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Abstract

Research into the very high cycle fatigue (VHCF) regime is made possible through the usage of

ultrasonic fatigue tests, which can achieve billions of cycles in just a few days. However classical mea-

surement and analysis are insensitive to microplasticity and/or damage (microcracks and microvoids),

which eventually lead to fatigue failure. Consequently, these fatigue mechanisms are difficult to detect

at early stages. However, the material nonlinearities may be sensitive to high-frequency loading and

exhibit nonlinear behavior such as higher harmonic generation at multiples of the applied frequency.

Thus, the standing wave vibration of the fatigue specimen is explored in the context of nonlinear

harmonic generation.

The modeling of different nonlinear material phenomena is explored at their different length scales.

Mesoscopic models of diffuse microplastic inclusions and microcracks are at a length scale of the same

order as the vibration wavelength, and is attributed to be a potential source of harmonic genera-

tion. The multi-harmonic input given by the ultrasonic fatigue testing machine significantly influences

the sensitivity and behavior of harmonic generation of the material nonlinearities. To address this,

a multiscale fatigue specimen model which accompanies this boundary condition is employed. The

experimental setup is modified to include an additional laser vibrometer to account for this effect.

Accurate signal processing algorithms for the extraction of experimental harmonic parameters are

benchmarked, and a new algorithm is developed for speed and accuracy. A non-convex penalty is

introduced for data-driven sparse nonlinear system identification, surpassing existing state-of-the-art

algorithms. Finally, the ultrasonic fatigue test vibration signals from copper and steel fatigue spec-

imens in the VHCF regime are used to assess the multiscale model’s ability to model the observed

harmonic generation.

Keywords : Very high cycle fatigue, Higher harmonic generation, Micromechanics, Homogenization,

Signal processing, Nonlinear dynamics, Optimization.
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Résumé

La recherche sur le régime de fatigue à très haut cycle (VHCF) est rendue possible par l’utilisation

d’essais de fatigue ultrasonore qui permettent d’atteindre en quelques jours des milliard de cycles.

Les mesures et analyses classiques sont cependant limitées car peu sensibles à la microplasticité ou

aux dommages (microfissures et microvides) qui conduisent finalement à la rupture par fatigue lors de

ces essais. Ces mécanismes de fatigue sont donc en pratique difficiles à détecter expérimentalement à

un stade précoce. Cependant, les dommages décrits précédemment peuvent présenter un comporte-

ment dynamique non linéaire qui peut être exploiter pour surveiller l’apparition d’endommagement

par fatigue. Ainsi, les vibrations non-linéaires d’ondes stationnaires dans un l’échantillon de fatigue

endommagé sont étudiées dans le contexte de la détection d’endommagement lors d’essais de fatigue

ultrasonore.

La modélisation de différents phénomènes non linéaires est étudiée à différentes échelles spatiales.

Les modèles mésoscopiques d’inclusions microplastiques diffuses et de microfissures se situent à une

échelle de longueur du même ordre que la longueur d’onde de la vibration, et sont considérés comme

une source potentielle de génération d’harmoniques. L’entrée multi-harmonique fournie par la machine

d’essai de fatigue ultrasonique influence de manière significative la sensibilité et le comportement de la

génération d’harmoniques des non-linéarités du spécimen. Pour y remédier, un modèle de spécimen de

fatigue multi-échelle qui accompagne cette condition limite est utilisé. Le dispositif expérimental est

modifié pour inclure un vibromètre laser supplémentaire afin de tenir compte de cet effet. Des algo-

rithmes de traitement du signal permettant l’extraction des paramètres harmoniques expérimentaux

sont comparés, et un nouvel algorithme est développé et sélectionné pour sa rapidité et sa précision.

Une pénalité non convexe est introduite pour l’identification de systèmes non linéaires guidée par les

données, surpassant les algorithmes de pointe existants. Enfin, les signaux de vibration des essais de

fatigue par ultrasons des éprouvettes de fatigue en cuivre et en acier dans le régime VHCF sont util-

isés pour évaluer la capacité du modèle multi-échelle à modéliser la génération d’harmoniques observée.

Mote-clé : Fatigue à très grand nombre de cycles, Génération d’harmoniques d’ordre élevé, Micromé-

canique, Homogénéisation, Traitement du signal, Dynamique non linéaire, Optimisation.
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Résumé 6
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Context

The study of metallic fatigue dates back to the 19th century when engineers first noticed that metal

structures subjected to repeated loading could fail at stress levels significantly lower than their tensile

strength. Early research into metallic fatigue focused on understanding the mechanisms underlying

this phenomenon. It was observed that fatigue failure typically involved the initiation and propagation

of cracks within the material, often at stress concentrations in geometric or large defects. This led

to fatigue design using experimental data from the fatigue life (S-N) curve, which represents the

relationship between the stress amplitude and the number of cycles to failure. This approach continues

to be a cornerstone of fatigue research in predicting the fatigue behavior of materials.

Previously, the shape of the S-N curve beyond 107 cycles has remained an uncertainty, where

solicited stresses below an observed asymptote, i.e. the fatigue limit, assumed metals would endure

an infinite number of load cycles without failing. However, the past two decades of literature as well

as engineering failures in the past century have lead to the consensus that fatigue failure is regime

dependent phenomena. The exploration of the fatigue behaviors greater than 107 cycles, the very

high cycle fatigue (VHCF) regime, also known as gigacyclic fatigue, has thus been an academic and

industrial focus for widely used metallic materials. This has led to the development and adoption

of ultrasonic fatigue testing methods. Operating at ≈ 20 kHz, these machines significantly acceler-

ate testing compared to hydraulic-based machines which operate at ≈ 10s Hz. Piezoelectric fatigue

machines are highly reliable and capable of producing 1010 cycles in less than a week.

Many industries, from automotive to aerospace, deal with components that are subjected to fatigue

cycles at VHCF regimes. These components must withstand these cycles without failure during their

service life to ensure safety and reliability. In this context, fatigue research represents a small but

crucial piece of in mechanical engineering. Ultrasonic fatigue testing, performed at high frequencies,

has become de facto for practical and timely analysis in the literature. However, analysis in-situ

characterization during these tests is challenging, leading to most research focusing on post-fatigue

failure characterization. Classically, the time-history of a fatigue test is discarded, and instead the

fatigue characterization is summarized at the moment of fatigue failure, i.e. a point on the S-N curve.
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Problems and difficulties in the literature

Fatigue characterization is a broad term which refers to measuring or predicting the fatigue life of

materials and falls mainly into two categories: post-fatigue failure and in-situ measurements. Post-

fatigue measurements has largely been both experimentally and theoretically driven with the most

popular methods characterizations being S-N curves or other observational-based methods such as mi-

croscopy/fractography, X-ray tomography, and electron backscatter diffraction (EBSD). In-situ mea-

surements refer to data that can be acquired during fatigue tests, and can potentially be processed in

real-time. These measurements vary depending on the frequency of the fatigue tests. For example,

stress-strain evolution can be effectively monitored during low-frequency tests, but such measurements

are not feasible in high-frequency scenarios. Conversely, vibration measurements are pertinent in high-

frequency tests, but cannot be utilized effectively at low frequencies. Other techniques like acoustic

monitoring and thermography offer other avenues exist and have been implemented in the literature.

One critical aspect of VHCF research involves the challenge of detecting and estimating the size of

internal cracks, which are particularly common in certain material in the VHCF regime. The choice of

experimental equipment used in VHCF tests can complicate their observation and measurement. This

is compounded by the fact that the solicitation occurs at low stress amplitudes, resulting in slower crack

growth rates not described well in conventional fracture mechanics. Thus, classical measurements and

analysis are insensitive in the VHCF regime to microplasticity and/or damage phenomena (microcracks

or microvoids), if any, occurring during fatigue loading. For example, the measured macroscopic

stress-strain cycle is mistakenly assumed to be a straight line in an estimated stress-strain plot. If

microplasticity precedes the emergence of microcracks, then a stress-strain hysteresis curve with a

minuscule aperture should manifest prior to the damage onset. Yet, it remains uncertain whether

such a phenomenon can be accurately measured. These combination of factors presents significant

challenges in accurately identifying and characterizing internal crack initiation and propagation in

VHCF environments. Therefore, a more reliable approach is needed for characterizing VHCF fatigue

behavior during accelerated ultrasonic fatigue tests.

A promising direction lies in high-frequency in-situ measurements during fatigue tests, which

often overlaps with methods found in non-destructive evaluation and acoustics. These frequency-

based characterizations would not discard the time history of the tests, which would enable detailed

monitoring and analysis of damage kinetics or internal crack growth rates during ultrasonic fatigue
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tests. In the ultrasonic and acoustic literature, these frequency-based techniques have been shown

to be sensitive to the wave interactions with material nonlinearities, resulting in nonlinear harmonic

generation. The harmonics refer to sinusoids, where the fundamental harmonic refers to the sinusoid

at the working frequency and higher harmonics refer to integer multiples of this fundamental.

The analysis of the fatigue specimen’s tip harmonics in ultrasonic fatigue tests was first introduced

by Kumar et al. [Kum+09]. In their work, the relative second harmonic versus first harmonic ratio

(βrel) was studied with respect to the number of cycles. This can be seen in Fig. 1 (a), where the

presence of the fundamental (20 kHz) and higher harmonics, and evolve during an ultrasonic fatigue

test shown in in Fig. 1 (b). Kumar et al. attempt to correlate the value of βrel with the observed

post-fatigue fractography. However, the source of the second (and higher) harmonic generation is not

studied with respect to any underlying fatigue mechanisms such as microplasticity and/or damage.

Figure 1: In (a), the appearance of harmonics in the frequency spectra of vibration signals collected at
various cycles during an ultrasonic fatigue test of 6061-T6511 Al alloy at 130 MPa. In (b), the changes
in βrel and resonant frequency throughout the same ultrasonic fatigue test, taken from [Kum+09].

Objective of the dissertation

The primary objective of this dissertation is to develop a new in-situ methodology for estimating

and interpreting the nonlinearities present during an ultrasonic fatigue test. Particularly, the detection

of the onset of microplasticity, microcracks, in addition to macroscopic crack initiation and propaga-

tion. This detection is crucial as these fatigue mechanisms are suspected as the source of material

nonlinearities which generate higher harmonics at multiples of the applied frequency. Such an in-

situ characterization approach is particularly appealing, especially to determine if material behavior
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throughout the fatigue test exhibits slow and fast nonlinearities depending on the material state. An

attractive methodology would satisfy the following:

• A nonlinear dynamical model which integrates the nonlinearities of microcrack closure, mi-

croplastic behavior, and macroscopic crack development. This model should efficiently simu-

late the entire specimen’s behavior under ultrasonic fatigue testing, characterized by tension-

compression loads at high frequencies. Of such interest would be accurately representing the

diffuse effects of mesoscale microplastic zones and microcrack closure. The goal is to facilitate

the use of high-frequency vibration data in-situ, enabling the parameterization of a dynamic

model that reflects the fatigue behaviors across the entire lifespan of the test.

• Suggest alternatives to the currently adopted signal processing algorithms used to analyze ul-

trasonic fatigue vibration signals. Specifically, those that are more accurate while maintaining

a computational efficiency for real-time usage.

Using measured vibration data is one such data source that satisfies the requirements above and has

shown promise in the literature: non-contact laser Doppler vibrometers allow for various experimental

configurations, as well as usage along with other measurement methods (strain gauges, x-ray diffrac-

tion, thermography). To formulate a proper problem description to utilize the vibration data, it is

necessary to derive and justify a dynamic model and the boundary conditions associated with the

ultrasonic fatigue setup. This necessitates defining and optimizing the experimental setup to acquire

the most reliable and precise data. Key considerations include the number and placement of measure-

ment points, as well as the selection of an appropriate sampling frequency, all of which are critical for

effectively using vibration data in a dynamic model. Successful implementation could lead towards an

understanding of ultrasonic-based fatigue life mechanisms and predictions for materials.

Scientific approach

This dissertation adopts a methodical scientific approach, primarily focusing on the development

and implementation of an experimental setup and corresponding nonlinear modeling techniques to

investigate fatigue mechanisms. The methodology comprises three key components:

1. Development of an experimental device to measure velocity at various points on the specimen.
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The measurement locations are strategically chosen to account for the nonlinear effects intro-

duced by the testing machine.

2. Formulation of classical nonlinear models of fatigue mechanisms, integrated within a dynamic

macroscopic model to accurately simulate the generation of harmonics under ultrasonic fatigue

testing conditions.

3. Establishment of a signal processing methodology to precisely estimate the amplitude of the

generated harmonics, essential for analyzing the fatigue test vibration data.

The experimental approach involves using a laser vibrometer to measure vibrations at the base and

free tip of the fatigue specimen, allowing for the measurement of the harmonics. A multiscale nonlinear

dynamical model is employed whose microcracks and microplastic inclusions are modeled using Mori-

Tanaka mean-field homogenization [MT73] and Eshelby’s inclusions [Esh57]. This modeling approach

is represented in Fig. 2 , where the nonlinear behavior of microcracks and microplastic inclusions

defined at the centroid.

MacroscaleMesoscale

Equivalent
Eshelby
model

Elastic matrix Fatigue
specimen

Base motion
(known)

Tip motion
(to model)

Centroid volume

Microcracks

Microplastic
inclusions

Hom
oge

niza
tion

Figure 2: The proposed modeling approach taken in this dissertation.

Structure of the dissertation

The structure of this dissertation is designed to detail the proposed methodology and its theoretical

justifications. Following this introduction, which sets the context and outlines the objectives, the thesis

is divided into several chapters:
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Chapter 1 provides a detailed literature review on the fatigue of metals, and the differences between

fatigue behavior in the LCF to HCF and VHCF regimes and beyond. The juxtaposition be-

tween these two regimes are made in their experimental approach (hydraulic versus ultrasonic),

the microstructural mechanisms, and finally the discrepancies found in the literature. The non-

linear harmonic generation due to fatigue micromechanical phenomena and the high-frequency

vibration of ultrasonic fatigue is considered. The analysis of second harmonic generation due to

nonlinear elasticity by Kumar et al. [Kum+09] is introduced, which has been adopted by the

ultrasonic fatigue community. A departure from this parameter is suggested in the form of a

micromechanical models. This lays the foundation for the contributions made by the dissertation

in ultrasonic fatigue specimen modeling and the signal processing of vibration signals.

Chapter 2 is dedicated to the comprehensive modeling of an ultrasonic fatigue specimen and test

machine to understand the harmonic generation seen in the vibration of the fatigue specimen.

First, the harmonic generation due to length-scale material behaviors at different length scales

are considered: starting from the atomic scale effects of nonlinear elasticity due to the crystal

lattice; then the micro- to mesoscale effects that manifest from microcrack closures (damage)

and microplastic mechanisms; finally the macroscale during the formation of a macroscopic

crack. Next, a macroscopic model detailing the dynamic loading and structural aspects of

an ultrasonic fatigue specimen, enabling the material nonlinearities effect on the specimen’s

dynamical behavior. Finally, an electrodynamical model of the ultrasonic fatigue test machine is

calibrated, but experimental data uncovers small nonlinearities, evidenced by higher harmonics,

challenging the notion of a single harmonic input wave in ultrasonic fatigue tests.

Chapter 3 is a dedicated chapter to inverse problems with a linearizable model described in vector-

matrix form. This vector-matrix form arises in estimating sinusoidal parameters (harmonics) for

signal processing. First, a benchmark of state-of-the-art algorithms are compared for usage in

ultrasonic fatigue vibration signals. A classical, computationally expensive subspace algorithm

is found to be the best suited, despite its high computational complexity. The next section

introduces a novel estimation technique, which reduces its complexity from cubic to quasi-linear,

enabling its real-time use for ultrasonic fatigue vibration signals. Finally, the last section intro-

duces the problem of nonlinear system identification using a data-driven method, specifically the

Sparse Identification of Nonlinear Dynamical systems [BPK16]. The goal here is to identify the
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dynamic nonlinearities of a system, given the inputs and outputs a system. Here, an alternative

optimization algorithm is proposed, by introduction of a non-convex penalty. It’s shown that

this non-convex penalty has a higher chance of identifying the true nonlinear system when the

measurements are finite and noisy compared to those in literature.

