟩ (see Fig. 3.10b). The

Rabi frequency is collectively enhanced by a factor
√
3, which we confirm by comparing

the Rabi oscillations on the triangular configuration (purple) against a non-interacting

case (green). These observed dynamics are well captured by numerical simulations

made by Gabriel, including all experimentally characterized imperfections. Once the

W -state is prepared, we turn on the addressing light for a time duration tφ to imprint

a phase 0φ, 1φ and 2φ on the 0δ, 1δ and 2δ atoms with φ = δtφ. We thus prepare

|φ⟩ = (|↑↑↓⟩+ eiφ |↑↓↑⟩+ ei2φ |↓↑↑⟩) /
√
3 (see Fig. 3.11a). By imposing φ = 2π/3, we

prepare |φ = 2π/3⟩ = |χ+⟩ and by imposing φ = 4π/3, we prepare |φ = 4π/3⟩ = |χ−⟩.
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3.3 Multi-basis measurements

Measurement of the chirality. We now move to the measurement of the chirality.

The chirality is the sum of six terms:

⟨χ0δ,1δ,2δ⟩ =⟨σx
0δσ

y
1δσ

z
2δ⟩+ ⟨σ

y
0δσ

z
1δσ

x
2δ⟩+ ⟨σz

0δσ
x
1δσ

y
2δ⟩

−⟨σy
0δσ

x
1δσ

z
2δ⟩ − ⟨σx

0δσ
z
1δσ

y
2δ⟩ − ⟨σ

z
0δσ

y
1δσ

x
2δ⟩.

(3.11)

For each value of the imprinted phase φ, we measure the six different terms in Eq. 3.11

to compute the total chirality of the state |φ⟩. This method is analogous to similar

works using superconducting qubits [Roushan et al., 2017]. Figure 3.11b shows the

results (purple circles) as a function of φ and the theoretical expectations (black

curve). Due to experimental imperfections, the amplitude is reduced, and the shape

of the curve is slightly distorted. To understand these effects, Lucas performed a

Monte-Carlo simulation including all the identified errors: preparation errors (finite

ηexc + simulation of the |φ⟩ preparation), local rotation imperfections (see previous

section), detection errors (ε↓ and ε↑), and decoherence processes (Rydberg lifetimes

and shot-to-shot positional disorder of the atoms). Including these errors leads to a

good agreement between the simulation (purple curve) and the data. To assess which

errors are dominant, we perform two other simulations. The first one assumes a perfect

|φ⟩ preparation and simulates the rest of the sequence (blue curve), and the second

one simulates the |φ⟩ preparation and assumes perfect multi-basis measurements

(red curve). The first simulation fits the data better, indicating that the dominant

errors come from the measurement errors. The imperfections in the spin rotations

lead to measurements along bases slightly different from the target ones resulting in

a distortion of the data curve as well as for the blue and purple simulation curves.

Moreover, the reduction of contrast that we experimentally observe mainly comes from

the measurement errors (imperfect rotations and detection errors), which decrease the

chirality amplitude.

In conclusion, we have shown that using these local rotations we can measure exotic

observables such as the chirality. In Chapter 6 we will reuse this method to measure

chiral-chiral correlations between two interacting triangles which represent our starting

point for the investigation of exotic phases of matter such as chiral spin liquids.
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Figure 3.11: Measurement of the chirality. (a) Experimental sequence to prepare |φ⟩
and measure its chirality. (b) Measurement of the |φ⟩ chirality as a function of φ. The

solid curves are the results of the Monte-Carlo simulations. Black: perfect simulation. Red:

simulation of the |φ⟩ preparation and perfect measurement. Blue: perfect |φ⟩ preparation
and simulation of the measurement sequence. Purple: simulation of all the steps. The

shaded areas represent the simulations standard deviations.

3.3.3 Tomography

Density matrix reconstruction. We now use the ability to locally measure the atoms

in different bases to perform full quantum state tomography of the |W ⟩ and |χ±⟩
states and reconstruct their density matrix. Any density matrix of a 3-atom state can

be decomposed in the following way:

ρ =

(
1

2

)3 ∑
{a,b,c}∈{I,x,y,z}3

tr
(
ρMa,b,c

)
Ma,b,c with Ma,b,c = σa

1 ⊗ σb
2 ⊗ σc

3, (3.12)

with σI
i = 1i, and tr

(
ρMa,b,c

)
= ⟨Ma,b,c⟩ being the expectation value when measuring

the three spins in the a, b and c basis. To reconstruct the density matrix, the first naive

approach is to measure all the expectation value tr
(
ρMa,b,c

)
, i.e. we measure the state

of each atom in the x, y and z basis corresponding to 33 = 27 different measurements

for a 3-atom state. Table 3.2 summarizes all the rotation local to performed to measure

these 27 measurements. However, these expectation values cannot be experimentally

measured with an infinite precision and may suffer from detection errors. Thus,

applying blindly Eq. 3.12 after having measured all the ⟨Ma,b,c⟩ expectation values

would lead to a non-physical density matrix that is, for example, not guaranteed

to be non-negative definite. To overcome this issue, we use a maximum-likelihood
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3.3 Multi-basis measurements

Basis (0δ,1δ,2δ) Rotations ϕall(
◦) ϕ0δ(

◦) ϕ1δ(
◦)

xxx [10δ ⊗ 11δ ⊗ 12δ]R
−y
(
π
2

)
−90 × ×

xxy
[
R−y

0δ

(
π
2

)
⊗R−y

1δ

(
π
2

)
⊗ 12δ

]
Rx
(
π
2

)
0 −90 −90

xxz
[
R−y

0δ

(
π
2

)
⊗R−y

1δ

(
π
2

)
⊗ 12δ

]
1 × −90 −90

xyx
[
10δ ⊗Rx

1δ

(
π
2

)
⊗ 12δ

]
R−y

(
π
2

)
−90 × 0

xyy
[
R−y

0δ

(
π
2

)
⊗ 12δ ⊗ 12δ

]
Rx
(
π
2

)
0 −90 ×

xyz
[
R−y

0δ

(
π
2

)
⊗Rx

1δ

(
π
2

)
⊗ 12δ

]
1 × −90 0

xzx
[
10δ ⊗Ry

1δ

(
π
2

)
⊗ 12δ

]
R−y

(
π
2

)
−90 × 90

xzy
[
R−y

0δ

(
π
2

)
⊗R−x

1δ

(
π
2

)
⊗ 12δ

]
Rx
(
π
2

)
0 −90 180

xzz
[
R−y

0δ

(
π
2

)
⊗ 11δ ⊗ 12δ

]
1 × −90 ×

yxx
[
Rx

0δ

(
π
2

)
⊗ 11δ ⊗ 12δ

]
R−y

(
π
2

)
−90 0 ×

yxy
[
10δ ⊗R−y

1δ

(
π
2

)
⊗ 12δ

]
Rx
(
π
2

)
0 × −90

yxz
[
Rx

0δ

(
π
2

)
⊗R−y

1δ

(
π
2

)
⊗ 12δ

]
1 × 0 −90

yyx
[
Rx

0δ

(
π
2

)
⊗Rx

1δ

(
π
2

)
⊗ 12δ

]
R−y

(
π
2

)
−90 0 0

yyy [10δ ⊗ 11δ ⊗ 12δ]R
x
(
π
2

)
0 × ×

yyz
[
Rx

0δ

(
π
2

)
⊗Rx

1δ

(
π
2

)
⊗ 12δ

]
1 × 0 0

yzx
[
Rx

0δ

(
π
2

)
⊗Ry

1δ

(
π
2

)
⊗ 12δ

]
R−y

(
π
2

)
−90 0 90

yzy
[
10δ ⊗R−x

1δ

(
π
2

)
⊗ 12δ

]
Rx
(
π
2

)
0 × 180

yzz
[
Rx

0δ

(
π
2

)
⊗ 11δ ⊗ 12δ

]
1 × 0 ×

zxx
[
Ry

0δ

(
π
2

)
⊗ 11δ ⊗ 12δ

]
R−y

(
π
2

)
−90 90 ×

zxy
[
R−x

0δ

(
π
2

)
⊗R−y

1δ

(
π
2

)
⊗ 12δ

]
Rx
(
π
2

)
0 180 −90

zxz
[
10δ ⊗R−y

1δ

(
π
2

)
⊗ 12δ

]
⊗ 1 × × −90

zyx
[
Ry

0δ

(
π
2

)
⊗Rx

1δ

(
π
2

)
⊗ 12δ

]
R−y −90 90 0

zyy
[
R−x

0δ

(
π
2

)
⊗ 11δ ⊗ 12δ

]
Rx
(
π
2

)
0 180 ×

zyz
[
10δ ⊗Rx

1δ

(
π
2

)
⊗ 12δ

]
⊗ 1 × × 0

zzx
[
Ry

0δ

(
π
2

)
⊗Ry

1δ

(
π
2

)
⊗ 12δ

]
R−y

(
π
2

)
−90 90 90

zzy
[
R−x

0δ

(
π
2

)
⊗R−x

1δ

(
π
2

)
⊗ 12δ

]
Rx
(
π
2

)
0 180 180

zzz [10δ ⊗ 11δ ⊗ 12δ] 1 × × ×

Table 3.2.: Microwave pulse sequence for the state tomography. First column:

measurement basis for the 0δ, 1δ and 2δ atoms. Second column: applied rotations. Three

last columns: relative phases of the microwave pulses used implement the corresponding

rotations (ϕall refers to the global rotation and ϕ0,1δ to the local ones). The × symbol

indicates that the corresponding pulse is off for this sequence.
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Figure 3.12: Quantum tomography. Real and imaginary part of the reconstructed density

matrices for the |W ⟩, |χ+⟩ and |χ−⟩ states. The black bars represent the expectations for

perfect states.

reconstruction algorithm to estimate the density matrix ρ, constraining it to be

physical. We use the same method as the one presented in the Supplement Material of

[Takeda et al., 2021]. Any density matrix can be written as ρ(T ) = T †T/ tr
(
T †T

)
with

T being a complex 23× 23 = lower triangular matrix with real diagonal elements. Thus

T has 64 independent real parameters (t1, t2, · · · , t64) that minimize the following cost

function:

C(T ) =
∑

α∈{x,y,z}3

∑
β∈{↑,↓}3

(
⟨β|R†

αρ(T )Rα|β⟩ − P β
α

)2
.

Here, α is the basis in which we measure each atom, β is an experimental outcome,

|β⟩ its corresponding state, P β
α the probability to measure β in the α basis and Rα

the set of applied rotations to measure in α. For example, when measuring in the

α = xyz-basis, Rxyz =
[
R−y

0δ

(
π
2

)
⊗Rx

1δ

(
π
2

)
⊗ 12δ

]
1 (see Tab. 3.2). We perform the

minimization using the L-BFGS-B algorithm provided by the SciPy Python package.

Figure 3.12 shows, for one triangle, the real and imaginary parts of the density matrices

ρ of the three states |W ⟩, |χ+⟩ and |χ−⟩. The black bars represent the expectations

values for perfect states.

To test the reliability of this maximum-likelihood reconstruction algorithm and

assess how different is the reconstructed density matrix from the experimental data,

we plot in Fig. 3.13 the difference between the density matrix ρ given by the algorithm

and the non-physical one ρformula obtained by calculation using Eq. 3.12 (data shown
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Figure 3.13: Reliability of the maximum-likelihood reconstruction algorithm. Real

and imaginary part of the difference between the density matrix given by by the algorithm

ρ and the non-physical one ρformula obtained by applying the formula in Eq. 3.12. The

data are shown for the |W ⟩ state.

for the W -state). We observe small differences of the order of ≈ 0.01. Only small

corrections are required to transform ρformula into a physical density matrix. These

results first suggest that the experimental data already give a density matrix very

close to be a physical and second, that the algorithm gives results very close to the

data indicating of its reliability.

Entanglement criteria. From the reconstructed density matrices ρ, we compute

the fidelity F = ⟨ψ|ρ|ψ⟩ of 0.74(1), 0.71(1) and 0.68(1). They are all above 2/3,

indicating of genuine three-partite entanglement [Aćın et al., 2001; Gühne et al., 2003;

Neeley et al., 2010]. In addition, the produced W -state violates the Mermin-Bell

inequality: S = |⟨σz
0δσ

z
1δσ

z
2δ⟩−⟨σx

0δσ
x
1δσ

z
2δ⟩−⟨σz

0δσ
x
1δσ

z
2δ⟩−⟨σz

0δσ
z
1δσ

x
2δ⟩|⩽ 2 as we measure

Sexp = 2.083(26) [Mermin, 1990; Aćın et al., 2001; Eibl et al., 2004]. Much like in the

more conventional Bell-state case, this violation rules out a hidden-variable model

for the measured correlations and provides another indicator of genuine three-qubit

entanglement.

3.4 Conclusion

In this chapter, I have presented a new tool added to the experiment to address

several atoms and perform local rotations. I have explained how to prepare the system

in a Néel state and described our protocol to perform multi-basis measurements.

Two main challenges remain to push the platform towards a fully programmable XY

quantum simulator. First, the Néel state preparation and multi-basis measurement

protocols that I have described suffer from a lot of imperfections. Increasing the
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fidelity would allow us to probe more sensitive many-body phenomena, giving us

more information about the system we wish to study. Second, the SLM phase pattern

cannot be varied dynamically during the Rydberg sequence. We cannot use the same

SLM pattern to prepare the system in a specific initial state (like a Néel state) and

perform multi-basis measurements during the same sequence. One solution would be

to use several SLMs with multiple addressing lasers. It would allow for preparing and

measuring the system in arbitrary bases, thus broadening the range of many-body

physics problems we can study.
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One limitation of the platform is the positional disorder of the atoms. There are

two types of positional disorder: shot-to-shot and static positional disorder. The

shot-to-shot disorder refers to the fact that, due to the extension of the atom wave

function in the traps and their residual atomic motion, the interatomic distances

and, consequently, the interaction energies between pairs of atoms fluctuate from one

repetition of the experiment to another. On the other hand, static positional disorder

describes the fact that the center of each tweezer is not correctly positioned, resulting

in a static disorder of interatomic distances and, thus, of the interaction energies.

Some phases of matter we wish to prepare and study are sensitive to these disorders

and may be impossible to obtain if these disorders exceed critical values [Thomson

and Sachdev, 2017; Dey, 2020; Seifert et al., 2023]. In Sec. 2.2.1, I have already the

mentioned cooling procedures of the atoms that we apply before the Rydberg sequence

to minimize the shot-to-shot positional disorder. Therefore, in this chapter, I will focus
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Figure 4.1: Position of the tweezers measured with the trap camera. Black markers:

Show the reference position for a perfect Kagome configuration. Red markers: Measured

positions with the trap camera. To highlight the differences between the measured and

reference positions, we increase by a factor 10 the displacement of the measured position

to their reference. Hexagon: Show six atoms in an hexagonal configuration.

on the static positional disorder. First, I will present how to measure it. Second, I will

describe how to correct the positional disorder and show an example using a small

system of six atoms. Finally, I will discuss promising routes to scale this correction

method to larger system sizes.

4.1 Measurements of the atomic positions

4.1.1 Measurement using a camera

The first naive approach to measure the trap positions is to use the trap camera.

We take an image of the atomic plane and fit each tweezer light spot using a 2D

Gaussian fit to extract their positions. Figure 4.1 shows the measured position {ri} of
a Kagome array of tweezers (red markers) and compares them to reference positions

{rrefi } corresponding to a perfect geometry (black marker). It gives a static positional

disorder of 250 nm (average distances from the references). The trap camera is placed

after the science chamber and is optically conjugated with the atomic plane. Therefore,

all the optical elements on the path can distort the light field and bias the results. To

check whether the trap camera measurements are reliable, we compute the distances

between the atoms and compare them with the distances measured from the interaction
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Figure 4.2: Measurement of the inter-atomic distances. Left: Measurement of the

nearest neighbours distances on a six-atom hexagon (shown in fig. 4.1) using two different

methods: the trap camera and spin exchange experiments. Right: Different spin exchange

experiments corresponding to the three pairs with an arrow. The solid curves are fits using a

damped cosine function from which we extract Jij . Here we use |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
,

|↓⟩ =
∣∣60P1/2,mJ = −1/2

〉
for a mean interatomic distance of 12µm.

energies between the atoms. The dipolar XY interaction energy Jij between atom

i and j decays as Jij ∝ 1/|ri − rj|3. Measuring Jij thus allows us to extract the

distance between these atoms. To measure the interaction energy Jij we perform

a spin exchange experiment: we initialize the two atoms in |↑↓⟩ (see Sec. 2.3.3 and

Sec. 5.1.2) and let them interact freely for a time t under the dipolar XY model and

readout. The probability to measure |↑↓⟩ oscillates at a frequency 2Jij/(2π). For each

pair of atoms for which we wish to measure the inter-atomic distance, we repeat this

spin exchange experiment (as an example, Fig. 4.2 shows the results of three spin

exchange experiments realized on three pairs exhibiting different interaction energy).

Each spin exchange experiment is realized with only the two atoms i and j to avoid

the interactions with the other atoms to bias the Jij measurement. Figure 4.2 shows a

comparison of the measured distances on six pairs of atoms (shown by a hexagon

symbol in Fig. 4.1) using the trap camera and the spin exchange experiments. The

distances measured with the trap camera do not match the ones measured via the

interaction energies. It indicates that the camera measurements are too biased and,

therefore, cannot be used. The most probable hypothesis to explain this mismatch is

optical aberrations on the optical path, which deform the trapping light in the camera

plane compared with the trapping light in the atomic plane. This is a priori not a

fundamental problem, and can hopefully be cured by using better optical system such

as microscope objectives instead of aspheric lenses.
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Chapter 4: Static positional disorder

Figure 4.3: Sketch of atomic positions. The black disks show the reference positions

rrefi that correspond to the perfect geometry without positional disorder. The red disks

show the position of the atoms ri and the white disk represent the estimated positions rrefi

given by the algorithm.

4.1.2 Inferring the positions from nearest neighbours distances

Looking for a reliable way to directly measure the position of the atoms using a

camera, we find that all these methods suffer from the same problem: the distortions

induced by the optics bias the image and thus prevent reliable measurements of the

atomic position. Therefore we looked at an indirect way to infer the position of the

atoms.

The localization problem. To estimate the positions, we use the pair-wise distances

between the atoms inferred from the interaction energy measurements {Jij}. Estimating

the absolute position of a set of objects knowing their relative distances from each

other is a well-known problem called the distance-based localization problem [Mucherino

et al., 2012]. This problem is particularly interesting in the context of wireless sensor

networks to develop indoor positioning systems where nodes need to determine their

positions based on distance measurements to nearby nodes [Zekavat and Buehrer, 2019].

Inspired by these methods, we developed an optimization algorithm to estimate the

position of the atoms based on the pair-wise distances. Our algorithm works as follows.

We first assume that we experimentally measure distances rij = |ri− rj| between pairs

of atoms. The algorithm starts from the perfect geometry and virtually moves each

atom to the position ralgoi and calculates the new virtual distances ralgoij = |ralgoi − ralgoj |
(see Fig. 4.3). By varying the virtual position {ralgoi } of the atoms, the algorithm

minimizes the following cost function:

C
(
{ralgoi }

)
=
∑
{ij}

(
rij − ralgoij

)2
, (4.1)
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4.1 Measurements of the atomic positions

with {ij} being all the pairs between atom i and j for which we experimentally

measured the distance. We then end up with a virtual pattern that reproduces the

experimental results and hopefully successfully guesses the position of the traps

meaning that ralgoi = ri.

Benchmark of the algorithm. To evaluate the performance of this algorithm at

guessing the position of atoms based on their relative distance from each other, we

apply the following procedure. We start from a perfect virtual pattern and randomly

move the position of each trap by ∆ri to mimic a static positional disorder. We

choose {∆ri} to follow Gaussian distributions of width 100 nm (typical value for the

positional disorder). The virtual positions of the atoms thus read ri = rrefi +∆ri. We

then calculate the distances rij = |ri − rj| between the atoms. These values mimic

the experimental measurements. Experimentally we cannot measure all distances.

For distances rij beyond nearest neighbour distances, measuring Jij with a good

precision is challenging as the period of a spin exchange oscillation π/Jij ∝ /r3ij is

very large compared to time scale of an experiment of typically a few microseconds.

Therefore, for the sake of simplicity, we will thus only consider distances between

nearest-neighbours atoms. After having computed these virtual distances, we give

them to the algorithm, run it, and extract the estimated positions {ralgoi }. Thus,
by comparing {ri} and {ralgoi } we can evaluate the precision of the algorithm. To

do so, we compute ε = 1
N

∑N
i=1 |ri − ralgoi |, being the average difference in position

between the real positions and the one estimated by the algorithm. Figure 4.4 shows

the histogram of ε obtained after 300 repetitions of this benchmark procedure and

for three different geometries. For the square and Kagome geometries, ε has a mean

value of ε̄ ≈ 23mn and reaches ε̄ ≈ 5 nm for the triangular pattern. This difference

arises from the fact that the triangular pattern is a constrained geometry. It means

that measuring all distances between nearest neighbours automatically constrains all

other distances, leading to a unique configuration of atomic positions. In contrast, the

square and Kagome patterns are non-constrained geometries, so multiple configurations

of positions can lead to the same measurement of the nearest neighbour distances.

For example, as shown in Fig. 4.4a, four atoms in a square configuration exhibit

the same nearest neighbour distances as for atoms in a rhombus configuration. This

effect (also referred as the universal rigidity problem [Mucherino et al., 2012]) leads

to lower precision of the algorithm in the guess of the atomic positions when using

non-constrained geometries. The algorithm precision will ultimately be a limitation for
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Figure 4.4: Benchmark of the algorithm: measurement of its precision. Histogram of

ε obtained for 300 repetitions of the benchmark procedure using a (a) square, (b) Kagome

and (c) triangular pattern. The nearest neighbours distances used in the algorithm are

shown by black lines. (a) shows an example of distortion that can occur when using an

non geometrical constrained geometry like a square array.

the correction of disorder in non-constrained geometries, but correcting the static

positional disorder up to ∼ 20 nm would already be a large improvement.

Experimentally, when we measure the distance between two atoms, we measure

it with a finite precision of u(rij). So far, in the benchmark, we assumed that we

perfectly measure the distances with an infinite precision u(rij) = 0. We then need to

check whether the algorithm is robust to measurement noises. To do so, we repeat

the same benchmark procedure, adding a noise u(rij) to the rij values. We choose

{u(rij)} to follow Gaussian distributions of width u. Fig. 4.5 shows, for the same three

geometries, the averaged precision of the algorithm ε̄ as a function of the amplitude of

the noise u. The precision decreases with the noise. Experimentally, when we measure

the distances via spin-exchange experiments, we estimate that the uncertainty is of

u(rij) ≈ 10 nm. According to Fig. 4.5, a noise of u ≈ 10 nm does not affect too much

the precision of the algorithm for the square and Kagome pattern that remains around

≈ 25 nm. For the triangular geometry, ε̄ increases to ≈ 10 nm, which is still good

enough.
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Figure 4.5: Benchmark of the algorithm: estimation of its robustness to noise.

Average precision of the algorithm ε̄ as a function of the noise u introduced in the input

data rij + u(rij). for three different geometries (see Fig.4.4). The benchmark procedure is

repeated at least 100 times for each point. The standard deviations of ε are represented by

the error bars.

We now have a way to estimate the positions of the atoms. We move to the

position feedback to correct the static positional disorder.

4.2 Feedback on the positions

4.2.1 Feedback procedure

Feedback procedure. The strategy to feedback the position of the atoms consists of

three steps:

r Measurement of the inter-atomic distances. First as explained in the

previous sections, we measure all the nearest-neighbours inter-atomic distances.

r Estimation of the positional disorder. Second, we run the algorithm to

estimate the position of the atoms. It gives the correction to apply on the atomic

positions to cancel the positional disorder.

r Feedback. Third, we modify the SLM phase pattern of the optical tweezers to

correct the position of each tweezers.

We iteratively repeat this procedure until the corrections do not improve the measured
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disorder. The two first steps of this procedure are detailed in the previous section. I

will now explain the third step.

Feedback on the SLM phase pattern. Similarly to what we do for the addressing

SLM (see Sec. 3.1.1), to generate an array of optical tweezers, we apply the following

phase pattern of the trap SLM:

Φ(xs, ys) = arg

(
N∑
j=1

wje
iϕj(xs,ys)+iθj

)
, (4.2)

with xs and ys being the spatial coordinate of the SLM, θj and wj being the relative

phases and weights to apply to ensure homogeneous trap intensities, and ϕj(xs, ys)

being the phase applied to create a trap at position xj and yj on the atomic plane:

ϕj(xs, ys) =
2π

λf
(xsxj + ysyj), (4.3)

with λ the trapping light wavelength, and f the focal length of the aspherical lenses.

To correct the position of atom j by a displacement ∆rj = (∆xj,∆yj) we apply a new

phase pattern taking:

ϕj(xs, ys) =
2π

λf
(xs (xj −∆xj) + ys (yj −∆yj)). (4.4)

During his master internship, Bastien Gély experimentally checked that applying

small correction on the position of the order of ∼ 10 nm does not degrade the intensity

homogeneities of the traps [Bastien, 2023]. We now have all the tools to feed back the

atomic positions and correct for the static positional disorder.

4.2.2 Results on a small system size

In this section, we correct the static position disorder on a small system size. We

take the six atoms in the hexagonal configuration shown in Fig. 4.2 and apply the

feedback procedure. To check if the procedure works, at each iteration, we compute

the dispersion of measured nearest neighbour distances σ({rij}) (see green curve

in Fig. 4.6a). This dispersion starts at σ({rij}) ≈ 117 nm and decreases down to

24 nm, demonstrating that, as expected, the feedback procedure homogenizes the
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nearest neighbour distances. We also plot as a function of the number of iterations the

positional disorder 1
N

∑N
j=1 |r

algo
j − rrefj | estimated by the algorithm (see red curve in

Fig. 4.6a). The estimated positional disorder starts at ≈ 70 nm and reaches ≈ 14 nm,

indicating that the feedback procedure works. As explained previously (Sec. 4.1.2), the

algorithm does not perfectly predict the position of the atoms. As the hexagon is

a non-constrained geometry, this precision is around ε̄ ≈ 23 nm. Due to this finite

precision, we can reasonably think that the positional disorder of 14 nm predicted by

the algorithm is slightly biased and that the real positional disorder is in between

zero and
√

(14 nm)2 + (23 nm)2 ≈ 26 nm. Even if the real positional disorder reaches

≈ 26 nm it still represents a significant improvement compared to the initial disorder

of ≈ 70 nm and demonstrate that this positional disorder correction protocol works.

We showed that we can reduce the positional disorder in this minimalistic six-atom

system. We now wish to extend this method to larger system sizes. One of the main

limitations of this feedback procedure is the time it takes to measure the distances using

spin exchange experiments. Each requires approximatively 2 hours of data accumulation

and must be done one pair after the other. If we use this feedback procedure on larger

arrays of size N , the number of nearest neighbour distances to measure increases

proportionally to N . Measuring all distances for a N = 100 atoms array would then

require several days/weeks, which is unthinkable from an experimental point of view.

Therefore, we need to find an alternative way to measure the distances that takes a

reasonable amount of time and is scalable with the size of the array.

4.3 Scaling up to larger system sizes

Measuring all the nearest neighbour distances of a large array in a reasonable

amount of time is a challenging problem to date. It remains an open problem for

which the tweezer community is actively seeking a solution. In this section, I present

some promising ideas we started exploring during my Ph.D. to address this problem.

4.3.1 Measuring van der Waals interactions

Another way to measure the distance between two atoms is to measure the van

der Waal interaction energy between these atoms by performing a ground-Rydberg

spectroscopy. The idea is to extend this method to measure all the different nearest
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Figure 4.6: Feedback of the atomic positions on six atoms. (a) Green: Dispersion of

the measured distances σ({rij}) as a function of the number of feedback iterations. Red:

Positional disorder 1
N

∑N
j=1 |r

algo
j − rrefj | estimated by the algorithm after each feedback

iteration. (b) Measured distances before feedback (0th iteration) and after feedback

(3rd iteration). The black circles show the reference positions rrefj for the perfect hexagonal

geometry and the red markers represent the positions ralgoj of the atoms estimated by

the algorithm (we multiply each displacements by a factor 20 to highlight the positional

disorder).

neighbour pairs of the system by performing only one spectroscopy experiment. First,

I will briefly remind the reader of this method for two atoms (more details are given

in former theses of the group [Scholl, 2021]) and then explain how we extended it to

larger arrays.

Measuring the distance between two atoms via the van der Waals interaction.

Van der Waals interactions arise from off-resonant dipole-dipole interactions between

nearby Rydberg atoms. If we consider two atoms i and j separated by a distance

rij, the energy required to excite the two atoms in the Rydberg state is shifted by

V (rij) = C6/r
6
ij . Thus, measuring this energy shift allows us to infer rij . To measure V ,

we perform a ground-Rydberg spectroscopy using the 420 nm and 1013 Rydberg lasers.

