
HAL Id: tel-04948448
https://pastel.hal.science/tel-04948448v1

Submitted on 14 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous embeddings for large-scale machine learning
with DNA sequences

Romain Menegaux

To cite this version:
Romain Menegaux. Continuous embeddings for large-scale machine learning with DNA sequences.
Bioinformatics [q-bio.QM]. Université Paris sciences et lettres, 2021. English. �NNT : 2021UP-
SLM066�. �tel-04948448�

https://pastel.hal.science/tel-04948448v1
https://hal.archives-ouvertes.fr

Préparée à MINES ParisTech

Continuous embeddings for large-scale machine

learning with DNA sequences

Représentations pour l'apprentissage statistique à
grande échelle en génomique

Soutenue par

Romain MENEGAUX
Le 7 mai 2021

Ecole doctorale n° 621

Ingénierie des Systèmes,

Matériaux, Mécanique,

Energétique

Spécialité

Bio-informatique

Composition du jury :

Gregory, KUCHEROV

Université Gustave Eiffel Président

Jean-Daniel, ZUCKER

Institut de Recherche

pour le Développement Rapporteur

Nicola, SEGATA

University of Trento Rapporteur

Sophie, SCHBATH

INRAE Examinateur

Flora, JAY

Laboratoire de Recherche en Informatique Examinateur

Pierre, MAHE

bioMérieux Examinateur

Armand, JOULIN

Facebook A.I. Examinateur

Jean-Philippe, VERT

Google Brain Directeur de thèse

Abstract

The cost of DNA sequencing has been divided by 100,000 in the past 15 years. Brought along by
this technological revolution, ever larger volumes of data are coming in from diverse fields and
problems, raising new computational challenges. How can we e�ciently store and analyze DNA
sequences? A domain that has greatly benefited from this is the one of metagenomics, which
seeks to characterize and identify microbes – bacteria, viruses – by sequencing and analyzing
their DNA. A modern DNA sequencing experiment outputs billions of short DNA fragments
(reads), in random order. A crucial step in the bioinformatics analysis pipeline is to match those
fragments to their parent genomes, a problem called taxonomic binning. Up until a few years ago
alignment-based strategies were the norm, which were largely based on string-matching algorithms.
However these have become too slow for the ever-growing amount of available sequenced genomes,
and more recently so-called pseudo-alignment strategies have become standard. These hold
databases of large sub-strings and look for matches in the query sequences. Machine learning
methods have shown promising success in classifying biological sequences and in this thesis we
will investigate these methods for taxonomic binning. Firstly, we present an algorithm, fastDNA,
that embeds sequences in a continuous vector space by first splitting them into short k-mers
(substrings of length k) and learning an embedding for each k-mer. The embedding is then run
through a linear classifier. In the second part of this thesis we will present Brume, an extension
to fastDNA that partitions k-mers into clusters based on the de Bruijn graph, and learns one
representation per cluster. This allows to increase k and the e↵ective number of k-mers, without
needing additional memory. Finally we will introduce Phylo-HS, a structured loss for machine
learning based on the phylogenetic tree.

i

Résumé

Le coût du séquençage de l’ADN a été divisé par 100 000 en seulement 15 ans. Grâce à cette
révolution technologique, des volumes de données de plus en plus grands arrivent de domaines
variés, posant de nouvelles problématiques informatiques. Comment analyser et stocker les
séquences d’ADN de manière e�ciente ? Un domaine ayant grandement bénéficié de cette avancée
est la métagénomique, qui cherche à caractériser et identifier les microbes – bactéries, virus – en
séquençant puis analysant leur ADN. Or le résultat d’une expérience de séquençage se compte
en milliards de petits fragments d’ADN (reads), mélangés aléatoirement. Une étape cruciale
en bioinformatique est d’identifier le génome d’origine de chacun de ces fragments, problème
dit du taxonomic binning. Jusqu’à récemment, les méthodes étaient basées sur l’alignement des
séquences à des génomes de référence. Le nombre de ces génomes augmentant, ces méthodes
d’alignement sont devenues trop lentes et ont laissé place à un nouveau standard : le pseudo-
alignement. Celui-ci consiste à chercher des sous-séquences du read dans une base de données
constituée au préalable. L’apprentissage statistique a aussi des résultats prometteurs pour la
classification de séquences biologiques, et dans cette thèse nous approfondirons ces méthodes pour
le taxonomic binning. En premier lieu nous présenterons un algorithme, fastDNA, qui apprend
des représentations continues pour tous les k-mers (des courtes sous-séquences de longueur k, les
”mots” de l’ADN). On obtient ainsi une représentation vectorielle pour un read en combinant les
représentations de ses k-mers. Un classifieur linéaire prédit ensuite la classe du read à partir de ce
vecteur. En deuxième partie nous présenterons Brume, une extension de fastDNA qui partitionne
les k-mers en groupes à partir du graphe de de Bruijn, et apprend une représentation par groupe.
Ceci permet d’accrôıtre k et donc le nombre de k-mers e↵ectifs sans mémoire supplémentaire.
Enfin nous introduirons Phylo-HS, une nouvelle fonction objectif pour l’apprentissage statistique
basée sur l’arbre phylogénétique.

iii

“ Theory is when you know everything but nothing works. Practice is when
everything works but no one knows why. In our lab, theory and practice are
combined : nothing works and no one knows why. ”

attributed to Albert Einstein

v

Contents

Abstract i

Résumé iii

Contents vii

1 Introduction 1

1.1 Context . 3
1.2 Taxonomic Binning . 9
1.3 Supervised Learning Framework . 12
1.4 Supervised learning for biological sequences . 16
1.5 Contributions . 23

2 fastDNA 29

2.1 Introduction . 31
2.2 Method . 32
2.3 Experiments . 34
2.4 Conclusion . 40

3 Brume: Embedding the de Bruijn graph 43

3.1 Introduction . 46
3.2 Approach . 47
3.3 Methods . 52
3.4 Results . 52
3.5 Discussion . 57
3.6 Conclusion . 58

4 Adapting the hierarchical softmax for taxonomic classification 61

4.1 Introduction . 63
4.2 Related Work . 64
4.3 Methods . 66
4.4 Results . 68
4.5 Discussion and future work . 71

5 Conclusion 73

Bibliography 77

vii

Chapter 1

Introduction

“ You need to let the little things that would ordinarily bore you suddenly thrill you. ”

Andy Warhol

Contents

1.1 Context . 3

1.1.1 A quick dive into the microscopic world 3

1.1.2 Metagenomics - revealing microbes through their DNA 3

1.1.3 DNA - the universal biological code . 4

1.1.4 Whole genome sequencing . 6

1.2 Taxonomic Binning . 9

1.2.1 Presentation . 9

1.2.2 Alignment-based methods . 10

1.2.3 Pseudoalignment . 11

1.2.4 DNA-to-protein . 11

1.2.5 Binner Evaluation . 12

1.3 Supervised Learning Framework . 12

1.4 Supervised learning for biological sequences . 16

1.4.1 Range of applications . 16

1.4.2 Natural Language Processing . 17

1.4.3 Bag-of-words representation . 17

1.4.4 Word embeddings . 18

1.4.5 Convolutional Neural Networks . 19

1.4.6 Recurrent Networks . 20

1.4.7 Transformers . 20

1.4.8 End to end learning . 22

1.5 Contributions . 23

1.5.1 fastDNA . 23

1.5.2 Brume . 24

1.5.3 Phylo-HS, a structured loss for taxonomic classification 26

1.5.4 Published work appearing in this thesis 28

1

CHAPTER 1. INTRODUCTION

Abstract

This chapter sets the context for the contributions presented in this thesis. In the
first biology-oriented part we will give an overview of DNA sequencing technology and its
applications, notably to the field of metagenomics: the study of microbes from their genetic
material. We will also briefly describe the bioinformatics challenges that have arisen to
process the enormous quantities of data output by DNA sequencing experiments. In the
second part we will focus on one of those challenges: how to assign DNA fragments back
to their genome of origin – the so-called taxonomic binning problem. We will review the
state-of-the-art bioinformatics methods to approach it. In the third part we will present the
applications of statistical learning – and deep learning in particular – to genomics. Finally
we will end the chapter by presenting our contributions.

Résumé

Ce chapitre pose le contexte des contributions présentées dans cette thèse. Dans la
première partie, orientée biologie, nous donnons une vue d’ensemble des technologies de
séquençage d’ADN et de leurs applications, notamment au domaine de la métagénomique :
l’étude des microbes à partir de leur matériel génétique. Nous décrirons aussi brièvement les
défis bioinformatiques posés par les quantités énormes de données issues des expériences de
séquençage. Dans la deuxième partie nous nous concentrons sur l’un de ces défis : comment
retrouver le génome d’origine d’un fragment d’ADN – problème dit du taxonomic binning.
Nous passerons en revue l’état de l’art des méthodes bioinformatiques utilisées pour y répondre.
Dans la troisième partie nous présentons les applications de l’apprentissage statistique – et
notamment de l’apprentissage profond – à la génomique. Nous terminons ce chapitre par une
présentation succincte de nos contributions.

2

1.1. CONTEXT

1.1 Context

1.1.1 A quick dive into the microscopic world

Although invisible to the human eye, microorganisms – bacteria, viruses, fungi – are everywhere
and play a fundamental role in all ecosystems. Understanding them and their communities has
both industrial and scientific applications in ecology, energy and medicine. Although we first
come to know of them as the agents of infectious diseases (then labelled as pathogens), they can
also help to cure or fight them: antibiotics are produced by industrial microbiology [Gupta et al.,
2020], dengue-carrying mosquitoes have been sterilized with bacteria [Caragata and Walker, 2012].
Since the 1980s, bacteria have been harnessed by bio-engineers to mass-produce valuable proteins
such as insulin [Baeshen et al., 2014], vitamins or enzymes [Vandamme, 1992]. Microbial cells
can also serve as energy sources – then named Microbial Fuel Cells (MFCs)[Scott and Murano,
2007] – recycling factories [Goglio et al., 2019] or carbon sinks. Even if the thought of mankind
forcing these billions of tiny living creatures into slavery appalls you, simply observing them can
yield crucial information. Indeed, microbial communities can function as trackers or indicators of
an environment’s, or of our own, changes in health.

There are approximately 10 times more bacterial cells than human cells in our own body,
spread in di↵erent communities. The largest of these, the gut microbiome, has been the focus
of increased research in the past 20 years. Not only essential in digesting our food intake, its
composition has been linked to a growing variety of health conditions such as bowel diseases,
mental health, or obesity [Fan and Pedersen, 2021]. With massive research endeavors such as
the Human Microbiome Project ([Huttenhower et al., 2012]), new roles and functions are being
discovered every year, enough for it to be considered as an organ of the human body in its own
right [Zimmer, 2010].

Although we are now convinced of their importance, there is still so much about them that
we do not know. How then can we characterize microbial communities and the specific roles they
play?

1.1.2 Metagenomics - revealing microbes through their DNA

Biologists have been classifying and organizing living organisms for hundreds of years, and
methods have evolved accordingly to the knowledge and technologies available. Taxonomy is
the field of identifying and naming organisms, while phylogeny is the task of organizing them
in virtue of their evolutionary relationships. Before the advent of DNA sequencing, both of
those tasks were based on similarities or di↵erences in phenotype – observable traits – such as
size, color or regime. Until well into the 20th century, microbial communities were studied by
isolating samples of bacteria then cultivating them in a laboratory environment, until they were
in su�cient number for their physiological and cellular characteristics to be studied. Aside from
being time-consuming and error-prone, this process su↵ered from a major setback: the counts of
cells obtained in cultivation were systematically lower than those observed in the environment.
This is because a majority (an estimated > 99%, [Hugenholtz et al., 1998]) of microbial species
are unculturable: they cannot be cultivated in current laboratory settings.

This problem was largely solved by identifying microbes through their most intimate infor-
mation: their DNA. Not only does knowing an organism’s DNA enable identifying mutations,
tagging and distinguishing species or classes of cells, it also has the advantage of lingering around

3

CHAPTER 1. INTRODUCTION

the environment, revealing otherwise unobservable species. The budding field of metagenomics
– “the application of modern genomics techniques to the study of communities of microbial
organisms directly in their natural environments” [Chen and Pachter, 2005] – arose as a way
to circumvent the limitations of lab cultivation, and has emerged as the method of choice for
studying microbial communities [Qin et al., 2010]. In fact now one could say the relationship has
been reversed: new unknown organisms are classified with regards to their genotype rather than
their phenotype [Hug et al., 2016]; [Parks et al., 2018].

The range of sub-fields of metagenomics can be broadly broken into three categories, which
we define below along with some of their applications:

(i) Species detection: pathogen detection for infectious disease diagnosis.

(ii) Abundance profiling : estimating the respective proportions of organisms. This can serve
for disease diagnosis or as a biological indicator.

(iii) Functional profiling : measuring the gene expression/protein-levels/metabolic activities
(see section 1.1.3) to understand the communities’ capacities and the roles it plays in its
environment.

In this work we will mostly focus on the first two problems (i) and (ii), which we will describe
in more detail after a brief overview of DNA.

1.1.3 DNA - the universal biological code

Deoxyribonucleic acid (DNA) is the fundamental building block of all life on Earth, coding the
necessary information for an organism to grow and react to its environment. Stored in each
cell of an organism, DNA is a macro-molecule composed of two chains (strands) of nucleotides:
Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). Each strand is the “mirror image”, or
reverse complement (RC) of the other, as nucleotides are chemically bound to their mirror: A
with T and C with G (illustrated in the upper part of figure 1.1). Due to this, a nucleotide is also
called base pair (bp), justifying the following representation:

Mathematical notation:

One needs only one strand to represent all the information coded by the DNA. Conceptually,
a DNA sequence is therefore represented as chain (or string) of L characters x = x1...xL from
a four-letter alphabet A = {A, C, G, T}. Its reverse-complement is x̄ = xL... x1 2 AL where
{Ā = T, C̄ = G, Ḡ = C, T̄ = A}

The complete set of DNA of an organism is called its genome. Genome sizes vary widely
according to the organism. A bacterial genome is typically composed of one long circular chain,
100Kbp - 10Mbp long. For the human genome this number stands at about 3.2 billion bp. As for
most eukaryotes, the genome is spread onto several linear chromosomes.

Function, and link with RNA and proteins

Some regions of the genome, called genes, are the blueprint to manufacture proteins, the main
functional macromolecules in organisms. They are themselves chains of elementary molecules,
amino-acids, which are directly mapped to the gene they come from. Not all DNA is part of

4

CHAPTER 1. INTRODUCTION

gene: some parts act as signals for other chemical processes (transcription factor binding), others
are obsolete leftovers of ancient genes , and others we still don’t fully understand. In prokaryotes,
genes constitute most of the genome sequence (between 85% and 90% [Koonin, 2011]), with the
rest. In humans, however, only 1% of the genome is coding DNA.

As an intermediary step to the synthesis of proteins from genes, the DNA region of interest is
copied onto another macromolecule, RNA, in a process known as transcription. Very similar to
DNA, it is a single-stranded chain of the nucleic acids A, C, G and Uracil U (replacing T). It is
then the messenger RNA that are transported to the cell’s factory, the ribosome, and translated
into proteins (Figure 1.1). Not all genes are constantly transcribed into RNA (expressed). Gene
expression varies according to the type of cell, its environment and its age. For instance in
humans, the gene coding for hemoglobin is only expressed in blood cells. The study of gene
expression, and in particular the process of counting and identifying RNA in cells, is called
transcriptomics.

Evolution

Although stable, the genome of an organism can change through time, either by chance mutations
during replication, by combination with another organism (sexual reproduction for eukaryotes,
or recombination for prokaryotes) or by exposure to an environmental stress. If those mutations
are viable they are passed on to o↵spring, and once a su�cient number of them accumulate, it
can give rise to a new species (speciation). Albeit these di↵erences, genome sequences within the
same species tend to be very similar. For instance if one were to pick two humans from anywhere
in the world, their genomes would be on average more than 99% identical [The 1000 Genomes
Project Consortium et al., 2015].

DNA sequencing is the process of determining (or reading) the DNA sequences from a
biological sample. We have known about DNA for more than a hundred years1, but we have
known our own genome only for the past 20.

1.1.4 Whole genome sequencing

The first complete sequencing of a human genome ended in 2001 after 10 years and a billion
dollars worth of materials and labor. Barely a decade later, the same work could be done in
under a day for about $1000. This drastic improvement in cost and in e�cacy was enabled by a
technological revolution in DNA sequencing processes and machines, allowing DNA sequencing to
be a viable alternative for many applications – metagenomics being one of them [Eisen, 2007]. We
will now briefly walk through the state of the art of DNA sequencing, so-called Next Generation
Sequencing (NGS; [Goodwin et al., 2016]). Although long-read technologies [Amarasinghe et al.,
2020] have a growing number of applications and seem promised to a bright future, the most
used platforms for metagenomics and for most other applications as of 2020 are short read, or
shotgun, sequencers. They do not output the complete DNA sequences of chromosomes, but
rather process millions of small DNA fragments in parallel. The NGS pipeline goes roughly as

1We are referring here to Thomas Morgan’s 1915 work proving that genetic information is carried on the

chromosomes. Many other dates could have been selected, from the 1869 discovery and isolation of the DNA

molecule by Swiss physician Friedrich Miescher to 1953, when Watson and Crick famously determined its structure

and function. We chose a hundred years for dramatic effect.

6

1.1. CONTEXT

follows, with field biologists performing step (i) and platform technicians performing steps (ii)
through (iv):

(i) Sampling from the habitat, filtering particles and extracting the DNA.

(ii) Shearing DNA strands are cut into fragments of roughly 50-400 bp. Fragment lengths are
given a certain distribution determined by the platform engineer.

(iii) End ligation: Special DNA sequences are added to the ends of each fragment. These will
be used to put the fragments into position in the machine.

(iv) Amplification: Fragments are cloned multiple times and batched into clusters.

(v) Sequencing: The short fragments are given to the machine and processed in parallel. By
play of luminous and/or chemical signals, bases are read on each cluster. This process takes
about 10 hours for a human genome on an Illumina HiSeq, the current leading platform on
the market.

(vi) The results are printed out: an output file of billions of short DNA reads in random order.

While NGS technologies were initially designed to sequence an individual organism’s genome,
they have since been used to sequence whole ecosystems. Indeed, the DNA reads will come from
all the di↵erent organisms in the sample. The collection of these reads is called the metagenome.

Processing the output

In order to make sense of the sequencing reads, which we can think of as millions of puzzle pieces
coming from many di↵erent puzzles, bioinformatics approaches are needed. Several downstream
tasks are possible, depending on the application. The pieces can be reassembled together in
a process called genome assembly. If no reference genome (i.e. the original puzzle picture) is
available this is called de novo genome assembly, which is a necessary step to discover genomes for
new species. The assembled genome can be compared to reference genomes to identify mutations
in process known as variant calling.

Alternatively, if we are interested only in the community composition of organisms and not in
their full genomes, the pieces can be sorted into buckets corresponding to their genomes of origin
(genome binning, which does not require the species to be known a priori) or to their taxonomic
clade (taxonomic binning). Once this step is performed we can detect species of interest, or
characterize the community proportions (abundance profiling). A schematic representation of
the whole pipeline is shown in figure 1.2.

Sequencing noise

Sequencing machines can make mistakes: they sometimes change a base for another (substitution),
forget a base or a series of bases (deletion) or add nonexistent bases or series of bases (insertion).
Each machine has its own error-profile and biases. The popular Illumina HiSeq platforms for
example have an overall 0.1% chance of substitution [Goodwin et al., 2016]. These probabilities
are also not the same for bases according to their position within the read: bases near the end of
the read are more often wrong than those at the beginning.

7

CHAPTER 1. INTRODUCTION

Figure 1.2 – Metagenomics pipeline for microbial community profiling. Figure taken from [Ye et al., 2019]

Several software ([Angly et al., 2012], [Shcherbina, 2014] see [Escalona et al., 2017] for a
review) have been developed that replicate these error profiles, and can simulate output from the
di↵erent sequencing machines. These simulators can be used to generate training or validation
datasets [Fritz et al., 2018] to assess bioinformatics software performance.

A major challenge is to di↵erentiate biological mutations and variants from sequencing errors.
To help with this issue, some sequencing platforms also return an accompanying quality or
confidence score for each base pair.

Other common types of sequencing

Metagenomics was first performed by targeted sequencing of a discriminating gene: the 16S
ribosomal RNA (rRNA) gene [Lane et al., 1985]. Present among all bacteria, it has the
convenience of having both highly conserved primers (short base-pair substrings) that serve
as targets so the sequencer can find the gene, and highly variable regions which are species-
characteristic. While relatively cheaper and yielding good enough accuracy [Jovel et al., 2016],
16S sequencing was superseded by whole genome sequencing (WGS) for applications requiring
more complete information such as functional predictions or a more precise taxonomy. Moreover
16S sequencing can fail to detect organisms from novel lineages that have modified primers [Hug
et al., 2016]. Growing evidence of horizontal gene transfer even for the 16S rRNA gene [Miyazaki
and Tomariguchi, 2019] also suggest caution when using it to assign species. Also worthy of note,
WGS metagenomics allows the study of organisms lacking the 16S gene such as viruses, archaea
or even eukaryotes.

For a more complete characterisation of microbial communities, DNA sequencing can also be
complemented by other ‘omics’ techniques such as transcriptomics (which genes are expressed)
RNA-Seq, or proteomics (which proteins are produced), These techniques can be performed
with the same machines.

Now that we have a complete picture of the field of metagenomics, we will specifically focus
on methods for the taxonomic binning of short shotgun reads. Although not specifically suited
to them, these methods can also be used for the other tasks of abundance profiling and organism
detection.

8

1.2. TAXONOMIC BINNING

1.2 Taxonomic Binning

1.2.1 Presentation

Setting

Although the biological and technological background may be complex, in the end the binning
problem is fairly simple to formulate: we must assign a label to small fragments of DNA. This
can be thought of as a DNA Shazam: given a small sound sample one must find which “song” it
is from.