Chapter 4 derives the model parameters that describe the harmonic generation of experimental tip

vibration data for polycrystalline copper and C70 steel specimens. The model parameters corre-

spond to the nonlinear mesoscopic response due to microcracks and microplastic inclusions and

the contribution of the multi-harmonics at the base vibration. An analysis on the sensitivity

of the model, as well as interpretation of the evolution of micromechanical parameters along

the fatigue test are provided. It’s suggested that the microcrack volume fraction is a consistent

indicator of microcrack to macrocrack onset for polycrystalline copper, and that microplasticity

tends to grow linearly. C70 steel, on the other hand, shows inconsistent results, possibly due to

a lacking of harmonic amplitude increases in experimental data.
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Bibliography and preliminaries
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The influence of material and fatigue regime on fatigue behavior is a well-established concept in the field of

metallic fatigue. In this chapter, the mechanisms of plasticity in the low to high cycle fatigue fatigue are

summarized, which has been established for metals that experience failures < 107cycles. The recent advances into

very high cycle fatigue, > 107 cycles, has manifested literature of complex material mechanisms that challenge the

applicability of classical fatigue theory. Three main challenges exist in this fatigue regime: 1◦, the observation

and characterization of the micromechanical phenomena leading to fatigue failure; 2◦, the incorporation of

micromechanical phenomena, e.g. dislocation dynamics or microplasticity models, into a fatigue specimen model;

3◦, the discrepancy between ultrasonic fatigue test and conventional fatigue test data. This dissertation aims

to exploit nonlinear vibration generated by localized phenomena during ultrasonic fatigue tests to address 1◦ the

observation of microcracks and microplasticity using 2◦ a dynamic fatigue specimen model.
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1.1. CONTEXT

1.1 Context

Fatigue research traces back to the mid-1800s with Wöhler’s foundational approach for metals,

considering key applications like railcar axles and steam engines. With engines operating around 50

cycles per minute, Wöhler defined the S-N curve, which allowed one to determine the number of

cycles of a component before fracture. In short, Wöhler concluded that for a reliable mechanical part

design, cyclic stress σa on a material is more crucial than peak stress from a monotonous applied load.

Classical fatigue design for mechanical components has been based on this S-N curve for a conventional

fatigue limit at a large number of cycles (107). If there is no failure until 107, conventional engineering

standards consider that the structure will never break, i.e. an infinite fatigue limit [BP05].

In the most basic sense, fatigue damage in mechanical parts arises from repeated material defor-

mation, resulting in microstructural changes. These changes often lead to crack formation. A fatigue

crack, initially stemming from microscopic mechanisms, grows slowly and stably, as noted by Sir James

Alfred Ewing in 1903 [BP05]. While these cracks may not pose an immediate threat, they can become

critical once they reach a certain length, leading to rapid propagation and eventual component or

structural failure. Despite the research into classical fatigue, fatigue failures have been shown to exist

beyond this infinite fatigue limit. The current fatigue life of industrial and consumer transportation

reaches the well beyond (109) cycles, while aircraft turbines approach 1010 cycles due to high rotation

speeds. As recently as 2021, engine failures due to turbine blade fatigue failure have been featured in

the news. Despite fail-safe measures designed into the Boeing aircraft, fatigue failure can still result

(a) (b)

Figure 1.1: In (a), the inspection of a non-crashed Boeing 777-200 engine which suffered from turbine
blade fatigue failure on United Airlines Flight 328, on Feb. 20, 2021. In (b), a crashed Boeing 737-7H4
which suffered from turbine blade fatigue failure and killed a passenger on Southwest Airlines Flight
1380, on Apr. 17, 2018.
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in lethal harm to passengers, see some recent aeronautic fatigue-related accidents shown in Fig. 1.1.

Real-world loading conditions can differ from those assumed during fatigue design, potentially causing

fatigue cracks. If there are existing non-propagating cracks, early detection is attractive and crucial

in the structure’s fatigue life. Regular maintenance can identify and monitor these cracks throughout

the structure’s lifespan. Hence, understanding a material’s fatigue properties is essential, emphasizing

the need to accurately determine the fatigue characteristics of metallic materials.

1.2 Bibliography of conventional and VHCF fatigue

1.2.1 Characterization of LCF to HCF regimes

For mechanical components made up of metallic crystalline materials, a precise definition of the

concept of fatigue loading is needed. When mechanical components are in service, they experience

variable loadings. To enable reproducible research for fatigue behaviors, fatigue is studied on the

basis of cyclic tests carried out on servo-hydraulic machines or ultrasonic fatigue test machines, whose

differences are later introduced. Based on the description by Wöhler [Wöh58], an imposed cyclic load

is characterized by the amplitude of the stress σa := σmax−σmin
2 , a mean stress σm := σmax+σmin

2 and

the stress ratio R := σmin
σmax

, where σmin is the minimum stress and σmax the maximum stress of a

test. The speed of the cyclic load is defined by a working frequency of the loading f , see Fig. 1.2 (a).

Unless otherwise specified, the literature referenced within concerns tension-compression, alternating

and symmetrical, of constant amplitude loading, that is i.e. σm = 0 and R = −1.
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Figure 1.2: In (a), the variables used to describe a constant strain rate loading, adapted from [Mug02].
In (b), a classical schema of a S-N curve with different fatigue regimes.

Wöhler proposed a stress to life (S-N) curve to characterize material fatigue behavior, correlating
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the logarithmic number of cycles to failure with stress amplitude [Wöh58]. The commonly used term,

fatigue life, refers to the number of cycles Nf before failure. To obtain the S-N curve across different

number of cycles, a staircase like testing campaign can be performed by varying the stress amplitudes

per test [BP05]. On a classical S-N curve of Fig. 1.2 (b), it can be seen that as the stress amplitude

diminishes, the number of cycles until failure increases. These zones are categorized into three fatigue

domains depending on stress amplitude:

• The low cycle fatigue (LCF) regime, where the number of cycles is less than 104. In this regime,

the amplitude of stress is large enough such that the strain has a plastic component per cycle.

Fatigue tests are typically conducted with constant stress amplitudes on hydraulic fatigue test

machines.

• The high cycle fatigue (HCF) regime, where the number of cycles is from 104 to 107. In this range,

the applied stress remains below the elastic limit, and at the start of the test, plastic deformations

are localized in stress concentration zones (surface defects, microstructural heterogeneities). On

average, plastic deformation amplitudes on a macroscopic scale remain small for each cycle.

Fatigue tests are typically conducted with constant strain amplitudes.

• The very high cycle fatigue (VHCF) regime, where the number of cycles above 107 show an

apparent fatigue limit as a horizontal asymptote on the S-N curve. In order to study this regime

in a reasonable amount of time, an ultrasonic fatigue machine is utilized and to be detailed later.

The conventional fatigue limit, also referred to the endurance limit or fatigue strength, describes

the amplitude of cyclic stress a material can withstand without fatigue failure after Nf cycles. Many

fatigue standards suggest a horizontal asymptote between 106 and 107 cycles, and beyond 107 is

considered to have infinite fatigue life. A characteristic of the regime change between LCF to HCF

and VHCF can be observed from the failure mode of mechanical components, shown in Fig. 1.3. For

the turbine blade fatigue failure in the Southwest Airlines Flight 1380 of Fig. 1.1, the failure was

due to a sub-surface crack initiation, an example shown in Fig. 1.4. For United Airlines Flight 328,

the cause was reported as an internal crack initiation which occurred in two previously incidents on

PW4000-112 series engines with hollow-core fan blades. For LCF failures, cracks are typically initiated

at the surface due to stress concentrations. These kinds of complex loadings have components of cyclic

stress-induced plastic strain, which initiates cracks and continual tensile stress driving their growth.
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Figure 1.3: Surface fracture of the turbine blade fatigue failure of Southwest Airlines Flight 1380 with
fatigue indications, taken from [Boa18].

(a) (b) (c)

(d)

Figure 1.4: Sub-surface fracture due to fatigue failure of a turbine blade, showcasing (a) the fracture
surface, (b) the fatigue crack origin, (c) a detailed view of fatigue striation and inside-to-outside crack
propagation, and (d) the initiation of multiple cracks within the blade material, taken from [SSP16].

Stages of fatigue failure The consensus in fatigue research is that fatigue failure is not an instanta-

neous occurrence, but rather a progressive sequence of events. For ductile metals, four stages leading

fatigue failure are schematized in Fig. 1.5: sequential stages of cyclic hardening or softening, fatigue

damage evolution due to irreversible micromechanical phenomena, and crack initiation and growth

leading to failure. For non-ductile metals, stages I and II are often not observed since pre-existing

defects generally serve the role as stress concentrators at a smaller length-scale. These stages have

been observed in numerous materials in the literature [LK73; Mug84]. Observations on the mechanism

of stage I which lead to failure fatigue are thus of upmost importance.
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Figure 1.5: Schematic illustration of an S-N curve overlaid with the four stages of fatigue in ductile
metals until failure. In the general case of non-ductile metals, stages I and II are typically absent since
their failure are defect driven and act as pre-existing cracks, adapted from [Mug15].

1.2.2 Influence of microscale plastic deformation mechanisms

Depending on the material’s initial state of the material, a phenomenon of cyclic softening or

hardening can be observed. After a many cycles, the area of the hysteresis loop in a stress-strain

diagram stabilizes, see Fig. 1.5. Point (1) corresponds to the LCF regime, where macroscopic plasticity

behavior such as plastic shakedown are measurable during fatigue tests. As Nf increases, the aperture

of the hysteresis loop decreases and therefore the plastic strain. At point (2), microscale plastic

deformation mechanisms, is present. Before the VHCF regime at point (3), cyclic strain localization

in Persistent Slip Bands (PSBs) lead to the onset of fatigue damage. Between points (2) and (3),

the amount of plastic strain is minuscule but still measurable, around 10−5 - 10−4 in [LK73]. Point

(4) corresponds to the case of an unbroken specimen, where seemingly macroscopic elastic behavior

is observed beneath the fatigue limit. Mughrabi [Mug84] describes this as point as the irreversibility

σa

0

log(Nf)

(3)

(4)

(1)

(2)

104 105 10
6 10

7
10
8

10
9

St
re
ss
am
pl
itu
de ε εε

ε

Very small aperture

Fatigue
limit

Figure 1.6: A schematized S-N curve with a fatigue limit drawn, where different indication of hysteresis
loops are notated at different stress levels, adapted from [Mug84].
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threshold of the cyclic slip, but this can be misinterpreted as if there is no form of dissipation under

this threshold. Instead, it’s posited that a macroscopic stress-strain measurement is unable to resolve

the small aperture of the hysteresis, which is detailed further Section 1.2.3. In order to give this

micromechanical argument, cyclic slip is described in the context of dislocations. This definition

allows a study of the difference in HCF and VHCF regimes; the emergence of dislocation structures,

e.g PSBs, will be given next.

Irreversibility of cyclic slip As defined by Mughrabi, the initiation of fatigue damage in ductile

crystalline materials (stage I in Fig. 1.5) is deeply connected to cyclic slip irreversibility within the

material’s bulk, resulting in unreversed slip steps at the material surface [Mug13]. Slip irreversibility,

0 < p < 1 , is defined quantitatively as the ratio of microstructural irrecoverable plastic shear strain

to the total plastic shear strain [Mug09; Mug13]. Here, the term irreversibility does not refer to a

thermodynamical definition, but refers to permanent microstructural changes. A variety of microscopic

mechanisms are responsible for cyclic slip irreversibility, including the cross slip of screw dislocations,

mutual annihilation of dislocations, and slip asymmetry in body-centered cubic (BCC) metals, see

[Mug09; Mug13] for an overview of these processes. The cyclic slip irreversibility is proportional to the

loading amplitude, with lower loading amplitudes leading to higher fatigue life and vice versa [Mug09;

Mug13]. Despite the challenges in estimating p for practical application, studying the irrecoverable

nature of dislocation movements gives crucial insights into the microstructural mechanisms that trigger

damage in the HCF and above [Mug09; Mug15]. The prevalence of these irreversibilities increases

under certain stress conditions for various materials, linking them directly to the onset of the formation

of dislocation structures, localization of the plastic strain in shear bands, and the formation of PSBs

[BE79; Nab97; CKM11; MDK11; JR18].

Previously, it was suggested that at point (4) in Fig. 1.6 that there is irreversibility, contrary

to the original figure by Mughrabi [Mug84], i.e. dislocation motion has an associated friction and is

dissipated into heat. To understand this, consider a Frank-Read source: if the imposed shear stress on

the slip plane is above the critical shear stress required to operate a Frank-Read source, a hysteresis

loop should exist. When the shear stress is large enough to induce a dislocation ring, the phenomena

becomes mechanically irrecoverable1. When these type of phenomena occurs within the bulk of the

1The term recoverable means that after one cycle the microstructure, or the dislocation configuration, is the same
after one stress cycle. When the dislocation configuration is unable to return, it will be denoted as irrecoverability.
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material, a hysteresis loop with a very small aperture must exist, with its aperture dependent on the

density of such dislocation phenomena. Dislocations at low enough strain levels can be mechanically

recoverable but irreversible and non-damaging, as proposed by Ranc in [Ran14].

Dislocation structures – persistent slip bands The parameterization of a plastic strain and its ampli-

tude ∆εpl describes the mechanisms at the grain scale of a material. These mechanisms are at the level

of dislocations and the structures that emerge from their motion. To summarize: dislocations arise on

slip planes, with the Frank-Read source serving as a perpetual generator of dislocation loops. These

loops can accumulate into an avalanche on a single slip plane, with each loop countering the applied

stress near the source. Once a sufficient number of loops emerge, the accumulation of dislocation loops

promote multiple cross slip and generate an irreversibility of the cyclic slip. For polycrystalline metals,

subsequent avalanches are delayed since loops encounter resistance at grain boundaries, necessitating

a significant external stress increase for another avalanche.

PSBs are an example of well studied slip irreversibility in the HCF regime for pure materials.

For commercial materials which are alloyed, the phenomena is more elusive. To isolate the number

of factors in studying this phenomena, typically single crystal metals are studied, with single crystal

copper being showcased here. Copper is well studied in terms of a given plastic strain amplitude ∆εpl.

The stabilized plots of shear stress as a function of the plastic strain amplitude can be plotted to give

a cyclic stress-strain curve. A compiled cyclic stress strain curve from [Li+11] is presented in Fig. 1.7,

which transmission electron microscopy (TEM) observations of dislocation structures are also shown.

Three specific domains are emphasized for copper according to resolved plastic strains (notated γpl):

• Region A of Fig. 1.7 is characterized by resolved plastic deformations of γpl,AB ⪅ 6.0 · 10−5. As

plastic deformation amplitude escalates, screw dislocations initially tend to cancel each other

out, while wedge dislocations form dipole aggregates of opposite signs. With continued cycling,

these wedge dislocations aggregate further, leading to the formation of cylindrical, more stable,

vein-type dislocation structures with diameters around ≈ µm. These structures, based on the

observation plane, manifest as either veins or patches. Surrounding these high dislocation density

veins are channels with low dislocation densities, which allows easy motion of primarily screw

dislocations. Fig. 1.8 (a) provides a schematic representation of dislocation organization within

these veins, where dislocations structure minimizes the internal energy of the crystal.
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Figure 1.7: The cyclic stress-strain curve for a copper single crystal features three qualitative mi-
crostructures, with the threshold corresponding to the formation of PSBs, taken from [Li+11].

• Region B of Fig. 1.7 is characterized by resolved plastic deformations of 6.0 · 10−5 ⪅ γpl,AB ⪅

7.5 · 10−3. Notable is the horizontal asymptote where the stress amplitude is independent of

the plastic deformation amplitude. With TEM, this region has the emergent dislocation ladder

structure of PSBs, which expand upon loading and retract during unloading. Such formations

are inherently more stable than the previously described veins configurations. In pure copper

contexts, PSBs span ≈ µm widths, while the thickness of the walls and inter-wall distances

within a PSB vary between 1/10 µm to 1 µm . Interesting patterns emerge due to the interaction

between PSB zones and matrix regions (consisting of veins and channels structures) described

as ladders and walls. The concentrated plastic deformation predominantly resides within the

PSBs, which enables larger-scale deformation [DKS19].

• Region C of Fig. 1.7 is characterized by resolved plastic deformations of γpl,AB ⪆ 7.5 ·10−3. Here,

an augmentation in plastic strain amplitude is coincidental with a rise in stress amplitude. This

domain is marked by the emergence of cell and labyrinth dislocation structures.

Once formed, PSBs can contribute to the emergence of intrusions and extrusions, see Fig. 1.8 (b),

which subsequently result in fatigue cracks. For polycrystalline copper, PSBs contribute to complex

behaviors such as slip-band cracking in PSBs but also cause intergranular cracks, see Fig. 1.9 (a).
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Figure 1.8: In (a), an illustration of a PSB, vein structure, specimen surface, and the PSB’s surface
manifestation as intrusions, taken from [Dod+20]. In (b), a side profile of a sliced polycrystalline
copper specimen subject to 5000 cycles of γpl = 7.5 · 10−4, showing intrusions and extrusions, taken
from [Pol+17].