We set their frequencies with an intermediate detuning of ∆ and a final detuning of δ as

shown in Fig.4.7a. As we choose ∆/(2π) ∼ 500MHz≫ Ω420,Ω1013, this configuration is

equivalent to applying a single photon transition from |g⟩ to |r⟩ with an effective Rabi

frequency of Ωeff = Ω420Ω1013/(2∆) and an effective detuning δ1. After having prepared

the atoms in |g⟩, we simultaneously apply a 420 and 1013 nm laser pulse, turn back on

1Here, I neglect the effects of the light shifts induced by the 420 nm and 1013 nm lasers that slightly
modify the detuning of the effective single photon transition detuning. This detuning should be

δ +
Ω2

420−Ω2
1013

4∆ .
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Figure 4.7: Measurement of the van der Waals shift. (a) Energy spectrum for a single

atom. The two photon transition can be modelled by a one photon transition with an

effective Rabi frequency Ωeff and a detuning δ. (b) Energy spectrum for two interacting

atoms with a van der Waals shift V . (c) Spectrum using the Rydberg lasers to measure the

van der Waals shift V for two atoms separated by 12µm using |r⟩ =
∣∣90S1/2,mJ = 1/2

〉
.

We plot the probability to excite one (black) and two (red) atoms in |r⟩ as a function of

the detuning δ from the single atom transition frequency. The solid curves are Gaussian

fits. The inset shows the experimental sequence.

the traps and image the atoms still in |g⟩ (inset in Fig. 4.7c). We repeat the experiment

for various values of the detuning δ. When setting the excitation lasers on resonance

with the single atom transition (δ = 0), the single excitation probability is maximum.

When δ = V/2, the laser couples |gg⟩ to |rr⟩ via an effective two-photon transition

(as illustrated in Fig. 4.7b) and the probability to excite both atoms in |r⟩ in thus

maximum. As a example, Figure 4.7 shows experimental data obtained for two atoms

separated by ≈ 12µm using as a Rydberg state |r⟩ =
∣∣90S1/2,mJ = 1/2

〉
. We measure

a shift of V/2/(2π) = −2.95(2)MHz. Using the Alkali.ne Rydberg Calculator (ARC)

Python package, we compute a van der Waals coefficient of C6 = 16.83GHz.µm6

corresponding to distance between the atoms of 11.91(1)µm consistent with the

expectation of ≈ 12µm.

Van der Waals interactions on a small system size. We now extend this method to

larger arrays. The idea is the following. We repeat the previously described experiment

with all the atoms in the array. Then, for each nearest neighbour pair ij, we plot the

probabilities to excite one and both atoms in |r⟩ from which we compute a van der

Waals shift Vij. In contrast with the previous case, here, all the atoms participate to
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the dynamics and thus may bias the shifts Vij measured for each pair. In that case,

Vij ̸= C6/r
6
ij, so the van der Waals shift would no longer be a good observable for

inferring the distances. To check that, we perform a simulation on a small system

size. The simulation starts with a virtual array of six atoms in a perfect hexagonal

configuration (same geometry as in previous sections). We randomly move each atom

by displacements ∆ri to mimic a static positional disorder (with {∆ri} following
Gaussian distributions of width 100 nm). Then, we simulate the ground-Rydberg

spectroscopy experiment, and for each pair, extract the measured shift Vij and compare

it to its corresponding interatomic distance rij = |ri − rj|. Figure 4.8a shows Vij (blue

circles) for different pairs and different repetitions of the simulation as a function of the

distances rij . We notice that the Vij values are globally shifted by ≈ 40 kHz compared

to the C6/r
6
ij curves. This ≈ 40 kHz shift is the result of a complex many-body effect.

For each pair {ij}, the atoms i and j are surrounded by other atoms with which they

interact, leading to a systematic shift of the Vij energy. However, the different values of

Vij remain strongly correlated with rij. For a given value of Vij, we can determine its

corresponding distance within an uncertainty of ±5 nm (represented by a black bar).

Therefore, this simulation indicates that up to a rescaling factor used to eliminate

the systematic bias, the Vij values give access to rij with a relatively good precision.

To eliminate the systematic bias, we will rescale each measured values of {Vij} by
multiplying them by a factor α. This factor α is chosen such that the averaged value

V̄ of measured shifts {Vij} for all nearest neighbour pairs corresponds to a distance

between the atoms of exactly 12µm, i.e. we have
(
C6/(αV̄ )

)1/6
= 12µm.

We now experimentally try to measure these nearest neighbour distances. To

compare these measurements to a reference, we start from the same six-atom hexagonal

array already used in the previous section (we come back to the initial position

configuration before the feedback described in Sec. 4.2.2). It will allow us to compare

distances measured via the van der Waals interactions with the ones measured with

spin exchange experiments. As shown in Fig. 4.8b, both methods give results in very

good agreement, indicating that the van der Waals method is reliable to measure the

nearest neighbour distances.

Before going to large system sizes, we try to correct the static positional disorder

of this array using the van der Waals method. Similarly to the previous section, at

each iteration, we compute the dispersion of nearest neighbour distances σ(rij) that

we measure (green curve in Fig. 4.9a) and the positional disorder
∑N

j=1 |∆ralgoj |/N
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Figure 4.8: Van der Waals shift measurement for larger arrays. (a) Simulation of the

different values of shift Vij as a function of interatomic distance rij for different pairs

and repetitions of the simulation. We used as parameters: C6/(2π) = 16.83GHz.µm6, an

ground-Rydberg effective Rabi frequency of Ωeff/(2π) = 0.45MHz and a Rydberg laser pulse

duration of 4µs. The red line shows the C6/r
6
ij function. (b) Experimental measurements of

the nearest neighbours distances on a six-atom hexagon using the two methods. Left: spin

exchange experiments. Right: we performed one ground-Rydberg spectroscopy experiment

to measure all the van der Waals shifts (using |r⟩ =
∣∣90S1/2,mJ = 1/2

〉
). The black

circles show the reference positions rrefj for the perfect hexagonal geometry and the red

markers represent the positions ralgoj of the atoms estimated by the algorithm (we multiply

each displacements by a factor 20 to highlight the positional disorder).

estimated by the algorithm (see red curve in Fig. 4.6a). Both decrease, reaching

≈ 10 nm after four iterations, indicating that the feedback procedure works. The

results are similar to those obtained using spin-exchange experiments described in the

previous section (in Fig. 4.6). As a sanity check, we also measure the nearest neighbour

distances using spin exchange experiments (green square marker) for the final pattern

(4th iteration). The spin exchange and van der Waals data are in good agreement.

It validates that the feedback procedure works just as well with the van der Waals

method as with the spin exchange method. However, it took us only half a day to

perform the feedback procedure using the van der Waals method, compared with three

days to the spin-exchange one, demonstrating the benefit of this new method.

Van der Waals interactions for large system sizes. We showed on a small system

size that inferring the distances via the measurements of van der Waals interactions

works well. We now wish to generalize this method to any system size. Many questions

need to be addressed to determine if this method is reliable for any system size and
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Figure 4.9: Feedback of the atomic positions on six atoms using the van der

Waals shift measurement. (a) Green: Dispersion of the measured distances σ({rij})
as a function of the number of feedback iterations. For the initial pattern (0th iteration)

and (4th iteration) we also measure the distance using spin exchange experiment. These

data are showed by square markers. Red: Positional disorder
∑N

j=1 |r
algo
j − rrefj | estimated

by the algorithm after each feedback iteration. (b) Measured distances before feedback

(0th iteration) and after feedback (4th iteration). The black circles show the reference

positions rrefj for the perfect hexagonal geometry and the red markers represent the

positions ralgoj of the atoms estimated by the algorithm (we multiply each displacements

by a factor 20 to highlight the positional disorder).

geometry:

r Effect of the interaction range. The van der Waals interaction has a

short-range interaction strength decaying as 1/r6ij. Despite its short range, the

interaction is not a nearest neighbour interaction. It thus may affect differently

the Vij values depending on the size of the system or the position of the {ij}
pair in the array.

r Edge/Bulk effect. As we increase the size of the system, not all atoms will

have the same number of nearest neighbour atoms. On the edges, the atoms will

have fewer nearest neighbour atoms and thus exhibit different dynamics while

performing the ground-Rydberg spectroscopy. The Vij values may be biased

differently depending on the position of the pairs in the array.

r Inhomogeneity effects. The Rydberg lasers have a finite beam size, resulting

in a gradient of light intensity in the array. Depending on the position of the

atoms, the effective ground-Rydberg Rabi frequency Ωeff seen by each atom is

slightly different. Combined with many-body interactions, this gradient may

result in space-dependant biases for Vij.
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Unfortunately, these questions are difficult to tackle numerically since they require to

perform multiple simulations with large system sizes. In our group, we are currently

addressing these questions experimentally by comparing, on large system sizes, the

results obtained by spin exchange experiments and by the van der Waals method.

In conclusion, we have shown on a small system size of six atoms that measuring the

van der Waals interactions allows us to infer the distances between nearest neighbours

to correct the static positional disorder. Further studies are required to extend this

method to larger system sizes.

4.3.2 Using many-body physics to measure the distances

As mentioned in the introduction of this chapter, some phases of matter we wish to

prepare and study are extremely sensitive to static positional disorder. The idea is to

use this sensitivity to static positional disorder to detect and measure the distances

between the atoms. I will now present one example.

From two-body correlations to distance. The ground state of the XY model for a

Kagome geometry has been theoretically predicted to be a spin liquid [Bintz et al.,

2024]. During my Ph.D., we attempted to prepare this ground state and study its

properties. Chapter 6 is dedicated to the preparation of spin-liquids and gives broader

details about the experiments. Here, I will only show the results obtained after the

preparation procedure and comment on how it could help us to measure the static

positional disorder.

Figure 4.10a shows the nearest neighbour connected correlations along z (⟨σz
i σ

z
j ⟩c =

⟨σz
i σ

z
j ⟩ − ⟨σz

i ⟩⟨σz
j ⟩) for a 114-atom Kagome array after the ground state preparation

protocol. We measure negative correlations with a mean value of ≈ −0.135. Due to

edge effects, the correlations are, on average, higher for pairs on the edges sharing

fewer neighbouring atoms. If we ignore these pairs and only focus on pairs in the bulk,

we still observe a relatively high dispersion of the correlation of 0.027. Here the data

have been averaged over more than 14000 repetitions of the experiment, which is

enough to reduce the error bar on the correlation down to ⩽ 0.005 and thus claim

that the dispersion is due to a physical effect and is not due to a lack of statistics.

Numerical simulations using the Density Matrix Renormalization Group (DMRG)

103



Chapter 4: Static positional disorder

−0.4

−0.3

−0.2

−0.1

0.0
⟨σ
z i
σ
z j
⟩ c

(a) (b)
12 µm

−0.2 −0.1 0.0

⟨σz
i
σ
z

j
⟩c

0.70

0.75

0.80

0.85

J i
j/

(2
π

) 
(M

H
z)

Figure 4.10: Correlations between correlations and interaction energy. (a) Nearest-

neighbours correlations along z measured for a Kagome array of 114 atoms after the ground

state preparation protocol (it corresponds to a time of t = 2.5µs in the experimental

sequence described in Sec. 6.1.1 of Chapter 6). The data shown in this figure has been

taken with assembled arrays containing at most three defects allowed. (b) For a few pairs

(shown by green ellipses in (a)), we measure via spin exchange experiments the interaction

energies Jij and plot them as a function of the correlations measured along z. The dashed

line is a linear fit.

algorithm performed by the group of Norman Yao in Harvard predicted that the XY

ground state exhibits homogeneous nearest neighbour correlations. They also showed

that when introducing static positional disorder with a typical value of 100 nm, the

simulation predicts a dispersion in the correlations similar to the one we observe

experimentally. To check whether the observed dispersion is due to static positional

disorder, we perform spin-exchange experiments to measure the interaction energy

Jij of a few pairs (shown by green ellipses) in the bulk of the array. In Fig.4.10b,

we plot Jij as a function of the measured correlations. We observe a correlation

between the z-correlations and the interaction energy, suggesting that the positional

disorder indeed plays a role in the inhomogeneity of correlations. Considering that the

z-correlations are proportional to Jij (green dashed line with a slope of 0.75MHz ),

we can estimate the dispersion of nearest neighbour distances. Excluding the edge

pairs, we measure a dispersion on the correlation of 0.027 that gives a dispersion

on the interaction energy of σ({Jij}) = 0.027× 0.75MHz = 0.015MHz and thus a

dispersion on the nearest neighbours distances of σ({rij}) = σ(Jij)d̄
4/(3C3) = 107 nm

(using C3 = 1340MHz.µm3 and d̄ = 12µm). This value is consistent with our previous

measurement of ∼ 100 nm performed on small system sizes of six atoms (see Fig. 4.6a

in a previous section). Therefore, it suggests that the static positional disorder plays a
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dominant role in the inhomogeneity of the correlations.

Feedback procedure using many-body experiments. A new method relying on

correcting the positional disorder based on the measurement of these nearest neighbours

could then be developed. To do so, we must first understand a few problems:

r Edge/bulk effects. As explained, due to edge effects, the average correlations

of the pairs depend on the number of nearest neighbour atoms they get and,

thus, on their position. To convert the correlations into distances, we should

assess how much these correlations are modified compared to bulk pairs.

r Extra biases due to experimental imperfections. Other experimental

imperfections that are atom-dependent could lead to different biases on different

pairs. For example, preparing these phases requires initialising the atoms in

different Rydberg states. This preparation is not perfect (see Chapter 3), and

the preparation fidelity may fluctuate from one atom to another. It could then

introduce spatial biases on the correlation measurements when preparing the

ground state.

Once again, these questions are complicated to address numerically since they require

to simulate large system sizes.

In conclusion, we have shown that using a many-body experiment, we can measure

correlations between the measured nearest neighbours correlations and their distances.

Although further studies are needed, this result could be used to infer all nearest

neighbour distances in a single experiment and thus speed up the static positional

disorder feedback correction protocol. We could also consider different multi-body

experiments that would be more sensitive to static positional disorder and easier to

perform.

4.4 Conclusion

In this chapter, I have presented a method to estimate the positions of the atoms.

This method relies on two steps. First, we use spin exchange experiments to infer the

nearest neighbour distances between the atoms from measurements of the interaction

energy. Second, we developed and benchmarked an algorithm to reconstruct the
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positions of the atoms based on these nearest neighbour distance measurements. Then,

we used this method to correct the positional disorder of a small system of six atoms

in a hexagonal configuration, reducing the positional disorder from approximately

≈ 70 nm to a few tens of nanometers. As this method is very time-consuming, requiring

pair-by-pair spin-exchange experiments to measure the distances, we explored two

other promising ways of evaluating all these distances in a single experiment. The first

method involves performing ground-Rydberg spectroscopy to measure the van der

Waals shifts between the atoms and thus infer the distances between them. The second

method involves conducting a many-body experiment that is sensitive to the static

positional disorder to measure it. Both methods require further studies to test their

reliability on large system sizes. In conclusion, this work represents an intermediate

step towards a scalable method for correcting static positional disorder.
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Ground state physics of the
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XY ground state on square arrays
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In this chapter, I present our study of the ground state of the dipolar XY model for

square geometries. The Hamiltonian reads:

HXY =
ℏJ
2

∑
i<j

a3

r3ij

(
σx
i σ

x
j + σy

i σ
y
j

)
, (5.1)

where J is the nearest neighbour interaction energy strength, a the lattice spacing

and rij the distance between spin i and j. For square arrays with nearest neighbour
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interaction, the ground state has been predicted to be an AntiFerro-/Ferro-Magnetic

(AFM/FM) state, depending on the sign of J . Moreover, since the Hamiltonian

exhibits a continuous spin-rotational U(1) symmetry (HXY commutes with
∑

i σ
z
i ),

at finite temperature, the Mermin-Wagner theorem states that the system should

not exhibit long-range order, i.e., all the two body correlation functions reach zero

when the distances between the spin go to infinity [Mermin and Wagner, 1966]. More

recently, the case beyond nearest-neighbour interaction has been studied theoretically

in the context of dipolar interactions, namely interaction energy decaying as ∝ 1/r3ij

[Peter et al., 2012]. It has been shown that long-range ordered FM phases are possible

at finite temperatures. Furthermore, the long-distance tail of the dipolar interaction

introduces frustration in the AFM phase, destabilizing the long-range order. When we

started this project, none of these features had been observed experimentally.

In this chapter, I first introduce how we implement the dipolar XY model on our

Rydberg system using resonant dipole-dipole interactions and show an example with

two atoms. Second, I describe the ground state of four interacting atoms in a square

configuration, and finally, I will discuss the preparation of the AFM/FM state for

square arrays up to N = 42 atoms. Part of the results presented in this chapter have

been subject to a publication [Chen et al., 2023a] (more details can be found in the

paper).

5.1 Implementation of the XY model

5.1.1 From resonant dipole-dipole interaction to the XY interaction

The dipole-dipole interaction between two Rydberg atoms i and j with electric

dipole operators di and dj reads:

Vdd =
di · dj − 3 (di · nij) (dj · nij)

4πε0r3ij
, (5.2)

with rij = |ri − ri| the interatomic distance and nij = (ri − ri) /rij a vector defining

its direction. I will only consider transitions between states from the (nS) Rydberg

manifold to the (nP ) one. The selection rules state that the electric dipole operators

can only couple a Rydberg state to another one with a difference of z-component of the

total angular momentum of |∆mJ | ⩽ 1. We now call d−i , d
0
i and d+i the electric dipole
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5.1 Implementation of the XY model

operators of atom i associated to transition with ∆mJ = −1, 0 and +1. Taking as the

quantization axis the direction of the magnetic field along uz (see Sec. 2.4.1), we re-

express the different component of the electric dipole operator di = dxi ux+d
y
iuy +d

z
iuz

as dxi =
(
d−i − d+i

)
/
√
2, dyi = i

(
d−i + d+i

)
/
√
2 and dzi = dz0. Then, by expressing nij

in spherical coordinates nij = sin(θij) cos(ϕij)ux + sin(θij) sin(ϕij)uy + cos(θij)uz with

ϕij and θij the polar and azimuthal angles defining the nij direction, the interaction

finally reads:

Vdd =
1

4πε0r3ij

[
1− 3 cos2(θij)

2

(
2d0i d

0
j + d+i d

−
j + d−i d

+
j

)
+

3√
2
sin(θij) cos(θij)

(
e−iϕijd+i d

0
j − eiϕijd+i d

0
j + e−iϕijd0i d

+
j − eiϕijd0i d

−
j

)
− 3√

2
sin2(θij)

(
e−2iϕijd+i d

+
j + e2iϕijd−i d

−
j

)]
.

(5.3)

Multiple terms appear and depend on the angle θij between the quantization axis and

the interatomic direction. To ensure isotropic interaction, we choose a quantization

axis (set by the magnetic field) perpendicular to the array, i.e. θij = 90◦ for all pairs

{ij}. The magnetic field also allows us to isolate two Zeeman sublevels of the Rydberg

manifold, thus restricting the transitions to only between these two states. In this

chapter, we choose |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =

∣∣60P1/2,mJ = −1/2
〉
. The

interaction energy is then just left with:

Vdd =
1

4πε0r3ij

1

2

(
d+i d

−
j + d−i d

+
j

)
(5.4)

Then, taking Jij = ⟨↓|d+|↑⟩ ⟨↑|d−|↓⟩ /(4πε0r3ij), we rewrite Eq. 5.4 in terms of spin

operator:

Vdd = Jij
(
σ+
i σ

−
j + σ−

i σ
+
j

)
=
Jij
2

(
σx
i σ

x
j + σy

i σ
y
j

)
(5.5)

thus leading to dipolar XY interaction with Jij ∝ 1/r3ij.

111



Chapter 5: XY ground state on square arrays

ω0

2ω0

0

2J

J
J = 0 J > 0

ΩMW

−2 0 2
(ωMW −ω0)/(2π) (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
ie

s

P∣↓↓⟩

P∣↑↓⟩ +P∣↓↑⟩

(a) (b)

Figure 5.1: Two interacting atoms eigenstates. (a) Energy level diagram. (b) Microwave

spectroscopy. We plot the probabilities to measure |↓↓⟩ (black markers) and |↑↓⟩ or |↓↑⟩
(red markers). The solid curves are Gaussian fits.

5.1.2 Ground state of two interacting atoms

Valence bond. We now focus on the ground state of two atoms. Figure 5.1a

shows the energy spectrum of two atoms with/without interaction. The interaction

lifts the degeneracy between the |↑↓⟩ and |↓↑⟩ states leading to the two entangled

eigenstates: the symmetric state |+⟩ = (|↑↓⟩+ |↓↑⟩)/
√
2 and the antisymmetric state

|−⟩ = (|↑↓⟩ − |↓↑⟩)/
√
2 separated in frequency by 2J . Although these two states

exhibit the same magnetization and correlation function, we can distinguish them

by measuring correlations in another basis. Table 5.1 summarizes all the connected

correlations of the |+⟩ and |−⟩ states in the x, y and z bases. The |−⟩ state (also called

the singlet state) is rotationally invariant and always exhibits an antiferromagnetic

correlation, i.e. it has a negative connected correlation whatever the basis of the

measurement. In contrast, when measured along any direction of the equatorial Bloch

sphere (along the x or y axis, for example), |+⟩ exhibits a ferromagnetic correlation,

i.e. it has a positive correlations.

These two states represent valence bonds: a particle or excitation represented

here by the spin in |↑⟩ is shared between two sites represented here by the two atoms

[Baskaran, 2009]. This interpretation led to the resonating valence bond theory used

to describe electron pairing in high-temperature superconducting materials [Anderson,

1987; Baskaran, Zou, and Anderson, 1987]. As we will see later in this chapter and

the following, we will use this interpretation to represent the ground state of the XY

model and intuitively understand its main properties.
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Basis |+⟩ ⟨σα
1 σ

α
2 ⟩ − ⟨σα

1 ⟩⟨σα
2 ⟩ |−⟩ ⟨σα

1 σ
α
2 ⟩ − ⟨σα

1 ⟩⟨σα
2 ⟩

z
|↑↓⟩+ |↓↑⟩
√
2

−1
|↑↓⟩ − |↓↑⟩
√
2

−1

y
|↑↑⟩+ |↓↓⟩
√
2

+1
|↑↓⟩ − |↓↑⟩
√
2

−1

x
|↑↑⟩ − |↓↓⟩
√
2

+1
|↑↓⟩ − |↓↑⟩
√
2

−1

Table 5.1.: Connected correlations of the |+⟩ and |−⟩ states measured along

different bases. First column: Measurement basis (for example measuring along x imply

to apply a π/2 pulse around y to rotate the spins). Second and fourth columns: Expression

of |+⟩ and |−⟩ in the corresponding basis. Third and fifth columns: Connected correlations

of |+⟩ and |−⟩ in the corresponding basis.

Measurement of the interaction energy. The interaction energy J between the

atoms can be measured in several ways. The first one is to perform microwave

spectroscopy. Initially, we prepare both atoms in |↑⟩, send a microwave pulse and read

out the state of the atoms. We repeat the experiment for various microwave frequencies

(see Fig. 5.1b). When the microwave frequency is on-resonance with the single atom

transition ωMW = ω0, the probability to excite both atoms simultaneously in |↓⟩ is
maximum (black data). When ωMW = ω0 + J , the microwave couples |↑↑⟩ to |+⟩ and
then, the probability to excite only one of the two atoms reaches its maximum (red

data)1. Therefore, by identifying the shift between the two resonance frequencies to

the |↓↓⟩ and |+⟩ states, we extract J . The main advantage of this experiment is that

it also allows the measurement of the sign of J which is given by the sign of this shift.

Another way to measure the interaction energy between two atoms is to prepare

the system in an out-of-equilibrium state, let it evolve under the XY model and read

the state. With two atoms, two experiments are possible:

r Spin exchange. The first one is a spin exchange already discussed in Chapters 2

and 4. Using a combination of microwaves and addressing beams (see Chapter 3),

we initialize the system in |↑↓⟩. We can rewrite this initial state as |↑↓⟩ = (|+⟩+
|−⟩)/

√
2. After interacting for a time t, the state reads (eiJt |+⟩+e−iJt |−⟩)/

√
2 =

cos(2Jt) |↑↓⟩ − i sin(2Jt) |↓↑⟩. We thus expect the probabilities to measure |↑↓⟩
and |↓↑⟩ to oscillate with frequency 2J . Figure 5.2a shows an example of a spin

1As the state |−⟩ is not coupled to |↑↑⟩ via microwaves, we do not observe any peak at a frequency
ωMW = ω0 − J .
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exchange. As expected, we observe out-of-phase oscillations of the P|↑↓⟩ and P|↓↑⟩

probabilities (red and blue data). These oscillations exhibit damping that we

attribute to shot-to-shot positional disorder. Including all the calibrated sources

of imperfections in a Mont Carlo simulation (Rydberg lifetimes, preparation and

detection errors and shot-to-shot positional disorder with T = 4µK) led to a

good agreement with the experimental data in terms of contrast, frequency and

damping of the oscillations2.

r Two-atom Ramsey experiment. The second one is a two-atom Ramsey

experiment. After having initialized each atoms in |↑⟩, we apply a microwave

π/2-pulse around y to prepare the system in |→x→x⟩ =
(

|↑⟩+|↓⟩√
2

)⊗2

∝ |↑↑⟩ +
|↓↓⟩ + |↑↓⟩ + |↓↑⟩. After an interacting time t the |+⟩ ∝ |↑↓⟩ + |↓↑⟩ part
of the wave function will accumulate a phase e−iJt leading to the state ∝
|↑↑⟩+ |↓↓⟩+ e−iJt(|↑↓⟩+ |↓↑⟩). We then apply a second microwave π/2-pulse

around y to read out the state in the x basis. We thus expect the probabilities to

measure |↑↑⟩ and |↓↓⟩ to oscillate at a frequency J . Figure 5.2b shows an example

of this Ramsey experiment using the same parameters as for the spin exchange

one. The frequency is, as expected, reduced by a factor of two compared to the

spin exchange one. The same Monte Carlo simulation is also in good agreement

with the data.

In this section, I showed how we implement the dipolar XY models from resonant

dipole interaction between Rydberg atoms. We then focused on two interacting atoms

and described the properties of their eigenstates |±⟩. Finally, I showed different ways

to measure the interaction energy experimentally. I now move to the study of the

ground states of the dipolar XY model for square geometries.

5.2 XY ground states of a four-atom square array

To forge an intuition about the ground state of the dipolar XY model for square

arrays, we start by studying a minimalistic system of four atoms in a square configu-

ration. I will first present helpful ansätze that give us intuitive pictures to describe

2See more details about the simulation and the modelling the experimental imperfections in the
Gabriel Emperauger’s thesis [Emperauger, 2025]
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Figure 5.2: Spin exchange and two-atom Ramsey experiment. (a) Spin exchange

and (b) two-atom Ramsey experiment. Top panel: experimental sequence. Bottom panel:

Experimental results. Here we use |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
, |↓⟩ =

∣∣60P3/2,mJ = 3/2
〉

with an interatomic distance of 15 µm. The solid curves are Monte Carlo simulations

including Rydberg lifetimes, preparation and detection errors and shot-to-shot positional

disorder.

the AFM/FM states. Then I will present our strategy to experimentally prepare

the ground states. The parameters used until the end of this chapter are: a lattice

spacing of a = 12.5µs, J/(2π) = −0.77MHz, |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =∣∣60P1/2,mJ = −1/2

〉
.

5.2.1 Ansatz wave-functions for the AFM/FM states

Eigenstates. As illustrated in Fig. 5.3, we first calculate all the eigenstates of the

four-atom square array and sort them by their total magnetization along z defined

as M z =
∑

i σ
z
i /N with N the number of atoms. The lowest and highest energy

state belongs to the M z = 0 sector and respectively refers to the |AFM⟩XY and

|FM⟩XY states when J > 0. When J < 0, the ground state is |FM⟩. For the rest of

the manuscript, we will refer to |AFM/FM⟩XY as the AFM/FM ground states of the
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Figure 5.3: Eigenstates of the four atom square array. Eigenstates separated per

magnetization sector. Here J > 0. The ground and highest energy state are the |FM⟩XY

and |AFM⟩XY states. The inset shows the square configuration with the atom-atom

interaction energy strength.

dipolar XY model for square geometries3. In both cases, the eigenstates have no simple

analytical expression, but they are well represented by two Ansätze states that I will

now describe.

Antiferro-/ferro-magnetic order along x and y. To intuitively understand this first

ansatz, it is interesting to study the ground state of the Ising model for square arrays.