From this point onward we will assume the T possible outcome classes – bacterial species for
example – are labelled from 1 to T . A taxonomic binner is a function f that maps a DNA read
x 2 AL to a taxonomic label i 2 {1, ..., T}.

In order to calibrate the binner, we assume that we have a set of annotated reference genomes
{(Gi, yi), yi 2 {1, ..., T}}. As a point of reference, as of 2020 there are 13000 such genomes
publicly available on the website of the National Center for Biotechnology Information (NCBI)
[NCBI Resource Coordinators, 2016]

Methods overview

With few exceptions, all methods for taxonomic binning discussed below rely on matching small
patterns or sub-sequences (also called seeds) to the reference genomes.

• Aligners try to align the read locally around the seed match.

• Pseudoaligners use discriminative seeds so that once a seed is found to match to a genome
Gi, they directly return Gi (or its label yi).

• Compositional approaches learn representations for each of the seeds then combine these
representations to classify the read.

In order to quickly find seed matches, the reference genomes are indexed into a database that
comes conceptually in one of these two forms:

(i) A hash table, which enables e�cient lookup of seeds of fixed size. Any type of information
can be stored with the seed. Hash tables are fast but memory-intensive.

(ii) A full-text index, either a su�x array or an FM-index. The FM-Index [Ferragina and
Manzini, 2000] is a data structure based on the Burrows Wheeler transform (BWT) [Burrows
and Wheeler, 1994] that allows both compression of reference genomes and constant time
lookup of sub-sequences of arbitrary size.

We will review these methods in more detail in the following sections, but first we give the
definitions for typical seeds.

Definition. A k-mer x 2 Ak is a sequence of k nucleotides. The k-mer decomposition of a
sequence x 2 AL of length L is the collection of all the L� k + 1 k-mers appearing in x.

Ex: The 3-mer decomposition of AATGGCA is {AAT, ATG, TGG, GGC, GCA}

9

CHAPTER 1. INTRODUCTION

Definition. Given a k-mer ordering (lexicographic for instance), and two integers l and k such that
k < l, the minimizer of an l-mer u is the smallest k-mer occurring in u. The (l, k)-minimizers
of a sequence x 2 AL are the minimizers of all the l-mers in x.

Ex: The (5, 3)-minimizers of AATGGCA are {AAT, ATG, GCA}

Definition. A (l, k)-gapped k-mer (or spaced seed) is a non-contiguous subsequence of k characters
of an l-mer.

Ex: A_TGGC_A is an (8,6)-gapped k-mer.
Wisely chosen gapped k-mers have been shown to be better than regular k-mers for certain

applications [Leslie et al., 2003]; [Ghandi et al., 2014]; [Brinda et al., 2015] as they are more
robust to noise and can model longer dependencies.

1.2.2 Alignment-based methods

General principle

Sequence alignment, or read mapping is the process of finding the originating position of a read
in its parent genome.

BLAST [Altschul et al., 1990] was the go-to algorithm for sequence alignment, until the
advent of NGS and short reads brought the need for faster algorithms. Most state-of-the-art
aligners work on some variation of the seed-and-extend paradigm. Exact short sub-sequences
(seeds) from the query read are looked up in the reference genome. This lookup step should
be quite fast. Once matching seeds have been found, they are extended (local alignment) by a
dynamic programming algorithm (Needleman-Wunsch, Smith-Waterman), allowing mismatches.
The seed size needs to be adapted: if it is too short there will be many matches and therefore
many calls to the expensive local alignment step. On the other hand if the seeds are too large
there is a risk of not finding any exact matches.

BWA-MEM [Li, 2013] and closely related Bowtie 2 [Langmead et al., 2009a] use the BWT
transform and allow for lookups of arbitrary size with a certain number of mismatches. Longer
seed matches can be found when they exist, reducing the chances of unsuccessful extensions or of
redundant matches. The long read successor to BWA, Minimap2 [Li, 2018] uses a hash-table
with seeds of fixed size instead (k is usually between 10 and 20), trading those benefits for more
e�cient computation.

For a complete review of alignment algorithms see [Canzar and Salzberg, 2017].

Common issues and extensions

Although very precise, these alignment approaches are relatively slow and do not scale well with
the growing number of reference genomes. Several approaches have been proposed to answer
these di�culties.

A first class of methods reduce the number of reference genomes by first performing a coarse
search. After finding candidate reference genomes according to their global similarities with the
sample metagenome, they use standard alignment tools to align the reads to these candidates.
For instance [LaPierre et al., 2020] compare the global k-mer content of the metagenome to find
candidates. This two-step procedure can be done with any other algorithm as the first coarse
search.

10

1.2. TAXONOMIC BINNING

A second class of methods such as taxMaps [Corvelo et al., 2017] compress the reference
database to remove parts that are redundant for taxonomic classification. [Subrata et al., 2020]
first select discriminating unique regions of reference genomes and use these as reference. Other
software such as MetaPhlan2 [Truong et al., 2015] and mOTUs2 [Milanese et al., 2019] go even
further and only retain certain marker genes. These methods will not find matches for a great
portion of reads, so cannot be used for taxonomic binning per se but can be used for abundance
profiling or species detection.

Although alignment methods can be used for taxonomic binning, they are not specifically
suited to the problem, as we do not need to know the originating position of the read in the
reference, but only if it does occur. Methods in the following section bypass the local alignment
(extend part) and only focus on the seeding.

1.2.3 Pseudoalignment

Pseudoalignment consists in memorizing long discriminative subsequences (k-mers with k > 20),
along with their taxonomic label. Kraken [Wood and Salzberg, 2014] stores all the k-mers it has
seen in the training set in a big hash table. Each k-mer entry stores the taxonomic label yi of the
genome it comes from. If it is seen in several genomes Gi and Gj , the label of the least common
ancestor (LCA) yi \ yj of Gi and Gj is stored. To classify a read, Kraken tries to find each of
the k-mers in the reference table, then returns the label that has the most matches. Kraken 2
[Wood et al., 2019] improves the data structure into a Compact Hash Table with lower memory
usage, and uses (35, 31)-minimizers as seeds. CLARK is a very similar algorithm that only stores
unique k-mers (those that appear in only one clade), reducing database size.

[Schae↵er et al., 2015] have a sensibly similar method (applied to the analogous problem of
RNA quantification), being more refined by matching k-mers to reference contigs (see section
1.5.2) instead of taxonomic clades, and using an EM procedure to estimate the abundances. As
a taxonomic binner it is more or less equivalent to Kraken, but the contig matching enables
finer-grained abundance estimation.

Centrifuge [Kim et al., 2016] is a hybrid approach that stores a highly compacted BWT index
and matches variable-size k-mers to this index. k-mer hits with maximal k (Maximal Exact
Matches: MEM) k � 22 are recorded then scored using an empirical formula (score species =
P

hits (hit length� 15)2) to find the best matching species.

All of the above methods are orders of magnitude faster than pure alignment strategies, while
being of comparable accuracy. A disadvantage of their reliance on long seeds though is that reads
with no seed matches are left unclassified. If the input data is noisy or from species remote from
the reference database, a significant proportion of reads can end up unclassified.

1.2.4 DNA-to-protein

Some software such as Kaiju [Menzel et al., 2016] or MMseqs2 [Mirdita et al., 2020] first translate
the DNA reads into proteins then match them to protein reference databases. This is a viable
approach for two reasons. Firstly this has the theoretical advantage of being more robust to
biological noise. Because of the degeneracy (redundancy) of the amino-acid mapping, protein
sequences are more conserved than their underlying DNA. For example both the triplets AAA and
AAG code for the same amino-acid Lysine, so a G$ A substitution error on the third nucleotide
should have no observable e↵ect, and will not be weeded out by evolution (this is called a

11

CHAPTER 1. INTRODUCTION

synonymous mutation). Second, a large portion (>80%) of bacterial genomes are translated
into proteins. Kaiju functions essentially like Centrifuge in protein-space, returning the genome
matching the longest MEM (minimum length m=11 aminoacids) instead of weighted average
over all MEMs.

1.2.5 Binner Evaluation

Three criteria are used for evaluation:

(i) The classification accuracy is the proportion of reads that are correctly classified. There
are di↵erent measures of accuracy: averaging the accuracy over the whole sample will be
di↵erent than if averaged over each class. These metrics must be balanced according to the
application. A small number of false positives (classifying reads as species that were not
present in the sample) for example is not too problematic for abundance profiling, but can
be very misleading for pathogen detection.

(ii) The classification speed is the number of reads that can be classified per second. For large
binners, the fixed cost of loading the binner into memory can be significant, although
amortized by the number of reads classified. Other fixed time-costs include the time it takes
to build the binner database from the reference genomes. For machine learning algorithms
this is the model training time. Since this step is performed only once there is not much
need for it to be fast.

(iii) The amount of memory a binner takes up, both in disk space and in RAM. The RAM
in particular can be a limiting factor, both for building databases and at prediction time,
making some algorithms impractical for regular computer hardware.

For a review of the performances of these methods, see [Sczyrba et al, 2018] or [Ye et al.,
2019]. As a rule of thumb, alignment is precise but slow, pseudoalignment is very fast but come
at a high memory cost. Methods from both classes can return a lot of unclassified reads, hurting
some accuracy metrics.

One disadvantage with these approaches is that they do not make use of probabilities
and of training set frequencies. Several seed matches do not interplay in a sophisticated way.
Compositional approaches and statistical learning ones in particular are natural tools to make
these features interact in a more robust manner.

1.3 Supervised Learning Framework

The taxonomic binning problem or more generally any systematic label assignment to a biological
sequence can be framed as a supervised learning problem.

modelACGGA...GATCA

Input sequence x

Yersinia Pestis

Label y
vectorization prediction

Figure 1.3 – Schema for taxonomic binning, and biological sequence classification in general

12

1.3. SUPERVISED LEARNING FRAMEWORK

Goal

The field of supervised learning aims to predict an unknown characteristic of a sample, the label,
from a set of observable features of this sample. This could be a wide variety of problems, such as
identifying the speaker in an audio sample, predicting tomorrow’s weather or labelling a patient’s
susceptibility to disease from his genetic information.

Let X and Y be the input (feature) and output (label) spaces, respectively. It is assumed
that there is an unknown joint distribution P over X ⇥ Y . The goal of supervised learning is to
approximate the marginal distribution P(Y|X): given an input x 2 X , what should the output
y be. The distribution P is only indirectly observed through a series of sample points (xi, yi)
drawn from P (X ,Y): the training data.

The aim is then to teach a predictor f̂ : X ! Y such that f̂(·) approximates P(Y|·). In the
cases where the output is categorical (Y is a discrete set), predictors can output a probability
distribution over the possible outcomes y.

General method overview

To find this predictor f̂ , we first need to define a functional space F in which to search for. In order
to facilitate searching, F is often parametrized by a set of parameters ✓ 2 R

p: F = {fθ, ✓ 2 R
p}.

When X is a vector space of dimension N , a common very simple choice for F is the set of linear
functions Flinear =

�

x! ✓ · x, ✓ 2 R
N

. The “size” of the span of all the fθ is called the model
capacity or complexity.

Once this space is defined, we must find the “optimal” f̂ . Optimality in this case is defined
with respect to a loss function ` : Y ⇥ Y ! R that penalizes bad predictions and rewards good
ones: `(ŷ, y) is large if the estimation ŷ is far from the true value y and low otherwise. The
optimal predictor f with respect to loss ` is the one that minimizes the theoretical generalization
error :

L(f) = EP [`(f(x), y)] . (1.1)

Since we do not have access to P, L cannot be explicitly computed and is approximated by a
proxy, the training error or empirical loss Lemp:

Lemp(f) =
1

Ntrain

Ntrain
X

i=1

` (f(xi), yi) . (1.2)

Lemp is simply the average loss across all the training samples. Supposing we have parametrized
the functional search space, finding the optimal predictor then becomes the minimization problem:

min
θ

Ntrain
X

i=1

` (fθ(xi), yi) . (1.3)

In the classification problem with T classes, estimated probabilities p̂ 2 R
T can be scored

with the the cross-entropy loss `ce, a standard loss function we will use later on. If t 2 {1, . . . , T}
is the true label and p̂t the estimated probability of that label, the score is

`ce(p̂, t) := � log(p̂t). (1.4)

13

CHAPTER 1. INTRODUCTION

Optimization

Training, or calibrating a model is the procedure of solving (1.3) for the optimal set of parameters
✓⇤. When derivatives w.r.t. ✓ exist for the function fθ, a natural method is to set the gradient
rθLemp(fθ) to 0:

rθ⇤Lemp(fθ⇤) =
Ntrain
X

i=1

@1` (fθ⇤(xi), yi)rθ⇤fθ⇤(xi) = 0. (1.5)

In cases where this equation has no closed form solution or is hard to compute (true for most
models fθ), the preferred optimization method is gradient descent. ✓ is iteratively steered in the
direction of steepest descent:

✓(i+1) ✓(i) � ⌘r
θ(i)

Lemp(fθ(i)). (1.6)

The learning rate ⌘ is a carefully chosen optimization hyperparameter that controls the size of
the updates. For a large number of training samples Ntrain, computing the gradient at every
point xi can be quite expensive. Stochastic gradient descent (SGD) approximates Lemp by using
only a random subset of the data samples (a batch) at each iteration.

Representation learning and Neural Networks

A word on designing the functional space F . An almost systematic first step is to (implicitly or
explicitly) map the input space to a vector space of dimension N , with a mapping � : X ! R

N .
Linear models are a solid starting point for classification – logistic regression; support vector
machines (SVMs) – and regression – ordinary least squares. They are easy to optimize but can
lack in capacity if the feature space � is poorly designed. Representation learning, is the task of
choosing the vector representation � so that the downstream tasks can be easily solved by linear
methods. Such representations for DNA reads are illustrated in figure 1.4, where the classes are
clearly separated in the embedding space. One way to build a complex function is to combine
simple functions together. In neural networks (NNs), the mapping function � is the composition
of several elementary functions or layers �NN = �(n) ��(n�1) � . . . ��(1). Each layer has a simple
form �(j)(x) = �

�

✓(j) · x
�

, where � is a nonlinear function and ✓(j) a set of weights. These types
of functions �NN have the double advantage of being able to approximate arbitrarily complex
functions, and to have easily computable gradients thanks to the chain rule. A deep neural
network is simply a neural network with many layers n.

As we will see in later sections, types of neural networks di↵er mostly in how they constrain
the weights ✓(j). For instance in recurrent networks the weights are the same for every layer
(✓(1) = . . . = ✓(n)), while convolutional networks on the other hand impose structured sparsity
on the matrices ✓.

Regularization

Given a limited amount of training data, a high-capacity model can overfit : match exactly the
training data points f̂(xi) = yi while roaming free on all other points of X . Overfitting models
have an excellent empirical risk but fall o↵ on the generalization error. To mitigate this a possible
approach is to increase the number of training data points. If there are none available, it is

14

CHAPTER 1. INTRODUCTION

sometimes possible to create new ones, hopefully staying true to the distribution P . For example
we could apply small deformations to some points xi while conserving their labels. For instance
in image processing, one can shift, rotate or change the light/color of the image and for DNA
sequences we can add some small mutations. This process, known as data augmentation, often
requires expert knowledge about the kind of data involved.

Another way of improving the model’s generalization error is to impose smoothness on f̂ ,
intuitively justified by the assumption that small changes in input should lead to small changes
in output. This can be done explicitly by penalizing high variations with a regularization term
⌦(f̂), added to the objective function Lregularized = Lemp + ⌦. For example L2-regularization

penalizes the magnitude of parameters ✓: ⌦(f̂θ) = �k ✓ k2, where � > 0 controls the regularization
strength.

One can also implicitly regularize by restricting the functional space F . For instance the
space of multidimensional linear functions Flinear =

�

x! ✓ · x, ✓ 2 R
N⇥M

, although already
naturally limited, can be regularized even more by adding a rank constraint on the weights
matrix Rank (✓) n < min(N,M).

Finally a more recent method of regularizing is to perturb the training procedure by injecting
noise in the model parameters [Srivastava et al., 2014]; [Ji et al., 2016].

1.4 Supervised learning for biological sequences

In our taxonomic binning problem, the input space X is A⇤, the set of sequences composed of
characters from alphabet A. Again assuming we have labelled the T output classes (species or
any other taxonomic unit) from 1 to T , the output space is the categorical Y = {1, ..., T}.

We create the training data by extracting short reads from a choice of reference genomes.
These genomes are then withheld from the training set. Ideally the simulated community
composition should be as close as possible to the unknown communities we are trying to
characterize. Sequencing noise and realistic biological noise can be added to the fragments as
well.

1.4.1 Range of applications

We give below a set of related problems in biological sequence modelling, where only the alphabet
A changes.

In proteomics, the alphabet Aprot is the set of 20 amino-acids composing proteins. Since the
function of a protein is mostly determined by its 3d structure, a fertile field of research is predicting
protein structure from its sequence. One can also try to directly predict some of its functions,
such as its binding to certain molecules or its interactions with other proteins. Understanding
the relationship between a protein sequence and its functions has major applications in drug
design for instance.

For transcriptomics the alphabet is almost the same as the DNA alphabet ARNA = {A, C, G, U}.
Given an individual sequence of RNA, we can determine its type, its structure or identify functional
capacities such as protein binding or alternative splicing sites. Another domain, very related to
taxonomic binning, is the quantification of gene expression. Short RNA reads are mapped to
their original gene and then counted.

16

1.4. SUPERVISED LEARNING FOR BIOLOGICAL SEQUENCES

Finally for genomics we have already seen the alphabet is A = {A, C, G, T}. Aside from
taxonomic binning, there are many tasks centered around predicting a DNA sequence’s function,
such as recognizing transcription factor binding site (TFBS) or identifying promoter or enhancer
regions (regulatory genomics).

Reverse-engineering the relationships between biological sequences and their function is of
capital importance for precision medicine and drug design. Indeed we already know how to
manipulate, modify and even create these sequences, now careful research must be put into
understanding the e↵ect of these manipulations.

1.4.2 Natural Language Processing

Fortunately for us bioinformaticians, biological sequence modelling is akin to another extensively
researched domain: natural language processing (NLP) – the study of written human language.
Both try to make sense of sequences of characters.

Broadly speaking, all NLP methods first break up the input text S into units or tokens
vi 2 V , where V is the chosen vocabulary. This is called word segmentation or tokenization. The
tokens can be individual characters, subwords, words or word combinations (e.g. “New York”
could be represented as one token.). Each token is given a vectorial representation and is then
processed by a model. The model combines those representations and makes a decision based on
the combined representation.

There are however some key di↵erences with biological sequences:

(i) The generating processes P behind both types of data are di↵erent. If NLP models were
too tailored to human language in their design they could possibly not generalize well to
biological sequences.

(ii) Most models are based on the fundamental unit of words, however there is no such concept
in DNA, at least not at the sequence lengths we are considering. Other tokenizations:
subwords, characters. In order to apply NLP methods to DNA, we must define a notion of
word, which is similar to the notion of seed used in alignment and pseudoalignment (see
previous section).

(iii) Similarly there is no clear notion of punctuation or of the beginning and end in a DNA
sequence. Shifting a sequence by 1 or 2 characters should not change its label, so models
must be robust to translation.

(iv) The vocabulary for natural language remains tractable, being of the order of a million
words for large text corpuses. In metagenomics for large k there can be more than a billion
k-mers occurring in the reference genomes.

Nonetheless, the best performing statistical learning methods in genomics have closely followed
the main trends in NLP.

1.4.3 Bag-of-words representation

A natural way to encode a piece of text is to represent it as the vector of the word counts it
contains. Supposing the vocabulary V is of size N = |V|, each word w is assigned an index

17

CHAPTER 1. INTRODUCTION

iw 2 {1, ..., N}. The one hot encoding �one hot(w) of the word w is a N -dimensional vector equal
to 1 at coordinate iw and 0 elsewhere. The bag-of-words representation of a sentence S is then
obtained by simply summing (or averaging) the encodings of its words

�bow(S) =
X

w2S

�one hot(w). (1.7)

Genomics

When dealing with DNA sequences (or RNA/proteins) and choosing k-mers as word units, this
embedding is called the k-spectral embedding [Leslie et al., 2002]. Several machine learning
models have had success by feeding this representation to a standard classifier such as Naive
Bayes [Wang et al., 2007], [Gregor et al., 2016] or a Support Vector Machine (SVM) [Vervier
et al., 2016] to bin short reads. [Vervier et al., 2016] in particular reach classification accuracies
close to the aligners while being an order of magnitude faster. Other choices of word units are
valid as well and can lead to increased performances [Leslie et al., 2003]. For instance [Luo et al.,
2017] use the exact same model as [Vervier et al., 2016], with specially designed gapped k-mers
as word units. SVMs based on gapped k-mer features are also used in state of the art functional
genomics, such as regulatory sequence prediction [Ghandi et al., 2014]; [Blakely et al., 2020].

Treatment of reverse-complement

Since a DNA sequence and its reverse-complement are equivalent for all purposes, machine
learning models must treat them equally. There are two ways to do this:

(i) Make the model intrinsically invariant (RC-symmetric) to the reverse complement operation.
For example in most k-mer-based approaches, a k-mer and its reverse-complement are
treated as one: a canonical k-mer. When the subsequent model does not depend on k-mer
order, both sequences will have the same representation.

(ii) At training time give both (regular and RC) sequences with the same label. At test

time average the probabilities for both sequences: f̂final(x) =
f̂(x)+f̂(x̄)

2 . . Both of these
predictions are naturally RC-symmetric.

A recent paper [Zhou et al., 2020] suggest that the latter method yields slightly better performing
models. However for k-mer-based methods enforcing RC-symmetry brings an added benefit in
memory as a representation needs to be learned for only half of the k-mers.