For other materials, a brief review is given: Generally, face-centered cubic (FCC) metals manifest

these dislocations as veins, shown in Fig. 1.8 (a), that have identical Burgers vectors. The collapse of

these veins along the primary slip direction leads to the formation of PSBs, as previously mentioned

for pure copper. For alloyed metals, PSBs in such age-hardened alloys are much thinner (≈ 0.1 µm)

[Mug84]. In BCC metals like α-iron, strain localizes in bands similar to PSBs, though these adopt a

cell structure rather than the ladder structure [MAH79], see Region C in Fig. 1.7.

Figure 1.9: In (a), intergranular mesocracks induced by PSBs colliding with the boundary of the grain
of single crystal copper, close to the HCF limit, taken from [Mug+83]. In (b), an extrusion on the
surface of a copper single crystals in the HCF regime, taken from [Mug09].

Difference of fatigue mechanisms between HCF and VHCF regimes Since PSBs tend to form within

a specified range of resolved plastic shear strain amplitude, the volume fraction of the PSBs linearly

ranges from 0% to 100%. Changing the loading amplitude affects the PSB density and structure,

with increased loading correlating to higher PSB density, as illustrated in Fig. 1.8. Consequently, the
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loading amplitude is proportional to this PSB threshold and the aperture of the hysteresis loop at

Fig. 1.6 point (3), corresponding with PSB formation over time. This raises the question: what is the

distinction between fatigue mechanisms at Region A and below Region A for copper of Fig. 1.7? Or

for all metallic materials, what is the distinction between fatigue mechanisms at points (3) and (4) of

Fig. 1.6? These micro- to mesoscale observations of fatigue mechanisms for the LCF to HCF regimes

have motivated the need to understand the fundamental mechanisms of fatigue in the VHCF regime.

1.2.3 Characterization of VHCF regimes

The need of accelerated fatigue test to reach the VHCF regime was proposed at the 1998 “EU-

ROMECH 382 - Fatigue life in the gigacycle regime” conference in Paris. Experimental fatigue test

results at ultrasonic frequencies were presented notably by Bathias [Bat99] and Stanzl-Tschegg [Sta99].

The most frequently employed device for these tests is the 20 kHz piezoelectric machine, shown in

Fig. 1.10 (a), derived from the work of by Manson in the 1950s [MB51]. These ultrasonic fatigue

test machines accelerate fatigue tests, e.g. about 6 days for 1010 cycles, as shown in Fig. 1.10 (b).

These ultrasonic fatigue test machine differs with hydraulic-based fatigue test machines in a number

of factors. The most critical is the method of applying the required stress amplitude to the fatigue

specimen: these details will be relegated to Section 1.3.
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Figure 1.10: In (a), a common ultrasonic fatigue test machine for R = −1. In (b), a schema showing the
duration to reach a number of cycles for conventional hydraulic and ultrasonic fatigue test machines.

Following the adoption of ultrasonic fatigue test machines, experimental data revealed that the

underlying fatigue mechanisms were even more material specific. For example, materials with mi-

crostructural heterogeneities like inclusions as fatigue transitions from HCF to VHCF, failure origins
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shift from the surface to interior fish-eye fractures at non-metallic inclusions. For ductile single-

phase materials, research results becomes sparse due to the fact that the VHCF regime coincides

with low stress amplitudes below the PSB threshold, and obvious PSB structures vanish. To aid in

this distinction, Mughrabi [Mug02] introduces a classification of metallic materials according to their

microstructure and mechanisms for crack initiation in the VHCF regime.

Type I materials These materials are typically ductile single-phase metals and alloys which do not

contain precipitates nor inclusions, e.g. FCC metals. However, low carbon steels, some stainless steels,

and spheroid graphite cast iron have similar behavior. Observations of the rupture face after VHCF

reveal that the nucleation site for the source of failure occurs at the surface for Type I materials

[Mug02].
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Figure 1.11: Evolution of strain amplitude as a function of the number of cycles in the case of Type
I materials, such as pure polycrystalline copper, adapted from [Ran14]. The diagram illustrates the
phenomena that PSB generation can occur below reduced a threshold stress and initiate microcracks,
but the microcracks are non-propagating.

The research done on Type I materials has mainly focused on pure copper. Even beneath the

traditional HCF PSB threshold, some level of surface roughening due to the irreversibility of the

cyclic slip might slowly manifest after some number of high number of cycles, such as 109. This could

lead to stress concentrations in the surface roughness, potentially instigating a form of persistent slip

that might ultimately lead to shear fatigue crack initiation [Mug06]. This is schematized in Fig. 1.11

for fatigue crack initiations, where the traditional PSB threshold is shown in green.

Some model predictions have been confirmed through experimental work on ultrasonically fatigued

copper polycrystals. Specifically, the gradual development of slip bands with an increasingly rough

surface profile was observed at loading amplitudes well below the traditional HCF PSB threshold
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[Mug06; Wei+10]. The cyclic slip irreversibility p can vary significantly, from around p ≈ 10−5 in the

VHCF regime of copper with over 1010 cycles [Wei+10], to about p ≈ 10−1 within PSBs in the HCF

regime of FCC metals [Mug09; Mug13]. In a study on a copper polycrystal subjected to 1010 cycles

of fatigue [Wei+10], PSB-like cyclic slip localization are observed along with stage I crack initiation

at the surface, shown in Fig. 1.12. It remains unclear whether these stage I cracks would remain non-

propagating or eventually lead to failure. SEM on metallography cross-sections revealed localized slip

in lamellae approximately 45◦ to the stress axis in Fig. 1.12 (b). Meanwhile, imagery of cross-sections

perpendicular to PSMs exhibited a roughness profile in Fig. 1.12 (a) resulting in a minuscule cyclic

slip irreversibility p ≈ 3.6 · 10−5 [Wei+10]. It’s hypothesized that this irreversibility can eventually

accumulate a substantial irreversible shear strain due to the vast number of cycles, resulting in fatigue

damage similar to that observed after fewer cycles at higher loading amplitudes at the traditional HCF

PSB threshold. This substantiates the concept of an effective reduction in the cyclic strain localization

threshold in the VHCF regime.

Figure 1.12: Ultrasonically fatigued polycrystalline copper subjected to 1010 cycles at room tempera-
ture, with stress applied horizontally to the image, slightly below the PSB threshold. In (a), a surface
roughness is shown, with subsurface shear cracks. In (b), SEM imagery reveal lamellae of cyclic slip
localization, taken from [Wei+10].

Type II materials These materials are metals and alloys with a more complex microstructure. They

contain heterogeneities in the form of inclusions, pores, coarse second phase particles, which act as

local stress concentrators for initiating internal fatigue crack sites. High strength steels are typical

of this category [BP05; Wag+09], as are multiphase alloys, like Ti6Al4V. VHCF cracks start mainly

in the volume of the test piece at the level of a defect or microstructural heterogeneity. It appears

that the higher the ultimate tensile strength for type II materials, the steeper the S-N curve is in the

VHCF regime.
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Figure 1.13: A schema of an S-N curve valid for type II materials, adapted from [Mug02] (left) and
common fatigue crack initiation sites at the cross-section of a fatigue specimen (right).

Based on various researchers’ findings [NK99], a multistage fatigue life diagram can be seen in

Fig. 1.13, in which [Mug02] referenced a staggered S-N curve separating VHCF and LCF/HCF regimes.

Along with the conventional HCF fatigue limit, a second, significantly lower fatigue limit appears in

the VHCF regime. As the transition goes from HCF to VHCF, the mode of fatigue crack initiation

shifts from surface to subsurface fish-eye cracking, originating from internal non-metallic inclusions.

In [NP00], SEM imagery of a typical fish-eye failure is shown in Fig. 1.14. This subsurface fish-eye

fracture can be understood as follows: at very low amplitudes, almost no fatigue damage forms on the

surface. Conversely, in materials containing considerable defects like brittle inclusions or pores, cracks

can initiate either on the surface or internally. In the absence of surface inclusions, internally initiated

cracks can slowly grow outward until failure. Cracking may occur in the inclusion, at the interface, or

due to the impingement of cyclic slip bands, as observed in [TM82].

Crack propagation A conceptual understanding of crack propagation for polycrystalline materials

can be found in Fig. 1.15. The difficulty of a definition of crack propagation is not only limited due

to the micro length-scale observations, but also the definition of the crack length at which initiation

begins [SS10a]. One proposition is the inclusion of all stages of the cracking process into the initiation

process until the crack is sufficiently large to have its propagation describable by classical linear elastic

fracture mechanics (LEFM) [Mug06]. Another defines the transition as the shift from a system of

microcracks, controlled by cyclic plastic strain, to crack propagation governed by LEFM [ASM96].

For a good overview of both type I and type II fatigue crack propagation and the role of specific

microstructures of different materials, see [Cha10].
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Figure 1.14: In (a), the examination of the fracture surface of high-strength steel fatigue specimen
displaying a fish-eye (circled in red). In (b), the initiation of a crack at a non-metallic inclusion
surrounded by a fine granular area (FGA) (highlighted by a white circle), taken from [KG22].

Even though these definitions may seem arbitrary, for some fatigue prediction models, it is critical

to know when initiation ends and propagation begins, as well as what size and/or geometry constitutes

a crack. For linear fracture mechanics, there is a distinction between stages II and III in Fig. 1.15 (a):

the crack-growth rates of short cracks are higher than those of long cracks Fig. 1.15 (b). Short cracks

grow and pass through grains (stage II), where stress and strain fields at the crack front are different

from those calculated using the fracture mechanics approach in an isotropic continuum [CL87]. These

cracks grow at stress intensities below the threshold value for long cracks. In the long crack regime,

the growth in the threshold region is classically described using the Paris-Erdogan law [PE63].

Figure 1.15: In (a), the common stages of crack initiation to fatigue failure in polycrystalline metals,
in this case with surface extrusions and intrusions, taken from [GA20]. In (b), a schematic plot of the
crack-growth rates of short and long cracks in LEFM, where ∆K the stress concentration factor, and
∆Kth the threshold that blunts crack growth, taken from [MZW22].
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Lastly, the influence of environment before and after manufacturing materials plays a strong role

in crack initiation and growth in fracture mechanic literature, where gaseous oxygen and hydrogen are

most commonly focused on. In [Zha+18], oxygen presence in sintered samples influenced the oxide

content in the microstructure. These oxide particles, identified as fatigue initiation zones, induce

stress concentration and crack nucleation, consequently reducing fatigue life. In [Shi+21], a model

addressing hydrogen-induced intergranular fatigue crack growth in steels and α-iron-based alloys is

presented. The model posits that cyclic loading leads to hydrogen adsorption and dissociation at the

crack tip, with accumulating dislocations transporting hydrogen to grain boundaries. This, combined

with microvoid formation, intensifies intergranular failure compared to a hydrogen-free environment.

Ambiguities in identifying crack initiation The identification of when crack initiation and growth

stages occur during ultrasonic fatigue tests is difficult to pinpoint (stages II and III in Fig. 1.5),

especially at lower loading amplitudes. Especially at the VHCF regime, there are conflicting results

on the significance of fatigue crack initiation and propagation periods in fatigue life. In early works

for low-carbon steel in [Kle65], crack initiation was studied by comparing the S-N curve with the

French curve2 in Fig. 1.16. The French curve, representing the phase of crack propagation in the

fatigue life, helps to highlight the shift in crack initiation as load decreases. The sizes of the initially

formed microcracks varied, ranging from a few micrometers at stress levels beneath the French curve

to approximately hundreds of micrometers above the French curve. Thus the works of [Kle65] indicate

that crack initiation can constitute a major fraction of fatigue life in the HCF regime, noted by others

with similar observations [KK00; Sur98].

However, in certain literature in LEFM claim that fatigue crack initiation is relatively insignificant,

as materials inherently possess defects from which cracks will propagate right from the start, see

[Mil84b]. Given that all materials inherently exhibit defects, one can argue that crack propagation

begins from the outset. This has been observed for many commercial Type II materials with observed

defects [Mug99; Wan+99; BP07; Mar+07] in the VHCF regimes. However, some outlier Type II

materials which exist which reflect the complexities in fatigue. In recent research comparing low

and high-frequency loading on DP600 steel by [Tor+17], it was observed for ultrasonic loadings, a

significant number of microvoids nucleated and coalesced along slip bands. This process led to the

2The French curve represents a curve obtained at constant crack length, which makes it different from the Kitagawa-
Takahashi diagram which was introduced in 1976 [BP05].
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Figure 1.16: S-N and French curves for low-carbon steel, illustrating the increase in fatigue crack
initiation range as the loading level decreases (1 kp·mm−2 = 9.81 MPa), taken from [KG22].

initiation of microcracks. These observations highlight the distinct mechanisms of crack initiation

under different loading frequencies, challenging the conventional categorization by Mughrabi.

For Type I materials, the notion that crack propagation commences immediately from the start is

also not substantiated, especially below the PSB threshold. In [Wei+10], stage I microcracks were only

observed in polycrystalline copper after 1.59·1010 cycles at 1.5 MPa below the PSB threshold, shown in

Fig. 1.17. As elaborated by Stanzl-Tschegg et al. [SS10b], based on fracture mechanics measurements

of threshold stress intensities for crack growth, stage I cracks would be considered non-propagating.

Figure 1.17: Intergranular microcracks (stage I) in copper after 1.59 ·1010 cycles, taken from [Wei+10].
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1.3 Ultrasonic fatigue experimental setup

1.3.1 Ultrasonic fatigue machine & fatigue specimen design

Understanding fatigue mechanisms in the VHCF regime necessitated the development of fatigue

machines operating at higher frequencies. For ultrasonic fatigue test machines, the fatigue specimen is

loaded at its first longitudinal vibration mode. For fully reversible uniaxial tests (R = −1), the fatigue

specimen is fixed at an acoustic horn which amplifies the wave, and the opposite end is free to vibrate.

The configuration used in this dissertation is shown in Fig. 1.18 (a); the horizontal configuration is

designed for use with X-ray diffraction instruments, see [Jac22]. In Fig. 1.18 (b), the applied load to

the fatigue specimen corresponds to a sinusoidal wave. This differs from the applied load for LCF

to HCF regimes shown in Fig. 1.2: at larger stress amplitudes, a constant strain rates allow for the

identification of the cyclic behavior (e.g. hysteresis) to develop differential material laws [LCS02]. The

applied load in the ultrasonic tests instead prioritizes the number of cycles of failure, and the very

slow stress evolution is a negligible effect [BP05].
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Figure 1.18: In (a), an experimental setup of an ultrasonic fatigue test machine with a copper specimen
with hourglass geometry. In (b), the variables used to describe an applied sinusoidal load.

To obtain this applied load, the ultrasonic fatigue specimen must have its first longitudinal vibra-

tion mode at the working frequency of the ultrasonic fatigue test machine, ≈ 20 kHz. To design this,

Bathias [BP05] suggests to first estimate the resonant frequency of the fatigue specimen with a linear

one-dimensional wave propagation differential equation for a rod. A candidate specimen length is

tuned, with known mass density and a dynamic modulus of elasticity, such that the desired resonance

frequency is at the working frequency of the ultrasonic fatigue machine. Linear finite element harmonic

analysis, under fixed-free boundary conditions with a known displacement, facilitates refinement of the

54



1.3. ULTRASONIC FATIGUE EXPERIMENTAL SETUP

ultrasonic fatigue specimen’s geometry based on desired resonance frequency and longitudinal stress

[Jac+21]. Two geometries used in the dissertation are shown in Fig. 1.19, whose design ensures a

Gaussian-like stress distribution along the longitudinal axis (see Fig. 1.10 (a)), with the peak stress at

the centroid.

(a) (b)

Figure 1.19: In (a) and (b), a hourglass and a rectangular ultrasonic fatigue specimen, respectively.

The ultrasonic frequencies can be reached via a piezoelectric transducer that can transform a signal

from the power generator into mechanical vibration. These are readily available by adapting industrial

transducers for ultrasonic fatigue tests, e.g. from Branson [Bra] and Telsonic [AG]. Examples in the

literature which discuss these ultrasonic fatigue machine and the design of a fatigue specimen can be

found in [Bat06; May06; ILI20; Jac+21]. A more detailed working principle of the ultrasonic fatigue

test machine is detailed in Chapter 2. Here, an electrodynamical model demonstrates the working

frequency of the ultrasonic machine is controlled at the minimum voltage to current transfer function

of the system. Additionally, the model predicts the acoustic horn’s motion in response to applied

voltage, facilitating an estimation of peak longitudinal stress for an attached fatigue specimen.