The nearest neigbhour Ising model reads HIsing = ℏJ
∑

⟨i,j⟩ σ
z
i σ

z
j with ⟨i, j⟩ summing

over all the nearest neighbour pairs. To minimize the energy of the system, one would

intuitively place all the spin along the ±z direction in a staggered configuration leading

to a z antiferromagnetic order |↑↓↑↓ · · ·⟩. This state is called a Néel state. During the

last five years, these Néel orders have been experimentally studied and observed on

Rydberg platforms (including ours) [Labuhn et al., 2016; Schauss, 2018; Scholl et al.,

2021; Ebadi et al., 2021]. We now focus back on the XY model. It exhibits σx
i σ

x
j and

σy
i σ

y
j interactions. As for the Ising model, one would create antiferromagnetic orders

along x and y to minimize the energy of the system. This intuition leads us to the

following ansatz:

|AFM⟩CSB =

∫ 2π

0

|→φ←φ→φ←φ · · ·⟩ dφ/(2π), (5.6)

3The lowest/highest energy spectrum for larger array is described by the Anderson tower of states
[Wietek, Schuler, and Läuchli, 2017]. The spectrum is symmetric around Mz = 0 and the
lowest/highest eigenstate energy of each Mz sector increases/decreases polynomially with their
Mz value.
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with |→φ←φ→φ←φ · · ·⟩ = e−iφ
∑

i σ
z
i |→x←x→x←x · · ·⟩ being a classical antiferro-

magnetic state along a direction of the equatorial plane of the Bloch sphere given

by the angle φ (when φ = 0, this direction corresponds to x). This ansatz features

the U(1) symmetry of the XY Hamiltonian by being the superposition of all the

antiferromagnetic states along all the directions of the equatorial plane. It means

that the system should exhibit an antiferromagnetic order in any direction of the

equatorial plane. Similarly, we define the ansatz of the ferromagnetic state4 |FM⟩CSB

by replacing the antiferromagnetic state by |→φ→φ→φ→φ · · ·⟩ in Eq. 5.6. For four

atoms, we numerically calculate the overlap between these ansätze and the real ground

states: XY⟨AFM|AFM⟩CSB ≈ 97% and XY⟨FM|FM⟩CSB ≈ 99%. These high overlaps

demonstrate that these ansätze faithfully represent the ground state.

Superposition of valence bond solids. To minimize the energy, one would intuitively

introduce anti-/ferro-magnetic bonds between the atoms. This intuition leads us to

the second ansatz, introduced by Anderson in the context of spin liquids [Anderson,

1973, 1987] describing a quantum superposition of Valence Bond Solid (VBS).

All atoms are paired in either | ⟩ = |−⟩ for the antiferromagnetic state or in

| ⟩ = |+⟩ for the ferromagnetic state. For four atoms, the ansätze thus read

|AFM⟩VBS = (| ⟩+ | ⟩) /
√
3 and |FM⟩VBS = (| ⟩+ | ⟩) /

√
3. They exhibit a

high overlap of XY⟨AFM|AFM⟩VBS ≈ 99% and XY⟨FM|FM⟩VBS ≈ 97% with the

perfect ground states.

Using the different values of the correlation given in Tab. 5.1, we thus expect, for

the |AFM⟩VBS state, to measure negative nearest neighbours correlations in all bases.

This property is consistent with the expectation of antiferromagnetic order along the

(x, y) predicted by the previous ansatz |AFM⟩CSB. Similarly, for |FM⟩VBS, we expect

to measure positive nearest neighbours correlations along the (x, y) plane consistent

with the prediction of ferromagnetic order given by the |FM⟩CSB ansatz state.

We now have two intuitive ansätze to describe the ground state of the dipolar XY

model. We move to the study of the preparation of these ground states.

4The ansatz state for the ferromagnetic ground state is also known as the Dicke state |FM⟩CSB =∣∣J2 = (N/2)(N/2 + 1), Jz = 0
〉
[Dicke, 1954].
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Figure 5.4: Preparation of the AFM and FM ground state. (a) Illustration showing

the addressed atoms (sub-array A) prepared in |↓⟩ and the non-addressed atoms (sub-array

B) prepared in |↑⟩. (b) Eigenenergies of the Hamiltonian in Eq. 5.7 as a function of δ for a

four atom square array.

5.2.2 Adiabatic preparation of the ground state

The strategy to prepare the ground states |AFM/FM⟩XY relies on an adiabatic

procedure. As a reminder, an adiabatic process is a method used to prepare the ground

state of a Hamiltonian H0 whose ground state cannot be easily prepared. In our case,

H0 = HXY. To do so, we first implement the following Hamiltonian H0 + λH1 where

λH1 is a driver Hamiltonian for which we know how to prepare the ground state, and

λ(t) a parameter whose we can arbitrarily and dynamically tune the value. Starting

with λ≫ 1 we prepare the ground state of H1 which is approximately the ground

state of H = H0 + λH1. Then, by adiabatically ramping down λ to zero, we connect

the H1 ground state to the H0 ground state.

We choose the driven Hamiltonian to be a staggered effective-magnetic field along

z that reads λH1 = HZ = ℏδ
∑

i∈A(1 + σz
i )/2. This field only applies on the atoms in

the sub-array A (defined in Fig. 5.4a) and does not apply on atoms belonging to the

B sub-array. This field is achieved by using addressing beams focused on the A atoms

applying a light shift δ as shown in Fig. 5.4a (more details about these addressing

beams are given in Sec. 3.1). The total Hamiltonian thus reads:

H = HXY +HZ =
ℏJ
2

∑
i<j

a3

r3ij

(
σx
i σ

x
j + σy

i σ
y
j

)
+ ℏδ

∑
i∈A

(1 + σz
i )/2. (5.7)
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5.2 XY ground states of a four-atom square array

By varying the intensity on these addressing beams, we modify the amplitude of the

light-shifts δ, which allows us to dynamically vary the tunable parameter λ = δ/J .

Figure 5.4b shows the eigenenergies of the Hamiltonian H given in Eq. 5.7 for a 2× 2

square array and J > 0. When δ/J ≫ 1, the ground state of H ≈ HZ is the Néel state

|↑↓↑↓ · · ·⟩ where the atoms in A/B are in |↓⟩/|↑⟩.

To prepare the ground state of HXY we apply the following sequence. First,

using the addressing beams we apply a large detuning δ/J ≫ 1 and perform a set of

microwave pulses to prepare the system in the Néel state (see Sec. 3.2). Then, we

adiabatically ramp down δ to connect the Néel state to the |AFM⟩XY ground state as

illustrated in Figure 5.4b. To prepare |FM⟩XY, we repeat exactly the same procedure,

changing the sign of δ. Now when −δ/J ≫ 1, the Néel state is the highest energy

state that we connect to |FM⟩XY by adiabatically ramping down δ. Therefore, by

applying exactly the same experimental sequence and simply choosing the sign of

δ, we can either prepare the AFM state or the FM state. From an experimentalal

point of view, this situation is very advantageous. Even if this procedure suffers from

experimental imperfections, it will still allow us to perform comparative measurements

between the |AFM⟩XY and |FM⟩XY states.

5.2.3 Experimental realization

The experimental sequence is summarized in Fig. 5.5a. After initializing the atoms

in |↑⟩, we use microwave pulses and addressing beams to prepare the Néel state. We

then adiabatically ramp down the light shift applied on the A atoms as δ(t) = δ0e
−t/τ

with δ0 the initial energy shift and τ a time constant setting the speed of the ramp. We

numerically check that for an initial light shift of δ0/(2π) = 15MHz and an interaction

energy of J/(2π) = −0.77MHz, taking a ramping time of τ = 0.3µs is adiabatic

enough. After a time t = 2µs (end of the ramp when δ(t) ≈ 0), we measure the state

of the system. To measure in the z-basis, we directly apply the readout sequence, and

to measure along the x- or y-basis, we apply a global π/2-microwave pulse to rotate

the system prior to the readout.

Figure 5.5 shows the magnetizations ⟨σx,z
i ⟩ (coloured circles) and two body

connected correlation ⟨σx,z
i σx,z

j ⟩c = ⟨σ
x,z
i σx,z

j ⟩ − ⟨σ
x,z
i ⟩⟨σ

x,z
j ⟩ (coloured bars) in the x-

and z-basis for the preparation of |AFM⟩XY and |FM⟩XY state. The top line shows

the expectations for perfect ground states; the second line shows the results of a
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Figure 5.5: AFM and FM state for a four-atom square array: experimental results

(a) Sketch of the experimental sequence. At t = 0, we adiabatically decrease the addressing

light intensity such that δ(t) = δ0e
−t/τ with |δ0|/(2π) = 15MHz and τ = 0.3µs. After

t = 2µs, we measure the state of the system along z (without the π/2-microwave pulse)

or x (with the π/2-microwave pulse). (b) Comparison between calculated perfect ground

states (top line), simulations (middle line) and experimental results (bottom line). The

colour of each circles and bars represents the values of the magnetizations of each atom

and the connected correlation between each pair of atoms.

simulation performed by Lucas Leclerc, including experimental imperfections (shot-to-

shot positional disorder, preparation and detection errors), and the bottom shows the

experimental results. The experimental data are qualitatively in good agreement with

the ground state calculations. The magnetization of each atom is close to zero for

AFM and FM in all basis. The sign of the correlations are the same: along x, the FM

state exhibits ferromagnetic order (positive nearest and next-neighbour correlations),

and the AFM exhibits antiferromagnetic order (negative/positive nearest/next-

nearest neighbour correlations), and along z, both AFM and FM states exhibit

antiferromagnetic-like order (negative nearest neighbour correlations with weaker

next-nearest neighbour correlations). The respective signs of the correlations can be

understood from the ansätze states described previously. Quantitatively, the amplitudes

of the measured correlations are lower and the AFM along x exhibits non-zero residual

magnetization. As we observe the same effects on the benchmark simulations, we

attribute these effects to experimental imperfections.
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5.3 XY ground states of larger square arrays

We have theoretically and experimentally studied the AFM and FM ground states on

a small system size of four atoms. The main properties of these states (magnetizations

and correlations) can be understood using the different ansätze states that I have

described. Now that we have intuitive pictures to understand these ground states, I

move to larger array sizes.

5.3 XY ground states of larger square arrays

As we increase the size of the array, two questions naturally arise. What will be the

role of the long range tail of the dipolar interaction Jij ∝ 1/r3ij and do long range

effects emerge in these larger size systems. In a first section I will theoretically discuss

these questions and in a second, I will present the experimental preparation of AFM

and FM states with arrays of N = 6× 7 atoms. The third section is dedicated to the

analysis and discussion of the different properties of the AFM/FM states, and finally,

in a fourth section, we will explore their respective phase diagram.

5.3.1 Frustration and long-range order

In the previous section (see Sec. 5.2.1), I presented two intuitive ansätze to describe

the ground state of the dipolar XY model. One property of the dipolar XY Hamiltonian

that we did not include in these ansätze is the interaction range decaying as 1/r3ij.

These dipolar interaction will modify the properties of the ground states in two

different ways that I describe now.

Long-range order. The XY model exhibits a continuous U(1) symmetry. Theoretical

works showed that the dipolar XY model features a Continuous Symmetry Breaking

(CSB) [Deng, Porras, and Cirac, 2005; Peter et al., 2012], that has for signature the

emergence of a long-range order (i.e. |⟨σx
i σ

x
j ⟩c| reaches a non zero value when rij goes

to infinity). This property is well illustrated when considering an all-to-all coupling

XY model Hall-to-all
XY = ℏJ

∑
i<j

(
σx
i σ

x
j + σy

i σ
y
j

)
. Then, the FM ground state is exactly

given by |FM⟩CSB being the superposition of all classical, symmetry-breaking product

state |→φ→φ→φ→φ · · ·⟩ each exhibiting a classical long-range order pointing at angle

φ in the (x, y) plane. It turns out that the CSB property remains valid for shorter

range interaction such as dipolar or nearest neighbour interaction [Kennedy, Lieb, and
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Chapter 5: XY ground state on square arrays

Shastry, 2004].

The dipolar interactions are commonly considered as short-range interactions in

2D, namely interaction J(r) for which
∫
J(r) ddr does not diverge, with d being the

dimensionality of the system. For power law interaction J(r) ∝ |r|−α, this condition

is achieved if α > d . In our case, this condition is achieved with α = 3 and d = 2.

For finite temperature state T > 0 (i.e. state for which the energy is slightly higher

than the ground state), the Mermin-Wagner theorem states that, for short-range

interaction, the continuous symmetries cannot be spontaneously broken and thus do

not give rise to long range orders [Mermin and Wagner, 1966]. However, in the context

of the Mermin-Wagner theorem, short-range interactions are defined as interactions

for which
∫
|r|2J(r) ddr does not diverge. For power-law interactions, it implies that

α > d+2, a condition which is not satisfied for our system. Thus, although the dipolar

interactions are generally considered as short-range, they are sufficiently long-range

enough to be excluded by the Mermin-Wagner theorem. In summary, for T ⩾ 0, we

expect the FM ground state to exhibit long-range order.

Frustration. The long-distance tail of the dipolar interaction introduces frustration

in the |AFM⟩XY case. It is impossible to create antiferromagnetic bonds for all the

pairs of atoms. This effect is present for small and large system sizes, an example

of frustration with four spins is illustrated in Fig. 5.6: a classical anti-ferromagnet

along x exhibits frustration along its diagonals, increasing its energy by 2× J/(2
√
2).

However, frustration mainly alters the properties of the antiferromagnetic states at

long distances. The ground state is still expected to exhibit long-range order; however,

for T > 0, the frustration reduces the stability of the AFM phase and is expected to

prevent the formation of a long-range order [Bruno, 2001; Defenu et al., 2023]. As we

need a relatively large system size to observe this effect, we did not discuss it when we

presented the results for four atoms in Sec. 5.2.

To summarize, the dipolar XY Hamiltonian exhibits 1/r3ij interaction range which

cannot be approximated neither as an all-to-all nor as a nearest neighbour interaction

range. It modifies the properties of the ground states: for the FM, it contributes to the

emergence of a long-range order, while for the AFM state, frustration destabilizes

this order at T > 0. More elaborated ansätze could be considered to include these

effects in their description of the ground states. As an example, for four atoms,

|AFM⟩VBS ∝ | ⟩ + | ⟩ + ε | ⟩ and |FM⟩VBS ∝ | ⟩ + | ⟩ + ε | ⟩ with |ε| ≪ 1
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5.3 XY ground states of larger square arrays

Energy

Figure 5.6: Illustration of frustration induced by the long range tail of the dipolar

interactions. The dipolar interactions introduces frustration in square anti-ferromagnet

along x. It requires an extra energy 2× J/(2
√
2).

could be used to account for dipolar interaction. However, searching for appropriate

ansätze is hard, and we did not investigate this question further. We now move to the

experimental preparation and study of the AFM and FM states with larger arrays.

5.3.2 Preparation of the AFM/FM ground states on larger arrays

We start with a square array of 6× 7 atoms and follow the same procedure described

in Sec. 5.2.2. We experimentally and numerically (simulations performed by the team of

Norman Yao in Harvard) checked that for δ0/(2π) = 15MHz and J/(2π) = 0.77MHz,

a ramp time of τ = 0.3µs is adiabatic enough. After the end of the ramp, at t = 2µs

when δ ≈ 0, we measure the state of the system. Figure 5.7a shows the magnetization,

nearest neighbour and next-nearest neighbours connected correlations measured along

the x axis (see Fig. 5.5b). Similarly to the four-atom array, the AFM state reveals

an antiferromagnetic order with negative/positive nearest/next-nearest neighbour

correlations, and the FM state exhibits ferromagnetic order with positive correlations.

To better characterize these phases and check if they exhibit long-range order, we

plot the map of the correlation function Cx
r defined as

Cx
r =

1

Nr

∑
{i,j|rij=r}

⟨σx
i σ

x
j ⟩c, (5.8)

with {i, j|rij = r} summing on all the {i, j} pairs separated by r and Nr the

corresponding number of such pairs. Figure 5.7b shows the average correlation

Cx
r=(rx,ry)

as function of a displacement rx along ux and ry along uy on the array. We

observe the characteristic staggered correlations for the AFM, while the correlations

are always positive for the FM. From these correlation maps, we now calculate the

123



Chapter 5: XY ground state on square arrays

−5 0 5
−5

0

5

−1.0

0.0

1.0

−5 0 5
−0.25

0.0

0.25 DMRG (6×6)

(a) (c)

(b)

2 4 6 8

0.01

0.1

2 6
0.2

0.4

0.6

Figure 5.7: Antiferro-/ferro-magnets with a 6× 7 square array. The data are measure

at t = 2µs. (a) Magnetization ⟨σxi ⟩, and nearest neighbour/next-nearest neighbours

connected correlations ⟨σxi σxj ⟩c along x for the FM and AFM state. (b) Maps of correlation

function Cx
r=(rx,ry)

for AFM and FM states. (c) Average correlation |Cx
r | as a function of

the distance r. The inset show the results on a DMRG simulation for a 6× 6 square array.

mean correlation Cx
r averaged over all pairs {i, j} whose atoms are separated by a

distance |rij| = |r| = r:

Cx
r =

1

Nr

∑
{i,j|r=|rij |}

⟨σx
i σ

x
j ⟩c, (5.9)

Figure 5.7c shows |Cx
r | as a function of r. For the AFM and FM states, the correlations

decrease as r increases with a faster decay for the AFM, which we attribute to the

frustration that hinders the formation of long-range correlations. However, for both

phases, we still measure non-zero correlations for the largest distances of the system

r/a ≈ 7. This observation is consistent with our expectation of a long-range order for

the AFM and FM ground state.

To assess the role played by the experimental imperfections, which are mostly

common for both the AFM and FM cases due to the same experimental procedure being

used, we also plot the results of the Density Matrix Renormalization Group (DMRG)

simulation (performed by the Harvard team) for a similar system size of N = 6× 6

atoms without including any errors (see inset). Qualitatively, the results align well with

the experimental data: the AFM correlation decays faster than the FM correlation

but still shows non-zero correlation at long distances. Quantitatively, the correlation
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5.3 XY ground states of larger square arrays

amplitudes are weaker. For the FM state, there is approximately a factor 3 of difference

between the amplitude of the measured correlations and the simulated ones. For the

AFM state, at short distances, we also observe a factor 3 of difference between the

experimental and simulated correlations, but at long distances, this factor increases up

to 10. We attribute these differences to several sources of imperfections: preparation

errors (finite fidelity of the initial Néel state preparation), detection errors (ε↑ and ε↓,

see Sec. 2.3), and decoherence effects (Rydberg lifetimes and positional disorder). The

detection errors contribute to a decrease in the amplitude of the measured correlations;

in a first approximation, they lead to an overall reduction of the Cx
r correlations by

a factor 1 − 2(ε↑ + ε↓) (see more details in Appendix A). Assessing the effects of

preparation errors and different decoherence mechanisms is more complex as they

affect the system dynamics, requiring simulations that include these imperfections,

which are challenging to perform for such system sizes. However, we can qualitatively

understand their effects as follows: these imperfections prevent us from preparing the

perfect AFM/FM ground states. Instead, we prepare finite-temperature states with

T ≈ 0. Theoretically, in the thermodynamic limit, at non-zero temperature T > 0,

frustration is expected to destabilize the AFM phase and prevent the formation of

long-range order, while for the FM phase, long-range order is still preserved. Therefore,

we intuitively expect the preparation errors and decoherence effects to be particularly

detrimental to the formation of AFM long-distance correlations. This prediction aligns

with the observations: measured and simulated FM correlations are similar up to

a factor of 3, while for the AFM correlations, this gap increases at long distances.

However, we believe that these imperfections remain sufficiently weak such that we

still observe non-zero AFM correlations at long distances.

5.3.3 Is the U(1) continuous symmetry broken ?

As mentioned earlier, the ansätze |AFM/FM⟩CSB enforces the U(1) symmetry by

being the superposition of all the classical AFM/FM states along all the direction of

the equatorial plane (see Eq. 5.6). A natural question then arises: do we produce a

quantum superposition of these classical states or, at each repetition of the experiment,

does the system randomly pick a direction φ on the xy plane and produce the

corresponding classical state, thus breaking the U(1) symmetry. In the second case,

we have a statistical mixture of all classical states. To answer this question, we
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Figure 5.8: Histogram of the averaged z magnetization for the AFM and FM

states. Histogram of M z. The shaded area represent the data, the coloured rectangles

represent what we would expect if we consider the preparation and detection errors given

by the error tree in Fig. 3.7. The black curve shows the expectation values for a binomial

distribution.

analyze the statistical distribution of the average magnetization along z denoted

M z =
∑

i σ
z
i /N . On can show that for the two ansätze |AFM⟩CSB and |FM⟩CSB, the

variance Var(M z) = ⟨(M z)2⟩ − ⟨M z⟩2 is zero. However, for a statistical mixture of

AFM/FM classical states, the variance would reach NVar(M z) = 1.

Figure 5.8 shows, with coloured shaded areas, the histogram of M z for both the

AFM and FM states. From these histograms, we compute for the AFM: NVar(M z) =

0.46 and for the FM state: NVar(M z) = 0.56. Both variances are below one, indicating

that we do not prepare classical magnets. These non-zero values can be understood by

taking into account the state preparation and detection errors described by the error

tree presented in Fig. 3.7. Applying these errors to the ideal distribution leads to the

histograms represented by coloured rectangles which reproduce well the experimental

data.

The concept of symmetry breaking describes how some systems spontaneously

break their symmetry by choosing a preferential direction or orientation. This statement

is valid at the thermodynamic limit (i.e., for macroscopic system sizes) where any

defect in the system or external residual electric/magnetic field can favour one of these

configurations. In this case, the system collapses to the corresponding symmetry-broken

classical state. However, in our experiment, the system has a relatively small size

and is placed in a very well-controlled environment, allowing us to preserve the U(1)

symmetry.
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Figure 5.9: Phase diagram of the AFM and FM states. Phase diagram of the AFM

(left) and FM (right) state. We measure Cx
AFM/FM defined in Eq.5.10 as a function of δq

and δf. The dashed lines are a guide to te eyes to shown the boundaries between the PM

and AFM/FM phase. The inset in left panel shows the experimental sequence. We always

measure the state of the atoms after 4µs thus letting an equilibrium time after the quench

of ⩾ 1µs.

5.4 Exploration of the AFM/FM phase diagram

In the previous sections, we studied the AFM and FM ground state. In this section,

we now probe their respective phase diagram as a function of their temperature and

the applied light shift δ. In the first part, I focus on the exploration of these phase

diagrams, and then in a second and third part, I investigate the quantum phase

transition occurring at T = 0 and the thermal one at δ = 0.

5.4.1 Probing the AFM/FM phase diagram via quench experiments

We showed on a 6× 7 square array that we measured long-distance correlations

consistent with the prediction of long-range order at T = 0 for the AFM and FM

ground state. As mentioned previously, this behaviour should persist at a finite

temperature T > 0 for the FM state, while the long-range correlations should vanish

as the AFM long-range order is forbidden.

To change the “effective temperature” of the state, we introduce a partial quench

of amplitude δq into the ramp, reaching a final light shift of δf. The quench δq introduces
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an excess energy in the system and thus can be seen as a proxy for the temperature.

After the quench, we then maintain the light shift at δf until we reach 4µs of experiment

time as shown in the inset of Fig. 5.9. For the set of values {δq, δf} we wish to explore,

this experimental sequence allows us to get an equilibrium time of at least 1µs between

the quench and the readout. We experimentally checked that this time is sufficient for

the quenched state to thermalize, i.e, to reach steady values for the magnetizations

and correlation functions. After each ramp set by the {δq, δf} parameters, we measure

along x the average two body connected correlation Cx
AFM/FM defined as:

Cx
AFM/FM =

1

N(N − 1)

∑
i ̸=j

(±1)(ux·rij+uy ·rij)/a⟨σx
i σ

x
j ⟩c, (5.10)

with rij separating atom i and j, and the sign is −1 for the AFM state, and +1

for the FM state. This observable is a good order parameter to characterize long-

range correlation: the longer-range and stronger the correlation are, the higher is

Cx
AFM/FM. Fig. 5.9 shows the AFM and FM phase diagrams. For small values of δf

and δq (corresponding to low-temperature states), the AFM phase exhibits AFM

order with an average connected correlation of Cx
AFM ≈ 0.04. As we increase either

δf or δq, C
x
AFM decreases towards zero indicating melting into a disordered phase

named the Para-Magnetic (PM) phase. We now perform the same analysis for the FM

phase. Compared to the AFM case, the region where the system exhibits FM order is

significantly larger. This observation is consistent with the fact that the long-range

interactions induce frustration destabilizing the AFM phase while it helps to maintain

the FM order in the FM phase.

We now focus and study the thermal phase transition (δf = 0) and the quantum one

(δq = 0).

5.4.2 Thermal phase transition

The thermal phase transition happens at δf = 0 (vertical cuts in Fig. 5.10). The

physics is described by a Berezinskii–Kosterlitz–Thouless (BKT) transition [Berezinsky,

1971; Kosterlitz and Thouless, 1973; Kosterlitz, 1974; Ryzhov et al., 2017]. Below a

critical temperature T < TFM
c , the FM state exhibits long-range order, characterized

by an algebraic decay of the correlation at short distances that stabilizes and reaches
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Figure 5.10: Thermal phase transition of the FM/AFM state. (a)/(b) FM/AFM

state. Insets: Power-law fit of the average correlations |Cx
r | as a function of r for various

value of |δq/J | (|δq/J | = [1.9, 8.0, 11.1, 15.5, 25.0] for the FM state and |δq/J | =
[5.9, 4.2, 1.6, 0.02] for the AFM state). The solid curves represent the fits. Main plots:

Exponent β extracted from the power-law fits. The error bars represent the uncertainty of

the fit estimating β.

a finite value at long distances. In the AFM case, at finite temperature lower than

its critical temperature 0 < T < TAFM
c , the state exhibits quasi-long range with

correlations decaying to zero as a power-law. Above T
AFM/FM
c , thermal fluctuations

dominate and lead to the disordered phase (PM phase). The BKT theory then predicts

an exponential decay of the correlations [Kunz and Pfister, 1976].

To estimate TFM
c , we use all the data performed at δf = 0 and fit for short

distances r the averaged correlations Cx
r by a power-law function Cx

r ∝ rβ(T ). Inset

of Fig. 5.10a show different fit of Cx
r at various values of δq for the FM phase. In

Fig. 5.10a, we plot the fitted power-law exponent β as a function of δq. We observe

that for low values of δq, β reaches a plateau around β ≈ −0.3. As we continue to

increase δq/J > 3, β decreases, indicating that the FM order begins to disappear. The

Minimally Entangled Typical Thermal States (METTS) algorithm run by the Harvard

team, allows us to give a calibration of δq as a function of an effective temperature. The

results are shown in [Chen et al., 2023a] and gives for δq/J ∼ 3 an effective temperate

of T/J ∼ 1.7. At the same time, simulations of the FM phase diagram predict a phase

transition at TFM
c /J = 1.5, which is consistent with our data.

We now focus on the AFM phase for which the perform the same procedure

analysis (see Fig. 5.10b). As for the FM state, power law exponent β exhibits a plateau

for δq/J ≲ 1 and decreases for higher values. For δq/J ∼ 1, METTS simulations give
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Figure 5.11: Quantum phase transition of the AFM/FM state. (a) and (b): Staggered

magnetization ⟨σzA,B⟩ as a function of δf. (c) and (d): Order parameter Cx
AFM/FM as a

function of δf. The vertical grey line highlights the critical light shift δ
AFM/FM
c .

us an effective temperature of T/J ∼ 0.7 consistent with the simulation of the AFM

phase diagram predicting TAFM
c /J ∼ 0.5 [Chen et al., 2023a]

We have qualitative agreements between the estimated critical temperature and

the ones predicted by simulations. As expected, the FM phase has a higher Tc than

the AFM one since the dipolar interactions tend to stabilize the FM order against

thermal fluctuations. I now move to the quantum phase transition.

5.4.3 Quantum phase transition

The quantum phase transition happens at δq = 0 (horizontal cuts in Fig. 5.9). At

any value of δf = 0, the prepared state correspond to ground state of HXY+HZ(δf) (see

Eq. 5.7). As HZ(δf) preserves the U(1) symmetry, we then expect the AFM/FM phase

to exhibit AFM/FM order for sufficiently small δf light shift. Between the AFM/FM

phase and the AM phase, we expect a continuous Quantum Phase Transition (QPT)

at some critical values, δ
AFM/FM
c of the applied light shift δf [Defenu et al., 2023].