1.4.4 Word embeddings

In a breakthrough paper, [Mikolov et al., 2013a] introduced a new way to assign continuous
vectors (embeddings) to words. These embeddings are learned in a self-supervised fashion: the
input and output spaces are both set to be equal to the vocabulary Y = X = V . The skip-gram
model takes a word as input to predict the neighboring words (the context), while the CBOW
model does the inverse. The predictor is a fully connected neural network with one hidden layer
of dimension d. Once fit on the training data, this hidden layer yields a d-dimensional embedding:
� (w) = �1 � �0 (w). This method was inspired by the so-called distributional hypothesis in

18

1.4. SUPERVISED LEARNING FOR BIOLOGICAL SEQUENCES

ACG

CGG

. . .
ATC

TCA

ACGGA ...GATCA

Input sequence x

. . .

k-mer embeddings

+
Read embedding

tokenization

Figure 1.5 – Embedding a read with fastDNA. The read embedding is fed to a softmax layer for classification.

natural language which posits that the meaning of words can be deduced from the context in
which they appear. It has been shown that these embeddings induce a meaningful geometry on
the vocabulary (e.g. �(“better”)� �(“good”) + �(“bad”) ⇡ �(“worse”)). In a followup paper
[Bojanowski et al., 2016] introduced fastText, which aside from adding subword information
gave the option to learn them in a supervised manner. The supervised version of fastText
proved to be a strong and fast baseline for various language classification tasks [Joulin et al.,
2017].

Genomics

Word2Vec-style embeddings were first introduced to genomics and proteomics by [Asgari and
Mofrad, 2015], although they did not compare their results to other software.

Our first contribution was to learn these types of embeddings in a supervised manner and to
apply them to metagenomics [Menegaux and Vert, 2019]. We showed that they outperformed
the best machine learning techniques for taxonomic binning (at the time). Others have since
then used a similar model with other k-mer hashing schemes [Shi and Chen, 2019] [Georgiou
et al., 2020].

One limitation of such models is their extreme cost in memory as the weights for the
embedding layer take up O (d|V|) space, where |V| is proportional to 4k for regular k-mers. To
learn meaningful (competitive) sequence representations for taxonomic binning, k-mer size must
be at least 12, which means |V| quickly scales to the tens or hundred million. Another limitation
is that they do not take into account positional information. While k-mer methods are good
at finding individual motifs, some DNA functions depend on several motifs being separated by
some fixed distance.

Both of these limitations are addressed by the more sophisticated deep learning methods
which will go over in the next paragraphs.

1.4.5 Convolutional Neural Networks

A convolutional layer �conv works by applying a same function ffilter (the convolution filter, or
kernel) over all the positions in the input sequence �conv(x) = ffilter ⇤ x. This filter is simply a
weighted average of the k neighboring positions, where k is the filter size. The filter weights are
learnable parameters.

A convolutional neural network (CNN) combines convolutional layers and regular fully
connected layers to identify continuous patterns or motifs in the data. CNNs decide themselves
which patterns are useful for the task at hand. Although one convolutional layer can only
learn simple patterns, as more layers are added the recognized patterns become more and more

19

CHAPTER 1. INTRODUCTION

sophisticated. CNNs first found success in image processing but then transferred onto many
other domains such as audio or text processing [Conneau, 2016]. Applied to text, CNNs either
operate on characters or on word embeddings. The former have the advantage of being able to
classify substrings that were not seen in training.

In biological sequences, after the characters are one-hot encoded, a read of length L is
transformed into a 2-dimensional “image” of size |A|⇥ L. Character-CNNs have met with great
success for a various number of applications in functional genomics [Alipanahi et al., 2015]; [Zhou
and Troyanskaya, 2016]; [Kelley et al., 2016]. Deeper CNNs were also used to predict protein
folding [Xu, 2019]; [Jones and Kandathil, 2018].

CNNs for metagenomic classification Char-CNNs have shown success in classifying 16S short
reads [Busia et al., 2018]. However this problem is of much lesser scale than whole genome
sequencing, as the 16S gene sequence is only around 1550 bp long, compared to an order of 1Mbp
for a full bacterial genome. [Rojas-carulla et al., 2018] did use CNNs for shotgun sequencing
but their performance was subpar. It was later shown in [Liang et al., 2019] that char-CNNs do
not work for our problem of full-genome taxonomic binning. One way to make them work is to
apply them to a first layer k-mer embeddings, but this defeats the initial purpose of memory
savings and of adaptively learning motifs from the data. In fact the performance reported in
[Liang et al., 2019] is worse than a simple averaging of embeddings. I presume this is because
the number of patterns that need to be learned to distinguish short reads coming from many
genomes are too numerous. The needed size of the CNN would outweigh its benefits either in
memory or in classification speed.

1.4.6 Recurrent Networks

Recurrent neural networks (RNNs; [Elman, 1990]) process the input sequentially with a same
function �,

�(n)(x[1:n]) = �
⇣

xn, �
(n�1)(x[1:n�1])

⌘

keeping a working memory – the hidden state – of the results at each step. Well-designed RNNs
are able to deal with long range dependencies [Hochreiter and Urgen Schmidhuber, 1997]. RNNs
are standard algorithms in machine translation and text generation notably for their ability to
generate sequential output [Jozefowicz et al., 2016]. Context-aware word embeddings can be
created from the intermediate layers of RNN models [Peters et al., 2018].

[Quang and Xie, 2016] and [Pan et al., 2018] use RNNs in functional genomics by stacking
them on top of sequence representations obtained by CNNs.

RNNs are gradually being contested in NLP by a recent innovation: attention [Vaswani et al.,
2017].

1.4.7 Transformers

A presumed limitation of Word2vec-style word embeddings is that learning a unique representation
per word fails to account for polysemy. One word may have a completely di↵erent meaning in
one sentence and the next (“robbing the bank”, “down by the river bank”), but yet will have the
same representation in both. The attention mechanism was introduced to alleviate this issue
[Bahdanau et al., 2015]. Words w are given three separate embeddings:

20

CHAPTER 1. INTRODUCTION

(i) the “value” v(w) – its intrinsic embedding;

(ii) the “query” q(w) – what information it looks for in other words;

(iii) the “key” k(w) – how it is seen by other words.

The attention score ↵(w1, w2) / q(w1) · k(w2) 2 R, that captures how relevant w2 is to w1. The
final embedding of a word wt is a weighted sum of the values v of the words in its context S (all
the words appearing in the sentence for example):

�attention(wt, S) =
X

w2S

↵(wt, w) v(w)

.
The Transformer architecture [Vaswani et al., 2017] uses a special type of attention mechanism,

along with a positional embedding for tokens. The embeddings are learned in a self-supervised
manner by masking some of the tokens of training sentences and training the model to successively
guess the missing tokens (similar to the CBOW model discussed earlier). Most networks using
this architecture use a vocabulary of subwords, (such as Wordpiece [Wu et al., 2016]) created
adaptively from the training data. State of the art models use Transformer layers and achieve
astounding results in most NLP fields such as text translation, generation or classification [Devlin
et al., 2017] [Radford et al., 2018].

Transformers have been used with success in proteomics, a closely-related domain, to predict
protein structure and form [Rives et al., 2020] [Senior et al., 2020], outperforming other methods
by a wide margin. [Ji et al., 2020] introduced DNA-BERT with seemingly improved performances
in functional genomics. For taxonomic binning [Liang et al., 2019] use an RNN and an attention
mechanism on top of an initial k-mer embedding layer. They show that adding the recurrent
layer and the attention mechanism both improve classification performance. To the best of our
knowledge, this is the only paper that has shown that going deep gave an improvement over
simply averaging word embeddings. However the performance increase is only slight, and it is
unclear that the added complexity of the extra layers (restricting k-mer size to 12) outweighs
their benefits.

1.4.8 End to end learning

As some DNA regions are shared across di↵erent species, some reads may have multiple exact
matches. The chance of this happening get slimmer for longer reads but it still can happen.
In this case a classifying method that takes into account only the read itself but not its co
occurring reads in the sample cannot determine the taxon of origin with certainty. It is only by
combining (cross-referencing) information from other reads that . This is the main reason that
some approaches take the whole metagenomic sample as input. If 80% of sample is attributed to
species A, and the other 20% matches with species A or B indi↵erently, then with good confidence
all of those 20% actually come from species A as well. Several methods have been proposed to
disambiguate multiply matched reads a posteriori, including Expectation-Maximization (EM)
algorithms [Bray et al., 2016] or bayesian reassignment of reads [Lu et al., 2017]. Multiple
Instance Learning [Zaheer et al., 2017] is a field of machine learning specifically suited to this
problem, and has been proposed by several recent papers as a robust method making use of
probabilities. Recent deep-learning techniques address the whole metagenome as an input, and
solve their task directly from end to end [Queyrel et al., 2020], [Georgiou et al., 2020].

22

1.5. CONTRIBUTIONS

1.5 Contributions

This thesis is geared towards embedding short DNA sequences in a low-dimensional continuous
vector space, with the end goal of assigning them to taxonomic clades. We first introduce a new
model fastDNA in which we find embeddings for short k-mers then represent a read as the average
embedding of its constituent k-mers. Brume expands on fastDNA by using the de Bruijn graph
to allow larger k-mers. Finally we introduce a custom structured loss for taxonomic classification
based on the phylogenetic tree. This loss is applicable to any other deep learning model.

1.5.1 fastDNA

As our first contribution, we proposed a new machine learning model fastDNA for the classifi-
cation of short DNA sequences. The model was trained and applied to taxonomic binning on
metagenomics datasets, but could be used for any other biological sequence classification task.

Model

Keeping the notations introduced in the previous section, the model for fastDNA is a 3-layer
fully connected neural network:

�fastDNA = �softmax � �embedding � �encoding

The input layer �encoding(x) : A⇤ ! R
|V| is the k-spectral embedding, or one hot encoding

of the k-mers in x. The output dimension d of the embedding layer �embedding : R
|V| ! R

d is
a hyperparameter set by the user. The weights M 2 R

|V| ⇥ R
d of �embedding, the embeddings

matrix, associate a d-dimensional vector to all the k-mers in V . Finally the linear classifier
�softmax : R

d ! R
T is a softmax function over the T output classes. The first two layers are

shown schematically in figure 1.5.

The weights of both the linear model and the embedding matrix are learned jointly by
stochastic gradient descent with the cross-entropy loss ` (1.4).

Evaluation

To train the model we choose reference genomes Gi and their species yi and simulate on-the-fly
reads coming from random positions in these genomes. Random mutations are added to the
reads for data augmentation and regularization. This has the e↵ect of bringing embeddings of
similar k-mers (similarity here is quantified here as the probability one k-mer can be obtained
from the other with mutations) closer together in embedding-space.

Evaluated on datasets from [Vervier et al., 2016], we showed that fastDNA outperformed
state of the art machine learning approaches and reached equivalent accuracies to alignment
software, while being an order of magnitude faster. We also showed that adding some level of
chance mutations during training improved the classification accuracy.

Improving memory usage

We show in the work that classification performance continues to increase with larger k-mer sizes.
However k is constrained by a memory issue. Indeed the model size scales exponentially with

23

CHAPTER 1. INTRODUCTION

k as, for the range of k considered, |V| is proportional to 4k (on large enough datasets, k-mers
with k<15 are dense, they almost all appear at least once). There are two possible directions to
reduce the size in memory of the embeddings matrix.

(i) The first one is to keep the same number of words in the vocabulary but compressing the
size of the embeddings. A method of this sort is in fact already implemented in fastDNA,
which can perform a version of product quantization [Joulin et al., 2016]: a clustering
algorithm that preserves dot products between quantized vectors. Quantizing the model in
this way reduces the memory size tenfold while having a negligible impact on performance.
As a downside, the compression only works post-training, so the full working memory is
still needed to calibrate the model.

(ii) The second direction of improvement is to reduce the e↵ective size of |V|, either by pruning
out uninformative k-mers (too common or too rare for instance) or by grouping “similar”
k-mers and giving them the same embeddings. The similarity could be based on their
character content, in which case techniques such as locality-sensitive hashing (LSH) have
been explored [Shi and Chen, 2019], [Georgiou et al., 2020]. On the other hand we could
define a k-mer similarity or equivalence in a data-driven fashion, and impose that k-mers
that always appear together in reads should have the same embedding. For instance one
could argue that the k-mers “New Yor” and “ew York” carry equivalent information for
classification. This is the focus of our next work.

1.5.2 Brume

The de Bruijn graph (dBG) is a data structure that encodes sequences of symbols. It was first
introduced to computational biology for genome assembly [Idury and Waterman, 1995] and has
since become a staple of the field.

The k-mer based dBG G of a set of sequences S = {Si} is a directed graph (V,E) where each
vertex is a k-mer present in S. Two vertices are linked by an edge if the k-mers they represent
appear consecutively in at least one of the sequences Si.

A contig, or unitig, is a maximal non-branching path of the graph. Contigs are illustrated
in 1.7. The k-mers of a contig appear in the same sequences and therefore contain the same
information for classification. It is then natural to give the same representation to each k-mer of
a contig. By doing so we reduce the e↵ective vocabulary from the set of all k-mers V to the set
of all contigs VC . When k is small, all (k + 1)-mers appear in the dataset, therefore the dBG
is dense: all vertices are linked to each other and each vertex is a contig |VC | ⇡ |V|. However
larger k-mers get sparser, and for k > 20 empirically |VC |⌧ |V|.

Adaptation to fastDNA

We build the dBG of the reference genomes using specialized software bifrost or kallisto [Holley,
2020]; [Bray et al., 2016], and keep only the mapping from k-mers to contig indices 2 {1, . . . , |VC |}.
As shown in figure 1.8 we learn embeddings for each contig then embed a read by averaging
the embeddings of its constituent contigs, weighted by their number of k-mers in the read. The
resulting representation is given to a softmax layer for classification.

24

1.5. CONTRIBUTIONS

AAC
GTG

AGG

ACA

CAG GGT

AGTATA TAG

TGC

CAT TGG

GTGAACA

CAGGT
TGC

CATAGT TGG

Figure 1.7 – Above: the 3-mer de Bruijn graph of two sequences AACAGGTGC (in blue) and AACATAGTGG (in
orange). Below: Non-branching paths have been merged to yield the compacted de Bruijn graph. Each
vertex in this graph is a contig. For example the top k-mers CAG; AGG and GGT are mapped to the same
contig C = CAGGT

ACG

CGG

. . .
ATC

TCA

k-mers in x

ACGGA ...GATCA

Input sequence x

. . .

contig embeddings

+
Read embedding

lookup in dBG

Figure 1.8 – Embedding a read with Brume. After tokenization, each k-mer is mapped to its parent contig.
The embeddings for each contig are retrieved and averaged. The resulting read embedding is fed to a
softmax layer for classification.

25

CHAPTER 1. INTRODUCTION

Although dBGs have been used for short read classification before [Bray et al., 2016]; [Schae↵er
et al., 2015], this is the first attempt to mix them with machine learning. We show that Brume is
more cautious than fastDNA, making fewer mistakes but also classifying fewer reads.

By doing so, we have learned a representation of the compacted de Bruijn graph: each of its
vertices has an embedding.

Limitations

Contrary to fastDNA with short k, the memory here depends on the total number of k-mers
and contigs, which scale with the addition of novel genomes in the database. Current software
cannot build de Bruijn graphs for some large datasets without using a prohibitive amount of
memory. Furthermore, for large datasets, the number of contigs |VC | is still too large. A possible
direction of enquiry would be to use larger or more memory-e�cient groupings than contigs, such
as simplitigs for example [Břinda et al., 2020]. A second concern is that for very large k, k-mers
are increasingly rare, most of the times appearing only once in the whole dataset. Hence not
only are some reads left unclassified, but this also questions the use of continuous embeddings to
represent very rare tokens. We could perhaps consider an adaptive embedding size [Grave et al.,
2017]; [Baevski and Auli, 2018].

Another limitation in our current implementation is that the mapping from a read to its
constituent contigs is slow. We have not implemented the speedup tricks in [Wood and Salzberg,
2014] or [Bray et al., 2016]. While scaling up to larger datasets we realized that even the vanilla
version of fastDNA was slower than expected, due to the large number of classes involved. The
bottleneck was the softmax layer, and this lead us to explore alternatives.

1.5.3 Phylo-HS, a structured loss for taxonomic classification

The softmax function � : R
N ! [0, 1]N transforms real scores into probabilities (N is any

arbitrary positive integer).

�(x) =
ex

PN
i=1 e

xi

In neural network terminology, the softmax layer is a linear classifier: the composition of �
with a linear function z ! ✓ · z. E↵ectively it gives scores for each class t then normalizes them
to sum to 1. In all that follows, we will write z as the d-dimensional input to the softmax layer
(the output of the penultimate layer), and ✓ 2 R

T⇥d as its parameters.

psoftmax(label t | z) =
eθt·z

PT
j=1 e

θj ·z
(1.8)

The denominator in (1.8) is also called the partition function Z(✓, z). Computing this term has
a complexity proportional to the number of output classes O (dT), which can quickly become a
bottleneck when T gets large, both at test and training time. One way to alleviate this issue is
to approximate the denominator by importance sampling [Bengio and Senécal, 2003];[Mikolov
et al., 2013b];[Ji et al., 2016]: the sum in Z is taken over a random subset of the samples
instead. Although these methods do speed up training, at test time the true softmax must still
be evaluated.

Other approaches replace the softmax function by another altogether, such as the hierarchical
softmax.

26

1.5. CONTRIBUTIONS

genus A genus B

spec. A1 spec. A2 spec. B1 spec. B2

Common ancestor

0.7

0.4 0.6

0.3

0.5 0.5

0.28 0.42 0.15 0.15

Predicted label

Input sequence

Figure 1.9 – Toy example of a binary classification tree. On the left the labels of interest – species – are
ordered in a phylogenetic tree along with their genus. This could be replaced by any other label clustering
. On the right, the same tree is used for classification. Each node from the higher levels is an independent
binary classification problem, taking the representation �(x) of the input sequence. The leaf probabilities
are the product of all the edge probabilities. The path of the leaf with highest probability – the predicted
label – is highlighted in blue

Hierarchical softmax

The hierarchical softmax (HSM) is an approximation to the softmax function. As initially
designed in [Goodman, 2001], the hierarchy was a two-level tree: output labels are grouped into
clusters. When given an input x, the model predicts its cluster c with a first model p(c |x), then
predicts the label t with a second model p(t | c, x). Since each label t belongs to a unique cluster
c(t), the probability of t is the product (1.9)

p(t |x) = p(c(t) |x) p(t | c(t),x) (1.9)

A simple classification tree is shown on the right of figure 1.9. If the clusters are well balanced,
this reduces the complexity of the softmax from O (dT) to O(d

p
T). Introducing more levels in

the hierarchy can further lower the complexity down to O (d log T) for a balanced binary tree
[Morin and Bengio, 2005]. The assignment of labels to clusters can be based either on their
similarities or on their frequencies. A speed-optimal HSM based on the Hu↵man coding of labels
was introduced in [Mikolov et al., 2013b]: frequent labels are placed higher up in the tree so that
it takes fewer steps to get to them, improving both accuracy and speed.

Although much faster than the standard softmax, the HSM comes at a price in accuracy.
One possible explanation is that if similar labels are separated into di↵erent clusters, the model
might have trouble choosing between the clusters. To correct this, one wants to group similar
classes in the same parts of the tree. In the taxonomic binning problem, there is fortunately
a very natural way to do this: copy the classification tree on the phylogenetic tree, which, by
design, captures similarity between taxonomic classes.

Phylo-HS

Since there are many more taxa in the total phylogenetic tree than in the training set, we take a
few steps to prune the tree. We take every label from the training dataset and trace its lineage
l(t) to the root of the tree. l(t) is a path [t1, ..., tm] where t1 the root, tm = t; and 8i, ti is the

27

CHAPTER 1. INTRODUCTION

parent of ti+1. This collection of paths forms a subtree T which we further simplify at no loss by
merging unique children with their parent. In order to attain maximum speedup we also binarize
the resulting tree. This entails making a choice on how to split up siblings into two “artificial”
nodes. We choose to split such that the two resulting nodes are as balanced as possible in terms
of frequencies (occurrences in the dataset). The resulting tree is thus a hybrid of the phylogenetic
tree and the Hu↵man tree described in [Mikolov et al., 2013b]. It is a full binary tree with T
leaves and T � 1 intermediary nodes.

We show that the resulting loss – Phylo-HS – outperforms the Hu↵man HSM for taxonomic
binning in terms of accuracy, while maintaining comparable speed.

1.5.4 Published work appearing in this thesis

The contributions in this thesis are available as published articles or preprints.

• R. Menegaux and J.-P. Vert. Continuous Embeddings of DNA Sequencing Reads and
Application to Metagenomics. J Comput Biol, 26(6):509–518, 06 2019

• R. Menegaux and J.-P. Vert. Embedding the de bruijn graph, and applications to metage-
nomics. bioRxiv, mar 2020. doi: 10.1101/2020.03.06.980979

The two first chapters closely follow these references. The third chapter contains unpublished
preliminary results.

The code for these three chapters is made available on GitHub at https://github.com/

rmenegaux/fastDNA on the master, kallisto and taxonomy_tree branches respectively. Func-
tions are provided to train and evaluate the models on custom data or to reproduce the presented
results.

28

https://github.com/rmenegaux/fastDNA
https://github.com/rmenegaux/fastDNA

Chapter 2

fastDNA: Continuous Embeddings for DNA

reads

Contents

2.1 Introduction . 31

2.2 Method . 32

2.2.1 Embedding of DNA reads . 32

2.2.2 Learning the embedding . 33

2.2.3 Implementation . 34

2.2.4 Regularization with noise . 34

2.3 Experiments . 34

2.3.1 Data . 34

2.3.2 Reference methods . 35

2.3.3 Small dataset . 35

2.3.4 Large dataset . 38

2.3.5 Classification speed . 39

2.4 Conclusion . 40

29

CHAPTER 2. FASTDNA

Abstract

We propose a new model for fast classification of DNA sequences output by next generation
sequencing machines. The model, which we call fastDNA, embeds DNA sequences in a vector
space by learning continuous low-dimensional representations of the k-mers it contains. We
show on metagenomics benchmarks that it outperforms state-of-the-art methods in terms of
accuracy and scalability.

Résumé

Nous proposons un nouveau modèle pour la classification rapide de séquences d’ADN issues
du séquençage prochaine génération. Le modèle, que nous nommons fastDNA, représente les
séquences d’ADN dans un espace vectoriel en apprenant des représentations continues de
basse dimension pour chacun des k-mers qu’elle contient. Nous montrons dans des expériences
sur des benchmarks de métagénomique que cette méthode obtient de meilleures performances
que l’état de l’art, à la fois en précision et en vitesse de classification.

