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— Un livre comme ca est donc possible, alors ? fit Liza, toute contente.
— Il faut voir, réfléchir. Une chose comme ¢a, c’est énorme. On ne
trouvera rien d’un seul coup. On a besoin d’expérience. Méme quand on
aura publié le livre, on ne saura toujours pas comment le publier. Rien
gue des expériences successives ; mais l'idée, elle a I'air de coller.
L'idée, elle est utile.

Il finit enfin par lever les yeux, et ses yeux brillerent méme de plaisir,
tant il était intéressé.

— C'est vous qui avez trouvé ca ? demanda-t-il a Liza d'une voix tendre
et comme pudique.

— Mais le trouver, vous comprenez, ce n'est rien, ce qui n’est pas rien,
c'est le plan, répondit Liza en souriant, je n'y comprends pas

grand-chose, je ne suis pas tres intelligente, et je ne poursuis que ce qui
me semble clair...

Dostoievski, F. M. (1872/1995). Les Démons
(A. Markovicz, Trad.). Actes Sud.
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Abstract

In November 2023, the French photovoltaic (PV) installed capacity stood at 18.6
GW,, and the French electricity transmission system operator (TSO) lacked power
measurements for 20% of the fleet, which mostly corresponded to small-scale
(rooftop) systems. In the context of decarbonizing the electric mix, the PV installed
capacity will continue to experience sustained growth in the coming years, and
the so-called problem of poor PV observability threatens its long-term integration
into the grid due to the uncertainty it creates. A better knowledge of the rooftop
PV fleet, embodied in a nationwide technical registry recording the localization and
characteristics of the PV installations, is necessary to improve PV observability. This
thesis proposes to assess whether deep learning-based remote sensing on orthoim-
agery is a suitable method for constructing this technical registry. The thesis first
discusses the quality standards the technical registry should satisfy and introduces
an unsupervised evaluation method to monitor the accuracy of the registry in the
absence of ground truth labels. Second, the thesis introduces a new feature attri-
bution method that enables the auditing of the model’s decisions by decomposing
its predictions into the space-scale domain. The thesis discusses the relevance of
this decomposition for assessing what the model sees on the input image, under-
standing the model’s sensitivity to varying acquisition conditions, which are found
to affect the model’s accuracy and reliability, and introducing a robust and reliable
algorithm for mapping rooftop PV installations. Finally, the relevance of the registry
for improving rooftop PV observability is established by showing that accurate and
scalable estimations of the rooftop PV power production can be derived from the
registry and weather data. This thesis features contributions in power systems by
showing how to effectively improve rooftop PV observability and in deep learning
by improving the interpretability of deep learning models thanks to a new feature
attribution method. More generally, this thesis underlines the necessary conditions
for using deep learning in critical industrial contexts.






Résume

En novembre 2023, la puissance photovoltaique (PV) installée en France s’éle-
vait a 18,6 GW,, et le gestionnaire du réseau de transport d’électricité (GRT) fran-
cais ne disposait pas de mesures de production pour 20% du parc, correspondant
principalement a des systemes de petite taille sur toitures. Dans le contexte de
décarbonisation du mix électrique, la puissance installée PV continuera de croitre
rapidement, aussi le manque d’observabilité du PV risque-t-il compromettre I'inté-
gration du PV dans le systeme électrique en raison des incertitudes qu’il engendre.
Une meilleure connaissance du parc photovoltaigue en toiture, matérialisée par
un registre technigue national contenant la localisation et les caractéristiques des
installations photovoltaiques, est nécessaire pour améliorer I'observabilité du PV.
Cette these evalue si l'utilisation d’algorithmes d’apprentissage profond et d’orthoi-
mages est une méthode adaptée a la construction d’un registre technique national
d’installations photovoltaiques (PV) sur toiture destiné a améliorer I'observabilité
de la production PV en France. La these discute d'abord des normes de qualité
gue le registre technique doit satisfaire et introduit une méthode d’évaluation non
supervisée pour controler I'exactitude du registre en I'absence de données de ré-
férence. Deuxiemement, la thése introduit une nouvelle méthode d’attribution qui
permet d’analyser des décisions du modele en décomposant ses prédictions dans
I’espace des ondelettes. La these discute de la pertinence de cette décomposition
pour évaluer ce que le modeéle voit sur I'image d’entrée, comprendre la sensibilité
du modele a des conditions d’acquisition variables, qui affectent la précision et la
fiabilité du modele, et introduire un algorithme robuste et fiable pour cartographier
les installations PV sur toiture. Enfin, la pertinence du registre pour améliorer |'ob-
servabilité des installations photovoltaiques sur les toits est établie en montrant
gue des estimations précises et réplicables a grande échelle de la production issue
des installations PV sur toiture peuvent étre construites a partir du registre et de
données météorologiques. Cette these apporte des contributions en énergétique
et procédés, en montrant comment améliorer I'observabilité du PV toiture et en
apprentissage statistique, en améliorant I'interprétabilité des modeles d’apprentis-
sage profond grace a une nouvelle méthode d’attribution. Plus généralement, cette
these souligne les conditions nécessaires a I'utilisation de modeles d’apprentissage
profond dans des contextes industriels critiques.
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Résumeé étendu

1 Introduction

1.1 Contexte et motivation

Changement climatique et électrification D’aprés le Groupe d’experts inter-
gouvernemental sur I’évolution du climat (GIEC), la lutte contre le changement cli-
matique nécessite une baisse drastique des émissions de gaz a effet de serre, et
en particulier des émissions de dioxyde de carbone (IPCC, 2021a). La réduction
des emissions de dioxyde de carbone (CO,) peut se faire selon deux leviers : les
économies d’'énergie (sobriété) et la décarbonation. Les mesures de sobriété cor-
respondent par exemple a I'amélioration de I'isolation des batiments, ou le fait de
privilégier les transports en commun pour les déplacements du quotidien. La dé-
carbonation impligue quant a elle d'électrifier massivement certains usages, en
particulier les transports. Par conséquent, la transition énergétique entrainera une
augmentation de la consommation d’électricité. L’Agence internationale de I'éner-
gie (AIE) prédit une augmentation de la part de I’électricité dans la demande d’éner-
gie finale de 4% par an pour atteindre les objectifs de décarbonation (IEA, 2023).
En France, la consommation d’électricité pourrait passer de 459,3 TWh en 2022 a
580 a 640 TWh en 2035 (RTE France, 2023). La décarbonation suppose donc une
hausse de la production d’électricité.

L'électricité est un vecteur énergétigue résultant de la conversion d’une source
d’'énergie primaire en énergie électrique. Les sources primaires peuvent étre le gaz,
le fioul, le nucléaire ou les renouvelables; ces dernieres différant selon leur inten-
sité en carbone. La décarbonation du secteur électrique implique donc de favoriser
le déploiment d’'énergies bas carbone telles que les renouvelables (hydraulique,
solaire, éolien, biomasse). Selon le GIEC, I'énergie éolienne et le solaire photovol-
taique (PV) constituent les deux leviers les plus puissants pour réduire les émissions
de CO, d’ici a 2030 (IPCC, 2021b).

Solaire et éolien : deux sources météo-dépendantes La production d’'élec-
tricité éolienne et PV dépend des conditions météorologiques. Elle varie donc de
maniere importante, quelle que soit I'échelle spatiale ou temporelle considérée.
Un systéme électrique comprenant une large part de PV et d’éolien est ainsi plus
sensible au climat et sujet aux incertitudes de production. Afin de limiter les consé-
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guences de ces incertitudes sur le systeme électrique, telles que les congestions
ou la hausse du niveau de marges requises (Pierro et al., 2022; RTE France and
IEA, 2021), il est nécessaire de mesurer ou d’estimer avec précision la produc-
tion d’'électricité solaire et éolienne. Je définis I'observabilité comme la capacité du
gestionnaire du réseau de transport d’'électricité (GRT) a estimer avec précision la
production en temps réel et future d’'une unité de production. En pratique, le GRT
mesure en temps réel la production (il dispose de télémesures), ou a acces a des re-
levés a posteriori (la téléreleve, généralement dans le mois suivant le temps réel).
La télémesure ou la téléreleve permettent de calibrer des modeles d’estimation et
de prévision de production.

Disposer a minima de la téléreleve de la production d’électricité issue des cen-
trales éoliennes et solaires est au fondement de I'observabilité de ces sources de
production. Si le parc éolien est observé de maniere homogene, ce n’est pas le cas
du parc photovoltaique. Les installations PV sont caractérisées par une trés grande
variabilité de puissances installées, allant de quelques kW,, a plusieurs centaines
de MW.. Actuellement, le GRT ne dispose pas de téléreleve pour les installations
de moins de 36 kW,, qui représentaient 94% des installations et 22% de la puis-
sance installée PV en France en 2023 : le PV sous 36 kW, souffre donc d’un mangque
d’observabilité.

Objectif industriel : améliorer I’observabilité du PV en toiture Le manque
d’observabilité sera de plus en plus préoccupant dans le contexte de la croissance
rapide de la capacité photovoltaique installée. Comme illustré sur la figure 1, nous
pouvons voir que la puissance installée PV pourrait atteindre jusqu’a 200 GW. en
2050 (RTE France, 2022). La Programmation Pluriannuelle de I'Energie (PPE) vise
déja a atteindre 35 et 45 GW., de capacité photovoltaique installée en 2029. Ces
scénarios et objectifs supposent un taux de déploiement constant pour toutes les
typologies d’installations PV, ce qui signifie que jusqu’a 40 GW, (c’'est-a-dire les
deux tiers du parc nucléaire francais actuel) pourraient ne pas étre observés d’ici
2050 si I'observabilité du PV reste constante. L'objectif industriel de cette theése est
d’introduire une méthode permettant d’améliorer I'observabilité des petites instal-
lations PV en toiture (c’est-a-dire les installations photovoltaiques d’une puissance
installée inférieure a 36 kW.).
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Figure 1 - Croissance attendue du solaire photovoltaique (et part dans le mix élec-
trigue) en 2035 (PPE, 2020) et en 2050 (RTE France, 2022).

Les données disponibles sur le parc photovoltaique en toiture sont incompletes.
Au mieux, seule la puissance installée de chaque installation dans chaque com-
mune est connue. Or, pour améliorer I'observabilité du PV sur toiture, il est néces-
saire de disposer d’'estimations précises de la production issue de ces systemes.
Un des pré-requis nécessaires a I'estimation de production est I'acquisition d’infor-
mations sur les caractéristiques techniques et la localisation ponctuelle (latitude et
longitude) des systemes PV, en plus de leur puissance installée. Ainsi, I'amélioration
de I'observabilité PV implique la constitution d'un registre technique (ou registre)
répertoriant la localisation, I'inclinaison, I’azimuth, et la puissance installée du plus
grand nombre d’installations photovoltaiques en toiture possible.

1.2 Revue de littérature et question scientifique

Télédétection d’installations PV sur des orthoimages Le manque d’'informa-
tions sur les instalations PV de petite taille est un probleme récurrent dans de nom-
breux pays (Malof et al., 2015, 2019). Je renvoie le lecteur aux revues de littérature
de Puttemans et al. (2016), de Hoog et al. (2020) et Arnaudo et al. (2023) pour une
présentation exhaustive des travaux sur le sujet. Les premiers travaux portant sur
la télédétection d’installations PV remontent a 2015 avec Malof et al.. Dans un pre-
mier temps, des bases de données contenant des annotations d’installations sur
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des orthoimages! (Bradbury et al., 2016) ont été constituées et différentes mé-
thodes pour identifier quels pixels de correspondaient a des panneaux solaires ont
été testées. Certains auteurs ont étudié des méthodes consistant a calculer ma-
nuellement des statistiques pour chaque pixel et a classifier les pixels en fonction
de ces statistiques (Malof et al., 2016a,c; Li et al., 2020; Wang et al., 2018; Deva-
rajan et al., 2016), tandis que d’autres ont utilisé des réseaux convolutifs profonds
(Golovko et al., 2017, 2018; Yuan et al., 2016; Huang et al., 2018; Camilo et al.,
2018; Malof et al., 2019). La performance de ces algorithmes est évaluée avec le
score F12, et les études comparatives ont montré la supériorité des performances
des algorithmes utilisant des réseaux convolutifs sur les algorithmes se fondant sur
une extraction manuelle des statistiques de I'image. Ainsi par exemple, sur une
méme base de données, la méthode "manuelle" de Malof et al. (2016a) atteint un
score F1 d’'a peine 0.6 tandis que le réseau convolutif de Malof et al. (2019) dépasse
0.8.

Le projet DeepSolar (Yu et al., 2018) constitue une étape importante dans la
cartographie d’installations PV. Ce projet utilise des réseaux convolutifs profonds
pour détecter les installations et estimer leur surface. Ce modele a été déployé a
I’échelle des Etats-Unis et les auteurs ont rapporté une erreur dans I'estimation
de la superficie inférieure & 5% 3. De nombreux travaux ont réutilisé les modéles
de DeepSolar pour cartographier des régions ou des pays, notamment en Europe :
Kausika et al. (2021) aux Pays-Bas, Mayer et al. (2020, 2022) en Rhénanie du Nord-
Westphalie (Allemagne), Frimane et al. (2023); Lindahl et al. (2023) en Sueéde, Ar-
naudo et al. (2023) pour le Nord de I'ltalie.

Limites des approches existantes et question scientifique En dépit de leurs
performances, les méthodes actuelles d'apprentissage profond ne peuvent pas étre
appliquées directement sur une nouvelle région ni étre appliqguées sur de nouvelles
données pour mettre a jour un registre existant (De Jong et al., 2020; Arnaudo
et al., 2023). Cette faible capacité de généralisation sur des nouvelles données est
identifiée par De Jong et al. (2020) comme le principal frein a I'utilisation de ces
méthodes pour constituer des statistiques officielles.

La mauvaise capacité de généralisation est connue dans la littérature en ap-

1. Les orthoimages sont des images aériennes ou satellitaires dont la géométrie a été redressée
de sorte que chaque point soit superposable a une carte plane qui lui correspond. En d’autres termes,
une orthophotographie semble étre prise a la verticale de tous les points qu’elle figure, ces points
étant situés sur un terrain parfaitement plat

2. Le score F1 mesure la performance d’'un classifieur binaire. Un classifieur parfait a un score de 1.
Il correspond a la moyenne harmonique entre la précision et le rappel d’un classifieur. Les métriques
de performances sont définies au chapitre 4.

3. La métrique utilisée par Yu et al. (2018) est I'erreur relative moyenne (MRE), définie comme

suit :
#£vrais positifs

VMRE i vraie aire; — aire estimée;

#tvrais positifs
i=1

vraie aire;
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prentissage profond comme la sensibilité aux variations statistiques* (distribu-
tion shifts), liée au fait que les statistiques des données d’apprentissage different
des statistiques des données de test ou de déploiement (Koh and Liang, 2017).
Cette sensibilité entraine des baisses de performances imprévisibles; ce qui im-
plique que les mesures de performances sur les données d’entrainement ne sont
pas représentatives des performances en conditions réelles. Ce probleme est cri-
tigue au-dela de la télédétection d’installations et se pose dans tous les domaines
applicatifs des méthodes d’apprentissage profond, comme par exemple le diagnos-
tic médical (Pooch et al., 2020) ou la conduite autonome (Sun et al., 2022b).

De nombreuses méthodes ont été introduites pour atténuer les effets des va-
riations statistiques. Je renvoie le lecteur a Zhou et al. (2023); Tuia et al. (2016);
Guan and Liu (2022); Csurka (2017); Csurka et al. (2021) pour des revues de ces
méthodes dans différents contextes. Je désigne les méthodes visant a atténuer la
sensibilité aux changements de distribution comme des méthodes de réalignement
de domaine (domain adaptation, Saenko et al., 2010). L'idée générale est qu’un
modele est entrainé sur un jeu de données d’entrainement source (par exemple,
des images d’installations photovoltaiques en France) et est déployé sur une ou
plusieurs bases de données cibles (par exemple, une nouvelle livrée d’'images ou
un autre pays). Gulrajani and Lopez-Paz (2021) ont montré que la méthode standard
de minimisation empirique du risque (ERM, Vapnik,1999) pouvait étre aussi perfor-
mante dans ce contexte que des méthodes de réalignement de domaine, tout en
étant beaucoup plus simple a implémenter en pratigue.

Par conséquent, plutét que d’'introduire une nouvelle méthode de réalignement
de domaine, je m’'attacherai a étudier pourquoi les variations statistiques affectent
les performances des modeles d’apprentissage profond en vue d’évaluer si leurs
prédictions sont fiables. Je définis la fiablité d’'un modele comme comme étant la
résultante de trois facteurs :

— La pertinence par I'auditabilité de son processus de décision : on veut pouvoir
savoir si une prédiction ponctuelle (Schulam and Saria, 2019) se fonde sur de
bonnes raisons (Ross et al., 2017) ou non;

— La robustesse de ce processus : on veut s'assurer que ce processus de déci-
sion est invariant a des variations statistiques, étant donné que ces dernieres
arrivent nécessairement dans un contexte opérationnel (Peng et al., 2017);

— Le contrble ou le suivi de la qualité des prédictions, afin d’identifier les cas
ou le modele fait de mauvaises prédictions (Schulam and Saria, 2019). Par
controOle, j'entends la capacité de soumettre a un examen systématique de
I'utilisateur la qualité des données produites par le registre.

4. Par variations statistiques, j'entends a la fois des différences dans les statistiques des distribu-
tions, leur domain de définition, ou bien des différences dans la distribution des différentes classes
entre les différentes sources de données.
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L'utilisation d’orthoimages et d’algorithmes d’apprentissage profond est une ap-
proche prometteuse pour cartographier les installations photovoltaiques sur toiture.
Cependant, ces données et cette méthodologie doivent répondre a des normes pré-
cises concernant leur qualité et leur fiabilité; normes qui ne sont actuellement pas
satisfaites. Cette these vise a définir quelles normes doivent étre respectées et a in-
troduire une méthodologie pour évaluer si les systéemes de cartographie fondés sur
I’apprentissage profond peuvent les respecter. A cette fin, j'aborderai la question
scientifique générale suivante :

Lutilisation d’algorithmes d’apprentissage profond et d’orthoimages
est-elle une méthode adaptée a la construction d’un registre technique
national d’installations photovoltaiques (PV) sur toiture destiné a amé-
liorer I’observabilité de la production PV en France? Pour répondre a cette
question, je traite trois sous-questions dont j'expose dans les sections ci-apres les
enjeux, la méthodologie et les principaux résultats obtenus.

2 Premiere sous-question : quels standards de qualité
le registre technique d’installations doit-il satisfaire
et comment vérifier qu’il les remplit?

Cette premiere sous-question est traitée dans le chapitre 2. Nous passons tout
d’'abord en revue les données disponibles sur le parc PV diffus et les données né-
cessaires pour le cartographier a partir d’orthoimages et d’algorithmes d’appren-
tissage profond. Je définis ensuite les standards de qualité et notre méthode pour
évaluer nos données a l'aune de ces criteres et ainsi en assurer le contréle. Je
présente enfin les résultats de I'évaluation des données issues d’'un modele état-
de-I'art selon ces criteres. Nous analysons ensuite empiriquement les décisions du
modele afin de motiver le besoin d’auditabilité, objet de la deuxieme sous-question.
Les contributions de ce chapitre sont la précision aval (downstream task accuracy,
Kasmi et al., 2022a), qui permet de contrdler la qualité des prédictions d’'un modele
d'apprentissage profond au cours de son déploiement opérationnel et la base de
données BDAPPV (Base de données d’apprentissage profond photovoltaique, Kasmi
et al., 2023d), sur laquelle nous avons entrainé nos modeles de classification et de
segmentation destinés a étre déployés en France.
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2. Définir les standards de qualité et s’assurer de leur exécution

2.1 Données disponibles et manquantes
2.1.1 Données géographiques

La principale source de données utilisée pour cette étude est la base de données
BD ORTHO?® de I'lGN (IGN, 2024a). La base BD ORTHO contient des orthoimages
aériennes couvrant I'ensemble du territoire francais. Les données sont livrées pour
chaque département. La résolution (GSD, ground sampling distance) de ces images
est de 20 cm/pixel et la fréquence de rafraichissement est de trois ans. Cependant,
les images sont mises a jour "au fil de I'eau", de sorte que de nouvelles images
sont disponibles tous les mois. Ces données sont accessibles sous licence ouverte.
La figure 2 présente des échantillons d’orthoimages issues de la BD ORTHO. Nous
utilisons aussi la BD TOPO® (IGN, 2023) de I'IGN. Cette base de donnée réperto-
rie tout le bati frangais (batiments, routes, lignes électriques, etc) sous forme de
polygones géolocalisés. Cette information est utile pour regrouper des panneaux
PV localisés sur le méme batiment. Enfin, nous avons a notre disposition des mo-
deles numériques de surface (MNS). Ces modeles indiquent le relief du sol et du
sursol, permettant ainsi de calculer la pente des toits des habitations. L'IGN met a
disposition les données LIiDAR HD’ (IGN, 2024b), suffisamment précises pour esti-
mer l'inclinaison des toits des maisons individuelles. A I'"heure ou cette these est
rédigée, le LiDAR ne couvre pas pas tout le territoire francais.

Figure 2 — Exemples d’orthoimages de I'IGN.

2.1.2 Revue des données disponibles sur photovoltaique en France

Pour la France, nous disposons de trois sources d’informations principales sur le
PV en général (centrales au sol et PV toiture) : le registre national d’'installations

5. Les données BD ORTHO sont accessibles a 'adresse suivante : https://geoservices.ign.fr/
bdortho.

6. Les données BD TOPO sont accessibles a I'adresse suivante : https://geoservices.ign.fr/bdtopo.

7. Les données LiDAR HD sont accessibles a I'adresse suivante : https://geoservices.ign.fr/
lidarhd.
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(RNI), les données internes de RTE et les données participatives, issues de BDPV et
d’OpenStreetMap.

Le registre national d’installations Le registre national d’installations contient
I’ensemble des installations de production et de stockage d’électricité raccordées
au réseau francais. Ces données sont collectées par RTE et accessible sur le por-
tail Open Data Réseaux Energie® (ODRE), une plateforme portée par les gestion-
naires du réseau de transport d’électricité, de gaz et des réseaux de distributions en
France. Pour des raisons de confidentialité, les données sur les petites installations
photovoltaiques (moins de 36 kW.) sont agrégées a la maille de la commune. Ainsi,
le RNI nous indique au mieux, pour chague commune, le nombre d’installations leur
puissance installée cumulée. Le RNI est mis a jour tous les trois mois.

Les données internes de RTE Les données internes de RTE répertorient I'en-
semble des installations raccordées au réseau de transport et au sein du réseau
de distribution d’Enedis, qui couvre 95% du territoire frangais. Par rapport au RNI,
RTE a acces aux données désagrégées pour les installations de moins de 36 kW..
Cependant, ces données ne répertorient que la puissance installée des systemes
PV et pas leurs charactéristiques techniques.

Les données participatives Nous nous sommes appuyés dans le cadre de cette
thése sur les données de I'association Base de données photovoltaique (BDPV)?.
Cette association propose aux propriétaires de systemes PV sur toiture de rensei-
gner les caractéristiques de leur installation afin de savoir si cette derniere fonc-
tionne correctement. Ainsi, la base de données de BDPV contient les caractéris-
tigues détaillées et la localisation de 28 000 installations PV de petite taille, dont
24 000 en France. La figure 3 présente la distribution des puissances installées des
petites installations répertoriées dans BDPV. Nous avons également acces aux his-
torigues de production de 1700 installations. Nous pouvons enfin mentionner les
données issues d’'OpenStreetMap (OSM). OSM est un projet collaboratif visant a
constituer une base de donnée géographique en libre acces. La plupart des cen-
trales PV et quelques petites installations PV sont répertoriées dans OSM sous la
forme de polygones géolocalisés.

8. Cette plateforme est accessible icCi : https://opendata.reseaux-energies.fr/.
9. Site internet de I'association : https://asso.bdpv.fr/.
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Figure 3 - Histogramme des puissances installées des installations répertoriées
dans BDPV.

2.1.3 Pré-requis pour le registre PV

Nous avons mentionné en introduction que la finalité principale de notre registre
est d’estimer la production PV issue des petites installations. Cette estimation se
fonde sur un modele physique de l'installation PV et requiert par conséquent un cer-
tain nombre de parametres. Saint-Drenan et al. (2015) ont montré que l'inclinaison,
I’orientation et la puissance installée d’une installation sont des caractéristiques
suffisantes pour estimer de maniere satisfaisante la production d’un systeme PV.
Notre registre s’attache donc a collecter ces données a I'échelle de la France. Ce
registre doit satisfaire trois critéres principaux : il doit étre aussi complet que pos-
sible (c'est-a-dire répertorier autant d’'installations que possible afin notamment de
refléter la vraie répartition spatiale des installations); il doit étre désagrégé et doit
contenir les caractéristiques techniques des installations.

Aucune des données disponibles antérieurement a cette thése ne répond simul-
tanément a ces trois criteres. La figure 4 illustre les conditions satisfaites et man-
guantes des données disponibles. Notre registre doit répondre aux trois criteres
simultanément.
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Figure 4 - Diagramme de Venn résumant les caractéristiques attendues et satis-
faites par les différentes sources de données sur le PV.

2.2 Controle non supervisé de la précision du registre : la précision
aval (downstream task accuracy, DTA)

2.2.1 Définition des standards de qualité

Un registre représentatif Notre registre vise a refléter fidelement les caracté-
ristigues du PV toiture en France. Il existera nécessairement un décalage du fait
de la fréquence de rafraichissement des images. Ce décalage est acceptable tant
gue les installations répertoriées sont représentatives des installations raccordées
dans les trois années qui suivent. En faisant cette hypothese de "stationnarité" sur
trois ans des caractéristiques des installations, il faut alors surtout s’assurer que la
puissance installée estimée (c'est-a-dire répertoriée dans notre registre) reflete la
distribution spatiale du PV ainsi que sa répartition en termes de typologie d’instal-
lations. L’'estimation de I'inclinaison et de I'orientation doit étre représentative des
distributions réelles pour éviter des biais systématiques entrainant des surestima-
tions ou des sous-estimations de la production d’énergie a différents moments de
la journée. Enfin, puisque l'inclinaison dépend de la latitude (Killinger et al., 2018),
le registre doit refléter cette propriété.

Approche proposée Le principal probleme pour assurer le suivi de la perfor-
mance du modele est que nous ne disposons pas de données de référence sur tout
le territoire. Dans le cas contraire, il ne serait pas nécessaire de recourir a une carto-
graphie par télédétection. Cependant, méme si nous ne disposons pas de données
de références a I’échelle de I'installation, nous disposons d’aggrégations auxquelles
nous pouvons nous référer pour comparer les données générées par l'algorithme
de cartographie du PV. Il nous suffit pour cela d’agréger les sorties de notre modele
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de cartographie et de les comparer avec une donnée existante, qu’il s’agisse du
RNI, du registre de RTE ou de BDPV. J'appelle "précision aval" (ou downstream task
accuracy, DTA) 'ensemble de mesures permettant d’évaluer la précision du registre
selon une caractéristique donnée et sur un territoire donné. Cette méthode est une
méthode non supervisée d’évaluation (Zhang et al., 2008; Chen et al., 2021a) en ce
gu’elle ne requiert pas d’'intervention humaine pour étre calculée. Ainsi, elle permet
de contréler la précision du modele sur toute une zone et I'utilisateur peut direc-
tement identifier les localisations ou la DTA indique une moindre performance. La
figure 5 présente le principe de fonctionnement de la précision aval.

La précision aval (downstream task accuracy, DTA)

=

Données SIG Métriques DTA
disponibles sur Mesure la précision du
les systemes PV registre en comparant ses

Appariement — o

agrégations  avec les

J données disponibles sur
les systémes PV.

Figure 5 — Diagramme présentant le principe de fonctionnement de la précision aval
(DTA), notre méthode pour surveiller les prédictions du modele. D’apres Kasmi et al.
(2022a).

Registre PV | —— Agrégation

2.3 Quantifier et comprendre les limites des algorithmes de carto-
graphie existants

2.3.1 Quantification de la sensibilité aux variations statistiques grace a
la DTA

Réplication de la littérature Nous évaluons les algorithmes existants de carto-
graphie du PV toiture avec la DTA. A cette fin, nous répliquons un modele s’inspirant
de Mayer et al. (2022), qui est fondé sur DeepSolar (Yu et al., 2018; Mayer et al.,
2020) et est I'un des meilleurs algorithmes de cartographie existants. Notre adap-
tation de cet algorithme prend en entrée des orthoimages et renvoie en sortie un
registre répertoriant la localisation, I'inclinaison, I'orientation, la puissance installée
et la surface des installations. Ce modele requiert les données de la BD TOPO pour
filtrer les détections du modele et les données de BDPV pour inférer I'inclinaison
des installations a partir de leur localisation, et calibrer un parametre d’efficacité
permettant de déduire de la surface estimée de I'installation sa puissance installée
(a la suite de So et al. (2017), nous supposons que la relation entre la puissance
installée et la surface est linéaire).
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Nous ré-entrainons ce modele sur des données d’entrainement collectées pour
la France (Kasmi et al., 2023d). Ce jeu de données d’entrainement contient 17 000
images de I'IGN annotées de panneaux PV en France. Les performances obtenues
sur les données d’entrainement sont comparables avec la littérature existante,
comme le montre le tableau 1.

Table 1 - Performance en classification et en segmentation. Plus la GSD est basse,
plus I'image est détaillée. Les meilleurs résultats sont en gras.

Classification Segmentation

Méthode  Score F1 (1) loU (1) GSD (cm/pixel)
Mayer et al. (2022) 0.87 0.74 10
Malof et al. (2019) - 0.67 30
Zech and Ranalli (2020) 0.82 - 10
Parhar et al. (2021) 0.97 0.86 10
Notre approche 0.84 0.86 20

Déploiement a grande échelle Nous déployons ensuite ce modele sur 11 dé-
partements francais et évaluons le registre produit par le modele avec la DTA.
Nous comparons la distribution des inclinaisons et des orientations estimées par
I'algorithme avec les distributions issues de BDPV. Nous nous intéressons ensuite
a l'estimation de la puissance installée et nous intéressons en particulier au pour-
centage d’erreur moyen, médian, au ratio de détections (c’est-a-dire le nombre
d’installations détectées sur le nombre d’installations répertoriées dans le RNI) et
I’erreur moyenne par installation, qui évalue I'écart en pourcentage entre l'instal-
lation moyenne estimée et I'installation moyenne répertoriée. Notre analyse révele
que I'estimation de I'inclinaison et de I'orientation est satisfaisante.

Le tableau 2 présente |'évaluation du modele selon la DTA, pour I’estimation de
la puissance installée. Nous pouvons voir une baisse importante de la performance,
de I'ordre de 30 points de pourcentage. Ces résultats permettent de voir comment
se transcrit en pratique une précision mesurée par le score F1 ou l'intersection-sur-
union 19,

10. L'intersection-sur-union (loU) ou indice de Jaccard calcule le degré de superposition entre deux
ensembles. Il vaut 1 si les deux ensembles sont confondus et 0 s’ils sont parfaitement disjoints. Dans
un contexte de segmentation, I'indice de Jaccard permet d’indiquer si la prédiction du modele est
conforme au masque de référence.
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2. Définir les standards de qualité et s’assurer de leur exécution

Table 2 - Précision aval (DTA) sur la zone cartographiée. Les valeurs entre pa-
rentheses correspondent aux résultats sans filtrage par batiments. La ligne "Test"
considére les images de test de I'ensemble de données d’entrainement comme
une seule ville. k; et C; indiquent respectivement le nombre d’installations et la
puissance installée. Un chapeau indique I'estimation par notre algorithme. Les va-
leurs entre parentheses indiquent la précision avec et sans filtrage par batiment.
Source : Kasmi et al. (2022a).

Echantillon MAPE APE ratio AIPE ks ks C; C;
médiane moyen moyenne
[%] [%] [-] [%] [-] [-] [kW,] [kW,]
Test 17.61 - 0.92 -0.10 1485 1362 6473.8 5334
Zone 47.45 32.81 1.03 16.33 72595 58818 293120.7 280807.9
cartographiée (66.20) (30.66) (1.46) (12.03) (84015) (382967.8)

2.3.2 Comment expliquer les variations de performances sur la zone car-
tographiée?

La surveillance de I'estimation de la puissance installée par commune avec la
DTA montre que la précision varie grandement d’un département a |'autre. La ques-
tion dés lors est de savoir pourquoi une telle variabilité émerge. Les travaux exis-
tants mettent en avant le réle de la variabilité géographique dans la perte de préci-
sion du modele (Wang et al., 2017; Malof et al., 2019). Nos analyses (voir la section
3.3.1 du chapitre 2 pour plus de détails) montrent que dans notre cas, des facteurs
géographiques évidents n'expliquent pas la variabilité des performances du mo-
dele. Nous analysons dans le détail les prédictions du modele afin d’'identifier une
tendance et de formuler une hypothese que nous étudierons dans le cadre de la
deuxieme sous-question.

Analyse des décisions du modele Nous utilisons la méthode GradCAM (Sel-
varaju et al.,, 2020) pour analyser les décisions du modele. Les class activation
maps (CAM) sont une méthode d’interprétabilité consistant a mettre en evidence
les zones images qui contribuent le plus a la décision du modele. C'est un moyen
courant pour analyser et interpréter les décisions d’'un modele (Lapuschkin et al.,
2019; Zhang et al., 2021b). Dans notre cas, il s’agit de savoir "ce que voit" le
modele lorsqu’il prédit que I'image contient un panneau solaire, ou au contraire
lorsqu’il prédit qu’il n'y a pas de panneau solaire sur I'image. La figure 6 présente
des illustrations de cette analyse.

L'inspection des échantillons de la figure 6 révele que cette région de I'image
représente des éléments qui ressemblent a des panneaux photovoltaiques. Sur
I'image de la premiere ligne (deuxieme colonne) de la figure 6, nous pouvons voir
gue le modele confond une ombriere qui a la méme couleur et la méme forme
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générale qu’'un panneau photovoltaique avec un panneau réel. Dans I'image de la
deuxieme ligne, les vérandas avec des stries trompent le modele.

Vrais positifs Faux positifs Vrais négatifs Faux négatifs

-

Figure 6 — Explications du modele de classification générées en utilisant la méthode
GradCAM (Selvaraju et al., 2020) pour quelques vrais positifs, faux positifs, vrais
négatifs et faux négatifs. Plus une zone est rouge, plus elle contribue a la prédiction
du modele pour la classe considérée.

Hypothese de travail Suite a cette analyse, nous formulons I’hypothese de tra-
vail suivante. Nous supposons que, pendant I'apprentissage, le modeéle extrait diffé-
rentes caractéristiques corrélées a un panneau photovoltaique sur I'image. Ces ca-
ractéristiques peuvent correspondre a des textures a différentes échelles, des com-
posants tels que des lignes horizontales ou verticales, des couleurs ou, dans cer-
tains cas, a la forme générale du panneau photovoltaique. Nous avons un controle
limité sur ce que le modele apprend des données, car cela dépend de la qualité des
données, de l'initialisation du modele et des hyperparametres. Un modele entrainé
prédit, pendant le déploiement, la présence d’un panneau photovoltaique si I'une
de ses caractéristiques est identifiée sur I'image d’entrée. Il se peut qu’'un motif ne
soit pas évident sur I'image brute, mais plus facile a identifier a une échelle donnée.

Pour vérifier cette hypothese et comprendre pourquoi le modele fait de fausses
prédictions, nous devons décomposer son processus de décision et comprendre
comment ce dernier est affecté le cas échéant par des variations statisiques. La
décomposition du processus de décision du modele vise a mettre en évidence les
éléments sur lesquels il s'appuie. D’autre part, I’évaluation de la robustesse de
la prédiction nous permettra de voir si le modele peut s’appuyer sur des facteurs
moins susceptibles d’étre perturbés par des variations statistiques.
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3. S’assurer de la fiabilité des détections

3 Deuxieme sous-question : comment s’assurer qu’un
modele d’apprentissage profond détecte de maniere
fiable des installations PV ?

Le chapitre 3 traite cette sous-question. Nous introduisons dans un premier
temps une nouvelle méthode d’explicabilité permettant de localiser spatialement
et dans les échelles les éléments importants pour la prédiction d’'un modele. Nous
appelons cette méthode Wavelet sCale Attribution Method (WCAM, Kasmi et al.,
2023a). Nous nous appuyons ensuite sur cette méthode d’explicabilité pour ana-
lyser et auditer les décisions du modele. A partir de cette analyse, nous introdui-
sons une méthode permettant d’améliorer la robustesse du modeéle a des variations
dans les conditions d’acquisition, variations identifiées comme étant un facteur im-
portant de variabilité statistique (Kasmi et al., 2023b).

3.1 Décomposer la décision d’un modele dans I’espace des échelles

Motivation et littérature La méthode GradCAM que nous avons utilisée au cha-
pitre précédent pour analyser le processus de décision est représentative des ap-
proches actuelles les plus répandues en explicabilité. Appliquée a la vision par ordi-
nateur, I'explicabilité consiste a identifier les zones de I'image qui sont importantes
pour la décision du modele. On parle généralement de méthode d’attribution (fea-
ture attribution method). La GradCAM appartient a une famille de méthodes dites
"boite blanche" : il est nécessaire d’avoir acces au modele et a ses gradients afin de
pouvoir calculer I'explication. Cette classe de méthode produit les meilleures expli-
cations, que ce soit en termes de fidélité (Bhatt et al., 2020) ou de stabilité (Crabbé
and van der Schaar, 2023). Cependant, il n'est pas toujours possible en pratique
d'avoir acces au modele : dans un contexte opérationnel, les modeles sont sou-
vent appelés via une interface de programmation d’application (API). Dans ce cas,
on peut s’appuyer sur une autre classe d’approches, dite "boite noire" (Fel et al.,
2021). Avec ces approches, les explications sont calculées en perturbant les don-
nées d'entrée (Zeiler and Fergus, 2014; Ribeiro et al., 2016; Petsiuk et al., 2018; Fel
et al., 2021) et requierent seulement d’avoir acces aux prédictions du modele. Le
principe des méthodes de perturbation est d’occulter certaines parties de I'image
de maniere aléatoire. Si la prédiction du modele varie fortement lorsqu’une zone
est fortement occultée, alors on peut en déduire que cette zone contribue a la pré-
diction du modele.

Qu’elles soient "bofte noire" ou "boite blanche", les méthodes d’explications
existantes se limitent a indiquer ot est-ce que le modele voit et non ce qu’il voit
sur les images. Or fournir seulement une indication spatiale n’est pas suffisant pour
de nombreux cas pratiques (Achtibat et al., 2022). Pour commencer a aborder la
guestion du "quoi", Fel et al. (2023b) a récemment introduit une méthode consis-
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tant a calculer des concepts a partir des données d’entrainement puis a corréler les
zones importantes sur une image avec ces différents concepts. Cependant, cette
méthode suppose d’avoir acces au modele et aux données d’entrainement, ce qui
la rend difficile a appliquer dans un contexte opérationnel.

Détails dans le module PV

Echelle: environ 1 -2 px (0.1 - 0.2 m)
Systéme sur toiture dans son ensemble ————

Echelle : environ 100 px (10 m)

Modules individuels

Ensemble de modules
Echelle : environ 4 — 8 px (1 m)

Systéemes PV
Echelle : environ 8 — 16 px (2.5 m)

Figure 7 — Décomposition en différentes échelles d’'un panneau PV vu sur une or-
thoimage. Adapté de Kasmi et al. (2023b).

Dans notre cas - la télédétection d’installations PV — nous pouvons remarquer
gu’une installation photovoltaique peut se décomposer en plusieurs échelles, pou-
vant étre aisément interprétées en termes de concepts ou composantes. La figure 7
montre un exemple d’'une telle décomposition dans les échelles. Selon I'échelle
considérée, le panneau photovoltaique présente des caractéristiques différentes.
Aux plus petites échelles (20 a 40 cm/pixel), le panneau se manifeste par les dé-
tails au sein des modules PV. A l'inverse au plus grandes échelles (de I'ordre du
metre et au dela), il se manifeste par le cadre, soit sous une forme rectangulaire.

Ces échelles sont aussi localisées en termes de fréquences, ce qui peut consti-
tuer une propriété intéressante en vue d’étudier la robustesse d’'un modele ou
d’'une prédiction a une perturbation donnée. De nombreux travaux ont en effet
utilisé I'espace des fréquences pour caractériser la robustesse d’un modeéle (Yin
et al., 2019; Chen et al., 2022). Nous utilisons cette propriété dans la section 3.3.

La transformée en ondelettes La transformée en ondelettes décompose un si-
gnal (par exemple, une image) en composantes élémentaires, les coefficients d’on-
delettes, qui sont localisées spatialement et dans les échelles. La transformée en
ondelettes est donc un moyen naturel pour décomposer une image en différentes
échelles, ce qui est utile pour analyser des caractéristiques spécifiques de I'image
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3. S’assurer de la fiabilité des détections

a ces différentes échelles. La transformée en ondelettes dyadique (Mallat, 1989)
décompose les différentes échelles d’'une image I de maniere récursive. Le signal
d’entrée f;_; a I'étape i est filtré par un filtre passe-haut pour obtenir les coeffi-
cients de détail a I’'échelle i et un filtre passe-bas!! pour obtenir les coefficients
d’approximation f; a I'étape i. Pour une image, qui est un signal en deux dimen-
sions, on distingue les coefficients de détail horizontaux, verticaux et diagonaux.
Ces coefficients "résument" les changements brusques visibles a une échelle com-
prise entre 2¢ et 2°*! pixels. A I’étape i+1, on répéte ce processus sur les coefficients
d’approximation f; obtenus. La figure 8 présente la transformée en ondelettes dya-
digue a deux niveaux d’'une image en niveaux de gris.

Image originale en niveaux de gris Transformée dyadique a deux niveaux

. )

Figure 8 — Image et transformée en ondelettes dyadique a deux niveaux associée,
avec des indications pour interpréter la transformée en ondelettes de I'image. Les
termes "horizontaux", "diagonaux" et "verticaux" indiquent la direction des coeffi-
cients de détail. La direction est la méme a tous les niveaux.

Cette représentation nous permet d’isoler les différentes échelles pour une loca-
lisation donnée. Ainsi pour la localisation donnée par I’hexagone rouge sur I'image
de gauche, on peut distinguer les coefficients de détail aux échelles comprises
entre 1 et 2 pixels (hexagones jaunes), 2 et 4 pixels (hexagones bleus) et les coeffi-
cients d’approximation restants (dont I’échelle est supérieure a 4 pixels, hexagone
rose). Si les méthodes d’attribution traditionnelles nous permettent de savoir si la
zone encadrée par I'hexagone rouge contribue a la prédiction, notre méthode vise a
savoir quelle échelle (illustrée par les hexagones jaunes, bleus ou roses), a cette lo-
calisation, contribue a la prédiction du modele, et donc quelle partie du systeme PV
est importante pour la prédiction (nous rappelons que ces échelles correspondent
a différentes composantes d’un systeme PV).

11. Un filtre passe-haut est un filtre qui laisse passer les hautes fréquences et qui atténue les basses
fréquences. A I'inverse, un Un filtre passe-bas est un filtre qui laisse passer les basses fréquences et
qui atténue les hautes fréquences.
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Approche proposée Afin de quantifier la contribution des différentes échelles -
interprétées comme des concepts ou des éléments structurels de I'image - dans
la prédiction d’'un modele, nous introduisons la Wavelet sCale Attribution Method
(WCAM, Kasmi et al., 2023a). Cette méthode consiste a perturber la transformée
en ondelettes d'une image afin de générer une image perturbée, puis a évaluer
la sensibilité du modele a ces perturbations. Etant donné que nous pouvons relier
chaque perturbation dans les ondelettes a une réponse d’un modele, nous pouvons
identifier les régions de la transformée en ondelettes qui contribuent le plus a la
prédiction du modele. La méthode de perturbation que nous utilisons est issue de
Fel et al. (2021).

M ~ OMC
4
H m
.

WCAM Spatiale
~ e

} Indices de
3 Sobol

,,,,,,

X )

Image Transformée F Transé‘o;mee
en ondelettes ma en onde ettes
inverse

Figure 9 — Diagramme de notre méthode d’attribution, la Wavelet sCale Attribution
Method (WCAM). Adapté de Kasmi et al. (2023a).

Le principe de fonctionnement de la WCAM est décrit sur la figure 9. L'idée
est de générer une suite de n masques M = (M,...,M,) pseudo-aléatoirement
(on la génere a partir d'une séquence de Quasi Monte-Carlo, QMC). On applique
ensuite ces masques a la transformée en ondelettes dyadique de I'image pour la
perturber, puis on reconstruit I'image a partir de cette transformée en ondelettes
perturbée, pour obtenir n images perturbées. On évalue ensuite ces images. Le
modele renvoie la probabilité que I'image perturbée contienne un panneau solaire.
En utilisant la probabilité prédite initiale (c’est-a-dire correspondant a I'image non
perturbée), les masques et les probablités prédites pour les images perturbées,
on calcule la sensibilité du modele aux perturbations (en calculant les indices de
Sobol correspondants a ces perturbations). L'analyse de sensibilité nous renvoie
une heatmap indiquant la sensibilité du modele a I'altération des coefficients en
ondelettes correspondants.
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3. S’assurer de la fiabilité des détections

3.2 Evaluer la fiabilité du processus de décision d’un modele
3.2.1 Auditer les décisions du modele et isoler les composants critiques

Analyser des prédictions du modele Grace ala WCAM, nous pouvons identifier
guelles sont les échelles qui contribuent a la décision du modeéle. Sur la figure 10,
nous pouvons par exemple voir que dans le cas A, la zone importante sur I'image
n'est importante qu’a une seule échelle (identifiée par le cercle blanc sur la WCAM,
sous I'image A). En revanche, Dans les cas B et C, plusieurs échelles, localisées
spatialement au méme endroit, contribuent a la prédiction du modele. En se réfer-
rant aux composants structurels identifiés sur la figure 7, il est possible d'affirmer
grace a la WCAM que sur ces exemples, le modele voit surtout des modules ou des
groupes de modules. Nous pouvons remarquer que c’'est a I’échelle des groupes de
modules que se trouvent les grilles archétypales des panneaux solaires installés au
tournant des années 2010.

B C

T
"l

[ /]
O/ |
s

)

BN
o @

Figure 10 — Décomposition dans I'espace des échelles des prédictions d’'un modele.
Adapté de Kasmi et al. (2023Db).

Identifier les composants critiques Maintenant que nous avons vu comment
se décomposait une prédiction dans les échelles, nous pouvons nous demander
guelle est I'information suffisante pour prédire un panneau et ou est-ce qu’elle est
localisée dans les échelles. Pour identifier cette information suffisante, nous recons-
truisons I'image des composants les plus importants aux composants les moins
importants. La derniere image correspond a lI'image initiale. Nous considérons que
le modele dispose de I'information suffisante des lors qu’il parvient a identifier le
panneau sur lI'image. En faisant la différence entre cette image et la précédente
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(la derniere image incorrecte) nous pouvons identifier le composant critique. La fi-
gure 11 présente un exemple d’'une image reconstruite a partir des composantes
les plus importantes de I'image. Nous pouvons voir que le motif grillagé est prépon-
dérant dans la prédiction du modele. Nous pouvons aussi voir que sans |'ajout du
composant critique, qui correspond a des grilles verticales, le modele ne parvient
pas a prédire la présence du panneau.

Image originale Composant critique
(vrai positif) Information suffisante Dernier "faux négatif" (sur l'image)

Composant critique
(Dans l'espace des échelles)

Figure 11 - Image originale, information suffisante, dernier "faux négatif" et compo-
sant critique, dans I'espace des images (haut) et dans I'espace des échelles (bas).

Ainsi, la WCAM étend les méthodes d’attribution existantes et permet de dé-
composer, pour une localisation donnée, les échelles qui sont importantes pour la
prédiction. Mais il est également possible d’utiliser cette information pour extraire
de I'image I'information suffisante a la prédiction, traduisant ce que le modele "a
besoin" de voir pour faire une prédiction correcte. Ces composantes étant interpré-
tables, la WCAM permet ainsi d’auditer les prédictions du modele : nous avons mis
en avant I'importance des échelles, qui correspondent aux modules ou aux groupes
de modules PV. Mais cette information suffisante nous permet également de com-
prendre pourquoi le modele peut manquer de robustesse face aux variations des
conditions d’acquisition.

3.2.2 Etudier la sensibilité aux conditions d’acquisition

Définition Les conditions d’acquisition désignent la chaine de traitement allant
de la captation d’'une scéne a sa conversion sous forme d'image numérique. Les
conditions d'acquisition varient en fonction de I'heure de la journée et des condi-
tions atmosphériques, du type de capteur optique, de sa sensibilité, de son réglage.
On peut considérer gue les perturbations induites par la conversion d’un signal op-
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tigue en un signal numérique (quantification du signal) sont négligeables. La va-
riation des conditions d'acquisition se traduit par une perturbation des hautes fré-
guences de I'image, ce qui correspond aux échelles les plus fines (jusqu’a 4, voire
8 pixels). Ainsi, si le modele dépend cruciallement de I'information localisée dans
ces échelles, une perturbation des conditions d'acquisition peut perturber cette in-
formation et ainsi perturber la prédiction du modele.