To probe these QPTs, we plot as a function of δf, the average z staggered

magnetization ⟨σz
A,B⟩ defined as ⟨σz

A,B⟩ =
∑

i∈B⟨σz
i ⟩/N −

∑
i∈A⟨σz

i ⟩/N (see Fig. 5.11a

and b) and the order parameters Cx
AFM/FM (see Fig. 5.11c and d). For this experiment,
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as we do not quench the system and only study ground state physics, we remove

the equilibrium time of ⩾ 1µs introduced previously (see the experimental sequence

shown in the inset of Fig. 5.9) and come back to the initial adiabatic ramp profile

δf(t) = δ0e
−t/τ . The staggered magnetization starts close to one (due to preparation

and detection errors, this value is slightly lower than one) and decreases towards

zero as we decrease δf. At the same time, correlations in xy plane build up and are

characterized by an increase of Cx
AFM/FM to a non-zero value. As we continue to lower

δf, C
x
AFM/FM reaches a maximum value and slowly decay. Since the lowest values of δf

correspond to the longest durations of the experiment, we conjecture that this decay

at long times arises from decoherence effects such as shot-to-shot positional disorder or

Rydberg state lifetimes. We also observe that the speed at which ⟨σz
A,B⟩ decreases and

Cx
AFM/FM reaches its maximum is faster for the FM state. Theoretically, these speeds

are given by the critical light shift δ
AFM/FM
c . Since the long-range tail of the dipolar

interaction reinforces the FM order while frustration destabilizes the AFM phase, we

expect the QPT to occur at a larger value of δf for the FM compared to the AFM

case. DMRG simulations ran by the Harvard team predict that for a 6× 7 square

array, δAFM
c /J = 0.8 and δFMc /J = 7.1 [Chen et al., 2023a] represented by vertical lines

in Fig. 5.9. This analysis is consistent with our experimental observations.

5.5 Conclusion

In this chapter, I have presented how we implement the dipolar XY model from

resonant dipole interactions between Rydberg atoms. Then, I have focused on the

AFM/FM ground state of the dipolar XY Hamiltonian for 2D square geometries.

We have first studied the case of a small four-atom square array, which allows us to

forge intuition about the main properties of the AFM/FM states. We then moved to

larger square arrays of 6× 7 atoms and measured long-range correlations consistent

with the prediction of long-range order in the AFM and FM ground state. Finally,

by introducing partial quench in the adiabatic preparation, we explore the {T, δ}
phase diagram of the AFM/FM phases. We studied the thermal and quantum phase

transitions and showed that due to the frustration induced by the long-range tail of

the dipolar interaction, the AFM phase exhibits lower critical temperature and critical

δ value. These results demonstrate that the platform can implement and study the

XY model and verify theoretical predictions.
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An interesting question to ask is what would happen if we repeated the above

experiment while scaling up the number of atoms to a mesoscopic or macroscopic size.

Will we still measure the same properties? For example, we showed that our relatively

small system of N = 6 × 7 atoms preserves the U(1) symmetry. However, due to

continuous symmetry breaking, the AFM/FM ground states are expected, in the

thermodynamic limit, to break this U(1) symmetry and collapse into a classical state,

thus behaving like real-world materials. This raises the question of how much we need

to grow the system size to reach this quantum/classical frontier. If there is a limit,

what imposes this limit? Answering these questions will require several developments

and technological advancements in the near future to scale up the number of atoms

and minimize experimental imperfections.
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In the previous chapter, we have shown that frustration arises due to the long tail

of the dipolar interaction. The choice of the geometry can also produce frustration.

The most common example is a system of three spins in an equilateral triangle

configuration with the Ising model HIsing = ℏJ
∑

⟨i<j⟩ σ
x
i σ

x
j (see Fig. 6.1), where all

spins cannot simultaneously anti-align along the x axis. This frustration even occurs

with nearest-neighbour interactions and thus consequently significantly modifies the

AFM state properties. We usually describe these ground states by a superposition of

states in which all spins tend to align along different directions to minimize the energy.

In the case of strongly frustrated systems, this superposition can result in a new exotic

phase of matter matter called spin liquid [Lee, 2008; Balents, 2010; Savary and Balents,

2016; Broholm et al., 2020]. The literature of spin liquid is vast and not easy to follow:

as far as we know, there is no clear definition of spin liquid states and no rigorous

description about the features they should exhibit. Generally speaking, spin liquid

states are characterized by their apparent disorder, with no obvious magnetic order or



Chapter 6: Exploring exotic phases of matter: Spin liquids

Energy

Figure 6.1: Example of frustration induced by the geometry. The triangle geometry

introduces frustration in a anti-ferromagnet along x.

spin structure. They do not break rotational or translation symmetries; they look like

liquid-like states. Their quantum nature is revealed by measuring their long-range

entanglement and various exotic properties, ranging from emergent artificial gauge

fields [Lee, Nagaosa, and Wen, 2006], factionalized excitations [Kalmeyer and Laughlin,

1987], and connexions with superconductivity [Anderson, 1987].

Many experiments performed on real-world materials, such as organic compounds,

have already been performed at low temperatures via neutron scattering or nuclear

magnetic resonance methods. These systems exhibit a lack of order, and their low-

energy excitation spectrums are compatible with the theoretical predictions [Han et al.,

2012; Fu et al., 2015]. However, only global observables such as spin susceptibility, heat,

and thermal conductivity can be measured, limiting the variety of diagnostics that

experimentalists can perform on these systems. More recently, several groups using

quantum simulators started to investigate these field. Using superconducting qubits,

measurement of long-range entanglement have been demonstrated on topological

state [Satzinger et al., 2021], representing a significant step toward the realization and

measurement of spin liquids using such platforms. Evidence of spin liquid have also

been observed using arrays of Rydberg atoms [Semeghini et al., 2021]. In contrast with

real-world material experiments, quantum simulators provide single site resolution

which allows the experimentalist to measure non-local observables, thus giving a more

direct access to the study of spin liquids.

In parallel to these efforts, many theory works showed that spin Hamiltonian

on frustrated arrays could lead to their AFM ground state being a spin liquid. For

example, many works predicted that the nearest neighbour isotropic Heisenberg

Hamiltonian AFM ground state on Kagome lattices should be a Dirac Spin Liquid

(DSL) [Hastings, 2000; Ran et al., 2007; Yan, Huse, and White, 2011; He et al., 2017;

Zhu et al., 2018]. Recent studies conducted by Norman Yao’s team at Harvard showed
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6.1 Probing a Dirac spin liquid

that the dipolar XY model could lead to a DSL and Chiral Spin Liquid (CSL) [Yao et

al., 2018; Bintz et al., 2024]. Motivated by these results, the Harvard team contacted

us to experimentally investigate the DSL and CSL state using our Rydberg platform.

These works are still in progress, and in this chapter, I will present the preliminary

results we obtained. The first section will focus on the investigation of the DSL, and

the second one on the CSL.

6.1 Probing a Dirac spin liquid

In this section, we attempt to prepare and observe the DSL. DSLs are characterized

by their gapless excitations whose elementary excitations called spinons behave like

Dirac fermions, similar to those in graphene. DSL states feature a linear energy-

momentum relationship, resulting in Dirac cones in their dispersion relations. I first

describe the experimental preparation and the different phase transitions we cross

to prepare the DSL. Then, I analyze the main properties of the state we prepare.

Finally, to better characterize it, we study its excitations, trying to observe Friedel

oscillations, which could be a signature of the Dirac cones in the system. In this

section, all the experiment were performed using the same parameters as for the

previous chapter: a = 12.5µs, J/(2π) = −0.77MHz, |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩

=
∣∣60P1/2,mJ = −1/2

〉
.

6.1.1 Experimental preparation

We start with a Kagome array of N = 114 atoms as shown in Fig. 6.2. The

procedure to prepare the AFM ground state is the same as the one described in the

previous chapter (see Sec. 5.2.2). We rely on a adiabatic procedure using the following

Hamiltonian:

H = HXY +HZ =
ℏJ
2

∑
i<j

a3

r3ij

(
σx
i σ

x
j + σy

i σ
y
j

)
+ ℏδ

∑
i∈A

(1 + σz
i )/2, (6.1)

where HZ is effective-magnetic field along z of strength δ applied on half of the

atom in the sub-array denoted A defined in Fig. 6.2b (the other atoms are in the

sub-array B). This field is achieved using addressing beams focusing on the atoms
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Figure 6.2: Kagome geometries and glider state. Left: Fluorescence image of the

N = 114 atoms Kagome geometry. Right: Glider state. The atoms in A are addressed

and initialized in |↓⟩ and the ones in B are initialized in |↑⟩. Here the lattice spacing is

a = 12.5µm.

in A. For |δ/J | ≫ 1, the ground state of H ≈ HZ is similar to the Néel state for

square geometries where the atoms in A/B are in |↓⟩/|↑⟩. We call this state the glider

state. To apply the ground state we follow the following adiabatic procedure. After

having initialized all the atoms in |↓⟩, we apply a large light shift |δ/J | ≫ 1 and using

microwave pulses apply local rotations (see Sec. 3.1)) to prepare the ground state: the

glider state. We then adiabatically ramp down the applied light shift δ(t) = δ0e
−t/τ

to zero to reach the AFM ground state. The positions of the A/B atoms have been

chosen to optimize the coupling between the glider and the ground state during the

adiabatic preparation. For example, having at least one atom from A and from B on

every elementary triangle of the Kagome array allows for a better distribution of the z

magnetization over the array. The exact position of every |↑⟩/|↓⟩ spins results from an

optimization using DMRG simulations performed by the Harvard team.

Adiabaticity criteria. We must evaluate the time constant τ for which the ramp δ(t)

is adiabatic. Numerical simulations of the dynamics are intractable for our system

size, making it difficult to predict the energy gaps and the appropriate ramp speed.

We thus need to determine the adiabaticity criteria experimentally. To do so, we

first choose τ = 0.3µs. In Fig. 6.3a, we plot the average z staggered magnetization

⟨σz
A,B⟩ =

∑
i∈B⟨σz

i ⟩/N −
∑

i∈A⟨σz
i ⟩/N and the average nearest neighbour connected
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Figure 6.3: Checking the adiabaticity of the ramp. (a) Average staggered magnetization

⟨σzA,B⟩ and average nearest neighbour connected correlations Cz
d=a measured along z as a

function of δ for a ramp time constant of τ = 0.3µs. (b) Correlation Cz
d=a as a function

of τ measured at the end of the ramp when |δ/J | ≈ 0.04. The point at |τJ/(2π)| = 0

corresponds to a quench from δ0 to zero, the data point corresponds to a measurement

performed after an equilibrium time of 0.5µs.

correlation Cz
d=a measured along z as a function of δ. As we decrease δ, the glider state

melts into the AFM state, manifested by the collapse of the staggered magnetization

⟨σz
A,B⟩ while negative nearest neighbour correlations build up. At small δ, we observe

a small decay of the correlations. Since small values of δ correspond to the longest t,

we attribute this decay to decoherence effects (Rydberg lifetimes and shot-to-shot

positional disorder).

To check if this ramp time is adiabatic, we vary the ramp time constant τ and

measure the Cz
d=a correlations at the end of the ramp when |δ/J | ≈ 0.04 (see Fig. 6.3b).

As we increase |τJ/(2π)|, the correlations increase until |τJ/(2π)| ≈ 0.2, reaching a

saturation value around Cz
d=a ≈ −0.13. It suggests that for |τJ/(2π)| < 0.2 the ramp

is slow enough to perform an adiabatic preparation of the AFM ground states. As

τ = 0.3µs satisfies this condition, we will keep this ramp time constant.

Phase transition from VBSs to a DSL. As already introduced in the previous

chapter (see Sec. 5.2.1), one common ansatz to describe spin liquids relies on the

Valence Bond Solids (VBSs) description. As a reminder, a VBS describes a state

where all spins are maximally entangled to nearest neighbour forming a product

state of singlet states | ⟩ = |−⟩ = (|↑↓⟩ − |↓↑⟩) /(2π). For six atoms in a hexagonal

configuration, an example of VSB reads | ⟩. Although VBSs have no magnetic order

(i.e. no magnetization), they break the rotational and translation symmetries and thus
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Figure 6.4: Phase transitions from the Glider state to the DLS state. (a) Average

nearest neighbour correlations measured along z (blue curves) and x (purple curve) as a

function of δ. The circle/square marker data shows the average performed on the nearest

neighbour pairs whose atoms of the pairs belong to the same sub-array: either both in A

or B (circle markers) or to different sub-array (square markers). We identify three phases:

the glider state, the glassy phase and the DSL phase. The background colours are a guide

to the eye to represent these different phases. (b) For each phase, we represent the z

magnetization ⟨σzi ⟩ of each atom (coloured circles) and the connected nearest neighbours

correlation ⟨σzi σzj ⟩c of each pair (coloured bonds). The data shown in this figure has been

taken with assembled arrays containing at most three defects allowed.

are not spin liquids. However, building a quantum superposition of a broad distribution

of different VBSs erases these symmetries and can lead to long-range entanglement,

producing a spin liquid [Balents, 2010; Zhou, Kanoda, and Ng, 2017]. These states are

refereed as Resonating Valence Bond (RVB) in the literature [Anderson, 1973]. This

RVB state would correspond to ∝ | ⟩+ | ⟩ for the hexagon configuration.

During the ramp down of δ, DMRG simulations performed by the Harvard team

on smaller system sizes, predict that the systems should cross two phase transitions.
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The first occurs at relatively high values of |δ/J | and connects the glider state to the

glassy phase. As we start to decrease |δ/J |, the addressed atoms in |↓⟩ start to couple

to the non-addressed one in |↑⟩ leading to antiferromagnetic bonds. In the meantime,

the atoms from the same sub-array (either A or B) remain uncorrelated. We can

intuitively represent this state as a superposition of specific VSBs only coupling the

atoms from A to the one in B via nearest neighbour | ⟩ bonds. Although the state

already exhibits a high degree of entanglement, it is not yet a spin liquid since it

breaks the rotational and translation symmetry. We call this phase the glassy phase.

As we continue to decrease δ, the second transition occurs; the glassy phase melts

into the DSL with uniform correlations between all the nearest neighbour pairs, thus

recovering the rotational and translation symmetries.

To experimentally identify these different phases, we plot in Fig. 6.4a the corre-

lations averaged over all nearest neighbour pairs whose atoms belong to the same

sub-array (circle markers) or different sub-array (square markers). We measure the

correlations along x (purple data) and along z (blue data). To better highlight these

phase transitions, we also plot in Fig. 6.4b the magnetization ⟨σz
i ⟩ of each atom

(coloured circles) and the nearest neighbour correlation ⟨σz
i σ

z
j ⟩c measured along z

(coloured bonds) at different stages of the ramp: glider, glassy and DSL phase. In

both basis, the data exhibit similar behaviour. At high |δ/J | values, we measure

almost no correlations which is expected for the glider being a product state. We

attribute the residual non-zero correlation to the effect of the XY interactions during

the glider state preparation (see Sec. 3.2 in Chapter 3 for more details). As we ramp

down the addressing field intensity, negative correlations between atoms from different

sub-arrays build up while atoms from the same sub-arrays remain uncorrelated. As

expected, as we continue to decrease δ, we enter the DSL phase, and these correlations

homogenize, reaching a steady value of ≈ −0.11 along z and ≈ −0.16 along x. We

notice that the correlations are still not perfectly uniform between each pair. We

attribute part of this imperfection to edge effects (the correlations on the edges are

slightly higher) and to static positional disorder (that we discussed in Sec. 4.3.2 of

Chapter 4) that may favour the formation of some specific VBSs.
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Figure 6.5: Correlation as a function of the distance. (a) Maps of correlation function

Cx
r=(rx,ry)

and Cz
r=(rx,ry)

at the end of the ramp. (b) Absolute values of the average

correlations |Cx
r | and |Cz

r | measured along x and z as a function of the distance r between

two atoms. The data shown by hexagon markers show the data for the Kagome N = 114

atoms array. The square markers represents the data measured along x for an AFM state

using a N = 10× 10 atoms square array. The data shown is this figure has been taken

with assembled arrays containing at most three defects.

6.1.2 Properties of the ground state

We now focus on the main properties of the state we prepare at the end of the ramp

(|δ/J | ≈ 0.03) in the DSL phase.

A disordered phase. We first analyze the magnetization. As shown in Fig. 6.4b,

the z magnetization of each atom in the DSL phase is at zero. The state does not

exhibit classical magnetic order, which is consistent with the RVB spin liquid ansatz.

However, this lack of magnetization is not enough to distinguish this state from another

non-liquid state; for example, the AFM/FM ground states on square geometries share

this same property and are not spin liquids.

We now look at the two body correlation functions. Figure 6.5a shows the map of

correlation Cx,z
r=(rx,ry)

(already defined in Eq. 5.8) measured along x and z. In both

basis, the state exhibits relatively strong nearest neighbour correlations. Going to the
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next-nearest neighbour, we distinguish positive/negative correlations along x/z. As

we increase further the distance r = rxux + ryuy, the amplitude of the correlations

quickly decay towards zero. This behaviour is different from what we expect for the

AFM ground state of square arrays which exhibits (at T = 0) a AFM long-range

order along x. To better analyze this difference, we plot in Figure 6.5b the average of

the correlations |Cx,z
r | as a function of the distance |r| = r (already defined in Eq.

5.9). The |Cx,z
r | correlations (purple and blue curves) quickly decrease and after a few

lattice sites reaching the noise floor after r/a ∼ 4,. As a guide to the eye, the solid

curves show power-law fits |Cx,z
r | ∝ rβ with exponent parameters of β ≈ −1.4 along z

and β ≈ −2.1 along x (we believe these fits are too hazardous to conclude anything

for them).

For comparison, using the same experimental parameters, we now prepare the

AFM ground state of a square array with a similar size of N = 10× 10 atoms and

plot the correlation |Cx
r | as a function of r (green curve). At a distance of r/a = 1,

the square array exhibit a correlation value similar to the one measured with the

Kagome array. For higher distances, the correlations decrease, but in contrast with the

kagome array this decay is very slow. For long distances r/a > 4, we still measure non

zero correlation. This comparative measurement between the Kagome and square

configuration illustrates that for similar system size, the choice of the geometry can

significantly alter the properties of the XY ground state. The square geometry is

insufficiently frustrated, allowing the emergence of long-distance AFM correlations. In

contrast, the highly frustrated Kagome geometry prevents both spin-ordering and

long-range correlations.

In summary, the phase that we prepare does not exhibit any magnetization.

Moreover, the frustration induced by the geometry leads to a fast decay of the

correlations with the distance, suggesting that this state does not possess any apparent

magnetic order. A lack of order is a good indication of a spin liquid but is not

a sufficient condition to prove it [Savary and Balents, 2016]. Spin liquids are also

characterized by a high level of entanglement.

Entanglement. We now try to detect entanglement in the system (the analysis I will

now describe has been inspired by the spin squeezing project presented in Chapter

7). To do so, we compute the variance Var(Mx,y,z) of every average magnetization

Mx,y,z =
∑

i σ
x,y,z
i /N measured along the x, y and z axis. It has been shown in [Tóth
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Figure 6.6: Detection of entanglement. (a) Evolution of NVar(Mx) and NVar(M z)

as a function of δ during the ramp down. (b) Evolution of ξ2 (see Eq. 6.2) as a function of

δ. We did not measure the full curve of NVar(My) as a function δ. Since HXY +HZ

exhibits a U(1) symmetry, we assume that NVar(Mx) = NVar(My) to compute ξ2. The

data shown is this figure has been taken with assembled arrays with at most three defects

allowed.

et al., 2009] that entanglement is detected if the following inequality is satisfied:

ξ2 =
NVar(Mx) +NVar(My) +NVar(M z)

2
< 1 , (6.2)

with ξ2 the entanglement witness. This entanglement witness is particularly well

appropriate for detecting entanglement in a state formed of VBSs. For the RVB state

or just for a single VBS state, we expect NVar(Mx,y,z) = 0 and thus ξ2 = 0 [Tóth

and Mitchell, 2010]. In comparison, for the glider state, we have NVar(M z) = 0, and

NVar(Mx) = NVar(My) = 1 and recover ξ2 = 1. Figure 6.6a shows the evolution of

NVar(Mx) and NVar(M z) as a function of the δ during the adiabatic preparation. As

expected NVar(Mx) starts around ≈ 1, and as we reduce |δ/J |, NVar(Mx) decreases

down to ≈ 0.5 while NVar(M z) remain constant around ≈ 0.45. Due to experimental

imperfections NVar(Mx) and NVar(M z) reach non-zero values at the end of the

ramp. From these curves, we now compute ξ2 (we did not take the measurement along

y, so to compute ξ2, we use the fact that since HXY +HZ exhibits a U(1) symmetry,

we assume that NVar(Mx) = NVar(My)). Figure 6.6b shows ξ2 as a function of δ.

Similarly to NVar(Mx), ξ2 starts around one and decreases below one as we ramp

down δ indicating that entanglement is detected. Once again, due to experimental

imperfections, ξ2 does not reach a zero value and saturates at ξ2 ≈ 0.75. This analysis

shows that the state we prepare is entangled. However, this criteria does not provide
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6.1 Probing a Dirac spin liquid

more information about the structure of entanglement, and it does not allow us

to discriminate between a spin liquid state and another state that is not one. For

example, running the same analysis on the AFM ground state data of square arrays we

presented in the previous chapter (analysis not shown here) also leads to the detection

of entanglement whereas this state is not a spin liquid.

This study of the entanglement is only a first step toward a more in-depth

investigation of this entanglement. The Harvard team is currently studying observables

based on many-body correlation functions to better characterize the phase we prepare.

6.1.3 Friedel oscillations

Friedel oscillations. The spin liquids are also characterized by their exotic excitation

spectrum. Using the parton theory approach [Savary and Balents, 2016], one can

re-express the dipolar XY Hamiltonian in terms of fermionic operators σ+
i = f †

i,↑fi,↓

and σ−
i = f †

i,↓fi,↑ with fi,{↑,↓} and f †
i,{↑,↓} being the annihilation and creation operator

acting on fermionic excitations named spinons and ni,{↑,↓} = f †
i,{↑,↓}fi,{↑,↓} the number

operator [Auerbach, 1994]. We can then insert this representation into the spin

Hamiltonian, apply the single occupancy constraint ni,↑ + ni,↓ = 1 and treat the

result within the mean field approximation theory. This theoretical framework is very

effective for studying and characterizing various spin liquids [Savary and Balents,

2016]. DSLs states are characterized by Dirac spinon excitations whose band structures

exhibit two Dirac cones located at k = ±(π/(2
√
3), π/2) in the Brillouin zone [Hermele

et al., 2008; Meng et al., 2010; He et al., 2017; Zhu et al., 2018]. Being able to probe

this excitation spectrum would be a positive signature of a DSL. One way to do it,

is to insert a local impurity in the system. This impurity would scatter the spinons

between the two Dirac points and thus potentially induce a Friedel oscillation response

that we can measure. More theoretical details are given in [Bintz et al., 2024].

Experimental realization. To produce Friedel oscillations, we apply the following

procedure. From the Glider state, we ramp down δ to prepare the DSL but now apply

an additional local light-shift δloc on one of the atoms of the array (shown with a black

cross in Fig. 6.7a). The light-shift on this perturbed atom reads δ(t) = δ0e
−t/τ + δloc

while the light-shift on the other addressed atoms remain δ(t) = δ0e
−t/τ . We produce

this extra light shift by focusing an independent addressing beam on the atom to
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Figure 6.7: Friedel oscillations. (a) To observe Friedel oscillations, we plot ⟨σ̃zk⟩ restricting
ourselves to the sub-array showed by yellow circles. The circle with a black cross shows the

position of the local perturbation and kFriedel represents the propagation of the Friedel

oscillations. (b) Results obtained using the free fermionic representation, ⟨σ̃zk⟩ exhibits a
peaks at k = ±(π/(2

√
3), π/2) corresponding to Friedel oscillations. The black dashed

line hexagon shows the Brillouin zone and the white shows an extended Brillouin zone. (c)

Bottom: Experimental results measured for |δloc/J | = 1.5. Top: Averaged value of ⟨σ̃zk⟩ in
the green circle minus the averaged value in the black hexagon as a function of |δloc/J |.

which we wish to apply the local perturbation. At the end of the ramp (|δ/J | ≈ 0.04),

we measure the state of the system along z. We repeat the experiment for various

values of the perturbation strength δloc and then compute the averaged 2D Fourier

transform of the magnetization defined as:

⟨σ̃z
k⟩(δloc) =

∑
j

eirj ·k/a
[
⟨σz

j ⟩(δloc)− ⟨σz
j ⟩(δloc = 0)

]
(6.3)

with rj the position of atom j and ⟨σz
j ⟩(δloc)−⟨σz

j ⟩(δloc = 0) the extra z-magnetization

measured on atom j at the end of the ramp induced by the local perturbation of
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6.1 Probing a Dirac spin liquid

strength δloc. We expect to observe the Friedel oscillations at locations ±(π/(2
√
3), π/2)

in the Brillouin zone. In real-space, it corresponds to an oscillation period of 2
√
3a

along the direction kFriedel shown in Fig. 6.7a. It turns out that the Harvard team

showed that one way to isolate the Friedel signal and thus to maximize our chance to

observe it, is to consider the sub-array shown by the yellow circles in Fig. 6.7 where all

these atoms are all separated along kFriedel by a multiple of half the Friedel oscillation

period. We now restrict the sum in Eq. 6.3 to the atoms belonging to this sub-array.

Following this analysis method, the Harvard team calculated the Friedel response

expected at |δloc/J | ∼ 0.3 using a free fermion model on a large Kagome cluster of

more than N = 2000 sites [Bintz et al., 2024]. The results are shown in Fig. 6.7b. We

observe that ⟨σ̃z
k⟩ reaches a peak located at k = ±(π/(2

√
3), π/2) signature of Friedel

oscillations.

We now turn to the experimental data. The bottom panel in Fig. 6.7c shows ⟨σ̃z
k⟩

measured for a local perturbation of |δloc/J | = 1.5. As for the fermionic representation,

the system exhibits a signal at k = ±(π/(2
√
3), π/2), which is consistent with the

existence of Friedel oscillations. However, this signal strongly depends on the amplitude

of the perturbation. The top panel of Fig. 6.7c shows the average Friedel signal denoted

⟨σ̃z
k∈ ⟩ (average of ⟨σ̃z

k⟩ inside the green circle) to which we subtract the background

signal denoted ⟨σ̃z
k∈ ⟩ (average of ⟨σ̃z

k⟩ inside the black dashed line hexagon) as

a function of |δloc/J |. As we increase the perturbation strength, ⟨σ̃z
k∈ ⟩ − ⟨σ̃

z
k∈ ⟩

increases, reaches a maximum around |δloc/J | ≈ 1.5 and decreases back for larger

values. The signal seems to appear only for a specific range of |δloc/J | values. Theoretical
and experimental investigations are still in progress to understand this behaviour.

Conclusion about the DSL. In conclusion, I now answer the question: is the state

that we prepare a spin liquid? The honest answer is that we do not know. We

showed that the phase we prepared looks disordered with no apparent magnetic order

but exhibits entanglement. We also showed that by introducing a perturbation in

a system, we observe a response consistent with Friedel oscillations predicted by

the spinon picture. Although all these observed features are compatible with the

behaviour of a DSL state, further investigations are required to characterize this

phase. On the theoretical side, additional studies are conducted to understand the

DSL phase better and find relatively simple observables (simple in the sense that

we can measure them experimentally) that provide a positive signature of the DSL.

On the experimental front, further analyses are required to assess the effects of the
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experimental imperfections on the state we prepare. In particular, considerable efforts

are being made to reduce both shot-to-shot and static positional disorder (using cooling

procedures as explained in Sec. 2.2.1, and correcting the position of the atoms as

detailed in Chapter 4), which we believe are particularly detrimental to the formation

of DSLs.

6.2 Probing chiral spin liquids

In this section, we turn to a second type of spin liquids called Chiral Spin Liquid

(CSL) states [Kalmeyer and Laughlin, 1987; Baskaran, 1989; Wen, Wilczek, and Zee,

1989]. In contrast to DSL states, CSLs are gapped phase that spontaneously break the

time reversal symmetry and exhibit topological order characterized by chiral edge

states [Wen, 1991]. Theoretical works already predicted that frustrated geometry could

lead to a CLS. For example, the ground state of the Heisenberg model on Kagome

geometries is a good candidate [Messio, Bernu, and Lhuillier, 2012; He, Sheng, and

Chen, 2014]. Recently, the Harvard team pointed out that using the dipolar XY

model with a modified Kagome geometry called breathing Kagome, the AFM ground

state is also predicted to be a CSL. Figure 6.8 shows different breathing Kagome

configurations whose nature of the ground state depends on the breathing parameter β

defined in the figure. For β ≈ 1.5 the state is predicted to be a CSL. Inspired by these

results, the Harvard contacted us to experimentally explore how to experimentally

prepare and characterize a CSL. This project is still ongoing, and I will summarize our

preliminary results in this section. Part of these results have been published in [Bornet

et al., 2024]. In this section all the experiment were performed using the following

parameters: a = 12.3µs, J/(2π) = −0.82(1)MHz, |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =∣∣60P1/2,mJ = −1/2

〉
.