Ensuring the quality of VHCF tests necessitates the control of the applied stress load, e.g. when

investigating fatigue behavior below the PSB threshold in Type I materials. Precise control of the

vibration amplitude is pivotal to prevent a stress overshoot at the pulse onset, which would jeopardize

test accuracy. To mitigate this, industrial generators employ a control circuit that gradually ascends

to a desired voltage, further elaborated in Chapter 2. Additionally, ultrasonic fatigue test machines in

the literature begin to deviate in applied loadings. The relationship between high-frequency loading

and dissipation into heat at the centroid of the ultrasonic fatigue specimen can be problematic for

certain material. Thus, two solutions are presented in the literature:

• A continuous, un-paused loading at ultrasonic frequencies is sustained, and continuous cooling

counteracts self-heating phenomena, facilitated with VORTEC cold air guns, e.g. see in [Gor+23].

• To further mitigate the self-heating phenomena for ultrasonic fatigue tests, and intermittent
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loading with paused time separations of ≈ 2− 10 seconds. This is done through another closed-

loop control circuit that controls the time between two loading blocks [May06]. This also includes

continuous cooling of the fatigue specimen.

Similarly to conventional fatigue tests, variations of the ultrasonic fatigue test machine enable

research into fatigue behavior closer to real-life conditions. For instance, sustained high temperatures

create conditions that are more conducive to diffusion mechanisms within the material, as discussed

in [Ava+22]. Additionally, the load ratio R significantly influences crack-tip plasticity, which in turn

affects the fatigue crack growth rates in Stages I and III more than in Stage II, as depicted in Fig. 1.15.

The former is facilitated by the usage of an induction coil around the ultrasonic fatigue specimen. The

latter requires the ultrasonic specimen to be fixed-fixed so that a mean stress can be applied, usually

by an additional hydraulic machine. Common ultrasonic fatigue tests machines in the literature and

industry with their capabilities are listed in Table 1.1.

Ultrasonic fatigue tests for VHCF research have only been actively pursued for the past two

decades. Although the American Society for Metals [KM07] and the Japan Welding Engineering

Society [Fur+22] recommends a standardization, a consensus has yet to be established within the

ultrasonic fatigue community. This maybe due to the fact that certain metals exhibit different fatigue

behaviors between low- and high-frequency loading effect, see [Tah+23] for a state of the art. Hence,

literature on the use of frequencies over 40 kHz are infrequent3. Even with efforts to mitigate this

through air cooling and pulse-pause loading, a change in the fatigue life still manifests in the S-N

curves of some metals [Tah+23].

1.3.2 Measurements used in ultrasonic fatigue tests

As mentioned previously, the estimation of the longitudinal stress at the centroid of the fatigue

specimen requires a known displacement combined with a harmonic analysis. Thus there is a need to

calibrate the imposed displacement by ultrasonic fatigue test machine, which promotes the elongation

of the fatigue specimen. As far as the author knows, there are three primary instruments whose strain

or vibration measurements enable the estimate of the imposed stress amplitudes:

• The usage of an (intrusive) strain gauge located at the centroid of the fatigue specimen. Calibra-

3Notable exceptions Girard’s work in 1959 at 92 kHz, and Kikukawa’s work in 1965 at 199 kHz [Bat99].
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Notable ultrasonic fatigue test machines Induction
heating

Continuous/
pulse-pause

Load ratio Ref.

University of Natural Resources and Life Sci-
ences, Vienna (BOKU)

Yes
[Sch+20]

Cont., P-P T-T, T-C,
C-C [Kar+17]

[May06]

Institut des technologies et matériaux
avancés (CNAM/ITMA)

No Cont. T-C [Bat06]

Technical University of Lisbon, Lisboa (IST) No Cont., P-P T-C [Lag+12]
Laboratoire Pprime, Poitiers Yes Cont. T-T, T-C [Ppr]
Slovak University of Technology, Bratislava
(STU)

No Cont. T-C [Pus93]

University of Kaiserslautern, Kaiserslautern
(WKK)

No Cont. T-C [Hei+13]

University of Michigan, Ann Arbor (UMICH) Yes Cont. T-C [Shy+04]

Shimadzu (Japan) USF-2000 No Cont. T-T, T-C [Wei+22]
3R (France) MEG20 No Cont. T-T, T-C [3R]
ItalSigma (Italy) MU-26, MU-90 No Cont. T-C [IMC21]
Mbrosia (South Korea) 103 Yes Cont. T-C [Mbr]

Table 1.1: A small overview of notable ultrasonic fatigue uniaxial test machines in the literature. The
acronyms are defined here: P-P, pulse-pause; T-T, tension-compression to tension-tension (−1 < R ≤
1); T-C, fully reversed tension-compression (R = −1); C-C, compression-compression.

tion specimen are utilized with different loading amplitudes. By assuming linear elasticity in the

direction x, the stress amplitude is found with the isotropic linear Young’s modulus: σxx = Eεxx.

• The usage of a non-contact laser vibrometer or laser displacement sensors to measure the free-

end vibration of the fatigue specimen. Given the velocity measurement u̇x, the displacement is

estimated by integration:

ux(t) =

∫︂ t1

t0

u̇x(t)dt (1.1)

This estimated displacement is then used as a boundary condition in a finite element harmonic

analysis considering the linear elastic behavior of the material. From the finite element analysis,

the longitudinal stress distribution along the specimen’s length is available, and the peak stress

at the centroid is the applied stress amplitude.

• The usage of a eddy current displacement sensor to measure the free-end of the fatigue specimen.

The method of calculating the stress amplitude is identical to the laser vibrometer. However,

the eddy current displacement sensors do not work for all metals, and suffer from a smaller

frequency bandwidth compared to laser vibrometers (100 kHz versus 1 MHz).

57



1.3. ULTRASONIC FATIGUE EXPERIMENTAL SETUP

However, other various experimental measurements are possible, shown in Table 1.2. The rows

remaining in Table 1.2 are discussed briefly in the following:

• Thermal measurements of the temperature variation on the surface of the specimen. This increase

of temperature is an accumulation of heat generating effects: e.g. dissipation due to internal

friction due dislocation movement [Mac76], microplasticity, and the plastic zone at crack tip

especially during crack propagation [Ran04]. Experimental measurements of the surface of the

specimen recorded by high speed infrared cameras for non-contact [RWP08], or with the use of

thermocouples [Pap+02]. As shown by the work done by Ranc [RWP08] in Fig. 1.20, high-speed

infrared cameras allows for sufficient time resolution to monitor crack propagation.

• Acoustic emission refers to the propagation of transient elastic waves within a material, stem-

ming from the swift energy discharge from acoustic sources like the nucleation of microcracks

[MVK15]. It’s claimed by Máthis et al. [Mát+12] that even Frank-Read sources and twin nu-

cleation generate acoustic waves. These elastic waves propagate through the fatigue specimen

in the form of sound waves [Shi+10]. For non-ultrasonic fatigue tests, the measurement and

analysis of acoustic emissions typically use thresholded acoustic events [Han+11], cumulative

spectral energy [Shr+21], or Shannon information entropy [Cha+18]. In ultrasonic fatigue tests,

a setup is shown in Fig. 1.21, where thresholded acoustic events [Sel+21] have been demonstrated

successfully for an in-contact piezoelectric microphone. This nondestructive technique has been

Measurement Instruments Uses in ultrasonic fatigue Reference

Strain Strain gauges Estimate stresses at specimen centroid [Wil80]

Velocity,
displacement

Laser vibrometer
Eddy current sensor

Estimate frequency drift
Detection of crack
Estimate stresses at specimen centroid

[Hac+21]
[Kum+09]
[Jac+21]

Thermal Infrared camera Estimation of dissipation into heat [Bla+15]

Acoustic Acoustic microphone Detection of crack [Shi+10]

Ferromagnetic Eddy current sensor Observe phase change-based damage [BWM22]

X-ray Computed tomography Mesoscopic stresses and strains
Observe phase change
Detection of crack

[Jac+21]
[Fit+20]
[Mes+20]

Table 1.2: Examples of experimental measurements used for characterization for ultrasonic fatigue
tests along with an example found in literature.
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Figure 1.20: In (a), the temperature distribution across the specimen’s surface just before the occur-
rence of fracture. In (b), the progression of averaged temperature on the specimen’s surface immedi-
ately prior to fracture, with the failure occurring at Nf = 8.37× 107 cycles, taken from [RWP08].

in practice since the 1980s [FB95] with the advantage of being insensitive to geometries, but

has disadvantages due to non-contact microphones being sensitive to external noises not of the

fatigue specimen, e.g. the air cooling of a fatigue specimen. This leads to difficulty correlating

acoustic events with actual material damage.

Figure 1.21: The adapted ultrasonic fatigue test machine from BOKU for an in-situ acoustic emission
monitoring. The acoustic microphone is fixed at the bottom of the tension rod, taken from [Sel+21].

• The ferromagnetic measurement, i.e. the eddy current sensor, has previously been mentioned

in order to estimate displacements. However, Barton et al. [BWM22] have also extended its

use to monitoring microstructural changes in nickel-based alloys subjected to high-temperature

and cyclic mechanical loading. The eddy current sensor is sensitive to changes in the subsurface
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microstructure, specifically chromium depletion, which was continuously tracked and correlated

with magnetic material properties.

• X-ray measurements utilize computed tomography in order to obtain imagery of the materials

bulk. This is done through accelerating X-rays, usually by synchrotron radiation, through the

fatigue specimen and into a detector. The X-rays that are absorbed by the fatigue specimen

produces contrast between microstructure and defects within the material. The benefit in this

method has been shown to be useful in various literature. For example in [Mes+20] the gener-

ation of voxel data with resolutions less than 1µm3 allows to see hairline internal cracks. This

resolution has also been useful to study phase change-based fatigue damage in [Fit+20]. To the

author’s knowledge, X-ray tomography cannot be performed in-situ, and requires stoppage of

the test.

1.4 Exploiting the high-frequency loading in ultrasonic fatigue tests

Given the various possible in-situ measurements, there is interest in exploring if the high-frequency

loading in ultrasonic fatigue tests can provide more information on the material state. Kumar et

al. [Kum+09] introduced the idea of analyzing the vibrating free-end of the fatigue specimen. In

this context, the traveling high-frequency elastic wave through the fatigue specimen has a nonlinear

distortion which is measurable in the vibration signal. A core characteristic of linear systems is

their incapacity to transfer energy between different frequencies [Pea99]. Consequently, nonlinear

distortion refers to the energy transfer from the fundamental harmonic to the higher harmonics.

The definition of harmonics is presented in Fig. 1.22: Given a vibration signal measured in their

experimental setup, a short time window of the signal is analyzed in the frequency domain through

the Fourier transform. The fundamental harmonic refers to the sinusoidal amplitude and frequency of

the longitudinal vibration, and higher harmonics refer to integer multiples of this sinusoid.

Kumar et al. [Kum+09] introduces a nonlinear damage index that is extracted in-situ during the

ultrasonic fatigue test. Specifically, the harmonics’ amplitude ratio of the second harmonic with the

squared fundamental harmonic is defined for the measured signal:

α(t) := 20 log10

(︃
A2(t)

A2
1(t)

)︃
; and αrel(t) := α(t)− α(0), ∀t > 0 (1.2)

where α is the ratio, and αrel is the time relative index. The notation in the works of Kumar et
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Figure 1.22: In (a), vibration signals are measured and in (b) are visualized in the frequency domain
by Fourier transform of the vibration signal. In (c), an an ultrasonic fatigue test frequency spectra
showing a fundamental harmonic at approximately 20 kHz and its higher harmonics.

al. [Kum+09] uses β and βrel, whereas here it is α and αrel, respectively. The notation is differentiated

due to the fact that β is the acoustic nonlinear parameter and has a different value from α, but α ∝ β.

(a) (b)

Figure 1.23: In (a), the amplitude spectra of feedback signals collected at various cycles during an
ultrasonic fatigue test of 6061-T6511 Al alloy at 130 MPa. In (b), the changes in βrel and resonant
frequency throughout the same ultrasonic fatigue test, taken from [Kum+09].

Kumar et al. [Kum+09] study the evolution of their nonlinear damage index, a testing campaign

was performed for an aluminum alloy for different loading amplitudes, which is shown in Fig. 1.23.

With the initiation and progression of the major crack, the measured αrel and the system’s resonant

frequency increased and decreased rapidly, respectively, shown in Fig. 1.23 (a) at a stress amplitude

of 160 MPa and in (b) at 130 MPa. A general trend of decrease in αrel during the early stages of

cycling and its rapid increase towards the end of the test is observed. However, the early life decreases

were posited by Kumar et al. to cyclic softening or the increase in temperature of the samples but
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not researched further. Additionally, Kumar et al. investigated the correlation with the crack growth

from fractograph with the per-cycle increase of αrel and decrease of resonant frequency. This was done

by correlating the values of dαrel/dN and −df/dN with da/dN where a is the crack size and N the

number of cycles, during the crack growth portion of the ultrasonic fatigue test, see Fig. 1.24. When

comparing their slopes with the dimensions of the initial cracks used for calculating Paris law, a good

agreement was found for dαrel/dN .

Figure 1.24: The evolution of βrel and the slopes dβrel/dN correlated with the crack size measured
from aluminum alloy fatigue specimens, taken from [Kum+10].

The works of Kumar et al. [Kum+09] have demonstrated that under high-frequency loading, a

nonlinear phenomena of second harmonic generation is present in the vibration signal of the ultrasonic

fatigue test. Due to its accessibility and in-situ application, the approach has been widely adopted

by those in the ultrasonic fatigue community [Kum+10; Kum+11; MFS13; Fit+14; Li+15; Li+16;

Ban+18; Mes+20], but has only been qualitatively used to infer macrocrack initiation and propagation.

Additionally, there are fundamental oversights in the usage of β in ultrasonic fatigue tests and will be

demonstrated in Chapter 2.

1.5 Summary

This chapter presents a comprehensive review of fatigue behavior of metallic materials from the

LCF to VHCF, within the context of irreversible cyclic slip by Mughrabi [Mug84]. It’s well ac-

cepted that the unique micromechanical changes in a metallic material during fatigue loadings are a

progressive sequence of events. However, for HCF and VHCF regimes, fatigue mechanisms become
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increasingly material specific and when damage initiates becomes uncertain. This underlines the crit-

ical importance of in-situ measurements whose analysis is intricately linked to the specific fatigue

mechanisms prevalent in HCF and VHCF regimes during ultrasonic fatigue tests.

The analysis of the nonlinear harmonic generation in the vibration fatigue specimen during ultra-

sonic fatigue tests, inspired by Kumar et al. [Kum+09], is adopted in this dissertation. In order to

study the nonlinear harmonic generation, vibrations measurements via laser vibrometers are a good

candidate for in-situ monitoring, as they are non-intrusive (compared to strain gauges) and are easily

accessible. The dissertation aims to contributes to the broader understanding of ultrasonic fatigue in

metallic materials through some key questions: At what stage in the fatigue life cycle does microcrack

initiation occur? And what are the sources of the higher harmonics observed in the tip vibration of

ultrasonic fatigue specimens? These inquiries are crucial towards understanding the complex fatigue

behavior of materials in the HCF and VHCF regimes. Ideally, analysis of these signals can provide

insights into specific microstructural changes occurring within the material.
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Chapter 2

Analytical models for forward problems in
ultrasonic fatigue
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The second chapter of this dissertation is dedicated to presenting the forward problem that models the nonlinear

harmonic generation of an ultrasonic fatigue specimen. Specfically, microscopic and mesoscopic models are

presented whose nonlinear harmonic generation manifests under dynamic loading. The dynamics of the fatigue

specimen is then modeled where material nonlinearities are defined at its centroid. A clear delineation between the

ultrasonic fatigue test machine and the fatigue specimen becomes essential when one considers the assumptions

of boundary conditions on the fatigue specimen model. Experimentally, it can be observed that there are higher

harmonics in the vibration measured at the horn. With this in mind, a model of the fatigue specimen is proposed

that is invariant to experimental setup and control and can provide a basis to model material nonlinearities.
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2.1 Introduction

Chapter 2 is dedicated to the comprehensive modeling of an ultrasonic fatigue specimen and

test machine to understand the harmonic generation seen in the vibration of the fatigue specimen.

The emphasis is to distinguish the sources of the harmonic generation, and understand the material

nonlinearities that manifest from damage and microplastic mechanisms in the fatigue specimen. The

structure of this chapter follows a hierarchical order that reflects the various length scales present

within the fatigue specimen. This organization facilitates a systematic examination of the specimen’s

responses under ultrasonic fatigue loading. The first section details nonlinear fatigue-based models

below the macroscopic scale and their higher harmonic generation:

• First, nonlinear elasticity (or the acoustic nonlinearity) is considered since it is frequently de-

scribed by the acoustic community and recently adopted by the ultrasonic fatigue community.