Etude de I’effet des conditions d’acquisition Notre base de données BDAPPV
contient des annotations doubles pour environ 8 000 systemes PV. La figure 12
présente des exemples de prises de vues aériennes avec deux sources différentes :
Google (Gorelick et al., 2017) et IGN (IGN, 2024a).

IGN

Figure 12 — Exemple d’images de BDAPPV (Kasmi et al., 2023d) issues de Google
(gauche) et de I'IGN (droite).

Nous pouvons donc étudier I'effet des conditions d’acquisition sur la précision
des prédictions d’'un modele, indépendamment d’autres facteurs de variabilité (ré-
solution de I'image ou nature de la scene observée). Nous entrainons un modele
sur les images Google et nous mesurons sa précision sur les images IGN. Comme
le montre le tableau 3, la performance s’effondre, a cause d’une hausse du nombre
de faux négatifs : le modele ne parvient plus a reconnaitre les panneaux PV sur les
images issues de I'IGN.
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Table 3 - Score F1 et décomposition en vrai positifs, vrais négatifs, faux posi-
tifs et faux négatifs des prédictions d’'un modele entrainé sur des images Google
et déployé sur des images IGN (méme scene, méme résolution, mais différentes
conditions d’acquisition). Adapté de Kasmi et al. (2023b).

Score F1 (1) Vrais positifs (VP) Vrai négatifs (VN) Faux positifs (FP) Faux négatifs (FN)

Google 0.98 1891 2355 36 39
IGN 0.46 566 2321 99 1335

3.3 Améliorer la robustesse des modeles a la variabilité des condi-
tions d’acquisition

Google IGN Composant critique
(Vrai positif) (Faux négatif) (sur 'image)

Echelle (pixels): > 8 pixels, 4-8 pixels, pixels, 1-2 pixels

Figure 13 - Prédictions sur I'image Google (gauche, rangée supérieure) et I'image
IGN (droite, rangée supérieure) et WCAMs associés (rangée inférieure). Plus la ré-
gion en surbrillance est claire, plus la prédiction est importante. La colonne Ila plus
a droite présente les composants les plus importants de I'image Google et les com-
posants critiques. Adapté de Kasmi et al. (2023b).

Mettre en avant la disparition de composantes importantes La WCAM nous
permet d’étudier la sensibilité du modele aux conditions d'acquisitions. Nous pou-
vons calculer la WCAM pour une prédiction altérée par les conditions d’acquisitions,
comme par exemple sur la figure 13. Nous pouvons voir que les composants (a)
contribuaient a la prédiction du modele. Or ces composants sont moins présents
sur I'image IGN, ce qui peut expliquer pourquoi le modele ne parvient plus a identi-
fier le panneau solaire. Le composant (c) est le composant critique, qui contribue a
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la prédiction dans le cas de I'image Google. Il n'y a pas d’équivalent sur I'image IGN.
Enfin, sur I'image IGN, nous pouvons voir que le modele s’appuie essentiellement
sur les composants (b) pour faire sa prédiction.

Améliorer la robustesse aux conditions d’acquisition La WCAM nous a per-
mis de confirmer le mécanisme selon lequel le fait d’'identifier un panneau en re-
courant a des composants situés dans des échelles fines (c'est-a-dire des hautes
fréquences) entraine une sensibilité aux conditions d’acquisition ; ces dernieres per-
turbant essentiellement I'information située dans les hautes fréquences de I'image.

Pour améliorer la robustesse du modeéle aux conditions d’acquisition, nous mobi-
lisons la littérature sur les corruptions naturelles (Hendrycks and Dietterich, 2019).
Ce champ de la littérature propose un ensemble de méthodes visant a améliorer
la robustesse des réseaux de neurones a des perturbations pouvant affecter les
images : flou, bruit, pixelisation, etc. Les conditions d’acquisition faisant partie de
ce type de perturbations, nous implémentons des méthodes populaires issues de
cette littérature. Ces méthodes consistent en des augmentations de la base d’ap-
prentissage : durant I’entrainement, on génere aléatoirement des copies altérées
des images et on ajoute ces copies aux données d’entrainement. L'idée est que
si le modele est entrainé sur suffisamment d’'images altérées, alors il apprendra a
étre invariant a ces perturbations.

Nous évaluons plusieurs méthodes répandues (Cubuk et al., 2019, 2020; Hen-
drycks et al., 2020) de génération de telles perturbations. Nous implémentons éga-
lement une méthode visant a "reproduire" les conditions d’acquisition en bruitant
et flouttant les images durant I’entrainement ("Noise and blur"), et une méthode
qui floutte les images pour supprimer l'information contenue dans les hautes fré-
guences ("Blurring"). Enfin, nous introduisons une méthode visant a perturber les
différentes échelles de I'image (en perturbant la transformée en ondelettes) en plus
de la floutter ("Blurring + Wavelet Perturbation"). L'intuition derriere cette transfor-
mation est d’apprendre au modele a étre capable de se reposer sur différentes
échelles pour prédire un panneau. Tous nos résultats sont comparés avec la mini-
misation du risque empirique (ERM), c’est-a-dire un modele entrainé sans augmen-
tations, et avec I'Oracle, c’est-a-dire un modele ERM entrainé sur les images IGN.
I’ERM et I’Oracle permettent de borner la performance.

Le tableau 4 présente nos résultats. Nous pouvons voir que les méthodes exis-
tantes sont a peine meilleures que I'ERM. Par ailleurs, le fait de floutter I'image
restaure la performance mais au détriment du nombre de faux positifs : le mo-
dele prédit presque toujours que I'image contient un panneau solaire. Finalement,
nous pouvons voir que notre méthode consistant a perturber la transformée en on-
delettes atteint des résultats honorables. Elle surclasse toutes les méthodes exis-
tantes tout en ayant un comportement cohérent : il n'y a pas d’explosion du nombre
de faux positifs ou de faux négatifs. Ces résultats mettent en avant le fait qu’il est
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possible d’améliorer la robustesse des modeles aux conditions d’acquisition.

Table 4 - Score F1 et décomposition en vrais positifs, vrais négatifs, faux positifs et
faux négatifs pour des modeles entrainés sur Google avec différentes techniques
d'atténuation. L'évaluation est conduite sur les images IGN. L'Oracle désigne un
modele entrainé sur des images IGN sans technique d’atténuation. Le meilleur ré-
sultat est en gras, le deuxieme meilleur souligné.

Score F1 (1) VP VN FP FN

Oracle 0.88 1818 1992 428 83
ERM (Vapnik, 1999) 0.44 566 2321 99 1335
AutoAugment (Cubuk et al., 2019) 0.46 598 2318 102 1303
AugMix (Hendrycks et al., 2020) 0.48 624 2318 102 1277
RandAugment (Cubuk et al., 2020) 0.51 707 2280 140 1194
Noise and blur 0.48 636 2287 133 1265

Blurring 0.74 1855 1196 1224 46
Blurring + WP 0.58 896 2114 306 1005

4 Troisieme sous-question : comment construire un re-
gistre répondant aux standards de fiabilité et com-
ment ce registre peut-il améliorer I’observabilité du
PV en France?

Dans les chapitres 2 et 3, nous traitons des trois aspects de la fiabilité définis en
introduction : I'auditabilité avec la WCAM, la robustesse, avec I'augmentation de la
taille de I’échantillon d’apprentissage et le contrdle avec la DTA. Ces éléments sont
autant d’outils nous permettant de construire un modele fiable pour cartographier
le PV en France. La question qui se pose a présent est de savoir comment construire
un tel algorithme et comment évaluer son apport pour I'amélioration de I'observa-
bilité du PV. Le chapitre 4 se focalise sur la construction d’un algorithme fiable de
cartographie du parc PV en toiture, DeepPVMapper. Le chapitre 5 étudie comment
évaluer la pertinence de la cartographie réalisée par DeepPVMapper pour améliorer
I’observabilité du PV diffus. Les contributions issues de ce chapitre sont la librarie
Python PyPVRoof qui permet d’extraire les caractéristiques techniques d’une instal-
lation PV a partir de son polygOne géolocalisé, I'algorithme DeepPVMapper (Kasmi
et al., 2023c) et une étude montrant qu’il est possible d’améliorer I'observabilité de
la production PV sur toiture en combinant dans un modeéle de conversion physique
simplifié les données issues de DeepPVMapper avec des données de rayonnement
solaire et de température (Kasmi et al., 2024).
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4.1 DeepPVMapper : un algorithme fiable pour cartographier le
parc PV diffus en France

Criteres d’évaluation En amont de I'implémentation d’'un nouvel algorithme,
nous nous proposons d’'introduire de nouvelles métriques de performance, plus re-
présentatives de conditions réelles de fonctionnement de cet algorithme. Ces mé-
triques sont fondées sur la précision aval définie au chapitre 2. Nous rappelons
les trois mesures permettant d’'évaluer la précision de I’estimation de la puissance
installée : la MAPE, qui compare I'estimation globale de la capacité installée avec
la référence; le ratio de détection, qui compare le nombre de détections avec le
nombre réel d’installations et I’AIPE, qui compare la taille moyenne estimée de I'ins-
tallation avec la taille moyenne réelle de I'installation. La MAPE mesure le décalage
entre la capacité installée enregistrée et la capacité installée estimée au niveau
de la ville. Le taux de détection garantit que I'algorithme détecte le nombre correct
d’installations. L’AIPE indique si nous sous-estimons ou surestimons la taille des ins-
tallations. Par construction, un AIPE négatif (resp. positif) indique qu’en moyenne,
nous sous-estimons (resp. surestimons) la taille des installations.

Nous évaluons notre algorithme avec les métriques DTA sur une zone de 120
km?2 pres de Lyon. Cette zone est suffisante pour évaluer les avantages de notre
approche et suffisamment petite pour permettre plusieurs évaluations de variantes
de l'algorithme de cartographie en un temps limité. Nous avons choisi cette zone
parmi plusieurs autres en France car les types géographiques varient avec une zone
urbaine densément peuplée et une campagne environnante. La densité des instal-
lations photovoltaiques est également assez inhomogéne, ce qui rend la zone assez
difficile pour I'algorithme. Ce benchmark est entierement réplicable en suivant les
instructions de notre dép6t public Kasmi et al. (2023c¢).

Approche proposée Notre approche améliore I'approche de Mayer et al. (2022),
gue nous avons adaptée au chapitre 2. La figure 14 présente notre approche. Cette
derniere se décompose en deux étapes. Premierement, on extrait des polygones
d’installations PV géolocalisés a partir d’orthoimages et en utilisant un modele de
classification et un modeéle de segmentation d’images. Ensuite, on utilise ces poly-
gones et des données auxiliaires (BDPV dans notre cas, mais notre approche peut
étre utilisée avec des données LiDAR) pour estimer les caractéristiques des instal-
lations PV.

Par rapport a I'état-de-I'art, les améliorations portent sur trois aspects princi-
paux :

1. Filtrage des zones a cartographier en amont avec la BD TOPO. Cela permet de
réduire les faux positifs en ne se focalisant que sur des zones anthropisées;

2. Introduction d’une superposition entre les vignettes extraites des orthoimages
brutes et présentées au modele de classification afin de réduire les faux nega-
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tifs. Nous avons constaté que le modele est plus susceptible de faire un faux
négatif si I'installation est située sur un coin de I'image. Avec la superposition,
NOUS nous assurons qu’une installation n’est jamais dans un coin de I'image;

3. Introduction d’un module standardisé pour extraire les caractéristiques. Dans
Trémenbert et al. (2023), nous comparons les méthodes d’extractions de ca-
ractéristiques existantes et développons un package Python standardisé, PyPVRoof.
Ce package est congu pour fonctionner dans différents cas de disponibilité de
données et n’integre que les méthodes les plus précises et rapides pour cal-
culer les caractéristiques d’installations PV.

1. Segmentation de panneaux PV

Oui —

‘ ° 5 \ Panneau "\M"%'
S s 72
AN o o BD ORTHO®

Non

< > > >

Superposition et Classification Segmentation
filtrage

2. Extraction des caractéristiques PV

] P = =

Conversion en

" L Données complémentaires Registre PV
polygone géolocalisé

Figure 14 - Diagramme de DeepPVMapper.

Performances Nous évaluons la plus-value en termes de performance des amé-
liorations intégrées dans DeepPVMapper avec la littérature existante. Nous testons
également différentes configurations. Ces configurations consistent en des modeles
de classification plus simples (le ResNet-50, He et al., 2016) et plus complexes (le
ConvNext, Liu et al., 2022) que le modele utilisé dans DeepSolar et pour notre ré-
férence.

Nos résultats (tableau 5) montrent que le filtrage et la superposition permettent
d’améliorer significativement la performance. En revanche, la meilleure robustesse
aux conditions d’acquisition ne se traduit pas par un gain de performances en
termes de DTA. Cela peut étre lié au fait que la variation des conditions d'acqui-
sition au sein des images IGN est moins forte qu’entre IGN et Google. Outre ces
résultats quantitatifs, nous discutons dans la section 3.2.2 du chapitre 4 comment

liv
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DeepPVMapper répond aux limites qualitatives de I'algorithme que nous avions im-
plémenté dans le chapitre 2.

Table 5 - Performances mesurées avec les métriques DTA de différentes configura-
tions de I'algorithme. Les meilleurs résultats sont en gras et les seconds meilleurs
soulignés.

Configuration DTA
MAPE [%] Ratio [-] AIPE [%]

Référence (Kasmi et al., 2022a) 55.7 1.29 15.4
ResNet-50 46.9 1.09 15.5
ConvNext 45.5 1.11 15.3
ResNet + Superposition/filtrage 39.5 0.91 12.6
ConvNext + Superposition/filtrage 38.8 0.84 18.2
ResNet + WP 48.22 0.57 16.97
ResNet + Sampling + WP 40.62 0.82 21.48

4.2 Criteres d’évaluation de I’amélioration de I’observabilité du PV
en France

4.2.1 Du registre aux courbes de production PV

Données supplémentaires Le registre technique ne suffit pas a I'estimation de
la production PV diffuse. Nous avons besoin en plus des données de rayonnement
solaire et de température. Les données de rayonnement solaire proviennent du Ser-
vice Européen de surveillance de I'atmosphére Copernicus (CAMS, Qu et al., 2017)
et les données de température proviennent de la 5éme réanalyse météorologique
du Centre européen pour les prévisions météorologiques a moyen terme (ERAS5,
Hersbach et al., 2020).

Grace a l'association Asso BDPV, nous avons eu acces a des mesures de la pro-
duction d’'énergie photovoltaique de 1 793 systémes photovoltaiques individuels
(906 apres contréle qualité). Ces mesures couvrent toute la France et ont une gra-
nularité de 30 minutes. Cet ensemble de données est donc I'un des plus importants
disponibles en termes de nombre de systemes, d’emprise géographique et de ni-
veau de détail associé sur les systemes PV, étant donné que nous avons également
acces aux caractéristiques techniques des installations. La base de données la plus
proche de la notre est celle fournie par IBW, un fournisseur d’'électricité a Wohlen
en Suisse et utilisée par Walch et al. (2021). Cette base de données contient les
profils de production d'énergie photovoltaique de 15 foyers et les caractéristiques
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techniques des systemes photovoltaiques.

Modele de conversion Les caractéristiques issues du registre technique per-
mettent de paramétriser un modele de conversion PV, qui prend en entrée des
données de rayonnement et de température et renvoie une production photovol-
taique exprimée en watts. Nous nous focalisons dans cette étude sur un modele tres
simple, le modele PVWatts de Dobos (2014). La raison de ce choix est qgue nous sou-
haitons faire aussi peu d’hypotheses que possible sur le systeme PV, étant donné
gue le registre ne nous donne pas acces a de nombreux parametres (efficacité des
convertisseurs, pertes du systeme, type de module). Le modele de conversion est
donné par I’équation (1) :
PPVt = POCiifﬂ x Ppy x (1 + Ypde (Tinodute,t — Tste)) (1)
OU POA.;; = POA.sy(9,¢) désigne le rayonnement solaire effectif (c'est-a-dire
issu des trois formes de rayonnement, direct, diffus et réfléchi, et apres prise en
compte de la réfraction des modules) en fonction de I'inclinaison et de I'orienta-
tion du systeme PV. Ppy est la puissance installée de l'installation et ~,4. est un
facteur d’efficacité qui reflete la diminution de la performance du module avec la
température. La température de référence Ty, est de 25°C et v,4. exprimé en K~!
correspond a la perte d’efficience du module au dela de cette température de ré-
férence. Enfin, Gy, est I'irradiance de référence, exprimée en W/m? et valant 1000
W/m?2.

Modélisation proposée Notre modélisation consiste a estimer la production de
chacun des systemes PV. De cette maniere, il est possible de retrouver tous les
niveaux d'agrégation (commune, poste-source, département, région, pays) sans
hypothese sur la répartition géographique des installations. Par ailleurs, nous pou-
vons directement évaluer la précision de cette méthode avec les données de pro-
duction PV. La principale question soulevée par cette approche est de savoir si les
erreurs d’estimation de la production vont se compenser ("foisonner" dans le vo-
cabulaire du systeme électrique) lorsqu’on va agréger les installations entre elles.
Saint-Drenan et al. (2016) ont montré que les erreurs d’estimation de production
se compensent si ces dernieres sont indépendantes. Dans notre cas, |’estimation
de production dépend de I'estimation des caractéristiques des installations. Nous
étudions par conséquent si des biais systématiques dans I'estimation des caracté-
ristiques conduisent a des biais systématiques dans I'estimation de la production.

4.2.2 Criteres d’amélioration de I’observabilité

Rappel de la définition En introduction, j'ai défini I'observabilité comme la ca-
pacité du GRT a estimer avec précision la production en temps réel et future d’'une
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unité de production. Afin d’évaluer la pertinence de notre méthode pour améliorer
I’observabilité du PV diffus, il faut donc :

1. Qu’elle soit précise (ce qui requiert des données de référence),
2. Qu’elle soit plus performante que des méthodes alternatives,

3. Qu'elle puisse étre agrégée efficacement; tant sur le plan computationnel
qu’en termes de convergence statistique des estimations de production. Ce
critere est propre a notre approche et au grand nombre d’installations PV dif-
fuses (environ 600 000 en France en 2023).

Approche proposée Afin d’évaluer si notre approche est précise et pertinente
pour améliorer I'observabilité des systemes photovoltaiques, nous la comparons
avec les mesures de référence et définissons un ensemble de références auxquelles
nous comparons notre modele. Nous comparons notre approche "explicite" (de
conversion du rayonnement en production PV) avec des approches "statistiques".
Ces approches implicites ne nécessitent pas de registre, seulement la puissance
installée du systeme PV et ont été entrainées sur les données de production PV de
BDPV. Nous implémentons deux approches implicites ou statistiques : une régres-
sion linéaire et un réseau de neurones a une couche cachée.

Pertinence et périmetre des modeles Nous ne pouvons pas utiliser nos don-
nées de production PV comme mesure de référence au niveau des agrégats géo-
graphiques utilisés dans la modélisation du PV par le GRT sans hypothese supplé-
mentaire. En effet, I'approche probabiliste, généralement utilisée, suppose qu’il y a
une forte densité d’installations sur un territoire donné (de I'ordre du millier d’ins-
tallations). Dans le meilleur des cas, sur des zones géographiques pertinentes, nous
n'avons au plus gu’une vingtaine de télémesures. Ainsi, nous avons choisi d'éva-
luer la pertinence de notre approche indépendamment des méthodes pratiquées
actuellement par le GRT. Ce choix se justifie par le fait que le GRT sait que ses
méthodes manquent de précision. Par conséquent, si notre approche se révele étre
précise, il sera tres probable qu’elle soit meilleure que les méthodes actuellement
déployées par le GRT.

4.3 Résultats : le PV toiture est observable

Résultat principal D’apres la tableau 6, il est possible d’améliorer I'observabilité
du PV diffus grace a notre approche. En effet, I'erreur d’estimation a I'échelle d'une
installation est de I'ordre de 10%. D’autre part, des tests d’aggrégation montrent
gue l'erreur dans I'estimation de production agrégée reste contenue. L'erreur de
notre méthode a I'échelle de I'installation est du méme ordre que I'erreur commise
par une régression linéaire (entrainée sur des courbes de charges d’installations PV
en toiture).
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Table 6 — Comparaison de la RMSE [W] et de la pRMSE [%] (entre parenthéses) de
I’estimation a I’échelle de I'installation individuelle avec les parameétres de DeepPV-
Mapper. Les meilleurs résultats sont en gras et les seconds meilleurs soulignés. n
indique le nombre d’installations utilisées dans cette étude.

Cas Min Max Moyenne Médiane n
[W] (W] (W] (W]

Oracle 114.61 2137.82 281.53 223.06 255
(3.90) (26.49) (8.36) (7.66) 255

3 DeepPVMapper 119.56 3001.42 332.57 245.33 255
Y (4.15) (43.39) (10.10) (8.18) 255
=3
L
O Régression linéaire 134.42 7663.42 392.97 257.21 255
_3- (4.67) (33.27) (10.18) (8.86) 255
i
< Réseau de neurones 245.93 9261.82 744.24 607.64 255
) (8.42) (29.31) (20.70) (20.74) 255

Ainsi, nos résultats montrent qu’il est possible d'approximer de maniéere satis-
faisante la production d’une installation PV en toiture en ne connaissant que sa
puissance installée, sa localisation, son inclinaison et son orientation. La perfor-
mance de I'approche proposée est de I'ordre de la performance d’une régression
linéaire. Ainsi, si des courbes de charges du PV toiture sont accessibles, la régres-
sion linéaire est préférable. Cependant, cette disponibilité n’allant pas de soi, notre
approche est une premiere approximation simple a obtenir de la production PV en
toiture.

Agrégation Nous évaluons par ailleurs le comportement de I'erreur d’estima-
tion de la production lorsque I'on agrege un nombre croissant d’installations. La
figure 15 présente les résultats. Nous pouvons voir que l'erreur agrégée sur une
vingtaine d’installations reste contenue. Le chapitre 5 discute plus en détail ces
résultats et montre que I'erreur peut ne pas décroitre avec le nombre d’installa-
tions dans le cas ou les erreurs d’estimations des caractéristiques des installations
sont systématiques. Grace a la DTA, nous identifions quelles erreurs systématiques
DeepPVMapper commet et pouvons donc estimer le comportement de I'erreur d’es-
timation agrégée en fonction de ces biais.
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Cas: Biais de DeepPVMapper
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Figure 15 - Comportement de |'erreur d’agrégation des estimations des courbes
de production PV dans le cas d’'une inclinaison et d’une orientation estimées avec
DeepPVMapper.

5 Conclusion

5.1 Reéponses aux questions scientifique et industrielle

Réponse a la question scientifique La question scientifique était de savoir si
la télédétection a partir d'orthoimages et utilisant des algorithmes d’apprentissage
profond était une méthode appropriée pour construire un registre technique natio-
nal du PV en toiture destiné a améliorer I'observabilité du PV. Plus généralement la
guestion soulevée est celle de savoir si les algorithmes et pratiques actuelles sont
suffisamment matures pour étre utilisés dans un processus industriel plus large. La
contribution centrale de ce travail est d’introduire une méthodologie permettant
d’améliorer la fiabilité des algorithmes d’apprentissage statistique utilisés dans
un contexte appliqué; ainsi que la fiabilité des données qu'ils génerent. A condi-
tion gqu’il soit possible de croiser les données générées avec une source tierce afin
d’en contrller la précision, cette méthode montre que la fiabilité des algorithmes
d’'apprentissage profond est satisfaisante pour une application industrielle dés lors
gu'il est possible d'auditer leur processus de décision de maniere a s'assurer de
sa pertinence et de sa robustesse. Dans ce contexte, il est en effet possible d’éva-
luer la précision des données et de pouvoir identifier et comprendre les erreurs
commises par le modéle, améliorant ainsi la transparence de I'algorithme aux yeux
de I'utilisateur final, ce qui renforce sa confiance et son recul critique vis-a-vis du
modele. Appliquée au cas de la télédétection d’installations PV en toiture, notre
méthode montre que I'apprentissage profond et les données d’observation de la
Terre sont une méthode pertinente pour construire un registre du PV en toiture :
des données de contrble sont disponibles et notre WCAM a mis en avant le fait que
le processus de décision est pertinent, et nous a permis d’améliorer sa robustesse
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a la variabilité des conditions d’acquisition.

Réponse a la question industrielle Ce travail contribue a améliorer I'observa-
bilité des systemes photovoltaiques dans la mesure ou il fournit une information
détaillée sur la distribution géographique et les caractéristiques du PV toiture. Il
améliore également I'observabilité du PV en montrant qu’il est possible d’estimer
précisément la production PV en toiture uniquement a partir d’'un modele simple de
conversion et une information limitée (disponible dans le registre a grande échelle)
sur les systemes PV. Nous montrons que cette méthode d’'estimation de la produc-
tion PV est aussi précise que des méthodes alternatives calibrées sur des données
de production PV en toiture. Ainsi la pertinence de notre méthode comparée a ces
approches statistiques est discutable des lors que des données de production pour
le PV toiture sont disponibles; ce qui n'est cependant pas évident. Ce travail sug-
gere des pistes intéressantes pour construire des mesures de référence pour le
PV toiture, lorsque la téléreleve n’est pas disponible et mériterait d'étre complété
grace a la collecte d’'un grand nombre de téléreleves d’installations PV en toiture
afin de démontrer empiriquement la plus grande précision de notre méthode par
rapport aux pratiques actuelles du GRT.

5.2 Contributions

Contributions académiques Les contributions de cette these s’inscrivent dans
deux domaines : I'apprentissage statistique et I'ingéniérie des systemes électriques.
J'ai tiré parti de I’étude de cas de la cartographie des installations photovoltaiques
sur toitures pour étudier la question de la fiabilité des algorithmes d'apprentissage
profond dans un contexte opérationnel. A cette fin, j'ai introduit une méthodologie
de vérification de la précision des données générées par un algorithme fondée sur
I'utilisation de mesures de référence indirectes (Kasmi et al., 2022a). J'ai également
introduit une nouvelle méthode d’attribution qui identifie les échelles contribuant
a la prédiction d’'un modele d’apprentissage profond (Kasmi et al., 2023a). Cette
méthode d’'attribution est fondée sur une analyse de sensibilité du modele a la per-
turbation de la transformée en ondelettes de I'image d’entrée. Je montre que cette
méthode permet d’améliorer la fiabilité des modeles en fournissant une informa-
tion plus fine de leur processus de décision (Kasmi et al., 2023b). Enfin, grace a des
campagnes participatives, j'ai introduis une nouvelle base de données d’entraine-
ment, BDAPPV (Kasmi et al., 2023d), contenant prés de 50 000 images annotées et
provenant de deux fournisseurs d’'images. Cette base de données aide a la carto-
graphie d’'installations en France et dans des pays voisins (voir par exemple Freitas
et al., 2023), mais permet également d’étudier la sensibilité des modeles a dif-
férentes conditions d’acquisitions (voir par exemple Kasmi et al. (2023b) ou Guo
et al., 2024).
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En ingéniérie des sytemes électriques, ce travail améliore la connaissance du
parc photovoltaigue francais en cartographiant les installations PV en toiture sur 38
départements francais (au moment de la rédaction de cette these, et a terme sur
I’ensemble de la France métropolitaine). Le registre généré répertorie I'inclinaison,
I’azimuth, la localisation ainsi que la puissance installée de chaque systeme PV. La
zone cartographiée est actuellement la deuxieme plus grande au monde en termes
de superficie derriere DeepSolar, et la plus grande au monde avec ce niveau de
détail en termes de caractérisation des systemes PV. J'ai également montré qu'il
était possible d’améliorer I'observabilité du PV toiture en utilisant les données de
ce registre (Kasmi et al., 2024). Les outils introduits dans cette thése peuvent étre
transposés dans d’'autres pays ou régions, ou le probleme d’observabilité du PV toi-
ture se pose. La seule condition est de disposer de données de référence agrégées
(par exemple, a I'’échelle des municipalités) concernant la puissance installée.

Les contributions complémentaires de cette thése sont une librairie Python open-
source permettant I’extraction des caractéristiques du PV en toiture a partir de po-
lygones géolocalisés (Trémenbert et al., 2023), et DeepPVMapper, un algorithme
de cartographie open-source qui peut étre réutilisé et amélioré par la communauté
(Kasmi et al., 2023c).

Applications pour RTE et au-dela Ce travail montre que I'amélioration I'obser-
vabilité de la production PV en toiture nécessite peu d’information sur ces systemes.
L'approche de modélisation choisie pour la production d'énergie photovoltaique
montre que l'inclinaison, I'orientation, la puissance installée et la localisation, cou-
plées a des données de rayonnement et de température, suffisent pour obtenir une
estimation précise de la production électrique d'un systeme PV. Cette approche
ouvre la voie a I'amélioration de la précision de I’estimation de la production PV en
toiture et, par conséquent, de I'estimation de la production photovoltaigue globale
a différentes échelles spatiales et temporelles, des estimations individuelles aux
agrégats nationaux et de la réanalyse aux prévisions.

Le registre fournit une vue actuelle du parc photovoltaique. Le GRT peut donc
I'utiliser pour calibrer les modeles de potentiel photovoltaique utilisés dans les
études prospectives. Il peut également étre utilisé pour analyser les facteurs géo-
graphiques, sociaux et économiques a l'origine de I'adoption du photovoltaique,
comme le font des travaux tels que Wang et al. (2022) ou Freitas et al. (2023). Ces
registres peuvent également étre utiles aux pouvoirs publiques qui cherchent un
moyen simple d’évaluer I'état actuel du déploiement de I'énergie photovoltaique
sur leur territoire.
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Résumé étendu

5.3 Discussion et perspectives

Discussion Lorsque j'ai commencé le projet, j'avais a ma disposition de tres nom-
breuses approches, dont certaines se focalisaient sur des problématiques trés poin-
tues, comme par exemple le fait que les polygones des installations soient le plus
rectangulaires possibles. D’un autre c6té, il n'y avait pas encore eu de publica-
tion au sujet de la cartographie d’installations PV (toiture ou non) en France, ni de
base de données d’'apprentissage disponible pour la France. Face a ce contraste,
j'ai choisi dans un premier temps de collecter des données d’apprentissage et de
déployer un prototype construit a partir de la littérature existante en France. J'ai
ensuite amélioré ce prototype apres en avoir identifié les principales limites. Les
présentations des premiers résultats obtenus m’ont rapidement montré que les
performances du modele, mesurées avec le score F1 ou l'indice de Jaccard, ne
trouvaient que peu d’écho aupres des utilisateurs potentiels. Leurs préoccupations
portaient essentiellement sur la cohérence des données générées avec les don-
nées existantes (la standardisation de ce processus ayant conduit a la DTA) ou sur
la question de savoir comment étre slir que le modele détectait bien des panneaux
solaires. Si la GradCAM était suffisante pour exclure des corrélations fallacieuses
évidentes comme des piscines, elle ne permettait pas d’expliquer pourquoi le mo-
dele confondait parfois une piste d’athlétisme avec un panneau PV.

Je pense que pour la plupart des projets concrets de data science, les modeles
"sur étagere" sont suffisants pour répondre a la plupart des besoins, a minima pour
construire un prototype. Par ailleurs, les travaux visant a introduire un nouveau mo-
dele état-de-I'art connaissent souvent une postérité fugace étant donné la vitesse
a laquelle I'apprentissage statistique progresse.

Cependant, répondre a la simple question "Le modele fonctionne-t-il correcte-
ment ?" et élaborer un protocole de contréle et d’audit des modeles d’apprentissage
profond, permettant en particulier de détecter et analyser leurs erreurs souleve
pléthore de questions. Je suis convaincu qu'il reste encore beaucoup a faire dans
ce que j'appellerais I'audit de I'lA, en particulier dans contexte ou des modeles
d’IA sont utilisés quotidiennement et pour beaucoup de taches différentes par des
utilisateurs non spécialistes. Je pense que fournir de bons outils a ces utilisateurs,
c’est-a-dire des outils leur permettant de comprendre concretement comment fonc-
tionnent les modeles et quelles sont leurs limites peut améliorer la confiance placée
en ces outils et notre recul critique envers ces derniers. Je pense que la confiance
et I'esprit critique sont deux ingrédients essentiels pour une utilisation saine des
algorithmes d’apprentissage profond par le grand public.

Perspectives Concernant I'ingéniérie des sytemes électriques, il serait intéres-
sant de se pencher sur I'autoconsommation PV. Le contexte Iégislatif Francais fa-
vorise I'auto-consommation individuelle, qui est devenue début 2024 le mode ma-
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5. Conclusion

joritaire de raccordement au réseau. Une bonne connaissance de la production PV
en toiture restera importante, d’autant plus que I'on peut s'attendre a ce que la
téléreleve de courbes de productions du PV en toiture reste rare : la seule informa-
tion disponible sera la demande nette (c’est-a-dire la différence entre la production
d’énergie photovoltaique et la consommation du ménage). Ainsi, les estimations
de production d’énergie devront étre intégrées dans des modeéles plus larges qui
prennent également en compte la consommation, a I’échelle des ménages ou bien
de quartiers.

Du c6té de I'apprentissage statistique, je pense que I'étude des biais inductifs
des modeles pourrait contribuer a mieux comprendre les modeéles et a les rendre
plus fiables. Notre travail a montré que les fausses détections sont dues principa-
lement au fait que le modele prédit un panneau solaire lorsqu’il identifie un motif
quadrillé sur I'image. Notre WCAM nous a permis d'atténuer ce phénomene, mais il
serait intéressant de comprendre son émergence. Cette question est plus théorique
et dépasse le cadre de la présente these. Selon ma compréhension actuelle de la
guestion, pour comprendre pourquoi le motif quadrillé finit par étre une caractéris-
tigue prédictive importante, il faut comprendre comment le modele construit des
caractéristiques prédictives a partir des données d’entrée durant I’entrainement.
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Chapter

Introduction

1 Context

1.1 Curbing anthropogenic CO, emissions through electrification
and decarbonization

As the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC, 2021a) states, "Human activities, principally through emissions of green-
house gases, have unequivocally caused global warming, with global surface tem-
perature reaching 1.1°C above 1850-1900 in 2011-2020. Global greenhouse gas
emissions have continued to increase, with unequal historical and ongoing con-
tributions arising from unsustainable energy use, land use and land-use change,
lifestyles and patterns of consumption and production across regions, between and
within countries, and among individuals".

Mitigating global warming requires reducing greenhouse gas emissions, partic-
ularly CO, emissions. To this end, options exist, roughly summarized as energy
savings (efficiency) and decarbonization. Better insulation of buildings and favor-
ing public transportation over individual vehicles are examples of energy efficiency
measures. On the other hand, decarbonizing uses requires electrifying them, espe-
cially in the transportation sector. As a result, the so-called energy transition will
lead to an increase in electricity generation to face the increase in consumption.
The International Energy Agency (IEA) expects an increase of the share of electric-
ity in the final energy demand by 4% yearly to meet the decarbonization goals (IEA,
2023). In France, the electricity consumption could rise from 459.3 TWh in 2022 to
580 to 640 TWh in 2035 (RTE France, 2023).

To meet the decarbonization goals, the share of electricity in the energy sup-
ply needs to increase and to resort to low-carbon sources massively. Electricity is
an energy vector that results from the conversion of a primary source of energy
to electric energy. Primary sources differ in their carbon intensity, and the decar-
bonization of the electric sector necessitates favoring low-carbon sources such as

1
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renewable energies. According to Figure 1.1, these energies, especially wind and
solar energy, offer the highest potential for contributing to the reduction of CO,
emissions by 2030.

Many options available now in all sectors are estimated to offer substantial potential to reduce
net emissions by 2030. Relative potentials and costs will vary across countries and in the longer
term compared to 2030.

Potential contribution to net emission reduction (2030) GtCO;-eq yr'
Mitigation options 0 2 4 6

[ Wind energy =
Solar energy
Bioelectricity
Hydropower ol
Geothermal energy =
Nuclear energy e

=t

—_—

Energy

Carbon capture and storage (CCS)
Bioelectricity with CCS

Reduce CHa emission from coal mining
L Reduce CH4 emission from oil and gas

[ Carbon sequestration in agriculture
Reduce CH, and N,O emission in agriculture L

Reduced conversion of forests and other ecosystems I
Ecosystem restoration, afforestation, reforestation
Improved sustainable forest management
Reduce food loss and food waste

L Shift to balanced, sustainable healthy diets

AFOLU

[ Avoid demand for energy services

Efficient lighting, appliances and equipment
New buildings with high energy performance
Onsite renewable production and use
Improvement of existing building stock

L Enhanced use of wood products

Buildings

[ Fuel efficient light duty vehicles
Electric light duty vehicles

Shift to public transportation

Shift to bikes and e-bikes

Fuel efficient heavy duty vehicles
Electric heavy duty vehicles, incl. buses
Shipping — efficiency and optimization
Aviation — energy efficiency

Transport

Net lifetime cost of options:

[ Costs are lower than the reference
0-20 (USD tCO,-eq)

[ 20-50 (USD tCO,-eq”)

I 50-100 (USD tCOz-eq")

I 100200 (USD tCO-eq")
Cost not allocated due to high
variability or lack of data

L Biofuels

[ Energy efficiency

Material efficiency

Enhanced recycling

Fuel switching (electr, nat. gas, bio-energy, H,)
Feedstock decarbonisation, process change
Carbon capture with utilisation (CCU) and CCS
Cementitious material substitution

L Reduction of non-CO; emissions

Industry

——— Uncertainty range applies to
the total potential contribution
to emission reduction. The
individual cost ranges are also
associated with uncertainty

[ Reduce emission of fluorinated gas
Reduce CH4 emissions from solid waste
L Reduce CHs emissions from wastewater

Other

GtCOxeq yr'

Figure 1.1 — Overview of mitigation options and their estimated ranges of costs and
potentials in 2030. Source: IPCC (2021b).

Current climate action policies encourage the development of renewable en-
ergies. In the European Union (EU), the "Fit for 55" legislative bundle (European

2



1. Context

Union, 2021) aims at cutting the EU’s CO, emissions by 55% in 2030 compared to
1990, notably by setting the goal of having 40% of electric generation coming from
renewable energies. In France, the Programmation pluriannuelle de I’énergie (PPE,
2020) and the Stratégie nationale bas carbone (SNBC, 2020) define the legislative
framework for meeting the decarbonization goals of the country. The SNBC defines
a trajectory for curbing CO, emissions and sets "carbon budgets" for each sector.
The PPE focuses on the energy sector and defines energy consumption and gen-
eration goals. The PPE and SNBC are updated every five years. The current PPE,
adopted in 2020, states that renewables must represent 40% of electricity gener-
ation by 2030. The development of renewables mainly focuses on wind and solar
energy, as the potential of hydroelectricity is already at its peak, and the poten-
tial of biomass is negligible (about 2 GW or less than 1% of the current installed
capacity).

1.2 Conditions for integrating high shares of wind and solar en-
ergy into the grid

In France, the transport network is a meshed grid of high-voltage lines, with
voltages ranging from 63 kV to 400 kV. The operator responsible for the manage-
ment and development of the transport network is the transmission system oper-
ator (TSO). The French TSO is the Réseau de transport d’électricité ' (RTE), which
is a public regulated monopoly. At all times, two constraints must be satisfied for
the network to operate. Firstly, the sum of injections must equal the sum of the
off-takes. Injections correspond to energy production and imports. The off-takes
correspond to the exports, the consumption, and the network losses. This first con-
straint is a global constraint. Secondly, the intensity of the flows must not exceed
the transit capacity of the lines. Otherwise, this could damage them, e.qg., by over-
heating or present risks to the people and the environment. This second constraint
is local, meaning that the localization of the injection and off-takes also needs to be
considered.

Wind and solar photovoltaic (PV) electricity generation is weather-dependent
and highly variable at different time and space scales. Variable power generation
increases the grid’s sensitivity to climate, and the uncertainties as wind and solar
power generation are variable. To limit the uncertainties they bring to the grid, it is
necessary to accurately observe (i.e., accurately measure or estimate) their power
production. | define observability as the ability of the TSO to accurately estimate a
power unit’'s real-time and future production. In practice, the TSO either measures
in real time the production of the power unit (i.e., telemetry) or has access to ex-
post measurements of the production (usually within one month). These ex-post
measurements enable the calibration of power estimation models.

1. Website: https://www.rte-france.con/.
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Accurate measurements of renewable power generation at the scale of the power
units are the basis for validating short-term forecast models, which use weather
forecasts to estimate future renewable power production and the power system'’s
margins necessary to compensate for the variability of the production. Wind power
generation is homogeneously measured (RTE France and IEA, 2021), but it is not
the case for PV power production. A distinctive feature of PV energy is that PV in-
stallations vary in size. The smallest PV power installations have a few kW, installed
capacity, while the largest plants can have an installed capacity of up to dozens of
kW, or even several MW, or GW,. The variability in size results in a great diversity
in terms of the installations’ technical characteristics, as seen from Figure 1.2.

10° Single axis Dual axis

0-10 KWp

10-20 kKWp

20-30 KWp

30-100 kWp

100-1000 kWp

>1000 kWp

Figure 1.2 - Typology of PV installations. Rows correspond to classes of installed
capacities and columns to classes of tilt angles (in degrees). Adapted from Saint-
Drenan et al. (2015).

Table 1.1 summarizes the current state of PV observability, depending on the
power class of the installation. Overall, about 94% of the PV fleet is not observable,
corresponding to 22% of the installed capacity, equivalent to four nuclear units.
The lack of observability primarily concerns small-scale installations with installed
capacity below 36 kW,,.
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Table 1.1 - Installed capacity, number of installations, and corresponding shares
of observed PV installation by power class as of September 2023. TN: transport
network. DN: distribution network. Source: RTE.

Power class [kW,] Observed Not observed
Installed capacity Number of installations Installed capacity Number of installations
(MW, ] [-] (MW, ] [-]
0-3 0.006 3 1124 414579
(%) 0.0 0.0 100.0 100.0
3-6 0.05 9 872 171042
(%) 0.0 0.0 100.0 100.0
6-9 0.439 53 397 46704
(%) 0.1 0.1 99.9 99.9
9-36 14.3 340 637 25893
(%) 2.2 1.3 97.8 98.7
36 - 250 4438 40054 340 2897
(%) 92.9 93.3 7.1 6.7
250 - 1000 435 748 23.5 47
(%) 94.9 94.1 5.1 5.9
> 1000 (DN) 7586 1531 377 79
(%) 95.3 95.1 4.7 4.9
> 1000 (TN) 827 20 0 0
(%) 100 100 0 0
Total 13301 42758 3771 661241
(%) 77.9 6.1 22.1 93.9

The lack of observability will be increasingly concerning in the context of the
quick growth of PV installed capacity. Following Figure 1.3, we can see that the
overall PV installed capacity could reach up to 200 GW,, in 2050 (RTE France, 2022).
The PPE aims to reach 35 and 45 GW, of PV installed capacity by 2029. These sce-
narios and objectives assume a constant deployment rate for small-scale and large
PV, meaning that up to 40 GW, (i.e., two-thirds of the current French nuclear park)
could be unobserved by 2050 with the current practices. Therefore, the industrial
objective of this thesis is to seek methods for improving the observability
of small-scale rooftop PV (i.e., PV installations with an installed capacity
below 36 kW,).
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Figure 1.3 - Expected PV share growth according to the PPE and RTE's Energy Path-
ways 2050.

1.3 Overcoming the poor PV observability

As depicted on Table 1.1, in September 2023, 661,241 installations, amount-
ing to 3.7 GW, (i.e., 22% of the PV installed capacity) are currently not observed.
Acquiring telemetry or ex-post measurements for all of these installations is com-
putationally unbearable.

The current practice estimates the regional PV power production (i.e., the PV
power production aggregated for areas up to a few hundred km?2). These areas
are then summed to derive the PV power production at the scale of a country. My
method will borrow from the probabilistic approach (Saint-Drenan et al., 2015), the
idea of estimating the PV power production using a conversion model that requires
a limited set of PV characteristics and solar irradiance and temperature data.

The probabilistic approach estimates the PV power production of a target set of
systems for which no measurements are available. Traditional approaches (e.g., the
upscaling method of Lorenz et al., 2011) rely on the production of metered neighbor-
ing plants. However, Saint-Drenan et al. (2016) showed that this method leads to
interpolation errors when the neighboring plants are too far away. Estimation errors
also arise when the reference set of installations is not representative of the target
systems set. Instead of neighboring plants, Saint-Drenan et al. (2016) proposed
using a physical PV system model and solar irradiance data. Indeed, only a few pa-
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rameters are necessary to estimate the PV power production of a system. However,
it is necessary to acquire these parameters. Saint-Drenan (2016) showed that in
addition to its localization, the tilt, azimuth angles, and the nameplate capacity (or
installed capacity) of the PV installation are sufficient. As existing data sources do
not provide systematically this information for rooftop PV installations, one needs
to acquire them through mapping small-scale rooftop PV installations over France.
The outcome of this mapping is a technical registry (or registry) recording at least
the localization, tilt, and azimuth angles and installed capacity of as many rooftop
PV installations as possible. By rooftop PV installation, | refer to installations with
an installed capacity lower than 36 kW,. | may also refer to these installations as
small-scale or distributed.

2 Literature review

2.1 Earth observation data for large-scale mapping of rooftop PV
installations

Definitions Classification, segmentation, and the detection, recognition, and iden-
tification (DRI) framework: In remote sensing, one usually distinguishes between
object detection, recognition, and identification. Object detection means that the
goal is to know that something is here without knowing what instance it is. In our
case, it corresponds to PV panel classification. The model predicts that the input
image depicts a PV panel. Object recognition corresponds to classifying a detected
instance into a given category. In our case, it would correspond to segmentation:
we know where the PV panel is and its size. Finally, identification means one can
derive specific information about the recognized instance. This corresponds to the
characteristics extraction, where one identifies that the PV panel has a given name-
plate capacity, tilt, and azimuth angles. For the remainder, | will use the terms
image classification and segmentation to refer to the detection and recognition of
PV panels.

Early works The field of remote sensing of PV installations using spaceborne or
airborne orthoimagery 2 and computer vision techniques are now well established.
| refer the reader to Puttemans et al. (2016), de Hoog et al. (2020) and Arnaudo
et al. (2023) for comprehensive reviews on the topic. To our knowledge, the first
work dealing with remote PV panel detection on orthoimagery is Malof et al. (2015).
In this work, the authors leveraged aerial orthoimagery provided by the United
States Geological Survey (USGS) to detect installations over Lemoore (California).
The main question was whether aerial photography could enable automatic PV ar-

2. Orthoimagery is defined as overhead imagery geometrically corrected such that the scale is
uniform: the image follows a map projection
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ray detection. In an elementary setting with 50 images containing PV panels and
50 images without panels, the authors established that one could use aerial or-
thoimagery to map solar installations. The authors proposed a two-step method.
First, a set of features is manually computed for each input image pixel. Then,
they used a support vector machine (SVM) classifier to predict whether the pixel
depicted a PV array. In Malof et al. (2016a,b), the same research team improved
this work with better hand-crafted features (i.e., individual measurable properties)
that include the surroundings of the pixel of interest and a random forest classifier
to classify pixels of aerial images automatically. This method, deployed in a much
more challenging and realistic setting than the first attempt, achieved an F1 score 3
of 0.65. Besides hand-crafted based detection methods, the use of convolutional
neural networks (CNNs) has also been investigated by Yuan et al. (2016) and later
by Malof et al. (2017) and Golovko et al. (2017). In the latter work, the F1 score
reached 0.79. Finally, Bradbury et al. (2016) introduced the first publicly available
dataset containing ground truth annotation of rooftop PV panels.

Deep learning-based detection on RGB images as a standard Several works
(Czirjak, 2017, Karoui et al., 2018, 2019; Ji et al., 2021) attempted to use infrared
and hyper-spectral imagery to detect PV panels. The rationale is that PV modules
have an identifiable spectral signature, i.e., a variation of reflectance or emittance
of a material concerning wavelengths, constant across manufacturers (Ji et al.,
2021). The approach typically consists of (i) using portable spectrometers to deter-
mine the spectral signature of the solar array and construct a discriminative index
and (ii) classifying pixels if the discriminative index exceeds a certain threshold. So
far, these methods have neither been applied at a large scale nor demonstrated
their benefit in terms of accuracy compared to CNN-based methods on orthoim-
agery. Moreover, measurements on the arrays replace the data-labeling step (e.qg.,
in Czirjak, 2017), thus casting doubt on benefits in terms of data labeling can be
discussed. Besides, the spectral signature of PV in the near-infrared domain can
sometimes be mixed with unrelated components such as oil (Ji et al., 2021). There-
fore, the literature overwhelmingly adopted methods based on RGB imagery and
CNN-based models. Training data and pre-trained models are easily accessible, so
even if a data labeling step is still required, it is easier to leverage RGB imagery and
deep learning models for detecting PV panels.

Towards large scale mapping The DeepSolar project (Yu et al., 2018) intro-
duced the first large-scale PV registry covering the continental US and reporting
the surface area and the number of installations. DeepSolar leverages CNNs to ef-

3. The F1 score measures the accuracy of a binary classifier. A perfect classifier has a F1 score
equal to 1. The F1 score is the harmonic mean between the precision and the recall of this classifier.
The main accuracy metrics are defined in chapter 4.