6.2.1 Minimalistic system of six atoms

Signature of a CSL state. One way to identify a CSL is to show that the state

spontaneously breaks the time-reversal symmetry [Wen, 1991]. This can be achieved by

measuring non-zero chiralities of each elementary triangle of the array. For three spin

i, j and k, the chirality is defined as χijk = (σi×σj) ·σk, with σi = σx
i x+ σy

i y + σz
i z

[Tsomokos et al., 2008]. The chirality operator can be expressed as the sum of six
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1.0 1.5 2.0

DSL phase Glassy phaseCSL phase

Figure 6.8: Sketch of the breathing Kagome phase diagram. Different breathing

Kagome geometries and there respective AFM ground state as a function of the breathing

parameter β.

observables χijk = σx
i σ

y
jσ

z
k − σx

i σ
z
jσ

y
k + σy

i σ
z
jσ

x
k − σ

y
i σ

x
j σ

z
k + σz

i σ
x
j σ

y
k − σz

i σ
y
jσ

x
k that each

can be measured independently. However, measuring these terms is not straightforward

since it requires performing local rotations before the readout. In Sec. 3.3.1 of Chapter

3, I show how we perform arbitrary local rotations by applying different light-shift

intensities on different atoms combined with global microwave pulses. In particular, we

showed that measuring the chirality of three interacting atoms in a triangle is possible.

Therefore, we decided, as a first study, to apply this method to a minimalistic system

of two facing triangles as illustrated in Fig. 6.9a and try to measure the relevant

observables needed to identify a CSL states. I will first theoretically study its ground

state and explain how we experimentally prepare and characterize it.

Effective spin model. To understand the ground state of a system composed of two

interacting triangles, we can decompose the dipolar XY Hamiltonian in two terms. The

first one describes the interactions within each triangle, and the second describes the

interactions between two triangles. Let us focus on the first part. For three interacting

spins i, j and k in an equatorial triangle configuration, the XY Hamiltonian reads:

H△
XY =

ℏJ
2

(
σx
i σ

x
j + σx

j σ
x
k + σx

i σ
x
k + σy

i σ
y
j + σy

jσ
y
k + σy

i σ
y
k

)
. (6.4)

We now use the chirality identity χ2
ijk = 15−(σi + σj + σk)

2 to rewrite the Hamiltonian

as follow:

H△
XY =

ℏJ
4

(
9−

(
σz
i + σz

j + σz
k

)2 − χ2
ijk

)
. (6.5)
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Figure 6.9: Energy diagram of a minimalistic system of six spins. (a) Minimalistic

system of two triangles facing each other. (b) Energy diagram in the NM z = −2 sector.

The first term of this equation is just an offset energy and thus can be ignored. The

second term
(
σz
i + σz

j + σz
k

)2
corresponds to the z-magnetization sector and the third

one χ2
ijk correspond to the chirality operator squared. As these two terms commute

(
[(
σz
i + σz

j + σz
k

)2
, χ2

ijk

]
= 0), any eigenstates of H△

XY are defined by the eigenvalues

of these two operator. We now restrict ourselves to states with a total z magnetization

of σz
i + σz

j + σz
k = −1. The chirality operator χijk has three eigenvalues 0 and ±2

√
3.

They correspond to the following eigenstates |W ⟩ = (|↑↓↓⟩+ |↓↑↓⟩+ |↓↓↑⟩) /
√
3

and the two chiral states |χ±⟩ =
(
|↑↓↓⟩+ e±i2π/3 |↓↑↓⟩+ e±i4π/3 |↓↓↑⟩

)
/
√
3. When

J > 0, in order to minimize the energy, one would intuitively maximize χ2
ijk by

placing the system in |χ±⟩ or in a superposition of both. We now add the interaction

H△△′

XY = ℏJ
2

∑
i∈△
∑

j∈△′
a3

r3ij

(
σx
i σ

x
j + σy

i σ
y
j

)
between two different triangles △ and △′.

The total Hamiltonian thus reads HXY = H△
XY +H△′

XY +H△△′

XY . As the triangles are

more separated than the lattice spacing a, the interaction strength of H△△′

XY is, on

average, lower than the ones within a triangle and, therefore, can be treated using

the perturbation theory. Thus, it leads to terms coupling the different chiralities of

each triangle (I will not detail these calculations that are rather complicated and can

be found in [Norman Yao’s team in Harvard]). Good ansätze for the AFM ground

state of two weakly interacting triangles are Bell-like states of chiralities defined as∣∣Φ+
θ

〉
=
(∣∣χ+

△χ
+
△′

〉
+ eiθ

∣∣χ−
△χ

−
△′

〉)
/(3
√
2) or

∣∣Φ−
θ

〉
=
(∣∣χ+

△χ
−
△′

〉
+ eiθ

∣∣χ−
△χ

+
△′

〉)
/(3
√
2).

We now compare these ansätze to the ground state. As illustrated in Fig. 6.9b,

calculations show that the system has two ground states quasi-degenerated that we

will call |AFM⟩XY and |AFM⟩′XY. From these calculations, we compute overlaps of〈
Φ+

π/3

∣∣∣AFM〉
XY
≈ 86% and ⟨Φ−

π |AFM⟩
′
XY ≈ 86% which indicates that the ansätze

describe well the ground states.

For both ansätze, the mean chirality of each triangle ⟨χijk⟩ is zero. The spontaneous
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6.2 Probing chiral spin liquids

breaking of the time-reversal symmetry is thus only revealed by measuring the connected

chiral-chiral correlation1 between the two triangles defined as

⟨χijkχi′j′k′⟩c = ⟨χijkχi′j′k′⟩ − ⟨χijk⟩⟨χi′j′k′⟩, (6.6)

with χijk the chirality of the first triangle and χi′j′k′ the chirality of the second. For

the Ansätze states this value reaches ⟨χijkχi′j′k′⟩c = ±(2
√
3)2 = ±12 and for the two

ground states, it reaches ⟨χijkχi′j′k′⟩c ≈ ±9. This minimalistic array of six atoms

illustrates the underlying key mechanisms leading to a CSL with a larger system size:

the chirality of each triangle couples to each other, leading to a chiral long-range order,

i.e. ⟨χijkχi′j′k′⟩c reaches a non-zero value when the distance between the triangle goes

to infinity [Norman Yao’s team in Harvard].

6.2.2 Measurement of chiral-chiral correlations

We now try to experimentally prepare the ground state of this six-atom system and

measure chiral-chiral correlations. To prepare the ground state, we intend to repeat

the procedure used for the DSL state (see Sec. 6.1.1): we prepare a Glider state using

the addressing beams and adiabatically lower the applied light shifts to connect to the

ground state. The issue is that we also wish to use these addressing beams to perform

local rotations at the end of the sequence to measure the atoms in different basis.

Since we have only one addressing set-up (one addressing laser and one addressing

SLM), and since the addressing pattern cannot be changed dynamically during the

Rydberg sequence, we must perform the state preparation and measurement with the

same addressing pattern. This constraint led us to realize the following experimental

sequence.

Ground state preparation. As depicted in Fig. 6.10a, in each triangle, we address

one atom with an initial light shift 2δ, one with light shift δ, and one is not addressed

(I will now refer to these atoms as the 2δ, 1δ and 0δ atom for the first triangle and as

1Usually, connected correlations refer to correlations defined via the Ursell functions described in
[Kubo, 1962]. For a six-body connected correlation, this definition would require subtracting all
the lower-order connected correlations that contribute to the non-connected six-body correlation.
When computing the connected chiral-chiral correlation, we only subtract ⟨χijk⟩⟨χi′j′k′⟩ from the
non-connected 6-body correlation function ⟨χijkχi′j′k′⟩. The connected chiral-chiral correlation,
as it is defined, is thus only “partially” connected according to the Ursell definitions.
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the 2δ′, 1δ′ and 0δ′ atom for the second). This configuration allows us to prepare a

glider state with the addressed/non-addressed atoms prepared in |↓⟩/|↑⟩. We then

adiabatically decrease the light shift as δ(t) = δ0e
−t/τ with δ0/(2π) = 23MHz and

τ = 0.55µs (we numerically checked that this ramp speed is adiabatic enough).

The choice of the atoms we address determines the ground state we prepare. Fig.

6.10a and b show two configurations we call a and b. Using symmetry arguments,

we can show that configuration a will lead to the preparation of |AFM⟩XY and the

b one will lead to |AFM⟩′XY. We defineM the mirror symmetry operator along the

uy-axis and I the inversion symmetry operator around the center point of the array

(see Fig. 6.10a and b). Calculations demonstrate that |AFM⟩XY respects the M-

symmetry (M|AFM⟩XY = + |AFM⟩XY) and is antisymmetric with I (I |AFM⟩XY =

− |AFM⟩XY) while |AFM⟩
′
XY is antisymmetric withM (M|AFM⟩′XY = − |AFM⟩′XY)

and respects I (I |AFM⟩′XY = + |AFM⟩′XY). The glider state of configuration a is

symmetric withM. As its corresponding Hamiltonian HXY +HZ commutes withM
([HXY +HZ,M] = 0), theM-symmetry is preserved during the ramp down and thus

connects the glider state to |AFM⟩XY. Similarly, the glider state of configuration b

respects the I symmetry. As its corresponding Hamiltonian HXY +HZ commutes with

I ([HXY +HZ, I] = 0), the adiabatic procedure prepares |AFM⟩′XY.

Measurements. As then end of the ramp down, we wish to measure the connected

chiral-chiral correlations that can be expressed as the sum of 36 terms:

⟨χ0δ,1δ,2δχ0δ′,1δ′,kδ′⟩c =⟨σx
0δσ

y
1δσ

z
2δσ

x
0δ′σ

y
1δ′σ

z
kδ′⟩ − ⟨σx

0δσ
y
1δσ

z
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z
kδ′⟩

+⟨σy
0δσ

z
1δσ

x
2δσ

y
0δ′σ

z
1δ′σ

x
kδ′⟩ − ⟨σ

y
0δσ

z
1δσ

x
2δ⟩⟨σ

y
0δ′σ

z
1δ′σ

x
kδ′⟩

+⟨σz
0δσ

x
1δσ

y
2δσ

z
0δ′σ

x
1δ′σ

y
kδ′⟩ − ⟨σ

z
0δσ

x
1δσ

y
2δ⟩⟨σ

z
0δ′σ

x
1δ′σ

y
kδ′⟩

+⟨σy
0δσ

x
1δσ

x
2δσ

y
0δ′σ

x
1δ′σ

z
kδ′⟩ − ⟨σ

y
0δσ

x
1δσ

z
2δ⟩⟨σ

y
0δ′σ

x
1δ′σ

z
kδ′⟩

+⟨σx
0δσ

z
1δσ

y
2δσ

x
0δ′σ

z
1δ′σ

y
kδ′⟩ − ⟨σ

x
0δσ

z
1δσ

y
2δ⟩⟨σ

x
0δ′σ

z
1δ′σ

y
kδ′⟩

+⟨σz
0δσ

y
1δσ

x
2δσ

z
0δ′σ

y
1δ′σ

x
kδ′⟩ − ⟨σz

0δσ
y
1δσ

x
2δ⟩⟨σz

0δ′σ
y
1δ′σ

x
kδ′⟩

+ · · · ,

(6.7)

each having to be independently measured to reconstruct ⟨χ0δ,1δ,2δχ0δ′,1δ′,kδ′⟩c. As
explained in Sec. 3.3.1 of Chapter 3, we can apply arbitrary local rotations on the atoms

from the same class, i.e. addressed with the same light-shift intensity either 2δ, 1δ or 0δ

(non-addressed atoms) which constrains our measurement basis. Two atoms addressed
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Figure 6.10: Preparation and characterization a six-atom minimalistic system ground

state. (a)/(b) Glider state corresponding to configuration a/b. (c) Experimental sequence.

(d) Measurement of partial connected chiral-chiral correlations ⟨χ0δ,1δ,2δχ0δ′,1δ′,2δ′⟩pc as

a function of δ for the first ground state |AFM⟩XY (red data) and the second one

|AFM⟩′XY (blue data). (e) Plot showing the product of the chirality of each triangle

⟨χ0δ,1δ,2δ⟩⟨χ0δ′,1δ′,2δ′⟩. The solid curves represent the simulations performed by the Harvard

team.

with the same light shift cannot be measured in different basis. The consequence is that

experimentally we can only measure the first six terms of ⟨χ0δ,1δ,2δχ0δ′,1δ′,2δ′⟩c shown in

Eq. 6.7. It turns out that simulation performed by the Harvard group shows that only

this subset of measurements is sufficient to be representative of ⟨χ0δ,1δ,2δχ0δ′,1δ′,kδ′⟩c.
We now call the ⟨χ0δ,1δ,2δχ0δ′,1δ′,kδ′⟩pc the partial connected chiral-chiral correlations

corresponding to the sum of the six first terms in in Eq. 6.7. In good approximation we

have ⟨χ0δ,1δ,2δχ0δ′,1δ′,kδ′⟩pc ≈ ⟨χ0δ,1δ,2δχ0δ′,1δ′,kδ′⟩c/6. Before presenting the experimental

results, I mention the fact that the addressing pattern cannot be dynamically modified

during the Rydberg sequence is currently a limitation of the platform. In the future

generation of the experiment, multiple addressing lasers and SLMs are envisioned to

circumvent this limitation. The ground state preparation and measurement could then

be performed with independent addressing patterns, thus unlocking access to all terms

of the chiral-chiral correlation.

Figure 6.10c summarizes the experimental sequence. After having prepared the

glider state, we adiabatically ramp down δ to reach the ground states, apply the
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local rotation sequence (more details are given in Sec. 3.3.1) and finally read out the

state of the atoms. Fig.6.10d shows the partial connected chiral-chiral correlations

measured during the adiabatic ramp down for the preparation of |AFM⟩XY (red data)

and |AFM⟩′XY (blue data). At the beginning of the ramp |δ/J | ∼ 10, we observe

unexpected non-zero correlations that we attribute to the experimental limitations

that I now explain. To perform the local rotation, we need the addressing light shifts to

be set at their maximum value. As an AOM controls the light intensity, we thus need

to change its rf power from its current value for a given δ(t) to its maximum value.

This change takes ≈ 100 ns. During this transient time, to avoid the addressing light

changing the state of the atoms in an uncontrolled way, we switch off the light using

an EOM. The system is thus quenched from δ(t) to δ = 0 and undergoes undesirable

dynamics during the transient time before starting the local rotation sequence. During

these dynamics, the system starts to build up chiral-chiral correlations that we measure

experimentally. This effect is well captured by numerical simulations (solid curves)

performed by the Harvard team, which include experimental imperfections (positional

disorder, preparation and measurement errors). As we lower |δ/J |, the effect of the

undesirable dynamics decreases since the state becomes closer to the XY ground

states, which results in a decrease in the chiral-chiral correlations. As we continue to

decrease |δ/J | the system starts to develop correlations. At |δ/J | ≈ 0.1, as expected,

we measure positive correlations for |AFM⟩XY and negative correlation for |AFM⟩′XY

which are consistent with the
∣∣Φ±

θ

〉
ansätze described earlier (see Sec. 6.2.1) and in

good agreement with the simulations. At low values of light shifts |δ/J | < 0.1, the

duration of the ramp is relatively long, and the system starts to suffer from decoherence

effects that lead to a reduction of the correlations (mostly induced by shot-to-shot

positional disorder). We now focus on the individual chiralities of each triangle.

Fig. 6.10e shows with the same ordinate scale the product of the chiralities of each

triangle ⟨χ0δ,1δ,2δ⟩⟨χ0δ′,1δ′,kδ′⟩. For both ground states, this observable exhibits small

oscillations with relatively low amplitude compared to the chiral-chiral correlations.

These measurements demonstrate our ability to measure chiral-chiral correlation and

illustrate the pairing mechanism of chiralities between two coupled triangles.

This work constitutes a preliminary study towards the experimental realization

and characterization of CSL states. Many efforts and progress remain to be made.

First, as mentioned earlier, adding another addressing setup would allow us to

measure the full connected chiral-chiral correlation. Second, we need to increase
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the system size up to a few N ∼ 100 atoms to prepare a CSL and be able to

measure the chiral-chiral correlation between triangles separated by a long distance.

Third, we need to improve the fidelity of the state preparation and multi-basis

measurement protocol to perform more precise measurements of the chiral-chiral

correlations. For example, in Fig. 6.10d we measure a maximum amplitude of the partial

chiral-chiral correlation of ⟨χ0δ,1δ,2δχ0δ′,1δ′,kδ′⟩pc ≈ 0.4 while ground state calculations

predict an amplitude of ⟨χ0δ,1δ,2δχ0δ′,1δ′,kδ′⟩pc ≈ ⟨χ0δ,1δ,2δχ0δ′,1δ′,kδ′⟩c/6 ≈ 9/6 = 1.5.

The experimental imperfections reduce the signal strength by a factor 1.5/0.4 ≈ 4,

suggesting room for fidelity improvement (see more details in Sec. 3.3.1).

6.3 Conclusion

In this chapter, I have shown our preliminary results towards the experimental study

of spin liquids using frustrated geometries. In the first part, I have presented the results

of the ground state preparation of a N = 114 atoms array which has been predicted to

be a DSL. We showed that, as expected, the state does not possess any magnetic

order. Using an entanglement witness, we then showed that despite its apparent

disorder, the phase we prepare is entangled. Next, we introduced a perturbation in

the system and tried to probe its response. We measured spatial oscillations of the

magnetization, which are consistent with Friedel oscillations expected for a DSL. We

then turn our attention to the chiral spin liquid (CSL) and focused on a simple case of

two interacting triangles. We showed our ability to measure (partial) chiral-chiral

correlations that are key observables to characterize the CSL state, revealing the

spontaneous breaking of the time-reversal symmetry.
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In the previous two chapters, we studied the ground state of the dipolar XY model

for various geometries. We now turn to out-of-equilibrium dynamics. Out-of-equilibrium

systems can lead to a rich collection of intriguing phenomena, such as exotic spin

diffusion behaviours, dynamic phase transitions, unusual thermalization processes

and the formation of highly entangled states. This entanglement can be used as a

resource for various applications such as quantum cryptography, quantum computing,

or quantum metrology. Quantum metrology relies on the use of these entangled

states to improve the precision of measurements beyond the standard quantum limit

[Giovannetti, Lloyd, and Maccone, 2011]. Over the past decade, the use of squeezed

states of light or spin ensembles has evolved from proof-of-principle experiments to

applications in several areas of research ranging from gravitational wave detectors

[Tse et al., 2019], atom interferometers [Hosten et al., 2016] to optical atomic clocks
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[Pedrozo-Peñafiel et al., 2020; Robinson et al., 2022]. For atomic systems, the generation

of scalable squeezing (i.e., squeezing that improves with the system size) has been

demonstrated using a variety of platforms, including trapped ions, atomic ensembles

coupled to light, and ultracold gases [Pezzè et al., 2018]. In these platforms, the

interactions involved to generate spin-squeezed states exhibit all-to-all couplings. The

most commonly used Hamiltonian is the One Axis Twisting model (OAT) defined as

HOAT = ℏJ
∑

i<j σ
z
i σ

z
j [Kitagawa and Ueda, 1993; Ma et al., 2011]. Before starting this

project, no spin system using short-range interactions (namely interactions decaying as

Jij ∝ 1/rαij with α ≥ d, with d the dimensionality of the system) producing squeezing

had been experimentally demonstrated.

However, as pointed out in recent theoretical proposals [Perlin, Qu, and Rey,

2020; Comparin et al., 2022; Comparin, Mezzacapo, and Roscilde, 2022a; Young et

al., 2023], ensembles of dipolar XY-interacting spins should also generate scalable

spin-squeezing. These proposals are all the more relevant since the dipolar XY model

can be naturally implemented in various platforms using ultracold molecules [Yan et

al., 2013; Bao et al., 2023; Holland, Lu, and Cheuk, 2023], trapped ions [Monroe et

al., 2021], defects in solids [Cai et al., 2013], superconducting qubits [Dalmonte et al.,

2015] and Rydberg atoms, thus enlarging the class of systems amenable to squeezing.

Furthermore, tweezer-based platforms are particularly interesting for building more

accurate clocks, as they allow for the minimization of interaction-induced clock shifts

[Madjarov et al., 2019; Young et al., 2020]. Therefore, motivated by the promise to

improve this new generation of atomic clocks, we experimentally tried to show that

scalable squeezing can be generated using dipolar XY Rydberg interactions. This work

has been realized in collaboration with Norman Yao’s team at Harvard and Tommaso

Roscilde’s team in Lyon.

This chapter is organized as follows. In the first section, I will present how to

generate and measure spin squeezing using a square array of up to N = 100 Rydberg

atoms interacting under the dipolar XY model (see Fig. 7.1a). In the second section, I

run several analyses to better characterize the squeezed states we produce. Finally,

in the third section, I present our preliminary work to go beyond proof-of-principle

and develop methods to use these squeezed states for metrological applications. Most

of the results presented in this chapter have been published in [Bornet et al., 2023].

For all the results in this chapter, we use the following parameters: a = 15µm,

J/(2π) = −0.25MHz, |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =

∣∣60P3/2,mJ = −1/2
〉
.
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Figure 7.1: Generation of spin squeezing. (a) Fluorescence image of a N = 10× 10

square array. (b) Sketch of the experimental sequence. (c) representation of the coherent

spin state in the generalized Bloch sphere. The red arrow represent the spin length Jy and

the blue Q area represents the Husimi Q-distribution. (b) Simulation of a 6× 6 square

array after an interacting time of t = 0.250µs. The state exhibits squeezing.

7.1 Generation of scalable spin squeezing

In this section, I will first describe our experimental procedure for preparing and

characterising spin-squeezed states for a N = 6× 6 square array. Then, I will present

how the amount of squeezing, defined as the Ramsey squeezing parameter, varies with

the number of particles, confirming that the dipolar XY model can generate scalable

spin squeezing.

7.1.1 A quench experiment to generate squeezing

Experimental sequence. The experimental procedure we follow to produce squeezing

is depicted in Fig. 7.1b. We first initialized all the atoms in |↑⟩ and quench the

system by applying a microwave π/2-pulse around x thus preparing a Coherent Spin

State (CSS) along y denoted |→y→y→y→y · · ·⟩ = |CSSy⟩. Figure 7.1c represents

this CSS state in the generalized Bloch sphere. We let the system evolve under the

XY Hamiltonian for a time tXY. Due to the interactions, the initially isotropic spin
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Figure 7.2: Elliptical distribution of the spin fluctuations. Measurement of Var (Jθ) as

a function of θ for a 6 × 6 square array after an interaction time of t = 0.25µs. Each

black/grey circle represents a value of the variance 4Var (Jθ) /N . For example, the small

black circle 4Var (Jθ) /N = 1 show the Standard Quantum Limit (SQL). The blue curve

represents a fit using a cosine function and the black line represents the axis of minimum

variance measured at the angle θ⋆.

distribution in the (x, z) plane (shown by the Husimi-Q distribution1 represented in

blue) acquires an elliptical shape, rotated around y by an angle θ⋆ as shown in Fig.

7.1d. Then, we rotate the spins by applying a second microwave pulse and readout the

state. The phase and duration of this second pulse can be tuned in order to measure

the state along all the different axes of the Bloch sphere. From the measurements,

we compute the average and variance of the collective spin operators defined as

Jx,y,z = N
2
Mx,y,z = 1

2

∑
i σ

x,y,z
i . We define Jθ the collective spin vector in the (x, z)

plane perpendicular to the y axis:

Jθ = cos(θ)Jz + sin(θ)Jx. (7.1)

In order to quantify the amount of squeezing we produce, we need to compute

1The Husimi-Q distribution of a state |ψ⟩ is defined as follow. For a point on the generalized Bloch
sphere with spherical coordinate (θ, φ), the Husimi-Q distribution takes as value the overlap
|
〈
ψ
∣∣CSS(θ,φ)

〉
|2 between the state |ψ⟩ and

∣∣CSS(θ,φ)

〉
=
∣∣→(θ,φ)→(θ,φ) · · · →(θ,φ)

〉
being a CSS

state pointing along the (θ, φ) direction [Husimi, 1940].
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the Ramsey squeezing parameter [Wineland et al., 1992, 1994] defined as:

ξ2R =
N minθ (Var (Jθ))

⟨Jy⟩2
, (7.2)

with Var (Jθ) = ⟨Jθ2⟩ − ⟨Jθ⟩2. To do so, for a given interaction time t, we repeat

the experiments for various rotation angles θ and identify the one that minimizes

the variance. Figure 7.2 shows the evolution of Var (Jθ) as function of θ for a 6× 6

square array after an interaction time of t = 0.25µs. The observed shape of Var (Jθ) is

characteristic of an elliptical distribution of the spin fluctuations and allows us to

determine θ⋆.

Squeezing in a 6×6 array. We now study the dynamical evolution of the variance and

spin length for a N = 6× 6 square array. The spin length, given by the measurement of

⟨Jy⟩ (red circles on Fig. 7.3a), decays towards zero with increasing interaction time due

to the beating of a large number of eigenfrequencies of XY Hamiltonian. During this

time, the minimum variance of Jθ⋆ (blue circles) initially decreases below the Standard

Quantum Limit (SQL), reaches a minimum, and then increases, exceeding the SQL at

large times. The solid lines show the numerical simulations (including preparation

and detection errors and positional disorder) performed by the Harvard team that

are in good agreement with the experimental data. Using the measurements of ⟨Jy⟩
and Var (Jθ⋆), we can now compute the squeezing parameter ξ2R (or 10 log10 (ξ

2
R) when

expressed in dB).

We show in Fig. 7.3b the squeezing parameter as a function of the interaction time.

The data indicate that ξ2R decreases, reaches a minimum ξ2R
⋆
at a time t⋆ and increases

again. The system remains in a squeezed state (i.e. ξ2R < 1) only for about 0.5µs

corresponding to |tJ/(2π)| = 0.125. We measure a minimum squeezing parameter

of −2.7 dB. The theory predicts a squeezing of ≈ −6 dB. Part of this discrepancy

arises from preparation and detection errors, which modify the values of ⟨Jy⟩ and
Var (Jθ⋆). Including these imperfections in a simulation (purple shadow area) leads to

a reasonable agreement with the experimental data. As we squeezing is particularly

sensitive to detection errors, we plot the different simulations taking as detection

errors ε↑ = 1.0± 1.0% and ε↑ = 2.5± 1.0% with a range of ±1%. This ±1% range

represents our confidence interval for the estimation of these detection errors.
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Figure 7.3: Dynamical evolution of the spin length and variance for a N = 6×6 square
array. (a) Evolution of ⟨Jy⟩ and Var (Jθ⋆) as a function of t. The shadow areas represent

the numerical simulation including positional disorder, preparation errors and detection

errors of ε↑ = 1.0± 1.0% and ε↑ = 2.5± 1.0%. (b) From ⟨Jy⟩ and Var (Jθ⋆) we compute

ξ2R. The solid curve represents a parabolic fit ξ2R at early times from which we extract the

optimal squeezing parameter ξ2R
⋆
and its corresponding optimal squeezing time t⋆.

Why does the dipolar XY model generate scalable squeezing? To intuitively

understand how the dipolar XY model generates squeezing, we can compare this model

to an all-to-all coupling XY model. The latter can be expressed as the contribution of

two terms:

Hall-to-all
XY = ℏJ

∑
i<j

(
σx
i σ

x
j + σy

i σ
y
j + σz

i σ
z
j

)
− ℏJ

∑
i<j

σz
i σ

z
j = Hall-to-all

XXX −HOAT, (7.3)

with the first term Hall-to-all
XXX being the Heisenberg Hamiltonian and HOAT the OAT

model [Kitagawa and Ueda, 1993]. AsHall-to-all
XXX andHOAT commute (

[
Hall-to-all

XXX ,HOAT

]
=

0), and since the initial state |CSSy⟩ is an eigenstate of Hall-to-all
XXX , the dynamics are then

governed by HOAT. Thus Hall-to-all
XY leads to spin squeezing. even though the dipolar

XY Hamiltonian is a relatively short-range interaction model, this property remains

valid [Perlin, Qu, and Rey, 2020; Comparin et al., 2022; Comparin, Mezzacapo, and

Roscilde, 2022a; Block et al., 2023].

7.1.2 Is the squeezing generated by the dipolar XY model scalable?

Spin length and variance. Hamiltonians demonstrating scalable spin squeezing,

namely those whose squeezing parameter scales as Nν (with ν > 0), are highly
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Figure 7.4: Dynamical evolution of the spin length and variance for different system

sizes. (a)/(b) Evolution of ⟨Jy⟩/Var (Jθ⋆) as a function of t and N . The dashed lines

represents the numerical simulation and the shadow areas represent the same simulations

taking the detection errors within a range of ε↑ = 1.0± 1.0% and ε↑ = 2.5± 1.0%.

attractive for metrological applications. To assess the scalability of spin squeezing in

the dipolar XY model, we repeat the above experiments for various system sizes.

Figure 7.4a shows the evolution of spin length as a function time for various

system sizes N . We observe the same qualitative behaviour for all sizes: the averaged y

magnetization decays towards zero. However, the speed of this depolarization depends

on the system size: we observe a slower decay as we increase the system size. This

effect may seem counter-intuitive. We might think that the larger the system size,

the more eigenenergies and eigenfrequencies are involved in the dynamics, which

should lead to a faster evolution. To intuitively understand this phenomenon, we

compare the FM ground state of the dipolar XY model |FM⟩XY with the CSS state.