The derivation of the nonlinear acoustic parameter for longitudinal wave motion is detailed,

where the interatomic potential of a crystal lattice is considered. The issues with this charac-

terization is detailed and numerical simulations substantiate the fact that nonlinear elasticity

cannot describe various fatigue mechanisms. This substantiates a different modeling approach

above the atomic scale.

• Second, its proposed a mesoscopic description of the material nonlinearity due to fatigue mech-

anisms in a representative volume. Specifically, two sources of higher harmonic generation are

proposed: microcracks and microplasticity. This is facilitated by using a mean-field homogeniza-

tion scheme of multiple phases of Eshelby’s inclusions [Esh57]. Additionally, the inclusions are

defined to have nonlinear behavior: the microcracks are modeled as penny-shaped cracks with a

specific closure criterion and microplastic inclusions modeled as spheres exhibiting plastic behav-

ior. Compared to classical homogenization by finite element analysis, this approach accelerates

the computation of the dynamical response greatly.

• Third, a uniaxial model of a mode I macrocrack is considered. This is defined when the crack

length supersedes the size of the representative volume element. Here the change in the ratio

between the crack surface and total surface area characterizes a stiffness degeneration.

These nonlinearities represent the different possible material states and their length scales within an
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ultrasonic fatigue specimen. The nonlinear harmonic generation for these models are detailed when

their fatigue-based parameters vary, e.g. the accumulation of fatigue damage corresponds to an increase

of the volume fraction of microcracks with closure. The emphasis here demonstrates a dependency of

the fatigue loading (a pure harmonic input verus a multi-harmonic input) and the material state on

the generation of higher harmonics during ultrasonic fatigue tests.

The second section considers a macroscopic model of the structure of an ultrasonic fatigue specimen

and the dynamic loading it undergoes. This enables description of the effects of mass and geometry,

as well as any localized behavior which occurs at the centroid of a fatigue specimen. When material

nonlinearities are defined at the centroid, the dynamical behavior of the fatigue specimen differs.

For instance, stiffness degeneration due to microcracks can lower the resonance frequency and their

closure manifests higher harmonics. The experimental setup of an ultrasonic fatigue tests has dynamic

properties which can be exploited, namely that the ultrasonic fatigue specimen is solicited at its first

longitudinal mode (≈ 20 kHz), and thus forms a standing wave. A reduced order model in this narrow

frequency range by the vibration normal modes can be used instead of a finite element model, namely

the classic approach of modal truncation [GR15].

The third section describes an electrodynamical model of the ultrasonic fatigue test machine with-

out an attached fatigue specimen, described through transfer functions and validated with experimen-

tal data. However, a frequency analysis of the experimental applied voltage, current to the piezoelectric

transducer, and the experimental velocity data of the acoustic horn reveals small system nonlinearities

which manifest as higher harmonics. This challenges the conventional assumption in the ultrasonic

fatigue literature that the acoustic horn provides a pure harmonic input wave to the fatigue specimen.
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2.2 Nonlinear material models and higher harmonic generation

2.2.1 Nonlinear acoustics of atomic lattices

Symbol Description

a, r Undeformed and deformed interatomic distance
A,B Interatomic attractive and repulsive forces
C Stiffness tensor
E, ν Young’s modulus, Poisson’s ratio
f, ω Frequency and angular frequency
L Length of a slender bar
U Internal energy
u(X1, t) Longitudinal motion at position X and time t
β, γ Acoustic nonlinearity parameter of the second and third harmonic
κ, λ Wavenumber, wavelength
ϕ,Φ Interatomic potential, continuum potential
ρ Mass density
σ, εεε Stress and strain tensors
⟨□⟩V Volume averaged quantity

Table 2.1: For the nonlinear acoustic lattice model in Sec. 2.2.1 only, this notation is adopted.

Early research into ultrasonic harmonic generation suggested that the crystal lattice as a cause

for this second harmonic generation for vibrating metals. This was modeled as nonlinear elasticity

in a atomic lattice, established by acoustic studies in the 1960s [BT63; BF65]. Most these studies

focused on single crystals or samples with very low dislocation densities, with the prevailing body of

research employing bulk waves for ultrasonic harmonic generation, see [Mat+15] for a state of the art.

Here, it’s derived an atomic description of a nonlinear theory of elasticity [Mur51]. Subsequently, an

analysis of the acoustic nonlinear parameter is given, focusing on the generation of higher harmonics

using the loading parameters derived from ultrasonic fatigue tests. This subsection distinguishes the

results from nonlinear acoustic community, with the work later presented in this dissertation.

Nonlinear elasticity due to the crystal lattice

Consider a single crystal FCC lattice, which will serve as a nonlinear medium for wave motion,

shown in Fig. 2.1 (a). The interatomic potential energy ϕ for two atoms with an undeformed atomic
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separation distance a can be broadly defined as:

ϕ(a) := A(a) + B(a) (2.1)

where A is a repulsive force and B is an attractive force. Here an appropriate potential for metallic

bonding should consider the density of the electron cloud, e.g. the Finnis-Sinclair potential [FS84].

The derivative of its potential energy F (a) := dϕ(a)/da gives the associated interatomic force, which

is zero at the potential energy well. The interatomic potential and force for two atoms with respect

to their interatomic distance is schematized in Fig. 2.1 (b). Here it can be seen that the interatomic

elasticity (in the Hookean sense) is not perfectly linear.

(a) (b)

Interatomic distance a

F
ϕ

(1,0)

(*)

2
Normalized
interatomic
distance

Figure 2.1: In (a), a FCC crystal lattice whose plane wave motion is of interest. A string of atoms
are modeled with a nonlinear stiffness. In (b), a schematic of interatomic potential energy and force
of two atoms.

This observation was originally described as the anharmonicity of the crystal lattice in the 1950s.

To model this interatomic nonlinear elasticity under isentropic assumptions, the interatomic potential

energy is approximated by Taylor series expansion at the deformed atomic separation distance r:

ϕ(r) ≈ ϕ(a) +
(r − a)2

2!

(︃
d2ϕ

dr2

)︃
r=a

+
(r − a)3

3!

(︃
d3ϕ

dr3

)︃
r=a

+ . . . (2.2)

The potential energy density of the lattice ρU is taken as a sum over N − 1 touching atomic pairs in

the unit cell:

ρU =
1

V

N−1∑︂
i=1

ϕi(r) (2.3)

where V is the volume of the unit cell with a mass density ρ. To transition from the atomic scale to a

macroscopic perspective, one applies the continuum limit as r, a→ 0. Let the compatibility equations

for finite deformations be εij := 1
2(uij+uji+ukiukj), where uij = ∂ui/∂Xj is the displacement gradient

and X is the material point. The continuum potential energy attributable to strains, Φ(X, εij), is
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written as a Taylor series approximation of nonlinear elasticity:

Φ(X, εij) = Φ0 + C(1)
ij εij +

1

2!
C(2)
ijklεijεjk +

1

3!
C(3)
ijklmnεijεjkεmn + . . . (2.4)

where the superscript (□) refers to the order of differentiation and the stiffness tensors C are:

C(1)
ij =

∂(1)Φ

∂εij
; C(2)

ijkl =
∂(2)Φ

∂εij∂εkl
; C(3)

ijklmn =
∂(3)Φ

∂εij∂εkl∂εmn
; . . . (2.5)

with C,σ, εεε written in Voigt notation [Voi66]. Therefore, the nonlinear constitutive relationship is:

σij =
∂Φ

∂εij
= C(1)

ij + C(2)
ijklεij +

1

2
C(3)
ijklmnεijεjk + . . . (2.6)

where C(1) ≡ σ0 is a static initial stress in the solid.

For displacements along a single direction X1 without the presence of a static stress and simplified

using nonlinear parameters, one can write the constitutive relationship to the third term:

σ11 = C(2)
1111ε11 +

1

2
C(3)
111111ε

2
11 +

1

6
C(4)
11111111ε11

3 + . . .

= C(2)
1111ε11 +

1

2
βC(2)

1111ε
2
11 +

1

6
γC(2)

1111ε11
3 + . . .

(2.7)

The quantities β and γ are nonlinear parameters which relate the longitudinal higher order stiffness

coefficients to the conventional stiffness coefficient. Since the goal is to describe the relationship in

terms of C(2)
1111, the superscript is dropped from notation. In fact, β has analytical derivations [Can94]

where the Brugger elastic constants [Bru64] defined for a direction of the crystal lattice is projected

along the coordinate of motion [TT77]. For non-single crystal materials, analytical derivations of β are

nonexistent in the literature and instead rely on the measurement of β through the inverse problem

of longitudinal wave motion.

Nonlinear acoustic parameter for a longitudinal propagating wave

In nonlinear acoustic literature, nonlinear elasticity is quantified by the effect of β on the one-

dimensional motion of a longitudinal (plane) wave. Through this derivation, an estimate of β can be

measured in practice. For longitudinal motion u(X1, t) along the X1 direction and neglecting external

body forces, the one-dimensional equation of motion is:

ρ
∂2u

∂t2
=
∂σ11
∂x

(2.8)
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where x ≡ X1 is written for ease of reading. By defining the wave speed c2 := C1111/ρ, combining

Eqs. (2.7) and (2.8), and truncating the term γ, the resulting nonlinear wave equation is:

∂2u

∂t2
= c2

∂2u

∂x2

[︃
1 + β

∂u

∂x

]︃
(2.9)

The classic assumption taken by the acoustic community [Mat+15] is that Eq. (2.9) is subject to a

single harmonic wave at its boundary condition u(0, t) = A1 cos(ω1t), where ω := 2πf .

By using a perturbation approximation, the solution of Eq. (2.9) is u = u(0)+u(1), where u(0) is the

contribution to the linear solution, u(1) the perturbation due to the nonlinearity, and |u(0)| ≫ |u(1)|.

The contribution u(0) is the solution to the linear wave equation:

∂2u(0)

∂t2
− c2∂

2u(0)

∂x2
= 0; u(0)(0, t) = A1 cos(ω1t) (2.10)

The solution to Eq. (2.10) subject to the above boundary condition is:

u(0)(x, t)x>0 = A1 cos(κx− ω1t) (2.11)

where κ := ω/c is the wave number. The first-order perturbation for u(1) is obtained by substituting

Eq. (2.11) into the nonlinear portion of Eq. (2.9) which gives:

∂2u(1)

∂t2
− c2∂

2u(1)

∂x2
= c2β

∂u(0)

∂x

∂2u(0)

∂x2
;

= c2
βA2

1κ
3

2
sin(2κx− 2ω1t);

u(1)(0, t) = 0 (2.12)

It can be seen that the nonlinear term in Eq. (2.12) is a second harmonic. One general solution of

Eq. (2.12) has the form:

u(1)(x, t)x>0 = F (x) cos(2κx− 2ω1t) +G(x) sin(2κx− 2ω1t) (2.13)

Here the coefficients are assumed to be functions of x. Due to the fact that the boundary condition

dictates that the second harmonic disappears at x = 0, the coefficients F (x) and G(x) must vanish as

well. When substituting Eq. (2.13) into Eq. (2.12):(︃
4κ
dG

dx
+
d2F

dx2

)︃
cos(2κx− 2ω1t) +

(︃
−4κ

dF

dx
+
d2G

dx2

)︃
sin(2κx− 2ω1t) = −βA

2
1κ

3

2
sin(2κx− 2ω1t)

(2.14)

and equating coefficients of the harmonic terms, one obtains:

4κ
dG

dx
+
d2F

dx2
= 0; and − 4κ

dF

dx
+
d2G

dx2
= −βA

2
1κ

3

2
(2.15)
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A consistent solution to these coefficients can be found if dG/dx = d2F/dx2 = 0: this implies that

G(x) = constant, d2G/dx2 = 0, and that dF/dx = constant. This simplifies Eq. (2.15) to:

dF

dx
=
βA2

1κ
2

8
; and

∫︂
dF

dx
= F (x) =

βA2
1κ

2x

8
+ Fc (2.16)

where Fc is a constant of integration. However, since the second harmonic must disappear at x = 0,

both G(x) = 0 and Fc = 0.

The resulting perturbation solution u = u(0) + u(1) is the same amplitudes found in existing

nonlinear acoustic literature [TT77; Can84]:

u(x, t)x>0 = A1 cos(κx− ω1t) +
βA2

1κ
2x

8
cos(2κx− 2ω1t) (2.17)

If the perturbation solution can be solved for an additional iteration with the third term γ in Eq. (2.9),

as done by [TT77]. This gives the resulting solution:

u(x, t)x>0 = A1 cos(κx− ω1t) +
βA2

1κ
2x

8
cos(2κx− 2ω1t) +

γA3
1κ

4x2

32
cos(3κx− 3ω1t) (2.18)

The coefficients β and γ can be solved for, with A2 := βA2
1κ

2x/8 and A3 := γA2
1κ

4x2/32:

β =
8

κ2x

A2

A2
1

; γ =
32

κ4x2
A3

A3
1

; (2.19)

When written in this form, β is commonly referred to the acoustic nonlinearity parameter causing

second harmonic generation (SHG) and γ causes third harmonic generation (THG) [Mat+15].

The relationships of Eq. (2.19) allow for experimental measurements of β. These exist for basic

elements like single crystal or polycrystalline copper [Li+19], but come from a sample and neglect the

microstructure of the material. The experimental measurements of of β rely on thickness propagation

with an ultrasonic transducer and receiver [Mat+15] with the solution of Eq. (2.18). Some experimental

values of β for metallic materials are given in Table 2.2. Due to the smallness of THG of γ has garnered

limited attention within the acoustic community, resulting in a sparse literature.

Material Measured β Wave frequency Respective reference(s)

Polycrystalline copper 1.6 - 3.6, 2.1 - 3.5 5 MHz, 2.3 MHz [Li+19; Par+21]
Al 6061-T6 5.1, 5.0 - 5.8 10 MHz, 10 MHz [Li+85; KSJ17]
Al 2024-T4 7.7 10 MHz [Li+85]
Single crystal copper [100] 5.2 30 MHz [YCB81]
Single crystal copper [110] 11.2 30 MHz [YCB81]
Single crystal copper [111] 7.9 30 MHz [YCB81]

Table 2.2: Measured absolute parameters of β at room temperature found in the literature.
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Nonlinear acoustic parameter for a longitudinal standing wave

Instead of using the solution of a longitudinal propagating wave, a longitudinal standing wave is

sought for since this kind of wave motion is formed for a fatigue specimen during ultrasonic fatigue

tests. This corresponds to an additional reflective wave at the free end of the fatigue specimen. In a

similar fashion to before, the 1D simplified model now requires the displacement to be maximum at

both ends of the rod, via a harmonic solution:

∂u

∂x

⃓⃓⃓⃓
x=0

= 0; and
∂u

∂x

⃓⃓⃓⃓
x=L

= 0; u(x, t) = real
(︁
U(x)ejω1t

)︁
A perturbation approximation of the nonlinear wave equation Eq. (2.9) has a solution of u = u(0)+u(1),

where u(0) is the contribution to the linear solution, u(1) the perturbation due to the nonlinearity, and

|u(0)| ≫ |u(1)|. The contribution u(0) is the solution to the linear wave equation:

∂2u(0)

∂t2
− c2∂

2u(0)

∂x2
= 0; u(0)(x, t) = U(x)ejω1t (2.20)

The general harmonic solutions to Eq. (2.20) of the linear wave equation yields:

U = Aejκx +Be−jκx; and
∂U

∂x
= jAκejκx − jBκe−jκx (2.21)

for unknown coefficients A and B. The boundary conditions ∂U
∂x

⃓⃓
x=0

∂U
∂x

⃓⃓
x=L

= 0 gives the values of

the undetermined coefficients:

jκ(A+B) = 0 =⇒ A = B and sin(κL) = 0 =⇒ κL = nπ; n ∈ N (2.22)

for the nth mode. For the first longitudinal mode n = 1, and substituting Eqs. (2.21) and (2.22) into

Eq. (2.20) obtains the solution to u(0) for a maximum amplitude A:

u(0)(x, t) = A cos(κx) cos(ω1t) (2.23)

The first-order perturbation for u(1) is obtained by substituting Eq. (2.23) into the nonlinear portion

of Eq. (2.9) which gives:

∂2u(1)

∂t2
− c2∂

2u(1)

∂x2
= c2β

∂u(0)

∂x

∂2u(0)

∂x2
;

= −c2βA2κ3 sin(κx) cos(κx) cos2(ω1t)

= −1

4
c2βA2κ3 sin(2κx)− 1

4
c2βA2κ3 sin(2κx) cos(2ω1t)

(2.24)
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which is simplified using the trigonometric identity cos2(θ) = 1+cos(2θ)
2 and the double-angle identity

sin(2θ) = 2 sin(θ) cos(θ).