2. Literature review

ficiently detect PV installations from overhead imagery and to estimate the surface
area they cover. Their surface area estimation only leveraged the horizontal pro-
jection of the array on the image and reached a mean relative error* almost always
lower than 5%. Similar works such as SolarMapper (Malof et al., 2019) also lever-
aged deep learning-based methods to map the surface area of distributed instal-
lations. SolarMapper used a segmentation model, i.e., a deep learning model that
identifies which input image pixels depict a PV panel. Subsequent works mapped
numerous areas including North-Rhine Westphalia (Mayer et al., 2020), Switzerland
(Casanova et al., 2021), Oldenburg in Germany (Zech and Ranalli, 2020), parts of
Sweden (Lindahl et al., 2023; Frimane et al., 2023), Northern Italy (Arnaudo et al.,
2023), the Netherlands (Kausika et al., 2021) or the surroundings of Berkeley in
California (Parhar et al., 2021). Several works even included GIS data to construct
registries of PV installations (Kausika et al., 2021; Mayer et al., 2022; Rausch et al.,
2020). In the current context of rapid rooftop PV growth (Haegel et al., 2017),
remote sensing of rooftop PV installations using deep learning and orthoimagery
emerged as a promising solution to address the lack of systematic registration of
small-scale PV installations (Kausika, 2022).

2.2 Current methods are not reliable enough to be integrated into
critical industrial processes

The current methodology for mapping rooftop PV installations on orthoimagery
consists of first training CNN models for image classification (matching an image
to a pre-existing category) and segmentation (delineating the pixels on the image
that correspond to the predicted category). These models are then integrated into
a larger pipeline where they are used to extract polygons of rooftop PV installations
from unlabelled orthoimagery. Depending on the works, the polygons are used to
estimate the surface area or the installed capacity or combined with additional data
such as 3D building data to derive the tilt and azimuth angles (Mayer et al., 2022).
Some works (Hu et al., 2022; Malof et al., 2019) do not use the classification step.

The main limitation of current approaches is the spatial and temporal extent to
which a trained model can generalize to (Tuia et al.,, 2016). Wang et al. (2017)
showed in a small experiment that a classification model trained on a city gen-
eralizes poorly to another city unseen during training. Their explanation for this
phenomenon was that the panels were more complex to recognize in one city than
another. De Jong et al. (2020) and Arnaudo et al. (2023) underlined the fact that
models trained over a region (e.g., Germany) cannot generalize to neighboring

4. Yu et al. (2018) define the mean relative error (MRE) as

Zl#zt;”e POSItiVeS ¢ e area; — estimated area;
#£true positives

i=1

MRE =
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countries. On the temporal side, to build a historical database of rooftop PV adop-
tion, Wang et al. (2019) had to construct a model based on Siamese networks> and
cross-correlation modules to identify when a PV panel appeared on a satellite im-
age. De Jong et al. (2020) identified the lack of generalizability to new regions and
new images as the main limitation when using machine learning-based techniques
to construct official statistics.

2.3 On the limits of deep learning in applied settings, beyond the
case of the detection of rooftop PV installations

Deep learning suffers from a sensitivity to distribution shifts The uncer-
tain ability to generalize to unseen settings is more broadly referred to as the sen-
sitivity to distribution shifts, i.e., the sensitivity to the fact that the training dis-
tribution differs from the test distribution (Koh et al., 2021).

The sensitivity to distribution shifts causes unpredictable performance drops. As
a result, the performance reported on the training dataset no longer represents
the accuracy under real-life scenarios. These performance drops can have dire
consequences as models are deployed in safety-critical settings, e.g., autonomous
driving (Sun et al., 2022b) or medical diagnoses (Pooch et al., 2020). Numerous
approaches have been introduced to mitigate the sensitivity to distribution shifts.
| refer the reader to surveys such as Zhou et al. (2023); Tuia et al. (2016); Guan
and Liu (2022); Csurka (2017); Csurka et al. (2021) for reviews of these methods
in various settings. | broadly refer to the methods aiming at mitigating the sensi-
tivity to distribution shifts as "domain adaptation" (Saenko et al., 2010) methods.
The general idea is that a model is trained on a source training dataset S (e.qg., la-
beled images of PV installations in France) and is deployed on one or several target
datasets T. Gulrajani and Lopez-Paz (2021) showed that the standard empirical risk
minimization ® (ERM, Vapnik, 1999) method was a strong baseline for domain adap-
tation while being significantly more straightforward to use in practice. Besides,
domain adaptation is a long-tail problem, meaning unseen situations eventually
arise, and all situations cannot be accounted for (Torralba and Efros, 2011; Recht
et al., 2019). Therefore, rather than introducing a new domain adaptation method,
I will focus on understanding why distribution shifts affect a model’s performance
to assess whether its predictions are reliable.

Reliability in the context of deep learning To assess whether a point-wise
decision (Schulam and Saria, 2019) is correct (as opposed to a decision that is
correct on average), one needs to assess the reliability of individual predictions.

5. Siamese neural networks are a class of neural networks that leverage two identical networks
with shared weights to learn the feature representation of different inputs. | refer the reader to
Chicco (2021) for a review on the topic.

6. | provide a short introduction to the key notions of machine learning in appendix D.
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| define the reliability of a deep learning algorithm as the combination of three
factors:

— The relevance of its decision process: one wants to be able to evaluate whether
the model relies on good features to make its prediction, i.e., is right for the
right reasons (Ross et al., 2017),

— The robustness of the decision process: one wants the decision process to be
invariant to distribution shifts, as these perturbations eventually arise when
dealing with vast datasets (Peng et al., 2017),

— The monitoring of the output data: one wants to identify where the model fails
(Schulam and Saria, 2019) by implementing a strategy to assess the model’s
accuracy indirectly. By monitoring, | mean the ability to keep the quality of the
data produced by the registry under systematic review of the user.

3 Scientific questions and outline

3.1 Scientific questions

Mapping rooftop PV installations using deep learning and orthoimagery is feasi-
ble. However, industrial applications require quality standards regarding the data
and the methods, which current works fail to meet. This thesis aims to define these
standards and introduce a methodology to assess whether deep learning-based
mapping systems can meet them. To this end, | will address the following general
scientific question:

Is deep learning-based remote sensing on orthoimagery a suitable
method for constructing a nationwide technical registry of rooftop
photovoltaic (PV) installations intended to improve the observability of
PV power production in France?

| shall address this question by tackling the following sub-questions (SQ):

(SQ1) What requirements should the registry have, and how can we check
whether it meets these requirements? | first need to state what | need to
know about the rooftop PV installations and how | can acquire such knowledge. |
also need to assess the quality of the data contained in the registry and check its
adequacy with the actual rooftop PV fleet.

(SQ2) How can we ensure deep learning models reliably map rooftop PV
installations? | use deep learning models on vast amounts of data, which can be
subject to unpredictable alterations. To ensure that the impact of these factors is
as small as possible on the model’s decision process, | need to unveil the model’s
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Chapter 1. Introduction

decision process and ensure that this process will not be impacted by the alterations
that can occur to the data. | will identify these alterations first.

(SQ3) How to build and integrate the registry for rooftop PV power pro-
duction estimation and evaluate its relevance for improving PV observ-
ability? Once | have designed the proper tools to ensure that a deep learning
model can generate quality data reliably, | will have to deploy it over France, which
means | will need adequate training data. As the registry is intended to improve PV
observability, | will have to construct a benchmark using reference data to evaluate
whether rooftop PV power estimations derived from the registry can contribute to
improving the accuracy of the estimation of PV power production.

3.2 Approach and outline

Sparing the computational resources This thesis work is part of a more global
commitment to mitigate and adapt to climate change. Considering the environ-
mental impact of the tools used in this work is essential. Generally speaking, |
preferred to reuse and discuss existing models rather than implement and train
new models from scratch and argue in favor of taking into account the computa-
tional cost of methods alongside traditional performance metrics when evaluating
them, as done, for instance, by Hugging Face (2023). In appendix A, | introduce
a simple approach to take into account the computation cost of different methods
and discuss how the energy cost of my approach can be translated into terms of
environmental impact.

Thesis outline Table 1.2 summarizes the chapters of this thesis and outlines
which research questions they address. In chapter 2, | review the existing data
sources to map PV installations in France and define key performance indicators
(KPIs) for our registry. | introduce a method to measure these KPIs without ground
truth data. Using this method, called downstream task accuracy (DTA), | quantify
the variation in accuracy that occurs during the large-scale deployment of the map-
ping algorithm. In chapter 3, | empirically show that acquisition conditions mainly
contributes to the variations in accuracy. | assumed that PV panels could be de-
composed into different scales on the input images to show this. As acquisition
conditions perturb some scales, the prediction may be disrupted if the model relies
on these scales. | introduced a new feature attribution method called the wavelet
scale attribution method (WCAM) to identify which scales the model relies on. |
derived from the WCAM a data augmentation technique to improve the model’s
robustness to acquisition conditions. Chapter 4 combined the methods of the two
former chapters to introduce DeepPVMapper, our proposal for scalable and reli-
able mapping of rooftop PV installations. This algorithm introduces a new filtering
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method to minimize the computational burden of large-scale deployment. | evalu-
ated the reliability of our algorithm through extensive benchmarks and presented
the results of this mapping approach. Finally, chapter 5 introduces a power pro-
duction estimation model fitted for our registry to estimate the rooftop PV power
production. | evaluate the accuracy of our method using ground truth measure-
ments of rooftop PV installations and discuss its benefit for the TSO by comparing it
with the current methods. Chapter 6 summarizes and discusses the present work.

Table 1.2 - Outline of the chapters of this thesis and the scientific sub-questions
(SQ) they address.

Chapter Title SQ1 SQ2 5SQ3

2 Characterization and evaluation of the quality of the rooftop v
PV registry in the absence of ground truth labels

3 Assessing the reliability of a model’s decision process by v
generalizing attribution to the wavelet domain

4 Constructing a reliable and scalable algorithm for mapping v
rooftop PV installations in France

5 Assessing the gains for rooftop PV observability of a v
physics-based method using a detailed registry of PV
installations and solar irradiance data

Associated publications Several research papers are associated with this the-
sis. The chapters of this manuscript consist of extended and enriched versions
of material already published or under publication at the time of writing. This
manuscript is self-contained, so it is unnecessary to read the associated publica-
tions to understand its content. | refer the interested reader to the appendix E for
a more thorough presentation of these works and links to the documents. Table 1.3
lists for each chapter the associated research papers and the sub-questions they
contribute to addressing.
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Table 1.3 - Summary of the publications associated with this thesis.

Reference Publication type Contributes to ...
SQ1 SQ2 SQ3
Chapter 2
A crowdsourced dataset of aerial images with annotated solar Journal v v v
photovoltaic arrays and installation metadata (Kasmi et al., 2023d)
Towards unsupervised assessment with open-source data of Conference v
the accuracy of deep learning-based distributed PV mapping workshop

(Kasmi et al., 2022a)

Chapter 3
Can We Reliably Improve the Robustness to Image Acquisition of Conference v
Remote Sensing of PV Systems? (Kasmi et al., 2023b) workshop
Assessment of the Reliability of a Model’'s Decision by Generalizing Conference v
Attribution to the Wavelet Domain (Kasmi et al., 2023a) workshop

Chapter 4
PyPVRoof: a Python package for extracting the characteristics Preprint v

of rooftop PV installations using remote sensing data
(Trémenbert et al., 2023)

DeepPVMapper: reliable and scalable remote sensing of Submitted work v
rooftop photovoltaic installations (journal)

Chapter 5
Remote Sensing-Based Estimation of Rooftop Photovoltaic Power Journal v

Production Using Physical Conversion Models and Weather Data
(Kasmi et al., 2024)
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Chapter

Characterization and evaluation of a
rooftop PV reqistry in the absence of
ground truth labels

Summary

This chapter discusses how to monitor the accuracy of a PV registry cre-
ated with Earth observation data and deep learning. We review the data
sources at our disposal for constructing and evaluating the registry, de-
fine key performance indicators (KPIs) for industrial use, and introduce an
unsupervised evaluation method, the Downstream Task Accuracy (DTA).
The DTA indirectly monitors the accuracy of the registry by aggregat-
ing its data, comparing it with available sources and deriving accuracy
metrics. We assess tilt and azimuth angle estimations against the self-
reported BDPV database and installed capacity estimation against the
aggregation of the city-level Registre national d’installations (RNI).

We train a model on the training dataset BDAPPV and deploy it across 11
French departements. The DTA reveals satisfactory tilt and azimuth an-
gle estimations but relatively poor installed capacity estimation accuracy.
Investigating the performance drop, we find no geographical pattern im-
pact. Analyzing how the model makes predictions, we uncover that it
relies on features correlated with PV panels but not causally related. This
can lead to confusions, such as mistaking a veranda for a PV panel. This
explanation helps us understand some cases where the model performed
very poorly and offers insights towards improving the reliability of the
classification model, which will be the topic of the next chapter.
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Chapter 2. Characterization and evaluation of a rooftop PV registry

1 Overview of the existing and missing data sources

This section reviews the data for mapping rooftop PV installations from orthoim-
agery. We also review the existing PV data sources. We show that none meets
all the criteria for constructing the technical registry of rooftop PV installations we
defined in the introduction. We recall that this registry should record the localiza-
tion, the tilt and azimuth angles, and the installed capacity of as many rooftop PV
installations with an installed capacity of less than 36 kW, as possible. Finally, we
introduce our training database BDAPPV for training models to map PV installations
over France.

1.1 Geographical information system (GIS) data
1.1.1 Orthoimagery and topological data

Different types of overhead imagery Overhead imagery encompasses satel-
lite and airborne (or aerial) imagery. Figure 2.1 presents airborne and spaceborne
imagery samples.

USGS IGN Pléiades
Spaceborne (50 cm/pXx)

2w

) 1 _u e N B e e R
SNy yrewe R KT
n | i

Figure 2.1 - Examples of different types of orthoimagery. Sources: USGS (2024),
IGN (2024a), and the ESA (2024). USGS and IGN are updated every three years on
a rolling basis, and Pléiades from ESA is updated twice a day.

For a fixed location, aerial imagery has three main characteristics. First, the
ground sampling distance (GSD). The GSD corresponds to the distance between
two consecutive pixels measured on the ground. The lower the GSD, the more
details on the image. The GSD is expressed in meters per pixel.

Second, its effective resolution, which enables us to assess its quality. The ef-
fective resolution considers the distortions induced by the angle of incidence of
the sensor (e.g., RGB camera). If the sensor is tilted, the effective resolution is
larger than the GSD. For instance, if a sensor has a GSD of 50 cm/pixel but is very
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1. Overview of the existing and missing data sources

tilted with respect to some places, it can have a higher effective resolution (e.g., 70
cm/pixel). In this case, the resulting image, despite theoretically having a GSD of
50 cm/pixel, will have a quality equivalent to an image with a GSD of 70 cm/pixel
(with no distortion). The GSD gives us an upper bound on the image quality.

The third characteristic of overhead imagery is its revisit rate. Satellite images
have a higher revisit rate at the expense of a higher GSD, while aerial images are
usually more detailed but have a lower revisit rate.

Orthoimagery Orthoimagery is overhead imagery that is rectified for the angle
of incidence of the sensor. Therefore, each pixel on the orthoimagery appears as
if the sensor had been right above the localization. Orthoimagery is obtained after
correcting the images and induces fewer geometric distortions than on non-rectified
images. Figure 2.2 presents an image example before and after orthorectification.

Figure 2.2 — A) An orthophoto rectified over a terrain model. The church is not
moved to its correct position. B) Orthophoto based on a city model. The church
is rectified to its correct location, but a "ghost image" is left on the terrain. C)
Same as B, but the obscured area has been detected. D) True orthophoto, where
the obscured area has been replaced with imagery from other images. Taken from
Nielsen (2004).

We will use the the BD ORTHO database (IGN, 2024a), provided by the French
Institut national de I'information géographique et forestiere (IGN). These images are
provided under an open license. The revisit rate for these images is three years,
but updates are provided on a rolling basis, so updated images of departements
are available every month. The images are classified by departements, a French
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Chapter 2. Characterization and evaluation of a rooftop PV registry

administrative unit between the city and the region!. There are 95 departements in
metropolitan France. The ground sampling distance of these images is 20 cm/pixel,
which is sufficient to detect PV systems (Li et al., 2021). The effective resolution is
at most 30 cm/pixel. This effective resolution is derived by considering the expected
GSD (20 cm/pixel) and the expected error between the true localization of the points
(measured on the ground) and their localization derived from the BD ORTHO. See
IGN (2024c) for more details on the quality controls of IGN images.

Topological data In addition to the orthoimagery, the IGN also provides (under
open access) a register of all buildings and infrastructure in France. It should be
noted that topological data is not a surface model. The buildings are 2D polygons,
and we do not have information on the building or rooftop height from this database.
Figure 2.3 presents an example of layers of the BD TOPO (IGN, 2023) opened in the
GIS software QGIS. The BD TOPO is updated every three months.
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Figure 2.3 - Screenshot of the QGIS software displaying building layers from the BD
TOPO.

1. A departement (département in French) corresponds to the NUTS-3 territorial subdivision level,
according to the European Nomenclature of Territorial Units for Statistics (NUTS). See European Union
(2024) for more details on the NUTS.
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1. Overview of the existing and missing data sources

1.1.2 Digital surface models (DSMs)

Rasterization The rasterization is a process that converts an image in raw or
vector format into a raster image described in pixels or dots. For digital surface
models, rasterization involves converting a tri-dimensional points cloud into a two-
dimensional image, where each pixel’s value marks the height at the location (z,y).

LiDAR DSM LiDAR DSM LiDAR DSM LiDAR DSM

RGB orthoimage
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Figure 2.4 — Examples of rasters extracted from the photogrammetry DSM (bottom
row) and the LiDAR DSM (upper row) The middle row presents the RGB image as-
sociated with these digital surface models. We can see that despite the same GSD,
the LiDAR data is more accurate due to its finer effective resolution. Source: IGN.

Photogrammetry DSM Photogrammetry uses parallax to get the altitude points
associated with each coordinate. Indeed, altitudes over an area are determined
from different pictures from different points of view as nearer objects (from the
aircraft carrying the aerial camera) move faster than distant objects. Such data
is available almost everywhere in France, with a ground resolution of around 20
cm/pixel and an altimetric precision of around 150 cm.

LIiDAR data Light Detection and Ranging (LiDAR) calculates distances from the re-
flection of a light beam on a surface. This technique has an altimetric resolution of
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Chapter 2. Characterization and evaluation of a rooftop PV registry

10 cm/pixel. Even though LiDAR raw data is composed of point clouds with around
ten points/m2, we have decided to interpolate and rasterize it to a 20 cm/pixel res-
olution to use the same developed methods to infer tilts and azimuths. By the time
this thesis was written, the LiDAR HD DSM provided by the IGN did not cover all of
France and is only accessible for demonstration purposes on the IGN’s dedicated
webpage (IGN, 2024b). Figure 2.4 presents rasters coming from the photogramme-
try DSM and the LiDAR DSM.

1.2 PV registries and databases for France
1.2.1 The Registre national d’installations (RNI)

The RNI is an official registry that records all installations from all energy sources
connected to the French grid (distribution and transportation networks). This data
is openly accessible and updated every three months. The RNI aggregates informa-
tion from the TSO and the distribution system operators (DSOs) for PV installations,
as most PV installations are connected to the distribution network. The RNI pro-
vides a brief technical description of the PV installation (localization and installed
capacity). Due to privacy constraints, installations below 36 kW, are registered as
aggregated installations in the registry. The aggregation is done at the city level.
Therefore, the RNI indicates the number of installations below 36 kW, for each city
and their aggregated installed capacity. The RNI is accessible on the online portal
Open Data Réseaux Energies (ODRE, 2024 2).

1.2.2 RTE internal data

RTE has access to the individual list of installations with their respective city and
installed capacity for all installations connected to RTE’s network and for installa-
tions connected to the network of the DSO Enedis. Enedis is the main DSO, covering
95% of the distribution network. The five missing percent correspond to the terri-
tory of the other French DSOs, which amount to about 160 in France (Commission
de Régulation de I'Energie, 2024). These DSOs most often cover cities and at most
individual departements. RTE updates its internal database every three months.
This dataset does not contain the technical characteristics of the installations. Be-
sides, RTE cannot access real-time or past power measurements from small-scale
PV installations.

1.2.3 The Base de données photovoltaique (BDPV)

Asso BDPV is a non-profit association that enables individual owners of rooftop
PV installation to monitor the PV power production of their PV system. This associ-

2. Website : https://opendata.reseaux-energies.fr/.
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ation maintains a database of PV installations (BDPV), which records the technical
characteristics, including the tilt and azimuth angles and the nameplate capacity,
but also the surface area of the installation, the number, and manufacturer of PV
modules, etc. This database is not exhaustive and is based on PV plant owners’
declarations. The database contains over 28,000 installations, including more than
24,000 in metropolitan France. For approximately 2,000 installations, individual
production records are also accessible. As individual owners of PV installations
maintain it, the installations mostly have an installed capacity below 36 kW, (see
Figure 2.5) and records about 3.6% of the total number of rooftop PV installations
(according to Table 1.1). Finally, for privacy reasons, the precise localization of the
plants is private. We had access to the precise localization of the installations for
constructing BDAPPV (which we introduce in section 1.4 of this chapter) but could
not publish this information.

Number of installations

T I , Il
0 200 400 600
Installed capacity [kWp]

Figure 2.5 - Distribution of the installed capacities registered in BDPV. Source: BDPV.

1.3 Specific requirements of the PV registry

Now that we have introduced and reviewed the existing data sources for map-
ping PV installations, we present the requirements that our PV registry should meet
and identify what is missing among existing data sources.

1.3.1 Overview of the criteria

The primary motivation for constructing our registry is to gather information on
rooftop PV installations to estimate PV power production. For this task, our registry
must satisfy four conditions: disaggregation, technical characteristics, representa-
tiveness, and updatability.
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Chapter 2. Characterization and evaluation of a rooftop PV registry

Disaggregation The registry must contain the individual list of installations. We
need to identify individual installations because we need their precise location to
match them with the correct weather data and cluster them in the correct cell
around a power substation.

Technical characteristics Our registry must gather the minimal characteristics
required to estimate PV power production using physical models. Killinger et al.
(2018) showed that this set of characteristics is relatively limited: we need the tilt,
azimuth angles, and nameplate capacity.

Representativeness Our registry must represent the actual installed capacity.
Ideally, we wish that it covers all the territory. In practice, we require no sampling
bias, such as those that occur in self-reported registries where the distribution of
installations over the territory depends on the number of people who register their
installation and not only on the number of installations. Figure 2.6 compares the
coverage (in terms of distribution of the total installed capacity in each departe-
ment) reported in the BDPV database to the installed capacity per departement
reported in the RNI, taken as the reference.

We can see that for some departements located in the West of France, BDPV
overestimates the share of these departements in the national distribution of rooftop
PV installations, compared to the RNI, which is considered as the reference. In other
words, the distribution of the aggregated installed capacity at the size of the de-
partement in BDPV is not representative of the true distribution considered to be
given by the RNI. The relative spread indicates the direction of the biases. A value
of 0 indicates that the share of installations in the departement corresponds to the
reference. A negative value (highlighted in blue) indicates that the reported in-
stalled capacity is lower in BDPV than in the RNI. A positive value (highlighted in
red) indicates that the reported installed capacity is larger in BDPV than in the RNI.
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Figure 2.6 — Comparison of the distribution of the installed capacity at the scale of
the departements reported in BDPV (upper left) the RNI (lower left), and the relative
spread of the two (upper right). On the relative spread plot, the red means that the
reported installed capacity at the size of the departement is higher in BDPV than in
the RNI. Blue means that the reported installed capacity is lower in BDPV than in
the RNI.

Updatability Finally, we want to be able to update the registry frequently to be
able to cope with the quick growth of rooftop PV installations. The RNI and RTE’s
registry are updated every three months, but BDPV is updated only when a new
user registers his installation, with no correlation with the rate of adoption of rooftop
PV. A registry built from orthoimagery will depend on the images’ revisit rate. For
IGN, we said that it is three years for a departement. However, as these updates
are carried out on a rolling basis, we can update the registry every month or three
months for a set of departements and scale the installed capacity to the actual
capacity in departements that have not been updated for a long time.
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1.3.2 Summary: the need for a disaggregated, representative and com-
plete registry

Table 2.1 compares the available data sources and evaluates them with respect
to the criteria defined in section 1.3.1. We can see that all existing sources miss
at least one criterion. Our registry aims to satisfy the four requirements (disaggre-
gation, technical characteristics, representativeness, and updatability) simultane-
ously.

Table 2.1 — Data requirements applicable for the technical registry and accessibility
from existing sources for PV installations below 36 kW,,.

RTE's registry RNI BDPV Technical registry (our target)

Disaggregation X

Technical characteristics X X
Representativeness X
Updatability X

1.4 Training data: the BDAPPV training dataset

We need training data because we will use deep learning models in France, which
has not been mapped prior to our work. This section briefly introduces our training
dataset. We gathered training data through crowdsourcing campaigns using the PV
registry of BDPV. We refer the reader to the appendix B, section 2 for more details
regarding the crowdsourcing campaigns and to appendix B, section 1 or to Kasmi
et al. (2023d) for more technical details and a comprehensive description of the
data records. The BDAPPV training dataset is provided under open access at Kasmi
et al. (2022b).

Overview Figure 2.7 summarizes the data collection process we used to construct
BDAPPV. The source data comes from BDPV's registry, which contains localizations
and PV installation characteristics. We then carried out a crowdsourcing campaign
to annotate PV images. The crowdsourcing campaigns took place on a dedicated
platform 3.

Overview of the crowdsourcing campaigns We extracted thumbnails based
on the geolocation of the installations recorded in the BDPV dataset. However, this
geolocation can be inaccurate, so before asking users to draw polygons of PV in-
stallations, we asked them to click on images if they depicted a PV panel. This
first classification step corresponds to the first phase of the annotation campaign.

3. The platform is accessible here: https://www.bdpv.fr/_BDapPV/
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Figure 2.7 — Flowchart of the BDAPPV dataset construction workflow. Source: Kasmi
et al. (2023d).

Once users classified images, we asked them to draw the PV polygons on the pos-
itively classified images. It corresponds to the second phase of the crowdsourcing
campaign. We conducted crowdsourcing campaigns on two image sources: Google
images from the Google Earth Engine (Gorelick et al., 2017) and IGN images from
the BD ORTHO (IGN, 2024a).

During the first phase, the user clicks on an image if it depicts a PV panel. We
recorded the localization of the user’s click and instructed them to click on the PV
panel if there was one. We collected an average of 10 actions (click with localization
or no click) perimage. After empirical investigation, we considered the image a true
positive if at least three users clicked on it.

During the second phase, annotators delineated the PV panels on the images
validated during phase 1. Users can draw as many polygons as they want. On
average, we collected five annotations per image. We collect the coordinates of the
polygons drawn by the annotators. We then averaged the different contributors’
annotations to obtain a ground truth segmentation mask.

Matching with PV characteristics and data records After postprocessing the
data from the crowdsourcing campaigns, we end up with images and associated
ground truth segmentation masks. We matched the annotations for each image
provider with the characteristics recorded in BDPV. This enables us to enrich the
segmentation mask with PV characteristics, which is very useful as we ultimately
wish to derive the PV characteristics from the segmentation mask generated by the
model. Table 2.2 summarizes the data records of BDAPPV.
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Table 2.2 — Overview of the data records of the training dataset BDAPPV.

Provider Total number of samples Positive samples Number of installations linked
with installation characteristics

(Share [%]) (Share [%])
Google 28 807 13 303 8019
(46.18) (27.84)
IGN 17 325 7686 3658
(44.36) (21.11)

2 Monitoring the accuracy of the registry without ground
truth labels

In the previous section, we reviewed the available data sources and the require-
ments that our registry should meet to estimate rooftop PV power production. This
section introduces our approach to ensure that the registry accurately maps PV in-
stallations. First, we define our criteria for evaluating the accuracy of the registry.
Then, we introduce our approach: the downstream task accuracy (DTA). The DTA
accounts for the fact that we do not have ground truth labels over the mapping area
(i.e., the area over which the model is deployed). It relies on existing data sources
to define a set of metrics that assess whether the registry is accurate and highlight
where it is lacking accuracy. The DTA enables us to address the first condition for
reliability: the ability to monitor (i.e., to keep under systematic review) the data
produced by the model.

2.1 Defining the evaluation criteria
2.1.1 Overall criteria: representativeness and completeness

The registry’s main requirement is to reflect the rooftop PV characteristics in
France as closely as possible. However, we need to accommodate for the lag in-
duced by the revisit rate of the images, which can be as high as three years for a
single departement. The lag is not necessarily problematic if the registry is repre-
sentative of the installations. In this case, by upscaling the estimated production
from the registry, we can still estimate the PV power production fairly because
the missing power plants are not systematically biased compared to the systems
recorded in the registry. For instance, we wish to avoid situations where a set of
installations popped up in a precise location of the departement and with charac-
teristics that differ (e.g., larger installations) from those "historically" recorded in
the registry.

To avoid such situations, we assume deploying PV installations in a departement
is locally stationary (over three years). Drifts in the PV system’s characteristics
can be identified with updates made every three years. Under this assumption, we
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have to ensure that the PV installed capacity registered in the model reflects the
spatial distribution (and the distribution in terms of the system’s sizes). We also
have to ensure that the PV characteristics represent the PV characteristics in the
departement or the city of interest.

2.1.2 Tilt and azimuth angles

We need to ensure that the estimation of the PV characteristics is representative
of the actual distribution of the tilt and azimuth angles in a given locality. The
worst case would be a systematic bias in estimating the azimuth angle, which could
result in overestimating the PV power production at a moment in the day (and
underestimating it at another moment). Another concern would be systematic bias
in estimating the tilt angle. In this case, we could under or overestimate the PV
power production. Since the tilt angle’s value depends on the installation’s latitude
(Killinger et al., 2018), we want our registry to reflect this.

2.1.3 Installed capacity

We want to ensure that the distribution of the PV installations matches the ge-
ographical distribution of the actual installed capacity and avoid situations such as
those reported in Figure 2.6. This enables the avoidance of local over- or underes-
timations of PV power production. We also want to represent the power class well
within a departement.

2.2 Leveraging existing data to meet these criteria: the down-
stream task accuracy

An unsupervised evaluation metric The main issue for evaluating the accu-
racy of the registry during deployment is that we lack ground truth labels. Besides,
we do not want to rely on a statistical extrapolation of the accuracy computed over
a given area, as done by Mayer et al. (2022) because we want to monitor the ac-
curacy of our registry over the complete mapping area. From Table 2.1 of section
1.3.2, we can see that existing data sources are not sufficient for PV power estima-
tion but can assess at least at the aggregated level whether the registry is accurate
or not. We can use the RNI and RTE’s registry to evaluate the accuracy regarding
the installed capacity and BDPV to assess whether the estimation of the technical
characteristics is correct.

Figure 2.8 illustrates the procedure to derive metrics based on the DTA principle.
The idea is to derive metrics that can be verified using an external source. The DTA
is an unsupervised evaluation metric (Zhang et al., 2008; Chen et al., 2021b), i.e.,
it evaluates the accuracy of the registry without ground truth labels and without re-
quiring human intervention in the evaluation. Unsupervised evaluation metrics are
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initially intended to compare methods (Gao et al., 2017; Liu et al., 2016; Chabrier
et al., 2006) according to a given set of criteria. In our case, we take advantage
of the fact that we do not need human intervention and that the reference data is
available throughout France to use the unsupervised evaluation metric as a mon-
itoring tool. This enables us to inspect whether the registry is accurate over the
mapping area.

Downstream task accuracy (DTA) workflow

=

Available GIS DTA metrics
data on PV Evaluatt_e the accuracy of
systems Matching - the registry by comparing

its aggregation to the
available data sources.

PV Registry —— Aggregation

Figure 2.8 — Overview of the principle of the DTA with the RNI as an example. GIS,
"Geographical Information System, " corresponds to georeferenced PV data such as
the RNI, RTE’s registry, or BDPV.

2.2.1 Metrics from the RNI for the installed capacity

Using the RNI dataset and the aggregations from our pipeline, we define three
metrics to ensure that the model estimates the installed capacity correctly. Mayer
et al. (2022) inspired these metrics, aiming to capture different properties of the
estimation of the city-wise installed capacity.

We denote ; our estimated installed capacity based on aggregating our de-
tections in the city i4, C; the reference installed capacity from the RNI for city i.
Similarly, k; denotes our estimation of the number of installations in city i, and k; is
the reference number of installations recorded in the RNI.

— The average percentage error (APE):|CZ‘C_‘CZ'| and the mean APE (MAPE)
53
n =1
computed for the installed capacity C; in city i. The APE and MAPE indicate
whether the estimated installed capacity at the aggregated level is correct.

This is why we weigh each installation individually; we don’t want to give more
weight to large installations. The (M)APE reads as follows: if it is equal to O,

C’gCZ’ computed over the whole departement. The APE and MAPE are

4. Formally,
G = A (i)
v J
j=1
th

where k; is the number of detected installations in city i and C*j(,i) the installed capacity of the j
installation in city ¢, as recorded in our rooftop PV technical registry.

28



3. How does the accuracy of state-of-the-art models vary over the mapping area?

then the estimation and the reference are equal. If it is equal to 100, then the
estimation is twice as large as the reference value.

A~

— The detection ratio A = % based on Mayer et al. (2022) computed at the

city level and averaged over the departement. We compute this ratio for the
number of installations k; in city . The ratio indicates if the model correctly
detects the installations (irrespective of their installed capacity).

Ci/ki — Cifki .

is the APE computed for the average installation. By construction, a negative
AIPE indicates that we underestimate the installations’ size, and a positive AIPE
indicates that we overestimate them. The AIPE assesses whether the average
installation size derived from our registry represents the average installation
size recorded in the RNI.

— The average installation percentage error (AIPE) —

The MAPE ensures we do not overestimate or underestimate the overall installed
capacity. The detection ratio ensures that we detect the correct number of instal-
lations, and the AIPE, which is a function of the installed capacity and the number
of installations, ensures that, on average, we correctly estimate the size of the
installations.

2.2.2 Evaluation of the accuracy of the tilt and azimuth angles

To assess whether the tilt and azimuth estimates are consistent with the actual
underlying distribution, we use the data from BDPV as a reference and compare our
estimations with the distribution from BDPV.

Distribution matching As done in previous works (e.g., Mayer et al., 2022), we
can compute the distribution of the tilt and azimuth angles obtained from the ref-
erence data and our technical registry and then compare them. For the azimuth
angle, we can compute the distribution over all departements. We compute the
distributions in each departement for the tilt angle, as the mean tilt angle varies
with the latitude (Killinger et al., 2018).

3 How does the accuracy of state-of-the-art models vary
over the mapping area?

In this final section, we build a model for mapping PV installations based on the
literature and train it on BDAPPV to deploy it over France. We evaluate the accu-
racy according to the DTA and show that this baseline mapping algorithm exhibits
prediction inconsistencies over the mapping area. The mapping area corresponds
to the area where we deploy the trained model. We conduct empirical experiments
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to formulate a hypothesis regarding the origin of this prediction inconsistency. We
will introduce the tools needed to verify this hypothesis in chapter 3.

3.1 Evaluation framework

3.1.1 An algorithm for mapping rooftop PV installations based on the
literature

Figure 2.9 presents the model we used in this experiment. This pipeline follows
Mayer et al. (2022) and consists of two main steps. Firstly, we extract geolocal-
ized polygons of rooftop PV installations using a classification and a segmenta-
tion model. Then, we combine the polygons with additional data from the BDPV
database to infer the characteristics of the rooftop PV installations. A key differ-
ence with Mayer et al. (2022) is that we do not use surface data to infer the tilt and
azimuth angles of the installation. Instead, we use a lookup table (LUT), which indi-
cates the average tilt angle in each grid point over France and an algorithm based
on the bounding-box of the PV polygons.

1. PV panels segmentation

S T N Yes —|

g0 )0 X , PN G

W s b 7 [ Amay? ;r/; EOJSON
BD ORTHO® No

Classification Segmentation Conversion

2. Characteristics extraction and filtering

-
GeoJson |  WBDPY o
BDPV data BD TOPO®
Characteristics extraction Filtering PV registry

Figure 2.9 - Flowchart of our algorithm based on the literature for mapping rooftop
PV. Source: Kasmi et al. (2022a).

Step 1: PV panels segmentation The first step of the pipeline consists in seg-
menting the PV panels from the orthoimages. Orthoimages consist of large image
tiles with a size of 25,000x25,000 pixels. As these images are too large to be fed
into the model, we cut the tiles into small thumbnails that have a size of 299x299 to
fit the requirements of the Inception-v3 (Szegedy et al., 2016) classification model
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that we use in this algorithm. The classification model identifies the thumbnails
that contain a PV panel. These positive images are the input of a segmentation
model (DeepLab-v3, Chen et al., 2018), which identifies which pixels correspond to
the PV panel. The segmentation model returns a binary mask, where pixels equal
to 1 depict a PV panel and pixels equal to 0 do not depict PV panels. We convert
the binary masks into polygons of PV installations. This conversion step accommo-
dates PV systems that may span across several thumbnails. In this case, we merge
adjacent binary masks from neighboring thumbnails into a single polygon. As the
thumbnails are geolocalized, our polygons are also geolocalized.

Step 2: Characteristics extraction and filtering We want to derive the tilt and
azimuth angles and installed capacity from the polygons of the PV systems. We
leveraged the dataset BDPV to estimate an average PV module efficiency, which
enables us to relate an installation’s surface with its installed capacity linearly,
following the approach of So et al. (2017).

As surface models completely covering France are not yet available, we also
used the BDPV database to construct a lookup table (LUT). To construct the LUT, we
split France into 50x50 gridpoints and computed the average tilt angle in each grid-
point. We compute this average using the installations belonging to each gridpoint.
To reflect the differences in tilt angles depending on the size of the installation, we
computed these averages for four different systems’ sizes classes, taken as the
quantiles of the distribution of the installed capacities in the BDPV dataset. Finally,
we converted these classes into projected surfaces to be able to input a tilt angle
from the projected surface of the installation. Figure 2.10 presents the lookup table
used in this work.

Using the lookup table and the efficiency parameter estimated from BDPV, we
extract the characteristics of the PV systems as follows:

— Azimuth angle: computation of the angle of the bounding box of the PV poly-
gon relative to the North.

— Tilt angle: imputation from the LUT, based on the localization of the PV system.

— Surface: computation based on the projected surface (taken as the input poly-
gon’s area) and the tilt angle’s cosine.

— Installed capacity: product between the surface and the PV module efficiency
derived from BDPV.
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Figure 2.10 - Visualization of the lookup table used in this study to estimate the tilt
angle of the installations. Taken from Kasmi et al. (2022a).

We expanded this methodology to create a Python package for extracting char-
acteristics from PV polygons. We refer the reader to chapter 4, section 1.2, ap-
pendix C, section 3.1 or Trémenbert et al. (2023) for more details on our method for
extracting characteristics of PV systems from PV polygons.

Filtering The final step of our algorithm consists in a filtering of the characteris-
tics. As we focus on installation with an installed capacity lower than 36 kW,, we
remove all installations larger than 36 kW,,. We filter out the installations whose es-
timated installed capacity is lower than the installed capacity of a single PV module
(i.e., 300 W,). Finally, we use the BD TOPO to remove all installations that are not
located on a rooftop.

3.1.2 Training details

Training dataset As we use IGN images to map PV installations in France, we
trained our baseline models on the IGN images of BDAPPV (Kasmi et al., 2023d).
Table 2.3 summarizes the characteristics of the data that we use for training our
models. Our training dataset is nearly balanced. Following standard practice, we
split this training dataset into training, validation and test images. All these images
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have a resolution of 20 cm/pixels. Finally, we have the true installed capacity of the
installations depicted in the test set.

Table 2.3 - Training dataset characteristics.

Dataset Total number of samples Positive samples (share in %)

Train 12,127 5,445 (44.90)
Validation 1,732 755 (43.59)
Test 3,466 1,485 (42.84)
Total 17,325 7,685 (44.36)

Images preprocessing Images are flipped following the vertical axis and rotated
90 degrees clockwise and counter-clockwise during training. We avoid rotations
that lead to having arrays pointing north (i.e., upwards). Input images have a size of
400x400 pixels, so we randomly crop the images to generate input images whose
size matches the requirements of the classification model (i.e., 299x299 pixels).
Finally, images are also normalized with the ImageNet mean and standard deviation
(i.e., a mean of (0.485, 0.456, 0.406) and a standard deviation of (0.229, 0.224,
0.225)). Validation and test images are only normalized?.

Model training We use the model architecture and the model weights provided
by Mayer et al. (2022). Their classification model is an Inception-v3 (Szegedy et al.,
2016). We retrain all the layers of the classification model, using their weights as an
initialization. We train the model for 25 epochs, enough for our model to converge
on our training images. We picked the model that achieved the lowest accuracy on
the validation set after the end of the training. We evaluate the final performance
after threshold fine-tuning on the testing dataset. We use the binary cross entropy
loss (BCE, without weighting) and Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 0.0001. We used a batch size of 128 images. The segmentation
model of Mayer et al. (2022) is a Deeplab-v3 model (Chen et al., 2018). Like classifi-
cation, we retrained all layers and picked the model parameterization that achieved
the lowest validation accuracy after the end of the training. We also use BCE loss
with a learning rate of 0.0001 and Adam optimizer. The batch size is 64.

3.1.3 Training results and deployment on the mapping area

Classification and segmentation accuracies Our fine-tuned model achieves
competitive results compared to state-of-the-art models (see table 2.4). For the

5. This process corresponds to the usual data preprocessing approach when using pre-trained deep
learning classification and segmentation models.
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Table 2.4 - Classification and segmentation accuracy. The lower the GSD, the more
detailed the image. Best results are bolded.

Classification Segmentation

Work F1 score (1) loU (1) GSD (cm/pixel)
Mayer et al. (2022) 0.87 0.74 10
Malof et al. (2019) - 0.67 30
Zech and Ranalli (2020) 0.82 - 10
Parhar et al. (2021) 0.97 0.86 10
Ours 0.84 0.86 20

classification branch, we reach an F1 score of 0.84. We reach an Intersection-over-
Union (loU) of 0.86 for the segmentation branch®. We aim not to establish a new
state-of-the-art (SOTA) for classification or segmentation but to see how current
performance translates to accuracy over the mapping area.

Figure 2.11 - Mapping area over which we deployed our model. The numbers cor-
respond to the number of the departements used to identify them in Table 2.5.

6. The F1 score is the harmonic mean between the classifier’'s precision and recall. It varies be-
tween 0 and 1. The loU evaluates how well the predicted and the true segmentation masks overlap.
The loU is equal to 0 if the masks are disjoint and equal to 1 if the masks perfectly overlap. We
provide more detailed definitions of the F1 score and the loU in chapter 4, section 2.1.1.
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Mapping area We call the area over which we deployed our trained model the
mapping area. Over the mapping area, we have no ground truth labels as in the
test set to evaluate the model’s accuracy. Figure 2.11 illustrates our mapping
area, which corresponds to 11 departements in the North, South, West, and East of
France, covering approximately 50,000 km2, as depicted on Figure 2.11. As we do
not have ground truth labels over this mapping area, we rely on the DTA metrics
introduced in section 2.2 to monitor the accuracy of our registry.

3.2 Results: detection inconsistencies during deployment
3.2.1 Tilt and azimuth angles

Distribution matching Figure 2.12 compares the distribution of the azimuth and
tilt angles coming from BDPV and our mapping algorithm. To reflect the geographi-
cal variability of the tilt angle, we compute its distribution within each departement.
Figure 2.12 plots an example of the distribution of the tilt angle in the departement
Loire-Atlantique (West of France). In appendix C, section 1.1, we supply more ex-
amples of the distribution of tilt angles coming from BDPV and our algorithm.

We can see that the estimation follows the same overall pattern as the source
distribution. For the azimuth angle, we slightly underestimated the number of in-
stallations with a tilt oriented southwards (i.e., between 170 and 190 degrees) and
slightly overestimated the eastward and westward azimuth angles. However, there
is no evidence of a systematic bias compared to BDPV. Our average estimation of
the tilt angle around a given localization is close to the reference for the tilt angle.
The distribution of tilt angles is more concentrated towards the center than the ac-
tual distribution. This is a consequence of our imputation method, which tends to
concentrate the tilt angles towards the mean. Finally, we can see that the tilt and
azimuth angle estimations do not produce extreme values.

3.2.2 Installed capacity

Overall results Table 2.5 shows the accuracy results measured with the DTA for
the installed capacity. As we have the installed capacities of the installations of the
test set, we can compute the true aggregated installed capacity, as if the test set
was one city, and compute the MAPE between the estimated installed capacity by
the mapping algorithm and the true value. The MAPE is equal to 17.61%. When
shifting to the mapping area, the MAPE increases to 47.45%, meaning that the
accuracy drop between the test set and the mapping area is about 30 percentage
points.
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Figure 2.12 - Comparison of the distribution of the azimuth (left) and tilt (right) an-
gles obtained from our mapping algorithm and BDPV. The azimuth angle distribution
is obtained for the 11 departements and the tilt angle distribution is computed for

the departement Loire-Atlantique (44).

Table 2.5 - Downstream task accuracy across the mapping area. Values in parenthe-
ses correspond to the results without filtering by buildings. The line "Test" considers
the test images of the training dataset as one city. k; and C; denote the count of
installations and the installed capacity, respectively. The hat indicates the estima-
tion by our algorithm. Source: Kasmi et al. (2022a).

Departement MAPE  med. APE mean ratio mean AIPE k; E; C; G
[%] [%] (-] [%] (-] [-] [kw,] kW, ]
Test 17.61 - 0.92 -0.10 1485 1362 6473.8 5334
44 39.09 38.05 0.67 22.83 12683 6838 51955.2 34197.7
(33.20) (26.69) (0.91) (18.54) (9325) (45206.6)
69 31.99 28.91 0.83 12.18 8944 6508 36500.6 31361.6
(39.45) (23.29) (1.26) (10.33) (9808) (45434)
59 130.06 88.13 2.23 61.16 6453 9524 22083.8 52790.2
(224.22) (168.29) (3.22) (41.56) (15393) (73697.4)
34 26.80 17.78 1.01 6.82 9199 8408 35398.4 39897.2
(45.57) (30.05) (1.33) (4.29) (11445) (52841.8)
01 35.90 35.35 0.77 6.18 4940 3654 18433.2 14659.4
(38.77)  (27.07) (1.13) (7.34) (5259) (21372)
38 33.41 31.15 0.81 9.18 10672 7835 39691.4  32391.11
(31.29) (21.80) (1.07) (6.20) (10680) (42617.4)
42 29.12 23.81 1.00 15.42 6892 5831 28594.1 27916.5
(46.30) (28.66) (1.41) (11.06) (8384) (38222.4)
26 30.46 23.51 0.92 3.74 5808 4933 28262 25834
(55.35)  (25.80) (1.43) (6.15) (7121) (37645.8)
74 44.08 41.18 0.67 -4.61 7004 5287 32202.1 21760.4
(41.45) (28.53) (0.93) (-6.10) (6600) (25931)
Overall 47.45 32.81 1.03 16.33 72595 58818 293120.7 280807.9
(66.20) (30.66) (1.46) (12.03) (84015) (382967.8)
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We can see that the accuracy varies a lot across the departements: the MAPE
reaches 130% in the Nord (59, North of France) while it is only 26% in Hérault (34,
South of France). It means that our model estimates more than twice the actual
installed capacity in the North.

The ratio and the AIPE help us understand the drivers behind the variability in
estimating the city-wise installed capacity. In the North, we tend to detect too
many installations (twice as many) and to overestimate their size individually. On
the other hand, in the departement Loire-Atlantique (West of France), where the
accuracy is better than on average, we tend to detect too few installations, com-
pensated by an overestimation of the average size of the installation.

Visualization at the scale of the cities Figure 2.13 plots the spatial distribution
of the installed capacity, aggregated at the size of the cities, referenced in the RNI,
and estimated by our model.

The upper left plot presents the distribution of the installed estimated from our
registry (the reference is the total installed capacity in the departement). The bot-
tom left plot presents the recorded distribution from the RNI. The upper right plot
presents the relative spread between the two. The interpretation is the same as in
Figure 2.6: redder values indicate that our model overestimates the share of the in-
stalled capacity in these cities. Bluer (and negative) values indicate that the model
underestimates the importance of the share of these cities.

The mean of the relative spread is equal to 0.05, and the median is -0.11. This
means that overall, the estimation of the distribution of the aggregated installed
capacities (at the scale of the cities) is close to the true distribution of the installed
capacities. However, considering the qualitative pattern from Figure 2.13, we can
see that the model tends to heavily overestimates the installed capacities in some
cities (the estimation can be nearly seven times higher than in reality). In the next
section, we will analyze how the detections of the model lead to such imbalances.

3.3 Understanding these shifts

In section 3.2, we evaluated the data produced by our registry according to the
DTA metrics. These results showed that estimating the tilt and azimuth angles is
satisfying, while estimating the installed capacity lacks precision. In particular, it is
driven upwards by false positives. The analysis of the DTA for the installed capac-
ity shows that the model detects PV panels inconsistently over the mapping area.
In this section, we investigate why such inconsistencies occur. Since our images
come from the same provider (the IGN) with the same ground sampling distance,
we can rule out this factor as an explanation for the detection inconsistencies. Ex-
isting works in the literature often posit that geographical variability is an essential
contributor to the loss of accuracy (Wang et al., 2017; Malof et al., 2019). In sec-
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Figure 2.13 — Comparison of the distribution of the installed capacity at the scale
of the cities reported from our registry (upper left), the RNI (lower left), and the
relative spread of the two (upper right) in the departement Isére (38). On the
relative spread plot, the red means that the reported installed capacity at the size
of the city is higher in our registry than in the RNI. Blue means that the reported
installed capacity is lower in our registry than in the RNI.

tion 3.3.1, we quantitatively review this hypothesis; in section 3.3.2, we conduct a
qualitative analysis of the model’s errors. Finally, in section 3.3.3, we present our
hypothesis explaining the detection inconsistencies over the mapping area.