Due to the continuous symmetry breaking, as we increase N , the energy difference

between |FM⟩XY and |CSSy⟩ decreases as we increase N (and reaches ≈ 0 at the

thermodynamic limit). It implies that for larger N , the eigenfrequencies involved in the

dynamics are smaller, thus leading to slower magnetization decay. Quantitatively, this

decay rate can be estimated using the rotor/spin-Wave theory [Roscilde, Comparin,

and Mezzacapo, 2023b]. The Lyon’s team showed that in first approximations, the

dipolar XY model is equivalent to an OAT model that reads:

Hrotor = Jz
2/(2IN) with 1/(2IN) ∼ ℏJ/(N2)

∑
i ̸=j

a3/r3ij ∝ 1/N (7.4)
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Figure 7.5: Scalability of the squeezing. Best squeezing parameter ξ2R
⋆
as a function of

the system size N . The purple curve shows the raw data, the pink curve show the data

corrected for the detection errors (see Appendix A). The solid curves are power law fit of

the data. The shadow area represent the simulation taking the detection errors within a

range of ε↑ = 1.0± 1.0% and ε↑ = 2.5± 1.0%. The other dashed curves represents tVMC

simulations without any imperfection and the prediction for a perfect OAT model. As a

reference, the grey areas show the inaccessible region corresponding to ξ2R
⋆
< 2/(2 +N)

[Pezzè et al., 2018] and the Heisenberg limit ξ2R
⋆
< 1/N .

where 1/(2IN) is called the the moment of inertia. For the one axis twisting model

HOAT = ℏχJz2 the time scale required to depolarize the state grows as t ∝ 1/(χ
√
N)

[Kitagawa and Ueda, 1993]. Thus, the depolarization time in our system scales as

t ∝ IN/
√
N ∝

√
N . The Hrotor model is only an approximation and, for example, does

not explain the fact that for early times tJ/(2π) < 0.05, the decay of the magnetization

is independent of the system sizes. This effect only arises when considering linear

spin-wave correction in the theory, which we will discuss in the next chapter.

Figure 7.4b shows the evolution of the minimum variance as a function time

for various system sizes N . As for the spin length, all evolution exhibits the same

behaviour as for the N = 6× 6 system: decreasing, reaching a minimum and increasing

back up to the SQL. We observe that as we increase N , the minimum value of Var (Jθ⋆)

decreases, and the time required to reach this minimum increases. These features

are well explained by considering that the dynamics are driven by the effective OAT

model Hrotor.
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Scalability of the squeezing. As for the N = 6× 6, we now compute the squeezing

parameter as a function of t for each system size. From each of these curves, we extract

the best squeezing parameter ξ2R
⋆
and its corresponding optimal squeezing time t⋆.

Figure 7.5 shows the evolution of ξ2R
⋆
as a function of N . The squeezing increases

with the system size (purple curve) reaching −3.5 dB for a N = 10× 10 array. We fit

these data by power-law functions and extract an exponent of ν = 0.18(1). Recent

theoretical studies [Comparin, Mezzacapo, and Roscilde, 2022a; Block et al., 2023]

have found a scaling exponent close to the value ν = 2/3 predicted for the OAT model.

We attribute this difference to the experimental imperfections. Taking into account

these imperfections in the simulations (purple shadow area) leads to a reasonable

agreement with the data. As explained in Appendix A, an analytical procedure allows

us to correct the squeezing parameter for the detection errors ε↑ and ε↑. When this

correction (pink curves) is applied, the new power law exponent reads ν = 0.26(1).

The remaining difference mainly comes from errors in the initial state preparation of

|CSSy⟩ and the residual dynamical evolutions due to the XY interactions during the

microwave pulse rotations.

In conclusion, this work shows that up to N = 100 spins, the dipolar XY model

can experimentally generate scalable squeezing as expected by the theory.

7.2 Characterisation of the squeezed states

I will now show several analyses and investigations we performed to better charac-

terize the squeezing we produced in the previous section.

7.2.1 Entanglement depth

A squeezing parameter ξ2R < 1 implies the presence of entanglement in the system.

To characterize this entanglement, we quantify the entanglement depth, namely the

size of the smallest non-separable sub-system of spins [Estève et al., 2008]. We plot

the variance as a function of the y magnetization for a few system sizes as shown in

Fig. 7.6. For states below the black solid curve (corresponding to ξ2R = 1, squeezing is

detected. The grey dashed lines represent lower bounds on the entanglement depth k

obtained by calculating the minimum attainable variances as a function of the spin

length for a system of k spins (see [Sørensen and Mølmer, 2001; Gross, 2012]). If a data
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Figure 7.6: Entanglement depth as a function of the system sizes. Parametric plot

showing the minimum variance Var (Jθ⋆) as a function of the spin length ⟨Jy⟩. The black

arrow shows the direction of increasing interaction time. The black line and blue area shows

the region ξ2R < 1 where entanglement is detected. The grey dashed curves represent the

k + 1 entanglement depth limit and the red dashed curves show the limits ξ2R = 2/(2 + k)

for a some values of k.

point falls below the line labelled by k, the entanglement depth is at least k + 1. For

the smallest system size N = 2× 2, we measure an entanglement depth of k = 1 + 1,

and for the largest one, it approximately reaches k = 4 + 1.

There is no direct relation between the squeezing parameter ξ2R and the entangle-

ment depth. However, the squeezing parameter sets a lower bound on the entanglement

depth. More precisely, if ξ2R ≤ 2/(2 + k), the entanglement depth is at least higher

or equal to k + 1. Figure 7.6 illustrates this relation. The red dashed curves show

constant values of the squeezing parameter at 2/(2 + k). All the red curves are below

their corresponding entanglement depth curve, thus showing a minimum entanglement

depth of at least k + 1. However, only knowing the entanglement depth of the system

does not give any information about the value of the squeezing parameter. When the

system saturates the entanglement depth, k = N , the maximum squeezing parameter

attainable is ξ2R ≤ 2/(2+N). In the figure above, this configuration corresponds to the

region where 2|⟨Jy⟩|/N → 0. In this situation, for large N , we recover a Heisenberg-like

scaling with ξ2R proportional to 1/N .
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Figure 7.7: Non Gaussian squeezing. Left panel: Cumulant function ⟨Jk
θ ⟩c as a function

of θ for a N = 8 × 8 array measured after an interaction time t = 0.40µs. The error

bars has been calculated using Bootstrapping methods. Bottom panels: Two histograms

of Jθ corresponding to an angle of θ = θ⋆ = 0.32π/4 (minimum variance) and θ =

1.6π/4. The blue curves show Gaussian distribution with the same variance as their

respective experimental data set. The black dashed curves show the SQL limit (variance of

4Var(Jθ)/N = 1).

7.2.2 Non-gaussian spin squeezing

In the context of squeezing in general, squeezed states are usually described using

Gaussian statistics in a sense that for all angle θ, Jθ follows a Gaussian distribution.

In this section, we assess whether Gaussian statistics describe our squeezed states. To

do so, we define for an observable O, the kth-order cumulant functions ⟨Ok⟩c described
by the the Ursell functions [Kubo, 1962]:

⟨O⟩c = ⟨O⟩

⟨O2⟩c = ⟨O2⟩ − ⟨O⟩2 = Var(O)

⟨O3⟩c = ⟨O3⟩ − 3⟨O⟩⟨O2⟩+ 2⟨O⟩3

⟨O4⟩c = ⟨O4⟩ − 4⟨O3⟩⟨O⟩ − 3⟨O2⟩2 + 12⟨O2⟩⟨O⟩2 − 6⟨O⟩4

⟨Ok⟩c = ⟨Ok⟩ −
k−1∑
i=1

(
k − 1

i

)
⟨Oi⟩⟨Ok−i⟩c.

(7.5)
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A squeezed state follows a Gaussian statistics if for all angle θ we have Jθ we have

⟨Jθk⩾3⟩c = 0. For a N = 8 × 8 array, we measure Jθ after an interaction time of

t = 0.40µs for various angle θ and compute the different cumulant functions ⟨Jk
θ ⟩c (see

Fig. 7.7). For k = 2, the cumulant function corresponds to the variance (blue curves),

and as expected, we recover a cosine function signature of an elliptical distribution

of the uncertainty. We now look at higher-order cumulants. Since the Jθ histograms

are symmetric and centred around zero, then for odd k-order, we get ⟨Jk=2n+1
θ ⟩c = 0.

Therefore, we only focus on even k-order. We observe that close to the angle θ⋆ of

minimum variance, all cumulant orders are at zero, suggesting that the statistics are

Gaussian. We observe that along the anti-squeezing direction (angle of maximum

variance), the cumulants exhibit a non-zero value, thus showing that the statistics are

no longer Gaussian. We attribute this effect to the finite length of the collective spin

−N/2 ⩽ Jθ ⩽ N/2: the ellipse of uncertainty cannot infinitely expand and thus get

distorted, resulting in non-Gaussian statistics. Qualitatively, the sign of each cumulant

orders can be intuitively understood by comparing this state to the state of maximum

variance, i.e. the Greenberger-Horne-Zeilinger (GHZ) state [Greenberger, Horne, and

Zeilinger, 1989] defined as |GHZθ⟩ ∝ |→θ→θ · · ·⟩+ |←θ←θ · · ·⟩ with |→θ→θ · · ·⟩ being
a classical ferromagnetic state along the θ direction. The Lyon’s team showed that for

interaction time longer than the typical squeezing time (t ∼ πIN/(2π)), the quench

dynamics lead to the generation of GHZ states [Comparin, Mezzacapo, and Roscilde,

2022b]. For the |GHZθ⟩ state, it can be shown that ⟨Jk=4n+2
θ ⟩c > 0 and ⟨Jk=4n

θ ⟩c < 0.

Experimentally, we observe a similar behaviour, which indicates that the system

started to evolve towards GHZ states.

7.2.3 Improving the squeezing using the single-site resolution

An important aspect of the spin squeezing is that it only uses global observables:

spin length ⟨Jy⟩ and variance Var (Jθ⋆). As our platform allows us to measure the

state of every atom individually, one could ask if there is a way to use this single-site

resolution to improve the squeezing. To answer this question, let us consider the

following example. We consider two independent systems A and B: A is a squeezed

state of N spins with a squeezing parameter of ξ2R ⩽ 1, and B is a coherent spin state

|CSSy⟩ also composed of N spins. The phase sensitivity of a Ramsey interferometer is
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given by σ =
√

Var (Jθ⋆)/|⟨Jy⟩| [Pezzè et al., 2018]. For the two systems, it thus reads:

σA =
ξR√
N

and σB =
1√
N

(7.6)

We now focus on the phase sensitivity σAB given by two systems combined. As they

are independent, we can write:

σAB =

√
σ2
A + σ2

B

2
= σA

√
1

4

(
1 +

1

ξ2R

)
. (7.7)

If ξ2R = 1, we recover the expected σAB = 1/
√
2N sensitivity. The situation becomes

interesting when ξ2R < 1/3. In this case, we have σA < σAB, meaning that the phase

sensitivity is better if we only use the subsystem A rather than both of them. This

example shows that by having access to the single-site resolution, we can selectively

choose the subsystem that minimizes the phase sensitivity.

Based on this example, we developed a method to optimize the phase sensitivity

using the single site resolution information provided by the platform. To do so, we

re-define the collective spin operator as:

J̃x,y,z =
1

2

N∑
i=1

αiσ
x,y,z
i , (7.8)

with {αi} a set of real number coefficients that we use as free parameters for

optimization. We also re-define the collective spin operator in the (x, z) plane

J̃θ = cos(θ)J̃z + sin(θ)J̃x. The new squeezing parameter2 ξ̃2R is now defined as:

ξ̃2R =
(
∑

i αi)minθ

(
Var

(
J̃θ

))
⟨J̃y⟩2

. (7.9)

The phase sensitivity now reads:

σ =

√
Var

(
J̃θ⋆
)
/|⟨J̃y⟩| =

ξ̃R√∑
i αi

. (7.10)

If we take all the coefficients equal to αi = 1, we would thus recover the former

2Note that this new definition of the squeezing parameter is no longer a good witness for the
detection of entanglement.
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Figure 7.8: Comparison between ξ2R and ξ̃2R The purple curve shows the squeezing

parameter ξ2R as a function of t for the N = 10× 10 array. The pink curve shows ξ̃2R after

optimization of the gains {αi}. At different time, we represent with coloured circles the

coefficients αi attributed for each atoms. The data shown in this figure has been taken

with assembled arrays containing at most three defects.

definitions of the collective spin vectors and squeezing parameters. Setting some

coefficients at αi = 0 and keeping the others at αi = 1 corresponds to the situation

described in the above example, where we only select a subpart of the full system.

In the general case, we do not necessarily need to restrict ourselves to take binary

values 0 or 1 for the {αi} coefficients. Choosing non-binary values allows us to finely

optimize the squeezing parameters by enhancing the contributions of spins that

strongly participate to the squeezing (for these atoms, we take αi > 1) while reducing

the impact of atoms weakly correlated with the rest of the systems (for these atoms,

we choose αi < 1).

Using a minimizer algorithm, we now optimize the {αi} coefficient to minimize ξ̃2R.

In order to compare ξ̃2R and ξ2R we constraint the algorithm to satisfy
∑

i αi = N . We

also use the geometrical symmetries of the square array to reduce the number of free

parameters to optimize. Figure 7.8 shows the squeezing parameter ξ2R (purple curve)

as a function of time for the N = 10× 10 array. For each time, we run the minimizer
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7.3 Towards metrological applications

program and determine the set of optimized coefficients leading to ξ̃2R (pink curves).

We observe a modest improvement in the squeezing of up to 0.2 dB. Figure 7.8 also

show the coefficients attributed to each atom at different interaction times. We observe

that the coefficient values vary depending on whether the atoms are on the edges or in

the bulk of the array. We attribute this effect to the finite size of the array combined

with the relatively short-range nature of the dipolar XY interaction. Interestingly,

this spatial distribution of the coefficient values evolves with the interaction time,

suggesting it is closely related to the quench dynamics. We did not investigate this

effect further.

In conclusion, having access to the single-site resolution can help to improve the

squeezing. We showed on our data on a N = 10× 10 square array that an optimization

of the squeezing leads to an improvement up to 0.2 dB of the phase sensitivity. We

can generalize this method to all squeezing systems for which we have the single-site

resolution.

7.3 Towards metrological applications

As explained in the previous sections, scalable spin squeezing can be achieved with

the dipolar XY model. The problem is that the system only remains squeezed for a

short time, which limits its applicability to metrology. This problem arises because the

XY interactions cannot be easily switched off. Motivated by metrological applications,

we then address this problem using microwave manipulations of the spins. In the first

approach, we apply microwave rotations, such that the squeezing both improves and

lasts longer (a strategy known as adiabatic/multistep squeezing). The second method

is based on the coherent transfer of the |↑⟩ population to another Rydberg state from

which they stop interaction with the population in |↓⟩.

7.3.1 Adiabatic/Multistep squeezing

Adiabatic/multistep squeezing relies on the use of microwave coupling Ω(t)
∑

i σ
y
i

between the spin states to influence the squeezing dynamics. This type of approach,

known as the twist and turn, has already been demonstrated for the OAT model and

was used to enhance the squeezing parameter [Muessel et al., 2015; Sorelli et al., 2019].

The main idea is the following. The squeezing dynamics can be intuitively understood
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CSS state Squeezed state State at late times

Distortion

(a) (b) (c)

Figure 7.9: Sketch the spin uncertainty shape during the squeezing dynamics. Sketch

representing the distribution of spin fluctuation (Husimi Q function) on the generalized

Bloch sphere. The steering force projected along x induced by the OAT model is represented

by the black arrows. (a) CSS state (b) Squeezed state (c) State at late times, we observe

deviation from a perfect elliptical distribution.

using a semi-classical approach. We first consider an OAT model HOAT = ℏχJ2
z (which

we know is a good approximation to describe the squeezing dynamics of the dipolar XY

model). The corresponding time evolution operator reads U = e−iχtJ2
z = eiϕJz/ℏ which

corresponds to a global rotations around z of the spins with an angle ϕ = −ℏχtJz. As
illustrated in Fig. 7.9a, for the initial CSS state, this rotation operator corresponds to

a steering force along x applied on the spin uncertainty (Husimi Q function) that is

proportional to Jz. This steering force deforms the spin uncertainty distribution that

expends along x into an elliptical shape, resulting in spin-squeezing (see Fig. 7.9b).

Because the spin uncertainty “evolves on a sphere”, for points at the extremity of

the ellipse, the steering force no longer points along x (but along −y), and thus, the

ellipse stops expending along x, resulting in a distortion of its shape (as shown in Fig.

7.9c). The distortion causes the squeezing to stop growing, ultimately leading to its

decrease for longer interaction times. These distortions can be minimized by rotating

the ellipse during the dynamics, ensuring that its major axis remains aligned along x.

It thus preserves the squeezing for a longer time and also (as a positive side effect)

allows us to reach better squeezing parameters. Two different strategies are possible to

rotate the ellipse.

Multistep squeezing. At carefully chosen times during the dynamics, we rotate the

elliptical distribution of the spin fluctuations around the y axis to align its major axis

along the equator. The experimental sequence optimized for N = 6× 6 and comprising
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Figure 7.10: Multistep and adiabatic squeezing on an N = 6× 6 array. (a) Sequences

for normal, multistep and adiabatic squeezing. For the adiabatic squeezing, the microwave

ramp reads Ω = Ω0e
−t/τ with Ω0/(2π) = 4MHz and τ = 0.5µs. (b) Squeezing parameter

measured as a function of time for each of the three sequences.

one intermediate rotation is depicted in Fig. 7.10a. We initialize the system in |CSSy⟩
and let the atoms interact for t = 0.13µs. Then, we rotate the ellipse by θ⋆ = 25◦

around the y axis. After a total interaction time of t, we measure the spin length and

the minimum variance to compute the squeezing parameter. Fig. 7.10b compares, for

the same total interaction time, the original sequence described earlier in Sec. 7.1

and this multistep sequence. The effects of the latter are twofold. First, the system

remains squeezed for twice as long. Second, the minimum squeezing parameter is lower

by approximately 1 dB, reaching a value of −3.6 dB.

Adiabatic squeezing. The adiabatic squeezing can be seen as the continuous version

of the multistep squeezing. Instead of applying discrete rotations via microwave pulses

at specific times, here we continuously drive a microwave field HY = Ω(t)
∑

i σ
y
i to

keep the major axis of the ellipse oriented along x (see Fig. 7.10a). In contrast with the

normal and multistep squeezing protocol, this experiment is not a quench experiment

but an adiabatic process. At t = 0 and for |Ω(t = 0)/J | >> 1, the initial state |CSSy⟩
is the ground state of the Hamiltonian H = HXY +HY. Adiabatically ramping down
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Figure 7.11: Coherent freezing of the spin squeezing. (a) Sketch of the Rydberg

manifolds. Using microwave pulses, we coherently drive the |↑⟩ ↔ |↓⟩ and |↑⟩ ↔ |↓′⟩
transitions. (b) Experimental sequence to generate and freeze squeezed state for a N = 6×6
array. (c) Squeezing parameter measured as a function of the freezing time tfreez.

Ω(t) to zero thus connect |CSSy⟩ to the ferromagnetic ground state |FM⟩XY
3 studied

in Chapter 5. During this adiabatic process, the system exhibits squeezing [Comparin

et al., 2022]. Experimentally we set a ramp of Ω(t) = Ω0e
−t/τ with Ω0/(2π) = 4MHz

and τ = 0.5µs and measure the squeezing as a function of time (see Fig. 7.10b). We

observe that the state remains squeezed for an interaction time six/three times longer

than with the original/multistep squeezing sequence. Moreover, as for the multistep

step squeezing, the system reaches better squeezing parameters of ξ2R
⋆ ≈ −3.5 dB.

In principle, one could adiabatically decrease Ω until we reach the best squeezing

parameter ξ2R
⋆
and then maintain Ω at a constant value to preserve this squeezed state

as long as needed.

7.3.2 Manipulation of the spin states

Coherent freezing of the dynamics. In the previous section, we showed that using

multistep/adiabatic squeezing protocols, we can extend the time windows for which

the system exhibits squeezing. However, it requires an active microwave drive and thus

may be inconvenient for practical metrological applications. A method we explore to

3We also experimentally investigated the adiabatic preparation of the ferromagnetic XY ground
state using this adiabatic squeezing protocol. These studies are out of the scope of my thesis,
but a detailed presentation of these results can be found in the Gabriel Emperauger’s thesis
[Emperauger, 2025]
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circumvent this issue is to coherently transfer the atoms from |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
to another Rydberg state |↓′⟩ =

∣∣60P3/2,mJ = 1/2
〉
from which they do not interact

with the remaining population in |↓⟩ (see Fig. 7.11a). The experimental sequence is

illustrated in Fig. 7.11b. On a N = 6 × 6 array, we initialize the system in |CSSy⟩
and let it interact freely for t = 0.25µs to produce a squeezed state and then apply

the measurement pulse to rotate the system (either along y to measure the spin

length y or either along the (x, z) plane to measure the variance along θ). Then, we

freeze the system by applying a microwave π-pulse between the state |↑⟩ and |↓′⟩
and wait a time tfreez. To unfreeze the dynamics or readout the state, we re-apply

a microwave π-pulse to transfer back the atoms from |↓′⟩ to |↑⟩. Figure 7.11 shows

the squeezing parameter ξ2R as a function of of the freezing time tfreez. We observe

that the state remains squeezed for a few microseconds, representing a significant

improvement compared to the squeezing time scale of a few hundred nanoseconds.

We also measured that the squeezing slowly decreases with time. We attribute these

effects to two experimental imperfections. First, due to the relatively strong interaction

strength J ′ = −4J between |↑⟩ and |↓′⟩, the microwave transfers between these states

are not perfectly efficient and thus reduce the squeezing. Second, the experiment

lasts a few microseconds, which starts to be relatively long compared to the Rydberg

lifetimes of ∼ 200µs. We thus believe that finite Rydberg lifetimes slowly reduce

the squeezing as tfreez increases. We did not investigate the reasons for this decay

further but just wanted to show that this coherent manipulation of the spin states is a

promising route to freeze the squeezing dynamics.

Time reversal of the dynamics. Before concluding this chapter, I would like to

mention a project we started using the microwave manipulation of the spin states

to enhance metrological measurement. As described above the interaction energy

J ′ = −4J between |↑⟩ and |↓′⟩ has the opposite sign of J . It means that being able to

coherently transfer the |↑⟩ / |↓⟩ to |↑⟩/|↓′⟩ would thus allow us to change the sign of the

XY Hamiltonian HXY → −4HXY and thus to perform time-reversal of the dynamics.

This time-reversal ability is particularly interesting to realize spin scrambling protocols

that enhance the precision of a measurement [Davis, Bentsen, and Schleier-Smith, 2016;

Swingle et al., 2016; Colombo et al., 2022; Li et al., 2023]. The idea is the following: we

first quench the system and wait for it to build entanglement. We then apply the

perturbation signal we wish to measure and perform time reversal to return to an

effective interaction time of t = 0. If there is no perturbation, we recover the initial
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Figure 7.12: Time reversal. (a) Sequence to measure the spin length ⟨Jy⟩ as a function

of time. (b) Same sequence with the time reversal. In the middle of the dynamics we

transfer the |↑⟩/|↓⟩ to |↓′⟩/|↑⟩. These transfers take t ≈ 50 ns. (c)/(d) Spin length ⟨Jy⟩ as
a function of time for a N = 2/N = 6 × 6 atoms system. We apply the time reversal

sequence after a interaction time of t = 2.8/t = 2.0µs. The solid curves in (c) show fits

using cosine functions.

state. However, if we now apply a small perturbation, it will slightly modify the state.

In analogy to the butterfly effect in chaos theory and similarly to error propagation in

quantum circuits, applying the time reversal procedure causes this perturbation to

propagate through the system, resulting in a final state significantly different from the

initial one. Detecting this difference thus indicates that a signal has been detected.

The key ingredient of this protocol is the time reversal of the dynamics. To test our

ability to perform it, we implement the following sequence. We first quench the system

by preparing |CSSy⟩ and let it evolve under HXY. To perform the time-reversal we

apply a first microwave π-pulse between |↑⟩ and |↓⟩ closely followed by an other π-pulse

between |↑⟩ and |↓⟩. This protocol sequentially transfers the |↑⟩ spin population to

|↓′⟩ and then transfer |↓⟩ to |↑⟩. The system now freely evolves under −4HXY. Finally,

after a total interaction time t, we rotate the state using a |↑⟩ ↔ |↓′⟩ microwave pulse

and readout the state. Figure. 7.12a and b summarize the sequence to measure the

spin length ⟨Jy⟩ with and without the time reversal protocol. As a benchmark, we

start by measuring the evolution of the y magnetization for a N = 2 atoms system (see
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Fig. 7.12c). We first let the system evolve under HXY for t = 2.8µs and measure that,

as expected, the magnetization oscillates with a frequency J/(2π) (red data)4. After

applying the time reversal sequence (green data), we observe that the magnetization

oscillates backwards with a frequency −4J/(2π), indicating that we succeeded in

inverting the dynamics time flow. We repeat the same experiment on a larger array

N = 6× 6 (see Fig. 7.12d). We first let the system evolve under HXY for t = 2.0µs

and observe the decay of the spin length towards zero (we have already presented

these data in Sec. 7.1.1). We then apply the time reversal and observe that the system

re-polarizes after t = 2.0/4 = 0.5µs under −4HXY and re-depolarizes for longer times.

Even if the amplitude of the ⟨Jy⟩ revival is not as high as the initial magnetization

at t = 0.0, the system partially recovered its initial state. We did not investigate

further this experiment. We conjecture that this reduction of magnetization amplitude

arises from a combination of experimental imperfections (effects of XY interactions

during the microwave pulses) and different residual Van der Walls interaction energies

between states |↓⟩ and |↓′⟩ that affect differently the dynamics before/after the time

reversal.

This work only represents the first step towards spin scrambling experiments

using the dipolar XY model. A collaboration with Norman Yao’s Harvard team is

ongoing to continue this work. I also would like to mention that the similar work led

by Matthias Weidemüller’s team in Heidelberg have recently been published [Geier et

al., 2024].

7.4 Conclusion

In this chapter, I have shown that we experimentally produce squeezed states using

the dipolar XY model. I showed that the squeezing parameter grows as we increase the

system size, thus confirming theoretical works that predict scalable spin squeezing. I

then investigated the nature of this squeezing: I characterized its entanglement depth,

showed that it cannot be described by Gaussian statistics and demonstrated that by

using the single-site resolution provided by the platform, we improve the squeezing.

Motivated by metrological applications, I have presented different protocols to extend

the duration of the squeezing dynamics. The multistep/adiabatic squeezing methods

4This experiment is similar to the two-atom Ramsey experiment already presented in Fig. 5.2 of
Sec. 5.1.2)
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rely on microwave rotations to influence the squeezing dynamics making it last longer

with better squeezing parameters. The second method consists in freezing the squeezing

dynamics by coherently transferring the spin population to Rydberg states that do not

interact. It allows us to preserve the squeezing for a few microseconds, much longer

than the typical squeezing dynamics. Finally, I showed the first proof of the principle

of time-reversal of the dynamics using this spin manipulation. It opens the door to

new methods for quantum metrology, such as spin scrambling.
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In Chapter 5 I discussed how the long range tail of the dipolar XY interaction

J ∝ 1/r3ij modifies the properties of its AFM/FM ground state. More generally, one

could ask how the dipolar tail alters the properties of the low energy spectrum and

of their elementary excitations/quasiparticles. In the context of spin Hamiltonian

these elementary excitations/quasiparticles are usually spin waves characterized by a

dispersion relation giving their energy ωk as a function of their wavevector k. Having

access to this dispersion relation is particularly interesting since it allows us to predict

the behavior of the system at low energies. Being able to measure a dispersion relation

of a system is therefore a major challenge.

To measure the dispersion relation of real world materials, condensed matter

physicist usually probe the linear response of systems using a variety of different methods

ranging from pump-probe spectroscopy, angle-resolved photoemission spectroscopy to

inelastic neutron scattering [Forster, 2019; Lovesey, 1980, 1986; Sobota, He, and Shen,

2021]. For artificial quantum systems, the usual approach to probe the dispersion

relation is the following. First we prepare the ground state of the system, second, we

introduce a specific excitation in the system and third, we measure its response from

which we extract the dispersion relation. However, applying this three-steps sequence
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is usually challenging. It requires preparing the ground state of the system which is

not necessarily easy, and it can only be done on quantum simulator platforms which

provides a coherence time long enough to perform all these steps.