30

2.1. INTRODUCTION

2.1 Introduction

The cost of DNA sequencing has been divided by 100,000 in the last 10 years. With less than
$1,000 to sequence a human-size genome, it is now so cheap that it has quickly become a routine
technique to characterize the genome of biological samples with numerous applications in health,
food or energy. Besides the genome, many techniques have been developed to measure other
molecular informations using DNA sequencing, e.g., gene expression using RNA-seq, protein-DNA
interactions using ChiP-seq, or 3D structural informations using Hi-C, to name just a few. In
short, DNA sequencing is the swiss army knife of modern genomics and epigenomics. As a
consequence, the rate of production of DNA sequences has exploded in recent years, and the
storage, processing and analysis of these sequences is increasingly a bottleneck.

While new, so-called long-read technologies are under active development and may become
dominant in the future, the current market of DNA sequencing technologies is dominated by
so-called next-generation sequencing (NGS) technologies which break long strands of DNA into
short fragments of typically 50 to 400 bases each, and ”read” the sequence of bases that compose
each fragment. The output of a typical DNA sequencing experiment is therefore a set of millions
or billions of short sequences, called reads, of lengths 50⇠400 in the {A,C,G, T} alphabet;
these billions of reads are then automatically processed and analyzed by computers to get some
biological information such as the presence of particular bacterial species in a sample, or of a
specific mutation in a cancer.

Standard pipelines to process the raw reads depend on the target applications, but typically
involve discrete operations such as aligning them to some reference genome using string algorithms.
In this paper, we investigate the feasibility of directly representing DNA reads as continuous
vectors instead, and replacing some discrete operations by continuous calculus in this embedding.

To illustrate this idea, we focus on an important application in metagenomics, where one
sequences the DNA present in an environmental sample to characterize the microbes it contains
Group et al. [2009]; Riesenfeld et al. [2004]. An important problem in metagenomics is taxonomic
binning, where each of the billions of sequenced reads must be assigned to a species, given a
database of genomes characteristic of each species considered Mande et al. [2012]. Standard
computational approaches for taxonomic binning try to align each read to a reference sequence
database with sequence alignment tools like BLAST [Huson et al., 2007] or short read mapping
tools such as BWA [Li and Durbin, 2009] or BOWTIE [Langmead et al., 2009b]. However, the
computational cost of these techniques becomes prohibitive with current large sequence datasets.
Alternatively, compositional approaches rephrase the problem as a multiclass classification
problem, and employ machine learning methods such as a naive Bayes (NB) classifier [Parks et al.,
2011; Wang et al., 2007] or a support vector machine (SVM) [McHardy et al., 2007; Patil et al.,
2012; Vervier et al., 2016] after representing each read by the vector of k-mer1 counts it contains.
Interestingly, Vervier et al. [2016] showed that compositional approaches can be competitive in
accuracy with alignment-based methods, while maintaining a computational advantage, by using
large-scale machine learning approaches. However, a good accuracy is only achieved with k-mers
of length at least k = 12, corresponding to representing each read as a sparse vector in N = 4k

dimensions. This representation raises computational challenges both at training time (Vervier
et al. [2016] push VowPal Wabbit to its limit) and at test time (a N ⇥ T matrix of weights must
be stored to model T species).

1A k-mer is a contiguous subsequence of k letters.

31

CHAPTER 2. FASTDNA

In this work, we propose to extend state-of-the-art compositional approaches by embedding
the set of DNA reads to R

d, with d⌧ N . For that purpose, we still extract the k-mer composition
of each read, but replace the N -dimensional one-hot encoding of each k-mer by a d-dimensional
encoding, optimized to solve the task. This approach is similar to, e.g., the fastText model
for natural language sequences of Bojanowski et al. [2017]; Joulin et al. [2016] or word2vec

Mikolov et al. [2013a], with a di↵erent notion of words to embed, and a direct optimization of
the classification error to learn the representation. This can reduce the memory requirements to
store the model and accelerate classification time when d < T , since the N ⇥T matrix of weights
is replaced by a N ⇥ d matrix of embeddings, and a d⇥ T matrix of weights.

After presenting in more detail the model and its optimization, we experimentally study the
speed/performance trade-o↵ on metagenomics experiments by varying the embedding dimension,
and demonstrate the potential of the approach which outperforms state-of-the-art compositional
approaches.

2.2 Method

2.2.1 Embedding of DNA reads

Given the alphabet of nucleotides A = {A,C,G, T}, a DNA read of length L 2 N
⇤ is a sequence

x = x1 . . . xL 2 AL. Depending on the sequencing technology, L is typically in the range
50 ⇠ 400, and we fix L = 200 in the experiments below. For any 1 a b L we denote
by x[a,b] = xaxa+1 . . . xb the substring of x from position a to b. For any d 2 N

⇤, an embedding

of DNA reads to R
d is a mapping � : AL ! R

d to represent each read x 2 AL by a vector
�(x) 2 R

d, which can then be used for subsequent classification tasks.
For a given k 2 N, the k-spectral embedding represents a sequence by its k-mer profile Leslie

et al. [2002]: it is an embedding �
Spectral =

�

�
Spectral
u

�

u2Ak in d = |A|k dimensions indexed by

all strings of length k, where for any such string u 2 Ak one defines:

�
Spectral
u (x) =

L�k+1
X

i=1

�u
�

x[i,i+k�1]

�

,

where �u(v) = 1 if u = v, 0 otherwise. The k-spectral encoding of DNA reads is used in state-of-
the-art compositional approaches to assign reads to species with machine learning techniques
[McHardy et al., 2007; Parks et al., 2011; Patil et al., 2012; Vervier et al., 2016; Wang et al.,
2007].

Given d 2 N
⇤ and a N ⇥ d matrix M = (Mu)u2Ak associating a vector Mu 2 R

d to each
k-mer u 2 Ak, we now consider a d-dimensional embedding �

M of DNA reads by summing the
vectors associated to the read’s k-mers:

8x 2 AL , �
M (x) =

L�k+1
X

i=1

Mx[i,i+k�1]
.

In matrix form, one easily sees that the d-dimensional embedding �
M can be obtained from the

k-spectral representation by the formula:

8x 2 AL , �
M (x) = M>

�
Spectral(x) , (2.1)

32

2.2. METHOD

showing in particular that the k-spectral embedding is a particular case of �
M by taking d = N

and M = Id. Changing M allows to create correlations between k-mers in the embedding space.
For example, the (k,m)-mismatch kernel Leslie et al. [2003] also corresponds to an embedding
�

M with d = N , but where Mu,v = 1 when the Hamming distance between u and v is at most
m, 0 otherwise. Changing d further allows to vary the dimension of the embedding, which can
not only be beneficial for memory and computational reasons, but also help statistical inference
by reducing the number of parameters of the embedding.

2.2.2 Learning the embedding

While several existing embeddings such as the k-spectral or (k,m)-mismatch embeddings corre-
spond to �

M for specific matrices M , we propose to ”learn”M as part of the overall classification
or regression task that must be solved. In our metagenomics problem, this is a multiclass
classification problem where each of the T bacterial species is a class and each read must be
assigned to a class. Given an embedding �

M , we consider a linear model of the form:

8x 2 AL , fM,W (x) = W�
M (x) , (2.2)

where W 2 R
T⇥d is a matrix of weights, and the prediction rule:

8x 2 AL , ŷ 2 arg max
i2{1,...,T}

fi(x) .

To learn the embedding M and the linear model M , we assume given a training set of examples
(xi, yi)i=1,...,ntrain

where xi 2 AL and yi 2 {1, . . . , T}, and numerically minimize an empirical
risk:

min
M,W

1

ntrain

ntrain
X

i=1

`
�

yi, f
M,W (xi)

�

, (2.3)

where for the loss ` we choose the standard cross-entropy loss after transforming the scores to
probabilities with the softmax function:

8(y, g) 2 {1, . . . , T}⇥ R
T , `(y, g) = �gy + ln

T
X

i=1

egi

!

.

We solve (2.3) by stochastic gradient descent (SGD). Note that when d < T , the problem is
usually non-convex and SGD may only converge to a local optimum.

Combining (2.1) and (2.2), we further notice that for any embedding M and weights W ,

8x 2 AL , fM,W (x) = WM>
�

Spectral(x) . (2.4)

This clarifies that fM,W boils down to a linear model in the k-spectral representation, with
a weight matrix WM> of rank at most d. When d < min(N,T) this creates a low-rank
regularization that can be beneficial for statistical inference, in addition to reducing the memory
footprint of the model and speeding up the prediction time.

33

CHAPTER 2. FASTDNA

2.2.3 Implementation

We implemented the model (2.3) by modifying the fastText open-source library [Joulin et al.,
2016, 2017], which involves a similar model with k-mer embedding for natural language. There
are some important di↵erences between DNA reads and standard NLP applications, though:
(i) One is that the concept of a ”word”, space-delimited groups of letters, does not exist in DNA
sequence data. Hence we resort to a distributed representation of overlapping k-mers only, and
not to words as in word2vec or fastText. (ii) Second is the number of training examples to
be seen by the model is very large: up to 5 ⇥ 109 if we were to achieve full coverage of the
large database below, for example. (iii) Third, the vocabulary is di↵erent, as it is of known
size (4k) and is densely represented for relatively small values of k. For greater values of k
than those considered in this paper, k-mers become rare and individual long k-mers can become
discriminative. This is in fact used by some other compositional algorithms such as Kraken
Wood and Salzberg [2014].

For these reasons we rewrote part of the fastText software to extract overlapping k-mers
rather than words. As appropriate for (iii), the k-mer embeddings are stored in a fixed-size table
of dimension (4k, d), each row corresponding to the vector of a di↵erent k-mer. For a given k-mer
b = b1 . . . bk 2 Ak, the index of its corresponding row in M is ind(b) =

Pk�1
i=0 4ih(bi), where

h(A) = 0, h(C) = 1, h(G) = 2 and h(T) = 3. This allows to quickly find ind(xi+1:i+k) from
ind(i : i+ k � 1) as explained for example in Vervier et al. [2016]. To address (ii) we generate
random fragments on the fly directly from the full genomes, rather than reading text samples
line by line as in fastText.

2.2.4 Regularization with noise

As a form of regularization, we also add random mutations in the training fragments. When
reading the fragment from the reference genome, nucleotide by nucleotide, we introduce a chance
r of replacing the nucleotide by a random one (equally distributed on {A,C,G, T}). This is
akin to the dataset augmentations commonly used in image classification tasks, and in our case
promotes the nearby embeddings of k-mers similar in terms of Hamming distance.

2.3 Experiments

2.3.1 Data

We test our model on two benchmarks proposed by [Vervier et al., 2016]: a small one, useful
mostly for parameter tuning, and a large one. Both benchmarks involve a training database of
genomes organized by species, and a validation set of genomes coming from the same species as
the training database, but from di↵erent strains. Reads are randomly sampled, with or without
noise, from the validation set of genomes, and the goal is to predict, for each read, from which
species it comes from. The small database contains 356 complete genomes, belonging to 51
species of bacteria; its validation set is composed of 52 genomes, belonging to the same 51 species.
The large database contains 2,961 genomes belonging to 774 species, which is closer to real-life
situations. The validation set is composed of 193 genomes, each from a separate species.

For both training and testing, reads of length L = 200 are extracted from the genomes. The
validation datasets are built by extracting fragments such that their coverage – the average

34

2.3. EXPERIMENTS

number of times each nucleotide is present – is 1. This amounts to a total of 134, 319 validation
samples for the small database, and ⇠ 3.5M samples for the large database. The machine
learning-based models are trained on reads sampled from the reference genomes and their known
taxonomic labels, while alignment-based methods simply align validation reads to the training
reference genomes. To account for the fact that DNA is double-stranded and that when a read is
sequenced it can come from any of the two strands, which are reverse-complement to each other,
we systematically add the reverse-complement of each read with the same label at training time.

In addition, we consider several noisy validation sets as in Vervier et al. [2016], where each
fragment sampled from a genome is modified to mimick sequencing errors of actual sequencing
machines, in particular substitutions, insertions and deletions of nucleotides. We use the specially-
designed grinder software [Angly et al., 2012] to simulate 3 new sets of validation reads. The
Balzer validation set is simulated with a homopolymeric error model, designed to emulate the
Roche 454 technology [Balzer et al., 2010]. The mutation-2 and mutation-5 sets are simulated
with the 4th degree polynomial proposed by Korbel et al. [2009] to study general mutations
(insertion/deletions and substitutions). The median mutation rates for these simulated reads are
2% and 5%, respectively. Balzer and mutation-2 are meant to contain a realistic proportion of
errors, and mutation-5 is added as a more challenging set.

2.3.2 Reference methods

We compare our method, which we call fastDNA in the rest of the text, to two other strategies.
One is the BWA-MEM sequence aligner [Li, 2013] and the other is the linear SVM classifier on
the k-spectral representation, implemented using the Vowpal Wabbit software in [Vervier et al.,
2016]. We name the latter method VW in the rest of the paper. We follow exactly the same
configurations as [Vervier et al., 2016] for both methods.

2.3.3 Small dataset

Memory footprint

As the embeddings matrix M is loaded in memory both for training and classification, fastDNA
models have a significant memory footprint. [Joulin et al., 2016] discuss various strategies
to reduce it. The vocabulary cannot be pruned for our range of k as the k-mers are densely
distributed, so the dimensions of M are fixed. The size of M in memory can however be reduced
by quantization. We use Product Quantization (PQ, Jegou et al. [2011]), with the option to
cluster separately the vector norms and directions (option qnorm). The linear layer is then
retrained to account for the change in the embeddings. This compresses the model size by almost
an order of magnitude without noticeably impacting the performance.

While PQ can make deploying and classifying more accessible, training the model still requires
the full embedding matrix, as its quantized version is not trainable. We restrain our parameter
choices (k and d) to models that fit on 64GB machines. The dimension of the embedding table
(4k) is encoded on 32-bits, which further limits the value of k to kmax = 15. The largest models
we consider are k = 13, d = 100 and k = 15, d = 10. Their memory footprints are available in
figure 2.1.

Contrary to VW , model size is completely determined by the user and does not depend
on the number of possible classes T or on the vocabulary of the training database, which can

35

CHAPTER 2. FASTDNA

Memory footprint

Figure 2.1 – Memory requirement of fastDNA models as a function of k-mer sizes. The embedding
dimensions d shown are 10, 100 and 1000. The reported value is the size in GB of the model binary, the
minimal size required both in RAM to train and load the model, and on disk to save it.

36

2.3. EXPERIMENTS

Comparison with reference methods

Figure 2.2 – Comparison between fastDNA and reference methods on the small dataset. This figure
shows the average species-level recall obtained by fastDNA trained for 50 epochs and a learning rate
0.1, for di↵erent values of k and d. The results are compared with VW for di↵erent values of k and an
alignment-based approach BWA-MEM

become an advantage when T is large.

Coverage

The model is trained by picking a position at random in the reference genomes and using the
200-bp read starting from that position as a sample. One epoch of training consists of drawing
enough random reads to cover each nucleotide of the reference genomes once on average (coverage
of 1). We found that models with no training noise had converged by 50 epochs, and those with
training noise benefited from extra epochs.

The results in this paper were obtained by training with a fixed number of epochs 50, and a
learning rate of 0.1, chosen by a standard grid-search.

Performance

One first result from 2.2, is that increasing the embedding dimension d above 50 brings no added
benefit in classification quality, at the cost of larger prediction times and memory footprint. This
could in theory be expected from (2.4). Once d is greater than the number of classes, the matrix
WM> has maximal rank T , so the model is virtually the same as the standard ”Bag of Words”
model VW . The di↵erences observed between the two are likely due to di↵erent optimization
procedures and implementations.

37

CHAPTER 2. FASTDNA

Influence of mutation rate in training

Figure 2.3 – Performance on the large dataset of fastDNA trained with di↵erent mutation rates. k-mer
size and embedding dimension d are 13 and 100, respectively. The classification quality is measured on
test sets generated with di↵erent sequencing error models.

Excessively lowering the dimension d under T harms the performance, especially for shorter
k-mers. However, the gap between models d = 10 and models d = 50 vanishes as k increases,
suggesting that – provided a su�cient vocabulary size – projecting k-mers to a lower-dimensional
space comes at little cost. Furthermore, models with longer k-mers but smaller dimension can
achieve the same performance as a model with shorter k and greater dimension. The model
k = 14, d = 10 has the same performance as k = 12, d = 50.

Finally, classification performance for values of k greater than 12 is competitive with alignment-
based method BWA, which confirms machine learning approaches can be relevant for this problem
of taxonomic binning.

2.3.4 Large dataset

We report the classification performance, measured by average species-level recall and precision
of fastDNA on the validation sets described in 2.3.1. The influence of the training noise is shown
in figure 2.3.

As could be expected, greater levels of sequencing noise in the validation sets lead to degraded
performances. Adding random mutations to the training reads curbs this e↵ect. The greater
the mutation rate is, the more robust the model becomes to higher levels of sequencing noise.
Somewhat more surprisingly, a certain range of mutation rates also increases the performance
on the validation reads with no sequencing noise. The regularization induced by these artificial
errors is therefore beneficial for both sequencing noise and intra-species heterogeneity. We found
that the best rates of mutation were between 2 and 5%. The models trained with these levels of
noise are better all-around than their no-noise counterparts.

We compare the performance of fastDNA against that of VW and BWA in 2.4. For small
levels of sequencing errors, fastDNA is competitive with BWA. Greater levels in sequencing noise
widens the gap between the two, as BWA is very robust to sequencing noise, dropping less than
1% for mutation-5 .

38

2.3. EXPERIMENTS

Comparison with other compositional methods

Figure 2.4 – Comparison between fastDNA and reference methods on the large dataset. This figure
shows the average species-level recall and precision obtained by fastDNA, VW and BWA on the di↵erent
validation sets. We show both the best configuration for fastDNA (k = 13, d = 100, r = 4%) and a similar
one to VW (k = 12, d = 100, r = 0%) for a fair comparison.

2.3.5 Classification speed

Speed is of critical importance in taxonomic binning and is the main motivation behind exploring
machine learning techniques. Classifying a read with fastDNA can be separated in two parts. It
first reads the sequence, computes the indices of the k-mers contained in the read and computes
the read embedding by summing the k-mer embeddings. This step is of complexity O(dL), where
L is the read length (constant in our experiments). Second, class probabilities are computed by
applying the linear classifier, this step is of complexity O(dT). fastText and fastDNA o↵er a
di↵erent loss function, the hierarchical softmax, that reduces this step to O(d log(T)), which can
become useful in the case of very large T . To this per-read time-complexity must be added a fixed
overhead, the time necessary for the model to be loaded from disk, of complexity O(dN + T),
where N = 4k is the vocabulary size. Due to the large values of 4k, this can make up a significant
portion of the total time. Moreover, we observe in practice a longer memory access time for
larger vectors. These are the two reasons for the time gap observed between classification with
models of same embedding dimension d but di↵erent k.

The total time complexity for predicting a dataset with n samples is therefore O(n(dL +
dT) + dN).

With reads of constant length, fastDNA and VW classify reads indiscriminately of their
content, and therefore yield equal classification times across the validation sets. On the other
hand, BWA’s speed degrades with the sequencing noise, which is easily explained. BWA searches
iteratively on the number of mismatches z and stops once it gets a hit. It will therefore be slower
if there are more mismatches between the testing and reference data.

We show in figure 2.5 the classification speeds measured for the large dataset. The values
reported are for a single CPU (Intel Xeon E5-2450 v2 -2.5GHz). We show fastDNA for d = 100
and k = 12, 13 and VW . fastDNA and VW have similar classification times of ⇠ 6, 7 · 103 reads
per minute. As remarked in Vervier et al. [2016], compositional approaches o↵er systematically
better prediction times than BWA, with improvements of 2 � 9⇥. This speed improvement

39

CHAPTER 2. FASTDNA

Classification speed

Figure 2.5 – Comparison between fastDNA and reference methods on the large dataset. This figure shows
the average classification speed of the methods on the di↵erent test sets. Two versions of fastDNA are
shown, one with k-mer size 12, the other with k-mer size 13. Both have embedding dimension d = 100.
The four test sets used were simulated with di↵erent sequencing error models.

increases with the mismatch between predicted sequences and reference genomes, therefore with
both sequencing noise and intra-species variations.

2.4 Conclusion

We demonstrated that learning a low-dimensional representation of DNA reads based on their
k-mer composition is feasible, and outperforms state-of-the-art compositional approaches that
work directly on the high-dimensional, k-spectral representation of DNA sequences. Controlling
the dimension d of the embedding allows to consider longer k-mers for a given memory footprint.
As other compositional methods, fastDNA is significantly faster than alignment-based methods,
and is well adapted to classification into many classes.

There are two immediate possible extensions of this work. One is to use a more realistic
error model than uniform substitutions for training, to better mimick the expected noise in
the data. The other is to extend the notion of ”word” from contiguous k-mers to gap-seeded
k-mers or Bloom filters Luo et al. [2017], hopefully capturing longer-range dependencies. In
terms of applications, assigning RNA-seq reads to genes to quantify their expression can also be
formulated as a classification problem with typically T ⇠ 22k classes, and may be well adapted
to fastDNA as well.

The source code is freely available and published on github https://github.com/rmenegaux/

40

https://github.com/rmenegaux/fastDNA
https://github.com/rmenegaux/fastDNA
https://github.com/rmenegaux/fastDNA

2.4. CONCLUSION

fastDNA, along with scripts to reproduce the presented results.