3.3.1 Geographical factors

Objective and approach Our goalis to look for a geographical pattern that could
explain the differences in accuracies observed in table 2.5. We consider the ac-
curacy measurements at the city level obtained according to the DTA, defined in
section 2.2.1.
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Qualitative analysis We first conduct the qualitative analysis by comparing the
box plots of the distributions of interests. Figure 2.14 reports the boxplots of the
city-wise MAPE (error in the estimation of the city-wise installed capacity) across
four departement and for the three accuracy metrics (up: APE, middle: ratio, and
down: AIPE).
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Figure 2.14 - Boxplots of the distributions of the APE metrics across four departe-
ment.

We can see that the variance of the distribution of the MAPE is much higher in
the departement Nord (North of France), resulting in the higher mean and median
error reported in Table 2.5. We investigate whether this variation is significantly
correlated with the city coordinates. In this case, the city’s geographical position
would significantly impact the model’s accuracy.
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Is the observed difference significant? To study whether the effect of the ge-
ographical coordinates is significantly correlated with a variation in the model’s
accuracy, we set up a linear regression model. To test nonlinear relationships, we
test alternative models, including polynomial and logarithmic transformations of
the independent variables. The dependent variable of this model is the DTA metric
of interest (i.e., the APE, the ratio, and the AIPE), and the independent variables
of interest are the latitude and longitude. Our regression model is given by Equa-
tion 2.1

J
yi = a+ Bilat; + Balon; + > yjmi j + &, (2.1)
7=1
where y; is the dependent variable (the accuracy in city 4), lat; and lon; are our
variables of interest, the latitude and longitude of the city and the z;'s are a set of
control variables. These controls include the number of installations, the total PV
installed capacity, the area of the city, and the number of buildings in the departe-
ment (a proxy for the urbanization level and complexity of the background). We
do not include higher order and interaction terms to avoid multicollinearity issues
that could artificially reduce the significance of the coefficients. ¢ is the remaining
error term. We cluster the standard errors at the scale of the city. We evaluate the
statistical significance of the coefficients g, and s by performing a Student ¢-test
on these coefficients.

Results Table 2.6 presents the results of our linear regression. We do not find ev-
idence of a significant correlation between a city’s APE and its latitude. In appendix
C, section 1.2, we provide similar results for models that consider nonlinear and
polynomial transformations of the coordinates.

Table 2.6 — Results of estimating the linear model defined in Equation 2.1 for the
dependent variables APE, AIPE, and ratio.

APE ratio AIPE
531 (Latitude) 6.5535 0.0329 11.3557*
(5.902) (0.048) (6.088)
B2 (Longitude) -4.3700 -0.0034 5.0295
(3.770) (0.026) (3.304)
« -1.772e-10 -2.036e-13 -3.279e-10%**
(1.58e-10) (1.29e-12) (1.67e-10)
N 1839 1839 1839
Adjusted-R? 0.382 0.572 0.412

Clustered standard errors in parenthesis.
p < 0.01, Tp < 0.05, 'p<0.1
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Discussion In this section, we investigated whether the error of the model mea-
sured by the DTA was sensitive to the localization of the cities, defined as their
coordinates. Comparing boxplots of the distributions of the APE at the city level
across four departements, we found that in the departement Nord, the variance
was much higher than in other departements, explaining the higher mean and me-
dian error reported in Table 2.5. We then investigated quantitatively whether the
difference in mean and median accuracy was significantly correlated with the local-
ization of the city and found no such evidence. A reason to explain the high variance
could be that the departement Nord is, on average, more urbanized, thus with more
complex scenes, than the other departements. Note that the higher prevalence of
complex scenes drives the errors: if we considered only urbanized areas elsewhere,
accuracy would also drop. We need to focus on how a model makes detections to
verify this idea.

We warn the reader that these results do not state that the geographical local-
ization of the city does not affect the model’s accuracy. We wanted to see whether a
straightforward relationship emerged and if this relationship was statistically signif-
icant. In chapter 3, section 2.2.1, we show in a similar setting that geography is not
the primary driver that affects the model’s performance. In both cases, we do not
state that these results generally hold. A plausible explanation is that our training
dataset covers most of France; therefore, the model has learned the geographical
variability in France.

3.3.2 Feature analysis

Overview In this section, we analyze the model’s prediction to formulate a hy-
pothesis that could explain why false detections and, more precisely, false positives
arise. A popular way to analyze the model’s behavior is using feature attribution
methods such as class activation maps (CAMs, Zhang et al., 2018). A CAM is a
heatmap that highlights discriminative regions in an input image used by a CNN
for predicting a specific class. The CAM visually indicates which parts of the image
contribute the most to the network’s decision.

Using attribution methods to explain models’ decisions in remote sensing ap-
plications is a well-established approach. For instance, Dardouillet et al. (2023)
leveraged Shapley values (Shapley, 1952), which quantify the marginal contribu-
tion of each feature to the prediction performance, to analyze the decision process
of segmentation models designed to identify offshore oil slick on SAR images.

Our approach considers the popular class activation mapping method of Sel-
varaju et al. (2020), which has been applied in many settings for analyzing a mod-
els’ decisions, such as Lapuschkin et al. (2019) or Zhang et al. (2021b). Lapuschkin
et al. (2019) used CAMs to show that models can rely on spurious features to make
predictions. We gather samples of the test dataset and analyze the behavior of
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the model through the lenses of the class activation maps. We consider all types
of detections (false positives, false negatives, true positives, and true negatives)
to see whether a prediction pattern arises. These prediction patterns correspond
to similarities observed through the visual inspection of the class activation maps.
In addition to the qualitative investigation, we also analyze the model’s predicted
probabilities.

Results Figure 2.15 presents the explanations obtained using the GradCAM (Sel-
varaju et al.,, 2020). We can see two different prediction patterns depending on
whether the model predicts a positive (true or false) or a negative (true or false).
In the case of a true positive prediction, the model will focus on a specific, narrow
region of the image, which indeed corresponds to a PV panel. However, for false
positives, the model also focuses on a narrow image region. Inspecting the sam-
ples of Figure 2.15 reveals that this region of the image depicts items that resemble
PV panels. On the image on the first row (second column) of Figure 2.15, we can
see that the model confuses a shade house that shares the same color and overall
shape of a PV panel with an actual panel. In the image on the second row, the
verandas with groves fool the model.

On the other hand, when the model does not see a PV panel, it does not focus
on a specific image region. This remains true for the false negatives, where we can
see that the model does not see the panels on any of the images.
positive True negative False negative

True positive False

Figure 2.15 — Model explanations using the GradCAM (Selvaraju et al., 2020) for
some true positives, false positives, true negatives and false negatives. The redder,
the higher the contribution of an image region to the predicted class (1 for true and
false positives, 0 for true and false negatives).

To further understand the model’s behavior, we plot on Figure 2.16 the model’s
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predicted probabilities. We can see that except for false negatives, the distribution
of the predicted probabilities is concentrated towards 0 or 1. This means the model
predicts a PV panel (or no PV panel) with high confidence. This is particularly true
for false positives, whose distribution closely follows the shape of the distribution
of the true positives.

True positives

17.51 False positives
True negatives
15.01 False negatives

—— Classification threshold

Density [-]

= =

(6,1} ~ o N
o » o u

2.51

0.0-

0.0 0.2 0.4 0.6 0.8
Predicted probability [-]

Figure 2.16 - Predicted probabilities of the true positives, false positives, true neg-
atives, and false negatives on the BDAPPV test dataset.

False detections "in the wild" Now that we analyzed the model’s behavior on
the test set, let us focus on examples that occurred during deployment. Thanks
to the DTA, we can target places where the model made significant mistakes and
analyze them qualitatively. Table 2.7 unwraps the detections made in the city of
Cobrieux (Nord) for which the APE is 96%, meaning that the model estimated the
double of the true installed capacity.

The model detected 12 installations in this city for an aggregated installed ca-
pacity of 64 kW,,. The target, defined by the RNI, is ten installations for an installed
capacity of 27.20 kW,,. Unwrapping the list of installations registered in these cities
leads us to identify the culprit: an installation whose estimated installed capacity
is 27.40 kW,,. If we remove this installation, we can recover an average installed
capacity closer to the actual average size of the installations as given in the RNI.
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Table 2.7 - Extract of the registry generated by DeepSolar for the city of Cobrieux
(Nord).

ID Surface Installed capacity

29925 12.35 1.96

29897 275.51 27.40

29904 24.18 3.84

29924 36.01 3.94

29926 17.69 2.81

29927 24.34 3.87

29921 39.61 3.94

29913 12.59 2.00

29908 14.94 2.37

29910 19.78 3.14

29912 46.26 4.60

29901 38.16 4.17

Average size 5.34
(curated) 3.33
Reference 2.72

Accessing this "installation"’s location on a GIS software as shown on Figure 2.17
reveals that the model confused the roof of a factory with a PV panel. The confusing
factors were probably the lines on the roof of the farm.

Figure 2.17 - False detection identification with an example for the city of Cobrieux
(Nord).

This example demonstrates the added value of the DTA for monitoring the model’s
output and identifying outliers such as those depicted on Figure 2.17. However, to
improve the reliability of the mapping algorithms, we not only need to monitor the
outputs and ensure that the decision process is relevant and robust. To address

44



3. How does the accuracy of state-of-the-art models vary over the mapping area?

these points, we formulate our work hypothesis for understanding the model’s de-
cision process in the next section.

3.3.3 Work hypothesis for understanding the model’s decision process

PV panels as a set of features In section 3.3.1, we found no evidence of sensi-
tivity to the geographical localization of the model’s accuracy. We underlined that
this result may be proper for our case study, as our training dataset spans France
and thus captures the diversity of geographical characteristics we encounter in the
mapping area. Nonetheless, this led us to analyze the model’s prediction as docu-
mented in 3.3.2. The inquiries carried out after Figure 2.15 and Figure 2.16 lead us
to assume that the model does not see the panel as a whole but as a set of char-
acteristic features. These features comprise the groves, the color, and the overall
shape. If the model matches at least one of these features on the image, then it
predicts the presence of a PV panel with high confidence. On the other hand, if the
model does not match such a pattern, it predicts — also with high confidence - that
there is no PV panel on the image.

We suppose that, during training, the model extracts different features corre-
lated with a PV panel on the image. These features can correspond to textures
at different scales, components such as horizontal or vertical lines, colors, or the
overall shape of the PV panel in some cases. We have limited control over what the
model learns from the data as it depends on the data’s quality, the model’s initial-
ization, and the hyperparameters. A trained model predicts during deployment the
occurrence of a PV panel if one of these features is identified on the input image.
However, it is possible to find patterns that resemble a PV panel but are not a panel,
such as those presented on Figure 2.17.

False positives and negatives False positives can occur if the model sees a
pattern resembling a PV panel. False negatives are more intricate since the panel is
on the image, but the model does not recognize it. This could be because the image
lacks the decisive feature, which is necessary for the model to recognize the panel
in this context. We have limited control over what the model learns during training
and the contexts seen during deployment. Therefore, we need to understand better
what the model sees on the image to identify whether some factors are more likely
to be context-dependent than others.

Assessing the relevance and robustness of the decision process To verify
this hypothesis and understand why the model makes false predictions, we need
to understand how it makes a prediction and whether it is robust (to distribution
shifts). Understanding how the model makes a prediction will enable us to highlight
the components it relies on. On the other hand, assessing whether the prediction
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is robust will enable us to see whether the model can rely on factors more likely to
be disrupted by the distribution shifts.

Conclusion of the chapter

In this chapter, we introduced our data sources, reviewed the existing data on
rooftop PV panels, and introduced our training dataset. To address the first pillar
of reliability, monitoring the data quality, we introduced the downstream task ac-
curacy (DTA). The DTA is an unsupervised evaluation method that compares data
aggregates generated from our model to existing data to measure the accuracy
of the model’s predictions indirectly. Using the DTA on our replication of existing
works, we showed that existing models provide a satisfying estimation of the tilt
and azimuth angles of the installations but show detection inconsistencies: they
predict false positives that result in large, inexisting installations, which translates
into an average estimation error of the city-wise installed capacity of 40%. We
investigated common causes that could explain this performance drop and found
that, in our case, it is driven by the fact that the model confidently predicts a PV
panel when it sees a factor that resembles a PV panel or, on the other hand, com-
pletely misses the PV panel even if there is one. These false negatives appear
because the image may not depict a necessary feature (in this context).

The next chapter will discuss this hypothesis to explain why a model makes
false predictions. Addressing this question will enable us to tackle the two remain-
ing pillars of reliability, as defined in chapter 1: assessing the decision process’s
relevance and robustness.
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Chapter

Assessing the reliability of a model’s
decision process by generalizing
attribution to the wavelet domain

Summary

This chapter introduces a new feature attribution method to assess the
relevance and robustness of a model’s decision process. This method
highlights which regions of the space-scale domain are the most impor-
tant for the model’s decision. This feature attribution method is based on
the efficient perturbation of the wavelet transform of the input image. It
helps the user understand and disentangle the model’s reliance on the
structural components of the image. This method enables us to assess
whether the classification model sees PV panels for the right reasons.
We then investigate the sensitivity to distribution shifts of PV detection
models. We show that most of their sensitivity comes from the sensitivity
to varying acquisition conditions. Thorough analysis using the WCAM re-
veals that this sensitivity can be explained by the fact that changes in the
acquisition conditions can result in hiding a critical component the model
needs to predict a PV panel. Finally, thanks to the proposed attribution
method, we introduce a data augmentation technique aiming at reducing
the sensitivity to varying acquisition conditions.
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In the previous chapter, we characterized a PV panel as a set of features. To ex-
plain false detections, we hypothesize that false positives occur because the model
sees a feature on the image that could be related to a PV panel (e.g., a grid pattern).
On the other hand, in the case of a false negative, the feature that would have been
predictive in this context (e.g., a color or lines in a given orientation) is absent for
some reason. To verify this hypothesis, we first introduce a method that decom-
poses the model’s prediction into a set of features. We chose the scales obtained
from the wavelet decomposition as our set of features, as scales can be related
to frequencies, thus enabling us to characterize the robustness of the prediction
simultaneously.

1 Characterizing a model’s decision in the space-scale
domain: the Wavelet sCale Attribution Method (WCAM)

In chapter 2, section 3.3.2, we used the GradCAM method of Selvaraju et al.
(2020) to analyze the model’s decision. This approach is representative of usual
practice in computer vision for interpreting a model’s decision: we analyze which
regions on the image contribute the most to the model’s decision using a so-called
feature attribution method. With methods such as the GradCAM, the features cor-
respond to the regions of the image (i.e., in the pixel domain). However, we not
only need the localization of the important features on the input image but also a
characterization in terms of structural elements to assess whether the model sees
the panels as a whole or as specific patterns on the panel. To this end, we introduce
a new feature attribution method that expands existing works to characterize the
detection of the model not only in the pixel domain but also in the scale domain.

1.1 Towards assessing what model sees on images

Decomposing a PV panel into scales A useful representation to understand
how a model detects a PV panel on orthoimagery is to consider that the informa-
tion leveraged by the model is located in space and in scale. Figure 3.1 shows an
example of such a scale decomposition. Depending on the scale of interest, the PV
panel will show different characteristics. The PV panel corresponds to small details
within the individual PV modules at the smallest scales. On the other hand, if we
consider the PV system as a whole, it is, in our case, about 10 meters long, i.e., 100
pixels, in this image.

Each scale can be related to semantic (i.e., meaningful) features or characteris-
tics of the PV panel. The panel is a combination of all these features. We would like
to know how to decompose the model prediction regarding these different scales.
In section 3.3.2 of chapter 2, we leveraged a class of explainability methods called
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feature attribution methods to identify the pixels that contributed the most to the
model’s prediction.

Details in the module

Scale : approx. 1 -2 px (0.1 — 0.2 m)
Overall system on the roof ]

Scale : approx. 100 px (10 m)

Individual PV module
Scale : approx. 2-4 px(<1m)

Group of PV modules
Scale : approx. 4 —8 px (1 -2 m)

PV system
Scale : approx. 8 — 16 px (2.5 m)

Figure 3.1 - Decomposition of the scales of a PV panel. Source: Kasmi et al. (2023b).

Feature attribution methods Explainability in computer vision typically high-
lights the regions on the image on which the model focuses, i.e., to construct
saliency maps. Constructing such saliency maps can be done in two ways: us-
ing the model’s gradients or activations or by quantifying the model’s response to
perturbations to the input image. We refer to the first class of feature attribution
methods as white-box methods, as they require access to the model’s weights and
gradients, and the second class of methods as black-box methods, as they do not
require access to the model’s weights and gradients.

To our knowledge, the saliency maps of (Simonyan et al., 2014) were one of the
earliest white-box feature attribution methods for deep neural networks. Given an
image x and a model F, their approach consists in computing the gradient V,F(z)
with respect to the input and projecting it onto the input image. Figure 3.2 presents
examples of saliency maps obtained following the approach of Simonyan et al.
(2014).

This principle has been extended and refined in subsequent works (Shrikumar
et al., 2017; Sundararajan et al., 2017). Similarly, Zhou et al. (2016) used the
model’s activations to compute class activation maps (CAMs). CAMS require the
penultimate layer of a model to be a global average pooling (GAP) layer. Each
neuron k of such a layer corresponds to the average of the coefficients of the pre-
ceding k;, convolutional layer C,.The CAM is the average of the K convolutional
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Figure 3.2 - Examples of saliency maps, computed by Simonyan et al. (2014). Taken
from Simonyan et al. (2014).

layers C4,...,Ck located before the penultimate GAP layer, weighted by their re-
spective weights wy,...,wx. The CAM takes advantage of the fact that the GAP is
followed by a nonlinearity, meaning that some neurons in the penultimate layer of
the model are not activated. CAMs require a particular architecture to be computed.
To overcome this difficulty, the GradCAM, which computes the class activation maps
using the model’s gradients, has been introduced (Selvaraju et al., 2020). The main
advantage of the white-box methods is that they are fast to compute, and gradi-
ent methods produce the best explanations whether in terms of faithfulness (Bhatt
et al., 2020) or stability (Crabbé and van der Schaar, 2023).

In practical settings, models may be accessible only through an application pro-
gramming interface (API), so their gradients are unavailable. In this case, black-box
explainability methods can be preferred. Black box attribution methods compute
explanations by perturbing (e.qg., occluding parts of the image) the inputs and com-
puting a score that reflects the model’s sensitivity to the perturbation. The various
proposed methods, e.g., Occlusion (Zeiler and Fergus, 2014), LIME (Ribeiro et al.,
2016), RISE, (Petsiuk et al., 2018), Sobol (Fel et al., 2021), HSIC (Novello et al.,
2022) or EVA (Fel et al., 2023a) differ in that they use different sampling strategies
to explore the space of perturbations and can be seen as special cases of a more
general approach based on Shapley values (Lundberg and Lee, 2017).

However, the main limitation of current explainability methods (both white-box
and black-box) is that they only explain where the model focuses and are there-
fore not informative enough in many settings where one wants to assess what the
model sees (Achtibat et al., 2022). To begin addressing the what, Fel et al. (2023Db)
recently introduced the Concept Recursive Activation FacTorization for Explainabil-
ity (CRAFT). This method involves extracting concepts from the training dataset and
attributing them to a prediction using a standard attribution method. CRAFT indi-
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cates the most influential regions of the image and the concepts related to these
influential regions. Other works focused on identifying the most significant points
in the training dataset through influence functions (Koh and Liang, 2017). However,
such approaches require access to the model and the training data and are, there-
fore, hard to implement in applied settings. These works enable understanding the
model at the local level, i.e. for individual predictions.

Frequency-centric perspective on model robustness A line of works aimed
at explaining the behavior of neural networks through the lenses of frequency anal-
ysis. Several works showed that convolutional neural networks (CNNs) are biased
towards high frequencies (Wang et al., 2020; Yin et al., 2019) and that robust meth-
ods tend to limit this bias (Zhang et al., 2022; Chen et al., 2022). By "robust" or
"robustness,"” we mean robustness to adversarial perturbations or natural image
corruptions. We further discuss the robustness in section 3.1.1. Other works high-
lighted a so-called spectral bias (Rahaman et al., 2019; John Xu et al., 2020; Jo and
Bengio, 2017), showing that CNNs learn the input image frequencies from the low-
est to the highest. More recently, Wang et al. (2023) leveraged Fourier analysis
to characterize shortcuts (Geirhos et al., 2020): this work showed that shortcuts
are context-dependent as models tend to favor the most distinctive frequency to
make a prediction. Decision shortcuts correspond to the fact that models rely on
features highly predictive of the class of interest in a given setting at the expense
of considering all the available information. Spurious correlations are an example
of shortcuts. These methods enable us to understand the model at the global level.

1.2 Feature importance quantification in the scale-space domain

Overview Wavelets are a natural tool to decompose an image into scales while
maintaining local analysis in space: they provide a single space-scale decomposi-
tion. We will, therefore, use this decomposition of the image. On the other hand,
several attribution methods, Fel et al. (2021), for instance, leveraged Sobol indices
to quantify the importance of features. Our contribution is to combine both tools
to highlight the important contributors to the detection in the space-scale domain.
The quantification of the importance relies on the Sobol indices. By highlighting
the important areas in the space-scale domain, we can decompose the prediction
in terms of scales (and thus assess what are the components highlighted in Fig-
ure 3.1 that are important for the model) and assess whether these components
are robust or not from a frequency-centric perspective. Indeed, the finer scales cor-
respond to the highest frequency ranges, which are most likely to be disrupted by
the acquisition conditions.
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Wavelet transform A wavelet is an integrable function ¢ € L?(R) with zero aver-
age, normalized and centered around 0. Unlike a sinewave, a wavelet is localized
in space and in the Fourier domain. It implies that dilatations of this wavelet enable
to scrutinize different scales while translations enable to scrutinize spatial location.
In other words, scales correspond to different spatial frequency ranges or spectral
domains (see Figure 3.3 for an illustration).

Level 1 l Approximation coefficients Details coefficients
Level 2 Approximation Detail

n f
2 fs

Normalized angular frequency

NEN

I
8

Figure 3.3 - Correspondence between the scales in the wavelet domain and the
frequency ranges in the Fourier domain. In this diagram, f, corresponds to the
highest frequency contained in the signal. Inspired by Chen et al. (2019).

To compute an image’s (continuous) wavelet transform (CWT), one first defines
a filter bank D from the original wavelet ¢ with the scale factor s and the 2D trans-
lation in space u. We have

D = {uulo) = ;gw (”38“)}%%20, (3.1)

where |D| = J, and J denotes the number of levels. The computation of the wavelet
transform of a function f € L?(R) at location = and scale s is given by

W) = [ sz (S au (3.2)
oo NG s
which can be rewritten as a convolution (Mallat, 1999). Computing the multilevel
decomposition of f requires applying Equation 3.2 J times with all dilated and trans-
lated wavelets of D. Mallat (1989) showed that one could implement the multilevel
dyadic decomposition of the discrete wavelet transform (DWT) by applying a high-
pass filter H to the original signal f and subsampling by a factor of two to obtain
the detail coefficients and applying a low-pass filter G and subsampling by a fac-
tor of two to obtain the approximation coefficients. Iterating on the approximation
coefficients yields a multilevel transform where the ;¥ level extracts information at
resolutions between 2/ and 27! pixels. The detail coefficients can be decomposed
into horizontal, vertical, and diagonal components when dealing with 2D signals
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(e.g., images). Figure 3.3 illustrates the multilevel decomposition of a signal into
approximation and detail coefficients. The detail coefficients at level k contain the

frequencies located between %w and 2%7r where = = I and f, is the highest

frequency in the signal.

Interpreting the wavelet transform of an image Figure 3.4 illustrates how to
interpret the (two-level) wavelet transform of an image. Reading is the same for
any multilevel decomposition. The rightmost image plots the two-level dyadic de-
composition of the leftmost image. Following this transform, the localization on the
image highlighted by the red polygon can be decomposed into six detail compo-
nents (marked yellow and blue) and one approximation component (marked pink).
The yellow components correspond to the details at the 1-2 pixel scale, and the
blue components to the details at the 2-4 pixel scale. For each location, the wavelet
transform summarizes the information contained in the image at this scale and lo-
cation.

Two-leve

Original grayscale image | dyadic transform

- Horizontal

Figure 3.4 - Image and associated two-level dyadic wavelet transform with indica-
tions to interpret the wavelet transform of the image. "Horizontal," "diagonal," and
"vertical" indicate the direction of the detail coefficients. The direction is the same
at all levels.

Sobol sensitivity analysis The Sobol sensitivity analysis consists in decompos-
ing the variance of the output of a model into fractions that can be attributed to a
set of inputs. Let (Xi,...,Xk) be independent random variables and £ = {1,..., K}
denote the set of indices. Let f be a model, X an input, and f(X) the model’s de-
cision (e.g., the output probability). We denote f,, = f.(X,) the partial contributions
of the variables (Xj)recx to the score f(X). The Sobol-Hoeffding decomposition (Ho-
effding, 1992) decomposes the decision score f(X) into summands of increasing
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dimension
fX)=fa+ D fulX), (3.3)
KeP(K)\{D}
Where fz denotes the prediction with no features (i.e., the average prediction),
P (K) denotes the power set of £ and @ the empty set. Then, V(u,v) € K2 such that
u # v, E[fu(Xy)fo(X,y)] = 0, we derive from Equation 3.3 the variance of the model’s
score

Var(f(X)) = Y Var(fu(Xx)), (3.4)
KEP(K)
Equation 3.4 enables us to describe the influence of a subset «x of features as the
ratio between its own and the total variance. This corresponds to the first order
Sobol index given by
S — Var(fH(Xli))‘
" Var(f(X))

S, measures the proportion of the output variance Var(f(X)) explained by the sub-
set of variables X, (Sobol, 1990). In particular, the first order Sobol index Sy only
captures the direct contribution of the feature X, to the model’'s decision. To cap-
ture the indirect (or coupling) effect, due to the effect of X; on the other variables,
total Sobol indices S, (Homma and Saltelli, 1996) can be computed as

(3.5)

Sn= Y S (3.6)
kEP(K), kek

Total Sobol indices (TSIs) measure the contribution of the k' feature, taking into
account both its direct effect and its indirect effect through its interactions with the
other features.

Efficient estimation of Sobol indices As seen from Equation 3.5, estimating
the impact of a feature k¥ on the model’s decision requires recording the partial
contribution fx(X}). This partial contribution corresponds to a forward. Estimating
Sobol indices requires computing variances by drawing at least N samples and
computing N forwards to estimate a first-order Sobol index S, of a single feature k.
As we are interested in the TSI of a feature k, we need to estimate the Sobol index of
all sets of features x € K such that £ € x. To minimize the cost of this computation,
Fel et al. (2021) leveraged the efficient estimator of Jansen (1999) based on Quasi-
Monte Carlo (QMC) methods (Morokoff and Caflisch, 1995) to estimate the TSIs
given the models’ outputs and the perturbations. The N perturbations of dimension
K are drawn from Sobol sequences (Sobol, 1967). Their approach requires N(K +2)
forwards (Fel et al., 2021).

To estimate the TSls, they draw two matrices from a Quasi-Monte Carlo sequence
of size N x K and convert them into perturbations, which they apply to X. The
perturbated input yields two matrices, A and B. aj; (resp. by;) is the element of A
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(resp. B) corresponding to the k' feature and the j** sample. For the k" feature,
they define C®) in the same way as A, except that the column corresponding to
feature k is replaced by the column of B. They then derive an empirical estimator
for the Sobol index and TSI as

(k) (k))]?
o VomThlie) s (@) A - (@)
\% \%
. N
where fgy = —Zf Jand V = Z — fg|®>. Further details on imple-
Jj=1 =

menting the method can be found in Fel et al. (2021).

1.3 The Wavelet sCale Attribution Method (WCAM)

1.3.1 Expanding attribution in the space-scale domain

Spatial WCAM

~

} Sobol indices

=
9
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,|‘-
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Figure 3.5 - Flowchart of the wavelet scale attribution method (WCAM). Source:
Kasmi et al. (2023a).

Overview The Wavelet sCale Attribution Method (WCAM) is an attribution method
that quantifies the importance of the regions of the wavelet transform of an image
to the predictions of a model. Figure 3.5 depicts the principle of the WCAM. The
importance of the regions of the wavelet transform of the input image is estimated
by (1) generating masks from a QMC sequence, (2) evaluating the model on per-
turbed images. We obtain these images by computing the DWT of the original
image, applying the masks on the DWT to obtain perturbed DWT, ! and inverting
the perturbed DWT to generate perturbed images. We generate N(K +2) perturbed
images for a single image. (3) We estimate the total Sobol indices of the perturbed

1. On an RGB image, we apply the DWT channel-wise and apply the same perturbation to each
channel.
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regions of the wavelet transform using the masks and the model’s outputs using
Jansen’s estimator (Jansen, 1999). Fel et al. (2021) introduced this approach to es-
timate the importance of image regions in the pixel space. We generalize it to the
wavelet domain.

Computation of the perturbation masks We follow the sampling procedure
introduced by Fel et al. (2021) to generate the masks. Their approach involves
drawing two independent matrices of size N x K from a Sobol low discrepancy
sequence. N is the number of designs necessary to estimate the variance, and
K is the sequence dimension. We reshape this sequence as a two-dimensional
mask to generate our perturbation. By default, we perturb the wavelet transform
with a mask of size 28 x 28 to balance between the sequence’s dimensionality
and the perturbation’s accuracy. We reshape the 784-dimensional sequence to a
grid of 28 x 28 to define our perturbation masks. We tried alternative mapping
from the unidimensional sequence to the mask. However, it had a limited effect
on the dimensionality reduction and at the expense of the meaningfulness of the
perturbation in the wavelet domain. Figure 3.6 illustrates our workflow for one mask
to generate the images that are then passed to the model.

Wavelet transform
(2 levels) Perturbation mask

Original image

Perturbed DWT

Figure 3.6 — Workflow on a grayscale image and for a 2-level wavelet transform. We
first compute the discrete wavelet transform of the image and then apply a mask
on the discrete wavelet transform (DWT). It yields the perturbed DWT, which we
invert to generate the perturbed image. We evaluate the model on the perturbed
image.
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1. Characterizing a model’s decision in the space-scale domain

The WCAM expands attribution to the space-scale domain The WCAM de-
composes a prediction into the wavelet domain. As Figure 3.7 depicts, highlighting
an important area in the pixel domain (i) does not provide information on what the
model sees. By decomposing the prediction into the wavelet domain (ii), the WCAM
represents the important features of a prediction in terms of structural components.
In the example of Figure 3.7, we can see two important areas for predicting the fox:
the hind leg and the ear. We can see that three distinct components contribute to
the prediction for the ear. Areas (a), (b), (c) and (d) highlight these components.
(a) corresponds to details at the 1-2 pixel scale, i.e., fine-grained details such as
the fur in the ear. (b) corresponds to details at the 2-4 pixel scale, i.e., larger details
such as the shape of the ear. We can see that both vertical ((b)) and horizontal ((c))
components of the shape of the ear contribute to the prediction. On the other hand,
for the hind leg, only the overall vertical shape (4-8 pixel size, (d)) contributes to
the prediction.

Scale size (px)

(i) Image and spatial WCAM (i) WCAM

Figure 3.7 - Decomposition of a prediction from the pixel domain (i) into the wavelet
domain (ii) with the WCAM. Source: Kasmi et al. (2023a).

1.3.2 Connecting attribution and robustness

Scales, frequencies, and robustness As stated in section 1.2, and illustrated
in Figure 3.3 scales in the wavelet domain correspond to dyadic frequency ranges
in the Fourier domain. The smallest scales correspond to the highest frequencies.
Therefore, the WCAM connects attribution with frequency-centric approaches to
model robustness. To show this connection, we replicate the Chen et al. (2022)
experiment. In this work, the authors compared the standard model ("ST," i.e., a
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ResNet-50 trained using the vanilla ERM) with adversarial models ("AT," i.e., models
trained with adversarial training to improve their robustness to adversarial pertur-
bations) and robust models ("RT," i.e., models trained to be robust against natural
image corruptions). They showed that the ST model relies more on high-frequency
components to make predictions than the RT and AT models.

In our case, we compute the importance of each detail ("h," "v," and "d") a
each scale (1 to 4) and the importance of the approximation coefficients ("a"). The
importance corresponds to the value of the Sobol indices within each level. We then
average the importance across 500 randomly sampled images. Figure 3.8 shows
the results. We see that robust models favor coarse scales (i.e., low-frequencies)
over fine scales (i.e., high frequencies). The WCAM characterizes robust models by
estimating the importance of each frequency component in the final prediction. We
can see that the ordering from the detail coefficients corresponding to the largest
scales from those corresponding to the highest remains the same.

Importance of the frequency components
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Figure 3.8 — Representation of the scales of the WCAM as frequencies. Levels (num-
bered from (0 to 4) indicate the scales, from the coarser (i.e., lowest frequencies)
to the finest (i.e., highest frequencies. The level 0 or "a" corresponds to the approx-
imation coefficients. Labels "h," "v," and "d" correspond to the horizontal, vertical,
and diagonal details, respectively. The rightmost index plots the cumulative curve.
"AT," "RT," and "ST" stand for adversarial, robust, and standard training, respec-
tively. The dotted line indicates the concentration towards coarser scales associ-
ated with better robustness. Adapted from Kasmi et al. (2023a).

This can be further assessed by the cumulative frequencies (right axis), where
the most robust models have a cumulative curve that is more concentrated than
the cumulative frequency of nonrobust models. This indicates they rely more on
the coarser scales (i.e., low-frequency components). These results are in line with
existing works (Zhang et al., 2022; Chen et al., 2022; Wang et al., 2020; Yin et al.,
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2019) and show that the WCAM correctly estimates the robustness of a model.

2 Assessing the reliability of a model’s decision pro-
cess through the lenses of the scale-space decompo-
sition

In this section, we leverage the WCAM to assess the reliability of the model’s
decision process. We analyze the relevance, i.e., whether the model relies on se-
mantically meaningful factors. This enables us to explain why false positives occur.
To explain why false negatives occur, we set up a small motivating experiment to
understand why the model no longer recognizes PV panels when we change the
image provider. Using the WCAM, we show that the image no longer features an
important factor and that this factor has disappeared due to the differences in ac-
quisition conditions. We support this mechanism with a small empirical model that
shows that we can alter the model’s prediction by altering the frequency content
of the image and that the resulting behavior, in this case, is the same as in our
motivating experiment.

2.1 Relevance of the decision process: understanding the model’s
decision process through the lenses of the space-scale decom-
position

2.1.1 Understanding predictions

Figure 3.9 — Decomposition in the space-scale domain of PV panel predictions (true
positives). Adapted from Kasmi et al. (2023b).
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True positives Figure 3.9 presents some examples of predictions made by a
model trained to classify images of PV systems. The upper row presents the im-
age and the localization of the important regions in the space domain. The lower
row represents the WCAM. We can see that for the image A, the important localiza-
tion in the space domain mostly translates to a single position in the space-scale
domain. On the other hand, different scales strongly contribute to the prediction
for the images B and C. Overall, a single localization in the space domain translates
into several localizations in the space-scale domain, meaning that information from
different scales is important for the model to predict a PV panel correctly.

Figure 3.10 - Examples of false positives on IGN and corresponding WCAM. Adapted
from Kasmi et al. (2023b).

False positives In line with the behavior highlighted by the GradCAM in chapter
2, section 3.3.2, Figure 2.15, the model’s behavior is the same as for true positives
when it comes to false positives. On the examples of Figure 3.10, we can see that
the localization of the component that fools the model can also be decomposed into
several localizations in the space-scale domain. Interestingly, for image A of figure
Figure 3.10, we can see that the intersection between the grid and the "Y" on the
shadow contributes the most to the model’s wrong decision and that it contributes
at two different scales. This evidence confirms the intuition that the model confuses
the grids on the shadow with actual grid patterns typically found on PV panels. The
same phenomenon occurs in image B, where the road lines and the parked vehicle
are also seen as grid components.

Why do false positives arise? On Figure 3.10, we highlighted cases where the
model predicts a PV panel because it sees a gridded pattern. This gridded pattern
is not necessarily evident in the space domain (e.g., on image B of Figure 3.10)
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but appears more clearly when considering the wavelet transform of the image and
the WCAM. Therefore, we can suppose that the grid pattern, which can be found on
many old PV panels, is a learning shortcut. Learning shortcuts (Geirhos et al., 2020)
describe the tendency of neural networks to favor the most distinctive features to
make a prediction. Whenever this feature arises on an image, it may tend to predict
a PV panel.

2.1.2 Localizing the critical components in the space-scale domain

In the previous section, we leveraged the WCAM to understand the positive de-
tections of a classification model. Following our hypothesis from chapter 2, section
3.3.3, the model predicts a PV panel when it identifies a component that can be
semantically related to a PV panel on the image without necessarily taking into ac-
count additional components such as in the example of the sign shadow. In this
section, we quantify this component as the critical component and show that once
removed from the image, the model no longer sees the PV panel. In section 2.2, we
will use the notion of a critical component to explain the sensitivity to acquisition
conditions.

Definitions We call sufficient image the image reconstructed from the n first
wavelet coefficients ranked according to their corresponding Sobol indices such that
the model can correctly predict the image’s label. Figure 3.11 displays examples of
such images. In our examples, we can see that the model needs the information
that is primarily located on the PV panels. On all images, we can see that it is not
necessary to reconstruct the background for the model to correctly predict the PV
panel. We can see that the finest information is required when the panel is smaller
on the image. The number n. of coefficients necessary to construct a sufficient
image depends on the image.

If the n. first components are sufficient to construct an image that the model
correctly predicts, we call critical component the »!* coefficient. If we reconstruct
an image with n. — 1 components, the model does not have enough information.
With n. +1 components, the information brought by the (n.+ 1) component can be
removed without changing the model’s decision.
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Original image

Sufficient image

Components

Sufficient image Components

Components

Sufficient image

Figure 3.11 - Sufficient images reconstructed from the WCAM.

Shedding light on critical components On images of PV panels, the critical
(or pivotal) component can be related to actual semantic content on the image,
thus shedding light on what is important and constitutes a PV panel in the eyes
of the model. On Figure 3.12, the model only needs n. =17 coefficients to predict
the PV panel correctly. Depicting these coefficients, we can see that they mainly
capture the gridded structure of the PV panel. The critical information corresponds
to the vertical lines at a precise location of the PV panel. Without this information,
the model does not predict the PV panel. On the WCAM, we include a feature that
enables us to see the critical component, as the red component on the bottom-right
WCAM in figure 3.12. We provide additional examples on the model of Figure 3.12
in appendix C, section 2.2.
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Original image Critical component
(true positive)

Sufficient image Last incorrect image (In the image domain)

Critical component
(In the space-scale domain)

Components

Figure 3.12 - Identification of the critical component (highlighted in white on the
"Critical component" plot on the bottom right of the image. Without this compo-
nent, the model does not predict the PV panel. The sufficient image is the image
reconstructed with the minimal set of components.

Summary: assessing the relevance of the decision process In this section,
we leveraged the WCAM to decompose the model’s prediction in the space-scale
domain. This enables us to understand what more precisely the model sees on
the image when it predicts (or not) a PV panel. On Figure 3.13, we plot the WCAM
alongside the GradCAM for the examples provided in Figure 2.15.

The WCAM enables us to gain intuition on the model’s predictions by showing
that a single localization in the space domain corresponds to different localizations
in the space scale domain. In this domain, the WCAM enables us to see shortcuts
that induce a false positive and that are less visible in the space domain only. For
instance on Figure 3.13, on the false positive on the upper row, the important com-
ponents are located in the 2-4 and 4-8 pixel scales, meaning that the shade roof
and the veranda are confused with a PV panel because of their overall shape (and
also probably because of their color as well).

Finally, we introduced the notion of critical component to refer to a component
of the image necessary for the prediction. This component is localized in space and
scale and can be isolated with the WCAM. This notion helps us understand what
is critical for the model to make a decision. In the next section, we will discuss
the robustness of this component to distribution shifts, as the robustness of the
decision process is the last pillar for assessing its reliability.
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True positives False positives True negatives False negatives

Figure 3.13 - Comparison of model explanations using the GradCAM (Selvaraju
et al., 2020) and the WCAM (Kasmi et al., 2023a) correct and incorrect predictions.
The WCAM shows that different scales contribute to the prediction and that when
focusing on single scales, shortcuts such as gridded-like patterns can arise.

2.2 Robustness of the decision process: the impact of acquisition
conditions on false negatives

2.2.1 Identifying the impact of acquisition conditions in the sensitivity to
distribution shifts

The sources of distribution shifts in remote sensing The literature exten-
sively discussed the sensitivity to distribution shifts of current models (see the dis-
cussion in chapter 1, section 2.2). Tuia et al. (2016) identified two primary distri-
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bution shifts in remote sensing: the geographical variability and the heterogenous
acquisition conditions. Following Murray et al. (2019), we can add the ground sam-
pling distance, as the models are sensitive to zooming on images (Taesiri et al.,
2023). However, to our knowledge, few works discussed this issue in the context of
remote sensing of PV panels. Wang et al. (2017) argued that the ability to general-
ize depended on how hard to recognize the PV systems are. However, no work prop-
erly disentangled the effect of each source of variability. We propose to bridge this
gap through a small experiment using the BDAPPV dataset (Kasmi et al., 2023d).
Our goal is to evaluate the impact of the different sources of distribution shifts (i.e.,
acquisition conditions, geographical variability, and ground sampling distance) on
the model’s generalization ability.

Google baseline Google 10 cm/pixel
s

Google OOD

Figure 3.14 - Examples of images used in this experiment.

Disentangling the sources of distribution shifts BDAPPV features images of
the same installations from two providers and records the crude location of the
PV installations. Using this information, we can define three test cases to disen-
tangle the distribution shifts that occur with remote sensing data: the resolution,
the acquisition conditions, and the geographical variability. We train a ResNet-50
model (He et al., 2016) on Google images downsampled at 20cm/pixel of resolution
and evaluate it on three datasets: a dataset with Google images at their native
10cm/pixel resolution ("Google 10 cm/pixel" on Figure 3.14), the IGN images with
a native 20cm/pixel resolution ("IGN" on Figure 3.14) and Google images down-
sampled at 20 cm/pixel located outside of France ("Google OOD 2" on Figure 3.14).

2. OOD: out-of-distribution. This corresponds in our framework to the geographical variability of
the images
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We add the test set to record the test accuracy without distribution shifts ("Google
baseline" on Figure 3.14). We only do random crops, rotations, and ImageNet nor-
malizations during training.

A strong impact of the acquisition conditions Table 3.1 shows the results of
the disentanglement of distribution shifts into three components: resolution, acqui-
sition conditions, and geographical shift. We can see that the F1 score 3 drops the
most when the model faces new acquisition conditions (IGN in this experiment).
The second most significant impact comes from the change in the ground sampling
distance, but the performance drop remains relatively small compared to the effect
of the acquisition conditions. In our framework, there is no evidence of an effect of
the geographical variability once we isolate the effects of the acquisition conditions
and ground sampling distance. This effect is probably underestimated, as images
of our dataset that are not in France are near France. Nonetheless, we are primarily
concerned with the acquisition conditions: the latter vary over France, and if we de-
ploy the model on new images to update the registry, we will have new acquisition
conditions. We want to know how acquisition conditions will impact the model’s
behavior.

Table 3.1 - F1 Score and decomposition in true positives, true negatives, false
positives, and false negatives rates of the disentanglement of the distribution shift
between the GSD (Google 10 cm/px), the geographical variability (Google OOD) and
the acquisition conditions (IGN). Taken from Kasmi et al. (2023b).

F1 Score () TPR TNR FPR FNR

Google baseline 0.98 0.99 0.98 0.02 o0.01

Google 10cm/px 0.81 1.00 0.00
Google OOD 0.98 0.99 0.98 0.02 0.01
IGN 0.46 0.32 0.95 0.03 0.68

Going further, we inspect on Figure 3.15 how varying the acquisition conditions
affects the model’s predicted probabilities (i.e., the probability assigned to a class
after the softmax normalization and before applying the classification threshold).
We can see that when the classifier no longer recognizes the PV panel, the proba-
bility shift is large, suggesting that the important factor for prediction disappeared
from the image. In other words, if a critical component is no longer depicted due to
the change in the acquisition condition, then the model no longer sees a PV panel
(despite having other information about it). These results are in line with the hy-
pothesis made in chapter 2, section 3.3.2, where on Figure 2.16, we witnessed that
the model sees or does not see a PV panel with great confidence.

3. See chapter 4, section 2.1.1 for a definition of the F1 score.
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Evolution of the predicted probabilities
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Figure 3.15 - Evolution of the predicted probabilities for images depicting a PV panel
on the Google test set and the corresponding images on the IGN test set. The
predicted probability completely flips over when the model no longer recognizes
the PV panel. Source: Kasmi et al. (2023b).

2.2.2 Unveiling the impact of acquisition conditions on the prediction

When important factors disappear Plotting an explanation on the pixel domain
does not help understand why acquisition conditions fooled the model (upper row
of Figure 3.16). We can see that on Google and IGN, important areas for predicting
a PV panel (Google) and the absence of a PV panel (IGN) are located over the PV
panel.

Visually, the IGN image is more "blurred" than the Google image, meaning it
misses details at the finest scales. We can see that on the Google image, these
finest scales contribute the prediction (components (a) on the WCAM of the Google
image, on the bottom row of Figure 3.16) but are no longer present on the IGN
image, explaining why the model no longer recognizes the PV panel. Indeed, the
disappearance of the finest scales, i.e., lines of the grid that are less visible, fooled
the model, as these lines were necessary for the prediction.

On the IGN image, the model relies on coarser details to make its prediction
(mostly the details in (b)). We also see that the critical component is no longer
visible on the IGN image. This critical component (located in (c) corresponds in
our case to the frame of the PV system. In appendix C, section 2.1, we provide
additional illustrations of the disappearance of important components.
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Google (Source domain) IGN (Target domain) Critical component
True positive False negative Projection in the pixel domain

Scale size (pixels): > 8 pixels, 4-8 pixels, pixels, 1-2 pixels

Figure 3.16 — Predictions on Google image (left, upper row) and IGN image (mid-
dle, upper row) and associated WCAMs (bottom row). The brighter the highlighted
region for the prediction, the more important it is. The rightmost column plots
the most important components of Google Images and the critical components.
Adapted from Kasmi et al. (2023b).

Finding the missing components These results raise the question of under-
standing why this component disappeared. To address this question, we will in-
troduce in the next section a model for acquisition conditions to show that these
acquisition conditions are an instance of image corruptions (Hendrycks and Diet-
terich, 2019) that affect specific frequencies of the input image. If the model relies
on components that are likely to be disrupted (such as the components (a) on Fig-
ure 3.16), then the it no longer recognizes the PV panel.

2.3 Acquisition conditions as image corruptions
2.3.1 A model for acquisition conditions

Where do varying acquisition conditions come from? Acquisition condition
refers to the technical pipeline (imaging sensor, plane, postprocessing) to take the
image but also to the meteorological conditions and the time of the day during
which the picture was taken. Many factors could explain the variation in acquisition
conditions. The following section looks for a simplified model to model acquisition
conditions. This model will connect acquisition conditions and spatial frequencies or
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scales. Therefore, using the WCAM, we can comprehensively assess the robustness
of acquisition conditions using the scale-frequency characterization brought by the
WCAM.

Acquisition conditions as a combination of Gaussian noise and blur The
conversion of an observed scene into a digital image can be summarized in three
main steps, as depicted in figure 3.17.

1. Optical sys- 2. CCD captor 3. Quantifica-
tem tion

A B |
nill o

I~hxO Noise ~ P(n)
Cutting fre- SN theorem : Noise ~ \/%
quency : fp o< fn

Figure 3.17 — Image acquisition process. SN: Shannon-Nyquist.

These steps are:

1. The acquisition of the signal by the optical lens can be approximated by a
convolution between the object O and a Gaussian filter g. This Gaussian filter
approximates the real Point Spread Function (PSF) accounting for the optical
system and its defaults, the integration in time, and the space of the detec-
tors in the focal plane. This PSF is the inverse Fourier transform of the auto-
correlation of the entrance pupils of the optical system convoluted with the
sinc of the detector.

2. The conversion of the analogical signal to a numerical signal by the comple-
mentary metal oxide semiconductor (CMOS) or charge-coupled device (CCD)
sensor.

3. The subsampling of the signal depending on the sampling resolution of the
CMOS or CCD image sensor.

Equation 3.8 summarizes the acquisition process as a convolution between the
optical system h and the original image O,
I=hx0+¢, (3.8)

where *x denotes the convolution operation and  captures random noise while
capturing the photons on the CCD captor. As the number n of photons is large, we
can approximate this noise by a Gaussian noise. A key property of the optical lens
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is the range of frequencies it is sensitive to. We denote fp as the highest frequency
the analogical sensor is sensible to.