It can be seen that the nonlinear term in Eq. (2.24) is a second harmonic with an additional static

term (to be neglected as a non-oscillatory deformation which does not contribute to the standing

wave). One general solution of Eq. (2.24) has the form:

u(1)(x, t) = Q(x) cos(2ω1t) +R(x) cos(2ω1t) (2.25)

Here the coefficients are assumed to be functions of x. When substituting Eq. (2.25) into Eq. (2.24):(︃
−4ω2

1Q− c2
d2Q

dx2

)︃
cos(2ω1t) +

(︃
−4ω2

1R− c2
d2R

dx2

)︃
sin(2ω1t) =

−c
2βA2κ3 sin(2κx)

4
cos(2ω1t)−

c2βA2κ3 sin(2κx)

4

(2.26)

and equating coefficients of the harmonic terms, one obtains:

−4ω2
1Q− c2

d2Q

dx2
= −c

2βA2κ3 sin(2κx)

4
; and − 4ω2

1R− c2
d2R

dx2
= 0 (2.27)

The stress-free boundary conditions impose:

dQ

dx
|(x=0) = 0;

dQ

dx
|(x=L) = 0;

dR

dx
|(x=0) = 0;

dR

dx
|(x=L) = 0

A consistent solution to these coefficients can be found if R(x) = 0 and Q(x) = S sin(2κx). The

particular solution of Q(x) is to be determined by substitution Q(x) = S sin(2κx) into Eq. (2.27) to

yield the ODE:

(4ω2
1S + 4c2κ2S) sin(2κx) =

c2βA2κ3

4
sin(2κx)

The particular solution is found as:

S =
c2βA2κ3

16(ω2
1 + c2κ2)

=⇒ Q(x) =
c2βA2κ3

16(ω2
1 + c2κ2)

sin(2κx) =
βA2κ

32
sin(2κx) (2.28)

The resulting perturbation solution u = u(0) + u(1) for a standing wave, at the first longitudinal

mode, gives a different result compared to the wave propagation of Eq. (2.17):

u(x, t) = A cos(κx) cos(ω1t) +
βA2κ

32
sin(2κx) cos(2ω1t)

= A1 cos(ω1t) +A2 cos(2ω1t)

(2.29)
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where A1 = A cos(κx) is the first harmonic amplitude, and β:

βstanding =
32 cos2(κx)

κ sin(2κx)

A2

A2
1

(2.30)

Note that βstanding ∝ A2/A
2
1 for a propagating wave in Eq. (2.19), and that the coefficient is slightly

larger for a standing wave.

Numerical example

Here, a numerical simulation of the propagating wave solution at the first longitudinal mode are

used to study the effect of β. In order to elicit the first longitudinal wave at frequencies used in

ultrasonic fatigue tests (f ≈ 20 kHz), the resonant frequency occurs when the length of the bar is half

the wavelength of the wave. The relationship for a non dispersive wave mechanism between wavelength

λ, frequency f , speed of sound c, and resonant length L is given by the following:

c = fλ; λ = 2L; L =
c

2f
(2.31)

Next, it is assumed that the stresses in the radial direction are zero (1D stress assumption). The

relationship between the speed of sound and the material constants E, ν are used:

c =

√︄
E

ρ
(2.32)

The boundary condition u(0, t) = A1 cos(ω1t) is applied for the propagating wave solution.

For numerical simulation, values of polycrystalline copper are used: with E = 130 GPa and

ν = 0.34, the resulting speed of sound is c = 3817 m/s and the resonant length of the slender bar must

be L = 9.54 · 10−2 m. The boundary condition’s amplitude is A1 = 1 µm, which corresponds to the

same magnitude used for polycrystalline copper ultrasonic fatigue experiments in the VHCF regime

(see Chapter 4). For β = 2.6 (refer to Table 2.2), Fig. 2.2 (b) illustrates the standing wave over two

stabilized periods.

In Fig. 2.3 (a), the velocity spectra of the bar’s tip x = L is shown for the same solution, which shows

the fundamental harmonic and second harmonic when β = 2.6. Here, it shows that the ratio between

the second harmonic amplitude and fundamental harmonic differs by tens of magnitude compared to

experimental results for an undamaged specimen in Chapter 4. This discrepancy cannot be explained

by the variation of experimentally measured β shown in Table 2.2. Numerically this is shown with the
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Figure 2.2: In (a), the problem of longitudinal standing wave motion in a slender bar is shown. In
(b), the standing wave solution for the bar of two periods.

second harmonic and fundamental harmonics’ amplitude ratios which are plotted for 1.6 ≤ β ≤ 3.6

in Fig. 2.3 (b). Here, it can be seen the variation of the harmonic amplitude ratios only range from

≈ 4 · 10−5 to 9 · 10−5. This indicates that the material nonlinearity of β coupled with Eq. (2.9)

cannot solely describe the harmonic amplitude ratios seen in the fatigue specimen’s tip vibration for

the ultrasonic fatigue tests in Chapter 4. Additionally, the nonlinearity induces a frequency shift

independent of the value of β (see the term of κx − ω1t in Eq. (2.17)). Finally, the ratio of energy

distribution between the fundamental stress harmonic and second harmonics is constant. Therefore,

to visualize the energy transfer from the fundamental stress harmonic to the higher harmonics due to

the nonlinearity, this ratio is adopted henceforth.
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Figure 2.3: In (a), the velocity frequency spectra for the bar’s tip motion at x = L with the fundamental
and second harmonic. In (b), the ratio of the second to fundamental harmonic for varying β values
for polycrystalline copper.
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Issues and departure from the acoustic nonlinearity model for ultrasonic fatigue

Here it’s remarked on β’s usefulness in ultrasonic fatigue research becomes limited. Firstly, the

wave equation of Eq. (2.18) corresponds the longitudinal propagation solution to a pure harmonic

input wave. For an ultrasonic fatigue test, this corresponds to the vibration at the junction of the

acoustic horn and the base of the ultrasonic fatigue specimen. However, the fatigue specimen is

solicited at a standing wave. Therefore, the nonlinear wave equation was solved for a steady-state

solution, i.e forming a standing wave. The amplitude ratios reveals that the ratios for β values for

polycrystalline copper differ with the experimentally measured harmonic amplitude ratios in ultrasonic

fatigue experiments by factors of ten.

Additionally, it’s been mentioned by the author [Kis+21] and others [Heb+23] that the input

wave in ultrasonic fatigue tests is in fact multi-harmonic. The multi-harmonic input is due to the

nonlinearities coming from the load train, i.e. the piezoelectric converter and the power and signal

generator circuit, which is detailed later in Section 2.4. This consequently implies that the harmonics

present in the tip vibration of an undamaged fatigue specimen are not representative of only nonlinear

acoustic parameter β but also the input vibration.

Lastly, the acoustic nonlinearity parameter is a distributed material property. This does not reflect

the fact that the active fatigue mechanisms are localized at the centroid volume of the ultrasonic

fatigue specimen. Experimentally, the accumulation of material nonlinearities as heterogeneities at

this centroid volume has been observed in fractograph and X-ray diffraction imagery (see Chapter 1).

For these reasons, a departure from the acoustic nonlinearity parameter is warranted. Instead, the

acknowledgement of the the nonlinear influence of microscale defects such as microcracks and voids,

dislocation structures, and other forms of microplasticity is warranted. Nonlinear contributions from

microcracks, attributed to contact nonlinearity [Bro+14], have been thoroughly explored by both the

acoustic and dynamics communities [Kle+17; Bro+14]. It is well documented that macroscopic crack

closure, also known as a breathing crack, generates strong even-integer higher harmonics [Ruo+96;

CDY01]. Macroscopic hysteresis-type behaviors, whether defined for materials [GJ99] or friction in

structures [GN01], generate strong odd-integer higher harmonics. Consequently, should microscale

defects exhibit a parallel mechanism to their macroscopic analogs, a similar pattern in their nonlinear

harmonic generation can be anticipated. Thus, the following subsection proposes models of the mate-
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rial nonlinearities that capture the nonlinear higher harmonic generation due to the accumulation of

material nonlinearities as heterogeneities.

2.2.2 Microplasticity and microcrack homogenization models

Symbol Description

a, b, c Principle axes of ellipsoid
A,B Strain and stress concentration tensors
C,S Stiffness and compliance tensor
E,P Eshelby’s and Hill’s tensor
E, ν Young’s modulus, Poisson’s ratio
h The hth harmonic
I2, I4 Second and fourth-order identity tensor
n Outward normal unit vector
N Normal to yield (stress) surface
T Microcrack limit tensor
S, V Surface, volume
α = c/a Ellipsoidal aspect ratio
εεε,εεε Microscopic, macroscopic strain tensors
∆□ Incremental value
κ, µ Bulk and shear modulus
ρ Mass density
σ,σ General or microscopic, macroscopic stress tensors
ω, f Angular frequency and frequency
ξ Volume fraction
□, ⟨□⟩V Macroscopic or volume averaged quantity

Table 2.3: For the microplasticity and microcrack homogenization models in Sec. 2.2.2 only, this
notation is adopted.

To enable a description of material-based heterogeneities within the centroid of an ultrasonic fa-

tigue specimen, the nonlinear mesoscopic effect must be modeled. The objectives of this subsection are

multiple: First, mean-field homogenization theories are introduced since they offer a computationally

attractive alternative to directly modeling microscopic heterogeneities by finite element analysis. The

homogenization occurs for a representative volume element (RVE) which represents a section of the

microstructure that statistically mirrors the behavior at the macroscopic scale. Second, two sources of

higher harmonic generation due to fatigue mechanisms are modeled: diffuse microplastic and microc-

rack inclusions, see Fig. 2.4. Due to their nonlinear nature, linearization schemes are implemented for

homogenization. Additionally, mesoscale models – which discuss material behavior at a length scale
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at the same order as the wavelength of the ultrasonic wave– are more appropriate; fatigue researchers

may be more interested how these relevant fatigue mechanisms accumulate during ultrasonic fatigue

tests. Lastly, a rudimentary crack model is introduced in the cases when the crack length violates the

length-scale assumptions made by homogenization theories. This corresponds to the effect of a large

crack near fatigue failure during ultrasonic fatigue tests.

(a) (b)

V

Microcracks

Microplastic zones

Homogenization

Equivalent materialHeterogeneous material

Figure 2.4: In (a), a heterogeneous material at lower length scales is modeled as having microplastic
and microcrack inclusions. Through homogenization, an equivalent material is found. In (b), SEM
imagery shows evidence of microscopic cracks in C70 steel in the VHCF regime, taken from [Yah13].

Mean-field homogenization of linear phases

Homogenization enables a length scale transition between both macroscopic quantities and lower

scales for a fictitious RVE, see Fig. 2.5. Classically, this is done using a volume averaging operator:

⟨g(x)⟩V :=
1

V

∫︂
V
g(x)dV := g (2.33)

where g is any kinematically admissible field over the domain and g represents the macroscopic value,

and ⟨g(x)⟩V is the averaged value of g over the coordinates in the volume ∀x ∈ V . This definition

enables that the volume averaged field can be decomposed into sub-domains:

⟨g(x)⟩V =
1

V

∑︂
i

∫︂
Vi

g(x)dVi, V =
⋃︂
i

Vi

or in terms of the ith volume fraction ξi:

⟨g(x)⟩V =
∑︂
i

ξi⟨g(x)⟩Vi , ξi =
Vi
V

(2.34)
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Figure 2.5: An ultrasonic fatigue specimen with a centroid of heterogeneities. Eshelby-based homog-
enization is valid for characteristic length scales r ≪ d≪ L between matrix and inclusion phases.

The consistency of internal work must be equivalent for both macroscopic and volume average quan-

tities of stresses and strains:

σ : εεε = ⟨σ⟩V : ⟨εεε⟩V = ⟨σ : εεε⟩V (2.35)

Eq. (2.35) is the Hill-Mandel condition [Hil65], which is a necessary condition for equilibrium and

compatibility inside the RVE, in addition to the boundary conditions applied to the surface of the

RVE. Therefore, the per-phases’ volume averages for stress and strain are:

σ =
∑︂
i

ξi⟨σ⟩Vi , εεε =
∑︂
i

ξi⟨εεε⟩Vi (2.36)

From hereon the ith per-phase volume averaged stresses and strains are written σi ≡ ⟨σ⟩Vi and

εεεi ≡ ⟨εεε⟩Vi . Here it can be defined the two main relationships in mean-field homogenization theory:

• The homogenization equation relates the average stress and average strain of the RVE:

σ = C∗ : εεε (2.37)

where C∗ is the homogenized stiffness. This consequently implies that the ith per-phase average

stiffness Ci gives the relationship:

σi = Ci : εεεi (2.38)

• The localization equation relates the per-phase average strain and stress with the average stress

and average strain of the RVE:

εεεi = Ai : εεε; σi = Bi : σ (2.39)

80



2.2. NONLINEAR MATERIAL MODELS AND HIGHER HARMONIC
GENERATION

where Ai and Bi are the fourth-order strain and stress concentration tensors for the ith phase.

Due to the linearity of the phases, the strain and stress concentration tensors can be shown to

fulfill the relations: ∑︂
i

ξi Ai = I4;
∑︂
i

ξi Bi = I4 (2.40)

where I4 is the symmetric fourth-order identity tensor.

The values of these concentration tensors lies in the choice of the simplifying assumptions in various

mean-field homogenization schemes. Therefore, the main goal here is to determine the ith per-phase

strain concentration tensor Ai. This enables the homogenized stiffness of the RVE:

C∗ =
∑︂
i

ξiCi : Ai

= Cm +
∑︂
i

ξi(Ci − Cm) : Ai
(2.41)

where Cm is the isotropic elastic matrix.

Voigt and Reuss homogenization The most basic example of homogenization scheme only accounts for

the phases’ volume fractions ξi and neglects their geometry in the material. The Voigt (isostrain) and

Reuss (isostress) homogenization estimates correspond to AVoigt
i := I4 and BReuss

i := I4 respectively.

Using Eq. (2.41), the homogenized Voigt stiffness tensor can be easily found by the relationship:

CVoigt =
∑︂
i

ξiCi (2.42)

Similarly for the homogenized Reuss stiffness tensor:

CReuss =
∑︂
i

(ξiSi)−1 (2.43)

where S = C−1 is the compliance tensor. These approximations of effective elastic properties by the

average stiffness or the average compliance are often referred to as rules of mixtures in the literature.

Despite neglecting the geometry of the inclusion phases, the Voigt and Reuss stiffness estimates can

be shown to have the property [NH99]:

CVoigt ≥ C∗ ≥ CReuss (2.44)

Equation 2.44 sets fundamental bounds for all valid mean-field homogenization stiffness estimates,

allowing the validation of any homogenization scheme’s estimate to fall between the Voigt and Reuss
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limits. Next, a widely recognized approach that improves these homogenization stiffness estimates

incorporates the geometrical considerations of the inclusions.

Eshelby’s inclusion and dilute homogenization To take into account geometries, Eshelby [Esh57]

addressed the strain concentration estimate for ellipsoidal inclusion within an infinite isotropic matrix.

It was shown that the strain inside an ellipsoidal inclusion is uniform and can be calculated based on

the properties of both the inclusion and an infinite matrix, as well as the applied external strain. A

closed-form expression of Eshelby’s tensor E can be obtained for and the case of an isotropic matrix

and aligned spheroidal inclusions (an ellipsoid with two identical principle axes). In this case, E

is a function of the ellipsoids axes a = b, c, usually denoted by its aspect ratio α := c/a and the

matrix’s Poisson’s ratio νm. These values are given in Appendix A.1. When the inclusions are not

aligned (e.g. randomly oriented) or are embedded in an anisotropic matrix, Eshelby’s tensor must be

numerically evaluated using a method such as [GL90].

Due to the assumption of inclusions within an infinite matrix, this corresponds to the case when

the volume fraction of inclusions are sufficiently small so that they do not interact with one another.