41

https://github.com/rmenegaux/fastDNA
https://github.com/rmenegaux/fastDNA
https://github.com/rmenegaux/fastDNA

Chapter 3

Brume: Embedding the de Bruijn graph

Contents

3.1 Introduction . 46

3.2 Approach . 47

3.2.1 Two-layer classifier . 47

3.2.2 Exploiting k-mer symmetry . 48

3.2.3 Exploiting k-mers binning with the de Bruijn graph 48

3.2.4 Implementation . 51

3.3 Methods . 52

3.3.1 Data . 52

3.3.2 Reference methods . 52

3.4 Results . 52

3.4.1 Embedding canonical k-mers . 52

3.4.2 Embedding contigs . 53

3.5 Discussion . 57

3.6 Conclusion . 58

43

CHAPTER 3. BRUME: EMBEDDING THE DE BRUIJN GRAPH

Abstract

Motivation: Fast mapping of sequencing reads to taxonomic clades is a crucial step in
metagenomics, which however raises computational challenges as the numbers of reads and
of taxonomic clades increases. Besides alignment-based methods, which are accurate but
computational costly, faster compositional approaches have recently been proposed to predict
the taxonomic clade of a read based on the set of k-mers it contains. Machine learning-based
compositional approaches, in particular, have recently reached accuracies similar to alignment-
based models, while being considerably faster. It has been observed that the accuracy of
these models increases with the length k of the k-mers they use, however existing methods
are limited to handle k-mers of lengths up to k = 12 or 13 because of their large memory
footprint needed to store the model coe�cients for each possible k-mer.
Results: In order to explore the performance of machine learning-based compositional ap-
proaches for longer k-mers than currently possible, we propose to reduce the memory footprint
of these methods by binning together k-mers that appear together in the sequencing reads
used to train the models. We achieve this binning by learning a vector embedding for the
vertices of a compacted de Bruijn graph, allowing us to embed any DNA sequence in a
low-dimensional vector space where a machine learning system can be trained. The resulting
method, which we call Brume, allows us to train compositional machine learning-based models
with k-mers of length up to k = 31. We show on two metagenomics benchmark that Brume
reaches better performance than previously achieved, thanks to the use of longer k-mers.
Availability: The source code is freely available and published on github https://github.

com/rmenegaux/fastDNA, on the kallisto branch, along with scripts to reproduce the pre-
sented results.
Contact: jpvert@google.com romain.menegaux@mines-paristech.fr

44

https://github.com/rmenegaux/fastDNA
https://github.com/rmenegaux/fastDNA
jpvert@google.com
romain.menegaux@mines-paristech.fr

Résumé

Motivation : Une étape cruciale en métagénomique est d’attribuer un clade taxonomique
aux fragments d’ADN issus du séquençage. Avec l’augmentation constante du volume de
données, cette tâche pose des problèmes computationnels. Au-delà des méthodes basées
sur l’alignement, précises mais coûteuses, des approches compositionnelles plus rapides ont
récemment été proposées, prédisant le clade taxonomique d’un fragment d’ADN à partir des
k-mers qui le composent. Les approches basées sur l’apprentissage statistique ont notamment
atteint une précision comparable aux méthodes basées sur l’alignement, tout en étant consi-
dérablement plus rapides. Il a été montré empiriquement que la précision de ces modèles
augmente avec la longueur des k-mers, cependant les méthodes existantes sont limitées à une
longueur de k = 12 ou 13 à cause de la grande quantité de mémoire requise pour stocker les
paramètres de chaque k-mer.
Résultats : Afin d’explorer la performance d’approches compositionelles statistiques pour
des k-mers plus longs, nous proposons de réduire l’impact en mémoire de ces méthodes en
regroupant les k-mers apparaissant dans les mêmes fragments des données d’entrâınement.
Nous y parvenons en apprenant une représentation vectorielle pour chaque noeud d’un graphe
de Bruijn compacté, ce qui permet de donner une représentation vectorielle de basse dimension
pour chaque fragment d’ADN et ainsi d’entrâıner un système d’apprentissage statistique.
La méthode, que nous nommons Brume, permet d’entrâıner des modèles d’apprentissage
statistique avec des longueurs de k-mers allant jusqu’à k = 31. Nous montrons sur deux jeux
de données de métagénomique que Brume atteint une meilleure performance que les approches
précédentes, grâce à ces longs k-mers.
Disponibilité : Le code source est disponible sur le github https://github.com/rmenegaux/

fastDNA, sur la branche kallisto, accompagné de scripts pour reproduire les résultats pré-
sentés.
Contact : jpvert@google.com romain.menegaux@mines-paristech.fr

45

https://github.com/rmenegaux/fastDNA
https://github.com/rmenegaux/fastDNA
jpvert@google.com
romain.menegaux@mines-paristech.fr

CHAPTER 3. BRUME: EMBEDDING THE DE BRUIJN GRAPH

3.1 Introduction

The cost of DNA sequencing has reduced dramatically over the past years. Among its many
applications, it has become the method of choice for metagenomics, a field that aims at character-
izing an environment directly from the DNA it contains by sequencing DNA samples randomly
collected from the environment. A bottleneck in modern metagenomics pipelines is the taxonomic
binning step, i.e., the mapping of the output of second generation shotgun sequencing machines –
millions to billions of short DNA reads – to known taxonomic clades. Of the several methods
developed to tackle this problem, a natural one is to use an all-purpose DNA aligner, such as
Li [2013], Langmead et al. [2009a] or Li [2018], to align the reads to reference genomes. These
aligners, which are usually based on string-matching algorithms, are very accurate but typically
computationally too slow for taxonomic binning. More recently, competitive performances have
been achieved by so-called compositional approaches, in terms of both speed and precision.
Compositional approaches do not try to align a candidate read to a reference genome, but instead
directly predict the genome the read is likely to come from based on the composition of the
read in shorter strings, called k-mers. These methods can be roughly separated in two separate
classes. Methods of the first group, so-called pseudo-alignment methods [Ounit et al., 2015;
Wood and Salzberg, 2014; Wood et al., 2019], break a read into long and hopefully characteristic
subsequences (k-mers, k ⇠ 30) and match the read to the genomes/species that has the most
k-mer matches. Usually a single match on those long k-mers is enough to ensure classification to
a taxonomic clade. The second class of compositional methods treat the problem as a machine
learning classification problem. Most of these approaches represent the DNA read as a set of
short k-mers (k from 4 to 14) and then use a discriminative machine learning model to predict
the clade of a read from the vector of frequencies of all k-mers it contains. In Vervier et al.
[2016], this model is simply linear, akin to the bag-of-words model in natural language processing,
and k-mers of lengths up to k = 12 are considered. Menegaux and Vert [2019] use a two-layer
model called fastDNA, which first embeds the k-mers in a continuous low-dimensional vector
space and then classifies reads in the vector space with multinomial logistic regression. The
low-dimensional embedding in Menegaux and Vert [2019] allows them to reduce the memory
footprint of the model when many possible taxonomic clades exist, and to consider k-mers of
length up to k = 13. More recently deep learning has also been applied with some success with
de DeepMicrobes model of Liang et al. [2019], by adding a recurrent neural network on top of
these embeddings; Liang et al. [2019] consider k-mers of length k = 12, the largest possible that
allows to fit the model in the memory of the hardware needed to train the model.

Results from Liang et al. [2019]; Menegaux and Vert [2019]; Vervier et al. [2016] all suggest
that k-mers with larger k lead to better performance. Storing the parameters of the models in
memory is however often the limiting factor to increase k, since the memory footprint of the
model is typically O(c4k) when a model is stored for each of c clades [Vervier et al., 2016], or
O(d4k) when the k-mers are first represented in a d-dimensional vector space Liang et al. [2019];
Menegaux and Vert [2019]. The exponential growth of the memory footprint with k has thus far
limited the use of machine learning-based methods to k = 12 or 13. Pseudo-alignment methods,
on the other hand, work with longer discriminative k-mers (k between 20 and 31), but then
use a very simple presence/absence model to classify the reads, and do not need to store any
parameter for all possible k-mers.

In this work, we propose a new approach to reduce of memory footprint of machine learning-

46

3.2. APPROACH

based models for large k, which allows us to explore the performance of these models for k up to
31. Our approach is based on binning together k-mers which occur consecutively in the same
reads in the training set, and learning a single vector representation for each such bin. These
bins, also called contigs or unitigs, correspond to vertices in a compact de Bruijn graph of the
training sequences. Instead of storing vector representations for 4k k-mers, our approach thus
reduces the need to store representations for only nc contigs, which can be much smaller than 4k.

We implement this idea in a software, Brume, which extends the two-layer model of Menegaux
and Vert [2019] by embedding contigs instead of k-mers in the first layer. We report promising
results of Brume on two metagenomics benchmarks, where increasing k beyond 12 or 13 leads
not only to better performance compared to smaller k, but also compared to alignment-based
approaches.

3.2 Approach

3.2.1 Two-layer classifier

Here we describe the two-layer machine learning model for read classification deployed in fastDNA

[Menegaux and Vert, 2019], which we generalize below. We consider a finite alphabet A, which
for our purpose is A = {A, C, G, T}, the set of four nucleotides found in DNA. A k-mer x 2 Ak is
a string of fixed length k. In fastDNA, a d-dimensional embedding is first learned for each k-mer.
If N = 4k is the total number of possible k-mers, the embeddings matrix M is a N ⇥ d matrix
with each row Ms coding the vector representation of a k-mer s. From the embedding matrix M
of all k-mers, we then define the embedding �

M (x) 2 R
d of a read x 2 AL (for L � k) as the

average embedding of its constituent k-mers, i.e.:

8x 2 AL , �
M (x) =

1

L� k + 1

L�k+1
X

i=1

Mx[i,i+k�1]
. (3.1)

Given the embedding �
M (corresponding to the first layer of the model), we consider a linear

model (second layer) of the form:

8x 2 AL , fM,W (x) = W�
M (x) , (3.2)

where W 2 R
T⇥d is a matrix of weights and T is the number of taxonomic clades, and the

prediction rule:

8x 2 AL , ŷ 2 arg max
i2{1,...,T}

fi(x) .

The two-layer classifier is thus parameterized by the two matrices M and W . Given a training
set of reads with known taxonomic clades, which are typically computationally generated by
randomly sampling DNA fragments from known organisms and, potentially, adding noise to the
fragments, the two matrices are optimized by minimizing an empirical error such as the mean
cross-entropy loss over the training set using a standard first-order optimization algorithm such
as stochastic gradient descent.

47

CHAPTER 3. BRUME: EMBEDDING THE DE BRUIJN GRAPH

3.2.2 Exploiting k-mer symmetry

A limitation of the two-layer classifier is that the size in memory of the representation matrix
M (with 4k ⇥ d entries) can quickly become prohibitive as k, and the number of k-mers, grows.
Current implementations of fastDNA and similar methods such as DeepMicrobes use for example
k = 13 and k = 12 respectively. On the other hand, it was reported in Menegaux and Vert
[2019]; Vervier et al. [2016] that increasing k generally improves the accuracy of the models. We
therefore look for strategies to reduce the memory footprint of M , in order to explore models
with larger k’s.

The idea we pursue in this paper is to bin k-mers into N < 4k groups, and to enforce
all k-mers in any given group to have the same vector representation. Computationally, this
allows to reduce the memory footprint of the model by storing only a N ⇥ d matrix of vector
representations for the groups, in addition to a lookup table or function to quickly map each
k-mer to its group.

A first idea to roughly halve the memory footprint of the embedding matrix is to exploit
the natural symmetry of DNA, and impose that a read and its reverse complement are indistin-
guishable in the representation space. The same then goes for k-mers: a k-mer and its reverse
complement should have the same representation. Hence a first step is to learn an embedding
per canonical k-mer, which roughly halves the number of embeddings. Formally, if for a k-mer x
we denote its reverse complement by x̄, then the canonical k-mer x̂ is the smallest of x and x̄ in
the lexicographic order. We detail in the Appendix how the lookup mapping from a k-mer to its
canonical form is performed, and implemented this modification in the vanilla fastDNA software.

3.2.3 Exploiting k-mers binning with the de Bruijn graph

Exploiting k-mer symmetries can roughly halve the memory footprint of the representation
matrix M , which is not enough to really increase k since each increase of k by 1 multiplies the
number of k-mers by 4. Here we propose another, more drastic grouping of k-mers by exploiting
the idea that k-mers that always appear together in the same reads contain the same information
for classification purposes, hence should have the same embedding. Indeed, due to the form of
embedding for a read (3.1), one can see that if several k-mers are always present in or absent
together from a set of reads, then their contribution to the embedding of any read in the set will
always be either zero if they are absent from the read, or a constant equal to the sum of their
individual embeddings if they are present in the read. Applying this observation to the reads
used to train the two-layer classifier, we conclude that the only information that can be used to
optimize the k-mers representation is at the level of k-mers groups. In other words, instead of
coding an individual embedding for each k-mer, one can get the same modelling capacity by just
coding an embedding for that set of k-mers, that would correspond to their constant contribution
to a read embedding when they are present in the read.

In order to turn this idea into practice, we need a way to bin k-mers into groups such that
k-mers in a group are always present or absent together in the reads used to train the model. For
that purpose we exploit the notion of de Bruijn graph (dBG), which we now recall. The dBG of
a set of sequences S is a directed graph (V,E) where the vertices V are the k-mers appearing in
S. There is an edge e = (k1, k2) between two vertices if and only if their corresponding k-mers
are adjacent in one of the sequences. In the colored de Bruijn graph (cdBG), edges are triplets
(k1, k2, c) where the color c codes the sequence in which k1 and k2 are neighbors. A maximal

48

3.2. APPROACH

Compacting the de Bruijn graph

AAC
GTG

AGG

ACA

CAG GGT

AGTATA TAG

TGC

CAT TGG

GTGAACA

CAGGT
TGC

CATAGT TGG

Figure 3.1 – Above: de Bruijn graph for the two sequences AACAGGTGC and AACATAGTGG. Below: corre-
sponding compacted de Bruijn graph. Each node in this graph is a contig.

non-branching path in a dBG is called a contig, or unitig. In the case of a cdBG, a contig C is a
set of contiguous k-mers ki that are linked by edges of the same colors c. Figure 3.1 illustrates
the concepts of dBG and cdBG for a set of two sequences.

All of the k-mers appearing in the reference genomes belong to one and only one contig. As
a consequence the number of contigs NC is bounded by the number of k-mers Nk.

We now propose to bin k-mers by the unique contig they belong to in the cdBG of the training
set of reads, and only learn a vector representation for each contig. The embedding of a k-mer is
then simply the embedding of the contig it belongs to. This reduces the memory footprint of the
embedding matrix from 4k ⇥ d to NC ⇥ d, which can be a strong reduction when there are many
less contigs than possible k-mers. For example, in Figure 3.2 we see that as soon as k is larger
than 15 then the number of contigs flattens and becomes orders of magnitude smaller than the
number of possible k-mers, illustrating the potential benefits of the approach.

A caveat with this approach is that k-mers that do not appear in the training set of reads
have no associated contig. Such k-mers occur in a read for which we want to make a prediction,
and is even likely to occur more frequently when k is large. For example, in Figure 3.2 we see
that for k � 15 there is a gap between k-mers present in the training set and possible k-mers.
By default, we ignore k-mers absent from the training set by setting their embedding to zero.
This also suggests that combining large and small k-mers in a single model may be beneficial in
some cases, a direction we explore empirically below.

Input read R ;
Decompose R into its constituent k-mers v1, ..., vn;
Lookup each vi in the dBG and find its parent contig Ci;
Compute the embedding �(R) = 1/n

Pn
i=1 �(Ci);

Algorithm 1: Brume embedding

49

CHAPTER 3. BRUME: EMBEDDING THE DE BRUIJN GRAPH

k-mer and contig count for the small dataset

Figure 3.2 – Comparison of the number of k-mers and number of contigs present in the reference genomes
of the small dataset. The dotted line is the theoretical number of possible canonical k-mers (= 4k/2)

50

3.2. APPROACH

3.2.4 Implementation

We implemented the model as an extension of fastDNA. To build the de Bruijn graph, we reused
the implementation of kallisto [Bray et al., 2016].

51

CHAPTER 3. BRUME: EMBEDDING THE DE BRUIJN GRAPH

3.3 Methods

3.3.1 Data

We test our method on the two datasets proposed in Vervier et al. [2016] and Menegaux and
Vert [2019], called small and large. Both were extracted from the NCBI bacterial database
(reference), and both have a training set and a validation set. In small (resp. large) the training
database is composed of 356 (resp. 2961) bacterial genomes, coming from 51 (resp. 774) species.
The validation database is 52 (resp. 193) di↵erent genomes, coming from the same 51 (resp. 774)
species.

For both training and validation, reads of length L = 200 are randomly extracted from the
reference genomes. We call a training epoch a set of reads such that each base-pair appears once
on average (coverage of 1). Epochs are generated on the fly directly during training. We perform
data augmentation by adding the possibility to inject random mutations to training reads at a
fixed rate r, as this was shown to improve performance by Menegaux and Vert [2019]

For validation, we create 4 separate sets from the validation genomes. Each contains about
3.5M (134K for small) reads of length L = 200, corresponding to a coverage of 1. The first set,
called no-noise, is extracted as is, with no sequencing noise. The 3 others are extracted with
grinder Angly et al. [2012], a software specifically designed to mimic sequencing noise from real
machines. Balzer emulates the Roche 454 technology, and is simulated with a homopolymeric
error model [Balzer et al., 2010]. Mutation-2 and mutation-5 are simulated with the 4th degree
polynomial proposed by Korbel et al. [2009] to study the e↵ect of substitutions, insertions and
deletions. The median level of mutations is 2% and 5%, respectively. Balzer and mutation-2
contain error-levels expected from current technology, whereas mutation-5 is intended to be an
extreme case.

We report as metrics the average species-level recall and accuracy, as well as the F1-score to
balance between the two.

3.3.2 Reference methods

We compare our results to a standard aligner, BWA-MEM (Li [2013]), that is commonly used in
production for metagenomics analysis. We also compare to the standard fastDNA method with
best parameters from Menegaux and Vert [2019] (k = 13, training with mutation noise r = 4%),
in order to assess the benefits of increasing k beyond k = 13.

3.4 Results

3.4.1 Embedding canonical k-mers

Learning an embedding for each canonical k-mer, rather than for all of them, cuts memory usage
by roughly a factor of 2. This enables training a fastDNA model with k = 14 and d = 50, rather
than the state of the art k = 13, d = 100 presented in Menegaux and Vert [2019]. As shown in
Figure 3.3, this new model is better in both sensitivity and specificity than the previous best,
for all levels of sequencing noise, on the large dataset. For reads with little noise, it is also
better than the alignment method BWA, the latter’s performance being however more robust to
sequencing noise. This confirms the findings of Menegaux and Vert [2019]; Vervier et al. [2016]

52

3.4. RESULTS

Classifying performance of fastDNA with new indexing scheme

Figure 3.3 – Performance of fastDNA with our new indexing (yellow) on the large dataset. We compare
to the results of the BWA aligner (orange dotted line), and to the state of the art fastDNA method, with
parameters k = 13, dimension d = 100 (green). Training mutation rate for both models was r = 4%

that increasing k in machine learning-based compositional models can be beneficial, and lead to
model competitive with alignment-based approaches.

3.4.2 Embedding contigs

For the rest of this section, we focus on the proposed algorithm Brume, which learns an embedding
per contig of the cdBG of the training set in order to reduce the memory footprint of the embedding
layer. This allows us to explore machine learning-based compositional models for larger values of
k.

Performance on the small dataset

Figure 3.4 shows the performance of Brume on the small dataset as a function of k, with k ranging
from 11 to 31. Notice that due to memory constraints, previous work has only investigated values
of k up to 12 or 13. Notice also that we stopped at k = 31 not for memory reasons, but because
the performance of the models do not seem to improve by further increasing k. Finally, note
that for k less than 13, there is almost a one to one mapping between k-mers and contigs, so
results between fastDNA and Brume are expected to be identical.

We see in Figure 3.4 that recall is maximum at k = 15, which coincides with the maximum
number of contigs suggesting that perhaps the shattering dimension is what counts ultimately.
Larger k lead systematically to a decrease in recall, and to an increase in precision from k = 17
upwards. The F1-score is optimum for k = 23, which shows that our approach is promising.

Performance on the large dataset

We now turn to the more challenging and realistic large datasets. Figure 3.5 shows the
performance on the large dataset as a function of k. As reference we show the performance of
BWA, and the best performance of fastDNA achieved by embedding canonical k-mers (achieved

53

CHAPTER 3. BRUME: EMBEDDING THE DE BRUIJN GRAPH

Classifying performance for the small dataset

Figure 3.4 – Average species-level precision, recall and F1-score for the small dataset, as a function of
k-mer length. The model were trained for 50 epochs with an embedding dimension of d = 10

Classifying performance for the large dataset

Figure 3.5 – Performance of our method on the large dataset, as a function of k-mer length k (ranging
from 21 to 31). The embedding dimension is d = 50, and the models were trained for 50 epochs. We
compare to the results of the BWA aligner (orange dotted line), and to the fastDNA method (yellow),
with best parameters k = 14 and training mutation rate r = 4%)

54

3.4. RESULTS

for k = 14, d = 50, r = 4%). We do not have values for k = 17 and k = 19 because the dBGs
were too large to be built or to fit in memory.

Overall, we see that, like on the small dataset, there is an important benefit in F1 score
when k increases. In particular, for k between 23 and 31, the F1 score of Brume is above both
fastDNA and BWA on all four datasets.

An interesting observation is that models with larger k’s look generally more robust to
sequencing errors . One can see in Figure 3.5 that their performance, in terms of F1, recall and
precision, decreases more slowly than that of fastDNA with higher levels of noise. A possible
explanation is that one mutation in a read leads all k neighboring k-mers to be corrupted. The
larger k is, the more specific they are and most of them will not find a match in the cdBG, and
therefore will not impact the embedding or the classification. On the contrary, fastDNA treats
these erroneous k-mers as any other.

Similarly to the small dataset, the increase in F1 score for larger k’s hides the fact that
recall (resp. precision) consistently decreases (resp. increases) with larger k’s. The increase in
precision for larger k can be at least partly attributed to an increased proportion of reads that
are not classified. As seen in figure 3.6, this proportion can go over 10% for the large dataset,
and increases with both k and the level of noise. Unclassified reads are reads with no matching
k-mers found in the dBG of the training set, and the predictions are left blank for them: they
count as errors for recall but do not count for precision. The fact that precision goes up as recall
goes down suggests that those missing reads are precisely those which are di�cult to classify.