A fundamental property of our model for acquisition conditions, described by
Equation 3.8, is that the Gaussian filter is a low-pass filter and the Gaussian noise
is a white noise with the same level of "energy" over the Fourier spectral range
between 0 and 1/fp (fp = 2fn is the highest frequency in the analogical signal
and fy denotes the Nyquist frequency). Therefore, the contrast from the observed
scene compared to the noise along this spectral range decreases exponentially,
affecting the highest frequencies first.

2.3.2 Highlighting the sensitivity of the model to corrupted images

The noise and blur experiment We now set up an experiment to reproduce the
model’s sensitivity to acquisition conditions by mimicking the acquisition process
of an image using a combination of Gaussian noise and blur. We denote h,, a
Gaussian filter parameterized by its standard deviation ¢, and ¢,, a Gaussian noise
parameterized by its standard deviation o,. In order to simulate the acquisition
process defined in Equation 3.9, we apply a Gaussian filter and add Gaussian noise
to simulate the acquisition process of an object O into an image I:

I =hg x0+e,, (3.9)

The parameters o, and o, capture the variability in the quality of the sensors.
We consider the test images of BDAPPV as the ground truth images O. We generate
altered datasets by adjusting the values of ¢, and o,,. The values chosen are the
following:

— o3 € {0} U[1,5]. The size r of the convolution kernel is set as r = [40,] + 1. We
denote ¥, = {0} U [1, 5]

— 0, €[0,0.017] =%,

We chose these values to balance the loss of information and have enough gran-
ularity to visualize the gradual effect of the acquisition conditions. Figure 3.18
presents examples of the varying acquisition conditions modeled that way.
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o, =0.00, g, =0.000 0p=2.20, 0,=0.011 o, =4.80, 0,=0.017

0, =0.00, 0, =0.000

- )
'

0, =2.20, 0,=0.011

o, =4.80, g, =0.017

Figure 3.18 — Examples of varying acquisition conditions modeled after the Gaussian
blur and noise model. We assume that the object O corresponds to the image
without alteration (leftmost column).

We evaluate the model’'s* sensitivity at the global scale by computing the F1
score over the complete dataset. To do so, we generate altered test datasets for all
combinations in ¥, x ¥,,. Figure 3.19 displays the results. We can see that the F1
score decreases until it eventually reaches 0. Interestingly, we can see regions in
the (03, 0,,) plane where the F1 score is constant. It means that the accuracy is equal
despite different parameterizations of noise and blur. We interpret these results as
a response to iso-quality levels. Different combinations of noise and blur produce
a similar image quality, and the model responds to this image quality; this is in
line with sizing rules for image quality that state that the quality follows iso-curves
that depend on the noise and the value of the cutting frequency. In other words, a
blurred but clean image will have the same quality as a neat but noisy image (for
given levels of blur and noise).

4. By "model", | refer in this section to a standard classification model. In these experiments, |
used a ResNet-50 (He et al., 2016), trained on BDAPPV.
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F1 score on the test set
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Figure 3.19 - Evolution of the F1 score on the test set depending on the noise and
blur levels of the test set. Each letter marks a combination whose confusion matrix
is unwrapped in Table 3.2.

Finally, on Table 3.2, we decompose the F1 score as done in section 2.2.1 to
verify that a surge in the number of false negatives causes the drop in the F1
score. We can see that this is indeed the case. Whether perturbing the noise or
the blur level leads to an increase in the number of false negatives, similar to the
experiment of section 2.2.1. The rise in the number of false negatives drives the
drop in accuracy.

Table 3.2 - F1 score and decomposition in terms of true positives, true negatives,
false negatives, and false positives. Each line corresponds to a given level of cor-
ruption of the dataset, parameterized by the noise and blur level, ¢, and oy.

(0p,0n) Flscore(1) TP TN FP FN

a: (0.00, 0.000) 0.83 1302 1615 392 157
b: (1.00, 0.011) 0.30 270 1937 70 1189
c: (1.60, 0.004) 0.47 491 1882 125 968
d: (2.80, 0.002) 0.22 183 1963 44 1276

Results on a single image Now that we have shown the model’s sensitivity to
varying levels of noise and blur globally, we focus on single images. We consider
one image and corrupt it for varying noise and blur strengths, following equation
(3.9) and the associated values for o, and o,,. For each combination ¢, x o, of blur
and noise, we generate N corrupted images and pass these images to the model.
We measure the accuracy as the ratio between correct predictions N, and the total
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number of corrupted variants of the image N. Initially, the image is correctly pre-
dicted. We report this accuracy in the lower left quadrant of Figure 3.20. We can
see that for low values of ¢, and o, the prediction is not sensitive to the addition of
noise and blur (yellow area).

On the other hand, past a given threshold of noise and blur, the model can
no longer recognize the PV panel, as the corruption of the image removed the
necessary content. Interestingly, we can see a transition region where the model
sensitivity to corruptions is the largest. In these cases, the model is correct for
between 20% and 80% of the samples.

We analyze the model’s decision process in these three cases (correct prediction,
a, uncertain prediction, b, and wrong prediction, ¢. We can see how the corruption
destroys the information in the finer scales and how the model changes the impor-
tant factors to make the prediction. In the case ¢, the perturbation is so strong that
the critical information can no longer be recognized and the model makes a wrong
prediction. Case b is more puzzling: the model model makes a correct prediction
in this case, but its accuracy is lower. Thanks to the WCAM, we can understand
why the predictions are more uncertain. The model relies on high-frequency com-
ponents (rather than low frequencies, as in a) because of the noise that has been
added to the image. As the model relies on these frequencies, its prediction is
more uncertain: we can see that the information at that scales (1-2 pixel scale) is
not readable for a human interpreter.

Conclusion: acquisition condition as frequency perturbations Our small
model illustrated that we can reproduce the effect of acquisition conditions by al-
tering the frequency content of the image. The blur level affects the highest fre-
quencies, while the noise level affects all the spectrum. Like in the experiment of
section 2.2.1, altering the noise and blur levels leads to a decrease in the F1 score
driven by a rise in false negatives.

In the next section, we will discuss how we can limit the sensitivity to acquisition
conditions by lowering the reliance on the high-frequency components of the image
and by incentivizing the model to rely on several scales instead of one.
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Figure 3.20 — Accuracy of a model’s predictions under different levels of blur and
noise and plot of some corrupted images and their associated WCAMs. We can
see that for the same result at the macroscopic scale (a lower Fl-score caused
by a rise in the false negatives), the model behaves in two different ways at the
microscopic level. If blurring increases, it tends to look for new components. If
the noise increases, it tends to be disrupted by this noise and to focus on higher
frequencies than if there were no noise.
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3 Reliably improving the robustness of the model’s de-
cision process to acquisition conditions

In order to improve the robustness of our model to acquisition conditions, we
review the literature and analyze whether it reliably improves the robustness to
acquisition conditions. Finally, we introduce our data augmentation strategy to
reliably improve the robustness of acquisition conditions, i.e., having a model that
sees relevant and robust features on the input image.
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3.1 Robustness to image corruptions: review of existing works

3.1.1 Acquisition conditions as a natural image corruption

3 |

. x4+
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Figure 3.21 - A demonstration of fast adversarial example generation applied to
GooglLeNet (Szegedy et al., 2016) on ImageNet. By adding an imperceptibly small
vector whose elements are equal to the sign of the elements of the cost function
gradient concerning the input, we can change GooglLeNet’s classification of the
image. Here our ¢ of 0.007 corresponds to the magnitude of the smallest bit of an
8-bit image encoding after GooglLeNet’'s conversion to real numbers. Taken from
Goodfellow et al. (2015).

Traditionally, researchers in machine learning have been worried about the ef-
fects of adversarial perturbations (Goodfellow et al., 2015), i.e., input perturbations
specifically targeted at fooling the model. These perturbations are generally in-
visible to the human observer. Figure 3.21 presents the well-known example of a
panda predicted as a gibbon after a small perturbation is applied to the image.

However, adversarial perturbations are not the only kind of perturbations to
which models can be sensitive. Hendrycks and Dietterich (2019) refer to this class
of perturbations as natural image corruptions as they emerge naturally. These nat-
ural image corruptions cover a wide spectrum of perturbations, ranging from blur,
which can occur when the observer takes the image, to noise or compression ar-
tifacts such as .jpeg compression. Hendrycks and Dietterich (2019) introduced
a framework to benchmark the robustness of deep learning models to such cor-
ruptions. Figure 3.22 presents examples of natural image corruptions covered by
Hendrycks and Dietterich’s ImageNet-C(orruptions) dataset.
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Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Gaussian Noise

Figure 3.22 - Examples of images coming from the ImageNet-C dataset of
Hendrycks and Dietterich (2019). Each corruption has different levels of sever-
ity. Source: Hendrycks and Dietterich (2019).

From Figure 3.22, we can view the acquisition conditions modeled after the
model of section 2.3 as a combination of blur and Gaussian noise and, therefore, as
a specific instance of natural image corruptions.

3.1.2 Robustness to natural image corruptions

Improving the robustness through data augmentations Various methods
have been proposed to improve the robustness of CNNs to natural image corrup-
tion. Hendrycks et al. (2020) introduced AugMix, a data augmentation technique
aiming at generating a high diversity of augmented images from an input sample.
A set of operations (perturbations) op to be applied to the images and sampling
weights w are sampled. The resulting image z,,, is obtained through the composi-
tion x4,y = wiopy o - - o wyopy(x) Where z is the original image. Then, the augmented
image is interpolated with the original image with a weight m € [0,1] that is also
randomly sampled. We have z,ugmiz = mz + (1 — m)zag. Similarly, Hendrycks et al.
(2022) augment an input image with fractal patterns, and Sun et al. (2022a) perturb
the Fourier spectrum of the input image. Alternatively, some methods focused on
finding the best data augmentation strategy (or policy) for a given dataset. Cubuk
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et al. (2019) determined the best augmentations strategy S as the outcome of a
reinforcement learning problem: a controller predicts an augmentation policy from
a search space. Then, the authors train a model, and the controller updates its
sampling strategy S based on the train loss. The goal is that the controller gener-
ates better policies over time. The authors derive optimal augmentation strategies
for various datasets, including ImageNet (Russakovsky et al., 2015), and show that
the optimal policy for ImageNet generalizes well to other datasets.

Enforcing inductive biases Data augmentation strategies aim to learn an induc-
tive bias (Mitchell, 1980) during training. Inductive biases correspond to assump-
tions that a model uses to make a prediction, and therefore generalize better, on
unseen data. The translational invariance of CNNs is an example of inbuilt inductive
bias. Several works have shown that another bias is the texture bias (Geirhos et al.,
2019): models rely on texture rather than shape to make a prediction. As this bias
can fool models, Geirhos et al. (2019) proposed to train models on Synthetised-
ImageNet (SIN) to force models to rely on shapes rather than textures. We refer
the reader to appendix C, section 2.3, for more details on these data augmentation
techniques.

3.2 A benchmark of existing approaches

Overview We consider several methods registered in the ImageNet-C leaderboard.
These methods include AugMix, AutoAugment, and RandAugment. Figure 3.23
presents examples of augmented images with these data augmentation techniques.
We train a ResNet-50 model with these augmentations on Google images and eval-
uate it on the IGN test images. We report the F1 score and the number of true
positives, false positives, true negatives, and false negatives.
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Original image
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Figure 3.23 - lllustration of augmented images with the selected data augmentation
techniques.

Results Table 3.3 presents the results. To evaluate the maximum attainable per-
formance, we compare these results with the "Oracle," i.e., a model trained without
augmentations on IGN images. We can see that these strategies yield modest
improvement over the standard empirical risk minimization (ERM, Vapnik, 1999)
method and barely reduce the number of false negatives. In Table C.3 in appendix
C, section 2.4, we present the accuracy of these models on their source domain.
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Table 3.3 - F1 Score and decomposition in true positives, true negatives, false
positives, and false negatives for models trained on Google with different mitigation
strategies. Evaluation of IGN images. The Oracle corresponds to a model trained on
IGN images with standard augmentations. The best results are bolded and second
best underlined.

F1 Score (1) TP TN FP FN

Oracle 0.88 1818 1992 428 83
ERM (Vapnik, 1999) 0.44 566 2321 99 1335
AutoAugment (Cubuk et al., 2019) 0.46 598 2318 102 1303
AugMix (Hendrycks et al., 2020) 0.48 624 2318 102 1277
RandAugment (Cubuk et al., 2020) 0.51 707 2280 140 1194

3.3 A novel data augmentation technique for improving the ro-
bustness to acquisition conditions

3.3.1 Motivation and approach

Motivation Implementing existing data augmentation techniques resulted in very
modest improvements in the model’s robustness to acquisition conditions. Recall-
ing the key results from our study of section 2.3.2, we would like our model (1)
not to rely on components that are likely to be disrupted by the change of image
provider and (2) incentivize the model to rely on different scales rather than a single
scale to make a prediction. To this end, we blur the image so that high-frequency
components are discarded for addressing (1). To address (2), we randomly perturb
the wavelet transform of the image so that the model learns that scales can be
altered. Indeed, the components most likely to be perturbed by a shift in provider
are located in the high-frequencies of the image, as highlighted in section 2.3.2.

Overview of our data augmentation method We call our data augmentation
method the Blurring and Wavelet Perturbation (WP). This method consists in (1)
blurring the image to remove the high-frequency components. Then, we randomly
perturb the wavelet coefficients of the image to force the model to rely on different
scales rather than a single scale. To perturb the wavelet transform, we compute
the wavelet coefficients of the image and randomly set some of them to 0. We
compute the wavelet transform with five levels of details and perturb the coeffi-
cients across all scales (including the approximation coefficients). After empirical
investigation, we set the share of coefficients to 0 at 20% (independently in each
channel) to balance the perturbation across scales while keeping the image’s se-
mantic content. As for the blur, we choose a blur value so that the shape of the
PV panel remains visible to a human observer. It corresponds to a blurring value
o = 2. in the ImageFilter.GaussianBlur method of the Python Imaging Library (PIL).
We apply the same blur in both = and y directions. Figure 3.24 presents augmented
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images with our Blurring and Wavelet Perturbation (WP) technique.

Baselines: Blur and Noise and Blur In addition to our strategy, we test two
baselines: the effect of a simple Gaussian blur on the image to discard the high-
frequency components and a random composition of noise and blur to mimic the
perturbation as in the model introduced in section 2.3.2. These augmentations are
intended as baselines to see whether the perturbation of the wavelet transform
improves over more straightforward approaches. Figure 3.24 presents augmented
images with these data augmentation techniques. In appendix C, section 2.4, we
present additional training results for these data augmentation techniques.

Original image

Original imge

Original image
o |

Blurring Blurring Blurring

Blur and Noise Blur and Noise

Blurring + WP

Figure 3.24 - lllustration of augmented images with our data augmentation tech-
nigues. The colored pixels that appear with the Blurring + WP augmentation are a
consequence of the fact that we hide some information in channels and not others.
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3.3.2 Results: increasing the robustness to acquisition conditions

Blurring and wavelet perturbation improve accuracy Table 3.4 reports the
results of our data augmentation techniques and compares them with existing
methods. We can see that augmentations that explicitly discard small scales (high
frequencies) information perform the best®. However, the blurring method sacri-
fices the recall (which drops to 0.6) to improve the F1 score. On Table 3.4, this can
be seen by the increase in false positives. Therefore, this method is unreliable for
improving the robustness to acquisition conditions.

On the other hand, adding wavelet perturbation (WP) improves the accuracy
of the classification model without sacrificing the precision or the recall. While
the drop in accuracy is still sizeable compared to the Oracle, the gain is consistent
compared to other data augmentation techniques. Compared to RandAugment, the
best-benchmarked method, our Blurring + WP is closer to the targets regarding true
positives and true negatives and makes lower false negatives. Work is still needed
to close the gap with the Oracle. However, this experiment shows that it is possible
to consistently and reliably improve the robustness of acquisition conditions using
a data augmentation technique, which does not leverage any information on the
IGN dataset.

Table 3.4 — F1 Score and decomposition in true positives, true negatives, false
positives, and false negatives for models trained on Google with different mitigation
strategies. Evaluation on IGN images. The Oracle corresponds to a model trained
on IGN images with standard augmentations. The best results are bolded and
second best underlined.

F1 Score (1) TP TN FP FN

Oracle 0.88 1818 1992 428 83
ERM (Vapnik, 1999) 0.44 566 2321 99 1335
AutoAugment (Cubuk et al., 2019) 0.46 508 2318 102 1303
AugMix (Hendrycks et al., 2020) 0.48 624 2318 102 1277
RandAugment (Cubuk et al., 2020) 0.51 707 2280 140 1194
Noise and blur 0.48 636 2287 133 1265

Blurring 0.74 1855 1196 1224 46
Blurring + WP 0.58 896 2114 306 1005

Relying on consistent scales Figure 3.25 compares the scales on which the
best-performing methods rely. We want our models to rely on the largest scales (i.e.,

5. This result is further underlined by the fact that the Oracle - trained on IGN - evaluated on
Google performs better than the model trained on Google images and tested on IGN. As IGN images
have less information in the highest frequencies, lowering the reliance on the highest frequencies is
essential to guarantee a good generalization to new acquisition conditions. We refer the reader to
Table C.3 in appendix C, section 2.4 for more information.
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lowest frequencies) to entail robustness (Zhang et al., 2023), in our case against
image quality alterations.

We can see that the Blurring + WP method relies on more reliable factors than
the other methods: it mainly relies on low-frequency components centered on the
PV panel. The blurring in this case is very dispersed, and the RandAugment has a
behavior that is qualitatively similar to the ERM. More generally, the WCAM lets us
compare methods that perform quantitatively similarly.

WCAM on the target set

RarlgAu ment

Blurring
- g |

Figure 3.25 - WCAMs on IGN of models trained on Google with different augmenta-
tion techniques.

Conclusion of the chapter

In this chapter, we introduced a new feature attribution method, the WCAM, to
identify what regions of the space-scale domain contribute the most to the model’s
decision. The regions of the space-scale domain correspond to the image’s struc-
tural components, which can be simultaneously interpreted semantically and can
be related to frequency ranges.

The WCAM enables us to assess the relevance of the model’s decision process:
we witnessed the fact that it relied on critical components related to a visual feature
of the PV panel (e.g., the meshed patterns of the PV panel). However, when we
remove this critical component, we can flip the model’s prediction.

What causes the disappearance of the critical component (and thus the sen-
sitivity to distribution shifts highlighted by the literature)? We set up an experi-
ment where we disentangle the familiar sources of distribution shifts: geographical
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variability, varying ground sampling distance and varying acquisition conditions.
Results showed that most of the variability comes from the varying acquisition con-
ditions, which lead to a surge in the false negatives. We interpreted this result as
the model missing its critical component due to the change in the image provider.

How can we effectively improve the robustness of the decision process to vary-
ing acquisition conditions? We modeled acquisition conditions as a combination of
Gaussian noise and blur, showing that they can be related to image corruption. We
reviewed works that proposed methods to improve the robustness to acquisition
conditions and introduced a new method based on the perturbation of the wavelet
spectrum of the image and the removal of the high-frequency components through
blurring, effectively improving the robustness to acquisition conditions.

The WCAM thus enables us to assess the relevance and robustness of the model’s
decision process. Together with the DTA, it closes the definition of the reliability in-
troduced in chapter 1. In the next chapter, we will introduce DeepPVMapper. This
algorithm aims for reliable and scalable mapping of rooftop PV installations. We will
use the DTA of chapter 2 and the WCAM and the data augmentation that we intro-
duced in this chapter to enhance the robustness to varying acquisition conditions
of current mapping algorithms.
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Chapter

Constructing a reliable and scalable
algorithm for mapping rooftop PV
installations in France

Summary

This chapter focuses on the third and final pillar of reliability: enhancing
the model’s robustness to acquisition conditions. We introduce Deep-
PVMapper, advancing the state-of-the-art in three main aspects: review-
ing classification and segmentation models, optimizing the pipeline to
minimize false detections, and standardizing the extraction of the char-
acteristics of rooftop PV systems using our new library, PyPVRoof. Evalu-
ation involves metrics reflecting real-life conditions for a comprehensive
performance assessment. DeepPVMapper is 16% more accurate and 31%
faster than a DeepSolar-based architecture. We deploy DeepPVMapper on
the problematic cases from chapter 2, section 3 to demonstrate its effec-
tiveness in addressing issues encountered with our replication of DeepSo-
lar. We also discuss the broader applicability of our method. Implement-
ing the DTA elsewhere in Europe is possible with databases equivalent
to the RNI. Besides, the WCAM facilitates the audit of the model’s deci-
sion process, guiding training methods for improved accuracy on unseen
images.
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In the two last chapters, we introduced two methods to evaluate the reliability of
any model’s data and behavior. In this chapter, we will leverage our framework to
improve current algorithms to make them more reliable and scalable for mapping
rooftop PV installations in France.

1 Identifying the limitations of the current approaches
for PV systems mapping

We can distinguish two components from our definition of reliability: extrinsic
and intrinsic. Extrinsic reliability is external to the model, while intrinsic reliability is
a property of the model. This section reviews the current state-of-the-art and sees
where we can improve the intrinsic reliability.

1.1 Where should we focus on ?
1.1.1 Extrinsic and intrinsic reliability

Definition Our definition of reliability rests on three pillars: the ability to monitor
the model’s outputs, the ability to inspect and understand the decision process
of the model, and ensuring that the decision process is robust regarding a given
perturbation (in our case, the heterogeneous acquisition conditions). In chapter 2,
we introduced the DTA to enable the user to monitor the model’s output. In chapter
3, we introduced the WCAM to assess the reliability of the decision process and
improve the robustness to varying acquisition conditions.

The ability to monitor the model’s outputs or evaluate the relevance of its deci-
sion process is model agnostic or extrinsic to the model. On the other hand, a model
designed properly can be more robust than another. Therefore, the robustness is
intrinsic to the model.

This chapter is devoted to improving the intrinsic reliability of current mapping
algorithms. To this end, we identify in section 1.1.2 of this chapter the current lim-
itations of the mapping algorithm. Our starting point is the widespread DeepSolar-
based architecture, which we introduced in chapter 2, section 3.1.1.

A review of DeepSolar The original DeepSolar architecture (Yu et al., 2018) was
a semi-supervised approach. The main model was a classification model trained on
approximately 473,000 labeled images, including 20,300 (about 4.3%) positives.
The motivation for this choice is that classification models require image-level la-
bels, which are less labor-intensive to gather than pixel-level labels, necessary to
train segmentation models. The classification model, an Inception-v3 (Szegedy
et al., 2016) model, was fine-tuned on this dataset.
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The goal of DeepSolar is to estimate the size of the PV systems. The classifi-
cation model only returns an image-level label (1 if the image contains a PV panel
and 0 otherwise). Therefore, it is necessary to convert this prediction into a seg-
mentation mask (i.e., a binary image where pixels equal to 1 indicate that the pixel
corresponds to a PV panel and pixels equal to 0 indicate that there is no PV panel).
Traditionally, a segmentation model would be required for such a task. Instead, the
authors introduced a semi-supervised approach, i.e., a learning method that pre-
dicts segmentation masks using only image-level labels. Figure 4.1 summarizes the
flowchart of DeepSolar for detecting and segmenting PV panels on orthoimagery.

c D

E F
Semi-supervised .
POSITIVE segmentation E - c
» -
Semi-supervised »

POSITIVE segmentation u u
NEGATIVE NULL ‘ .
Semi-supervised -

POSITIVE segmentation i E

Figure 1. Schematic of DeepSolar Image Classification and Segmentation Framework

(A) Input satellite images are obtained from Google Static Maps.

(B) Convolutional neural network (CNN) classifier is applied.

(C) Classification results are used to identify images containing systems.

(D) Segmentation layers are executed on positive images and are trained with image-level labels
rather than actual outlines of the solar panel, so it is "semi-supervised.”

(E) Activation maps generated by segmentation layers where whiter pixels indicate higher
likelihood of solar panel visual patterns.

(F) Segmentation is obtained applying a threshold to the activation map and finally both panel size
and system counts can be obtained.

Figure 4.1 - Original DeepSolar pipeline. Source: Yu et al. (2018).

The semi-supervised approach consists in training a small model to predict the
localization and shape of the PV panels using the classification model’s feature
maps and the label. The feature maps (i.e., the intermediate layer in the convo-
lutional part of the model) contain features learned by the model, from the most
elementary (edges, shape) to the most general (overall shape of the object). Gen-
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eral features capture the overall location of the object at the expense of the ac-
curacy. On the other hand, elementary features are much more detailed but lack
global information. Combining them enables the construction of well-defined, sharp
segmentation masks encompassing all the PV panels, as depicted on the rightmost
column of Figure 4.2. The authors call this combination of high-level and low-level
features a "greedy" feature extraction.

original image CAM CAM+greedy

[ '

Figure 4.2 - Semi-supervised approach of DeepSolar. The left column contains origi-
nal images. The middle column contains the original images’ Class Activation Maps
(CAMs) without greedy layer-wise training. The right column is the CAMs of the
original images with greedy layer-wise training. Taken from Yu et al. (2018).

As the training database of DeepSolar (Awala, 2020) featured ground truth seg-
mentation masks, subsequent works, notably Rausch et al. (2020) and Mayer et al.
(2022), abandoned the self-supervised approach to replace the second step with
an actual segmentation model, Deeplab-v3 (Chen et al., 2018) model. Therefore,
we refer to these approaches (as well as our implementation in chapter 2, section
3.1.1) as "DeepSolar-based" or "DeepSolar" approaches.
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1.1.2 Improving the intrinsic reliability of DeepSolar

Reviewing the two-step approach Even if current mapping algorithms no longer
rely on a semi-supervised approach, the two-step approach is widely spread in the
field (Parhar et al., 2021). The main reason is that one expects to see PV panels on
a tiny subset of the images, so classifying first enables one to filter the database
and run image segmentation, which is computationally more expensive, only when
necessary.

Even if the computational cost is higher, a line of work (Frimane et al., 2023;
Zhang et al., 2020, 2021a; Huang et al., 2018; Malof et al., 2019) directly performs
image segmentation. To the best of our knowledge, the benefits of the two-step ap-
proach (i.e., classification and segmentation) have not been evaluated against the
one-step (i.e., only segmentation). The main reason is that segmentation accuracy
is evaluated with the Intersection-over-Union and the classification accuracy with
the F1 score®. Therefore, we miss a more general evaluation framework.

Reviewing the recent advances in computer vision Existing works (Mayer
et al., 2022, 2020; Rausch et al., 2020) used an Inception-V3 model (Szegedy et al.,
2016). However in the last couple of years, several breakthroughs were made in
computer vision with the advent of vision transformers (ViT, (Dosovitskiy et al.,
2021)) and hybrid convolutional-vision transformer models such as ConvNext (Liu
et al., 2022), DeiT (data efficient transformer, Touvron et al., 2021) or ConvMixer
(Trockman and Kolter, 2023). So far, two works have shown modest gains of the
all-transformer architecture (Luzi et al., 2023) for classification and gains in terms
of generalizability for transformer-based image segmentation (Guo et al., 2024).

Characteristics extraction Over the years, the scope of remote PV mapping in
general, and DeepSolar-based approaches in particular, gradually expanded. The
goal was to estimate the surface area of PV panels, the installed capacity, and other
statistics, such as the tilt and azimuth angles. To this end, various approaches have
been proposed, depending on the additional GIS data available in the different use
cases. This led to a great diversity of statistics and methods to extract these char-
acteristics. This diversity makes the comparisons between the approaches difficult.
Also, it limits the reproducibility and transferability of existing approaches to new
settings, as the architectures and data requirements vary from one study to the
other. To overcome these difficulties, namely the lack of standardization and the
heterogeneous data requirements, we present a standardized approach for extract-
ing PV characteristics in section 1.2 of this chapter.

1. We define these accuracy metrics in section 2.1.1 of the present chapter.
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1.2 Standardized characteristics extraction: the PyPVRoof library
1.2.1 Motivation and overview

Extracting the PV system’s characteristics is necessary to derive spatial statistics
on the rooftop PV fleet. Depending on the study, the targeted characteristics range
from the surface of the installations to a more comprehensive characterization that
includes the installed capacity and the tilt and azimuth angles. The approaches
to extracting the characteristics vary from one study to the other as the needs
and the available data differ. This heterogeneity makes it complex to compare
the approaches, derive consistent and standardized characteristics, and know what
best practices should be favored. To address this limitation, we introduced PyPVRoof
(Trémenbert et al., 2023), a Python library designed to extract rooftop PV system
characteristics from geolocalized PV polygons.

PyPVRoof accommodates additional data sources, such as preexisting registries
(i.e., auxiliary data) or digital surface models (DSM), depending on their availability
for the user. The list of characteristics that we extract is the following:

— Localization (latitude and longitude)
— Tilt angle (in degrees)
— Azimuth angle (in degrees, relative to North)

— Surface (in m2). Estimating the surface requires knowing the tilt, as only the
projected surface is derived from the input polygon.

— Installed capacity (in kW,). The surface is needed to estimate the installed ca-
pacity as its first-order approximation is the surface multiplied by an efficiency
factor (So et al., 2017).

Figure 4.3 summarizes the workflow of PyPVRoof. PyPVRoof combines methods for
characteristics extraction based on a review of existing works in the field. These
methods were chosen based on accuracy, simplicity, and efficiency. In particular,
we retained the most simple between two equally performing methods (e.g., the
lookup table over the random forest). Finally, we restricted ourselves to methods
that require as few additional inputs as possible. These methods reflect the current
state-of-the-art of PV characteristics extraction.
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Figure 4.3 - Flowchart of the proposed method to extract installations’ character-
istics. The installed capacity depends on the surface of the PV system, as the
installed capacity is equal to the surface area multiplied by the efficiency of the PV
modules. Source: Tremenbert et al. (2023).

PyPVRoof accommodates the most common use cases when mapping PV instal-
lations. We refer the reader to Trémenbert et al. (2023) for a thorough description
of these use cases. For DeepPVMapper, we are in a case where we want to extract
many PV system characteristics (installed capacity, tilt, and azimuth angles) but
do not have access to 3D data over the whole of France. However, as we have
an external registry with PV characteristics (the BDPV database), we can use it to
calibrate methods that enable us to derive the targeted characteristics. Figure 4.4
presents the flowchart and the associated methods to extract PV characteristics if
the user has only access to auxiliary data. For our case, PyPVRoof leverages BDPV
data to calibrate the panel efficiency module coefficient to correlate the installa-
tion’s surface with an installed capacity. A lookup table (LUT) is also computed from
this input data for the tilt angle estimation (see chapter 2, section 3.1.1 for more
details on the computation of the lookup table). Finally, we apply a bounding box
algorithm to estimate the azimuth angle.
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Figure 4.4 — pyPVRoof flowchart when only auxiliary data is available. Adapted from
Trémenbert et al. (2023).

1.2.2 Identifying the best methods for extracting PV systems’ character-
istics

Table 4.1 - Overview of the methods considered for building PyPVRoof. The column
"data requirements" indicates the additional requirements besides the geolocalized

polygon.

Method name Data requirements Target characteristic Original work
Direct computation PV polygon Surface Yu et al. (2018)
Tilt Walch et al. (2020)
Installed capacity Rausch et al. (2020)
Hough algorithm RGB Image Azimuth Edun et al. (2021)
Linear regression LiDAR data Tilt, azimuth Rausch et al. (2020)
Labelled data Installed capacity So et al. (2017)
Malof et al. (2019)
Theil-Sen regression LiDAR data Tilt, azimuth
Random forest Labelled data Tilt, installed capacity

Evaluated methods To design PyPVRoof, we reviewed the existing works’ meth-
ods and use cases. We then sorted these methods depending on their data require-
ments and the characteristics that they extracted. We replicated these methods
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and evaluated them on a benchmark on our dataset BDAPPV. Table 4.1 summarizes
the methods evaluated for designing PyPVRoof. For a more detailed presentation of
these methods, we refer the reader to the appendix C, section 3.1 or to Trémenbert
et al. (2023).

Benchmarking approach We evaluate each method based on the execution
time and on the following metrics:

. 13
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n -

1
— Mean absolute error (MAE): — > " |2; — x|
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— Root Mean Square Error (RMSE): \le(ﬁ:i — ;)2
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1.2.3 Results of the benchmark of the methods

Surface estimation The direct estimation method achieves a mean error of 3.62m?2,
a mean absolute error of 5.01m?2, and a RMSE of 6.86%. The runtime is instanta-
neous. We observe minor differences between annotated and predicted masks,
which assess the overall quality of the predicted masks. However, we give par-
ticular attention to the positive bias between masks and the surface reported in
the characteristics file of BDAPPV, highlighting a tendency to overestimate the ref-
erenced surface area. Such bias is irrelevant since BDAPPV’s surface area values
cannot be assessed; for instance, an overrepresentation of installations of 20m?2
could result from a systematic roundup in the database.

Tilt angle estimation Table 4.2 presents the results. For tilt estimation, it turned
out that the LUT was a surprisingly strong baseline over the other methods: the
random forest yielded only minor improvements, but the runtime was an order of
magnitude larger. Although not significant for a single installation, such a differ-
ence in runtime is significant when scaling the method to thousands of PV poly-
gons. As for the methods that require surface models, we can see that their ac-
curacy relies on the quality of the input data. We tested the Theil-Sen method on
photogrammetry-based surface models and LiDAR surface models. We can see a
noticeable improvement when shifting from photogrammetry to LiDAR. However,
the LUT method’s superiority over the Theil-Sen method with LiDAR data is ques-
tionable. Indeed, we would expect the LiDAR method to be the best-performing
method. A possible reason for that might be that the LUT, being trained on BDPV,
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reproduces the biases of the testing dataset. In appendix C, section 4.2, we discuss
how we can control the quality of the tilt angles reported in BDPV using LiDAR data
and ground truth measurements.

Table 4.2 — Performance metrics for the estimation of the tilt angle. The two lines
for the Theil-Sen method report the accuracy results whether photogrammetry DSM
or LIDAR DSM are passed as inputs. The best results are bolded and second best
underlined.

Method ME MAE RMSE Runtime
[°] (] [°] [sec]

Random Forest 6e-4 5.34 7.03 0.28

Lookup table (LUT) -2.40 7.68 10.29 6e-6
Theil-Sen (Photogrammetry) 3.99 14.10 17.50 0.09
Theil-Sen (LiDAR) 2.06 11.08 14.69 0.09

Hough with DSM 2.90 13.45 16.62 2.47

Azimuth angle estimation For azimuth estimation, we replicated the method of
Edun et al. (2021) using the Hough algorithm. They report MAEs ranging from 15.62
to 30.53 degrees depending on the type of panel considered, the most significant
errors associated with rooftop panels, and the smallest with ground panels. Our
replication is, therefore, in line with theirs, as we report an MAE of 22.70 degrees.
Surprisingly, we see very few improvements brought by the Hough method with
surface models. On the other end, the bounding-box method, which solely relies
on the PV polygon, is a very accurate approach, even outperforming the Theil-Sen
algorithm (in the case of photogrammetry DSM). The Theil-Sen method with LiDAR
data is the most accurate, as shown in Table 4.3.

Table 4.3 — Performance metrics for the estimation of the azimuth angle. The two
lines for the Theil-Sen method report the accuracy results whether photogrammetry
DSM or LiDAR DSM are passed as inputs. The best results are bolded and second
best underlined.

Method ME MAE RMSE Runtime
[°] [°] [°] [sec]

Hough (Edun et al., 2021) 2.10 22.70 40.26 0.04
Hough with DSM -0.73 23.78 43.66 2.50

Theil-Sen (Photogrammetry) -6.65 15.54 35.64 0.09
Theil-Sen (LiDAR) -0.08 3.10 4.38 0.09
Bounding-box -1.39 12.90 32.76 0.02

Installed capacity estimation Estimating the installed capacity requires the tilt
angle and the module efficiency. Indeed, we use the real surface rather than the

94



1. Identifying the limitations of the current approaches for PV systems mapping

projected surface as input to estimate the installed capacity. Rausch et al. (2020)
reported a nine percentage point increase in the median absolute percentage error
(MedAPE) 2 for estimating the installed capacity when considering the tilt angle. We
compared variants of the random forest estimator, with § coming from different
methods, to see how potential errors propagated. As it can be seen from Table 4.4,
all random forests perform equally. We can also see that these methods are only
slightly better than the clustered linear regression, which improves over So et al.
(2017). On a different dataset, the authors reported mean squared errors ranging
from 1.64 to 1.69, corresponding to a RMSE of 1.28 to 1.30 kW,,.

Table 4.4 — Performance metrics for the estimation of the installed capacity. Column
6 indicates the method used to derive the tilt necessary to compute the estimated
surface S., taken as input to estimate the installed capacity. "RF" indicates random
forest, and "TS" Theil-Sen. The best results are bolded and second best underlined.

Method ¢ ME MAE RMSE MAPE Runtime
[kW,1  [kW,]  [kW,]  [%] [sec]

Random forest RF 0.022 0.328 0.750 9.37 1.1e-1
(WithSest)

Random forest TS 0.061 0.393 0.848 11.48 4.4e-4
(with Sp.; and 6)

Random forest RF 0.079 0.379 0.921 10.66 4.3e-2
(with S,,,; and 0)

Clustered linear regression RF -0.015 0.376 0.687 11.57 7.2e-7

1.2.4 Choice of the methods for DeepPVMapper

Summarized results Table 4.5 summarizes the accuracy results of these meth-
ods. We can see a significant improvement gain when using LiDAR data, espe-
cially on the azimuth angle. We focused on rasters for a fair comparison with the
photogrammetry DSM, so the improvement could be more significant if we imple-
mented Theil-Sen directly on the raw LiDAR data (i.e., the point cloud). Besides,
a surprising result is that LiDAR data is better for azimuth angle than tilt estima-
tion. An explanation for this is that azimuth estimation is less sensitive to noisy
data points in the (z) elevation direction than tilt estimation. We highly recommend
using the Theil-Sen method if the DSM is precise enough (e.g., from LiDAR data).
Otherwise, the bounding-box method is competitive at a much lower computational
cost.
2. Rausch et al. (2020) define the MedAPE as

MedAPE = Median (yl 7y1|,.. |yn yl|>7

Rl

Y1 Yn
where y; denotes the true value and y; the estimated value.
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Table 4.5 - Accuracy results of PyPVRoof’s methods for PV panels characteristics
extraction.

Characteristic Method Accuracy (RMSE) [unit]
Surface Direct computation 6.9 [m2]
Tilt LUT 10.29 [°]
Theil-Sen (LiDAR) 14.7 []
Azimuth Bounding-box 32.8 [°]
Theil-Sen (LiDAR) 4.4 [°]
Installed capacity Linear regression 0.69 [kW,]

Selected methods Based on the results of Table 4.5, we chose the following
methods for each characteristic. The method in italics will be used for DeepPVMap-
per.

— Surface (horizontal projection): direct computation.

— Tilt angle: constant imputation, a lookup table, and Theil-Sen estimation. The
constant imputation works in all cases; the LUT turned out to be very com-
petitive compared to the random forests, and Theil-Sen is competitive when
surface models are available.

— Azimuth angle: We keep the lookup table method and the Theil-Sen estimation
to be used when surface models are available.

— Installed capacity: We keep the constant imputation of the module efficiency
and the linear models, as it turned out to be very competitive with the random
forests.

We integrate PyPVRoof after the classification and segmentation step. This step
returns a geolocalized PV polygon. Using the BDPV database, we calibrate the
regression coefficients for estimating the installed capacity from the surface of the
installation and the lookup table for deriving the tilt angle. The result is a data
frame where each line is a PV installation, and the columns record the localization
(latitude, longitude, and city), surface, installed capacity, tilt, and azimuth angles.

2 From DeepSolar to DeepPVMapper: how to make state-
of-the-art more reliable?

This section presents our approach for improving the reliability of current state-
of-the-art PV mapping algorithms. First, we introduce new evaluation metrics based
on the DTA defined in chapter 2. These metrics are more representative of the accu-
racy in operating conditions. These accuracy metrics enable a more comprehensive
evaluation of the algorithm’s configurations. Then, we discuss how we can enhance
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the architecture of the algorithm to reduce the number of false detections. To this
end, we introduce a new data preprocessing method whose aim is to reduce the
occurrence of false detections. This method involves inducing an overlap between
the thumbnails and focusing only on relevant areas.

2.1 Evaluation on metrics that are more representative of the op-
erational conditions

2.1.1 Overview of the usual accuracy metrics

F1 score (classification) The F1-Score is most widely used for evaluating the
accuracy of a classifier. In addition, some works (e.g., Mayer et al., 2020) use
Cohen’s x (Cohen, 1960).

The F1 score is the harmonic mean between the precision and the recall. The

. . . . TP

precision corresponds to the ratio of correct detections among detections P = TP FP
. . . TP
and the recall to the ratio of correct detections among the population, R = TP+ FN
The F1 score is then computed as
PxR
F1=2 4.1
"PtR (4.1)

The F1 score is a particular instance of the more general F; score,

(1+B%)PxR

Fy = (1+8) oy

where 3 is chosen such that the recall is 3 times as important as precision.

Cohen'’s « (classification) This index was introduced by Cohen (1960) and mea-
sures how the classifiers’ performance (measured by py) differs from an expected
classifier (measured by p.). Following Mayer et al. (2020), we have

=20 Pe (4.2)
1 — De
where
B TP+ TN
= TPy FPYTN+ FN’
and

(rP+FP)(TP+FN)+ (FN+TN)(FP+TN))
(TP+FP+TN + FN)? ’

Pe =

and TP, TN, FP, and FN stand for true positives, true negatives, false positives,
and false negatives, respectively. Cohen’s « is lower or equal to 1. If x < 0, then
the classifiers disagree. The closer « to 1, the higher the agreement between the
classifiers.
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Matthews correlation coefficient (classification) This score was introduced
by Matthews (1975) and is also known as the ¢ coefficient or the mean square
contingency coefficient. It is computed as

TP xTN —FP x FN

Mee= \/(TP+FP)(TP+FN)(TN+FP)(TN+FN)' (4.3)

Li et al. (2020) discussed this score in the context of PV panels detection. They
argued that Matthews correlation coefficient (MCC), which is more robust in report-
ing accuracy in imbalanced settings, should be preferred. The MCC takes values
between -1 and 1, -1 indicating that the classifier is always wrong, 0 indicating that
the classifier is random, and 1 indicating that the classifier is perfect.

Intersection-over-Union (segmentation) The Jaccard Index or Intersection-over-
Union (loU) score is a ratio that measures how well the predicted polygon over-
laps with a reference polygon. If both polygons overlap perfectly, their intersection
equals their union; thus, the ratio equals 1. On the other hand, if both sets are com-
pletely disjoint, the intersection is null, so the ratio is equal to 0. The loU between
two sets A and B is written as

|AN B

2.1.2 Deriving a representative testbench using the DTA

Limitation of existing metrics First, these metrics require ground truth anno-
tations and thus cannot be computed outside the test dataset or on a subset of the
mapping area that has been manually labeled. We have shown in chapter 2, section
2.2, that the evaluation on the test set is not necessarily representative of the per-
formance on the mapping area, mainly due to distribution shifts (see also Wang and
Deng, 2018). To the best of our knowledge, evaluation for remote sensing of PV in-
stallations only focuses on reporting the methods’ precision and recall. Malof et al.
(2019) evaluated the generalization of their method SolarMapper to Connecticut for
an algorithm trained over California using a small annotated sample in Connecticut.

More importantly, what ultimately matters to the user is not the classification nor
the segmentation accuracy but rather metrics related with rooftop PV deployment,
e.g., the installed capacity or the number of systems.

Towards more comprehensive model evaluation Mitchell et al. (2019) pro-
pose to use model cards, i.e., reporting documents that describe the performance
of machine learning models in a variety of settings as well as the cases in which
they are intended to be used.
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In our case, to report more faithfully the accuracy of the model and to reportitin
a more relevant way regarding the task at hand, we propose to use the downstream
task accuracy, introduced in chapter 2 section 2.2. We focus on the accuracy of
the estimation of the installed capacity as our analyses in chapter 2, section 3.2.1
showed that the tilt and azimuth angle estimation are already satisfying.

We recall the three metrics for evaluating the accuracy of the estimation of the
installed capacity: the MAPE, which compares the overall estimation of the installed
capacity with the reference; the detection ratio, which compares the number of de-
tections with the actual number of installations and the AIPE, which compares the
estimated average size of the installation with the actual average size of the instal-
lation. The MAPE measures the mismatch between the registered and the estimated
installed capacity at the city level. The detection ratio ensures that the algorithm
detects the correct number of installations. The AIPE indicates whether we under
or overestimate the size of the installations. By construction, a negative (resp. pos-
itive) AIPE indicates that, on average, we underestimate (resp. overestimate) the
size of the installations.

We evaluate the model with the DTA metrics on an area of 120km? near Lyon,
France. This area is sufficient for evaluating the benefits of our approach and suf-
ficiently small to enable multiple evaluations of variants of the mapping algorithm
in a limited time. We chose this area among several others in France as the geo-
graphical conditions vary with a densely populated urban area and a countryside
surrounding. The density of PV installations is also rather inhomogeneous, making
the area quite challenging for the algorithm. This benchmark is fully reproducible
by following the instructions on our public repository Kasmi et al. (2023c¢).

The evaluation using the DTA rather than the F1 Score or the loU enables a
comprehensive assessment of the mapping algorithm. Therefore, we will be able to
evaluate the impact of the different models (classification and segmentation) but
also the impact of architectural choices such as the one-step or two-step approach
and the effect of various modules such as the filtering module introduced in section
2.2 on the accuracy.

Proposed approach: reporting accuracy with standard metrics and DTA
metrics Our approach for evaluating the models is twofold: We evaluate the clas-
sification and segmentation models with the standard metrics and then the whole
pipeline with the DTA metrics. We designed the DTA to be more representative of
the fitness for the use of the algorithm for rooftop PV mapping. As the characteris-
tics extraction module of the mapping algorithm remains the same, differences in
the estimation are imputable to differences in the classification and segmentation
models.
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2.1.3 Comprehensive evaluation of the classification and segmentation
branches

Figure 4.5 sketches the relationships between the different evaluations carried
out in this study. Headings in the black boxes correspond to steps of the mapping
algorithm. Green boxes correspond to evaluation metrics. The size of the square
represents the perimeter of the evaluation. For instance, the perimeter of the eval-
uation with the F1-Score and Cohen’s « is the classification module of the algorithm.

F|Iter|pg/ Classification Segmentation Characterlstlcs
sampling extraction
F1-Score Metrics defined in
Cohens’ k loU section 1.3.
DTA Metrics

Figure 4.5 — Perimeter of the evaluations carried out in this study. Headers in the
black boxes correspond to the different modules of the mapping algorithm.

Evaluation of the classification models We consider several recent and popu-
lar classification models based on the Vision transformer architecture (Dosovitskiy
et al., 2021). We benchmark this model, alongside the ConvNext (Liu et al., 2022),
DeiT (data efficient transformer, Touvron et al.,2021) and ConvMixer (Trockman and
Kolter, 2023).

In addition to these models, we evaluate the gains from the data augmentation
strategies introduced in the previous chapter. We consider the Blurring + Wavelet
perturbation (WP) method. We do not consider alternative methods, as our eval-
uation in chapter 3, section 3.3.2 revealed that our data augmentation method
outperforms existing methods. We implement these data augmentation techniques
on a ResNet-50 backbone.

Segmentation branch Recent works in the field leveraged either DeeplLab-V3 or
variants of the U-net (Ronneberger et al., 2015) architecture. We benchmarked the
U-net architecture on BDAPPV to see whether it brought significant accuracy gains.

Evaluation of the architecture and sampling methods Finally, we compare
the benefits of the two-step architecture with the one-step architecture. To do so,
we set the classification threshold to 0 so that all images are passed to the segmen-
tation model. We also evaluate the benefits of the sampling approach introduced
in sections 2.2 and 2.3 using the DTA.
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2.2 Reducing the occurrence of false negatives through overlap-
ping the thumbnails

2.2.1 Motivation: an empirical observation

Do false negatives lie at the edge of the image? While analyzing the model’s
results, we observed that false negatives appeared more often when the PV panel
lies at the edge of the input image. We set up a small experiment on the BDAPPV
dataset to verify this assumption.

Figure 4.6 - Illustration of the cropping of thumbnails of a size of 224x224 pixels
from the raw BDAPPV image with a size of 400x400 pixels to simulate various
locations of the PV panel on the image. The black square is always included in the
smaller thumbnails, the red dashed lines indicate the boundaries of the thumbnails,
such that this black square is contained in the thumbnail.

Proposed approach We consider a model trained on BDAPPV using the standard
training procedure. As the raw images have a size of 400x400 and the input size of
the model is lower (typically 224x224), we can simulate the effect of the location of
the panel on the image by cropping the image using different cropping centers. We
consider a subset of 768 images for which the PV panel is entirely contained in the
center of the image (black squares on Figure 4.6). By definition, the image center’s
coordinate (in pixels) is (0,0). We consider cropping centers varying from -124 to
124, resulting in thumbnail boundaries within the red dashed lines in Figure 4.6.
This way, we ensure that the panel always lies in the image, but its location varies.
In appendix C, section 3.2, we display an example of thumbnails generated from
the raw image so that the position of the PV panel varies.

Results With our procedure, we obtain J® variants of the ith image. We index
each variant by the cropping center’s coordinates (z,y). By construction, all images
contain a PV panel. We compute the average predicted probability over the number
of images for each cropping center (z,y). Figure 4.7 (a) depicts the results. We can
see that the average predicted probability decreases as the cropping center moves
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away from the panel’s location. Applying the classification threshold, we can define
a region where the prediction remains a true positive (green area on figure 4.7 (b))
or becomes a false negative (red area).