To circumvent these issues, an other method to measure the dispersion relation

called quench spectroscopy experiment was proposed in 2018 [Mitra, 2018]. The idea is

the following. We first quench the system by preparing it in an out-of-equilibrium

state, thus injecting a finite density of excitations into the system. Then, we measure

its dynamical evolution. During the dynamics, the system starts to produce spin-

spin correlations whose spatial organisation is dictated by the propagation of the

excitations governed by the dispersion relation [Cevolani et al., 2018; Despres, Villa,

and Sanchez-Palencia, 2019; Schneider et al., 2021]. Measuring the dynamical and

spatial evolution of these correlations could then allow for extracting the dispersion

relation. In the case where the excitations behave as free quasiparticles, it has been

shown that the 2D Fourier transform of the correlations at wavevector k is expected to

oscillate as a function of the interaction time t at frequency 2ωk [Frérot, Naldesi, and

Roscilde, 2018; Menu and Roscilde, 2018; Villa, Despres, and Sanchez-Palencia, 2019;

Villa et al., 2020; Menu and Roscilde, 2023]. This theory result is the key mechanism

of the quench spectroscopy method. Compared to the three-steps method described

previously, it offers two advantages:

r To ensure that the quasiparticles remain free, we must prepare an initial state

with a sufficiently low excitation density, such that particle-particle interactions

are negligible during the dynamics. While this requirement constrains the choice

of initial state, it is less restrictive than preparing the ground state, which is

usually entangled and thus challenging to obtain. As we will see in this chapter,

we can target a state with low excitation density by preparing the mean-field

ground state. In contrast to the true ground state, the mean-field ground state is

a product state, making it much easier to prepare.

r To extract the dispersion relation from the correlations, we only need to measure

evolution of the system over timescales comparable to the typical time scale of

the dynamics tJ/(2π) ∼ 1. In contrast, the three-step method requires preparing

the ground state, usually via an adiabatic process that necessitates much longer

experimental times tJ/(2π) ≫ 1 to maintain adiabaticity. This requires an

relatively long coherence time of the experiment which is not necessary for

quench spectroscopy experiments.
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For all these reasons, demonstrating that we can experimentally measure the dispersion

relation using quench spectroscopy could pave the way for similar measurements using

various systems and platforms. Motivated by this potential, we apply this in our

Rydberg platform and illustrate the method by measuring the dispersion relation of

the dipolar XY model.

For a nearest neighbour XY model on square array, the dispersion relation can

analytically calculated and has been found to be linear ωAFM
k = ωFM

k ∝ |k| [Manousakis,

1991]. However, for the dipolar XY model, Hans Peter Büchler and his team predicted

a different dispersion relation for the FM ground state [Peter et al., 2012]. Due to the

1/r3ij tail of the FM dispersion is modified from a linear dispersion to a non-linear one

ωFM
k ∝

√
|k| while the AFM dispersion remains linear. In this chapter, we apply a

quench spectroscopy experiment to measure this modified FM dispersion relation. We

also perform comparative measurement between the FM and AFM dispersion relation.

This chapter is organized as follow: In the first section we give a brief reminder about

the linear spin wave theory used to link the dispersion relation to the correlations we

measure in the system. In the second part, we focus of the experimental realization of

the quench spectroscopy experiments and on the extraction of the dispersion relation.

This work has been realized in collaboration with Tommaso Roscilde’s team in Lyon

and Norman Yao’s team at Harvard. These results have been published and more

details can be found in [Chen et al., 2023b].

8.1 Linear spin wave theory

The quench spectroscopy experiment can be described using the linear Spin Wave

(SW) theory. It consists in mapping the dipolar XY on a Bosonic model via an Holstein-

Primakoff transformations [Holstein and Primakoff, 1940; Vogl et al., 2020]. We then

perform a Rotor/Spin wave decomposition to isolate the spin wave contribution. These

spin waves can then linearised using a Bogolyubov transformation to extract the

dispersion relation. In this section, I will re-derive the main results of this the spin

wave theory for an infinite size square array. The theory methods and the associated

results that I will describe now, closely follow the works published by our theory

colleagues in Lyon [Roscilde, Comparin, and Mezzacapo, 2023a,b].
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8.1.1 Rotor/Spin wave decomposition

Holstein-Primakoff mapping. The first step consists in mapping the dipolar XY

model onto a bosonic model using the Holstein-Primakoff (HP) transformation. Taking

the y axis as quantization axis, this transformation reads:

σx
j =

√
1− njbj + b†j

√
1− nj

σy
j = 1− 2nj

σz
j = −i

(√
1− njbj + b†j

√
1− nj

)
,

(8.1)

with bj/b
†
j the bosonic annihilation/creation operator and nj = b†jbj the number

operator acting on site j. In this HP picture, the presence/absence of a boson on site

j corresponds to the spin j being in |←y⟩/|→y⟩. Equation 8.1 are non linear but can

be simplified by considering that the number of excitation in the system is relatively

small ⟨nj⟩ ≪ 1 [Vogl et al., 2020]. The above equations thus become at 1st order in the

number of particle:

σx
j ≈ bj + b†j

σy
j ≈ 1− 2nj

σz
j ≈ −i

(
bj − b†j

)
.

(8.2)

We now inject this transformation in HXY = ℏ
2

∑
i<j Jij

(
σx
i σ

x
j + σy

i σ
y
j

)
with Jij =

Ja3/r3ij and only keep the quadratic terms. The dipolar XY model now reads:

HXY ≈ ECSS +H2

≈ ℏ
2

∑
i<j

Jij + ℏ
∑
i<j

Jij

[(
bibj + b†ibj + bib

†
j + b†ib

†
j

)
− (ni + nj)

]
,

(8.3)

with ECSS = ℏ
2

∑
i<j Jij being the mean field energy. It corresponds to the energy

of the vacuum state in terms of HP bosons and to a coherent spin state |CSSy⟩ =
|→y→y→y→y · · ·⟩ in the spin picture. The Hamiltonian H2 describes quadratic

fluctuations around the mean field.
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Rotor/Spin wave decomposition. We now introduce the HP bosonic operators in

momentum spaces:

bj =
1√
N

∑
k

eik·rj/abk =
b0√
N

+
1√
N

∑
k ̸=0

eik·rj/abk, (8.4)

with the wavevector k running over the Brillouin zone. Similarly, we define the Fourier

transform of the dipolar interaction Jij

Jk =
1

N

∑
i ̸=j

eik·rij/aJij and J0 =
1

N

∑
i ̸=j

Jij. (8.5)

Combining Eq. 8.4 and Eq. 8.5 we re-express the quadratic Hamiltonian that now

reads:

H2 = ℏ
∑
k

Ak − ℏ
∑
k

(
b†k b−k

)(Ak Bk

Bk Ak

)(
bk

b†−k

)
, (8.6)

with Ak = (J0 − Jk/2) /2 and Bk = −Jk/4. We now isolate the k = 0 mode that will

describe a rotor Hamiltonian (see below), from the k ̸= 0 modes that represent the

spin waves. We first focus on the rotor part and re-write H2 only keeping the k = 0

mode:

H2⌋k=0 =
ℏJ0
4

(
1 + b0b0 + b†0b

†
0 − b

†
0b0 − b0b

†
0

)
. (8.7)

Combining Eq. 8.2 and Eq. 8.4 we can re-express the operator Jz =
1
2

∑
i σ

z
i in terms

of HP bosonic operator and keep the k = 0 mode:

Jz⌋k=0 =
−i
√
N

2

(
b0 − b†0

)
, (8.8)

that we now inject in H2⌋k=0. We then obtain an OAT-like Hamiltonian:

H2⌋k=0 = −
ℏJ0
N

J2
z

⌋
k=0

+
ℏJ0
4

= Hrotor +
ℏJ0
4
. (8.9)

The first term corresponds to a rotor for which we can define a momentum of inertia

IN :

Hrotor =
J2
z ⌋k=0

2IN
with

1

2IN
= −ℏJ0

N
, (8.10)

and thus recover the expression that we already introduced in the previous chapter

(see Eq. 7.4). When the number of bosons in the k = 0 mode is dominant (i.e. when

⟨b†0b0⟩ ≫ ⟨b
†
k ̸=0bk ̸=0⟩), we get J2

z ⌋k=0 ≈ J2
z and thus, the rotor Hamiltonian becomes
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an OAT model HXY ≈ Hrotor ≈ ℏJ2
z /(2IN ) that drives the dynamics. In particular, as

explained in the previous chapter (see Sec. 7.1.2), this rotor Hamiltonian is responsible

for the formation of scalable spin squeezing when using the dipolar XY model. The

second term ℏJ0/4 in Eq. 8.9 correspond to an energy correction to apply on the mean

field energy ECSS to get the ground state energy of Hrotor. Its energy ground state

reads: Erotor = ECSS + ℏJ0/4 = ℏJ0 (N + 1) /4.

We now move the study of the H2⌋k ̸=0 term that contains the spin waves and

thus carries the information about the dispersion relation.

8.1.2 Linearisation of the spin wave excitations

In summary, the total dipolar XY model reads:

HXY ≈ ECSS + H2⌋k=0 + H2⌋k ̸=0 = Erotor +Hrotor +HSW, (8.11)

with HSW = H2⌋k ̸=0 the spin wave Hamiltonian that reads:

HSW = ℏ
∑
k ̸=0

Ak − ℏ
∑
k ̸=0

(
b†k b−k

)(Ak Bk

Bk Ak

)(
bk

b†−k

)
. (8.12)

Bogolyubov diagonalization. To diagonalize this spin-wave Hamiltonian, we apply

the following Bogoliubov transformation (this transformation is only valid for systems

with an infinite size or with periodic boundary conditions): bk = ukak − vka†−k with

ak/a
†
k the bosonic annihilation/creation operator operating on boson called magnons

[Jean-Paul Blaizot, 1985]. They represent the linearised excitations of the system. The

coefficient uk and vk are calculated to be:

uk =

√
1

2

(
Ak

ωk

+ 1

)
and vk = sign(Bk)

√
1

2

(
Ak

ωk

− 1

)
, (8.13)

with ωk the dispersion relation of the magnon:

ωk =
√
A2

k +B2
k = J0

√
1− Jk/J0. (8.14)
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8.1 Linear spin wave theory

(a) (b)

Figure 8.1: Calculations of the dispersion relations using the linear SW theory.

(a)/(b) For different system size N , we calculate the FM/AFM dispersion relations using

Eq. 8.16 and 8.17. The dashed curves represent a guide to the eye.

This transformation thus lead to the linearised form of the spin wave Hamiltonian:

HSW = −2ℏ
∑
k ̸=0

ωka
†
kak + ℏ

∑
k ̸=0

(Ak − ωk) . (8.15)

The first term of this Hamiltonian represents the energy of the linearised excitation with

a†kak the number of magnon in mode k and ωk their respective energies. The second

term represent an energy correction to apply to ECSS to get the ground state energy

of HSW. Its energy ground state corresponds to: ESW = ECSS + ℏ
∑

k ̸=0 (Ak − ωk).

Dispersion relation. We now calculate the dispersion relation for the AFM and FM

state using Eq. 8.5 and 8.14. We first take J < 0 in which case, the ground state of

HXY on square array is the FM state |FM⟩XY already discussed in Chapter 5.5. It has

been shown in [Frérot, Naldesi, and Roscilde, 2017] that by calculating the Fourier

transform of JFM
ij = Ja3/r3ij that we call JFM

k , we can show that at short wavevector

|k| ≪ 2π:

ωFM
k = JFM

0

√
1− JFM

k /JFM
0 ∝

√
|k|, (8.16)

with JFM
0 ≈ 6.5J . To calculate the dispersion relation of the AFM state on square

array, we apply a π rotation around the z-axis on half of the atoms in a staggered

configuration thus transforming the σx,y
i operator into (−1)(ux+uy)·rij/aσx,y

i . Under this

transformation, the |AFM⟩XY state is the FM ground of a modified HXY Hamiltonian

with staggered coupling, JAFM
ij = (−1)(ux+uy)·rij/aJa3/r3ij. We calculate its Fourier

185
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transform JAFM
k and show that for |k| ≪ 2π, the AFM dispersion relation reads:

ωAFM
k = JAFM

0

√
1− JAFM

k /JAFM
0 ∝ |k|. (8.17)

In Fig. 8.1 we compute the FM/AFM dispersion relation using Eq. 8.16 and 8.17

for various system sizes N . We observe that at low |k|, as N increases (N = 30× 30

being the largest size I can compute with my laptop), the dispersion relations tend to

be closer to the theory predictions ∝
√
|k|/∝ |k| in the FM/AFM case.

Measuring the dispersion relations. To measure the dispersion relation, we first

prepare the state in its mean field state. For the FM, it is a CSS state |CSSy⟩ =
|→y→y→y→y · · ·⟩ (see Fig.8.2a) and for the AFM, it is a classical AFM state along y

denoted |AFMy⟩ = |→y←y→y←y · · ·⟩) (see Fig.8.2). Then, we let these states freely

evolve under the dipolar XY model HXY = Erotor +Hrotor +HSW and assume that

we measure, for all pair of atoms {i, j} the two body connected correlation ⟨σz
i σ

z
j ⟩c

in the z-basis. We choose this particular basis to facilitate the measurement of the

dispersion relation. As Hrotor is an all-to-all coupling Hamiltonian and commutes with

Jz ([Hrotor, Jz] = 0) and HSW ([Hrotor,HSW] = 0), the dynamics induced by Hrotor

does not lead to formation of spin correlations in the z-basis. The z correlations are

thus only produced by dynamics driven by the spin wave Hamiltonian HSW that

carries the information about the dispersion relation. Extracting the dispersion relation

from correlations measured in an other basis would also be possible, but would be

more complicated: an additional step in the analysis procedure would be required to

separate the contribution to the correlations of HSW from that of Hrotor. From the

⟨σz
i σ

z
j ⟩c measurements, we compute the time dependent structure factor:

Sz
k(t) =

1

N

∑
i,j

eik·rij/a⟨σz
i σ

z
j ⟩c. (8.18)

Using equation Eq. 8.2 and 8.4, we can rewrite the this operator in terms of bosonic

operator:

Sz
k(t) ≈ ⟨bkbk⟩c + ⟨b

†
−kb

†
k⟩c − ⟨bkb

†
k⟩c − ⟨b

†
−kb−k⟩c. (8.19)

On can then analytically calculate the expectation values for Sz
k(t) as a function

of the interaction time t when the system is driven by the spin wave Hamiltonian

Erotor +Hrotor +HSW [Frérot, Naldesi, and Roscilde, 2018]. It takes a simple form that
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8.2 Experimental measurement of the dispersion relation

reads:

Sz
k(t) = Ck +Dk cos(2ωkt), (8.20)

with Ck = 1 − Jk/(2J0) and Dk = Jk/(2J0). Measuring Sz
k(t) thus allows one to

measure the dispersion relation in three different ways. We can: either extract the

frequency at which Sz
k(t) oscillates to get ωk, extract the amplitude or offset value of

these oscillations to compute ωk via the following formulas:

ωk = J0
√

2Ck − 1

ωk = J0
√

1− 2Dk

(8.21)

These results form the basic principle of the quench spectroscopy experiment.

They are only valid for an infinitely large array or for a finite size system with periodic

boundary conditions. Extending this spin-wave analysis to finite size systems with

open boundary conditions is not at all a trivial task However, our colleagues in Lyon

demonstrated that at short times, when |tJ/(2π)| ≪ 1, these results remain valid (see

more details in [Chen et al., 2023b]). We now have all the theory tools for this quench

spectroscopy experiment and turn to its experimental realization.

8.2 Experimental measurement of the dispersion relation

All the data presented in this section have been obtained using a square array

of N = 10 atoms. The experimental parameters are the same as for the previous

chapter: a = 15µm, J/(2π) = −0.25MHz, |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =∣∣60P3/2,mJ = −1/2

〉
.

8.2.1 Quench experiment

After having excited all the atoms in |↑⟩, we begin the quench spectroscopy

experiment by initializing the system in a CSS state |CSSy⟩ or in a classical AFM

state |AFMy⟩ pointing along y. To prepare |CSSy⟩, we apply a microwave π/2-pulse

around x (see Fig.8.2c). To prepare |AFMy⟩, we first prepare a Néel state |↑↓↑↓ · · ·⟩
using a set of addressing beams and microwave pulses and following the procedure

described in Sec. 3.2. We then apply a microwave π/2-pulse around x to rotate the

spins and initialize the system in |AFMy⟩ (see Fig.8.2d). We then let the initial state
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Figure 8.2: Experimental sequence for the quench spectroscopy. (a)/(b) Illustration

on a 4 square array of the initial state at t = 0. to probe the FM/AFM dispersion relation.

(c)/(d) Experimental sequence to measure the FM/AFM dispersion relation.
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Figure 8.3: Spatial evolution of the z correlations as a function of time. (a)/(b)

Averaged correlation Cz
r as a function of the interaction time t and the distance between

the spins d/a for the FM/AFM state. The data shown in this figure has been taken with

assembled arrays with at most three defects allowed.

evolves freely under the XY model, and measure its evolution as a function of the

interacting time t.

From the measured spin correlations ⟨σz
i σ

z
j ⟩c, we compute the average correlation

Cz
r (t) as a function of the distance r between the spins (already defined in Eq. 5.9).

Figure 8.3a and b show the experimental results as a function of t and r for the

FM and AFM states. We observe that for both state, correlations build up at short

distance and at short times and seem to propagate at long distances with time. We
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Figure 8.4: Time dependent structure factor. (a)/(b) Time evolution of the FM/AFM

time-dependent structure factors Sz
k(z) (extracted from the data in Fig. 8.3) for different

wave vectors k = 2π√
N
(nx, ny). The data shown in this figure has been taken with assembled

arrays containing at most three defects.

also observe that the “speed” at which these correlations propagate differs for the FM

and the AFM state suggesting a different dispersion relation.

We now turn to the measurement of the analysis of these z correlations to extract

dispersion relation ω
FM/AFM
k .

8.2.2 Extraction of the energy spectrum

Time-dependent structure factor. From the correlations, we calculate the time

dependent structure factor Sz
k(t) for discrete values of the wave vector k ∈ {kx, ky} =

{nx
2π√
N
, ny

2π√
N
} with nx,y ∈ {

√
N/2 + 1, ...,

√
N/2}. Figure 8.4 shows some of these

189



Chapter 8: Dispersion relation

Sz
k(t) curves for various values of {nx, ny}. For both the FM and AFM case, we observe

that the Sz
k(t) curves do not follow a perfect sinusoidal function as predicted by the

spin wave theory (see Eq. 8.21). In the FM case, we measure that for all wave vector k,

Sz
k(t) exhibits damped oscillations at small times. For some k, we also observe a revival

of these oscillations at long times. The AFM curves also seem to exhibit oscillations at

small times but with a stronger damping compared to their FM counterpart with no

visible revival of the oscillations at long times.

We identified three different physical processes that can explain the discrepancies

between the measured Sz
k(t) curves and the ones predicted by the linear SW theory:

r Finite size effects. If the size of the array is not large enough, edge effects

affect the dynamics of the system. In this case, spin waves of different wave

vectors k, and of different frequencies ωk are mixed. The Sz
k(t) curves would

thus be the result of the sum of different sinusoidal curves oscillating at different

frequencies, leading to an effective damping of the initial oscillation.

r Particle-particle interaction. If the number of excitations present in the

system is too high, the approximations made in Eq. 8.2 break down, leading

to extra terms in the XY Hamiltonian HXY = Erotor +Hrotor +HSW +O(b3j).
These extra terms are non linear and correspond to interactions between the

quasi-particles, which no longer behave as free quasiparticles and could result in

damping of the Sk(t) oscillations. Furthermore, it can be shown that, due to the

frustration induced by the AFM couplings, the number of particles is indeed

higher in the AFM system, which could explain the stronger damping that we

observe in the AFM case [Chen et al., 2023b].

r Experimental imperfections. The damping that we observe could be induced

by experimental imperfections and decoherence effects. Moreover, as preparing

the initial state |AFMy⟩ requires first creating a Néel state, which introduces more

imperfections compared to preparing |CSSy⟩, then, these additional imperfections

may induce a stronger damping of the AFM oscillation compared to their FM

counterparts which is consistent with the experimental observations.

To assess which physical process contribute the most, the team in Lyon calculated

the result of the linear SW theory for a finite system size of N = 10× 10 spins (the

details of these calculations can be found in the supplemental material of [Chen et

al., 2023b]). We compare these results (shown by dashed curves in Fig. 8.4) to the
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experimental data. In the FM case, we observe relatively good agreements between the

experimental results and the theoretical predictions indicating finite size effects play a

significant role in the dynamics. However, the AFM data show a poor agreement with

the finite size linear SW theory. For very early times |tJ/(2π)| < 0.1, the theoretical

predictions match with the data, but for longer times, the theory predicts persistent

oscillations that we do not observe experimentally. To assess the physical origins of this

discrepancy, we repeated the experiments for small system sizes N = 4×4 for which we

can calculate the exact dynamics including the experimental imperfections (preparation

and detection errors, Rydberg lifetimes and shot-to-shot positional disorder). The

result indicate that experimental imperfections do not significantly alter the behavior

of the Sz
k(t) oscillations (this analysis is not shown here but can be found in [Chen

et al., 2023b]). We thus conclude that the damping of the Sz
k(t) oscillations in the

AFM case observed in Fig. 8.4 is indeed intrinsic to the dynamics and can be at least

partially attributed to interactions between the quasi-particles inducing non-linearities

in the spin wave theory, an interesting result in itself.

Extracting the dispersion relations. To extract the FM/AFM dispersion relations,

we fit each of these curves by a phenomenological damped cosine function defined as:

Sz
k(t) = Cfit

k +Dfit
k cos

(
2ωfit

k t+ ϕfit
k

)
e−t/τfitk , (8.22)

with Cfit
k , Dfit

k , ωfit
k , ϕfit

k and τfit the fitting parameters. As shown in Fig. 8.5, to

make sure the results are not biased by damping induced by the finite size effects or

particle-particle interactions, we only fit the beginning of each Sz
k(t) curves where

oscillations are still visible (|tJ/(2π) < 0.2| for the FM and |tJ/(2π) < 0.4| in the

AFM case). From the fits, we extract the fitting parameters.

In Fig. 8.6a and b, we plot the extracted frequency ωfit
k as a function of |k|. We

compare these data to the SW theory calculation given by Eq. 8.16 and Eq. 8.17 for

a system size of N = 10× 10 (yellow and purple square markers). In the FM case,

we observe that the frequency ωfit
k increases non-linearly with |k|, following a trend

consistent with the theoretical predictions. Moreover, at low |k|, we observe a good

agreement between the measured frequencies and those predicted by the SW theory.

At large wave vector k, we observe a deviation between experiment and theory data.

We attribute this discrepancy to finite size effects that modify the frequency ωk at

large |k| (see [Chen et al., 2023b]). For the AFM case, we measure that ωfit
k increases
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Figure 8.5: Full data sets for the time-dependent structure factor fitted by a cosine

function. (a)/(b) Time evolution of the FM/AFM time-dependent structure factors Sz
k(z)

(extracted from the data in Fig. 8.3) for different wave vectors k = 2π√
N
(nx, ny). Black

solid lines: fit using a damped cosine function (see Eq. 8.22), we only fit the beginning of

each curves with a time window of |tJ/(2π) < 0.2| for the FM case and |tJ/(2π) < 0.4|
in the AFM one. The data shown in this figure have been taken with assembled arrays

containing at most three defects.
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Ferromagnetic Antiferromagnetic
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Figure 8.6: Measurement of the dispersion relations. (a)/(b) Fitted frequency ωfit
k as

a function of |k| for the FM/AFM case. Circle markers: experiment data. Square markers:

SW theory calculation using Eq. 8.16 and Eq. 8.17 for a system size of N = 10× 10 (these

are the same data points as the ones shown in Fig. 8.1). (c)/(d) Inferred frequencies

from the fitted offset ω
FM/AFM
k = J

FM/AFM
0

√
2Cfit

k − 1. The error bars represent the fit

uncertainty of ωfit
k and Cfit

k .

linearly with |k|, which is also consistent with the theoretical predictions ωFM
k ∝ |k|.

Despite the Sz
k(t) curves being more strongly damped compared to the LSW theory,

we also observe a relatively good agreement between theory and experiment.

We now focus the analysis on the amplitude Dfit
k and offset Cfit

k of each fit. Using

Eq. 8.21, we compute the dispersion relations ωk. As the fitted amplitudes Dfit
k are

relatively noisy, we only focus of the offset terms and compute ωk = J0
√
2Ck − 1.

Figure 8.6c and d show the inferred frequency as a function of
√
k. For both FM

and AFM, the data match the SW theory calculations and are in relatively good

agreements with the fitted frequencies ωfit
k .

These results confirm that the 1/r3ij tail of the dipolar XY interactions modifies
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the properties of the low-lying excited FM/AFM states. It changes the excitation

spectrum, thus altering the dispersion relation of the associated quasi-particles. In

the FM case, the long range of the dipolar tail modifies the dispersion relation to be

non-linear, while in the AFM case, it remains linear, characteristic of the effective

short-range interactions induced by frustration.

8.3 Conclusion

In this chapter, I have presented a method called quench spectroscopy to measure

the dispersion relation. This method consists in quenching the system to inject a finite

density of excitations/quasi-particles and then measuring its dynamical evolution to

extract the dispersion relation. Comparing the FM and AFM case, we confirm the

theoretical prediction that dipolar ferromagnetic interactions modify the dispersion

to be non-linear in the FM case. In the AFM case, the frustration resulting from

the antiferromagnetic dipolar interactions leads to an effective cancellation of the

long-range tail, recovering a linear dispersion relation (as in the case of finite-range

interactions), which we also confirmed experimentally.

This quench spectroscopy procedure provides a more accessible way to measure

the dispersion relation of a system. We believe it can be extend to characterize other

systems using different spin Hamiltonians and implemented in other platforms.

194



Chapter 9
Conclusion and outlook

In this manuscript, I have presented a few examples of quantum simulations of spin

models based on arrays of single atoms excited in the Rydberg states. During my

Ph.D., I have focused on the study of the dipolar XY model. I summarize here the

main results and provide possible extensions of my work.

Implementation of the dipolar XY model. To implement the dipolar XY Hamilto-

nian, the spin states are encoded on two Rydberg states of opposite parities. This

configuration couples the atoms via resonant dipole-dipole interactions, thereby realiz-

ing the dipolar XY model. When I joined the lab, experiments with approximately ten

atoms (N ∼ 10) had already been conducted using this model [de Léséleuc et al., 2017;

de Léséleuc et al., 2019; Lienhard et al., 2020]. Using the last upgrades installed by

the former team to increase the number of atoms to a few hundreds and study the

Ising model on large arrays [Scholl, 2021], we scaled up the number of atoms used in

the quantum simulation of the XY model. Achieving this required addressing several

limitations of the experimental setup.

r Preparation and detection errors. Many small improvements of the various

manipulations of the atoms were made (see Chapter 2) to better excite/deexcite

the atoms to/from the Rydberg states and improve microwave control of the

spin states between the two Rydberg states. They allowed us to increase the

preparation efficiency and minimize the detection errors.

r Positional disorder. The dipolar interaction strongly depends of the distance

r between the atoms scaling as ∝ 1/r3. Therefore if the position of the atoms is

not well controlled (static positional disorder) or vary from shot-to-shot (shot-

to-shot positional disorder), it results in a disorder of the interatomic distances

and, consequently, of the interaction energies. This disorder can destabilize the

many-body system and prevent us from preparing or observing the phase we

wish to characterize. We address this problem in two different ways. First we
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upgraded the setup by performing Raman side band cooling to reduce the atomic

temperature and, thus, the shot-to-shot positional disorder (see Chapter 2 and

[Emperauger, 2025]). Second we started to investigate and study how to measure

and correct the static positional disorder. We showed that based on the pairwise

distances between the atoms, we can infer their position and thus correct it. We

illustrated this method on a small system size, reducing the static positional

disorder from ∼ 100 nm to ∼ 20 nm (see Chapter 4).

r Local manipulation of the spins. The spins can now be manipulated

individually by using addressing beams inducing a local light shift on the target

atoms (see Chapter 3). Historically, this method was used in the group to prepare

one spin in one specific Rydberg state. During my Ph.D., we extended this

method to arbitrary prepare any spins in |↑⟩ and the rest in |↓⟩. We can, for

example, prepare Néel state |↑↓↑↓ · · ·⟩ of up to N ∼ 100 atoms which turns

out to be the starting point of many of our quantum simulation experiments of

the XY models. We also showed that these local addressing beams allow us to

perform arbitrary rotations on the atoms, enabling the measurement of exotic

observables such as chirality and allow us to perform quantum state tomography.

We then performed two types of experiments. The first ones focuses of the preparation

and characterization of the XY ground/highest energy state using various geometries.

The second ones focuses of out-of-equilibrium state evolving under the dipolar XY

model and leading to various interesting states.

Ground state physics of the dipolar XY model. We first studied the lowest /highest

energy states of the XY model on 2D square arrays (see Chapter 5). Combining our

ability to perform local rotations with an adiabatic procedure, we prepared these states

and measured their properties in different bases. We showed that on any direction

of the (x, y) plane, they exhibit complex ferromagnetic (FM) and antiferromagnetic

(AFM) order. In particular, we assessed the role played by the relatively long-range

tail of the dipolar interactions by measuring the averaged correlation along x as a

function of the distance. We observed that, the AFM correlations decay faster with

the distance than their FM counterpart. Then using partial quench experiments, we

probed the {δ, T} phase diagram of the AFM/FM phase showing that the region for

which the system exhibit an AFM order is smaller than the FM order region. These

differences are induced by the dipolar tail of the interaction introducing frustration in
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the AFM case and destabilizing its AFM order while it tends to stabilize the FM

order.