The strain concentration tensor for a single inclusion i within the infinite elastic matrix can be written

as [Ben87]:

Adilute
i :=

(︁
I4 + Ei : Sm : (Ci − Cm)

)︁−1
(2.45)

Due to the superposition principle, the individual contributions of each inclusion can be summed. This

allows one to obtain the dilute homogenized stiffness tensor estimate by substitution Eq. (2.45) into

Eq. (2.41) to give [BBG01]:

Cdilute = Cm +
∑︂
i

(︂
ξi (Ci − Cm) :

(︁
I4 + Ei : Sm : (Ci − Cm)

)︁−1
)︂

(2.46)

According to [Esh57], the volume fraction of the inclusions
∑︁

i ξi must be small enough to warrant the

assumption of negligible interactions between the inclusions. However, this assumption is not entirely

robust, where it has been demonstrated in literature that inclusion interactions become non-negligible

even at low volume fractions [NH99]. The forthcoming subsubsection will elucidate an approximation

of the inclusions’ interactions as well as the limitations of the dilute model.

Mori-Tanaka homogenization The Mori-Tanaka model [MT73] improves upon the dilute model by

considering the interaction between inclusions and matrix. Classically, the Mori-Tanaka model pro-
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vides a better estimate for larger volume fraction of the inclusions (up to
∑︁

i ξi ≈ 0.2 [NH99]). The

dilute model can be shown to provide worst estimates as
∑︁

i ξi increases [NH99]. Additionally, it

has been demonstrated that the dilute estimate suffers from more limitations than previous assumed.

This is particularly pronounced in cases involving significant contrasts in material properties between

inclusions and matrix [Chr90] (e.g. opened cracks and voids whose stiffness is 0).

The Mori-Tanaka model approximates the inclusions-matrix interaction by employing an average

stress field in the matrix material and assumes that each inclusion is embedded in this average field.

Thus, the stress or strain fields acting on each inhomogeneity is accounted for while retaining the

original approach for dilute distributions. Here the Mori-Tanaka strain concentration tensor is given

with the same notations previously. Due to this intermediate step of approximating this interaction,

the ith phase’s strain tensor is given by Benveniste [Ben87]:

AMT
i := Adilute

i :
(︂∑︂

j

ξjAdilute
j

)︂−1
(2.47)

Following similar steps as before, the Mori-Tanaka homogenized stiffness tensor estimate can be sim-

plified by substitution of Eq. (2.47) into Eqs. (2.40) and (2.41):

CMT = Cm +
∑︂
i

(︃
ξi (Ci − Cm) :

(︁
I4 + Ei : Sm : (Ci − Cm)

)︁−1
:
(︂∑︂

j

ξj
(︁
I4 + Ej : Sm : (Cj − Cm)

)︁−1
)︂−1

)︃
= ξmCm :

(︁
ξmI4 +

∑︂
i

ξi(I4 − Ei)−1
)︁−1

(2.48)

where the second line of Eq. (2.48) is obtained by using Hill’s tensor Pi [Hil65], which is defined as:

Ei = Pi : Cm.

At this point, it’s recalled that the goal of the Mori-Tanaka homogenization scheme is to estimate

the strain concentration tensor AMT
i for each ith phase. This relies on knowledge of Eshelby’s tensor

E, which is a function of the inclusion’s geometry and the Poisson’s ratio when the matrix phase is

isotropic elastic. Therefore, these parameters must be derived for diffuse microplastic and microcrack

inclusions. Additionally, these inclusion phases do not exhibit linear behaviors, e.g. microcrack closure

during compression. Therefore, a linearization scheme must be considered in order to be utilized in

Eq. (2.48). Henceforth, the notation of MT is dropped, where it should be assumed that all concen-

tration and homogenization tensors follow the Mori-Tanaka model. The notation for a linear elastic

matrix phase, an aligned microplastic phase, and an aligned microcrack phase are denoted □m, □pl,
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and □cr respectively.

Nonlinear Mori-Tanaka microplastic model

To consider an aligned microplastic inclusion phase, the geometry is first introduced. Let a set of

spheres be characterized by the aspect ratio α = 1, whose microplastic volume fraction is expressed as

ξpl. In this context, the microplastic inclusions are modeled to follow a perfect plastic law governed

by J2 plasticity. This choice is motivated by its relative simplicity in simulating a fundamental plastic

response (hysteresis) while avoiding overcomplicating the model with crystal plasticity-based formu-

lations. Lastly, the Mori-Tanaka strain concentration tensor of Eq. (2.47) is inherently a function of

the inclusion’s nonlinear stiffness, and thus requires linearization.

Rate-independent plasticity First it’s recalled the rate-independent plastic constitutive relationship,

and afterwards perfect plasticity is considered. A total strain εεε is assumed to be the sum of two parts:

an elastic strain εεε(el) and a plastic strain εεε(pl). The stress tensor σ and the elastic strain εεε(el) are

related:

εεε = εεε(el) + εεε(pl) and σ = C : εεε(el) (2.49)

A yield function F(σ) defines a yield surface (F(σ) = 0) and an elasticity domain (F(σ) ≤ 0) for

each phase:

F(σ) = σeq(σ)− σY +R(ψ) (2.50)

where σY is the yield stress of the material, σeq :=
(︁
3
2σD : σD

)︁1/2
is the equivalent stress, σD =

σ − 1
3 tr(σ)I2 is the deviatoric stress, and R is a hardening stress law. The evolution of the plastic

strain tensor εεε(pl) is given by the plastic flow rule:

ε̇εε(pl) = λ̇
∂F
∂σ

= λ̇
3

2

σD

σeq
:= λ̇N (2.51)

where the scalar λ̇ ≥ 0 is the plastic multiplier, and N is the normal vector to the yield surface in

stress space. λ’s sign is positive if F = 0 and Ḟ = 0 (plastic), or negative if F < 0 (elasticity) or F = 0

and Ḟ < 0 (elastic unloading). The flow rule is termed associative since the plastic strains occur in

a direction normal to the yield surface. The condition Ḟ = 0 is called the consistency condition, it

provides a constraints: if there is plastic yielding during a time step, the solution should always remain
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on the yield surface during all that time. Finally, the internal variable of accumulated plasticity ψ

tracks the plastic history, and is related to the plastic strain rate by:

ψ̇ =

(︃
2

3
ε̇εε : ε̇εε

)︃1/2

= λ̇ (2.52)

To link the strain rate to the stress rate via a tangent stiffness, one can write:

σ̇ = C : (ε̇εε− ε̇εε(pl)) (2.53)

If the regime is elastic, then ε̇εεpl = 0, and σ̇ = C : ε̇εε. Otherwise for plasticity:

σ̇ = C :

(︃
ε̇εε− ψ̇ ∂F

∂σ

)︃
(2.54)

The time derivative of the yield function Ḟ expanded is:

Ḟ =
∂F
∂σ
σ̇ − dR

dp
ψ̇ =

∂F
∂σ

: C : ε̇εε− pψ̇ (2.55)

where:

p :=
∂F
∂σ

: C :
∂F
∂σ

+
dR

dψ
(2.56)

When F = 0 (plasticity) and Ḟ = 0, there are two cases: When Ḟ < 0, ψ̇ = 0 and Eq. (2.55) gives:

∂F
∂σ

: C : ε̇εε < 0 (2.57)

When Ḟ = 0 then Eq. (2.55) gives:

ψ̇ =
1

p

∂F
∂σ

: C : ε̇εε > 0 (2.58)

Combining Eqs. (2.54) and (2.58), a relationship between strain rate and stress rate is given:

σ̇ = Cep : ε̇εε with Cep := C− 1

p

(︃
C :

∂F
∂σ

)︃
⊗
(︃
∂F
∂σ

: C
)︃

(2.59)

where Cep is the elasto-plastic stiffness. It has the same symmetries (major and minor) as C but is

not constant; it depends on the deviatoric stress σD. If C is isotropic, simplifications can be made

since C : ∂F∂σ = 2µ∂F∂σ and ∂F
∂σ : ∂F∂σ = 3

2 where µ is the shear modulus. This gives the expressions:

Cep = C− (2µ)2

p
N ⊗N ; p = 3µ+

dR

dψ
; (2.60)

In the case of perfect plasticity, then R(ψ) = 0, and it follows from Eq. (2.55) that Ḟ = ∂F/∂σ

and p = ∂F/∂σ : C : ∂F/∂σ. This simplifies Eq. (2.59), where in plasticity for uniaxial tension

(e.g. about X1) is ∂σ11/∂ε11 = 0. The other components are not null since it is a multi-axial tangent

modulus that depends on the deviatoric stress.
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Linearization of the elasto-plastic stiffness tensor To determine the stress strain relationship, the

rate-form is linearized. By denoting a discretization in time ∆□ := □(t+ 1)−□(t), the rate form of

Eq. (2.59) can be rewritten:

∆σ = Calg : ∆εεε (2.61)

where ∆σ and ∆εεε are the average stress and average strain increments over a time interval, respectively,

and Calg is the algorithmic tangent stiffness. While Eq. (2.61) looks similar to Eq. (2.59), the difference

lies in a few mathematical derivations. Otherwise, the algorithmic tangent stiffness acts similar to the

elasto-plastic tangent stiffness: if the increment is entirely elastic, then Calg = Cm. Doghri [Dog00]

derives a simple and explicit relationship which shows the relationship between the algorithmic and

elasto-plastic tangent stiffness:

Calg = Cep − (2µ)2 ·∆ψσeq
σ̂eq

∂N

∂σ
(2.62)

where σ̂eq is the trial (elastic predictor) of σeq. The partial derivative of the normal vector N with

respect to σ is given as:
∂N

∂σ
=

1

σeq

(︃
3

2
ID −N ⊗N

)︃
(2.63)

where ID := I4 − (1/3)(I2 ⊗ I2) is the deviatoric part of the fourth-order identity tensor and I2 is the

second-order identity tensor.

Mori-Tanaka microplastic homogenized stiffness In order to be able to use the formulation of the

Mori-Tanaka strain concentration tensor Eq. (2.47), the average inclusion’s stress-strain relationship

is linearized. This is done by substituting the stress dependence of the tangent stiffness tensors with a

dependence on microplastic inclusions’ averaged deviatoric stress ⟨σD,pl⟩. This leads to an linearized

material behavior with a tangent stiffness tensor:

∆σpl = Calg (⟨σD,pl⟩) : ∆εεεpl (2.64)

where ∆σpl and ∆εεεpl are the average stress and average strain increments of each phase over a time

interval, respectively. Eq. (2.64) can be written for the microplastic phase and form a set of linearized

constitutive equations over a time step. For each time step (t), given a macroscopic strain increment,

a trial value of the average strain increment in the inclusions is computed. A fixed-point iterative

scheme converges to average strain values in the phases from which the effective stiffness and the

macroscopic response can be computed.
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The final homogenized tangent stiffness is found by substituting the derived tangent stiffness

Calg ≡ Cpl into the Mori-Tanaka model of Eq. (2.48):

CMT
pl = Cm + ξpl (Cpl − Cm) :

(︁
I4 + Epl : Sm : (Cpl − Cm)

)︁−1
:
(︂
ξpl
(︁
I4 + Epl : Sm : (Cpl − Cm)

)︁−1
)︂−1

(2.65)

where Epl is Eshelby’s tensor for spherical inclusions.

Isotropization of Eshelby elasto-plastic inclusions It has been shown in the literature that Eshelby-

based approaches tend to overestimate the macroscopic strain hardening in the plastic regime, i.e. the

homogenized macroscopic behavior is too stiff compared to the finite element analog. Correct pre-

dictions are obtained only when Eshelby’s tensor is computed with an isotropic tangent stiffness Ciso

(instead of the algorithmic tangent stiffness Calg), see [DO03] and [DF05]. Here the method defined

by [BBG01] is used. Recall a fourth-order isotropic tensor can always be written under the form:

Ciso := (IS :: Cani)IS +
1

5
(ID :: Cani)ID (2.66)

where IS := (1/3)(I2⊗ I2) is the spherical operator, and :: is the tensor product over four indices. The

extraction of Ciso from Cani is written for isotropic linear elasticity:

Ciso = 3κisoIS + 2µisoID (2.67)

where κiso and µiso are isotropized bulk and shear moduli, respectively. The Eshelby’s tensor E is only

a function of the ellipsoid aspect ratio α and the matrix’s isotropized Poisson’s ratio:

νiso =
3κiso − 2µiso

2(3κiso + µiso)
(2.68)

As shown by [BBG01], the projection of the (anisotropic) elasto-plastic tangent stiffness onto the

isotropic subspace has the following values for J2 plasticity:

κiso = κ and µiso = µ− 3

5
µ2
(︃

1

p
+ 4

∆ψ

σ̂eq

)︃
(2.69)

Henceforth, the isotropized stiffness is only used to compute the Eshelby’s tensor of the elasto-plastic

inclusions, while the previous definition of the algorithmic tangent stiffness is used for all other com-

putations.
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Behavior of microplastic inclusions – single harmonic wave Throughout the remainder of this disser-

tation, the inclusions have a perfectly plastic law (no hardening law R = 0). This is employed since

the microplasticity behavior in a real fatigued material is not well quantified. Due to the J2 plasticity

definition of microplastic inclusions, the microplastic inclusions have their own yield stress and is thus

a parameter of the model. For example, the macroscopic yield strength of 1070 steel is approximately

σY = 495 MPa. However, at the VHCF regime, the longitudinal strain amplitudes are too small to

elicit macroscopic plastic behavior. Therefore, to represent microplastic behavior, the microplastic

inclusions must have a microplastic yield stress σYpl ≪ σY less than the macroscopic material, but

otherwise their stiffnesses Cm = Cpl should be equal. This microplastic yield stress is posited to be

connected with dislocation density for crystal plasticity, see Chapter 1.

First, the behavior of microplastic inclusions are studied with respect to to their separate model

parameters: the microplastic yield stress σYpl and afterwards their volume fraction ξpl. One assumption

typically used in ultrasonic fatigue tests is the assumption of a pure single harmonic loading. This

corresponds to a single harmonic uniaxial strain ε33(t) = εa cos(ω0t), where the frequency is f0 = 20

kHz and ω0 := 2πf0.

To demonstrate the model parameter of σYpl, the behavior of the longitudinal stress and strain

for the macroscopic behavior (a), the matrix (b), and the inclusion phase (c) are plotted in Fig. 2.6.

The RVE of microplastic inclusions are subject this single harmonic loading while σYpl/σ
Y is varied.

Specifically, a longitudinal strain amplitude of εa = 5 · 10−4 at a reversible load of R = −1 is imposed.

When σYpl/σ
Y = 1, the homogenized RVE’s response, matrix phase, and inclusion phase in Fig. 2.6

all have elastic behavior. As the ratio of σYpl/σ
Y decreases, the inclusions begin to plastify. A too

small microplastic yield stress for the microplastic inclusions would manifest plasticity at too low of a

strain amplitude, making the apparent behavior elastic with the plastic tangent, see Fig. 2.6 (a) in the

case σYpl/σ
Y = 0.01. Therefore, the microplastic yield stress is defined to have a clear elastic-plastic

response for the homogenized RVE at σYpl/σ
Y = 0.1, i.e. 10% of the macroscopic yield stress.

The second free parameter that can vary is the microplastic inclusion volume fraction ξpl. In

Fig. 2.7, the homogenized RVE’s response (a), matrix phase (b), and inclusion phase (c) are shown

similarly to before, except that σYpl/σ
Y = 0.1 is imposed and ξpl is varied. When the volume fraction

increases, it can be seen that as ξpl → 1, the homogenized RVE’s behavior resembles more that of the

microplastic inclusions. It should be noted that this volume fraction is expected to be very small in
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Figure 2.6: In (a), (b), and (c), the stress-strain hysteresis seen by the RVE, matrix phase, and
inclusion phase respectively, with R = −1 and ξpl = 10−1 is shown for varying the microplastic yield
stress ratio with the elastic material’s macroscopic yield stress σYpl/σ

Y.
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Figure 2.7: In (a), (b), and (c), the stress-strain hysteresis seen by the RVE, matrix phase, and
inclusion phase respectively, with R = −1 and σYpl/σ

Y = 10−1 is shown for varying microplastic
inclusion volume fraction parameter ξcr.

practice. A limit at ξpl ≈ 0.74 is shown in Fig. 2.7 just to emphasize the behavior of the model, and

represents the max sphere packing. Past this limit, the problem is physically ill defined, except for

ξpl = 1, where the entire RVE is the microplastic inclusion phase.

Next, the higher harmonic generation is to be studied in Fig. 2.8 for the loading case of a reversible

pure sine longitudinal strain load of R = −1 with amplitude εa = 5 · 10−4 at f0 = 20 kHz. In (a),

the frequency spectra is shown corresponding to a 10% microplastic volume fraction. It can be seen

that the third harmonic is stronger than the second harmonic, and overall the odd harmonics stronger

than the even harmonics. In (b), the microplastic volume fraction is varied for so that the higher
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harmonic ratios can be studied as the volume fraction grows. Here, the third harmonic ratio is

the most prominent, followed by the second harmonic ratio, both of which monotonically increase.