(b) True positives/ 1.0

(a) Predicted probabilit false negatives

T o Amray boundaries T g X Panel center 0.8
S VA - S A Borderline location
A 05 SV 0.6
> 1 > Y
> A > A
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Center pixel (x coord) Center pixel (x coord) 0.0

Figure 4.7 — Average predicted probability (a) and true positives and false positives
domains (b) as the center of the thumbnail moves away from the location of the
panel.

2.2.2 Determining the maximal admissible distance

Definition From Figure 4.7 (b), we can define the borderline location b as the
closest cropping center (z3,y,) such that the model predicts a false negative. This
point corresponds to the white cross in Figure 4.7 (b).

Then, we can convert the distance between the borderline location and the im-
age center in meters. This distance corresponds to the maximal admissible distance
d*: if one wants to avoid false negatives, then one should place thumbnails center
no farther than this distance from each other. This way, we can reduce the prob-

ability of having false negatives. Equation (4.5) gives the formula for the maximal
admissible distance.

d* [m]= /22 + y? [px] x GSD [m / px], (4.5)

where (zy,y;) corresponds to the coordinates of the borderline location and GSD
corresponds to the ground sampling distance of the image. We assume that the
panel’s coordinates are (0,0).

Calibration By convention, in the standard (non-overlapping) case, the distance
do between two centers of neighboring thumbnails equals the thumbnail’s width. As
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the thumbnail size for ResNets is usually 224 pixels, dy =224 [px]x0.2 [m / px] =
44 [m].
According to Figure 4.7, the borderline location is (58,97), so

d* = /(58)2 + (97)2 [px] x GSD [m / px] ~ 113.02 x 0.2 [m] ~ 22.60 [m]. (4.6)

Moreover, the distance between two thumbnail centers decreases by about 50 %
compared to the non-overlapping baseline. The computations are made taking as
reference (0,0) the center of the thumbnail.

2.3 Reducing the occurrence of false positives by focusing on rel-
evant areas

2.3.1 Motivation: identifying the adequate region-of-interest boosts ac-
curacy

As underlined by Krapf et al. (2021), existing rooftop PV mapping pipelines strug-
gle to scale at the size of power systems or countries. One reason for that is the fact
that current methods do not target specific areas when carrying out mapping. By
definition, rooftop PV panels are located in anthropized areas, corresponding only
to a tiny fraction of a territory’s overall area.

The fact that the so-called region-of-interest (ROI) is orders of magnitude smaller
than the target area is a common feature of numerous remote sensing tasks (Uzkent
and Ermon, 2020) such as development mapping (Sheehan et al., 2019), poverty
mapping (Ayush et al., 2021) or object counting (Gao et al., 2020). However, know-
ing a priori which areas to target can be challenging (Meng et al., 2022). To over-
come this issue, Meng et al. (2022) introduced IS-Count, a strategy based on im-
portance sampling (IS), which consists to pick only representative areas for object
counting. Their approach achieves good accuracy while only mapping a small frac-
tion of the target area. Other works (Uzkent and Ermon, 2020; Ayush et al., 2021)
used reinforcement learning to choose which areas to scan. In addition to lowering
the computational burden, prior identification of the ROI also increases the accu-
racy of deep learning-based remote sensing (Kong and Henao, 2022).

Narrowing the focus to rooftops and urbanized areas The works mentioned
above introduced methods that help determine the ROl when the latter is unknown.
However, in our case, the ROI can be deduced from the localization of the buildings.

By definition, rooftop PV panels are located on rooftops. The location of buildings
is generally easily accessible (e.g., on OpenStreetMap or, in our case, using the BD
TOPO of the IGN).
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2.3.2 Finding the optimal sampling strategy

Preprocessing as spatial sampling In section 2.2.2, we showed that we need
to induce an overlap between the thumbnails passed to the classification model to
reduce the occurrence of false negatives.

We extract these thumbnails from a larger image tile. Extracting the thumb-
nails can be viewed as the definition of a set of locations (i.e., the center of each
thumbnail). The set of locations can be referred to as a mesh, and we may wonder
whether there is an efficient way of sampling this set of locations.

We state our problem as follows: We wish to find a mesh M = (my,,...,mz,),
i.e., a set of n thumbnail centers such that the distance between two thumbnails
centers m,, and my;, i # j should be lower than a maximal admissible distance d*
that depends on the ground sampling distance of the input overhead imagery.

For this, we determine a sampling strategy such that the distance between two
points is at most ¢ and the number of sampled locations is the lowest. We then
have a generic set of locations from which we pick only the points near a building.

Sampling strategies We consider several methods for generating the thumbnail
centers: the random strategy and the deterministic strategy. For the random strat-
egy, we consider two sampling schemes: the vanilla Monte-Carlo approach and the
Sobol approach, a quasi-Monte-Carlo (QMC) method known to increase the sam-
pling efficiency over the vanilla Monte-Carlo method. The vanilla Monte-Carlo ap-
proach rests on the np.random.uniform() method, based on the permuted congruen-
tial generator (PCG) family of algorithms for generating pseudo-random sequences
of numbers (O’Neill and College, 2014). The QMC or Sobol sampling method roughly
consists of forming successively finer interval partitions and reordering the coordi-
nates in each dimension. It spreads points more evenly in space than with the
vanilla random sampling method (Sobol, 1967). Our deterministic strategy defines
the points’ location according to a precomputed grid on the thumbnail.

Figure 4.8 illustrates the three strategies on a dummy grid. Each dot indicates
the center of a thumbnail. We can see that the deterministic strategy paves the
space better than the random strategies, leaving no empty locations.

Once we determine our best strategy, we evaluate the gains brought by our
method, measured by the number of target locations to investigate and the result-
ing computational cost it brings: the higher the number of locations, the higher the
computational cost.
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Figure 4.8 - lllustration of how sampling strategies would cover a tile. All strategies
represent n = 100 points.

2.3.3 Picking the most efficient sampling strategy

The deterministic sampling strategy is the most efficient We compared our
three sampling strategies and evaluated which one enabled us to reach the distance
d* between centers while generating as few thumbnails as possible. Figure 4.9
depicts the results: the best strategy is the deterministic strategy.

Multiplication of the number of points necessary to reach a maximal distance
between two points lower to the maximal admissible distance

\

—— Uniform

—— Sobol

—— Deterministic

—— Distance with no overlap

Target distance
(maximal admissible distance d*)
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Figure 4.9 - Increase in the number of points to reach a distance of at most d*
between two thumbnail centers according to the deterministic and random (Sobol
and Uniform) sampling strategies.
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Overall, our approach leads to a decrease in the absolute number of thumb-
nails Inducing an overlap increases the number of thumbnails. However, as we
combine this method with filtering using the BD TOPO, the overall number of thumb-
nails decreases as we focus on a smaller area. To quantify the gain yielded by the
building filtering, we generated a mesh of thumbnail centers and filtered it to keep
only the centers intersecting with a building. Results showed that, on average, over
300 tiles of 25km? each the sampling with BD TOPO leads to removing 83.1 % of
the points. This amounts to a decrease of 32.4 % in the number the points (hence
thumbnails) compared to the case with no sampling and overlapping strategy. We
discuss in section 3.1.3 and in appendix A, the broader implications of this result.

3 Results

In this section, we present the results of the benchmarks of the classification
and segmentation branches and discuss the evaluation of the model with the DTA
metrics. The evaluation with the DTA metrics highlights differences in the accu-
racy of models whose F1-Score is similar, thus highlighting the relevance of our
proposed evaluation method. We show that our sampling with overlapping and
filtering algorithm increases the accuracy. We discuss the implications regarding
the computational cost of this filtering process. Finally, to illustrate the practical
improvements brought by DeepPVMapper, we reexamine the cases introduced in
chapter 2, section 3 in the light of our new mapping algorithm.

3.1 The DTA reveals accuracy differences among models and the
better performance brought by the sampling

3.1.1 Accuracy on the test set

Classification We report the accuracy results on the training dataset BDAPPV
(Kasmi et al., 2023d) for various classification models in table 4.6. According to the
F1 score and Cohen’s k, the performance of the Inception-v3 is high (the F1 score
is 0.83 and Cohen’s « is 0.69), and alternative models only match its performance.
CNNs architectures (ResNet and Inception) show similar performance. In line with
Luzi et al. (2023), the benefits of transformer components only appear in hybrid
architectures. Overall, the performance improvements are modest. A reason for
this modest improvement could be that transformers have less inductive biases
than CNNs and, therefore, require more training data than accessible in popular re-
mote sensing datasets (e.qg., the Inria dataset (Maggiori et al., 2017) or DeepGlobe
(Demir et al., 2018) used by Luzi et al., 2023) to achieve good accuracy. Overall,
this benchmark shows that the accuracy measured by the F1 score saturates and
that recent and heavy architectures do not bring significant accuracy gains.
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Table 4.6 - Benchmark of various model architectures on BDAPPV (Kasmi et al.,
2023d). The best results are bolded and the second best results underlined.

Model F1 score (1) & (1)
Inception v3 (Szegedy et al., 2016) 0.83 .69
(baseline)
% ResNet-101 (He et al., 2016) 0.82 0.65
O ResNet-50 (He et al., 2016) 0.84 0.68
= ViT-B16 (Dosovitskiy et al., 2021) 0.81 0.64
= ViT-B8 (Dosovitskiy et al., 2021) 0.81 0.68
.'g ConvNext (Liu et al., 2022) 0.84 0.72
g DeiT (Touvron et al., 2021) 0.84 0.67
I ConvMixer (Trockman and Kolter, 2023) 0.83 0.67
§
'8 ResNet-50 + WP (Kasmi et al., 2023b) 0.82 0.62
fod

Segmentation Table 4.7 presents the results of the benchmark of the segmen-
tation models. We evaluated the U-Net model and saw that the performance lags
behind the baseline. de Luis et al. (2023) report similar results for the segmen-
tation branch on the IGN images of BDAPPV, with loUs ranging from 0.45 to 0.56.
The main reason is that there are not enough IGN samples (17,000) in BDAPPV to
achieve satisfactory performance. de Luis et al. (2023) achieve a good accuracy on
BDAPPV’s Google images (28,000 samples), in line with the accuracy reached on
Bradbury et al. (2016) (37,000 samples).

Table 4.7 - Benchmark of various model architectures for the segmentation branch.
The best results are bolded and second best underlined.

Model loU (1)

Baseline (Kasmi et al., 2023a) 0.85
U-Net (Ronneberger et al., 2015) 0.48

3.1.2 Downstream task accuracy

Overall results Table 4.8 presents the results according to the downstream task
accuracy. We can see that alternative models and the sampling process yield sig-
nificant accuracy improvements compared to the baseline. Using a ResNet or a
ConvNext model in the algorithm significantly improves the DTA (by all metrics)
compared to the baseline. The effect of the sampling also yields significant accu-
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racy improvements. These results demonstrate that the accuracy measured by the
F1 score on the test dataset (Table 4.6) is unreliable and that the DTA is more rep-
resentative of the performance in an operational setting. The baseline, the ResNet,
and the ConvNext models performed similarly on the test set. However, we can see
that they significantly differ when deployed over a larger area and in an operational
setting.

Table 4.8 — Accuracy results (DTA) on a 120km?2 area around Lyon, representative of
the operational conditions. The best results are bolded and the second best results
underlined.

Pipeline DTA
MAPE [%] Ratio [-] AIPE [%]

Baseline (Kasmi et al., 2022a) 55.7 1.29 15.4
ResNet-50 46.9 1.09 15.5
ConvNext 45.5 1.11 15.3
ResNet + Sampling/filtering 39.5 0.91 12.6
ConvNext + Sampling/filtering 38.8 0.84 18.2
Segmentation only 89.52 1.66 24.32
ResNet + WP 48.22 0.57 16.97
ResNet + Sampling + WP 40.62 0.82 21.48

Discussion Results from Table 4.8 show that the performance measured by the
F1 score (Table 4.6) is not representative of the true performance. Indeed, on our
dataset, models saturated at around 0.80, but when evaluating these models us-
ing the DTA, we can see sizeable differences in the accuracy. These results show
the relevance of going beyond standard accuracy metrics and benchmarks on test
datasets to evaluate model accuracy, as Vishniakov et al. (2023) also underlined.

Besides, the DTA metrics benchmark shows that the segmentation-only ap-
proach will likely generate many false positives by overestimating the installations’
number and size. On the other hand, adding the sampling process is very efficient
in increasing the accuracy of the mapping algorithm.

3.1.3 The filtering also yields efficiency gains

Overall, the filtering increases the efficiency To demonstrate these gains, we
evaluate the computational cost of the pipeline over our test area of 120km?2. Table
4.9 shows the results. We can see that the filtering increases by 31% the speed
of the process. Scaling up (linearly) to France could results in a spare of 39 days
of computations compared to the baseline. It highlights the benefit of mapping at
the grid scale by considering the relevant ROI, in our case, the areas that contain a
rooftop. In appendix A we discuss a simplified framework to estimate the gains in
energy consumption brought by this sampling method.
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Table 4.9 - Computational gains brought by the sampling. The best results are
bolded.

Variant Runtime Scale-up
[sec/km?2] [days]

Baseline (Kasmi et al., 2022a) 19.39 122.08
Sampling 13.19 83.04

3.2 Building and deploying DeepPVMapper

3.2.1 The pipeline of DeepPVMapper

1. PV panels segmentation

y O —— PV panel? '\:‘\%
BD ORTHO®

No

Sampling and Classification Segmentation
filtering

2. PV Characteristics extraction

1 ~ - ~

N —
] & —

Conversion as a PV

bolygon Auxiliary data inputs PV registry

Figure 4.10 - Flowchart of DeepPVMapper.

Overview Figure 4.10 shows our resulting mapping algorithm. The main differ-
ence with DeepSolar-based models is that we include a filtering module at the
beginning of the algorithm to select the relevant areas to inspect. The second
main difference is that our postprocessing module is based on PyPVRoof and does
not necessarily require having access to 3D data as it accommodates various use
cases (Trémenbert et al., 2023).

Preprocessing module Before passing images to the classification model, we
restrict ourselves to the relevant areas, which correspond to areas where there are
buildings. Besides, we also implement an overlap between the thumbnails passed
to the classification model to minimize the probability of false negatives.
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Classification and segmentation models We use the ResNet-50 model for
classification, as the ConNext model does not outperform the ResNet-50 whlie being
significantly larger. Using the ConvNext would not yield accuracy gains compared
to the ResNet but would require more computing power for inference.

Regarding the segmentation model, we stick with the DeeplLab-v3 model as
BDAPPV appears insufficient to train a segmentation model from scratch, and we
do not have larger datasets to pre-train a segmentation model on. Finally, the
performance of the segmentation branch is already satisfying.

Characteristics extraction Our characteristics extraction module is generic and
accommodates the absence of 3D data for estimating a tilt angle. As such data is
increasingly available in France, it will be straightforward to integrate this data into
the pipeline.

For our version of DeepPVMapper, we extract the characteristics of the PV instal-
lations using the bounding box for the azimuth angle and the lookup table for the tilt
angle. We use a clustered linear regression to estimate the installed capacity of the
installation. This parameterization is the same as our baseline model introduced in
chapter 2, section 3.1.1.

3.2.2 Returning to Cobrieux

Table 4.10 - Extract of the registry generated by DeepSolar and DeepPVMapper for
the city of Cobrieux (Nord).

DeepSolar DeepPVMapper
ID Surface Installed capacity ID Surface Installed capacity
29925 12.35 1.96 37677 42.59 5.61
29897 275.51 27.40 37682 20.73 2.77
29904 24.18 3.84 37685 21.73 2.90
29924 36.01 3.94 37692 12.26 1.81
29926 17.69 2.81 37695 21.98 2.93
29927 24.34 3.87 37703 27.91 3.68
29921 39.61 3.94
29913 12.59 2.00
29908 14.94 2.37
29910 19.78 3.14
29912 46.26 4.60
29901 38.16 4.17
Average size 5.34 3.28
(curated) 3.33
Reference 2.72 2.72

False positives are no longer present In chapter 2, section 3.3.2, we discussed
a problematic case where the number of installations was relatively accurate (12
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estimations for ten installations). However, the overall estimation of the installed
capacity was too high (64 kW,, while the target was 27 kW,). After running Deep-
PVMapper over this departement instead of our replication of DeepSolar, we fo-
cused on the city of Cobrieux. This time, the algorithm detects only six installations
out of 10, but the model no longer detects any outliers, such as the barn’s roof de-
picted on Figure 2.17. This translates into the fact that the average installation size
is more in line with what is expected from the RNI, as shown in Table 4.10. The ac-
curacy at the installation scale is even higher than the "curated" registry obtained
from DeepSolar. As the actual installed capacity is known, it is less damaging not to
estimate all the installations than to estimate a wrong distribution of the installed
capacities.

Analysis with the WCAM The WCAM further enables us to understand why
DeepSolar identified the barn’s roof as a PV panel and why DeepPVMapper did
not. Figure 4.11 shows the results. We can see that DeepSolar relies on small-scale
components (bottom of the WCAM), whereas DeepPVMapper does not. Therefore,
DeepSolar has been confused by these factors.

DeepSolar DeepPVMapper

Figure 4.11 - Comparison of the behavior of DeepSolar (left) and DeepPVMapper
(right) on the barn (false positive) that was detected by DeepSolar and avoided by
DeepPVMapper.
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3.3 Broader impact

Applying DeepPVMapper elsewhere The principle of the DTA can be expanded
to other European countries. Indeed, the RNI has counterparts in many other Eu-
ropean countries. It can be substituted by the Marktstammdatenregister (MaStR)
for Germany (Bundesnetzagentur, 2022) , the Stamdataregister for Denmark (En-
ergistyrelsen, 2022), the Datenregister in the Netherlands (CBS, 2024) or the Anla-
genregister in Austria (E-Control, 2023).

Reliable mapping The triplet DeepPVMapper, WCAM, and the DTA enable a re-
liable mapping of PV installations in France. As counterparts of the RNI exist else-
where in Europe, the same framework can be applied to other countries, using
these local counterparts as reference data for monitoring the model’s data. The
model will eventually see its performance decrease. However, the DTA enables
the quantification of this drop, and the WCAM enables the visualization of how the
model makes its prediction and can guide data processing or future fine-tuning. Be-
sides, it is unnecessary to acquire a lot of fine-tuning data to improve the model’s
performance (Freitas et al., 2023), at least if the region of interest lies in Europe.

A generic takeaway for applying the model elsewhere will be to rescale the in-
put images to have a ground sampling distance of 20 cm/pixel, aligned with the
resolution of the IGN, to keep the performance drop as low as possible. Indeed,
such downscaling will lower the noise in the image, which is the main driver for the
performance drop (see chapter 3, section 2.2.1 for more details).

Conclusion of the chapter

This chapter discussed the third pillar: improving the model’s robustness to ac-
quisition conditions. To this end, we introduce DeepPVMapper, which improves
upon the current state-of-the-art following three main directions: improvement of
the classification and segmentation models and the pipeline to reduce the proba-
bility of false detections, standardized extraction of rooftop PV characteristics using
our newly introduced Python wlibrary PyPVRoof and evaluation of the accuracy using
metrics that are more representative of the real-life conditions and enable a com-
prehensive evaluation of the performance of the model. Our evaluation showed
that DeepPVMapper is 16% more accurate and requires 31% less computing time
than an architecture based on DeepSolar. We also deployed DeepPVMapper over
the problematic cases identified in chapter 2, section 3 to show that it effectively
addresses the issues that we encountered with our replication of DeepSolar in these
cases.

Finally, we discussed the broader applicability of our method in new areas. The
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DTA can be estimated using equivalent databases available in some European coun-
tries. The WCAM enables the audit of the model’s decision process and can guide
training methods or image filtering to improve the accuracy of unseen images.
These results show that DeepPVMapper enables reliable mapping of PV installa-
tions as it is built to generate as few errors as possible, can be monitored with
the DTA, and is an auditable model thanks to the WCAM. In the next chapter, we
will discuss how we use the data of this registry for estimating rooftop PV power
production and improving rooftop PV observability.
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Chapter

Assessing the gains of the reqistry
for estimating the rooftop PV power
production

Summary

This chapter studies whether the registry can improve rooftop PV observ-
ability, defined as the transmission system operator’s ability to estimate
real-time and future power production accurately. We propose an ap-
proach that estimates the individual PV rooftop power production with
the basic conversion model from Dobos (2014) and weather data. For
this method to improve PV observability, it should enable accurate esti-
mation, achieve better performance compared to other approaches that
do not require conversion models, and scale up to the size of power sys-
tems. Using ground truth measurements of 900 rooftop PV systems, we
demonstrate that our approach meets these three requirements and thus
has the potential to improve rooftop PV observability. The main limita-
tions of our approach lie in the fact that we were limited by the size of
our ground truth measurements to study how our approach scales up.
Further work is needed to see how this approach performs compared to
current methods employed to estimate rooftop PV power production.
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1 Additional requirements for improving rooftop PV ob-
servability

The PV registry that we’ve built following the methodology introduced in the pre-
vious chapters is not sufficient for improving rooftop PV observability. This registry
contains the characteristics of the PV systems (tilt and azimuth angle, installed ca-
pacity and localization). In the introduction, we defined PV observability as the abil-
ity of the TSO to estimate a power unit’s real-time and future production accurately.
In addition to knowing the true localization and characteristics of the installations,
we need weather data, and ground truth measurements to measure the accuracy of
the estimation of the PV power curves from the PV characteristics and the weather
data. This section introduces the ground truth measurements and the weather data
that we will use in addition to our PV registry.

1.1 BDPV ground measurement data
1.1.1 Overview

Description Thanks to the non-profit association Asso BDPV, we had access to
ground truth PV power production measurements of 1,793 individual PV systems.
These measurements span over France and have a granularity of 30 minutes. Exist-
ing datasets contain less installations, for instance de Hoog et al. (2021) had access
to PV systems measurements for 740 systems (at a time resolution of 5 minutes) of
businesses and homes in Western Australia, and Perera et al. (2022) used the Pecan
Street’s Dataport (Pecan Street, 2024), which contains measurements at a 1-minute
resolution for 73 households across the United States. The closest database from
ours is the data provided by IBW, the local utility of Wohlen in Switzerland. This
dataset contains PV power generation profiles of 15 homes and the PV systems’
technical characteristics, used by Walch et al. (2021).

This data complements our existing data, which contains the localization and
technical characteristics of the PV installation. This means that with these mea-
surements, we have all the necessary information to carry out rooftop PV power
estimation, from detecting the installation on aerial images to estimating the accu-
racy of the power production estimation. We also know the precise location of the
installations, contrary to de Hoog et al. (2021), who relied on postcodes.

Visualizations Figure 5.1 plots the localization (Figure 5.1a) of the PV measure-
ments and examples (Figure 5.1b) of power output time series coming from our
dataset. In the following chapter, "power output time series" and "PV yield time
series", "PV power production" refer to the same data.
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Figure 5.1 - Localizations and example of power curves contained in our PV mea-
surements dataset.
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1.1.2 Quality checks

To control the quality of the data, we controlled the alignment between the PV
measurements and a PV power estimation generated from solar irradiance and tem-
perature data. We also manually inspected the data to remove faulty and biased
measurements. We remove installations for which we have too few measurements
or too many periods with no measurements. Over the 1,793 raw installations, 906
passed our quality checks. We refer the reader to appendix C, section 4.1 for ex-
amples of production reports leveraged to filter the faulty measurements.

1.1.3 Descriptive statistics

On our curated dataset, we have, on average, 27,346 measures per installation,
corresponding to an average duration of 569,7 days of observations. The time
window spans from December 2, 2020, to February 15, 2023. Table 5.1 summarizes
the key descriptive statistics regarding our data.

Table 5.1 - Summary statistics on the PV power measurements. The load factor is
the ratio between the PV power production at time ¢ and the installed capacity of
the installation.

Variable Unit Min Max Mean Median
StartDate [-] 2020-02-12 23:00:00 2023-01-14 23:00:00 - -
EndDate [-] 2020-05-31 22:00:00 2023-02-15 22:30:00 - -
Max capacity factor [W/W,] 0.00 1.00 0.82 0.83
Mean capacity factor [W/W,] 0.00 0.21 0.13 0.13
Median capacity factor [W/W,] 0.00 0.04 0.00 0.00
Number of measures [-] 289 51716 27346 28242
Installed capacity  [W,] 0.60 62.04 3.65 2.96

1.2 Solar radiation and temperature data

Our conversion model will take two main kinds of weather variables as inputs:
solar radiation and temperature. The solar radiation data comes from The Coper-
nicus Atmospheric Monitoring Service (CAMS), and the temperature and weather
data from the ECMWF Reanalysis v5 (ERAS).

1.2.1 Solar radiation: Copernicus Atmospheric Monitoring Service (CAMS)

The CAMS solar radiation services (Qu et al.,, 2017) provide historical values
(2004 to present) of global (GHI), direct (BHI), and diffuse (DHI) solar irradiation, as
well as direct normal irradiation (BNI). We also have clear-sky values (i.e., irradiation
values with no clouds). These clear-sky values are obtained using aerosol, ozone,
and water vapor information from the CAMS global forecasting system. Other prop-
erties, such as ground albedo and ground elevation, are also considered. Similar
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time series are available for cloudy (or all-sky) conditions. However, since the high-
resolution cloud information is directly inferred from satellite observations, these
are currently only available inside the field-of-view of the Meteosat Second Gener-
ation (MSG) satellite, which is roughly Europe, Africa, the Atlantic Ocean, and the
Middle East with a nadir (directly below the satellite) spatial resolution of 3 km and
a temporal resolution of 15 minutes.

Table 5.2 — Description of the main variables included in CAMS.

Name Unit Description

BHI  Wh.m™? Direct horizontal all sky irradiation
BHIc Wh.m™? Direct horizontal clear sky irradiation
BNI  Wh.m™2 Direct normal all sky irradiation
BNIc Wh.m™2 Direct normal clear sky irradiation
DHI  Wh.m™?  Diffuse horizontal all sky irradiation
DHIc Wh.m™? Diffuse horizontal clear sky irradiation
GHI  Wh.m™2 Global horizontal all sky irradiation
GHIc Wh.m™ Global horizontal clear sky irradiation

Table 5.2 summarizes the main variables. We consider the 15-minute values for
a time interval covering the period between 2020 and 2023. The data has various
spatial resolutions, but we can interpolate the values at the point of interest. In
our case, we consider the latitude and longitude of the PV installations as points of
interest. Figure 5.2 presents a sample of the time series provided by CAMS for two
consecutive days.
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Figure 5.2 — Example of solar irradiation time series provided by CAMS for an instal-

lation located near Toulouse, France. The first day is cloudy, and the second day is
sunny.
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1.2.2 Temperature data: Copernicus Climate Change Service (C3S)

The Copernicus Climate Change Service (C3S), operated by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), provides the temperature data.
Our data source is the 5th reanalysis of the ECMWF data (ERA5, Hersbach et al.,
2020)

A reanalysis combines climate model data with observations from across the
world into a globally complete and consistent dataset using the laws of physics.
This principle, called data assimilation, is based on the method used by numerical
weather prediction centers, where every so many hours (12 hours at ECMWF), a
previous forecast is combined with newly available observations in an optimal way
to produce a new best estimate of the state of the atmosphere, called analysis,
from which an updated, improved forecast is issued. Reanalysis works similarly but
at a reduced resolution to provide a dataset spanning several decades. Reanalysis
does not have the constraint of issuing timely forecasts, so there is more time to
collect observations and, when going further back in time, to allow for the ingestion
of improved versions of the original observations, which all benefit the quality of
the reanalysis product.

We only use the 2m temperature for a single latitude and longitude pointand at a
temporal resolution of 1 hour (linearly interpolated to get a temperature value every
30 minutes). Finally, we always consider the same reanalysis data for our study to
make our results homogeneous. Figure 5.3 displays an example of a temperature
time series we use.
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Figure 5.3 — Sample of 2m air temperature from ERAS5.
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1.3 PV registry

We consider the PV registry generated with DeepPVMapper. At the time of writ-
ing, this registry contains more than 100,000 installations. However, in this study,
we aim to evaluate the data quality to estimate rooftop PV power production. There-
fore, we intersect this registry with the installations from the training database
BDAPPV for which we have ground truth characteristics and PV power measure-
ments. We have 1,485 installations in the test set of BDAPPV, which we intersect
with the 904 clean power measurements. We end up with 294 unique installations.
Table 5.3 presents some descriptive statistics of the PV registry used in this chapter.

Table 5.3 - Descriptive statistics of the PV systems’ characteristics extracted from
the PV registry for the systems used in this study.

Variable Unit Min Max Mean Median n
Installed capacity kW, 1.29 38.84 3.12 2.68 276
Tilt angle Degrees 11.88 51.63 26.83 26.12 276

Azimuth angle Degrees -90.00 90.00 4.23 0.00 276

2 Assessing the relevance of our approach

The previous section introduced the additional requirements besides the PV reg-
istry for improving rooftop PV observability. In this section, we present our method
for improving rooftop PV observability and assessing the relevance of our approach
towards this end. Our approach will improve PV observability if it enables an ac-
curate measurement of the production of the PV systems and if it can scale up to
thousands of installations. Finally, our approach is relevant if it provides an im-
provement compared to competing approaches.

2.1 Evaluation metrics

Throughout our study, we will evaluate the rooftop PV power estimation accuracy
using the root mean squared error (RMSE) and the percentage RMSE (pRMSE). We
define the RMSE as

RMSE = | 23"~ (5.1)

where §; is the estimated target value (e.g., PV power production in W), y; is the
true value, and n is the number of samples. Besides, we define the pRMSE as

RMSE;

pRMSE; =
bpPv,;

100, (5.2)
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where j is the index of the PV system that we consider. In other words, the pRMSE
is the RMSE normalized by the installed capacity. The pRMSE also corresponds to
the normalized RMSE (nRMSE).

2.2 Proposed approach for improving rooftop PV observability
2.2.1 An installation-based approach

Following Saint-Drenan (2016), we restricted our search for characteristics to
the set of minimal characteristics that impact PV power estimation the most. These
parameters are the system size, tilt, and azimuth angles. Therefore, we input these
parameters leveraging the data from the registry. The other parameters are set to
their default values. As we rely only on limited information, we used the simplest
possible model, the PVWatts model (Dobos, 2014).

2.2.2 Conversion model

Overview We use the conversion model PVWatts (Dobos, 2014). This model takes
as input the effective plane-of-array (POA) irradiance and the module temperature
and returns the DC power of the module. The effective POA irradiance corresponds
to the POA irradiance, taking into account the optical losses of the module. These
losses are accounted for following the method of Martin and Ruiz (2001). The com-
putation of the POA irradiance requires knowing the module’s tilt and azimuth an-
gle. Dobos (2014) takes into account several other parameters, as displayed on
Table 5.4.

Table 5.4 - Set of minimal PV system characteristics for the conversion model Pa-
rameters that we input are bolded, advanced parameters are in italics. Source:
Dobos (2014).

Field Unit Default value
System size kw 4
Module type {Standard, Premium, Thin film} Standard
System losses % 14
Array type {Fixed open rack, Fixed roof mount, Fixed open rack

1-Axis, Backtracked 1-Axis, 2-Axis} Fixed open rack
Tilt angle degrees Site latitude
Azimuth angle degrees 180° (Northern hemisphere),
0° (Southern hemisphere)

DC/AC ratio ratio 1.1
Inverter efficiency % 96
Ground coverage ratio (1 axis only) fraction 0.4

Computation of the POA irradiance The POA irradiance corresponds to the
solar irradiance incident on a surface that is adjusted to the tilt and azimuth an-
gle of the array. It represents the solar energy reaching a surface considering its

122



2. Assessing the relevance of our approach

orientation towards the sun. The POA irradiance can be decomposed into three
components:

— A direct component (POA direct or beam irradiance): This is the solar radiation
that reaches the surface in a direct line from the sun. It is the sunlight that
travels directly through the atmosphere without being scattered or reflected,

— A diffuse component (POA diffuse irradiance): This is the solar radiation that
reaches the surface after being scattered by molecules and particles in the
atmosphere. It includes the sunlight that comes from all directions other than
the direct path from the sun,

— A reflected component (reflected irradiance): The portion of sunlight that is
reflected off nearby surfaces, such as the ground or surrounding structures,
and reaches the surface of the PV module

The sum of these components gives the total POA irradiance. We leverage the
Python library pvlib (Holmgren et al., 2018) to compute the POA irradiance. The
function takes as input the solar zenith angle (SZA), the solar azimuthal angle, the
top-of-atmosphere (TOA) sun position, and the three components of solar radiation
(GHI, DHI, and DNI).

Computation of the module temperature The performance of a PV module
depends on its temperature and decreases when the temperature increases. We
estimate the module temperature following ?, given by (5.3):

kthermGPoat
— a. (5.3)
In other words, the module temperature at time ¢ corresponds to the sum of the
temperature at 2 meters, and the temperature increases due to the exposition of
the module to the solar radiation. The temperature increase is weighted by the
factor kinerm, Mmeaning that we assume a linear relationship between the increase
in temperature and the global POA (GPOA) irradiance at time t. Gy, denotes the
irradiance under standard test conditions (STC) and is equal to 1000 W/m?

Tmodule,t = T2m,t +

Computation of the effective POA irradiance The effective POA irradiance
corresponds to the POA irradiance after accounting for the optical losses of the
module. To account for these losses, we implement Martin and Ruiz’'s IAM (incident
angle modifier) model (Martin and Ruiz, 2001; Martin and Ruiz, 2002, 2005). This
model returns incident angle modifiers (IAMs) applied to the POA irradiance to ob-
tain the effective POA irradiance. Intuitively, this model accounts for the fact that
the glass on the PV module reflects that the angular losses (AL) of PV modules are
a function of the solar incident angle 640; (Martin and Ruiz, 2001). We considered
reference values for a monocrystalline module.
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_ 1—exp(—cos(faor) /ar) _
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T (A01)
AL (0 =1-——7"=1 5.4
(0a01) T(0) (5.4)
where T(z) is the weighted transmittance at incident angle », R(x) the weighted
reflectance at incident angle = and «a, the angular losses.
Then an angular factor f;,, corresponding to the IAM, is defined as the ratio
between the module’s short circuit current I,. at indecent angle 640, to the I, at

normal incidence.

_ Lc(Baor) 1= R(0ao1)
J1a = I5.(0) cos (B a0r1) T R(0) (5.3)

We compute the IAM for the three components of POA irradiance, and the effec-
tive POA is given by

POActf = foeam X Groa + faiff,sky X Dpoa + fdiff,ground X RpPoa (5.6)

Where f, corresponds to the IAM, Gpo the direct POA, Dpo4 the diffuse POA com-
ponent, and Rpp. the reflected POA component. Figure 5.4 illustrates the different
components of solar radiation considered to compute the effective plane-of-array
incidence. "Direct," "Diffuse," and "Reflected" correspond to the components of
solar radiation.

= Direct
(beam) Diffuse

GSZA

BAOI

Figure 5.4 - Illustration of the POA irradiation modeled with our approach. 6 indi-
cates angles, "AOI": "angle of incidence" and "SZA": solar zenith angle. The light
gray surface is flat, and the dark grey surface is tilted with tilt angle 6.
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2.2.3 Wrap-up and visualization

Model summary The PVWatts PV model (Dobos, 2014) estimates the DC PV
power ppy,; production at time ¢ according to Equation 5.7,

POAcys (0,9)
Gste
where POA.sf(6,¢) is a function of the tilt angle ¢ and the azimuth angle ¢ of the
installation, Ppy is the installation’s installed capacity and v,,. is an efficiency factor
that reflects the decrease in the module’s performance with the temperature. The

temperature corresponding to the standard test conditions is 25°C and v, to -0.002
K1,

PPVt = X Ppy % (1 + Ypde (Tmodutet — Tste)) » (5.7)

Visual check Figure 5.5 presents the estimation of some generation curves using
this model. This small example illustrates that our estimation is well calibrated:
the PV power production is well estimated, and there are no lags in the temporal
variables.
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Figure 5.5 — Power curves generated with our conversion model plotted against the
corresponding ground truth measurement for one installation.

2.3 Assessing the relevance for improving PV observability

Assessing the relevance of our approach for improving rooftop PV observabil-
ity requires addressing three questions: First, how accurately does our approach
estimate the individual rooftop PV power production? Second, does this approach
improve over existing approaches? Finally, how does this approach scale up? In-
deed, in practice, we aggregate individual estimations for thousands of PV systems.
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2.3.1 Assessing the accuracy and relevance of our approach

To assess whether our approach is accurate and relevant for improving PV ob-
servability, we compare our approach with ground truth measurements and define
a set of baselines against which we compare our model. We define this set of base-
lines because approaches typically used to infer PV production and presented in the
introduction rely on the assumption that there are many PV systems in a given grid
point, which does not hold with our ground truth measurements.

The information-free baseline We consider an information-free or naive base-
line consisting in parameterizing the conversion model with default values of 30° for
the tilt angle and 180° for the azimuth angle. We always consider that the installed
capacity is known as it is the only information accessible at the disaggregated scale
for RTE. This approach is inspired by the method of Walch et al. (2020) who derive
PV power measurements from solar irradiance data with a workflow that assumes
a tilt angle of 15° or 0° depending on the surface of the installation and an azimuth
angle of 180° We refer the reader to Walch et al. (2020) for more details on their
modeling approach.

Statistical or implicit baselines We consider another instance of baselines,
which we call statistical. These approaches aim to evaluate the relevance of our
proposed modeling approach in an operational setting and obtain comparisons in
terms of accuracy with simpler approaches. For this statistical baseline, we make
the strong assumption that we have access to PV power measurement records and
can estimate the PV power production using a model trained on these metered
installations.

Our statistical models are trained on a held-out dataset of PV power measure-
ments coming from BDPV. We take as input the solar irradiance and temperature
data, the sun position, and the installations’ installed capacity. We also refer to this
approach as implicit because the parameters of the conversion model are inferred
during training. We consider two instances of models: a linear regression and a neu-
ral network. Our neural network model is a simple one-hidden layer network with
128 hidden neurons. We trained it using a learning rate of 0.001 over 15 epochs
(iterations on the whole training dataset) and a mean squared error (MSE) loss.

Table 5.5 presents the RMSE and pRMSE reached by our statistical models after
training on the test set. We looked for the best model hyperparameters for the
neural network through grid search.

Comparison with the Oracle We evaluate all our approaches against an Oracle,
that is, our conversion model parameterized with the actual tilt and azimuth values
taken from BDPV. We include this Oracle as an indication of the upper bound on
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Table 5.5 - Accuracy (RMSE in [W] and pRMSE in [%] in parenthesis) of the statistical
models considered in this study on their test dataset. n indicates the number of
samples (here: number of power measurements in the test set).

Model RMSE [W] n
(PRMSE) [%]

Linear regression 666.24 5705320
(8.86)

Neural network 986.28 5705320
(11.41)

accuracy that it is possible to achieve with our approach, combining a conversion
model and weather data. The error of the Oracle encompasses the uncertainties
inherent to CAMS solar radiation, the ERA5 air temperature, and the conversion
model, neglected factors in our modeling (shadows), and errors in the tilt and az-
imuth angles reported in BDPV.

2.3.2 Scaling-up: evaluating the impact of aggregation on the accuracy
of the PV power estimation

Definitions We define the characterization error as the effect of an error in the
estimation of the PV system’s parameters for estimating the PV power production.
We denote ¢* and 6* as the true parameters, assumed to be those imputed in BDPV.
Given an installation, we denote [z, Z] the range of perturbations around a variable
z and ppy () and phy, () the PV power estimation at time ¢ with the true parameters
and with the parameters z, respectively. We focus on the estimation error of the tilt
and azimuth angles, as we assume that the true installed capacity is known.

Estimation of the individual characterization error We study the behavior of
the estimation error as the number of plants included in the estimation of the PV
power production increases. Saint-Drenan et al. (2016), decomposes the RMSE of
the aggregated PV power estimation as

1 & (02t
RMSE = \l ﬁtz (U(}\([) +u§(t)> , (5.8)

where N denotes the number of plants, N; the number of time steps, and oy(t)
and u(t) the standard deviation and the mean of the original power plants at time
t. It follows that from Equation 5.8,

1

RMSE "=%° | —

Ny
> ud), (5.9)
t=1
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if the individual estimation errors are independent (central limit theorem). The
sources of error in the framework of Saint-Drenan et al. (2016) are the irradiation
variability and the variability in plant characteristics. Our framework adds an ad-
ditional source of variability, the variability in the characterization error of the PV
plants. This source of error should also be independent if one wants the RMSE to
converge towards the population mean.

We introduce a framework to empirically study how the aggregated error be-
haves when the characterization error is not independent from one system to an-
other, i.e., that it has systematic biases. We then identify which regime Deep-
PVMapper belongs to empirically assess how the PV power estimation error will
behave with our methodology.

Evaluation framework We consider the simulation p},,, computed with the true
parameters, as the reference. Then, we define ranges of perturbations around
these true values. To avoid irrelevant values, the range of perturbations is bounded
by 0 and 90 for the tilt angle and remains in the [-180, 180] interval for the az-
imuth angle. For each combination (¢,6) € [¢, 4] x [#,0], we simulate the PV power
production and compute the pRMSE between p},, and p‘ﬁg{’/. We iterate through all
installations contained in our database.

Figure 5.6 presents examples of the error matrices that we obtain for individual
installations. We can see that the error is at its lowest when the parameters corre-
spond to the true parameters. By definition when (¢,0) = (¢*,6*) the error is null.
We can also see that, as expected, when 6 = 0, the error does not depend on the
azimuth angle.

Aggregation to a fleet of systems We aggregate power curves generated with
wrong configurations to study the effect of the individual characterization error on
the aggregated PV power production. We assume that all other sources of error
remain identical so that the only variation in the error is caused by a variation in
the PV system’s parameters. We list all possible biases and label them from "No
bias" to "VIIL." Table 5.6 summarizes these cases.

We first consider a given number of installations n. Then, we generate a bias
during the aggregation by picking tilt and azimuth values for each installation i
{1,...,n}. We constrain the way of picking tilt and azimuth values depending on the
bias case we are interested in. For instance, if we are interested in case (ll), we
pick tilt values in [0, 9_] (no bias in the estimation of the tilt) and azimuth values in
[¢*, ¢] (upward bias in the estimation of the azimuth angle).

Then, we compute and aggregate the PV power production using the sampled
values and compare the error of the aggregated production with the true produc-
tion. The number of installations n we consider for our aggregation varies from 6
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Figure 5.6 — Examples of individual characterization error. The red star shows the
localization of the true parameter values, where the characterization error is equal

to 0 by construction.

to 24. We defined these clusters of installations from our database by considering

nearby installations.
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Table 5.6 - Summary of the cases for aggregating the characterization errors from
the installation level to the representative cell level.

Case Direction of the bias on ¢ Direction of the bias on 6

No bias None None

() Negative None

(1)) Positive None
(m) None Negative
(1v) None Positive
(V) Positive Positive
(Vi) Positive Negative
(vn) Negative Positive
(vin) Negative Negative

3 Our approach paves the way towards better PV ob-
servability

In this section, we present our results. We first stress out the added value of
estimating rooftop PV characteristics for estimating the PV power production, at the
individual level. We then underline some conditions that need to be satisfied for the
estimation to remain accurate when we aggregate the installations. Finally, we lay
out directions towards comparing our method with the TSO’s current methods for
estimating the PV power production.

3.1 Improving rooftop PV observability
3.1.1 Rooftop PV is observable

Table 5.7 shows the results of the comparison of our method with alternative
baselines. The main result is that it is possible to improve rooftop PV observability.
We can derive accurate rooftop PV power measurements at the installation scale
using a simple conversion model and limited information on the PV system. The
estimation error, measured by the pRMSE, is about 10%. This approach does not
require access to ground truth PV power measurements and can be used as a first
approach to estimate or reconstruct rooftop PV power measurements.

The error between our approach, the information-free approach, and the Oracle
are not statistically significant: this shows that the parameterization has little effect
on the estimation error compared to other factors, which are not accounted for in
this study (e.g., the shadings).

We can see that the linear regression approach performs surprisingly well. The
difference between our approach and the linear regression is not significant. This
result is two-sided: on the one hand, it tells us that our method achieves about the
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Table 5.7 — Comparison of the RMSE [W] and pRMSE [%] (in parenthesis) of the
estimation at the individual installation scale with parameters from DeepPVMapper.
Best results are bolded and second best underlined. n indicates the number of
installations used in this study.

Case Min Max Mean Median n
[W] (W] [W] [W]

Oracle 114.61 2137.82 281.53 223.06 255
(3.90) (26.49) (8.36) (7.66) 255

DeepPVMapper 119.56 3001.42 332.57 245.33 255
(4.15) (43.39) (10.10) (8.18) 255

Explicit

Information-free 147.43 2972.53 353.63 283.37 255
(6.15) (26.15) (10.37) (9.90) 255

Linear regression 134.42 7663.42 392.97 257.21 255
(4.67) (33.27) (10.18) (8.86) 255

Neural Network 408.24 9182.32 749.90 609.91 255
(8.67) (32.78) (21.11) (20.94) 255

Statistical

same accuracy as a linear regression!. On the other hand, it underlines that if PV
power measurements are available, our conversion model does not bring significant
improvements with a statistical approach calibrated on these measurements. The
central assumption for this second result is that the training dataset is representa-
tive of the test dataset.

3.1.2 Temporal and spatial patterns

Seasonal patterns Figure 5.7 decomposes the pRMSE of the estimation of the PV
power production with DeepPVMapper and the conversion model for each time of
the day. A time-of-the-day (TOD) timestep corresponds to a 30-minute interval. For
each TOD timestep and each installation, we compute the pRMSE of the PV power
estimation. We obtain 255 estimations for each time interval, enabling us to derive
a global mean and median (blue and orange curves, respectively) and interquartile
ranges showing the dispersion of the errors across installations as a function of the
TOD timestep.

On the "all year" chart, we only filter dates according to their hour of the day.
We can see that the error is null during the night and increases to reach a peak
during the day.

On the bottom charts, we filter the dates to keep only the Winter and Summer
months. Summer months correspond to the months from June to September, and

1. It is not entirely unexpected as the PVWatts conversion model is fundamentally a linear trans-
formation of the temperature and the Gpp 4.
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Winter months from December to March (4 months each).

We can see that the error is largest during winter and is high throughout the
day. On the other hand, during Summer, the error is high at dawn and dusk but
decreases around noon.

The poorer performance of our model during winter, dawn, and dusk may be at-
tributable to the fact that we do not take shadings into account. Indeed, Walch et al.
(2020) reported a similar behavior with their model, which did not consider shad-
ings. Another possible explanation is that our model neglects the self-consumption
of power inverters and the behavior of the modules with low luminance.

All year
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Figure 5.7 — 30-minute pRMSE of the estimation of the PV power production using
DeepPVMapper and the conversion model. The interquantile range plots the range
between the 5th and 95th percentile.

Geographical variability Figure 5.8 plots the pRMSE for each installation de-
pending on its recorded localization. The error in the East of France is higher than
in the West of France. It could again be a consequence of the absence of shadings
in the model. Indeed, Eastern France is more hilly than Western France, so shadings
may be more critical. It could also be caused by differences in solar irradiation be-
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tween the West and East due to differences in the types of climates between these
regions. The geographical variability of the Oracle (see appendix C, section 4) is
similar.
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Figure 5.8 — Geographical variability of the pRMSE [%] of the PV power estimation
depending on the localization of the installation.

3.2 The impact of characteristics estimation biases on accuracy

Table 5.8 - pRMSE [%] of the aggregated rooftop PV power production estimation
under different estimation biases of the PV systems’ characteristics.

Case Min Max Mean Median n

No bias 2.68 9.59 559 5.35 461
(I) Negative bias on the azimuth 4.03 15.18 9.88 9.38 461
(Il) Positive bias on the azimuth 1.76 5.81 2.49 461
(IIl) Negative bias on the tilt 3.10 9.55 6.30 6.10 461
(IV) Positive bias on the tilt 3.01 10.03 6.01 5.72 461
(V) Positive bias on both 1.85 5.70 2.97 461
(VIl) Negative on azimuth, positive on tilt 1.93 7.24 3.36 3.28 461
(VIII) Negative on both 4.82 16.07 10.66 10.16 461
Oracle for an individual installation 3.90 26.49 8.36 7.66 255

Overall results To estimate the effect of the aggregation on the characterization
error, consider the 9 cases described in section 2.3.2. Table 5.8 presents the re-
sults. We can see that the average characterization error is the largest when there
is a negative sampling bias on the tilt or the azimuth. A "negative" bias means that
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the azimuth angle is estimated slightly westwards compared to the true value for
the azimuth. On the other hand, a positive bias on either the tilt or the azimuth is
not a problem. Most of the sensitivity comes from misspecification of the azimuth
angle rather than the tilt angle, in line with Saint-Drenan et al. (2015). Compared
to the estimation of the PV power production for a single installation, aggregation
nonetheless brings improvements, except in the worst cases. Our results suggest
some errors in the tilt and azimuth angles reported in BDPV. For instance, a posi-
tive bias (i.e., the azimuth pointing more eastwards than in reality) entails a lower
pRMSE than without bias.