Then, we moved to highly frustrated geometries. Theoretical works have predicted

that the ground state of these systems could be an exotic phase of matter called spin

liquids (Chapter 6). I presented our preliminary results on a N = 114 atoms in a

Kagome array whose the ground state is expected to be a Dirac spin liquid. We showed

that, in contrast with the ground state on square array, this state does not possess any

magnetic order. Then we probed the response of the system to a local perturbation,

and measured a signal consistent with Friedel oscillations which are the signature of a

Dirac cone in the energy excitation spectrum. Further analyses are being made to

better characterize the phase we prepared. Next, we moved to the chiral spin liquid,

which is expected to be the ground state of the XY model using a breathing Kagome

geometry. On a minimalistic system of two facing triangles, we prepared the ground

state and measured the growth of chiral-chiral correlations between these triangles.

This experiment illustrated the pairing mechanism of the chiralities between different

triangles, which, in larger arrays, gives rise to a chiral spin liquid. This experiment

represents the first step towards the realization and characterization of a chiral spin

liquid.

Quench experiments. We first demonstrated that, as predicted by recent theoretical

works, the dipolar XY model can produce spin-squeezed states (see Chapter 7). These

squeezed states are particularly interesting in the context of quantum metrology, as

they can improve the sensitivity of measurements. We characterized this squeezing,

showing that it is scalable, meaning that its metrological gain (squeezing parameter)

increases with the system size. We also proposed different protocols that can be used

for metrological applications.

Then we moved to the measurement of the XY dispersion relation. We used an

alternative method called quench spectroscopy experiments (see Chapter 8). In contrast

to “traditional methods”, it offers the advantage that it does not require preparing the

ground state of the system which can be challenging. It consists in initializing the

system in an “easy to prepare” state whose energy is relatively close to its ground

state energy, and let it freely evolves under the XY model. The linear theory then

predicts that by measuring the dynamical evolution of the correlations, we can extract

the dispersion relation. We applied the quench spectroscopy method to our system,

and measured the dispersion relation of the dipolar XY model. Our results showed
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a non linear dispersion relation ωFM
k ∝

√
|k| in the FM case while the AFM one in

linear ωAFM
k ∝ |k|. These observations are consistent with the theory predictions. This

method is relatively general and can thus be applied to other quantum simulator

platforms exhibiting different Hamiltonians.

Outlook. We showed that Rydberg platforms are well suited to explore the dipolar XY

model as it can be naturally implemented using Rydberg interactions. We performed

experiments with hundreds of atoms which in many situations (e.g., frustration induced

by AFM couplings, out-of-equilibrium dynamics,...) exceed the number of spins that

can be classically simulated. We demonstrated that the platform allows testing and

verifying theory predictions: we highlighted how the dipolar tail of the interactions

modifies the AFM/FM ground state properties, we showed that the dipolar XY model

can generate scalable squeezing, and measure a linear/non-linear dispersion relation

consistent for the AFM/FM case.

Future perspectives are envisioned for the experiments. First, on the setup, we

identified and discussed a list of experimental imperfections (preparations and detection

errors, positional disorder,...) that we believe can be addressed and minimized using

technical solutions. We also discussed experimental upgrades that can be added to

extend the versatility of the platform: allowing for example to prepare and readout

any atoms in any arbitrary basis. We also wish to assemble larger arrays with more

atoms. As we have seen, the size of array of N ≈ 100 atoms is a limitation for the

study of some many-body systems, for example, we suffer from edge effects when

trying to the extract the dispersion relation ωk of the XY model (see Chapter 8).

On the quantum simulation front, as explained, we started to explore exotic phases

of matter such as spin liquids. Many other directions are also possible, we recently

started to study the so called bosonic t-J model encoding the spin-1 states onto three

different Rydberg states [Homeier et al., 2024]. At the time of writing this manuscript,

another setup is being build in order to hopefully solve theses technological challenges

with getting more atoms.

Beyond the exploration of fundamental many-body physics problems, other

applications are also possible. As we have seen, dipolar interactions can generate spin

squeezed states. Metrological applications can then be thought. One could for example

imagine to combine our ability to generate spin squeezed state with the natural high

sensitivity of Rydberg states to electric fields to build quantum sensors based on

Rydberg atoms. Other applications in quantum computing are also being developed,
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recently, numerous companies such as QuEra® or Pasqal® emerged trying to build

quantum computers based on Rydberg atoms [Henriet et al., 2020].
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Appendix A
Correcting the detection errors

In this Appendix we discuss the effects of the detection errors ε↑/ε↓ on the different

observables that we measure. Due to the finite efficiency of each step in the readout

sequence discussed in Sec. 2.3, an atom in |↑⟩/|↓⟩ has a small probability ε↑/ε↓ to be

detected in |↓⟩/|↑⟩. The different observables that we measure (such as magnetization

or correlation functions) can be corrected to account for these detection errors. We

now describe this correction procedure, first for one atom and then for N atoms.

We denote Pi = (P i
↑, P

i
↓) the probability to measure the atom i in |↑⟩ and |↓⟩.

These raw probabilities are linked to their corresponding quantities P̃i = (P̃ i
↑, P̃

i
↓) free

from detection errors by Pi =MP̃i, with M the detection error matrix:

M =

(
1− ϵ↑ ϵ↓

ϵ↑ 1− ϵ↓

)
. (A.1)

To correct the raw data for detection errors we invert M and calculate P̃i =

M−1Pi. We now extend this formula to N atoms. To do so, we now introduce

P = (P↑···↑, P↑···↑↓, . . . , P↓···↓) the probability to measure the N -atom in the 2N different

states (|↑ · · · ↑⟩ , |↑ · · · ↑↓⟩ , . . . , |↑ · · · ↑↓⟩). We also define the corresponding quantities

P̃ free from detection errors. Assuming that the detections are uncorrelated and

remain of the same amplitude for each atoms, the formula now reads:

P =

(
N⊗
i=1

M

)
P̃. (A.2)

The matrix
⊗N

i=1M =M ⊗M ⊗ · · · ⊗M can be inverted to calculate P̃.

Using the above formulas, we now explicitly calculate and analyse the effect of the

detection errors on a few observables. For the rest of this appendix, for each observable

value ⟨O⟩, we will associate the corresponding value ⟨Õ⟩ free from detection errors.
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For an atom i, its magnetization reads:

⟨σx,y,z
i ⟩ = (ε↓ − ε↑) + (1− ε↓ − ε↑)⟨σ̃x,y,z

i ⟩. (A.3)

As −1 ⩽ ⟨σ̃x,y,z
i ⟩ ⩽ 1, the above equations shows that the detection errors bound the

measured values to −1 + 2ε↓ ⩽ ⟨σx,y,z
i ⟩ ⩽ 1− 2ε↑. This formula can be extended using

any linear combination of ⟨σx,y,z
i ⟩ with different atoms. For example, for the collective

spin vector ⟨Jx,y,z⟩ = N
2

∑
i⟨σ

x,y,z
i ⟩ we get:

⟨Jx,y,z⟩ =
N

2
(ε↓ − ε↑) + (1− ε↓ − ε↑)⟨J̃x,y,z⟩. (A.4)

We now consider a two body correlation function between two different atoms i and j

(with i ̸= j). At first order in ε↑,↓, the formula reads:

⟨σx,y,z
i σx,y,z

j ⟩ ≈ (1− 2ε↓ − 2ε↑)⟨σ̃x,y,z
i σ̃x,y,z

j ⟩+ (ε↓ − ε↑)
(
⟨σ̃x,y,z

i ⟩+ ⟨σ̃x,y,z
j ⟩

)
. (A.5)

Similarly, we can derive a similar formula for the two body connected correlations:

⟨σx,y,z
i σx,y,z

j ⟩c = ⟨σx,y,z
i σx,y,z

j ⟩ − ⟨σx,y,z
i ⟩⟨σx,y,z

j ⟩ ≈ (1− 2ε↓ − 2ε↑)⟨σ̃x,y,z
i σ̃x,y,z

j ⟩c (A.6)

Here, the effect of the detection errors on ⟨σx,y,z
i σx,y,z

j ⟩c, is to reduce the amplitude of

the measurement correlations by a factor (1− 2ε↓ − 2ε↑). We now turn to the variance

of the spin operator Var (Jx,y,z) which reads:

Var (Jx,y,z) = ⟨Jx,y,z2⟩ − ⟨Jx,y,z⟩2

≈ (1− 2ε↓ − 2ε↑)Var
(
J̃x,y,z

)
+ ε↓

(
N

2
− ⟨J̃x,y,z⟩

)
+ ε↑

(
N

2
+ ⟨J̃x,y,z⟩

)
.

(A.7)

Assuming that the magnetization measured in the same basis is negligible |⟨J̃x,y,z⟩| ≪
N/2, this expression can be simplified as the sum of two terms:

Var (Jx,y,z) ≈ (1− 2ε↓ − 2ε↑)Var
(
J̃x,y,z

)
+
N

2
(ε↓ + ε↑) . (A.8)

The first term represent a reduction of the measured variance by a factor (1−2ε↓−2ε↑).

The second term represent a lower bound of the minimum variance that we can
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measure. Even in the case where Var
(
J̃x,y,z

)
= 0, we would experimentally measure

Var (Jx,y,z) ≈ N
2
(ε↓ + ε↑). This implies that the spin squeezing that we measure in

Chapter 7 is ultimately limited by the detection errors. To correct the spin squeezing

parameter ξ2R for the detection errors (as mentioned in Sec. 7.1.2) we invert Eq. A.4

and A.8 to compute ξ̃2R = Var
(
J̃θ⋆
)
/⟨J̃y⟩2.
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211

http://dx.doi.org/10.1103/PhysRevLett.132.263601
http://dx.doi.org/10.1103/PhysRevLett.132.263601
http://dx.doi.org/10.1038/s41586-023-06414-9
http://dx.doi.org/10.1038/s41586-023-06414-9
http://dx.doi.org/10.1126/science.aay0668
http://dx.doi.org/10.1038/s41567-019-0733-z
http://dx.doi.org/10.1103/RevModPhys.58.233
http://dx.doi.org/10.1103/PhysRevX.9.011057
http://dx.doi.org/10.1103/PhysRevLett.87.137203
http://dx.doi.org/10.1126/science.aau4963
http://dx.doi.org/10.1038/nphys2519
http://dx.doi.org/10.1103/PhysRevB.98.024302


Bibliography

P., Lahaye, T., Yao, N. Y., and Browaeys, A., “Continuous symmetry breaking in a

two-dimensional rydberg array,” Nature 616, 691 (2023a) [cited in pages 110, 129,

130, and 131].

Chen, C., Emperauger, G., Bornet, G., Caleca, F., Gély, B., Bintz, M., Chatterjee, S.,
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Chow, J. M., Gambetta, J. M., Córcoles, A. D., Merkel, S. T., Smolin, J. A., Rigetti,

C., Poletto, S., Keefe, G. A., Rothwell, M. B., Rozen, J. R., Ketchen, M. B., and

Steffen, M., “Universal quantum gate set approaching fault-tolerant thresholds with

superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012) [cited in page 24].

Chuang, I. L., Gershenfeld, N., and Kubinec, M., “Experimental implementation of

fast quantum searching,” Phys. Rev. Lett. 80, 3408 (1998) [cited in page 24].

Cirac, J. I. and Zoller, P., “Quantum computations with cold trapped ions,” Phys. Rev.

Lett. 74, 4091 (1995) [cited in page 20].

Cline, R. A., Miller, J. D., Matthews, M. R., and Heinzen, D. J., “Spin relaxation of

optically trapped atoms by light scattering,” Opt Lett 19, 207 (1994) [cited in pages

48 and 49].
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V., and Lukin, M. D., “Quantum phases of matter on a 256-atom programmable

quantum simulator,” Nature 595, 227 (2021) [cited in pages 24 and 116].

Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., and Weinfurter, H., “Experimental

realization of a three-qubit entangled w state,” Phys. Rev. Lett. 92, 077901 (2004)

[cited in page 87].

Emperauger, G., Simulation quantique d’Hamiltoniens de spin à l’aide de matrices
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[cited in pages 43, 57, 114, 174, and 196].

Endres, M., Bernien, H., Keesling, A., Levine, H., Anschuetz, E. R., Krajenbrink, A.,

Senko, C., Vuletic, V., Greiner, M., and Lukin, M. D., “Atom-by-atom assembly of

defect-free one-dimensional cold atom arrays,” Science 354, 1024 (2016) [cited in

pages 23 and 24].

Esslinger, T., “Fermi-hubbard physics with atoms in an optical lattice,” Annual Review

of Condensed Matter Physics 1, 129 (2010) [cited in pages 17 and 20].

214

http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1103/PhysRevB.102.235165
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1038/s41586-022-04853-4
http://dx.doi.org/10.1038/s41586-021-03582-4
http://dx.doi.org/10.1103/PhysRevLett.92.077901
https://www.theses.fr/s296694
http://dx.doi.org/10.1126/science.aah3752
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059


Bibliography
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M., Jelenković, B., Langer, C., Rosenband, T., and Wineland, D. J., “Experimental

demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature

422, 412 (2003) [cited in page 24].
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Greiner, M., Vuletić, V., and Lukin, M. D., “High-fidelity control and entanglement

of rydberg-atom qubits,” Phys. Rev. Lett. 121, 123603 (2018) [cited in page 24].

Levine, H., Keesling, A., Semeghini, G., Omran, A., Wang, T. T., Ebadi, S., Bernien,

H., Greiner, M., Vuletić, V., Pichler, H., and Lukin, M. D., “Parallel implementation

221

http://dx.doi.org/10.1103/PhysRevA.98.052503
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1126/science.1163196
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1103/PhysRevLett.119.053202
http://dx.doi.org/10.1103/PhysRevLett.119.053202
http://dx.doi.org/10.1103/PhysRevA.97.053803
http://dx.doi.org/10.1126/science.aaw4329
http://dx.doi.org/10.1103/PhysRevLett.121.123603


Bibliography

of high-fidelity multiqubit gates with neutral atoms,” Phys. Rev. Lett. 123, 170503

(2019) [cited in page 24].

Li, Z., null,, Colombo, S., Shu, C., Velez, G., Pilatowsky-Cameo, S., Schmied, R.,
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(2007) [cited in page 134].

Reif, F., Fundamentals of Statistical and Thermal Physics (Waveland Press, 2009)

[cited in page 15].

Robinson, J. M., Miklos, M., Tso, Y. M., Kennedy, C. J., Bothwell, T., Kedar, D.,

Thompson, J. K., and Ye, J., “Direct comparison of two spin squeezed opti-

cal clocks below the quantum projection noise limit,” arxiv.2211.08621 (2022),

10.48550/ARXIV.2211.08621 [cited in pages 14 and 158].

Roscilde, T., Comparin, T., and Mezzacapo, F., “Entangling dynamics from effective

rotor–spin-wave separation in u(1)-symmetric quantum spin models,” Phys. Rev.

Lett. 131, 160403 (2023a) [cited in page 181].

226

http://dx.doi.org/10.1103/PhysRevLett.125.223401
http://dx.doi.org/10.1103/PhysRevLett.109.025303
http://dx.doi.org/10.1103/RevModPhys.90.035005
http://dx.doi.org/10.1103/RevModPhys.90.035005
http://dx.doi.org/10.1103/RevModPhys.70.721
http://dx.doi.org/10.1103/RevModPhys.70.721
https://arxiv.org/abs/2405.19503
http://arxiv.org/abs/1203.5813
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevLett.98.117205
https://books.google.fr/books?id=ObsbAAAAQBAJ
http://dx.doi.org/10.48550/ARXIV.2211.08621
http://dx.doi.org/10.48550/ARXIV.2211.08621
http://dx.doi.org/10.1103/PhysRevLett.131.160403
http://dx.doi.org/10.1103/PhysRevLett.131.160403


Bibliography

Roscilde, T., Comparin, T., and Mezzacapo, F., “Rotor/spin-wave theory for quantum

spin models with u(1) symmetry,” Phys. Rev. B 108, 155130 (2023b) [cited in pages

163 and 181].

Rosenberg, E., Andersen, T. I., Samajdar, R., Petukhov, A., Hoke, J. C., Abanin, D.,

Bengtsson, A., Drozdov, I. K., Erickson, C., Klimov, P. V., Mi, X., Morvan, A.,

Neeley, M., Neill, C., Acharya, R., Allen, R., Anderson, K., Ansmann, M., Arute, F.,

Arya, K., Asfaw, A., Atalaya, J., Bardin, J. C., Bilmes, A., Bortoli, G., Bourassa,

A., Bovaird, J., Brill, L., Broughton, M., Buckley, B. B., Buell, D. A., Burger, T.,

Burkett, B., Bushnell, N., Campero, J., Chang, H.-S., Chen, Z., Chiaro, B., Chik,

D., Cogan, J., Collins, R., Conner, P., Courtney, W., Crook, A. L., Curtin, B.,

Debroy, D. M., Barba, A. D. T., Demura, S., Paolo, A. D., Dunsworth, A., Earle, C.,

Faoro, L., Farhi, E., Fatemi, R., Ferreira, V. S., Burgos, L. F., Forati, E., Fowler, A.

G., Foxen, B., Garcia, G., Genois, E., Giang, W., Gidney, C., Gilboa, D., Giustina,

M., Gosula, R., Dau, A. G., Gross, J. A., Habegger, S., Hamilton, M. C., Hansen,

M., Harrigan, M. P., Harrington, S. D., Heu, P., Hill, G., Hoffmann, M. R., Hong, S.,

Huang, T., Huff, A., Huggins, W. J., Ioffe, L. B., Isakov, S. V., Iveland, J., Jeffrey,

E., Jiang, Z., Jones, C., Juhas, P., Kafri, D., Khattar, T., Khezri, M., Kieferová, M.,
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Palaiseau, Institut d’optique théorique et appliquée 2021 [cited in pages 32, 38, 44,

45, 46, 57, 98, and 195].

Scholl, P., Schuler, M., Williams, H. J., Eberharter, A. A., Barredo, D., Schymik,

K.-N., Lienhard, V., Henry, L.-P., Lang, T. C., Lahaye, T., Läuchli, A. M., and
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entanglement in bosonic josephson junctions,” Phys. Rev. A 99, 022329 (2019)

[cited in page 171].

Sørensen, A. S., Altman, E., Gullans, M., Porto, J. V., Lukin, M. D., and Demler, E.,

“Adiabatic preparation of many-body states in optical lattices,” Phys. Rev. A 81,

061603 (2010) [cited in page 70].

230

https://pastel.hal.science/tel-03643133
http://dx.doi.org/10.1103/PhysRevA.102.063107
http://dx.doi.org/10.1103/PhysRevApplied.16.034013
http://dx.doi.org/10.1103/PhysRevA.106.022611
http://dx.doi.org/10.1126/science.abi8794
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1103/RevModPhys.93.025006
http://dx.doi.org/10.1103/PhysRevA.99.022329
http://dx.doi.org/10.1103/PhysRevA.81.061603
http://dx.doi.org/10.1103/PhysRevA.81.061603


Bibliography

Sørensen, A. S. and Mølmer, K., “Entanglement and extreme spin squeezing,” Phys.

Rev. Lett. 86, 4431 (2001) [cited in page 165].

Steffen, M., Ansmann, M., Bialczak, R. C., Katz, N., Lucero, E., McDermott, R.,

Neeley, M., Weig, E. M., Cleland, A. N., and Martinis, J. M., “Measurement of the

entanglement of two superconducting qubits via state tomography,” Science 313,

1423 (2006) [cited in page 24].

Swingle, B., Bentsen, G., Schleier-Smith, M., and Hayden, P., “Measuring the

scrambling of quantum information,” Phys. Rev. A 94, 040302 (2016) [cited in page

175].

Takeda, K., Noiri, A., Nakajima, T., Yoneda, J., Kobayashi, T., and Tarucha,

S., “Quantum tomography of an entangled three-qubit state in silicon,” Nature

Nanotechnology 16, 965 (2021) [cited in page 86].

Tarruell, L. and Sanchez-Palencia, L., “Quantum simulation of the hubbard model with

ultracold fermions in optical lattices,” Comptes Rendus Physique 19, 365 (2018),

quantum simulation / Simulation quantique [cited in pages 17 and 20].

Thomson, A. and Sachdev, S., “Quantum electrodynamics in 2+1 dimensions with

quenched disorder: Quantum critical states with interactions and disorder,” Phys.

Rev. B 95, 235146 (2017) [cited in page 89].
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Tóth, G. and Mitchell, M. W., “Generation of macroscopic singlet states in atomic

ensembles,” New Journal of Physics 12, 053007 (2010) [cited in page 142].

Urban, E., Johnson, T. A., Henage, T., Isenhower, L., Yavuz, D. D., Walker, T. G.,

232

http://dx.doi.org/10.1103/PhysRevLett.123.231107
http://dx.doi.org/10.1103/PhysRevA.77.012106
http://dx.doi.org/10.1103/PhysRevA.78.033425
http://dx.doi.org/10.1103/PhysRevA.78.033425
http://dx.doi.org/10.1088/1367-2630/12/5/053007


Bibliography

and Saffman, M., “Observation of rydberg blockade between two atoms,” Nature

Physics 5, 110 (2009) [cited in page 23].

Versini, L., El-Din, K. A., Mintert, F., and Mukherjee, R., “Efficient estimation of

quantum state k-designs with randomized measurements,” (2023) [cited in page 77].

Villa, L., Despres, J., and Sanchez-Palencia, L., “Unraveling the excitation spectrum

of many-body systems from quantum quenches,” Phys. Rev. A 100, 063632 (2019)

[cited in page 180].

Villa, L., Despres, J., Thomson, S. J., and Sanchez-Palencia, L., “Local quench

spectroscopy of many-body quantum systems,” Phys. Rev. A 102, 033337 (2020)

[cited in page 180].

Vitanov, N. V., Rangelov, A. A., Shore, B. W., and Bergmann, K., “Stimulated raman

adiabatic passage in physics, chemistry, and beyond,” Rev. Mod. Phys. 89, 015006

(2017) [cited in page 45].

Vogl, M., Laurell, P., Zhang, H., Okamoto, S., and Fiete, G. A., “Resummation of the

holstein-primakoff expansion and differential equation approach to operator square

roots,” Phys. Rev. Res. 2, 043243 (2020) [cited in pages 181 and 182].

Wallraff, A., Schuster, D. I., Blais, A., Frunzio, L., Huang, R.-. S., Majer, J., Kumar,

S., Girvin, S. M., and Schoelkopf, R. J., “Strong coupling of a single photon to a

superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162

(2004) [cited in page 20].

Wang, Y., Zhang, X., Corcovilos, T. A., Kumar, A., and Weiss, D. S., “Coherent

addressing of individual neutral atoms in a 3d optical lattice,” Phys. Rev. Lett. 115,

043003 (2015) [cited in page 20].

Wen, X. G., “Gapless boundary excitations in the quantum hall states and in the chiral

spin states,” Phys. Rev. B 43, 11025 (1991) [cited in page 146].

Wen, X. G., Wilczek, F., and Zee, A., “Chiral spin states and superconductivity,”

Phys. Rev. B 39, 11413 (1989) [cited in page 146].
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Title : Quantum simulation of the dipolar XY model using arrays of Rydberg atoms

Keywords : Rydberg atom, Quantum simulation, Optical tweezer, Spin model

Abstract : During my four years of Ph.D., I have
focused on the implementation of the dipolar XY
spin model using a Rydberg atom-based quantum
simulator where the atoms are coupled by resonant
Rydberg-Rydberg dipole interactions. We use our
ability to address individual atoms in the arrays to
first adiabatically prepare and study the properties
of the 2D square dipolar XY ground state which
exhibit non-trivial antiferromagnetic and ferroma-

gnetic order. We then show that the dipolar XY
model can produce scalable spin-squeezing states
interesting for metrological purposes. Finally, we
perform quench spectroscopy experiments to probe
the dispersion relation of the XY magnets, in the
AFM and FM case. Our studies can be generali-
zed to any system exhibiting dipolar interaction,
such as ultra-cold molecules, magnetic atoms or
solid-state spin defects.

Titre : Simulation quantique du modèle XY dipolaire en utilisant des matrices d’atomes de Rydberg

Mots clés : Atome de Rydberg, Simulation quantique, Pince optique, Modèle de spin

Résumé : Au cours de mes quatre années de thèse,
je me suis concentré sur l’étude du modèle de
spin XY dipolaire à l’aide d’un simulateur quan-
tique basé sur des atomes de Rydberg, couplés par
des interactions dipolaires Rydberg-Rydberg réso-
nantes (voir figure). Nous avons exploité notre ca-
pacité à adresser individuellement les atomes pour
préparer de manière adiabatique et étudier les pro-
priétés de l’état fondamental de réseaux carrés bi-
dimensionnels (2D) du modèle XY dipolaire, qui
présente un ordre antiferromagnétique et ferroma-
gnétique complexe. De plus, nous avons démon-
tré que le modèle XY dipolaire peut produire des
états dits de “spin-squeezing”, qui sont particuliè-

rement intéressants dans le domaine de la métrolo-
gie quantique pour améliorer la sensibilité des me-
sures. Nous avons caractérisé ces états, montrant
que leur gain métrologique (paramètre de “squee-
zing”) augmente avec la taille du système. Enfin,
nous avons appliqué une méthode de spectroscopie
hors équilibre appelée “quench spectroscopy” pour
mesurer la relation de dispersion du modèle XY
dans les cas antiferromagnétique et ferromagné-
tique. Nos études peuvent être généralisées à tout
système présentant des interactions dipolaires, tels
que les molécules ultra-froides, les atomes magné-
tiques ou les défauts de spin dans les solides.
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2e étage, aile ouest, École normale supérieure Paris-Saclay
4 avenue des Sciencs
91190 Gif-sur-Yvette, France


	Introduction
	Quantum simulation to study many-body physics problems
	Overview of the various platforms for quantum simulation
	Evolution of Rydberg quantum simulators

	Upgrading the experimental apparatus
	Presentation of the experimental set-up
	Individual 87Rb atoms trapped in arrays of optical tweezers
	Trapping and imaging a single atom
	Arrays of single atoms
	A typical experimental sequence

	Ground-state manipulations
	Cooling the atoms
	Optical pumping

	Rydberg state manipulations
	Excitation and deexcitation
	Microwave control of the Rydberg states
	Local addressing beams

	Control of the magnetic and electric field environment
	Magnetic field
	Electric field

	Conclusion

	Local control of Rydberg encoded spins
	Scaling the addressing to many atoms
	Arrays of local addressing beams
	Improving the addressing stability

	Preparation of antiferromagnetic states along z
	Preparation
	Modelling the errors

	Multi-basis measurements
	Local rotations
	Measurement of the chirality
	Tomography

	Conclusion

	Static positional disorder
	Measurements of the atomic positions
	Measurement using a camera
	Inferring the positions from nearest neighbours distances

	Feedback on the positions
	Feedback procedure
	Results on a small system size

	Scaling up to larger system sizes
	Measuring van der Waals interactions
	Using many-body physics to measure the distances

	Conclusion


	Ground state physics of the  dipolar XY model
	XY ground state on square arrays
	Implementation of the XY model
	From resonant dipole-dipole interaction to the XY interaction
	Ground state of two interacting atoms

	XY ground states of a four-atom square array
	Ansatz wave-functions for the AFM/FM states
	Adiabatic preparation of the ground state
	Experimental realization

	XY ground states of larger square arrays
	Frustration and long-range order
	Preparation of the AFM/FM ground states on larger arrays
	Is the U(1) continuous symmetry broken ?

	Exploration of the AFM/FM phase diagram
	Probing the AFM/FM phase diagram via quench experiments
	Thermal phase transition
	Quantum phase transition

	Conclusion

	Exploring exotic phases of matter: Spin liquids
	Probing a Dirac spin liquid
	Experimental preparation
	Properties of the ground state
	Friedel oscillations

	Probing chiral spin liquids
	Minimalistic system of six atoms
	Measurement of chiral-chiral correlations

	Conclusion


	Non-equilibrium dynamics of the dipolar XY model
	Spin squeezing
	Generation of scalable spin squeezing
	A quench experiment to generate squeezing
	Is the squeezing generated by the dipolar XY model scalable?

	Characterisation of the squeezed states
	Entanglement depth
	Non-gaussian spin squeezing
	Improving the squeezing using the single-site resolution

	Towards metrological applications
	Adiabatic/Multistep squeezing
	Manipulation of the spin states

	Conclusion

	Dispersion relation
	Linear spin wave theory
	Rotor/Spin wave decomposition
	Linearisation of the spin wave excitations

	Experimental measurement of the dispersion relation
	Quench experiment
	Extraction of the energy spectrum

	Conclusion

	Conclusion and outlook
	Correcting the detection errors
	Bibliography