55

CHAPTER 3. BRUME: EMBEDDING THE DE BRUIJN GRAPH

Proportion of missing reads in the large dataset

Figure 3.6 – Proportion of validation reads in large with no matches in the reference genomes as a
function of simulated sequencing noise. Each line is a fixed value of k-mer length k.

56

3.5. DISCUSSION

3.5 Discussion

We demonstrated that k-mer-based machine learning methods for read classification can be
extended to large k, by quantizing the k-mer space. We did so by using the de Bruijn graph and
giving the same representation to k-mers that were in the same contig. A supervised classifier,
similar in architecture to fastDNA, outperforms state of the art in terms of precision and F1-score.

When k gets large, k-mers become increasingly specific to each read and we are increasingly
confronted to the situation where a read to be classified has no k-mer in common with the training
set used to train the model. In that situation, we do not classify the read, which decreases the
recall of our model, but as we observed also increases the precision since those reads tend to be
”hard” to classify. In order to try to classify reads that have been left out, we could also make use
of smaller, dense k-mers to give them a representation. This naturally leads to the idea of mixing
representations with large and small k. We have tried several ways to do so, in particular:

1. Training a separate fastDNA model with short k that we use only in case Brume cannot
match the read

2. Training separate embeddings for short k and long K, then averaging or concatenating
them to yield a unified embedding.

We implemented and tested these methods, but overall the classification performance on the
homeless reads is not good enough to justify the extra workload. For example, in Figure 3.7, we
show the results for a hybrid model k = 13,K = 31, which gives a d-dimensional embedding to
both short k-mers and contigs, then averages the two to produce the final representation of a
read. Recall is indeed boosted but at a high cost in precision.

This shows that combining short and long k-mers as we did is not enough to improve both
precision and recall, and suggests that increasing k allows to navigate a trade-o↵ between precision
and recall, where models with larger k’s simply do not classify ”hard” reads and are more accurate
on ”easy” reads.

Regarding speed, the k-mer lookup in the dBG comes with a significant impact on classification
speed. kallisto have a heuristic based on the dBG to avoid looking up every k-mer, which we
have not reimplemented as of now. We have also experimented with another library to build the
dBG called bifrost [Holley, 2020], which is slightly faster, presumably because of the rolling
hash they use to lookup k-mers. The built dBGs were essentially the same and therefore the
classifying performance of Brume was unchanged. Results are not shown here.

57

CHAPTER 3. BRUME: EMBEDDING THE DE BRUIJN GRAPH

Brume, combining short and large k-mers

Figure 3.7 – Performance on the large dataset of a hybrid model. The embedding of a read is the average
of the embeddings of its 13-mers and its 31-mers. Dimension is d = 50. Shown as comparison are Brume
with k = 31 and fastDNA with k = 13.

3.6 Conclusion

We have proposed a new way to bin k-mer representation for machine learning-based models,
using a binning based on contigs in a cdBG, and illustrated the benefits of using larger k values
than currently available on a metagenomics application. We believe these embeddings can be
used for other more sophisticated models, such as deep learning-based models, and in other fields
than metagenomics, such as RNA-seq.

58

3.6. CONCLUSION

Appendix: Indexing scheme

Because of the natural symmetry of DNA, a read and its reverse complement should be indistin-
guishable in our model. The same goes for k-mers: a k-mer and its reverse complement should
have the same representation.

Let Mk = {(u, ū), u 2 Ak, u ū} the set of alphabetically ordered pairs of k-mers and their
reverse complements. Let mk = kMkk. A palindrome is a k-mer u such that u = ū The number
of elements in Mk is half the number of elements in Ak plus half the number of palindromes, so
mk = 4k/2 if k is odd (no palindromes) and mk = 4k/2 + 2k if k is even.

An indexing scheme is a bijection � from Mk to [0,mk � 1].
We define � recursively on k as follows:

1. � of the empty string is 0: �(00) = 0

2. � of a single character a 2 A is �(a) = {A : 0, C : 1, G : 2, T : 3}[a]:

3. For u 2 Ak, we write u = u1u
0uk, where u1, uk 2 A are the first and last characters of u,

then use the rule described in Algorithm 2

mk = 4k/2 + 1k is even2
k is the number of canonical k-mers

Indexing scheme � is a function from Ak to [0,mk � 1]
�(00) = 0 ;
�(a) = {A: 0, C: 1, G: 2, T: 3}[a] ;

Let u = u1u
0uk 2 Ak, where u1, uk 2 A and u0 2 Ak�2 ;

if u1uk 2 {AT, TA, CG, GC} then

�(u) = {AT:0, TA:1, CG:2, GC: 3}[u1uk]mk�2 + �(u0) ;
else

�(u) = 4mk�2 + {AA/TT: 0, AC/GT: 1, AG/CT: 2, CA/TG: 3, CC/GG: 4, GA/TC: 5
}[u1uk]4

k�2 + �(u0)
end

Algorithm 2: fastDNA symmetric and bijective indexing scheme

59

Chapter 4

Adapting the hierarchical softmax for tax-

onomic classification

Contents

4.1 Introduction . 63

4.2 Related Work . 64

4.2.1 Approximating the softmax . 64

4.2.2 Leveraging label taxonomy for classification 65

4.3 Methods . 66

4.3.1 Hierarchical softmax . 66

4.3.2 Tree construction . 67

4.4 Results . 68

4.4.1 Learning the input representation . 68

4.4.2 Data . 69

4.4.3 Classification accuracy . 69

4.4.4 Classification speed . 69

4.5 Discussion and future work . 71

61

CHAPTER 4. ADAPTING THE HIERARCHICAL SOFTMAX FOR TAXONOMIC
CLASSIFICATION

Abstract

We present a new structured loss for the task of assigning taxonomic labels to DNA
sequencing reads – the so-called taxonomic binning problem. Although machine learning
approaches have been shown to be competitive in terms of speed and accuracy, it remains to
be seen whether they can keep up to the continually increasing number of referenced genomes
and species. A bottleneck for neural network models with a large number of outcome classes
is the last softmax layer where probabilities are computed for all classes. The hierarchical
softmax (HSM) is an approximation to the softmax that scales well with the number of
classes, bringing significant improvements in training and test times. It comes at the cost of
slight drop in accuracy, which can be alleviated if the hierarchy is well chosen. We adapt the
hierarchical softmax by using the taxonomic tree to group classes into clusters. This new loss
shows increased classification accuracy over the frequency-based hierarchical softmax, at no
loss in speed.

Résumé

Nous présentons ici une nouvelle fonction objectif structurée pour l’étiquetage de fragments
d’ADN de séquençage en classes taxonomiques – problème dit du taxonomic binning. Alors
que les approches d’apprentissage statistique ont su se montrer compétitives en termes de
vitesse et de précision, il reste à voir encore si elle peuvent le rester avec un nombre de génomes
et d’espèces séquencés sans cesse grandissant. Un facteur limitant pour les modèles de réseaux
de neurones avec un grand nombre de classes est le calcul des probabilités pour chaque classe
dans la dernière couche softmax. Le softmax hiérarchique est une approximation du softmax
classique qui s’adapte bien à un grand nombre de classes et qui améliore considérablement
les temps d’entrâınement et de prédiction. Il s’accompagne d’une perte en précision, qui
peut être limitée en choisissant bien la hiérarchie. Nous adaptons le softmax hiérarchique en
utilisant l’arbre taxonomique pour regrouper les classes en clusters. Cette nouvelle fonction
objectif augmente la précision en classification par rapport au softmax hiérarchique basé sur
les fréquences des classes, sans en impacter la vitesse.

62

4.1. INTRODUCTION

4.1 Introduction

In this chapter we develop a method to learn taxonomic classifiers with a very large number of
possible taxa. Although this method could be suited to any classification problem in which a
hierarchy structures the outcome classes, we showcase its utility in the field of metagenomics, by
identifying which microbial species are present in a DNA sequencing experiment.

With its drastic improvement in cost and e�ciency, DNA sequencing has become a prime tool
to study microbial communities. Modern DNA sequencing machines – so-called Next Generation
Sequencing (NGS) – typically output up to the billions of short DNA sequences – reads – in
random order. Taxonomic binning [Mande et al., 2012] is the task of assigning each of these
reads to a taxonomic unit – a bacterial species for example. To do so reads are compared to an
annotated reference genome database. As sequencing experiments are becoming commonplace,
this reference database is getting increasingly large, with new genomes assembled from sequencing
experiments being uploaded everyday [Szarvas et al., 2020]. Furthermore our knowledge of the
tree of life is constantly expanding with the discovery of new species [Parks et al., 2018], which
complicates the task of taxonomic classifiers.

Standard approaches to taxonomic binning can be roughly divided in three categories. The
first are alignment-based methods, that use string-matching algorithms to align reads to a
selection of reference genomes with sequence alignment software such as BWA-MEM [Li, 2013]
or Bowtie [Langmead et al., 2009a]. The second category of methods, pseudo-alignment [Wood
and Salzberg, 2014]; [Ounit et al., 2015]; [Kim et al., 2016]: [Bray et al., 2016], build databases
of long discriminative k-mers 1 and store the taxa they are seen in. The k-mers from a read are
looked up in this database and if matches are found, the corresponding taxa are returned. Finally
the third class of methods formulate taxonomic binning as a machine learning classification
problem [Wang et al., 2007]; [McHardy et al., 2007]. In particular, large-scale linear methods
[Vervier et al., 2016] and neural network classifiers [Menegaux and Vert, 2019]; [Liang et al.,
2020] are competitive on modern datasets. Although these methods are fast, both their training
and testing times are a↵ected by having a large number of output classes.

The bottleneck with neural networks with large output spaces – well known in neural language
modeling where the outcome classes are the whole word vocabulary – is the normalization of
the class scores into probabilities, typically done with a softmax function. The computational
complexity of this normalization step scales linearly with the number of output classes, and can
make up a significant portion of the training and testing times [Jozefowicz et al., 2016]. Several
approaches have tackled this problem, either by (i) approximating the normalization factor by
importance sampling [Bengio and Senécal, 2003]; [Mikolov et al., 2013b]; [Ji et al., 2016], (ii)
replacing the softmax by self-normalized losses [Gutmann and Hyvärinen, 2010]; [Mnih and Teh,
2012] and (iii) replacing the softmax by an approximation such as the hierarchical softmax (HSM,
[Goodman, 2001], [Morin and Bengio, 2005]). Our approach is an adaptation of the latter to
taxonomic classification.

The hierarchical softmax groups outcome labels into clusters and decomposes classification
in steps: first predicting the cluster and then choosing the label from that cluster. Introducing
more levels in the hierarchy can improve the computational complexity up to the order of
O (T/ log2(T)) compared to the regular softmax, where T is the number of labels or taxa.
However the classification accuracy does slightly drop o↵, probably due to error propagation

1A k-mer is a contiguous subsequence of length k

63

CHAPTER 4. ADAPTING THE HIERARCHICAL SOFTMAX FOR TAXONOMIC
CLASSIFICATION

down the hierarchy levels. Designing the class hierarchy is primordial to mitigate this issue [Mnih
and Hinton, 2009]. On one hand some approaches group classes according to their frequency,
placing more common classes higher up in the tree, which has the double e↵ect of speeding up
computation and increasing the accuracy for these classes [Mikolov et al., 2011a]; [Mikolov et al.,
2013a]; [Grave et al., 2017]. Another intuitive approach is to group the classes by similarity
[Mnih and Hinton, 2009], so that the clusters themselves are informative. This has shown better
classification accuracy than simply grouping them by frequency [Zweig and Makarychev, 2013];
[Chen et al., 2016].

Objectively defining class similarity can be challenging for some domains, however in taxonomic
binning there is a natural hierarchy between classes: the phylogenetic tree. We leverage this
structure in a new loss, Phylo-HS, incorporating the phylogenetic tree in the hierarchical softmax.
The contributions of this chapter are as follows:

• We give a simple algorithm to adapt the taxonomic tree to the hierarchical softmax.

• We show in experiments on large-scale datasets that the resulting loss outperforms the
frequency-based HSM in classification accuracy, while maintaining the same or even slightly
better classification and training speed.

After briefly reviewing related work in section 2, we will present the hierarchical softmax
model and our method in detail in section 3. We present the experimental setup and results in
section 4.

4.2 Related Work

We first review what initially motivated this work, which is the approximation of the softmax
layer and the hierarchical softmax in particular. We then give an overview of other methods
using a taxonomic tree for hierarchical classification.

4.2.1 Approximating the softmax

In neural network terminology, the softmax layer is a linear classifier: the composition of the
softmax function with a linear operator h! w · h. E↵ectively it gives scores for each class t then
normalizes them to sum to 1. In all that follows, we will write h as the d-dimensional input to
the softmax layer, and w 2 R

T⇥d as its parameters.

psoftmax(t |h) =
ewt·h

PT
j=1 e

wj ·h
(4.1)

The denominator in (4.1) is also called the partition function Z(h;w). Computing this term has
a complexity proportional to the number of output classes and the input dimension O (dT). We
now give the main lines of the many approaches that have been proposed to reduce this, most of
which are reviewed in [Chen et al., 2016].

64

4.2. RELATED WORK

Reducing the effective input dimension d Some methods have aimed at reducing the complexity
of the individual dot products wj · h. The di↵erentiated softmax [Chen et al., 2016] or the
adaptive softmax [Grave et al., 2017] both assign a lower capacity w 2 R

d0 , d0 < d to infrequent
labels. The input h is then projected to a lower dimension before computing the dot products.
If T 0 labels are assigned this smaller representation, the complexity of computing Z and its
gradients is reduced to O (d0T 0 + d(T � T 0)).

Approximating the partition function Another popular approach is to approximate the denom-
inator by importance sampling [Bengio and Senécal, 2003];[Mikolov et al., 2013b];[Ji et al., 2016]:
the sum in Z is taken over a random subset of the samples instead. Although these methods do
speed up training, at test time the true softmax must still be evaluated.

Self-normalized classifiers [Devlin et al., 2014] maximize the unnormalized softmax likelihood
with an added penalty for the normalization term (logZ)2. At test-time only the unnormalized
scores are computed, forgoing the normalization completely. Other methods such as Noise
Contrastive Estimation (NCE) [Gutmann and Hyvärinen, 2010]; [Mnih and Teh, 2012] change
the loss function altogether and choose a binary classifier that distinguishes between the real
training distribution and a noise distribution.

Hierarchical Softmax The hierarchical softmax model (HSM) is an approximation to the softmax
function that groups labels into clusters. When given an input t, the model predicts its cluster c
with a first classifier p(c |h), then predicts the label t with a sub-model p(t | c, h). Since each
label t belongs to a unique cluster c(t), the likelihood of t is the product

p(t |h) = p(c(t) |h) p(t | c(t), h)

If the clusters are well balanced, this reduces the complexity of the softmax from O (dT) to
O(d
p
T). Introducing more levels in the hierarchy further lowers the complexity, up to O (d log T)

for a balanced binary tree [Morin and Bengio, 2005]. The assignment of labels to clusters is
usually based either on their similarities [Mnih and Hinton, 2009] or on their frequencies [Mikolov
et al., 2011b], with the former exhibiting higher accuracy [Chen et al., 2016]. We review the
HSM in more detail in section 4.3.1.

Although much faster than the standard softmax, the HSM comes at a price in accuracy
[Mikolov et al., 2011b]; [Zweig and Makarychev, 2013]. A solution proposed in [Le et al., 2011];
[Grave et al., 2017] strikes a balance between the hierarchical speedup and the softmax accuracy
by introducing a short-list, treating frequent labels as single-label clusters.

4.2.2 Leveraging label taxonomy for classification

In machine learning We focus here on classification problems in which the outcome classes are
organized in a known tree hierarchy. This could in theory give extra information for classification
which is not taken into account by traditional “flat” classifiers. In all generality the classes can be
in the internal nodes in the tree, which calls for strategies to make predictions at di↵erent levels.
[Silla and Freitas, 2011] give an extensive review of hierarchical classification across a variety of
fields. More recently, [Wehrmann et al., 2018] designed a neural network architecture specially
suited for multi-label classification. In the cases where the classes of interest are only in the

65

CHAPTER 4. ADAPTING THE HIERARCHICAL SOFTMAX FOR TAXONOMIC
CLASSIFICATION

leaf nodes of the tree, [Wu et al., 2017] give a hierarchical loss that penalizes errors di↵erently
depending on how far in the tree the prediction is from the true label. For instance predicting
“dog” instead of “cat” is more harshly penalized than predicting “skyscraper”.

Taxonomic binning in metagenomics In the metagenomics problem we are interested in, outcome
classes are microbial taxa (such as bacterial species) which are organized in a taxonomic tree.
Ideally predictions at finer levels such as species or genus are more desirable but making predictions
at coarser levels such as phylum or family can also be of value. Indeed, some short DNA fragments
can be shared by genomes of multiple species, in which case a prediction at a higher level can
represent this ambiguity. Taxonomic binning software such as Kraken [Wood and Salzberg,
2014] and Centrifuge [Kim et al., 2016] both use the taxonomic tree to resolve multiple possible
matches by returning the Least Common Ancestor (LCA) of all the matching taxa. Another way
to use the taxonomic tree at test time is to sum estimated species-level probabilities to make
predictions at the genus level [Busia et al., 2018]. This simple approach can be used by any
binner outputting probabilities. In the most sophisticated approach yet, [Rojas-carulla et al.,
2018] introduce a cascading softmax with separate softmax layers classifying each taxonomic
rank r. Each softmax layer takes as input the hidden representation h and the output of the
previous softmax layer. The loss function is a weighted average of the output softmaxes. This
however does not reduce the computational complexity and on the contrary scales with the total
number of nodes in the taxonomic tree rather than just the leaves.

4.3 Methods

4.3.1 Hierarchical softmax

We suppose established a tree hierarchy T over T labels. Reusing the notations in [Silla and
Freitas, 2011], for a given vertex t 2 T , we define "(t) 2 T as its parent, and #(t) as the set of
its children. We further denote r(t) 2 N as its depth – its distance to the root t0. With these
notations, applying the function " r(t) times to any vertex t returns to the root: "r(t)(t) = t0.

For each internal node t, the hierarchical softmax model learns a classifier f̂t that distinguishes
between its children given an input h 2 R

d. Each of these classifiers is a softmax model with a
|#(t)|⇥ d matrix of weights w:

8i 2 #(t), f̂t(h)i =
exph · wi

P

j2#(t) exph · wj

(4.2)

The computational complexity of each f̂t therefore depends on its number of children O (d |#(t)|).
Under this model, the likelihood of any given node is the product of the conditional probabil-

ities of all the nodes in its lineage:

p(t |h) =

r(t)
Y

i=1

p("i�1(t) | "i(t), h) (4.3)

=

r(t)
Y

i=1

h

f̂"i(t)(h)
i

"i�1(t)
(4.4)

66

CHAPTER 4. ADAPTING THE HIERARCHICAL SOFTMAX FOR TAXONOMIC
CLASSIFICATION

e : 2

a : 10 b : 4 c : 3 d : 2

f : 2

·
a : 10

b : 4 c : 3 d : 2 f : 2

Figure 4.2 – Example of binarization by frequency. The leaf taxons a; b; c; d; f are highlighted in blue,
with the number of occurrences in the training dataset. For Phylo-HS, these frequencies are proportional
to the total amount of bp belonging to genomes with taxon a; . . . ; f . On the left, they are laid out as
originally. Taxon e has only one child and therefore is removed from the tree. On the right, the taxons as
appearing in the final binary tree. Both children of each node should have a balanced total frequency.

reference tree to get its full lineage, its path to the root l(t) =
h

t, "(t), . . . , "r(t)(t)
i

The new tree

Ths is the minimal tree covering all training taxa and their ancestors. We further simplify Ths by
removing all nodes that have only one child.

Binarizing the taxonomic tree In order to attain the maximal exponential speedup, we transform
the resulting tree into a full binary tree, in which each node has either 0 or exactly 2 children. As
shown in figure 4.2, leaf nodes are left untouched and nodes having only one child are removed.
For nodes that have more than 2 children, we split the siblings into two separate groups according
to their frequencies (total length of their representative genomes in training set). The C children
are ordered by descending frequency [1, . . . , C] and then split into two groups [1, . . . ,K] and
[K + 1, . . . , C], where K is the first child such that |1| + . . . + |K| > |K + 1| + . . . |C|. This
ensures that the total frequencies of each group are balanced, and that more frequent classes are
on average higher up in the tree, hence accessed more rapidly. As the taxonomic hierarchy is
conserved, the resulting tree can be seen as a hybrid between the Hu↵man coding tree and the
taxonomic tree.

4.4 Results

4.4.1 Learning the input representation

We test Phylo-HS on the taxonomic binning problem, where taxa must be assigned to short
(⇠ 50 � 400bp-long) DNA reads. A DNA read of length L is a sequence x = x1 . . . xL 2 AL,
where A = {A, C, G, T} is the alphabet of nucleotides. To transform a DNA read into an input
representation h 2 R

d, we use fastDNA [Menegaux and Vert, 2019]. More specifically, we segment
a read into overlapping k-mers – contiguous subsequences of length k. A d-dimensional embedding
is learned for each of the N k-mers, stored in an N ⇥ d embeddings matrix M = (Mu)u2Ak .
The representation h = �

M (x) of a read x is then simply the average of the embeddings of its
constituent k-mers:

8x 2 AL , �
M (x) =

L�k+1
X

i=1

Mx[i,i+k�1]
. (4.5)

68

4.4. RESULTS

The embeddings matrix will be jointly trained by SGD with the output layer, either the full
softmax layer or the HSM presented above. Training reads are extracted on the fly from genomes
in the training set, with the addition of some random noise in the form of substitutions at a
uniform rate.

4.4.2 Data

We test our method on 6 datasets of increasing complexity, composed by downloading genomes
from the NCBI RefSeq database [NCBI Resource Coordinators, 2016]. The first 3 are small,
medium and large from [Vervier et al., 2016], with respectively 51, 193 and 771 species represented
in 356, 1564 and 2768 complete genomes. We will also use the validation set for large – composed
of 193 genomes not present in the training set but whose species are – to evaluate the classification
performance of the models. While the large dataset gave a comprehensive picture of the known
bacterial and archeal genomes at the time of its publication in 2015, reference databases have
since expanded.