Aggregation dynamics Table 5.8 discusses static results. We then considered
the effect of increasing the number of installations in the sample on the characteri-
zation error, depending on the latent estimation bias. Figure 5.9 plots the results for
the unbiased case, the worst cases (1) and (VIII) and the best cases (1) and (V).
On the charts of Figure 5.9, we plot the pRMSE as a function of the number of in-
stallations. We generated increasingly larger clusters of installations based on their
geographical proximity. A limitation of this approach is that we have more small
clusters with six installations than large clusters with 24 installations. Therefore,
estimating the standard deviation of the pRMSE in large clusters is not necessarily
possible. Nevertheless, we compute the mean and median pRMSE and, if relevant,
the standard deviations. Surprisingly, in the unbiased case, the increase in the
number of installations does not decrease the overall PV power estimation error.
This decrease only happens in the case (ll).

Our results show no decrease in the RMSE when we aggregate the power curves
as we would have expected, except in one case. However, we should note that
we deal with very small sample sizes. Our study indicates that the error does not
necessarily decrease as the sample size increases for small sample sizes and that
the aggregated PV power production error depends on the latent sampling bias.
The magnitude of the effect of the latent sampling bias can be sizeable.
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Figure 5.9 - Characterization errors as a function of the number of installations for
the unbiased case and a set of worst ((I) and (VIII)) and best cases ((II) and (V)).
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3.2.1 On the relevance of the DTA

This study of the effect of systematic biases on the aggregation of individual PV
power curve estimations stresses the relevance of monitoring the model’s outputs
with tools such as the DTA. In chapter 2 section 3.2.1, we compared the distribu-
tion of the tilt and azimuth angles estimated with our mapping algorithm with the
reference values recorded in BDPV.

We found no evidence of a systematic bias in estimating the azimuth angle (the
estimation is slightly more concentrated than the true values). However, the model
slightly overestimates the tilt angle (see the left panel of Figure 2.12, the mean
tilt angle is slightly above the mean value of BDPV, and we estimate less small tilt
angles than in the reference).

This leads us to consider that with DeepPVMapper; we will aggregate tilt angles
as in case IV of Table 5.8: we have no bias in the azimuth angle, but a positive
bias on the tilt. Figure 5.10 provides us insights into the behavior of the error in the
aggregation of the estimations of the PV power curves.

We can see that under the estimation bias of DeepPVMapper, our results do not
indicate that the error will decrease when aggregating the PV power curves. As this
should be interpreted carefully, the error should remain within a five-percentage
margin around the individual installation error. This means that the error at the
aggregated scale of the estimation of the PV power production is expected to be
around 10%. Compared to the other bias cases, in the case of DeepPVMapper, we
are in a favorable situation where the error in the PV power production estimation
remains moderate.

Cas: DeepPVMapper biases
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Figure 5.10 - Behavior of the error of the aggregation of the estimations of the PV
power curves in the case of tilt and azimuth angles estimated with DeepPVMapper.
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3.3 Broader impact: closing the gap with the TSO’s aggregated
approaches

Differences of scales In this study, we analyzed the behavior of a conversion
model-based estimation of the PV power production at the scale of the individual
power system. At most, we consider aggregation of PV systems comprising up to
20 systems. On the other hand, current methods for improving PV observability,
such as the probabilistic approach (Saint-Drenan, 2016), assume that the density
of installations is much higher. The aggregation results hold, provided we deal with
hundreds of PV systems.

Avoiding breaking assumptions We chose not to directly implement the proba-
bilistic approach as its assumptions regarding the number of installations would not
hold. Instead, we evaluated our approach with individual-level PV power estimation
and approaches that do not require assumptions on the number of installations to
work.

Towards bridging the gap If one were to compare our approach with current
methods used by the TSO, it is necessary to scale our approach by computing the
PV power production for all registered systems in our registry. It would then be
possible to implement a method such as the probabilistic method. However, there
will not be ground truth measurements to assess which approach is the best at
this scale; only intercomparisons are possible. Most importantly, we demonstrated
in this study that it is possible to accurately estimate the PV power production
of rooftop PV systems with a scalable approach whose error remains stable when
scaling up.

Time horizons Finally, we focused on real-time rooftop PV power production es-
timation. We used reanalysis and real-time data to minimize the share of the PV
power estimation that can be attributed to the weather data. However, to fully
address observability, we need to be able to compute forecasts of the PV power
production. To do this, we can extend our approach using forecasting weather data.
The difference in accuracy observed between our results and the forecasting results
will be attributable to the weather data.

Conclusion of the chapter

In this chapter, we evaluated the relevance of the registry for improving rooftop
PV observability. We defined observability as the ability of the TSO to estimate a
power unit’s real-time and future production accurately. To evaluate the relevance
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of the registry, we need to address the following questions: First, how accurately
can we estimate the rooftop PV power production with information derived from
the PV registry? Second, how does this estimation compare with competing ap-
proaches? Third, can it scale up to thousands of PV systems?

We leveraged ground truth measurements of individual rooftop PV systems to
address these questions. We had curated information for about 900 individual PV
systems, along with their PV characteristics. We also used solar irradiation data
from the Copernicus Atmospheric Monitoring Services (CAMS) and the European
Centre for Medium-Range Weather Forecasts (ECMWF) temperature data. As we
only have limited information - tilt and azimuth angles, installed capacity, solar
irradiance, and temperature data - at the scale of the country and potentially have
thousands of systems to consider, we implemented the model from Dobos (2014).
We compared our approach with information-free modeling that considers constant
values for the tilt and azimuth angles and statistical approaches that do not require
knowing the tilt and azimuth angles.

Our results showed that our system-based modeling approach allows an accu-
rate estimation of the individual PV power production. Our results did not show
significant differences in accuracy between different parameterizations of the con-
version model (whether using the true parameters, parameters from DeepPVMap-
per, or constant parameters).

Studying how our approach scales up meant studying how estimation biases in
the PV systems’ parameters compensate or accumulate when considering the sum
of individual PV power curves. We proposed a framework to study the effect of
these biases on the PV power estimation and empirically showed that, in our case,
errors do not accumulate too much when the number of installations increases.
However, due to our ground truth data limitations, we could only scale up to tens
of PV systems, not thousands. We laid out directions to continue scaling up our
approach and adequately compare it with the TSO’s current methods.
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Conclusion and discussion

1 Conclusion

1.1 Answer to the scientific question

The fact that the transmission system operator (TSO) in France lacks precise
power production measurements for about 22% of the photovoltaic (PV) installed
capacity motivated this thesis work. Improving the so-called observability of rooftop
PV power production is crucial in the context of the sharp increase in the PV in-
stalled capacity. To this end, constructing a technical reqgistry of rooftop PV instal-
lations (i.e., installations with an installed capacity lower than 36 kW,) is neces-
sary. This registry aims to provide the necessary technical characteristics of the
PV systems for accurately estimating their power production: localization, tilt and
azimuth angles, and installed capacity. Given the high number of installations to
map —about 600,000 in France- remote sensing on aerial orthoimagery using deep
learning methods appears to be the best methodology for this task.

However, current state-of-the-art methods are not reliable enough for our in-
dustrial problem, which led me to formulate the following scientific question: is
deep learning-based remote sensing on orthoimagery a suitable method
for constructing a nationwide registry of rooftop photovoltaic (PV) instal-
lations intended to improve the observability of PV power production in
France?

Methodology To address this question, | first defined reliability as the combina-
tion of three components: the ability of a user to monitor the model’s output, audit
its decision process, and enforce a robust decision process. Based on this definition,
| defined what requirements the registry should satisfy and how | could check that
it met these requirements (sub-question (SQ) 1). Second, how could we ensure that
a deep learning model reliably mapped PV panels (SQ2)? Finally, | built a reliable
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algorithm capable of producing a registry meeting the reliability requirements, and
| introduced a methodology to assess its relevance for improving PV observability
(5Q3).

(SQ1) What requirements should the data have, and how can we check
whether the registry meets these requirements? In chapter 2, | established
that the registry’s main requirement is to correctly reflect the spatial distribution
of rooftop PV installed capacity. Second, the tilt angle distribution must vary with
the PV system'’s latitude, and the azimuth angle distribution should match the true
distribution of the azimuth angle. As | had access to the distribution of the installed
capacity, aggregated at the city level and a self-reported dataset that features the
tilt and azimuth angles of the installations, | leveraged these datasets, namely the
registre national d’installation (RNI) and BDPV to define the downstream task accu-
racy (DTA). The DTA evaluates the accuracy of the registry by comparing aggrega-
tions from the registry with available data. The DTA does not require labeled data
and is available for the whole territory. Therefore, it enables monitoring the model
outputs and pointing the user toward the failure cases directly.

| evaluated the existing state-of-the-art PV mapping algorithms. | highlighted
a 30 percentage points accuracy drop (regarding the estimation of the installed
capacity at the city level) between the training dataset and the mapping area (i.e.,
the territory where we deploy the model to map PV installations). This drop is very
uneven as the accuracy can drop dramatically in some cities, while in others, the
registry is very accurate. A question arising is why such a drop occurs and why there
is such heterogeneity. | found no evidence of a geographical pattern explaining the
loss of accuracy. Using the GradCAM, a well-established feature attribution method,
| then visually compared the important areas on the input images depending on
the models’ decisions. This analysis led me to formulate a hypothesis regarding
the model’s decision process: to predict a PV panel, a model relies on a limited set
of characteristics correlated with the PV panels of the training dataset. Given an
image, the model will predict the PV panel if the right feature appears on the image.

(SQ2) How can we ensure that deep learning models reliably map rooftop
PV installations? The hypothesis formulated in chapter 2 required the introduc-
tion of a new feature attribution method to understand better what models see on
input images (through the lenses of scales) and not only to assess where they look.
In chapter 3, | expanded existing feature attribution methods from the pixel domain
to the space-scale domain. Rather than perturbing input images and evaluating
the model’s response to these perturbations in the pixel domain, | perturbed the
wavelet transform of the images and evaluated the model’'s response. The pro-
posed method is the wavelet scale attribution method (WCAM). Using the WCAM,
| could assess the reliability of the decision process as it highlights which scales

140



1. Conclusion

are important in the model’s decision. Besides, scales simultaneously correspond
to structural elements of the image, enabling the user to interpret the model’s
decision and dyadic frequency ranges, characterizing the potential "brittleness" of
these features to perturbations of the input images.

| then set up an experiment to understand what mainly caused the drop in ac-
curacy between the change in the acquisition conditions, the varying ground sam-
pling distance, and the geographical backgrounds. This experiment showed that
the acquisition conditions were the main cause for the drop in accuracy, driven
by a rise in false negatives. Using the WCAM, | could show that panels were no
longer recognized when the acquisition conditions changed because these acqui-
sition conditions disrupted important high-frequency patterns such as the gridded
common among many PV systems. This result comforts the working hypothesis
established in chapter 2. | then introduced a model based on Gaussian noise and
blur to reproduce the effects of varying acquisition conditions and proposed a data
augmentation technique to reduce the sensitivity of deep learning models to vary-
ing acquisition conditions. This method outperformed existing techniques on our
benchmark dataset.

The new feature attribution (the WCAM) paves the way for a finer understanding
of the decision process of a model by disentangling it into different scales while
maintaining the understandnig on the localization. The prediction between two
images will be similar not based on their similarity in the image space but on their
similarity in the space-scale space. To avoid such behavior leading to too many false
detections, | introduced a data augmentation that lowers the reliance on the most
fragile components of the image (i.e., the finest scales or highest frequencies).

(SQ3) How to build and integrate the registry for rooftop PV power produc-
tion estimation and evaluate its relevance for improving PV observability?
First, in chapter 4, | reviewed the current state-of-the-art algorithms for mapping PV
installations and identified where | could improve the algorithm’s reliability. Im-
provements could be made to the characteristics extraction part of the algorithm,
the image preprocessing process, and the evaluation metrics. To improve the char-
acteristics extraction part of the algorithm, | introduced a standardized approach
for extracting PV characteristics. | then improved the image preprocessing method
so that it minimizes the occurrence of false negatives by inducing an overlap be-
tween the generated thumbnails and minimizes the occurrence of false negatives
by extracting images only in relevant (i.e., anthropized) areas. Finally, | argued that
an evaluation of the model’s performance using the DTA rather than the F1-Score or
the Intersection-over-Union should be preferred, given our goals with the mapping
algorithm. | evaluated a wide range of classification models, data augmentation
techniques, and algorithm architectures on my new benchmark.

The results also indicated that data augmentation strategies based on the blur-
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ring and the perturbation of the wavelet transform of the image do not significantly
improve the accuracy in operational conditions. Nevertheless, our proposed ap-
proach outperforms the existing state-of-the-art algorithms for mapping rooftop PV
installations, and the DTA and the WCAM provide monitoring and auditing tools to
the user that increase the trust in the model and the reliability of the registry.

Our industrial goal was to derive accurate PV power estimations of the rooftop PV
fleet; | had access to PV power production measurements of 900 curated rooftop
PV systems. In chapter 5, | introduced a simplified conversion model that uses
the characteristics obtained from our registry and solar irradiance and tempera-
ture data to derive PV power estimations at the installation level. | stated that the
observability of rooftop PV installations would be increased if this approach could
accurately estimate the PV power production and scale up to thousands of installa-
tions. On the one hand, it turns out that estimating the rooftop PV power production
using the characteristics provided by our technical registry and weather data accu-
rately estimates the individual power curves and seems to scale well, at least at the
scale of a couple of dozen systems. This result shows that rooftop PV observabil-
ity can be improved by acquiring few information on rooftop PV systems, namely
the tilt and azimuth angles, the localization, and the installed capacity. The per-
formance of this model-based approach is about the same as a linear regression,
calibrated on rooftop PV plants. Our study shows that the model-based approach
used with the technical registry is a good starting point if one has no information
nor measurements on the rooftop PV systems, which is generally the case.

Answer to the main question The scientific question was whether deep learning-
based remote sensing on orthoimagery could be a suitable method for constructing
a nationwide registry of rooftop photovoltaic (PV) installations intended to improve
the observability of PV power production in France. More broadly, it raises the
question of whether deep learning models are mature enough to be safely used in
industrial pipelines. This work’s central contribution is identifying quality and de-
pendability standards and proposing a methodology to verify that the deep learning
model and the generated data meet these standards. The necessary conditions are
the ability to monitor the model’s data and to audit its decision process. Therefore,
it is necessary to have complementary data and to define relevant KPIs against
which the data produced by the deep learning model will be monitored. Standard
feature attribution techniques are insufficient for auditing the model’s decision as
they do not assess what models see. Our WCAM provides a first step towards ad-
dressing this issue. Finally, having a robust and accurate model is desirable but
insufficient to achieve the required level of trust in the data and the decision pro-
cess, as user’s trust comes from his or her ability to monitor the data and audit the
model. Therefore, deep learning and Earth observation data are suitable because
one has enough additional data to monitor the model during its deployment.
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Answer to the industrial question This work contributes to improving PV ob-
servability to the extent that it provides valuable additional information regarding
the geographical distribution of small-scale PV systems. It also enables an accurate
estimation of PV power production, but its relevance in an operational setting is
questionable, as the model-based method does not significantly outperform alter-
native methods. Nonetheless, our assessment of the gains for improving rooftop
PV observability can be complemented by collecting more reference data to empir-
ically demonstrate our approach’s greater accuracy compared to the TSO’s current
practices.

1.2 Discussion

Finding where models fail and stepping out of the "black room" When
starting the project, | was left with numerous approaches, some very specific for
addressing one issue. At the same time, nothing had been published regarding
rooftop PV panels mapping in France, and no training data was available. This con-
trast encouraged me first to gather training data and deploy a prototype in France,
which | could improve afterward by identifying its most critical issues. Discussions
with potential users about the first results of this prototype showed how the stan-
dard accuracy metrics failed to address these users’ concerns regarding the model.
At least they wanted to evaluate it against existing data sources (which led to the
standardization of this process with the DTA), and the most skeptical users wanted
to assess whether the model recognized PV panels or not some spurious factors.
The GradCAM was enough to rule out obvious spurious correlations such as swim-
ming pools but not enough to explain why the model took a track and field for a PV
panel.

| believe that for applied works, off-the-shelf models are sufficient for most of
the use cases or at least for building prototypes. Besides, the posterity of seeking
state-of-the-art performance seems very limited: deep learning is a quick-evolving
field, the rate of progress is sometimes absurdly fast, and it is only a matter of
months (or even weeks) before someone surpasses the proposed methodology.

On the other hand, addressing the simple question "Does the model work prop-
erly?" and deriving a protocol for monitoring and auditing deep models when they
fail turned out to be a dense journey. | am convinced there is still much to do in what
some would call Al auditing, especially in the context of the everyday use of deep
learning models by non-specialists in numerous workflows. Non-specialist humans
are increasingly interacting with deep learning models, and | think that providing
them with the right tools to enable them to understand better what models really
do, how they work, and what are their limitations can improve the overall trust and
critical thinking towards these systems, indispensable for a sound integration into
many workflows.
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Towards a reasoned use of deep learning | think that another key parameter
to foster deep learning models beyond fancy APIs and computer science bench-
marks is to show that deep learning researchers are aware of the general public’s
concerns. In the context of improving rooftop PV observability, | could not ignore
the environmental impact of my methods. | present in appendix A a study of the en-
vironmental impact of our approach. Our framework aims to encourage researchers
to report the environmental impact of their models more systematically and con-
sider this impact as a choice variable. Our simplified framework quantified Deep-
PVMapper’s energy cost represents about half of the yearly expected production of
an average individual 3 kW, rooftop PV system in France! and showed that most of
the energy was consumed during the inference.

| was also struck by the impact of the grid intensity on the resulting environ-
mental impact. The impact of the algorithm ranges between 75 to more than 1000
kg COse, i.e., depending on the localization of the server’s localization, mapping PV
installations in France can be equivalent to the production of 2 kg of beef or one
round trip travel between Paris and New York. Therefore, the decarbonization of the
grid contributes to reducing the environmental impact of deep learning.

| was delighted to see that even if environmental reports are not yet standard
practice, the machine learning community is well aware of the environmental issues
with deep learning. Many research efforts have been put into assessing the environ-
mental impact of deep learning and deep learning-based systems, and much work
remains to be done to provide a comprehensive assessment of the environmental
impact of deep learning.

1.3 Contributions

Fields of contributions This thesis work contributes to two main domains: deep
learning and power systems. | leveraged the case study of mapping small-scale PV
installations to evaluate under which conditions we could reliably use deep learning
models. To this end, | introduced a methodology for monitoring a model’s output
using indirect measurements, enabling the evaluation of the quality of the data
produced by the model when no labels are available (Kasmi et al., 2022a). | also
introduced a novel attribution method that decomposes a model’s prediction into
scales using the wavelet transform and show that this method can effectively im-
prove the reliability of deep learning models by providing a finer interpretation of
their decision process (Kasmi et al., 2023a). This attribution method contributes to
closing the gap in assessing what deep learning algorithms see on input images.
Finally, I introduced a novel training dataset, BDAPPV (Kasmi et al., 2023d), contain-
ing nearly 50,000 annotated images and coming from two image providers. This
enables to train models for mapping PV installations in France but can also serve as

1. Assuming that the yearly expected yield for a 3 kW, installation in France lies between 2.5
(North) and 3.5 (South) MWh/year (BDPV, 2023).
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a benchmark for evaluating the robustness to varying acquisition conditions of any
model, as done by Guo et al. (2024).

On the power system’s side, | contributed to improving the knowledge of the
rooftop PV fleet by mapping rooftop PV installations over 38 French departements
(at the time of writing of this thesis, and ultimately to the whole metropolitain
France) using deep learning and orthoimagery. The registry records the localiza-
tion, tilt, and azimuth angles and the nameplate capacity of the installation. The
proposed registry is currently the world’s second-largest for small-scale PV and the
world’s largest with this level of detail. | also discussed how we could improve
rooftop PV observability using the data from this reqgistry (Kasmi et al., 2024). Over-
all, this work improved the observability of the French rooftop PV installations. The
tools introduced in this thesis can be applied in other countries where the same
issue arises. The only requirement is access to the true installed capacity at the
desired (e.qg., the city) level.

Additional contributions of this thesis work include an open-source Python library
for extracting rooftop PV characteristics from geolocalized polygons (Trémenbert
et al., 2023), and DeepPVMapper, an open-source mapping algorithm that can be
reused and improved by anyone (Kasmi et al., 2023c).

Applications for RTE and beyond For the TSO, the proposed modeling ap-
proach of the PV power production shows that it is possible to derive accurate
measurements of the rooftop PV power production using limited information re-
garding the PV systems. This approach paves the way for improving the rooftop
PV power estimation and, thus, the overall PV power estimation at different spa-
tial and temporal scales, from individual estimations to nationwide aggregates and
from reanalysis to forecasts.

The registry provides a current view of the PV fleet. Therefore, the TSO can use it
to calibrate the PV potential models used in prospective studies. It can also be used
to analyze the geographical, social, and economic drivers behind PV adoption, as
done in works such as Wang et al. (2022) or Freitas et al. (2023). Such registries can
also be relevant for public authorities seeking a straightforward way of assessing
the current state of PV deployment over their territory.

2 Limitations

2.1 On the power system'’s side...

Fair comparisons with regional PV power modeling Despite leveraging a
large ground truth rooftop PV measurements dataset, | could not compare our ap-
proach with standard regional PV power estimation methods such as the proba-
bilistic approach. The probabilistic approach estimates the PV power production,
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aggregated at the scale of a small area (typically a grid point of a couple tens of
km?), using the distribution of tilt and azimuth angles of the installations located
in this small area. For the empirical distribution of tilt and azimuths to be statis-
tically representative, one needs at least a thousand installations in this gridpoint
(Saint-Drenan et al., 2016). In our case study, | had ground truth PV power mea-
surements and installations’ characteristics for at most twenty installations in such
constrained areas, too few to properly implement the probabilistic approach.

Coarse mapping Our goal was to design a method enabling the construction of
a registry over France. The resulting registry roughly characterizes the rooftop PV
fleet and makes several assumptions regarding the PV fleet. First, | did not dis-
tinguish PV technologies (e.g., monocrystalline or polycrystalline) nor distinguish
PV panels from solar thermal panels. | also assumed that the efficiency of the PV
panels was constant for all PV panels. Finally, | did not rely on LiDAR data to com-
pute the tilt and azimuth angle of the installations, as this data was not available
for the whole coverage of the French territory. | also did not rely on multispectral
or hyperspectral images due to a lack of training data and appropriate models for
dealing with these images. | think that the accuracy of the characterization can
be significantly improved by taking into account the technologies explicitly dealing
with thermal solar systems (e.g., using multispectral data and labeled data from
Garioud et al., 2023) and using surface models to compute the tilt and azimuth
angles.

On the relevance of model-based modeling for improving rooftop PV ob-
servability Our results showed that the accuracy of the estimation of the PV
power production of a single installation is not significantly different between linear
regression and our conversion model (no matter how parameterized). This shows
the limitation of such model-based approaches, as it is hard to get more information
on the PV panels at the scale of a country, as discussed in the previous point.

On the other hand, taking shadings into account for the PV power estimation
could increase the computational burden of the model and thus limit its scaling-up
ability. | think conversion models are better suited for constructing or reconstructing
accurate power measurements of individual installations destined to be used as
synthetic reference data since gathering ground truth individual PV power curves is
challenging.

2.2 ... and on the deep learning side

Geographical variability | did not find evidence of a significant impact of sensi-
tivity to the geographical localization once the acquisition conditions and the effects
of the ground sampling distance were accounted for. This result is limited to our
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use case and may be explained by our training dataset capturing the geographical
variability encountered in France and neighboring regions.

Beyond data augmentation for improving robustness | restricted myself to
data augmentation techniques when looking for methods to improve the robust-
ness to acquisition conditions. The reason for this was that data augmentation
technigues are more accessible and more straightforward to apply in operating
conditions than other methods that | would call explicit regularization techniques,
i.e., methods that consist in evaluating the model against a custom loss function or
training a model that differs from the standard model architectures (e.g., Geirhos
et al. (2019), Arjovsky et al.,, 2019). Another method for improving the model’s
robustness could be to use so-called foundation models (Bommasani et al., 2022),
i.e., large models trained on vast amounts of data, so vast that the notion of distri-
bution shifts eventually disappears. It could be interesting to see how such mod-
els would compare against "traditional" methods (data augmentation and explicit
regularization) for improving the robustness to varying acquisition conditions and
geographical variability. Some large-scale models have already been introduced for
remote sensing data (Liu et al., 2024; Cha et al., 2023).

Improving the understandability of the WCAM Our attribution method, the
WCAM, decomposes a model’s decision in the space-scale domain by showing a
heatmap over the wavelet decomposition of the image. As a result, the interpre-
tation is tricky as it requires familiarity with the wavelet transform. One of the
promises of the WCAM is to disentangle the various structural components of the
image that contribute to the prediction (e.g., the gridded pattern of the PV panel
and its overall shape). Providing an explicit visualization of these structural compo-
nents could significantly improve the practical usability of the WCAM.

3 Perspectives

3.1 Power system perspectives

Registries for accurate estimation of the installed capacity If physical model-
based methods may not necessarily be the best method for improving rooftop
PV observability, the relevance of detailed technical registries remains. Indeed,
throughout our study, | assumed that | knew the exact installed capacity. However,
reference data may be inaccurate, as shown by Rausch et al. (2020). Therefore,
constructing a PV registry for controlling the quality of other data sources is rel-
evant, even if, afterward, PV power production estimations are carried out using
statistical models.
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Self-consumption and netload estimation Individual rooftop PV installations
are increasingly used for self-consumption. At the end of September 2020, when
| started the Ph.D. thesis, less than 70,000 PV installations of less than 36 kW,
(amounting to 16.6% of the connected installations) were self-consuming at least
partially their production. At the end of 2023, more than 364,000 (50.1%) con-
nected installations self-consume their production (Enedis, 2024).

The French current legislative framework (République francaise, 2017, 2023) is
such that individual and collective self-consumption is increasingly more interesting
than total selling to the grid. New and future connected PV installations will self-
consume a part of their production. Therefore, rooftop PV observability will shift
from observing the PV power production to observing the netload injections.

Good knowledge of rooftop PV power production will remain important, espe-
cially since we can expect that ground truth PV power measurements will remain
scarce: the only information available will be the netload (i.e., the difference be-
tween the PV power production and household consumption). However, these
power production estimations will have to be integrated into larger models that also
take into account electric consumption, either at the scale of individual households
or at the scale of neighborhoods.

Citizen science and quality checks Following the crowdsourcing campaigns
that led to BDAPPV, a set of collaborative tools have been developed to enable
system owners to delineate their installation on an image and verify the accuracy
of the azimuth angles recorded by the users. These tools contributed to improving
the quality of BDPV's data. However, even for the system owners, reporting the
tilt angle is difficult. Using a conversion model, the ground truth measurements
and the LiDAR data could be an efficient way to improve the reporting of the tilt
angles and thus contribute to a large, curated, and high-quality dataset of rooftop
PV characteristics and power measurements.

3.2 Deep learning perspectives

Multilabel and specialized classification Another possible extension of this
work would be to focus on the classification branch. One could do multilabel clas-
sification to identify the PV system type. These labels are already featured in the
BDPV database. Besides, one could gather more training data of larger installations
(e.g., PV on shading roofs) to enhance the detector’s accuracy for these installa-
tions. The relevance of combining specialized detectors for the different instances
of PV installations could also be discussed, as well as the effect of potential uneven
performance on the aggregated estimation of the rooftop PV installed capacity.
The present work also showed that in the binary classification of PV panels, the
gridded pattern of old systems is an essential feature for the model, which tends to
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look for such patterns in images. It could be interesting to see how the importance
of this pattern evolves if we distinguish different classes of PV panels.

Predictive features and inductive biases Our work showed that false detec-
tions, arising mainly because the model confuses gridded patterns with PV panels,
contributed to overestimating the PV installed capacity. The WCAM enabled us to
highlight this phenomenon and draw directions to mitigate it. However, it could be
interesting to understand why the model favored this pattern. This question is more
theoretical and falls beyond the scope of the present thesis. In my current under-
standing of the question, figuring out why the gridded pattern ends up being the
"favorite" feature of the model requires understanding how the model constructs
predictive features from the input data during training.

Understanding the representations of convolutional neural networks The
WCAM is a post-hoc explainability method, i.e., it explains the decision of a black-
box model. The explanation provided by the WCAM highlights important regions in
the scale-space domain. Another approach for explainable machine learning con-
sists of using intrinsically interpretable models. The Scattering transform (Bruna
and Mallat, 2013) can be considered an intrinsically interpretable model. It could
be interesting to compare the representations (i.e., how the model compresses the
information from the input image) of the Scattering transform with those of con-
volutional neural networks derived with the WCAM. Checking the representations’
alignment and accuracy of both models could guide us toward using computation-
ally less demanding and more interpretable models. Cheng and Ménard (2021) al-
ready showed the relevance of the Scattering transform in astrophysics but lacked
a tool to analyze the representations of CNNs from a space-scale perspective.
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Appendix

Discussion of the environmental
Impact

1 Literature and proposed approach

Environmental impact of deep learning | would also like to broaden the scope
of the results obtained in this PhD thesis. Recent studies (Strubell et al., 2019, 2020;
Luccioni et al., 2024; Patterson et al., 2021; Thompson et al., 2023; Luccioni et al.,
2023) raised concerns regarding the environmental impact of deep learning. For
instance, Strubell et al. (2019) showed that the environmental impact of training a
large language model (LLM) is equivalent to the impact of 5 cars over their whole life
cycle. However, | was surprised that few studies report the environmental impact
of the models that they benchmark. A proper assessment of the environmental
impact of deep learning models is still an open problem (Luccioni et al., 2024), and
data is often lacking for a comprehensive assessment of the environmental impact
using the lifecycle assessment (LCA) methodology.

Proposed approach and metrics Inchapter 4, sections 2.3.3 and 3.1.3, | showed
that our sampling method reduced the number of thumbnails to generate, which
led to an overall gain in efficiency which amounts to days when scaling to the size
of France. In this section, | go a step further and introduce a simplified framework
for expressing these efficiency gains in terms of the environmental impact of the
mapping algorithm.

The main goal of this framework is to trigger further research and encourage
researchers to report the environmental impact of their models. Reporting the en-
vironmental impact of models gradually becomes standard practice, as the platform
HuggingFace now reports the carbon intensity of its models (Hugging Face, 2023),
and | wish to subscribe to this trend. | propose a simplified framework to enable
fast computations with low overhead. This framework aims to estimate the model’s
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energy consumption in Wh for its training and deployment. | assume that the en-
ergy consumption scales linearly with the number of model parameters for training
and the inference time for deployment.

Our framework requires only two inputs: the number of parameters of the model
at hand and the total time for inference. To evaluate the energy consumption of
training, | took the number reported by Luccioni et al. (2024) while training the LLM
BLOOM. This model has 176B (billion) parameters and requires 433,195,000 Wh of
electricity for training. This gives us an energy consumption of E;..;, = 0.0025 Wh
of electricity per parameter. To evaluate the energy consumption during inference,
| used the Python library CodeCarbon (CodeCarbon, 2023) and measured the elec-
tricity consumption while running the inference scripts. On average, | measured
an electricity consumption Ej, terence = 805 Wh with my hardware. The total energy
consumption is given as

CiotailWh] = # parameters x Eirqin
total p t (A1)

+ Tinference X Einference
where Tj, ference denotes the time to run the pipeline in hours, | denote Cj, ference =
Tinference X Einference aNd Cyqin, = # parameters x Ej,.q;, Our framework is simplified
and depends on our hardware to estimate E;, ¢ ence. NOnetheless, it will serve as a
baseline for further discussions and encourage systematically reporting the energy
consumption of deep learning models in benchmarks.

2 Results

2.1 Energy consumption

In Table A.1, | first report Cipqin @aNd Cip ference fOr a representative set of our mod-
els. | can see how the sampling module dramatically reduces the inference time
and, thus, the associated energy cost.

Table A.1 — Computation of Ciain @and Cipference fOr some selected variants of the
mapping algorithm.

Training Inference
Variant # Parameters Chrain Runtime Scale-up  Cinference
[-] [Wh] [sec/km?] [days] [Wh]
Baseline (Kasmi et al., 2022a) 25M 62,500 19.39 122.08 2 372,496
ResNet-50 25M 62,500 16.78 105.50 2,038,260
ConvNext + Sampling 87M 217,500 12.77 80.37 1,552,748
ResNet-50 + Sampling 25M 62,500 13.19 83.04 1,604,333

Then, in Table A.2, | sum Cirgin @nd Cipference t0 report an estimation of the to-
tal energy consumption of different variants of the pipeline, according to equation
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2. Results

(A.1). | consider the baseline and variants that yielded close results regarding the
DTA. The impact of training is small (10 % of the total energy consumption) com-
pared to the impact of inference. It is even more true as training is done only once,
whereas one performs inference regularly. My measure of the environmental impact
suggests that the most significant room for improvement lies in the efficiency of the
mapping algorithm (i.e., non-deep learning factors). As the yearly expected yield
for a 3kW,, installation in France lies between 2.5 (North) and 3.5 (South) MWh/year
BDPV (2023), the consumption of the algorithm represents about half of the yearly
expected production of an average individual 3kWp rooftop PV system in France.

Table A.2 — Total energy consumption in Wh of deploying variants of our pipeline.
Best results are bolded.

Pipeline Energy consumption [Wh]

Ctrain Cinference Chotal
Baseline (Kasmi et al., 2022a) 62,500 2,372,496 2,434,996
ConvNext + Sampling 217,500 1,552,748 1,770,248
ResNet+ Sampling 62,500 1,604,333 1,666,833

2.2 Environmental impact

Using this framework, it is easy to convert the electric consumption into a carbon
intensity using the carbon intensity of the electric grid. As my model was trained
and deployed on servers located in France, taking France’s average carbon inten-
sity for 2022, | obtained an overall impact in COse. Table A.3 shows the carbon
intensity of our algorithm depending on its location. These results indicate that the
decarbonization of the grid reduces the environmental impact of deep learning.

Table A.3 - Carbon intensity of DeepPVMapper (ResNet + Sampling). Source of the
carbon intensities: Our World in Data (2024).

Country  Grid carbon intensity (2022) Environmental impact

[gCOse/kWh] [kg COs€e]
France 85 141.68
Sweden 45 75.00
Germany 385 641.73
Poland 635 1058.44
us 367 611.73
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Appendix

The training dataset BDAPPV

1 Additional details on the data extraction and the raw
data records

1.1 Extraction of the raw data

Raw data extraction Our annotation campaign leverages the database of PV
systems operated by the non-profit association Asso BDPV (Base de données Pho-
tovoltaique - Photovoltaic database). Asso BDPV (BDPV) gathers metadata (ge-
olocation and metadata of the PV systems) and the energy production data of PV
installations provided by individual system owners, mainly in France and Western
Europe. The primary purpose of the BDPV database is to monitor system owners’
energy production. BDPV also promotes PV energy by disseminating information
and data to the general public and authorities.

The BDPV data contains the localization of more than 28,000 installations. We
used this localization to extract the panels’ thumbnails. During the first annota-
tion campaign, we extracted 28,807 thumbnails using Google Earth Engine (GEE,
Gorelick et al. (2017) application programming interface (API). For the second cam-
paign, we extracted 17,325 thumbnails from the IGN Geoservices portal (https:
//geoservices.ign.fr/bdortho).

Our thumbnails all have a resolution of 400x400 pixels. Thumbnails extracted
from GEE API correspond to a ground sampling distance (GSD) of 0.1 m/pixel. The
API directly generates this thumbnail by setting the zoom level to 20, the localiza-
tion to the ground truth localization contained in BDPV, and the output size to be
400x400 pixels. For IGN images, the resolution of the thumbnails corresponds to
a GSD of 0.2 m/pixel. The procedure for generating IGN thumbnails differs from
Google. First, we downloaded geo-localized tiles from IGN’s Geoservices portal.
These tiles have a resolution of 25,000x25,000 pixels, covering an area of 25km?2.
Then, we extracted the thumbnail by generating a 400x400 pixels raster centered
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around the location of the PV panel. Finally, we export this raster as a .png file.
We do not publish the exact location of the panels for confidentiality reasons. We
illustrate our training dataset generation workflow in Figure B.1. It comprises three
main steps: raw data extraction, thumbnail annotation, and metadata matching.

1. Raw data extraction 2. Thumbnails annotation 3. Metadata matching
" Training dataset with
l BDPV PV database l l Crowdsourcing platform l
BDPY -

ia _ Campaign 1 | Campaign 2
Images 28807 17325
Installations 13303 7686
Provider Google IGN
GSD 0.1m/pixel 0.2m/pixel
L — Associated 8019 3658
> metadata

Phase 1:image _ Phase 2 : polygon |
classification annotation

N
Thumbnails +
} | Metadata

Installations’ metadata matching

Figure B.1 — Flowchart of the training dataset generation based on the BDPV PV
data and crowdsourcing. "GSD" stands for the ground sampling distance, i.e., the
distance between the centers of two adjacent pixels measured on the ground. Taken
from Kasmi et al. (2023d).

Image classification and polygon annotation This paragraph presents the
main steps we followed to construct our database. In section 2, we detail the crowd-
sourcing campaign itself.

We extracted thumbnails based on the geolocation of the installations recorded
in the BDPV dataset. However, this geolocation can be inaccurate, so before asking
users to draw polygons of PV installations, we asked them to classify the images.
This corresponds to the first phase of the annotation campaign. Once users clas-
sified images, we asked them to draw the PV polygons on the remaining images.
This corresponds to the second phase of the crowdsourcing campaign.

We designed our campaign to get at least five annotations per image. It enabled
us to derive so-called consensus metrics, targeted at measuring the quality of our
labels. This way, we go further than the consensus between two annotators re-
ported in previous work (Bradbury et al., 2016) to measure annotation quality. The
analysis of the users’ annotations during phases 1 and 2 are reproducible using the
notebook annotations available on the public repository*.

During the first phase, the user clicks on an image if it depicts a PV panel. We
recorded the localization of the user’s click and instructed them to click on the PV
panel if there was one. We collected an average of 10 actions (click with localization
or no click) per image. We apply the kernel density estimate (KDE) algorithm to the

1. The repository is accessible at this URL: https://github.com/gabrielkasmi/bdappv
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annotations to estimate a confidence level for the annotations and the approximate
localization of the PV panel on the image. The likelihood f,(x;) of presence of a panel
for each pixel z; is given by

LN
folai) =+ > Ko(zp — i), (B.1)
k=1

where K, is a Gaussian kernel with a standard deviation o, z; is the coordinate
of the £** annotation, and N is the total number of annotations.

After an empirical investigation, we calibrated the standard deviation of the ker-
nel to reflect the approximate spatial extent of an array on the image. We set its
value to 25 pixels for Google images and 12 for IGN images. It corresponds to a dis-
tance of 2.5 m. The maximum value of the KDE quantifies the confidence level of
the annotation. We refer to it as the pixel annotation consensus (PAC). This metric
is proportional to the number of annotations. We use the PAC to determine whether
an image contains an array.

During the second phase, annotators delineate the PV panels on the images vali-
dated during phase 1. Users can draw as many polygons as they want. On average,
we collected five polygons per image. We collect the coordinates of the polygons
drawn by the annotators. However, these false positives have fewer annotations
than true positives. To select only the true positives, we compute the PAC through
the following steps:

1. We convert each user’s polygon into a binary raster;

2. We compute the normalized PAC by summing all rasters and dividing by the
number of annotators,

3. We apply a relative threshold and keep only the pixels whose PAC is greater
than the threshold;

4. We compute the coordinates of the resulting mask using OpenCV’s polygon de-
tection algorithm (https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_
begin.html).

In step 2., the unnormalized PAC takes values between 0 and the number N; of
annotators for the i** image. 0 means no user included the pixel into his polygon,
and N; means that all annotators encapsulated the corresponding pixel in their

polygons.

Metadata matching Once we generate our PV panel polygons (i.e., segmenta-
tion masks), we match them with the installations’ metadata reported in the BDPV
dataset. Our matching procedure follows three steps: internal consistency, unique
matching, and external consistency. Note that we only apply these filters when
matching the metadata and the masks.
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Appendix B. The BDAPPV training dataset

Internal consistency ensures that the entries in the BDPV dataset are coherent
before any matching. It is simply a cleaning of the raw dataset. To do this cleaning,
we verify whether the information in one column of the BDPV dataset is coherent
with the records from the other columns. For instance, if a PV system’s record says
it has ten modules and a surface of 3m?2, this would mean that each PV module has
a surface of 0.3m?2, which is impossible (the smallest size being 1.7m?2).

Our segmentation masks may depict more than one array. It occurs if, for in-
stance, more than one panel is on the image shown to the annotators. In this case,
we adopt a conservative view: if the segmentation mask depicts more than one
panel, we cannot know which corresponds to the installation reported in the BDPV
dataset. In this case, we do not match the segmentation mask with an installation.

After internal consistency filtering and unique matching, we are left with seg-
mentation masks depicting single panels with coherent metadata. A final filtering
step consists in making sure that the characteristics reported in the database match
those that can be deduced from the segmentation mask. We assess the adequacy
between the surface of the installation’s mask and its true surface, which is reported
in the BDPV dataset, by computing the ratio between them. We keep only instal-
lations whose ratio equals 1 (with a tolerance bandwidth of + 25%). We apply this
bandwidth to accommodate the possible approximations in the segmentation mask.
The reported surface excludes the inter-panel space and the distortions induced by
the panel’s projection on the image, as images are not perfectly orthorectified.

1.2 Data and quality checks

A training dataset The training dataset containing RGB images, ready-to-use
segmentation masks of the two campaigns, and the file containing PV installations’
metadata is accessible on our Zenodo repository at this URL: https://zenodo.org/
record/7358126. It is organized as follows:

— bdappv/ Root data folder
— google / ign One folder for each campaign

— img Folder containing all the images presented to the annotators. This
folder contains 28,807 images for Google and 17,325 for IGN. We pro-
vide all images as .png files.

— mask Folder containing all segmentation masks generated from the
polygon annotations of the annotators. This folder contains 13,303
masks for Google and 7,686 for IGN. We provide all masks as .png
files.

— metadata.csv The .csv file with the metadata of the installations. Table B.1
describes the attributes of this table.
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1. Additional details on the data extraction and the raw data records

Table B.1 — Data attributes and description of the metadata.csv data file. Taken from
Kasmi et al. (2023d).

Field Attribute name Description Format Unit
Installation ID idInstallation The ID of the installation Integer -
Identifier identifiant The name of the image of the installation String -
Inverter ID idlnverter The ID of the inverter of the installation Integer -
Inverter name namelnverter The name of the inverter of the installation String -
Number of inverters  countlnverters The number of inverters of the installation Integer -
Arrays ID idArrays The ID of the solar arrays used by the installation Integer -
Arrays’ name nameArrays The name of the solar arrays used by the installation Float -
Number of arrays countArrays The number of PV arrays (modules) of the installation Integer -
Surface surface The surface (in m?) of the installation Float m?
Azimuth azimuth The azimuth angle in degrees relative to the north Float Degrees

(south = 180) of the installation.
Installation type typelnstallation Indicates on which infrastructure the installation Integer -

is mounted:

- 0: rooftop

- 1: unknown

- 2: rooftop of a non-livable building

- 3: ground

- 4: other

- 5: shade house

- 6: sunshade

- 7: solar tracker with one axis

- 8: solar tracker with two axes
Tilt tilt The tilt angle of the installation Integer Degrees
Installed capacity kWp The installed capacity of the installation in kWp Float kWp
Date of installation datelnstalled The date (month, year) the installation has been installed  String Date
Is integrated isIntegrated Indicates if the installation is integrated (on the rooftop) Boolean -
Self-consumption selfConsumption Indicates if the installation is used for self-consumption Boolean -

(alternative is that PV power is reinjected into the grid)
Département departement The département (county) in which the installation is Integer -

located
City city The city where the installation is located String (UTF-8) -
Controlled Controlled Indicates whether the installations’ metadata are clean Boolean -
Matched with IGN IGNControlled Indicates whether the installation corresponds to a unique Boolean -

image

segmentation mask corresponding to an IGN image

Matched with Google
image

GoogleControlled

Indicates whether the installation corresponds to a unique Boolean

segmentation mask corresponding to a Google image
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Figure B.2 presents some examples of images from the BDAPPV dataset.

Examples of images from BDAPPV

_ IGN images

ages
g

‘_

Figure B.2 — Examples of images from the BDPV training database.

The raw crowdsourcing data In addition to the training dataset, we also re-
leased the raw crowdsourcing data. It is structured as follows: the raw subfolder
contains the raw annotation data from the two annotation campaigns and the raw
PV installations’ metadata. The replication subfolder contains the compiled data
for generating our segmentation masks. The validation subfolder contains the
compiled data necessary to replicate the analyses presented in the technical vali-
dation section.

— data/ Root data folder
— raw/ Folder containing the raw crowdsourcing data and raw metadata;

— input-google.json: Input data containing all information on images
and raw annotators’ contributions for both phases (clicks and poly-
gons) during the first annotation campaign;

— input-ign.json: Input data containing all information on images and
raw annotators’ contributions for both phases (clicks and polygons)
during the second annotation campaign;

— raw-metadata.csv: The file containing the PV systems’ metadata ex-
tracted from the BDPV database before filtering. It can be used to
replicate the association between the installations and the segmenta-
tion masks, as done in the notebook metadata.

— replication/ Folder containing the compiled data used to generate the
segmentation masks;
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— campaign-google / campaign-ign. One folder for each campaign
— click-analysis.json: Output on the click analysis, compiling raw
input into a few best-guess locations for the PV arrays. This dataset
enables the replication of our annotations;
— polygon-analysis.json: Output of polygon analysis, compiling raw
input into a best-guess polygon for the PV arrays.
— validation/ Folder containing the compiled data used for technical valida-
tion.

— campaign-google / campaign-ign. One folder for each campaign

— click-analysis-thres=1.0.json: Output of the click analysis with a
lowered threshold to analyze the effect of the threshold on image
classification, as done in the notebook annotations;

— polygon-analysis-thres=1.0.json: Output of polygon analysis, with
a lowered threshold to analyze the effect of the threshold on poly-
gon annotation, as done in the notebook annotations.

— metadata.csv the filtered installations’ metadata.

Quality checks Throughout the generation of the training dataset, we tested
whether the threshold values chosen to classify the images, construct the poly-
gon, and associate the polygons with the installations’ metadata yielded as few
errors as possible. We base our approach on a consensus metric to classify images
and construct the polygons, namely the pixel annotation consensus (PAC). Thus, we
improve on Bradbury et al. (2016), who proposed a confidence value based on the
Jaccard Similarity Index (Levandowsky and Winter, 1971) between the two annota-
tions. As for the association between the polygons and installations’ metadata, we
balance between accuracy and keeping as many installations as possible.

As mentioned in the methods section, the choice criterion for image classifica-
tion during phase 1 is the consensus among users. We empirically investigated a
range of thresholds and determined that a value of 2.0 yielded the most accurate
classification results. In other words, we require that at least three annotators click
around the same point to validate the classification.

We use an absolute (unnormalized by the number of annotators for this image)
threshold to decide whether the image contains a panel. The threshold is absolute
because users could only click once on the image during the annotation campaign,
even if the latter contained more than one array. As such, an absolute threshold
does not dilute the consensus among users when there is more than one panel on
the image.

The leftmost plot of Figure B.3 plots the histogram of the absolute PAC. Visual
inspection revealed that the peak for values below 2.0 corresponded to false posi-
tives. We enable replication of the threshold analysis in the notebook annotation.
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We used a consensus metric to merge the users’ annotations like the click anno-
tation. After empirical investigations, we found that a relative threshold (expressed
as a share of the total number of annotators) was the most effective for yielding the
most accurate masks and that its value should be 0.45. In other words, we consider
that a pixel depicts an installation if at least 45% of the annotators included it in
their polygons.

The center plot of Figure B.3 depicts the histogram of the relative PAC. Visual in-
spection revealed that the few values below 0.45 corresponded to remaining false
positives (e.qg., roof windows). The use of a relative threshold is motivated by the
fact that the users can annotate as many polygons as they want. We enable repli-
cation of the threshold analysis in the notebook annotation.

We link segmentation masks and installation metadata according to the steps
described in the section "Metadata matching ." To measure the quality of this link-
age, we measure the Pearson correlation coefficient (PCC) between the surface re-
ported in the installation metadata dataset (referred to as the "target" surface) and
the surface estimated from the segmentation masks (referred to as the "estimated"
surface). The higher the PCC, the better our matching procedure.

Figure B.3 plots estimated and target surfaces. After filtering, we obtain a PCC
coefficient of 0.99 between the target and estimated surfaces. Without filtering,
the PCC coefficient equals 0.68 for Google images and 0.61 for IGN images. It
shows that our metadata-matching procedure enabled us to pick the installations
with the best fit between the reported surface and the surface estimated from the
segmentation masks.

Distribution of the PAC for image classification Distribution of the relative PAC for polygon annotations Correlation between the computed and
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Figure B.3 — Validation by comparison of the surface estimated from the masks and
the surface reported in the PV installations’ metadata. Taken from Kasmi et al.
(2023d).

Our matching procedure comprises three steps: internal consistency, unique-
ness, and external consistency. Each of these steps discards installations from the
BDPV database. Figure B.4 summarizes the number of installations filtered at each
process step. We can see that most filtering happens when we discard segmenta-
tion masks with multiple installations.
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Figure B.4 — Number of installations filtered through the different filtering steps
during the association between the masks and the installations’ metadata. *During
the mask uniqueness step, we account for the fact that (a) not all BDPV installations
were identified on images (13,303 were identified on Google images and 7,686
on IGN images) and (b) among these identified installations, some of the masks
contained more than one polygon. Adapted from Kasmi et al. (2023d).

2 Crowdsourcing campaign analysis

¢ 2 8D(ap)PV - Annotation-BDPV X +
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BDZPY

Identifiez les panneaux photovoltaiques sur les photos

Instructions :

« si une photo contient une ou plusieurs zones de panneaux, cliquez dessus (pas n'importe ol MAIS sur un des panneaux
présent dans la photo)

* si aucune des photos ne contient de panneaus, cliquez sur le bouton orange au dessus des photos.

« si vous avez un doute sur la présence de panneaux, ne cliquez pas.

Plus dinformations et d'exemples de photos sur notre "page tutoriel".

Statistiques Tag PV (Maj : 29/05 20:00:01)

+ Nombre de clics depuis le début : 2958 dont hier.
+ Nombre de photos validées 10059 (58.2%) sur 17283.

ANLUEEE 2E LT LIGEN  Cliquez ici si aucune des 3 photos ne contient de panneaux

Figure B.5 — Screenshot of the BDAPPV crowdsourcing platform (first phase).

The crowdsourcing platform Figure B.5 depicts screenshots of the crowdsourc-
ing platform. This platform is accessible at the URL https://www.bdpv.fr/_BDapPV/
although it does not receive contributions anymore. Each campaign phase has its
dedicated webpage where users can annotate the PV panels.
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Overall statistics Table B.2 summarizes the annotators contributions during the
crowdsourcing campaigns. We can see more annotators for the first campaign than
for the second. This may be because we advertised more for this campaign.

Table B.2 — Summary statistics of the contributions during the crowdsourcing cam-
paigns. Source: Kasmi et al. (2023d).

Google IGN

Total number of actions 349,394 119,528
Total number of annotators 1,901 1,021
Actions during phase 1 291,597 90,084
Actions during phase 2 68,162 29,444
Active annotators during phase 1 1,043 51
Active annotators during phase 2 960 980
Active annotators during both phases 102 10

The contributions are very concentrated, as seen from Figure B.6. Thirty users
make almost two-thirds of the contributions during the crowdsourcing campaign.
We can see that for both phases, the pattern is the same. This result is consistent
with prior studies (Parrish et al., 2019; Rotman et al., 2014; Segal et al., 2015;
Sauermann and Franzoni, 2015) on crowdsourcing efforts, which documented such
a Pareto law for the contributions.

Number of actions per user

. i i ---= Quartiles
H i —— Annotator during the 2 phases

Number of actions (logscale)

Figure B.6 — Number of annotations per user.

Temporal dynamics Figure B.7 presents the daily number of contributions during
the first campaign. We can see about ten times more daily contributions during the
first phase than during the second. Also, we can see that annotators’ engagement
decreases over time. On Figure B.7, "communication" indicates a public post on
social media. We can see a response to the first post, less to the second one.
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Figure B.7 — Number of daily annotations (log scale) during the first crowdsourcing
campaign. Light blue indicates the second phase, and dark blue the first phase.
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Appendix

Supplementary materials

1 Supplementary material to chapter 2

1.1 Additional plots of the distribution of the tilt angle

Figures C.1 to C.3 present additional plots based on the model of Figure 2.12. We
can see that the mean tilt angle values depend on the latitude, with angles steeper
in the North than in the South. Localizations are taken in the North (Figure C.1),
South (Figure C.2) and East (Figure C.3).
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Figure C.1 - Comparison of the distribution of the azimuth (left) and tilt (right) angles
obtained from our mapping algorithm and BDPV.
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Figure C.2 — Comparison of the distribution of the azimuth (left) and tilt (right) angles
obtained from our mapping algorithm and BDPV.
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Figure C.3 - Comparison of the distribution of the azimuth (left) and tilt (right) angles
obtained from our mapping algorithm and BDPV.

1.2 Complementary regressions of the city’s coordinates on its er-
ror

In this section, we report different parameterizations that model relationships
other than linear between the city’s geographical coordinates and its error mea-
sured with the DTA. The transformation of the independent variable does not change
our interpretation of the results. We can only notice that the latitude is significant
at the 5% level for the APE if we consider the square of the latitude.

Logarithmic transformation Table C.1 plots the estimation results with a loga-
rithmic transformation of the coordinates.
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Table C.1 - Results of estimating the linear model defined in Equation 2.1 for the
dependent variables APE, AIPE, and ratio.

APE ratio AIPE

p1 (Log(Latitude))  361.9940 -1.2030 83.0664
(365.550) (3.837) (276.282)
B2 (Log(Longitude)) -0.7179 0.0351* 2.6796

(4.943) 0.019) (2.719)
e -9.337e-10 3.473e-12 -2.383e-10
(9.1e-10) (9.51e-12) (6.92e-10)
N 1620 1839 1620
Adjusted- R? 0.414 0.572 0.412

Clustered standard errors in parenthesis.
p < 0.01, "p < 0.05 p<0.1

Quadratic transformation Table C.2 plots the estimation results with a quadratic
transformation of the coordinates.

Table C.2 - Results of estimating the linear model defined in Equation 2.1 for the
dependent variables APE, AIPE, and ratio.

APE ratio AIPE

1 (Latitude?) 0.0841 -2.769e-06 0.0369
(0.063) (0.001) (0.062)
8o (Longitude?®) -0.9757** 0.0085* 0.7663
(4.943) (0.411) (0.477)

a -8.36e-11  3.25e-13  -7.603e-11
(6.13e-11) (6.93e-13) (6.22e-11)
N 1620 1839 1620
Adjusted-R? 0.415 0.585 0.413

Clustered standard errors in parenthesis.
p <0.01, "p < 0.05 p<0.1

2 Supplementary material to chapter 3

2.1 Additional visualization of the dissappearance of important com-
ponents

Figure C.4 presents another example of the effect of the change of image provider
on the ability of the model to detect PV panels. We can see that in this case, on
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Google, the important factor was the factor (b) (on the leftmost image), which is
no longer important on the IGN image (on the right). On the IGN image, due to
the absence of information in (b), the model relied on (a) to predict that there is
no PV panel. the model instead relied on the factor (a) . Finally, we can see two
regions, highlighted by (c) on the Google image, that also contribute to the predic-
tion, but only in the case of the Google image. We may wonder whether one factor
is not the critical component. Without this factor, the model no longer recognizes
the panel and instead switches to a random factor to make a prediction. The fact
that the shading evolved on this image does not seem to be the key driver for the
model not to recognize the image, as the example on Figure 3.16 does not depict
shadings.

Google (Source domain) IGN (Target domain)
True poiive False negative

WCAM WCAM

Scale si © |
cale size (p>xg

1-2

Figure C.4 - Predictions on Google image (left, upper row) and IGN image (right,
upper row) and associated WCAMs (bottom row, displayed in logscale and with the
same color scale). The brighter the highlighted region for the prediction, the more
important it is. Taken from: Kasmi et al. (2023b).
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2.2 Additional examples of the extraction of the critical compo-
nent

Figure C.5 and Figure C.6 depict additional examples of identification of the crit-
ical components using the WCAM.

Original image Critical component
(true positive)

Sufficient image Last incorrect image (n the image domain)

Critical component
(In the space -scale domain)

0

omponents omponents

Figure C.5 - Identification of the critical component (highlighted in white on the
"Critical component" plot on the bottom right of the image. Without this compo-
nent, the model does not predict the PV panel. The sufficient image is the image
reconstructed with the minimal set of components.

Original image Critical component
(true positive) Sufficient image Last incorrectimage (n the image domain)

Critical component
C mponents (In the space -scale domain)

Figure C.6 - Identification of the critical component (highlighted in white on the
"Critical component" plot on the bottom right of the image. Without this compo-
nent, the model does not predict the PV panel. The sufficient image is the image
reconstructed with the minimal set of components.
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2.3 Details on the data augmentation techniques

AugMix (Hendrycks et al., 2020) The data augmentation strategy "Augment-
and-Mix" (AugMix) consists in producing a high diversity of augmented images from
an input sample. A set of operations (perturbations) to be applied to the images are
sampled, along with sampling weights. The image resulting z,,, is obtained through
the composition z..,y = wiopi o ...wyop,(z) where z is the original image. Then, the
augmented image is interpolated with the original image with a weight m that is
also randomly sampled. We have zqugmiz = mz + (1 — m)zqug.

AutoAugment (Cubuk et al., 2019) This strategy aims at finding the best data
augmentation for a given dataset. The authors determined the best augmentations
strategy S as the outcome of a reinforcement learning problem: a controller pre-
dicts an augmentation policy from a search space. Then, the authors train a model,
and the controller updates its sampling strategy S based on the train loss. The goal
is for the controller to generate better policies over time. The authors derive opti-
mal augmentation strategies for various datasets, including ImageNet Russakovsky
et al. (2015), and show that the optimal policy for ImageNet generalizes well to
other datasets.

RandAugment (Cubuk et al., 2020) This strategy’s main goal is to remove the
need for a computationally expansive policy search before model training. Instead
of searching for transformations, random probabilities are assigned to the transfor-
mations. Then, each resulting policy (a weighted sequence of K transformations) is
graded depending on its strength. The number of transformations and the strength
are passed as input when calling the transformation.

2.4 Training results

Table C.3 reports the training results of our methods on the source (Google) test
set. We can see that a small margin outperforms our spectral method compared to
other methods on the source dataset. We can see that all models achieve nearly
perfect accuracy on the source dataset.
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Table C.3 - F1 Score and decomposition in true positives, true negatives, false
positives, and false negatives for models trained on Google images with different
strategies to mitigate the sensitivity to acquisition conditions. Evaluation computed
on the Google (source) dataset.

F1 Score (1) TP TN FP FN

ERM (Vapnik, 1999) 0.98 1891 2355 36 39

AutoAugment (Cubuk et al., 2019) 0.98 1906 2340 51 24
AugMix (Hendrycks et al., 2020) 0.98 1894 2354 37 36
RandAugment (Cubuk et al., 2020) 0.98 1907 2342 49 23
Noise and blur 0.98 1897 2339 52 33

Blurring 0.82 1636 1958 433 294

Blurring + WP 0.90 1798 2135 256 132

Oracle 0.91 1815 2127 264 115

Interestingly, when evaluating the Oracle (the model trained on IGN) on Google,
it remains competitive, even outperforming the accuracy of our methods on the
source dataset. This further underlines that removing high-frequency content is
very important for guaranteeing a good ability to generalize to new acquisition
conditions.

3 Supplementary material to chapter 4

3.1 Methods evaluated for constructing PyPVRoof

Direct computation Overhead imagery is usually orthorectified (i.e., with a uni-
form scale). One can only compute the projected surface from the polygon. The
computation is straightforward, and the only requirement is considering the projec-
tion. Parhar et al. (2021) describe the Mercator case. In practice, packages such as
area (Alireza, 2018) estimate the surface of geojson polygons, taking into account
the deformation induced by the projection system.

Once the projected surface is known, one needs the tilt angle to compute the real
surface. Denoting S,,,; the projected surface and ¢ the tilt angle of the installation
(in degrees), the real surface is given by Equation C.1:

s
S = Sproj/ cos (9 X 180) . (C.1)

3.1.1 Constant parameters

Constant tilt Tilt is necessary to compute the real surface of the installation.
When neither registries nor surface models are available, it is still possible to infer
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a tilt angle from the remaining data (i.e., the PV polygon). However, in practice,
the optimal tilt angle of an installation is known. Typically, a tilt angle of around 30
degrees is optimal in most European countries. Regional models estimating the PV
yield of solar plants consider this value by default (JRC, 2023; Saint-Drenan et al.,
2019). In our case, we allow the user to input a default coefficient if necessary. This
case can be seen as a worst-case situation if no surface models or auxiliary data is
available.

Constant efficiency An efficiency factor relates the surface of a PV installation
and its installed capacity. The PV panel efficiency increased due to the cell ef-
ficiency increase over the last couple of decades (NREL, 2023). This efficiency is
usually measured in kW,/m?. The efficiency depends on many criteria (e.g., module
technology of the panel, aging, manufacturer), which are not necessarily publicly
available. However, average efficiencies can be used. For instance, Rausch et al.
(2020); Mayer et al. (2022) used a value of 6 kW,/m? as a reference value to esti-
mate the installed capacity from the surface. As for the tilt angle, we allow the user
to input this efficiency value.

3.1.2 Theil-Sen estimation

The Theil-Sen estimator (TSE) initially proposed by Theil (1992) and Sen (1968)
is a robust regression method. It consists in considering the median of the slopes
of all lines (or planes in higher dimensions) through pairs of points. This method is
more robust to outliers than ordinary least squares.

We use this method to fit a plane z(z,y) = az + by + ¢ parameterized by only three
parameters, a,b and ¢, to a set of points corresponding to altitudes. These altitudes
come from the digital surface model (DSM) passed as input. Figure C.7 depicts an
example of LIDAR DSM provided by the IGN. Lighter areas correspond to higher
altitudes.

Figure C.7 - Example of DSM: the rasterization of the LiDAR from the IGN.

The direction of the gradient of the plane gives the azimuth angle . The slope
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value along this gradient corresponds to the tilt angle 6. The gradient of the plane
Vz(x,y) is given in Equation C.2:

0 0
Vita) = (o0 5o wn) = (@), (€2)
and
© = arctan <Z) , 0 = arctan <Z> . (C.3)

where h = a?4b? and d = Va2 + 2. Figure C.8 depicts the principle of the Theil-Sen
method to compute the tilt and azimuth angles.

Figure C.8 — Theil-Sen method principle. The plane is deduced from the raster and

is parameterized as z(z,y) = ax + by + ¢. ¢ corresponds to the azimuth angle and

f to the tilt angle. er, e_;, e correspond to the canonical basis of R3. Taken from

Trémenbert et al. (2023).

3.1.3 Lookup table

If surface models are unavailable, we can still recover a tilt angle more accu-
rately than with direct computation. To achieve this, we only need a sample of tilt
angles for the desired area, e.g., a smaller PV or building database. We can then
reflect the spatial variability of the tilt angle by computing an average tilt angle
per grid point. The reference value associated with the installation corresponds to
the average of the existing installations located in this grid point. The lookup table
requires that the auxiliary data frame span the complete area or interest (e.g., a
region or a country).
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Figure C.9 — Lookup table for 50 x 50 grid-points and four surface categories com-
puted for the PV mapping algorithm of Kasmi et al. (2022a). Surface categories
correspond to quartiles of the distribution of the surface in the auxiliary data.

We compute this so-called lookup table (LUT) only once, and the user can pass
a precomputed LUT as input. Computation is done as follows: we first define the
spatial extent by setting easternmost E, northernmost N, westernmost W, and
southernmost S boundaries. These boundaries are expressed in geographical co-
ordinates. We then define a grid by dividing the numerical intervals defined by F
and W and S and N respectively. We end up with K longitude intervals and L lati-
tude intervals. Besides, we cluster the auxiliary data frame by (projected) surface
category to define T surface categories. After empirical investigations, defining
intervals as quantiles yielded the best results.

We then aggregate all sample points z%"*' .. 2%t whose coordinates belong to
the k x 1 —th grid point and projected surface that belong the ¢t —th category. We then
compute the reference tilt angle for this (k,1,t) — th box, denoting 6%\ by averaging
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the tilt values of the n sample points falling into this bin. If no sample is available,
we do not input a value.

Once this step is finished, we end up with a subset of grid points for which no
reference value is available. We estimate a value by interpolating a 6%t by inter-
polating the neighboring values. We do not interpolate across surface categories.
Figure C.9 displays the LUT obtained for the PV mapping algorithm of Kasmi et al.
(2022a) using this method.

3.1.4 Bounding-box

The bounding box method only requires the polygon to compute the azimuth
angle . The bounding-box method is an alternative when no surface models are
accessible. We simplify the polygon’s geometry by computing its bounding box.
Then, we compute the azimuth angles associated with the "long" and "short" sides
of the rectangle. We input as azimuth angle the angle corresponding to the longest
side. We implicitly assume that the PV panel tends to be wider than high. The
main limitation of this method is that it cannot distinguish between a panel facing
eastwards or westwards, northwards or southwards. In the latter case, however, we
can assume that the PV panel should not point northwards (at least in the North-
ern Hemisphere). If our bounding-box heuristic estimates that the polygon points
between -45 and 45 degrees (0 being the reference for the North), we correct the
estimation by applying a horizontal symmetry.

3.1.5 Linear regressions

So et al. (2017) showed that it is possible to accurately estimate the installed ca-
pacity by fitting a linear regression between the surface and the installed capacity.
We build on this method. The linear model is given by Equation C.4,

C=" +’YS) (C4)

where S is the surface in m? and c is the capacity in kW, of the installation. As
pointed out by So et al. (2017), v is a bias coefficient; in the true model, v, should
equal zero. In our case, we consider vo = 0 and estimate v from BDAPPV.

Efficiencies can differ depending on the PV installation’s surface NREL (2023).
To accommodate this, we introduce another estimation for the installed capacity,
namely the clustered linear regression. Clusters are defined depending on the sur-
face of the installation. The goal is to reflect the different efficiencies while keeping
the number of parameters as low as possible. This approach is inspired by the
second model of So et al. (2017), which estimated a panel-wise coefficient 4. Their
approach, however, required additional unobservable information, such as the man-
ufacturer’s design.
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Figure C.10 represents the linear regression of the installed capacity on the sur-
face and shows the relatively low dispersion of points around this mean. The left-
most plot shows the different coefficients depending on the surface cluster. We
focus on surfaces lower than 200 m2, where the density of installations is the high-
est. We can see that the efficiencies recorded in our reference registry are higher
for smaller installations.

Clustered linear regression Linear fit of the installed capacity on the surface. yo =0

Raw values 250 °
1T — Range : 0-20 m?, coeff : 0.16

Range : 20-24 m?, coeff : 0.12
1 —— Range : 24-30 m?, coeff : 0.11 200
—— Range : 30-5000 m?, coeff : 0.10

= = N N
o v o v
L L L

Installed capacity [kWp]

v
L

0 2‘5 5‘0 7‘5 160 1%5 1%0 1%5 200 0 250 500 750 1000 1250 1500 1750
Surface [m?]

Figure C.10 - Left: clustered linear regression. Right: linear regression with a single
coefficient.
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3.2 Example of shifted thumbnails generated from a larger image

Figure C.11 presents an example of thumbnails extracted from the 400x400
image.

Centr : (138, 1;-38) Center: (138, 179) Center: (138, 22)

Center : (138, 262)
N -
L ]

4

Center

Center : (220, 138) C'ernter: (220, 17‘9) Center : (220, 220) Center: (220, 262)
) "o AN

A , :
Cente[: (262, 138) Center: (262, 179) Center :(262, 2‘2'3) Center : (262, 262)

.

L™

Figure C.11 - Example of thumbnails generated from a 400x400 image with the
panel’s position on the image being shifted. The coordinates indicate the position
of the center of the thumbnail (in pixels relative to the upper-left corner of the
image).

4 Supplementary material to chapter 5

Geographical variability of the estimation error by the Oracle Figure C.12
depicts the geographical variability of the error of the estimation of the PV power
production using the conversion model, with parameters for the PV installations
coming from BDPV. We can see that the geographical variability is about the same
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as that of DeepPVMapper. Overall, the error is lower.

, L 25.99
Geographical variability I

50+ 6.51
r(./\. . o .. : .\‘,\ _
o 481 449 X
E \\'A( W
s (%))
7 46 714 2
o

44 A
-13.40
Longitude —1.36

Figure C.12 - Geographical variability of the pRMSE [%] of the PV power estimation
depending on the localization of the installation (Oracle).

4.1 Examples of reports generated to inspect the quality of the PV
power measurements from BDPV

In addition to the quantitative inspections described in chapter 5, our quality
check also relied on the qualitative examination of production reports such as those
shown on Figure C.13 and Figure C.14. These reports consist in fitting a simulation
model (different from our simple simulation model as the latter accommodates for
all parameters of the PV installation) and comparing the production with the estima-
tion. Figure C.13 and Figure C.14 present two examples of images that passed and
failed our quality checks (QC), respectively. We can see that in the case of installa-
tion # 2248, which failed the quality check, the estimation between the production
and the estimation does not fit at all, indicating that either the localization of the
installation is wrong (so the weather data is inaccurate) and that the installation
does not work correctly as it produces much less than expected.
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Figure C.14 - Example of an installation that failed the QC.

4.2 Using the LiDAR and the ground truth power measurements to

evaluate the accuracy of the tilt angles reported in BDPV

Proposed approach and illustrative example Assuming that the LiDAR data
provides an accurate estimation of the inclination of the rooftops, we estimate
the tilt and azimuth angles using a Theil-Sen regression, available in Trémenbert
et al. (2023). We then estimate the PV power production for one installation with
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our model, using three different parameterizations: the tilt and azimuth angles of
BDPV, the tilt and azimuth estimated from the LiDAR data, and the tilt angle es-
timated from the LiDAR data, and the azimuth angle from BDPV. We compare the
different variants with the ground truth data. In all cases, the installed capacity is
the installed capacity recorded in BDPV.

—— Truth
2000 BDPV parameters simulation
—— Tilt from lidar
15001 —— Tilt and azimuth from lidar
1000+
5001
OA
SN AN N
NN N
o X o> X
> > > >

Figure C.15 - Fit of the PV power estimation with different model parameterization.

Figure C.15 illustrates the load curves obtained with our different model param-
eterization, compared to the ground truth. We can see that the fit seems to be bet-
ter when we use the tilt and azimuth angles estimated with the LiDAR data rather
than the values of BDPV. Table C.4 presents the results of the PV power estimation
for one installation using the three different parameterizations of the conversion
model. The column "case" indicates the name of the configuration, the columns
# and ¢ indicate the values of the tilt and azimuth angles in each configuration,
and the column "pRMSE" indicates the corresponding pRMSE. We can see that the
better fit observed on Figure C.15 for two days of data is quantitatively backed: for
this installation, using the tilt angle derived from BDPV leads to a better estimation
of the PV power production of the installation.

Table C.4 - Accuracy of the PV power production estimation using parameterizations
from the LiDAR data. Best results are bolded.

Case 6] o [°] PRMSE [%]

6 and ¢ from BDPV 40.00 205.00 4.18
6 and ¢ from LIDAR 21.37 251.57 4.21
6 from LiDAR, ¢ from BDPV 21.37 205.00 3.38
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Towards an independent quality check method We investigated whether we
could assess the data quality using this approach. We scaled the approach to 16
installations and computed the pRMSE of the PV power production estimation. Ta-
ble C.5 presents the results. On average, the pRMSE of the modeling error using
the parameters from BDPV is the best, but it is not unbeatable. This shows that
there are cases in which the BDPV parameterization is inaccurate.

Table C.5 — Average pRMSE for different configurations of parameterizations of the
conversion model.

PRMSE [%]
Case Min Max Mean Median n

6 and ¢ from BDPV 1.24 5.44 3.01 3.00 16
6 and ¢ from LIDAR 0.95 27.87 5.19 3.22 16
6 from LiDAR, ¢ from BDPV 0.99 34.05 5.52 2.68 16

We can then inspect these cases to see which of the LIDAR parameterizations
beat the BDPV parameterization. Figure C.16 presents an example of an installation
for which the estimation yielded by the LIiDAR parameterization achieves better
results than the estimation with the parameters from BDPV.

We can see that the tilt in BDPV seems to be overestimated while the azimuth
angle of BDPV is visually correct. The overall profile of the model using the LiDAR
parameterization is similar to the BDPV parameterization. The sensitivity of the
predictions to the temperature also seems to be similar. However, the correlation
coefficient (R?) between the simulation and the prediction is higher using LiDAR
parameters than BDPV parameters.
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PV power measurements and estimation
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Figure C.16 — Report comparing the estimation using BDPV parameters and LiDAR
parameters. The pRMSEs are reported in %, and the tilt and azimuth angles are

reported in degrees.
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Appendix
Introduction to machine learning

Remark This appendix is based on the lecture notes of the lecture on machine
learning given by Arnak Dalalyan during the final year at ENSAE during the aca-
demic year 2017-2018 and the PhD thesis of V. Nagarajan.

1 Notations and definitions

Overview Statistical learning or machine learning aims to design automatic pro-
cedures to uncover general rules based on examples. The starting point is a sample
(x;,y;) used to infer the general rules. Depending on the assumptions on this sam-
ple, several learning paradigms can be distinguished :

— Offline (batch) or online learning, depending on whether the samples (z;, ;)
are available all at once or sequentially to the learner,

— Supervised learning when one has access to samples z; (features) and their
associated labels y;,

— Unsupervised learning, when one has only access to the z;’s,
— Weakly or semi supervised learning if only a part of the z;'s have labels,

— Self-supervised learning (SSL) if labels are generated from the features. As
in unsupervised learning, in SSL, we only assume access to the z;’s (features)
and generate labels or pseudo-labels from the features.

In the following, we focus on the most widespread machine learning framework,
(batch) supervised learning.

Dataset We assume that we have access to a dataset D,, = {(z1,42),---, (Zn,yn)}
comprised of input features z; € X and their associated labels y; € Y, where X
and Y are measurable sets. For instance, features z; can be images. In this case,
X = RW*XILxC where W x L is the resolution of the image and C is the number of
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color channels. On the other hand, labels are integers —1 or 1 encoding whether
there is a solar array on the image. Then, Y = {—1,1}. We assume further assume
that D, “%% Pyy where Pyy (or P in short) is unknown.

Predictor and hypothesis class Given the dataset D,, our goal is to find a pre-
dictor f belonging to a hypothesis class F. Ideally, we want this predictor to infer
the underlying classification or regression rule from the dataset. A predictor is,
therefore, a function f : X — ). The hypothesis class corresponds to the set of
functions from which we can pick our predictor. For instance, if we do linear classifi-
cation, our hypothesis class would be the set of all linear predictors. The cardinality
of F, denoted |F|, corresponds to the complexity of the hypothesis class.

Loss function A loss function £ penalizes a predictor for making a wrong predic-
tion.

Risk of a predictor The quality of a predictor f is assessed through its risk. The
risk measures the average loss on a given sample (z,y) ~ Pxy when using the
predictor f. Formally,

Rpyy (f) = Epyy [L(Y, f(X))] (D.1)

and the best prediction function is the predictor such that:

[* € argmin Rpy , (f) (D.2)
feFr

This function is also called the Bayes predictor or oracle.

Consistency of an algorithm In practice, we compute a surrogate for f based
the data D,,. Since D, is a random variable, so is the surrogate, denoted f,,. We say
that an algorithm is :

— Consistant with respect to Px y if and only if (iif) :

A

nh_)ngo Epyy {RPX,Y (fn)} =Epy, {RPX,Y(f;X,Y)}

— Consistent with respect to P if it is consistent for all Pxy € P
— Univsersally consistant iif it is consistant for all probability Pxy defined on
X x V.

Based on consistency, we can consider a learning algorithm as a good algorithm if
the latter is universally consistent and uniformly convergent over a given distribu-
tion family P. Indeed, obtaining a uniform convergence property for all distribution
families is impossible. In practice, the choice of P is crucial since finding a good P,
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i.e., a good way to model the problem, enables a fast convergence of the learning
algorithm.

2 Empirical risk minimization

Overview We want to find a function f whose risk is as close as possible to the
risk of the oracle. Unfortunately, neither the distribution of the data Pxy nor f* are
known. However, it is possible to approximate the risk by its empirical counterpart:

Z (Yi, f(X (D.3)

3\?—‘

Furthermore, if we assume that E [£(Y, f(X))?] < oo, then, by the (strong) law of
large numbers and the central limit theorem, we get that :

Rn(f) 7la_>—SOO>RPX7)/(f) (D.4)
and
Vi (Ra(f) = Reyy () —— N (0, Var [£(Y, £(X))) (D.5)

Empirical risk minimization Based on these results, we can derive a simple
learning algorithm based on the minimization of (D.3). This algorithm is the empir-
ical risk minimization (ERM).
fn = argnr}inf%n(f) (D.6)
feF
where F C F is a subset of the hypothesis class. We consider a subset of the
hypothesis in order to avoid overfitting. On the other hand, we need F to be large
enough to find a good approximation of f*.

Exess risk, stochastic and systematic errors Denoting f% the oracle on F, we
can decompose the excess risk of f, as :

RPX,Y (fn) - RPX,Y (f*) = RPX,Y(fn) - RPX,Y (f_*i-) + RPX,Y (f_*i-) - RPX,Y (f*) (D7)

stochastic error systematic error

The excess risk corresponds to the difference between the risk of a given function
and the minimum risk possible for a hypothesis class. Rewriting it as the sum
between the stochastic and the systematic error amounts to rephrasing the excess
risk in terms of the bias-variance trade-off. The stochastic error can be reduced by
finding a good subset F, which introduces a bias in the modeling.

211



Appendix D. Introduction to machine learning

3 EXxcess risk bounds

Supremum bound The supremum bound tells us that the stochastic risk can be
bounded as follows :

Rpyy (fa) = Rpyy () < 250 |Rpy o (f) = Ru(f) (D.8)
fer

However, it is possible to obtain tighter bounds for the stochastic error. These
bounds are probabilistic, meaning that they are statements such as :

PRy, (fa) = Regy (F2) < 0u()] > 12, ¥e € (0,1) (D.9)
Hoeffding’s bound This bound states that

2log(2| ] /e)

n

RPX,Y (fn) - RPX,Y (f;—) <(b—a) (D.10)

The main problem with this bound is that the bound becomes vacuous as soon as
| F| = oo.

Vapnik-Chervonenkis (VC) dimension The key idea behind the VC bound is
that rather than considering the cardinality of F, one should instead consider the
number of functions making a different prediction that it is possible to construction
from F. Indeed, two different functions making the same predictions on D,, will
have the same ERM, and it is therefore not necessary to "count them twice." The
VC bound relies on the VC dimension, corresponding to the largest shattering coef-
ficient of 7. In the context of binary classification, for a given set X of dimension
d, the shattering coefficient of F is the cardinality of the largest subset S that can
be shattered by F. Since the shattering coefficient depends on D,,, we refer to the
VC-dimension of f on D\, denoted Vz(D,). We can check that V(D) < n.

VC-bound for binary classifiers We can derive an excess risk bound based on
the VC dimension. This bound is valid in the context of binary classification since it
is restricted to the set of loss functions £: Y x Y — {—1,1}. With probability at least
1—¢, we have :

2VE((2n) log(4(2n + 1) /¢)

RPX,Y(fn) - RPX,Y(f;?) < 2\/ (D.11)

4 From the excess risk to generalization bounds

Overview So far, we have bounded the excess risk, which compares the true risk
of a learning algorithm to the true oracle risk. In practice, however, we only have
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access to the empirical risk of the learning algorithm, so we are also interested in
knowing how far the empirical risk is far from the true risk. For simplicity, denoting
f a given learning algorithm, f a learning rule obtained from the data, R the true
risk and R the empirical risk, we can distinguish between :

— The excess risk defined as R(f) — }ngTR(f), and for which we provide some
bounds in section 3,

— The generalization gap (or generalization bound) which is defined as R(f) — R(f)

Consistency of ERM So far, we have bounded the stochastic error. However, we
showed that the excess risk can be decomposed as the sum of the stochastic and
systematic errors. If we want to achieve consistency, we need the systematic error
to be as close as possible, and ideally, we would like the Bayes predictor f* to be
comprised in F. A minimal condition for the oracle predictor to be in F is to allow F
to grow as a function of n. Therefore, when n — oo, F — F and the ERM can achieve
consistency. In the following, we consider that F = F,.

Oracle bounds Let 7 = F,. Denote C(F) the complexity of the hypothesis class
F. Excess risk bounds obtained in section 3 can be rewritten as :

log(C(Fn)/€)

n

RPX,Y(fn) < C]-RPXA,Y (f}k-‘n) + Oy (D.12)

with probability at least 1 — ¢ and where C; and C, are universal constants.

Generalization gap The last inequality bounds the true risk of f,, but the only
quantity we have access to is R, (f,). However, it is possible to deduce from (D.11)
a bound on the true error based on the empirical error, which is the generalization
gap we are interested in. Using the same notations, we have, with probability at
least 1 —¢,

(D.13)

Rpyy (fo) < Ru(fo) + K W

Conclusion We can see that the generalization gap can be closed using the VC
theory. We can compute the empirical risk using (D.13) to compute the true risk
and Equation D.11 to evaluate how far is the true risk from the oracle risk.
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Appendix

Publications associated with this
thesis

1 Peer-reviewed journal papers

Kasmi, G., Saint-Drenan, Y.-M., Trebosc, D., Jolivet, R., Leloux, J., Sarr, B. &
Dubus, L.. "A crowdsourced dataset of aerial images with annotated solar photo-
voltaic arrays and installation metadata". Scientific Data, 10(1), 59.

DOI: https://doi.org/10.1038/s41597-023-01951-4

Abstract Photovoltaic (PV) energy generation plays a crucial role in the energy
transition. Small-scale PV installations are deployed at an unprecedented pace,
and their integration into the grid can be challenging since public authorities often
lack quality data about them. Overhead imagery is increasingly used to improve
the knowledge of residential PV installations with machine learning models capable
of automatically mapping these installations. However, these models cannot be
easily transferred from one region or data source to another due to differences in
image acquisition. To address this issue known as domain shift and foster the de-
velopment of PV array mapping pipelines, we propose a dataset containing aerial
images, annotations, and segmentation masks. We provide installation metadata
for more than 28,000 installations. We provide ground truth segmentation masks
for 13,000 installations, including 7,000 with annotations for two different image
providers. Finally, we provide installation metadata that matches the annotation
for more than 8,000 installations. Dataset applications include end-to-end PV reg-
istry construction, robust PV installations mapping, and analysis of crowdsourced
datasets.

Kasmi, G., Touron, A., Blanc, P. & Saint-Drenan, Y.-M., Fortin, M., Dubus, L..
"Remote Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using
Physical Conversion Models and Weather Data". Energies 17(17), 4353.

DOI: https://doi.org/10.3390/en17174353
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Abstract The global photovoltaic (PV) installed capacity, vital for the electric sec-
tor decarbonation, has reached 1,552.3 GW,, in 2023. In France, the capacity stood
in April 2024 at 19.9 GW,.. The growth of the PV installed capacity over a year was
nearly 32% worldwide and 15.7% in France. However, integrating PV electricity
into grids is hindered by poor knowledge of rooftop PV systems, constituting 20% of
France’s installed capacity, and the lack of measurements of the production stem-
ming from these systems. This problem of lack of measurements of the rooftop
PV power production is referred to as the lack of observability. Using ground truth
measurements of individual PV systems, available at an unprecedented temporal
and spatial scale, we show that estimating the PV power production of an individual
rooftop system by combining solar irradiance and temperature data, the character-
istics of the PV system inferred from remote sensing methods and an irradiation-
to-electric power conversion model provides accurate estimations of the PV power
production. Our study shows that we can improve rooftop PV observability, and
thus its integration into the electric grid, using little information on these systems,
a simple model of the PV system and weather data.

2 Conference and workshop papers (peer-reviewed)

Kasmi, G., Dubus, L., Blanc, P. & Saint-Drenan, Y.-M.. "Assessment of the Reli-
ablity of a Model’s Decision by Generalizing Attribution to the Wavelet Domain". In
XAl In Action: Past, Future, and Present Applications workshop at NeurlPS 2023.
DOI: https://doi.org/10.48550/arXiv.2305.14979

Abstract Neural networks have shown remarkable performance in computer vi-
sion, but their deployment in numerous scientific and technical fields is challenging
due to their black-box nature. Scientists and practitioners need to evaluate the re-
liability of a decision, i.e., to know simultaneously if a model relies on the relevant
features and whether these features are robust to image corruptions. Existing attri-
bution methods aim to provide human-understandable explanations by highlighting
important regions in the image domain, but fail to fully characterize a decision pro-
cess’s reliability. To bridge this gap, we introduce the Wavelet sCale Attribution
Method (WCAM), a generalization of attribution from the pixel domain to the space-
scale domain using wavelet transforms. Attribution in the wavelet domain reveals
where and on what scales the model focuses, thus enabling us to assess whether a
decision is reliable.

Kasmi, G., Dubus, L., Blanc, P. & Saint-Drenan, Y.-M.. "Can We Reliably Improve
the Robustness to Image Acquisition of Remote Sensing of PV Systems?". In Tack-
ling Climate Change with Machine Learning Workshop at NeurlPS 2023.

DOI: https://doi.org/10.48550/arXiv.2309.12214

216


https://doi.org/https://doi.org/10.48550/arXiv.2305.14979
https://doi.org/https://doi.org/10.48550/arXiv.2309.12214

3. Communications in conferences

Abstract Photovoltaic (PV) energy is crucial for the decarbonization of energy sys-
tems. Due to the lack of centralized data, remote sensing of rooftop PV installations
is the best option to monitor the evolution of the rooftop PV installed fleet at a re-
gional scale. However, current techniques lack reliability and are notably sensitive
to shifts in the acquisition conditions. To overcome this, we leverage the wavelet
scale attribution method (WCAM), which decomposes a model’s prediction in the
space-scale domain. The WCAM enables us to assess on which scales the represen-
tation of a PV model rests and provides insights to derive methods that improve the
robustness to acquisition conditions, thus increasing trust in deep learning systems
to encourage their use for the safe integration of clean energy in electric systems.

Kasmi, G., Dubus, L., Blanc, P. & Saint-Drenan, Y.-M.. "Towards unsupervised
assessment with open-source data of the accuracy of deep learning-based dis-
tributed PV mapping". In MACLEAN: MAChine Learning for EArth ObservatioN Work-
shop co-located with the European Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases (ECML/PKDD 2022). URL :
https://sites.google.com/view/maclean22.

DOI: https://doi.org/10.48550/arXiv.2207.07466

Abstract Photovoltaic (PV) energy is rapidly growing and key to mitigating the
energy crisis. However, distributed PV generation, which amounts to half of the PV
installed capacity, is typically unavailable to transmission system operators (TSOs),
making it increasingly difficult to balance the load and supply and avoid grid con-
gestions. To assess distributed PV generation, TSOs need precise knowledge re-
garding the metadata of distributed PV installations. Many remote sensing-based
approaches have been proposed to map these installations in recent years. How-
ever, to use these methods in industrial processes, assessing their accuracy over
the mapping area, i.e., the area covered by the model during deployment, is neces-
sary. We define the downstream task accuracy (DTA) as the accuracy over the map-
ping area, automatically computed using publicly available data sources and the
model’s outputs and expressed in an interpretable way for operators. We bench-
mark existing models for distributed PV mapping and show how they perform in
terms of DTA. We show that the accuracy computed on the test set overestimates
by about 30 percentage points the accuracy on the mapping area. Our approach
paves the way for safer integration of deep-learning-based pipelines for remote PV

mapping.
3 Communications in conferences

Kasmi, G., Touron, A., Blanc, P. & Saint-Drenan, Y.-M., Fortin, M., Dubus, L..
"Enhancing regional PV power estimation using physics-based models, solar irradi-
ance data and deep learning". International Conference in Energy and Meteorology
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(ICEM), 2023, Padova, Italy.
URL : https://www.wemcouncil.org/wp/icem2023/

Abstract Photovoltaic (PV) power generation is growing rapidly and is key to mit-
igating the energy crisis. However, the safe integration of PV into the grid ne-
cessitates high-quality information about PV power generation in real-time and for
forecasts. Transmission system operators (TSOs) usually have access to real-time
measurements for the largest plants but lack information for smaller plants and
rooftop PV generation. This lack of precise measurements is known as the lack
of observability of PV power generation. Recently, various methods improved the
estimation and forecast of PV power generation when measurements are lacking.
Physics-based probabilistic methods have shown to be successful in accurately es-
timating regional PV power generation (Saint-Drenan et. al., 2019). These methods
rely on meteorological data (irradiation and air temperature) and information on the
spatial distribution of the PV installed capacity. However, as the number of rooftop
PV systems is expected to strongly increase, two challenges arise. First, accurate
estimation of rooftop PV generation with physics-based models requires accurate
information on its characteristics, which are different from large plants. Second, ref-
erence production data stemming from these installations is not accessible, even to
operators such as TSOs. The lack of ground-truth PV power production data results
in the impossibility of assessing the accuracy of PV forecasting methods. This work
addresses the following question: can regional PV models improve the observabil-
ity of PV generation when considering both unobservable PV plants and the high
penetration of distributed PV generation? We first introduce new regional models
to estimate PV power generation and compare them to existing approaches. We
then leverage deep learning to accurately map the rooftop PV installed capacity
and show how regional models benefit from more detailed information on the PV
rooftop capacity. Second, we compare these models to ground-truth data and show
how regional PV models benefit from accurate data on rooftop PV installations.

Kasmi, G., Blanc, P, Saint-Drenan, Y.-M. & Dubus, L.. "Looking for a frequency-
based principle to predict the sensitivity of convolutional neural networks to Gaus-
sian image perturbations". PhD Forum at ECML/PKDD, 2022, Grenoble, France.

URL : https://ecmlpkdd.org/2022/

Kasmi, G., Blanc, P, Saint-Drenan, Y.-M. & Dubus, L.. "Leveraging Earth ob-
servation data and deep learning to estimate the PV output in France". MACLEAN
Workshop @CAp/RFIAP, 2022, Vannes, France.

URL : https://caprfiap2022.sciencesconf.org/resource/page/id/23
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4 Submitted works

Kasmi, G., Dubus, L., Blanc, P. & Saint-Drenan, Y.-M.. "DeepPVMapper: reliable
and scalable remote sensing of rooftop photovoltaic installations".

Abstract As photovoltaic (PV) energy grows quickly, transmission system opera-
tors (TSOs) need accurate data to ensure its optimal integration into the grid. To
this end, deep learning-based remote sensing of rooftop PV systems emerged as
a promising approach. However, existing works struggle to scale at the size of
countries or power systems and lack reliability, as their test accuracy is not rep-
resentative of the accuracy during deployment. To bridge this gap, we introduce
DeepPVMapper, a deep learning-based algorithm for the remote sensing of rooftop
PV installations. We constructed a test bench representative of the operational con-
ditions. We optimized DeepPVMapper to focus only on relevant areas and maximize
the accuracy for detecting PV installations. We evaluate DeepPVMapper in a setting
representative of the operational conditions and demonstrate that it is 21% faster,
16% more accurate, and 31% more energy efficient than the current state-of-the-
art. We successfully deployed DeepPVMapper to map PV installations in France and
hope it paves the way towards better integrating rooftop PV energy for more sus-
tainable power systems.

5 Preprints

Trémenbert, Y, Kasmi, G., Dubus, L., Blanc, P. & Saint-Drenan, Y.-M.. "PyPVRoof:
a Python package for extracting the characteristics of rooftop PV installations using
remote sensing data ". arXiv preprint arXiv:2309.07143.
DOI: https://doi.org/10.48550/arXiv.2309.07143

Abstract Photovoltaic (PV) energy grows at an unprecedented pace, which makes
it difficult to maintain up-to-date and accurate PV registries, which are critical for
many applications such as PV power generation estimation. This lack of quali-
tative data is especially true in the case of rooftop PV installations. As a result,
extensive efforts are put into the constitution of PV inventories. However, although
valuable, these registries cannot be directly used for monitoring the deployment of
PV or estimating the PV power generation, as these tasks usually require PV sys-
tems characteristics. To seamlessly extract these characteristics from the global
inventories, we introduce PyPVRoof. PyPVRoof is a Python package to extract es-
sential PV installation characteristics. These characteristics are tilt angle, azimuth,
surface, localization, and installed capacity. PyPVRoof is designhed to cover all use
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cases regarding data availability and user needs and is based on a benchmark of
the best existing methods. Data for replicating our accuracy benchmarks are avail-
able on our Zenodo repository , and the package code is accessible at this URL:
https://github.com/gabrielkasmi/pypvroof.

6 Communication in expert groups

Kasmi, G., Blanc, P. & Saint-Drenan, Y.-M., Dubus, L.. "Assessment of the poten-
tial of Earth observation data and deep convolutional neural networks to improve
the estimation and forecast of the solar power production in France". IEA-PVPS Task
16 meeting (2022), Sophia Antipolis, France.

URL : Communication

7 Posters

Kasmi, G., Blanc, P, Saint-Drenan, Y.-M. & Dubus, L.. "Assessment of the poten-
tial of Earth observation data and deep convolutional neural networks to improve
the estimation and forecast of the solar power production in France". 4th Sympo-
sium of the MADICS, 2022, Lyon, France.

URL : https://www.madics.fr/event/symposium-madics-4/

Kasmi, G., Blanc, P, Saint-Drenan, Y.-M. & Dubus, L.. "Solar Array Detection on
Aerial Photography Based on Convolutional Neural Networks: Image of the Solar Ar-
ray Characteristics and Image Backgrounds on the Out-of-domain Generalization".
SophlA Summit, 2021, Sophia Antipolis, France.

URL : https://www.sophia-antipolis.fr/events/sophi-a-summit-2021/

220


https://github.com/gabrielkasmi/pypvroof
https://www.fbleau.minesparis.psl.eu/Accueil/Agenda/Les-experts-mondiaux-du-solaire-se-reunissent-a-Sophia-Antipolis-pour-la-tache-16-PVPS-de-l-Agence-internationale-de-l-energie-AIE-IEA/7620
https://www.madics.fr/event/symposium-madics-4/
https://www.sophia-antipolis.fr/events/sophi-a-summit-2021/




RESUME

En novembre 2023, la puissance photovoltaique (PV) installée en France s’élevait a 18,6 GW., et le gestionnaire du réseau de transport
d’électricité (GRT) frangais ne disposait pas de mesures de production pour 20% du parc, correspondant principalement a des systemes
de petite taille sur toitures. Dans le contexte de décarbonisation du mix électrique, la puissance installée PV continuera de croitre
rapidement, aussi le manque d’observabilité du PV risque-t-il compromettre l'intégration du PV dans le systeme électrique en raison
des incertitudes gu’il engendre. Une meilleure connaissance du parc photovoltaique en toiture, matérialisée par un registre technique
national contenant la localisation et les caractéristiques des installations photovoltaiques, est nécessaire pour améliorer I'observabilité du
PV. Cette thése evalue si I'utilisation d’algorithmes d’apprentissage profond et d’orthoimages est une méthode adaptée a la construction
d’'un registre technique national d’installations photovoltaiques (PV) sur toiture destiné a améliorer I'observabilité de la production PV en
France. La thése discute d’abord des normes de qualité que le registre technique doit satisfaire et introduit une méthode d’évaluation non
supervisée pour controler I'exactitude du registre en 'absence de données de référence. Deuxiemement, la thése introduit une nouvelle
méthode d’attribution qui permet d’analyser des décisions du modéle en décomposant ses prédictions dans I'espace des ondelettes. La
thése discute de la pertinence de cette décomposition pour évaluer ce que le modéle voit sur 'image d’entrée, comprendre la sensibilité
du modéle a des conditions d’acquisition variables, qui affectent la précision et la fiabilit¢é du modele, et introduire un algorithme robuste
et fiable pour cartographier les installations PV sur toiture. Enfin, la pertinence du registre pour améliorer I'observabilité des installations
photovoltaiques sur les toits est établie en montrant que des estimations précises et réplicables a grande échelle de la production issue
des installations PV sur toiture peuvent étre construites a partir du registre et de données météorologiques. Cette thése apporte des
contributions en énergétique et procédés, en montrant comment améliorer I'observabilité du PV toiture et en apprentissage statistique, en
améliorant I'interprétabilité des modeles d’apprentissage profond grace a une nouvelle méthode d’attribution. Plus généralement, cette

thése souligne les conditions nécessaires a I'utilisation de modéles d’apprentissage profond dans des contextes industriels critiques.

MOTS CLES

apprentissage profond, interprétabilité, robustesse, fiabilité, énergie photovoltaique, observabilité

ABSTRACT

In November 2023, the French photovoltaic (PV) installed capacity stood at 18.6 GW,,, and the French electricity transmission system
operator (TSO) lacked power measurements for 20% of the fleet, which mostly corresponded to small-scale (rooftop) systems. In the
context of decarbonizing the electric mix, the PV installed capacity will continue to experience sustained growth in the coming years, and
the so-called problem of poor PV observability threatens its long-term integration into the grid due to the uncertainty it creates. A better
knowledge of the rooftop PV fleet, embodied in a nationwide technical registry recording the localization and characteristics of the PV
installations, is necessary to improve PV observability. This thesis proposes to assess whether deep learning-based remote sensing on
orthoimagery is a suitable method for constructing this technical registry. The thesis first discusses the quality standards the technical
registry should satisfy and introduces an unsupervised evaluation method to monitor the accuracy of the registry in the absence of
ground truth labels. Second, the thesis introduces a new feature attribution method that enables the auditing of the model’s decisions
by decomposing its predictions into the space-scale domain. The thesis discusses the relevance of this decomposition for assessing
what the model sees on the input image, understanding the model’s sensitivity to varying acquisition conditions, which are found to affect
the model’'s accuracy and reliability, and introducing a robust and reliable algorithm for mapping rooftop PV installations. Finally, the
relevance of the registry for improving rooftop PV observability is established by showing that accurate and scalable estimations of the
rooftop PV power production can be derived from the registry and weather data. This thesis features contributions in power systems by
showing how to effectively improve rooftop PV observability and in deep learning by improving the interpretability of deep learning models
thanks to a new feature attribution method. More generally, this thesis underlines the necessary conditions for using deep learning in

critical industrial contexts.

KEYWORDS

deep learning, interpretability, robustness, reliability, solar energy, observability
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