As a more realistic dataset we use the 10,857 genomes of 3,640 species from the DeepMicrobes
preprint [Liang et al., 2019]. It was obtained by filtering out similar species of the RefSeq
database, by comparing the similarity of one of their representative genomes. Our largest dataset
is RefSeq CG from the benchmark [Ye et al., 2019]. It contains all the complete microbial
genomes available in RefSeq as of 2018, a total of 23000 genomes belonging to 13000 taxa. As a
large portion of those taxa are viruses having relatively small genomes, we simplify this dataset
by attributing the same domain-level taxonomic id (label) to all viruses. The resulting dataset
contains the same number of genomes with 5500 taxa.

As a reference taxonomic tree, we use the NCBI taxonomy downloaded on 30/09/2020.

4.4.3 Classification accuracy

The measures reported here are of species-level recall and precision. For a given species t, if ntrue

is the number of validation sequences of species t, npred is the number of sequences classified as t
by the model, and finally ntp is the number of true positives: sequences correctly classified as t.
Recall (or sensitivity) for a species is the proportion ntp/ntrue. Average species-level recall is
obtained by averaging this value over all the species truly present in the validation set. Precision
is the proportion ntp/npred. Average species-level precision is obtained by averaging this value
over all the predicted species.

In figure 4.3, fastDNA models were trained for the same number of epochs on the large dataset
then evaluated on the large validation set. One epoch corresponds to a number of reads su�cient
to cover on average once all the positions in the training genomes. Phylo-HS does better both in
terms of precision and recall than the Hu↵man coding alternative, although the gap does narrow
as the model capacity gets higher (larger k). Similar results have been reported for language
models [Mnih and Hinton, 2009]; [Chen et al., 2016]. This does not however fully compensate
the performance dropo↵ of the hierarchical softmax compared to the full softmax.

4.4.4 Classification speed

All speed tests were performed on a Intel Xeon CPU E5-2440 0 - 2.40GHz with 12 cores and
128GB of RAM. Models were trained using 12 threads, and tested with a single thread. There

69

Chapter 5

Conclusion

In the past fifteen years, the technological leap in next generation sequencing has enabled large-
scale characterization of ecosystems through their genomic information. E�cient bioinformatics
techniques are needed to process the large quantity of data output by these experiments. As
machine learning methods have shown great success in many applications, steadily replacing or
complementing more traditional methods, this thesis aims to help this transition in the domain
of high-throughput sequencing and of metagenomics in particular. We present new supervised
learning tools to classify DNA sequencing reads into taxonomic units, and propose scalable
solutions as the number of sequenced genomes and known species continues to expand rapidly.

In chapter 2, we develop a simple short read classifier fastDNA. DNA fragments are represented
by the vector of their k-mer counts. These representations are then given to a neural network
with one hidden layer of small dimension d – the embedding layer. We implement a general
training procedure which extracts reads on the fly from the full reference genomes, injecting noise
in the form of random mutations. We show in our experiments that for the right embedding
dimension d and k-mer size, the resulting model is comparable to state of the art taxonomic
binners in terms of speed and accuracy. k and d are jointly constrained by memory considerations,
with larger models yielding the best classification accuracy.

In chapter 3, we extend the previous chapter by allowing for longer k-mers. Since the number
of k-mers becomes prohibitively large for large k, we introduce a strategy to group similar k-mers
together and give them the same representation. This strategy is based on the de Bruijn graph:
k-mers belonging to the same contigs – linear substretches of the graph – are merged together.
We show that fastDNA models trained with longer k exhibit higher precision at the cost of
lower recall. Unfortunately building the de Bruijn graph for a very large number of disparate
genomes is not currently feasible on a standard computer, requiring too much memory. Brume
may therefore be more adequate on smaller datasets, or to distinguish similar genomes at a finer
resolution.

Finally in chapter 4, we attempt to tackle two challenges at the same time: (i) reducing the
training and testing times of neural network based taxonomic binners for problems with a large
number of output classes and (ii) leveraging the inherent hierarchical structure in these classes
to improve classifier accuracy. Our proposed approach incorporates the taxonomic tree in a
hierarchical linear classifier, learning local sub-models at each node of the taxonomic tree. These
models learn to distinguish between their respective children. We show the resulting classifier
outperforms frequency-based hierarchical models in terms of accuracy while maintaining their
speed improvement.

We now conclude this thesis with an outlook into future research directions related to our
contributions.

73

CHAPTER 5. CONCLUSION

Beyond k-mers: other DNA tokenizations Most statistical learning approaches for long con-
tiguous sequences first require breaking up the input sequence into sub-units, or tokens. Although
human language has natural breakpoints with spaces and punctuation, biological sequences
do not. The most intuitive DNA tokens – fixed-length contiguous subsequences, or k-mers –
have proven their worth in many applications. However they can be redundant for large k.
Some methods use LSH-based hashing techniques to give the same representation to similar
k-mers (w.r.t the Hamming distance). Although these methods have been proposed in machine
learning models in [Georgiou et al., 2020] and [Shi and Chen, 2019], they have not been compared
thoroughly with regular k-mers.

An inconvenience in k-mers or their derivatives is choosing an appropriate k. Too short and
they are not expressive enough, too long and they become too numberous and less robust to noise.
Another altogether new method would be to use a DNA variant of word segmentation techniques
such as WordPiece [Wu et al., 2016] which would break any sequence into non-overlapping k-mers
of di↵erent lengths. This k-mer vocabulary will have been chosen to maximize the likelihood of a
standard language model on input genomes under a fixed cardinality constraint. In future work,
we aim to implement these di↵erent tokenizations and evaluate their e↵ects on the performance
of machine learning models.

Multi-rank predictions and whole sample approaches We hinted in chapter 4 that Phylo-HS
could potentially be used as a rank-flexible approach, making predictions at higher ranks when it
is not sure about the lower ones. This could be beneficial to reattribute these ambiguous reads
after seeing the composition of the whole metagenomic sample. In this thesis we have mostly
focused on classifying reads one by one independently of one another, but more global approaches
might be better suited depending on the application. An exciting research direction that has
already been explored in [Queyrel et al., 2020] and [Georgiou et al., 2020] is to treat the whole
sample all together, either for abundance estimations or clinical diagnosis. In this type of Multiple
Instance Learning problem, particular care will be given to learning intermediary representations
of reads such as the ones computed with fastDNA, with more sophisticated attention mechanisms.

Standardized pipelines for machine learning in taxonomic binning A significant amount of
time in this thesis was spent on preparing training data and comparing new models to the
existing state of the art. We believe this is currently done over and over again by researchers
in independent fashion, who would greatly benefit from more accessible pipelines. We found
it was not easy to compare to existing approaches, as each are trained and evaluated on their
own custom datasets, often using di↵erent performance metrics. Fortunately the publication of
benchmarks such as [Sczyrba et al, 2018] and [Ye et al., 2019] have greatly helped this issue. We
hope the metagenomics community will continue to expand on these e↵orts and make model
evaluation both more thorough and more straightforward.

As modern machine learning models require a large amount of data to be properly tuned,
designing a proper data pipeline is a challenge in itself. As existing read simulating tools are not
specifically adapted to machine learning, many papers implement their own methods. Indeed
current read simulators generate large text files with a given amount of reads, which becomes
impractical. A very useful practical project would therefore be to open-source an on-the-fly read
simulator that could be easily plugged in to machine learning pipelines.

Ideally with such methods available researchers and practitioners could spend more time on

74

the developmental phases of algorithm design, and less on the field-specific data processing and
experimenting, hopefully helping to make machine learning in bioinformatics more appealing as
a whole to incoming students and researchers.

75

CHAPTER 5. CONCLUSION

76

Bibliography

B. Alipanahi, A. Delong, M. T. Weirauch and B. J. Frey. Predicting the sequence specificities of
DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8):831–838, 2015.
ISSN 1087-0156. doi: 10.1038/nbt.3300. URL http://dx.doi.org/10.1038/nbt.3300. 20

S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215(3):403–410, 1990. ISSN 00222836. doi:
10.1016/S0022-2836(05)80360-2. 10

S. L. Amarasinghe, S. Su, X. Dong, L. Zappia, M. E. Ritchie and Q. Gouil. Opportunities and chal-
lenges in long-read sequencing data analysis. Genome Biology, 21(1):30, 2020. ISSN 1474-760X.
doi: 10.1186/s13059-020-1935-5. URL https://doi.org/10.1186/s13059-020-1935-5. 6

F. E. Angly, D. Willner, F. Rohwer, P. Hugenholtz and G. W. Tyson. Grinder: a versatile
amplicon and shotgun sequence simulator. Nucleic Acids Res., 40:e94, 2012. 8, 35, 52

M. J. Ankenbrand and A. Keller. bcgTree: automatized phylogenetic tree building from
bacterial core genomes. Genome, 59(10):783–791, may 2016. ISSN 0831-2796. doi:
10.1139/gen-2015-0175. URL https://doi.org/10.1139/gen-2015-0175. 71

E. Asgari and M. R. Mofrad. Continuous distributed representation of biological sequences
for deep proteomics and genomics. PLoS ONE, 10(11):1–15, 2015. ISSN 19326203. doi:
10.1371/journal.pone.0141287. 19

N. A. Baeshen, M. N. Baeshen, A. Sheikh, R. S. Bora, M. M. M. Ahmed, H. A. I. Ramadan,
K. S. Saini and E. M. Redwan. Cell factories for insulin production. Microbial Cell Factories,
2014. URL http://www.microbialcellfactories.com/content/13/1/141. 3

A. Baevski and M. Auli. Adaptive input representations for neural language modeling. arXiv,
pages 1–13, 2018. ISSN 23318422. 26

D. Bahdanau, K. H. Cho and Y. Bengio. Neural machine translation by jointly learning to
align and translate. 3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings, pages 1–15, 2015. 20

S. Balzer, K. Malde, A. Lanzén, A. Sharma and I. Jonassen. Characteristics of 454 pyrosequencing
data–enabling realistic simulation with flowsim. Bioinformatics, 26:i420–i425, 2010. 35, 52

Y. Bengio and J.-S. Senécal. Quick Training of Probabilistic Neural Nets by Importance Sampling.
AISTATS, 2003. 26, 63, 65

D. Blakely, E. Collins, R. Singh, A. Norton, J. Lanchantin and Y. Qi. FastSK : fast sequence
analysis with gapped string kernels. Bioinformatics, 36(26), 2020. doi: 10.1093/bioinformatics/
btaa817. 18

77

http://dx.doi.org/10.1038/nbt.3300
https://doi.org/10.1186/s13059-020-1935-5
https://doi.org/10.1139/gen-2015-0175
http://www.microbialcellfactories.com/content/13/1/141

BIBLIOGRAPHY

P. Bojanowski, E. Grave, A. Joulin and T. Mikolov. Enriching Word Vectors with Subword
Information. arXiv, 2016. ISSN 10450823. doi: 1511.09249v1. URL http://arxiv.org/abs/

1607.04606. 19

P. Bojanowski, E. Grave, A. Joulin and T. Mikolov. Enriching word vectors with subword
information. Transactions of the Association for Computational Linguistics, 5:135–146, 2017.
ISSN 2307-387X. 32

N. L. Bray, H. Pimentel, P. Melsted and L. Pachter. Near-optimal probabilistic RNA-seq
quantification. Nature Biotechnology, 34(5):525–527, 2016. ISSN 15461696. doi: 10.1038/nbt.
3519. 22, 24, 26, 51, 63

K. Brinda, M. Sykulski and G. Kucherov. Spaced seeds improve k -mer-based metagenomic
classification. Bioinformatics, 31(July):3584–3592, 2015. doi: 10.1093/bioinformatics/btv419.
10

M. Burrows and D. Wheeler. A Block-sorting Lossless Data Compression Algorithm. SRC
Research Report, 1994. ISSN 12106313. 9

A. Busia, G. E. Dahl, C. Fannjiang, D. H. Alexander, E. Dorfman, R. Poplin, C. Y. McLean,
P.-C. Chang and M. DePristo. A deep learning approach to pattern recognition for short DNA
sequences. bioRxiv preprint, 2018. 20, 66

K. Břinda, M. Baym and G. Kucherov. Simplitigs as an e�cient and scalable representation of
de Bruijn graphs. bioRxiv preprint, pages 1–30, 2020. 26

S. Canzar and S. L. Salzberg. Short Read Mapping: An Algorithmic Tour. Proc IEEE Inst
Electr Electron Eng., 176:436–458, 2017. doi: 10.1109/JPROC.2015.2455551.Short. 10

E. P. Caragata and T. Walker. Using bacteria to treat diseases. Expert Opin Biol Ther, 12(6):
701–712, Jun 2012. 3

K. Chen and L. Pachter. Bioinformatics for whole-genome shotgun sequencing of microbial
communities. PLoS Comput Biol, 1(2):106–112, Jul 2005. 4

W. Chen, D. Grangier and M. Auli. Strategies for training large vocabulary neural language
models. 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016 -
Long Papers, 4:1975–1985, 2016. doi: 10.18653/v1/p16-1186. 64, 65, 69

A. Conneau. Very Deep Convolutional Networks for Text Classification. arXiv, 2016. 20

A. Corvelo, W. E. Clarke, N. Robine and M. C. Zody. TaxMaps - Ultra-comprehensive and
highly accurate taxonomic classification of short-read data in reasonable time. bioRxiv, 2017.
ISSN 1088-9051. doi: 10.1101/134023. 11

J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz and J. Makhoul. Fast and robust neural
network joint models for statistical machine translation. 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014 - Proceedings of the Conference, 1:1370–1380, 2014.
doi: 10.3115/v1/p14-1129. 65

78

http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606

BIBLIOGRAPHY

J. Devlin, M.-w. Chang, L. Kenton and K. Toutanouva. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv, 2017. 22

J. A. Eisen. Environmental shotgun sequencing: its potential and challenges for studying the
hidden world of microbes. PLoS Biol, 5(3):e82, Mar 2007. 6

J. L. Elman. Finding structure in time. Cognitive Science, 1990. ISSN 03640213. doi: 10.1016/
0364-0213(90)90002-E. 20

G. Eraslan, Ž. Avsec, J. Gagneur and F. J. Theis. Deep learning: new computational modelling
techniques for genomics. Nature Reviews Genetics, 2019. doi: 10.1038/s41576-019-0122-6. 21

M. Escalona, S. Rocha and D. Posada. Europe PMC Funders Group Europe PMC Funders
Author Manuscripts A comparison of tools for the simulation of genomic next- generation
sequencing data. Nature Reviews Genetics, 17(8):459–469, 2017. doi: 10.1038/nrg.2016.57.A. 8

Y. Fan and O. Pedersen. Gut microbiota in human metabolic health and disease. Nature Reviews
Microbiology, 19(1):55–71, 2021. ISSN 1740-1534. doi: 10.1038/s41579-020-0433-9. URL
https://doi.org/10.1038/s41579-020-0433-9. 3

P. Ferragina and G. Manzini. Opportunistic data structures with applications. IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 390–398, 2000. doi: 10.1109/
SFCS.2000.892127. 9

A. Fritz, P. Hofmann, S. Majda, E. Dahms, J. Dröge, J. Fiedler, T. R. Lesker, P. Belmann, M. Z.
Demaere et al. CAMISIM: Simulating metagenomes and microbial communities. bioRxiv,
pages 1–12, 2018. doi: 10.1101/300970. 8

A. Georgiou, V. Fortuin, A. Mustafa and G. Rätsch. Meta 2 : Memory-e�cient taxonomic
classification and abundance estimation for metagenomics with deep learning. arXiv, 2020. 19,
22, 24, 74

M. Ghandi, D. Lee, M. Mohammad-noori and M. A. Beer. Enhanced Regulatory Sequence
Prediction Using Gapped k-mer Features. PLOS Computational Biology, 10(7), 2014. doi:
10.1371/journal.pcbi.1003711. 10, 18

A. Goglio, M. Tucci, B. Rizzi, A. Colombo, P. Cristiani and A. Schievano. Microbial recycling cells
(mrcs): A new platform of microbial electrochemical technologies based on biocompatible ma-
terials, aimed at cycling carbon and nutrients in agro-food systems. Science of The Total Envi-
ronment, 649:1349 – 1361, 2019. ISSN 0048-9697. doi: https://doi.org/10.1016/j.scitotenv.2018.
08.324. URL http://www.sciencedirect.com/science/article/pii/S0048969718332959.
3

J. Goodman. Classes for fast maximum entropy training. ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings, 1:561–564, 2001. ISSN 15206149.
doi: 10.1109/icassp.2001.940893. 27, 63

S. Goodwin, J. D. McPherson and W. R. McCombie. Coming of age: ten years of next-generation
sequencing technologies. Nature Reviews Genetics, 17(6):333–351, 2016. ISSN 1471-0064. doi:
10.1038/nrg.2016.49. URL https://doi.org/10.1038/nrg.2016.49. 6, 7

79

https://doi.org/10.1038/s41579-020-0433-9
http://www.sciencedirect.com/science/article/pii/S0048969718332959
https://doi.org/10.1038/nrg.2016.49

BIBLIOGRAPHY

E. Grave, A. Joulin and M. Cissé. E�cient softmax approximation for GPUs. arXiv, 2017. 26,
64, 65

I. Gregor, J. Dröge, M. Schirmer, C. Quince and A. C. Mchardy. PhyloPythiaS + : a self-training
method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. PeerJ,
pages 1–21, 2016. doi: 10.7717/peerj.1603. 18

N. H. W. Group, J. Peterson, S. Garges, M. Giovanni, P. McInnes, L. Wang, J. A. Schloss,
V. Bonazzi, J. E. McEwen et al. The NIH human microbiome project. Genome research, 19:
2317–2323, Dec. 2009. 31

S. Gupta, P. Gupta and V. Pruthi. Microbial Production of Antibiotics Using Metabolic Engi-
neering, pages 205–213. Springer Singapore, Singapore, 2020. ISBN 978-981-15-2604-6. doi:
10.1007/978-981-15-2604-6 13. URL https://doi.org/10.1007/978-981-15-2604-6_13. 3

M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Journal of Machine Learning Research, 2010. 63, 65

S. Hochreiter and J. J. Urgen Schmidhuber. Long short term memory. Neural computation.
MEMORY Neural Computation, 1997. 20

G. Holley. Bifrost – Highly parallel construction and indexing of colored and compacted de
Bruijn graphs. Genome Biology, 2020. 24, 57

L. A. Hug, B. J. Baker, K. Anantharaman, C. T. Brown, A. J. Probst, C. J. Castelle, C. N.
Butterfield, A. W. Hernsdorf, Y. Amano et al. A new view of the tree of life. Nature
Microbiology, 1(5):1–6, 2016. ISSN 20585276. doi: 10.1038/nmicrobiol.2016.48. 4, 8

P. Hugenholtz, B. M. Goebel and N. R. Pace. Impact of culture-independent studies on the
emerging phylogenetic view of bacterial diversity. J Bacteriol, 180(18):4765–4774, Sep 1998. 3

D. H. Huson, A. F. Auch, J. Qi and S. C. Schuster. MEGAN analysis of metagenomic data.
Genome Res., 17:377–386, 2007. 31

C. Huttenhower, D. Gevers, R. Knight, S. Abubucker, J. H. Badger, A. T. Chinwalla, H. H.
Creasy, A. M. Earl, M. G. FitzGerald et al. Structure, function and diversity of the healthy
human microbiome. Nature, 486(7402):207–214, Jun 2012. 3

R. M. Idury and M. S. Waterman. A New Algorithm for DNA Sequence Assembly. Journal of
Computational Biology, 1995. ISSN 15578666. doi: 10.1089/cmb.1995.2.291. 24

H. Jegou, M. Douze and C. Schmid. Product quantization for nearest neighbor search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2011. 35

S. Ji, S. V. Vishwanathan, N. Satish, M. J. Anderson and P. Dubey. Blackout: Speeding up
recurrent neural network language models with very large vocabularies. 4th International
Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, pages
1–14, 2016. 16, 26, 63, 65

80

https://doi.org/10.1007/978-981-15-2604-6_13

BIBLIOGRAPHY

Y. Ji, Z. Zhou, H. Liu and R. V. Davuluri. DNABERT : pre-trained Bidirectional Encoder
Representations from Transformers model for DNA-language in genome. bioRxiv preprint,
2020. 22

D. T. Jones and S. M. Kandathil. High precision in protein contact prediction using fully
convolutional neural networks and minimal sequence features. Bioinformatics, 34(April):
3308–3315, 2018. doi: 10.1093/bioinformatics/bty341. 20

A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou and T. Mikolov. Fasttext.zip: Com-
pressing text classification models. arXiv preprint arXiv:1612.03651, 2016. 24, 32, 34, 35,
67

A. Joulin, E. Grave, P. Bojanowski and T. Mikolov. Bag of tricks for e�cient text classification.
In Proceedings of the 15th Conference of the European Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers, pages 427–431. Association for Computational
Linguistics, April 2017. 19, 34

J. Jovel, J. Patterson, W. Wang, N. Hotte, S. O’Keefe, T. Mitchel, T. Perry, D. Kao, A. L.
Mason et al. Characterization of the gut microbiome using 16s or shotgun metagenomics.
Frontiers in Microbiology, 7:459, 2016. ISSN 1664-302X. doi: 10.3389/fmicb.2016.00459. URL
https://www.frontiersin.org/article/10.3389/fmicb.2016.00459. 8

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer and Y. Wu. Exploring the Limits of Language
Modeling. arXiv, 2016. URL http://arxiv.org/abs/1602.02410. 20, 63

D. R. Kelley, J. Snoek and J. L. Rinn. Basset : learning the regulatory code of the accessible
genome with deep convolutional neural networks. Genome Research, pages 990–999, 2016. doi:
10.1101/gr.200535.115.Freely. 20

D. Kim, L. Song, F. P. Breitwieser and S. L. Salzberg. Centrifuge : rapid and sensitive classification
of metagenomic sequences. Genome Resesarch, pages 1–9, 2016. doi: 10.1101/gr.210641.116.
Freely. 11, 63, 66

E. V. Koonin. The logic of chance: the nature and origin of biological evolution. FT press, 2011.
6

J. Korbel, A. Abyzov, X. Mu, N. Carriero, P. Cayting, Z. Zhang, Z. Snyder and M. Gerstein.
PEMer: a computational framework with simulation-based error models for inferring genomic
structural variants from massive paired-end sequencing data. Genome Biol., 10(2):R23, 2009.
35, 52

D. J. Lane, B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin and N. R. Pace. Rapid determination
of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A, 82(20):
6955–6959, Oct 1985. 8

B. Langmead, C. Trapnell, M. Pop and S. L. Salzberg. Ultrafast and memory-e�cient alignment
of short DNA sequences to the human genome. Genome Biology, 10(3), 2009a. ISSN 14747596.
doi: 10.1186/gb-2009-10-3-r25. 10, 46, 63

81

https://www.frontiersin.org/article/10.3389/fmicb.2016.00459
http://arxiv.org/abs/1602.02410

BIBLIOGRAPHY

B. Langmead, C. Trapnell, M. Pop and S. L. Salzberg. Ultrafast and memory-e�cient alignment
of short DNA sequences to the human genome. Genome Biol, 10(3):R25, 2009b. 31

N. LaPierre, M. Alser, E. Eskin, D. Koslicki and M. Serghei. Metalign: E�cient alignment-based
metagenomic profiling via containment min hash. bioRxiv, 2020. 10

H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain and F. Yvon. Structured output layer neural
network language model. ICASSP, 2011. ISSN 2618-8627. 65

C. Leslie, E. Eskin and W. Noble. The spectrum kernel: a string kernel for SVM protein
classification. In R. B. Altman, A. K. Dunker, L. Hunter, K. Lauerdale and T. E. Klein, editors,
Proceedings of the Pacific Symposium on Biocomputing 2002, pages 564–575, Singapore, 2002.
World Scientific. 18, 32

C. Leslie, E. Eskin, J. Weston and W. Noble. Mismatch String Kernels for SVM Protein
Classification. In S. Becker, S. Thrun and K. Obermayer, editors, Advances in Neural
Information Processing Systems 15. MIT Press, 2003. 10, 18, 33

H. Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Technical
Report 1303.3997, arXiv, 2013. 10, 35, 46, 52, 63

H. Li. Minimap2 : pairwise alignment for nucleotide sequences. arXiv, 2018. 10, 46

H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics, 25:1754–1760, 2009. 31

Q. Liang, P. W. Bible, Y. Liu, B. Zou and L. Wei. DeepMicrobes : taxonomic classification for
metagenomics with deep learning. bioRxiv preprint, 2019. 20, 22, 46, 69

Q. Liang, P. W. Bible, Y. Liu, B. Zou and L. Wei. DeepMicrobes: taxonomic classification for
metagenomics with deep learning. NAR Genomics and Bioinformatics, 2(1):1–13, 2020. doi:
10.1093/nargab/lqaa009. 63

J. Lu, F. P. Breitwieser, P. Thielen and S. L. Salzberg. Bracken: Estimating species abundance
in metagenomics data. PeerJ Computer Science, 2017(1), 2017. ISSN 23765992. doi: 10.7717/
peerj-cs.104. 22

Y. Luo, Y. W. Yu, J. Zeng, B. Berger and J. Peng. Metagenomic binning through low density
hashing. bioRxiv, 2017. URL http://biorxiv.org/content/early/2017/05/02/133116.

abstract. 15, 18, 40

S. S. Mande, M. H. Mohammed and T. S. Ghosh. Classification of metagenomic sequences:
methods and challenges. Briefings Bioinf, 13:669–681, 2012. 31, 63

A. C. McHardy, H. G. Mart́ın, A. Tsirigos, P. Hugenholtz and I. Rigoutsos. Accurate phylogenetic
classification of variable-length DNA fragments. Nat. Methods, 4(1):63–72, 2007. 31, 32, 63

L. McInnes, J. Healy and J. Melville. UMAP: Uniform manifold approximation and projection
for dimension reduction. arXiv, 2018. ISSN 23318422. 15

82

http://biorxiv.org/content/early/2017/05/02/133116.abstract
http://biorxiv.org/content/early/2017/05/02/133116.abstract

BIBLIOGRAPHY

R. Menegaux and J.-P. Vert. Continuous Embeddings of DNA Sequencing Reads and Application
to Metagenomics. J Comput Biol, 26(6):509–518, 06 2019. 19, 46, 47, 48, 52, 63, 68

R. Menegaux and J.-P. Vert. Embedding the de bruijn graph, and applications to metagenomics.
bioRxiv, mar 2020. doi: 10.1101/2020.03.06.980979.

P. Menzel, K. L. Ng and A. Krogh. Fast and sensitive taxonomic classification for metagenomics
with Kaiju. Nature Communications, 7, 2016. ISSN 20411723. doi: 10.1038/ncomms11257. 11

T. Mikolov, A. Deoras, D. Povey, L. Burget and J. Černocký. Strategies for training large scale
neural network language models. 2011 IEEE Workshop on Automatic Speech Recognition and
Understanding, ASRU 2011, Proceedings, pages 196–201, 2011a. doi: 10.1109/ASRU.2011.
6163930. 64

T. Mikolov, S. Kombrink, L. Burget, J. Černocký and S. Khudanpur. Extensions of recurrent
neural network language model. In ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, 2011b. ISBN 9781457705397. doi: 10.1109/ICASSP.
2011.5947611. 65

T. Mikolov, K. Chen, G. Corrado and J. Dean. E�cient Estimation of Word Representations in
Vector Space. arXiv, pages 1–12, 2013a. ISSN 15324435. doi: 10.1162/153244303322533223.
URL http://arxiv.org/abs/1301.3781. 18, 32, 64, 67

T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean. Distributed representations ofwords
and phrases and their compositionality. In Advances in Neural Information Processing Systems,
2013b. 26, 27, 28, 63, 65

A. Milanese, D. R. Mende, L. Paoli, G. Salazar, H.-j. Ruscheweyh, M. Cuenca, P. Hingamp,
R. Alves, P. I. Costea et al. Microbial abundance, activity and population genomic profiling with
mOTUs2. Nature Communications, 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-08844-4.
URL http://dx.doi.org/10.1038/s41467-019-08844-4. 11

M. Mirdita, M. Steinegger, F. Breitwieser and L. K. E. Fast and sensitive taxonomic assignment
to metagenomic contigs. bioRxiv preprint, 2020. 11

K. Miyazaki and N. Tomariguchi. Occurrence of randomly recombined functional 16S rRNA
genes in Thermus thermophilus suggests genetic interoperability and promiscuity of bacterial
16S rRNAs. Nature research, Scientific Reports, 2019. ISSN 2045-2322. doi: 10.1038/
s41598-019-47807-z. URL http://dx.doi.org/10.1038/s41598-019-47807-z. 8

A. Mnih and G. Hinton. A scalable hierarchical distributed language model. In Advances in
Neural Information Processing Systems 21 - Proceedings of the 2008 Conference, 2009. ISBN
9781605609492. 64, 65, 69

A. Mnih and Y. W. Teh. A fast and simple algorithm for training neural probabilistic language
models. In Proceedings of the 29th International Conference on Machine Learning, ICML 2012,
2012. ISBN 9781450312851. 63, 65

83

http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.1038/s41467-019-08844-4
http://dx.doi.org/10.1038/s41598-019-47807-z

BIBLIOGRAPHY

F. Morin and Y. Bengio. Hierarchical probabilistic neural network language model. In AISTATS
2005 - Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics,
2005. ISBN 097273581X. 27, 63, 65

S.-I. Na, Y. O. Kim, S.-H. Yoon, S.-m. Ha, I. Baek and J. Chun. UBCG: Up-to-date bacterial
core gene set and pipeline for phylogenomic tree reconstruction. Journal of Microbiology, 56
(4):280–285, 2018. ISSN 1976-3794. doi: 10.1007/s12275-018-8014-6. URL https://doi.org/

10.1007/s12275-018-8014-6. 71

NCBI Resource Coordinators. Database resources of the National Center for Biotechnology
Information. Nucleic acids research, 44(D1):D7–D19, jan 2016. ISSN 1362-4962. doi: 10.1093/
nar/gkv1290. URL https://pubmed.ncbi.nlm.nih.gov/26615191https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC4702911/. 9, 69

R. Ounit, S. Wanamaker, T. J. Close and S. Lonardi. CLARK : fast and accurate classification
of metagenomic and genomic sequences using discriminative k -mers. BMC Genomics, 2015.
doi: 10.1186/s12864-015-1419-2. 46, 63

X. Pan, P. Rijnbeek, J. Yan and H. B. Shen. Prediction of RNA-protein sequence and structure
binding preferences using deep convolutional and recurrent neural networks. BMC Genomics,
2018. ISSN 14712164. doi: 10.1186/s12864-018-4889-1. 20

D. H. Parks, N. J. MacDonald and R. G. Beiko. Classifying short genomic fragments from novel
lineages using composition and homology. BMC Bioinf., 12:328, 2011. 31, 32

D. H. Parks, M. Chuvochina, D. W. Waite, C. Rinke, A. Skarshewski, P.-A. Chaumeil and
P. Hugenholtz. A standardized bacterial taxonomy based on genome phylogeny substantially
revises the tree of life. Nature Biotechnology, 36(10):996–1004, 2018. ISSN 1546-1696. doi:
10.1038/nbt.4229. URL https://doi.org/10.1038/nbt.4229. 4, 63

K. R. Patil, L. Roune and A. C. McHardy. The PhyloPythiaS web server for taxonomic assignment
of metagenome sequences. PLoS One, 7:e38581, 2012. 31, 32

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee and L. Zettlemoyer. Deep
contextualized word representations. arXiv, 2018. 20

J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons,
F. Levenez et al. A human gut microbial gene catalogue established by metagenomic sequencing.
Nature, 464(7285):59–65, 2010. ISSN 1476-4687. doi: 10.1038/nature08821. URL https:

//doi.org/10.1038/nature08821. 4

D. Quang and X. Xie. DanQ: A hybrid convolutional and recurrent deep neural network for
quantifying the function of DNA sequences. Nucleic Acids Research, 2016. ISSN 13624962.
doi: 10.1093/nar/gkw226. 20

M. Queyrel, E. Prifti and J.-d. Zucker. Towards end-to-end disease prediction from raw metage-
nomic data. bioRxiv preprint, 2020. 22, 74

A. Radford, K. Narasimhan, T. Salimans and I. Sutskever. Improving Language Understanding
by Generative Pre-Training. arXiv, 2018. 22

84

https://doi.org/10.1007/s12275-018-8014-6
https://doi.org/10.1007/s12275-018-8014-6
https://pubmed.ncbi.nlm.nih.gov/26615191%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702911/
https://pubmed.ncbi.nlm.nih.gov/26615191%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702911/
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1038/nature08821
https://doi.org/10.1038/nature08821

BIBLIOGRAPHY

C. S. Riesenfeld, P. D. Schloss and J. Handelsman. Metagenomics: genomic analysis of microbial
communities. Annu. Rev. Genet., 38:525–552, 2004. 31

A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, D. Guo, M. Ott, C. L. Zitnick, J. Ma et al.
Biological structure and function emerge from scaling unsupervised learning to 250 million
protein sequences. bioRxiv preprint, 2020. 22

M. Rojas-carulla, I. Tolstikhin, G. Luque, N. Youngblut, L. Ruth and B. Sch�olkopf. GeNet :
Deep Representations for Metagenomics. arXiv, 2018. 20, 66

L. Schae↵er, H. Pimentel, N. Bray, P. All and L. Pachter. Pseudoalignment for metagenomic
read assignment �. arXiv, pages 1–13, 2015. 11, 26

K. Scott and C. Murano. Microbial fuel cells utilising carbohydrates. Journal of Chemical
Technology and Biotechnology, 82:92 – 100, 01 2007. doi: 10.1002/jctb.1641. 3

A. Sczyrba et al. Critical Assessment of Metagenome Interpretation – a benchmark of
computational metagenomics software. Nature Methods, 14(11):1063–1071, 2018. doi:
10.1038/nmeth.4458.Critical. 12, 74

A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Ž́ıdek, A. W. R.
Nelson et al. Improved protein structure prediction using potentials from deep learning.
Nature, 577(7792):706–710, 2020. ISSN 1476-4687. doi: 10.1038/s41586-019-1923-7. URL
https://doi.org/10.1038/s41586-019-1923-7. 22

A. Shcherbina. FASTQSim: platform-independent data characterization and in silico read
generation for NGS datasets. BMC Research Notes, 7(1):533, 2014. ISSN 1756-0500. doi:
10.1186/1756-0500-7-533. URL https://doi.org/10.1186/1756-0500-7-533. 8

L. Shi and B. Chen. A Vector Representation of DNA Sequences Using Locality Sensitive Hashing.
bioRxiv preprint, 2019. 19, 24, 74

C. N. Silla and A. A. Freitas. A survey of hierarchical classification across di↵erent application
domains, 2011. ISSN 13845810. 65, 66

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014.
ISSN 15337928. 16

S. Subrata, W. Zigeng and R. Sanguthevar. A novel algorithm to accurately classify metagenomic
sequences. bioRxiv preprint, 2020. 11

J. Szarvas, J. Ahrenfeldt, J. L. B. Cisneros, M. C. F. Thomsen, F. M. Aarestrup and
O. Lund. Large scale automated phylogenomic analysis of bacterial isolates and the Ev-
ergreen Online platform. Communications Biology, 3(1):137, 2020. ISSN 2399-3642. doi:
10.1038/s42003-020-0869-5. URL https://doi.org/10.1038/s42003-020-0869-5. 63, 71

The 1000 Genomes Project Consortium, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison,
H. M. Kang, J. O. Korbel, J. L. Marchini, S. McCarthy et al. A global reference for human
genetic variation. Nature, 526(7571):68–74, oct 2015. ISSN 1476-4687. doi: 10.1038/nature15393.

85

https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1186/1756-0500-7-533
https://doi.org/10.1038/s42003-020-0869-5

BIBLIOGRAPHY

URL https://pubmed.ncbi.nlm.nih.gov/26432245https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC4750478/. 6

D. T. Truong, E. A. Franzosa, T. L. Tickle, M. Scholz, G. Weingart, E. Pasolli, A. Tett,
C. Huttenhower and N. Segata. MetaPhlAn2 for enhanced metagenomic taxonomic profiling.
Nature Methods, 12(10):902–903, 2015. ISSN 1548-7105. doi: 10.1038/nmeth.3589. URL
https://doi.org/10.1038/nmeth.3589. 11

E. J. Vandamme. Production of vitamins, coenzymes and related biochemicals by biotechnological
processes. J Chem Technol Biotechnol, 53(4):313–327, 1992. 3

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and
I. Polosukhin. Attention Is All You Need. 31st Conference on Neural Information Processing
Systems (NIPS 2017), 2017. 20, 22

K. Vervier, P. Mahé, M. Tournoud, J.-B. Veyrieras and J.-P. Vert. Large-scale machine learning
for metagenomics sequence classification. Bioinformatics, 32:1023–1032, 2016. 18, 23, 31, 32,
34, 35, 39, 46, 48, 52, 63, 69

Q. Wang, G. M. Garrity, J. M. Tiedje and J. R. Cole. Naive bayesian classifier for rapid assignment
of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 73:5261–5267,
2007. 18, 31, 32, 63

J. Wehrmann, R. Cerri and R. C. Barros. Hierarchical multi-label classification networks. In 35th
International Conference on Machine Learning, ICML 2018, 2018. ISBN 9781510867963. 65

D. E. Wood and S. L. Salzberg. Kraken: ultrafast metagenomic sequence classification using
exact alignments. Genome Biol., 15(3):R46, 2014. 11, 26, 34, 46, 63, 66

D. E. Wood, J. Lu and B. Langmead. Improved metagenomic analysis with Kraken 2. bioRxiv
preprint, 2019. 11, 46

C. Wu, M. Tygert and Y. LeCun. Hierarchical loss for classification, 2017. ISSN 23318422. 66

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao
et al. Google’s Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. arXiv, pages 1–23, 2016. URL http://arxiv.org/abs/1609.08144. 22,
74

Y. W. Wu. ezTree: An automated pipeline for identifying phylogenetic marker genes and inferring
evolutionary relationships among uncultivated prokaryotic draft genomes. BMC Genomics, 19
(Suppl 1), 2018. ISSN 14712164. doi: 10.1186/s12864-017-4327-9. 71

J. Xu. Distance-based protein folding powered by deep learning. PNAS, 116(34), 2019. doi:
10.1073/pnas.1821309116. 20

S. H. Ye, K. J. Siddle, D. J. Park and P. C. Sabeti. Primer Benchmarking Metagenomics Tools
for Taxonomic Classification. Cell, 178(4):779–794, 2019. ISSN 0092-8674. doi: 10.1016/j.cell.
2019.07.010. URL https://doi.org/10.1016/j.cell.2019.07.010. 8, 12, 69, 74

86

https://pubmed.ncbi.nlm.nih.gov/26432245%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750478/
https://pubmed.ncbi.nlm.nih.gov/26432245%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750478/
https://doi.org/10.1038/nmeth.3589
http://arxiv.org/abs/1609.08144
https://doi.org/10.1016/j.cell.2019.07.010

BIBLIOGRAPHY

M. Zaheer, S. Kottur and S. Ravanbhakhsh. Deep Sets. arXiv, 2017. 22

H. Zhou, A. Shrikumar and A. Kundaje. Benchmarking Reverse-Complement Strategies for
Deep Learning Models in Genomics. bioRxiv, page 2020.11.04.368803, 2020. URL https:

//doi.org/10.1101/2020.11.04.368803. 18

J. Zhou and O. G. Troyanskaya. Predicting e↵ects of noncoding variants with deep learning– based
sequence model. Nature Methods, 12(10):931–934, 2016. doi: 10.1038/nmeth.3547.Predicting.
20

C. Zimmer. How microbes defend and define us, 2010. URL https://www.nytimes.com/2010/

07/13/science/13micro.html. 3

G. Zweig and K. Makarychev. Speed regularization and optimality in word classing. arXiv, pages
8237–8241, 2013. 64, 65

87

https://doi.org/10.1101/2020.11.04.368803
https://doi.org/10.1101/2020.11.04.368803
https://www.nytimes.com/2010/07/13/science/13micro.html
https://www.nytimes.com/2010/07/13/science/13micro.html

ABSTRACT

The cost of DNA sequencing has been divided by 100,000 in the past 15 years. Brought along by this
technological revolution, ever larger volumes of data are coming in from diverse fields and problems, raising
new computational challenges. How can we efficiently store and analyze DNA sequences? A modern DNA
sequencing experiment outputs billions of short DNA fragments (reads), in random order. A crucial step in the
bioinformatics analysis pipeline is to match those fragments to their parent genomes, a problem called
taxonomic binning. Up until a few years ago alignment-based strategies were the norm, which were largely
based on string-matching algorithms. However these have become too slow for the ever-growing amount of
available sequenced genomes. More recently so-called pseudo-alignment strategies have become standard.
These hold databases of large sub-strings and look for matches in the query sequences.
Machine learning methods have shown promising success in classifying biological sequences and in this
thesis we will investigate these methods for taxonomic binning. Firstly, we present an algorithm, fastDNA, that
embeds sequences in a continuous vector space by first splitting them into short k-mers (substrings of length
k) and learning an embedding for each k-mer. The embedding is then run through a linear classifier. In the
second part of this thesis we will present Brume, an extension to fastDNA that allow for longer k-mers, using
the de Bruijn graph. Finally we will introduce Phylo-HS, a structured loss for neural network-based taxonomic
classification.

MOTS CLÉS

métagénomique, apprentissage statistique, séquençage haut débit, représentations vectorielles

RÉSUMÉ

Le coût du séquençage de l'ADN a été divisé par 100 000 en seulement 15 ans. Grâce à cette révolution
technologique, des volumes de données toujours plus grands émergent, posant de nouvelles problématiques
informatiques. Comment analyser et stocker les séquences d'ADN de manière efficiente ? La
métagénomique, qui cherche à caractériser et identifier les microbes – bactéries, virus – à partir de leur ADN,
a largement bénéficié de cette avancée. Une expérience de séquençage produit des milliards de petits
fragments d'ADN (reads), mélangés aléatoirement. Une étape cruciale en bioinformatique est d'identifier le
génome d'origine de chaque fragment, un problème dit de taxonomic binning. Les méthodes classiques,
basées sur l’alignement des séquences à des génomes de référence, devenues trop lentes avec
l’augmentation du nombre de génomes, ont été remplacées par le pseudo-alignement. Celui-ci cherche des
sous-séquences du read dans une base préexistante.
L'apprentissage statistique offre également des résultats prometteurs pour la classification des séquences
biologiques. Dans cette thèse, nous approfondirons ces méthodes pour le taxonomic binning. Nous
présenterons d’abord fastDNA, un algorithme qui apprend des représentations continues pour tous les k-mers
(courtes sous-séquences de longueur k, ou "mots" de l'ADN). Une représentation vectorielle du read est
obtenue en combinant celles de ses k-mers, et un classifieur linéaire en prédit la classe. Ensuite, nous
introduirons Brume, une extension de fastDNA qui regroupe les k-mers via le graphe de de Bruijn,
augmentant le nombre de k-mers effectifs sans surcoût mémoire. Enfin, nous présenterons Phylo-HS, une
nouvelle fonction d’apprentissage statistique basée sur l’arbre phylogénétique.

KEYWORDS

metagenomics, statistical learning, DNA sequencing, vector embeddings

	Abstract
	Résumé
	Contents
	Introduction
	Context
	Taxonomic Binning
	Supervised Learning Framework
	Supervised learning for biological sequences
	Contributions

	fastDNA
	Introduction
	Method
	Experiments
	Conclusion

	Brume: Embedding the de Bruijn graph
	Introduction
	Approach
	Methods
	Results
	Discussion
	Conclusion

	Adapting the hierarchical softmax for taxonomic classification
	Introduction
	Related Work
	Methods
	Results
	Discussion and future work

	Conclusion
	Bibliography