Interestingly, the presence of a even harmonics is typically not found in the literature rudimentary

models of hysteresis [GJ99; GN01]. This is due to the fact that most models of hysteresis are a

one-dimensional model which neglect complexities such as the geometries and their triaxial stress

effects.
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Figure 2.8: In (a), the normalized frequency spectra of an uniaxial stress wave in the RVE for a single
harmonic strain ε33(t) at f0 = 20 kHz with load ratio R = −1 and ξcr = 10−1. In (b), the ratio of
higher harmonics to fundamental harmonic follow the same trajectory.

Behavior of microplastic inclusions – multi-harmonic wave To study the effect of a multi-harmonic

strain wave on microplasticity, an imposed multi-harmonic strain wave is defined as:

ε33(t) = ε(1)a cos(1 · ω0t) + ε(2)a cos(2 · ω0t) + ε(3)a cos(3 · ω0t) (2.70)

with the values ε
(1)
a = 5 · 10−4, ε

(2)
a = 2.5 · 10−7, and ε

(3)
a = 2.9 · 10−6. Observing Fig. 2.9, the influence

of microcracks on the second and third harmonic ratios are most evident. From 10−3 < ξpl < 10−1,

the gap between the second and third harmonics’ ratios widely differ compared with the results for

single multi-harmonic strain wave (shown as dotted lines). The strongest higher harmonic, the third

harmonic can be shown to be insensitive to the microplastic volume fraction until ξpl ≈ 2 · 10−2. At

this point the third harmonic begins to increase monotonically, and converge with the single-harmonic

results as the microplastic inclusions increase in volume fraction.

The plot of the second harmonic ratio (represented by the orange line) indicates a region of ambi-

guity in determining the volume fraction. Specifically, for certain values of the second harmonic ratio
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between 4 · 10−4 to 3 · 10−2, there are two possible corresponding volume fractions. This crossover

results in an ambiguous interpretation if one were to only study the second harmonic ratio. This sug-

gests that interpreting acoustic nonlinearity measurements, as discussed in Section 2.2, in the presence

of multi-harmonic inputs may lead to inaccuracies in the analysis. indicates a region of ambiguity in

determining the volume fraction.
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Figure 2.9: In (a), the normalized frequency spectra of an uniaxial stress wave in the RVE for a
multi-harmonic strain Eq. (2.70) at f0 = 20 kHz with load ratio R = −1 and ξcr = 10−1. In (b), the
ratio of higher harmonics to fundamental harmonic no longer follow the same trajectory. The dotted
lines represent previously extract harmonic ratios from Fig. 2.8 for a single harmonic strain wave.

Nonlinear Mori-Tanaka microcrack model

2c

n

a

Figure 2.10: A schematic representation of an opened ellipsoidal microcrack.

To consider an aligned microcrack phase, the geometry is first introduced. Let a set of ellipsoid-

shaped cracks be characterized by a small aspect ratio α and unit normal vector n; for mode-I cracks,

this corresponds to the unit vector parallel to the a − b plane, see Fig. 2.10. The volume fraction

of the microcracks refers to the geometry of an opened microcrack, which is expressed as ξcr. Here,

it’s adopted the methods from of Deudé et al. and Bluthe et al. [Deu+02; BBL20] for Eshelby-based
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microcracks, which experience a perfect interface with no friction. The strain rate of an elliptical

elastic heterogeneity with aspect ratio α := c/a embedded in an infinite elastic matrix is given as:

ε̇εεcr =
(︁
I4 + Ecr : Sm : (Ccr − Cm)

)︁−1
: ε̇εε (2.71)

For an open crack Ccr = 0, the definition of Eshelby’s tensor Eq. (A.1) with Eq. (2.71) becomes:

ε̇εεcr = (I4 − Ecr)
−1 : ε̇εε (2.72)

Here, one can define the strain rate concentration Acr := (I − Ecr)
−1 for a single microcrack. The

individual components of its strain concentration tensor Acr can be found using a Taylor series expan-

sion on Hill’s tensor [DK16]. Assuming the microcrack normal unit vector is n = e3, the out-of-plane

components are:

Acr,1111 = 1− νm
2

; Acr,1122 = −νm
2

; Acr,1133 =
νm − 1

2
; Acr,1212 =

1

2
(2.73)

where νm is the isotropic Poisson’s ratio of Cm. The magnitude of the components in the crack plane

can be shown on the same order of the far-field strain rate. For the normal strain rate components:

Acr,3311 =
1

α

4νm (1− νm)

π (1− 2νm)
; Acr,3333 =

1

α

4 (1− νm)2

π (1− 2νm)
; Acr,2323 =

1

α

2 (1− νm)

π (2− νm)

Acr,1313 = Acr,2323; Acr,3322 = Acr,3311

(2.74)

Note, the normal components are an order of magnitude larger than the far-field strain rate. This

highlights the nonlinear strain concentration effect due to the spheroidal crack geometry. This justifies

the choice of using a strain-rate formulation.

n n

2a

2c 0

Figure 2.11: Representation of multiple aligned microcracks with opened aperture 2c and an non-
strained aperture 0. When n aligns with the loading direction, the microcracks are mode I.

To consider a crack closure criterion, the strain concentration effect in the normal direction

(Eq. (2.73) versus Eq. (2.74)) has the largest variation. The normal strain rate is thus equivalent
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to the rate of change of the crack’s aspect ratio:

ε̇εε(n)cr = (n⊗ n) :
(︁
α · (I4 − Ecr)

−1 : ε̇εε
)︁

(2.75)

Since the opened crack is assumed flat α ≪ 1, the product α · (I4 − Ecr)
−1 can be replaced by the

opened crack strain concentration tensor Tcr as the aspect ratio approaches the limit α→ 0:

α · (I4 − Ecr(α))−1 ≈ Tcr := lim
α→0

α · (I4 − Ecr(α))−1 (2.76)

Since Tcr is independent of the opened crack state, the integration of the rate of change of the crack

aspect ratio of Eq. (2.75) gives:

εεε(n)cr = (n⊗ n) : (Tcr : εεε) (2.77)

where c represents current aperture of the microcrack, and the aperture of the crack in a non-strained

state is 0. From the crack strain concentration tensor, Tcr is derived similarly with the normal

components:

Tcr,3311 =
4νm (1− νm)

π (1− 2νm)
; Tcr,3333 =

4 (1− νm)2

π (1− 2νm)
; Tcr,2323 =

2 (1− νm)

π (2− νm)

Tcr,1313 = Tcr,2323; Tcr,3322 = Tcr,3311

(2.78)

with the rest equal to zero in an isotropic medium. From this point, one can see that at crack closure

εεε
(n)
cr < 0.

When the crack is closed and has frictionless contact, this corresponds to the crack aperture being

zero. In this context, the crack solely transmits normal compressive forces, while the shear stress

within the crack plane is zero. By assuming that the shear modulus is zero Cm → Km, one can rewrite

Eq. (2.72):

ε̇εε(n)cr = (I4 − Ecr : Km)−1 : ε̇εε; at εεε(n)cr < 0 (2.79)

Following the previous steps for the opened crack, the closed crack strain concentration tensor T̃cr is

defined as the aspect ratio which approaches the limit α→ 0:

αKm : (I4 − Ecr(α) : Km)−1 ≈ T̃cr := lim
α→0

α · (I4 − Ecr(α))−1 (2.80)

This indicates that when the microcracks are closed, the closed crack strain concentration tensor

T̃cr ̸= 0, but there is a very small contribution in the shear strain when cracks are aligned in n = e3:

T̃cr,2323 =
2 (1− νm)

π (2− νm)
; T̃cr,1313 = T̃cr,2323 (2.81)

Given the microcrack strain concentration tensors, the crack closure criterion with a homogenized

stiffness of the material is defined using the framework of Mori-Tanaka.
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Mori-Tanaka microcrack homogenized stiffness with closure criterion By substituting the open Tcr

(or closed T̃cr) crack strain concentration tensors into the Mori-Tanaka homogenized stiffness of

Eq. (2.48), one obtains:

CMT
cr = ξmCm :

(︂
ξmI4 + ξcrTcr

)︂−1
(2.82)

To account for the closure of the microcracks, the closure criterion results in a homogenized tangent

stiffness which is piecewise linear. The final homogenized tangent stiffness is:

CMT
cr =

⎧⎪⎨⎪⎩
ξmCm :

(︂
ξmI4 + ξcrTcr

)︂−1
if εεε(n)cr ≥ 0

ξmCm :
(︂
ξmI4 + ξcrT̃cr

)︂−1
if εεε(n)cr < 0

(2.83)

Behavior of microcrack inclusions with closure criterion – single harmonic wave For microcrack

model, a single harmonic uniaxial strain, ε33(t) = εa cos(ω0t), is performed for Eq. (2.83). Specifically,

a aspect ratio of the microcracks is defined as α = 0.01. First, a behavior of instantaneous stiffness

change of the RVE is seen for the longitudinal stress, which is normalized by the elastic matrix

stiffness in Fig. 2.12. Therefore, the model of diffuse microcracks can mirror rudimentary crack models

frequently used in nonlinear acoustic and dynamic literature [Bro+14].
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Figure 2.12: The manifestation of bilinear stiffness for distributed aligned microcracks in a RVE with
cylic loading.

When the microcrack volume fraction is varied with an imposed reversible longitudinal strain

wave of R = −1 at f0 = 20 kHz, the frequency spectra of Fig. 2.13 reveals a small generation of

odd harmonics. Interestingly, the presence of odd harmonics is typically not found in the nonlinear

acoustic and dynamic literature [Bro+14]: this difference is due to the fact that an anisotropic stress

state is generated due to the disc shape of the microcracks. The monotonic increase of the microcrack
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volume fraction increases the stiffness degeneration as it nears ξcr → 1, and the higher harmonic ratios

increase.
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Figure 2.13: In (a), the normalized frequency spectra of an uniaxial stress wave in the RVE for a
single harmonic strain ε33(t) at f0 = 20 kHz with load ratio R = −1 and ξcr = 10−1. In (b), the ratio
of higher harmonics to fundamental harmonic follow the same trajectory as the microcrack volume
fraction varies, which are amplitude and frequency independent.

Behavior of microcrack inclusions with closure criterion – multi-harmonic wave In the case of a

multi-harmonic wave, e.g. created by a piezoelectric transducer and horn that is driven by the Branson

signal and power generator of Fig. 2.38, the assumption of superposition no longer holds. In terms of

harmonic magnitudes, the contribution of a second, third, and highers harmonic maybe be amplified

or attenuated depending on the nonlinear model. For ratios of harmonics, it can no longer be assumed

to be uniformly increasing in unison, as shown in Fig. 2.13 (b).

To investigate the influence of a multi-harmonic strain wave on diffuse microcracks, the same

procedure for multi-harmonic waves on microcracks is preformed: i.e. the horn vibration’s fundamental,

second, and third harmonics from Fig. 2.38 are utilized to ascertain their respective ratios. The multi-

harmonic strain wave employed is that of Eq. (2.70) where the values for ε
(1)
a , ε

(2)
a , and ε

(3)
a remain as

5 · 10−4, 2.5 · 10−7, and 2.9 · 10−6, respectively. Evident from Fig. 2.14 is the distinct shift of behavior

in the third harmonic, transitioning to a marginally descending trend in the log-log scale rather than a

consistently ascending harmonic. Additionally, the second harmonic demonstrates sharp drop offs at

ξcr ≈ 1.5 · 10−3 which can be attributed to the sinc modulation of the crack closure and its geometry.

Due to the numerical nature of homogenization, this cannot be easily explained, but instead has

an analytical explanation later derived in Section 2.2.3. These observations indicates that an input
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multi-harmonic wave can complicate the nonlinear characteristics of the second and third harmonic.
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Figure 2.14: In (a), the normalized frequency spectra of an uniaxial stress wave in the RVE for the
multi-harmonic sinusoidal strain Eq. (2.70) at f0 = 20 kHz with load ratio R = −1 and ξcr = 10−1.
In (b), the ratio of higher harmonics to fundamental harmonic no longer follow the same trajectory as
the microcrack volume fraction varies, which are amplitude and frequency independent. The dotted
lines represent previously extracted harmonic ratios from Fig. 2.13 for a single harmonic strain wave.

Mori-Tanaka homogenization of multiple phases

When there are multiple phases, Eq. (2.47) can be written for each phase and their summation

inside Eq. (2.48) gives the Mori-Tanaka stiffness; i.e the homogenization of all heterogeneities may

be conducted during one step. However, heterogeneities can also be divided into groups which can

be homogenized in multiple steps; the effective properties calculated in the previous step are used as

a new effective matrix phase. In the case of our three-phase material, the presence of microcracks

transforms the problem into a three-phase system with effective properties that are now anisotropic.

This immediately limits the applicability of the one-step Mori-Tanaka homogenization model [BDC91].

The work by Abaimov et al. [Aba+19] deals with the question of how the results of one-step ho-

mogenization procedures differs when adapted into a multi-step procedure. In short, it was found that

homogenizing the most distinct inhomogeneities first in a multistep scheme yielded more accurate pre-

dictions of the stiffness compared to one-step schemes, especially when more prevalent inhomogeneities

are accounted for in initial steps. Additionally, it was found that for inclusions low volume fractions,

the difference in results were negligible. Therefore, Eq. (2.48) is split into a two-step homogeniza-

tion scheme, where the most compliant phase is homogenized first (the microcracks) with the elastic

matrix. Then, the microplastic inclusions are homogenized with the previous equivalent material, as
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shown in Fig. 2.15. This two-step approach not only enhances accuracy but also simplifies solving

the nonlinear tangent problem by addressing two phases separately rather than concurrently. This

homogenized stiffness is given as follows:

C∗
cr =

⎧⎪⎨⎪⎩
(1− ξ̂cr)Cm :

(︂
(1− ξ̂cr)I4 + ξ̂crTcr

)︂−1
if εεε(n)cr ≥ 0

(1− ξ̂cr)Cm :
(︂

(1− ξ̂cr)I4 + ξ̂crT̃cr

)︂−1
if εεε(n)cr < 0

with ξ̂cr :=
ξcr

1− ξpl
(Step 1)

C∗ = C∗
cr + ξpl (Cpl − C∗

cr) :
(︁
I4 + Epl : S∗cr : (Cpl − C∗

cr)
)︁−1

:(︂
ξpl
(︁
I4 + Epl : S∗cr : (Cpl − C∗

cr)
)︁−1
)︂−1 (Step 2)

(2.84)

Elastic matrix

Microcrack inclusions

+
Equivalent material

Microcrack and
microplastic equivalent

material

Microplastic inclusions

+

First Mori-Tanaka step Second Mori-Tanaka step

Homogenization Homogenization
C*

Cel C*cr

Figure 2.15: Schematic of the two-step Mori-Tanaka homogenization procedure.

Behavior of microplastic and microcrack inclusions with closure – single harmonic wave Microcracks

and elasto-plastic inclusions yield notable higher harmonics, primarily the second and third, respec-

tively. Under a multi-harmonic input strain wave with dominant third and second harmonics, the

responses of microplastic and microcrack volume fractions diverge significantly from those subjected

to a single harmonic wave. While mode I-aligned microcracks exert minimal influence on the third

harmonic ratio, as illustrated in Fig. 2.14, the ratio for microplastic inclusions remains obscured until

a critical volume fraction is reached. Beyond this threshold, the ratio starts to ascend, eventually

aligning with the ratios observed for a pure single harmonic wave input. This implies that a single-
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harmonic input wave is crucial for detecting tiny amounts of diffuse microplasticity and microcracks

in the ultrasonic fatigue specimen.

When both nonlinear inclusions are integrated in the two-step Mori-Tanaka homogenization scheme

of Eq. (2.84), the behavior becomes increasingly complex. An example of the interacting behavior

for a single harmonic strain wave can be given for strong nonlinearity, where the values of ξcr =

0.1, ξpl = 0.25, and σYpl/σ
Y = 0.1 are given for an RVE. These values represent an exaggerated

scenario with strong microplasticity due to microcrack fronts, with both phenomena easily visible

in Fig. 2.16. Despite the larger volume fraction of microplastic inclusions, it can be seen that the

microcracks are a stronger nonlinearity contributing to the a larger second harmonic amplitude, versus

the third harmonic amplitude. Consequently, the nature of the input wave (single harmonic versus

multi-harmonic) becomes a critical factor in accurately quantifying higher harmonic generation. This

combination specifically facilitates the study of the second and third harmonics, which represent the

most prominent harmonics in the vibration spectrum.
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Figure 2.16: In (b), the first stress-strain hysteresis cycle seen by the RVE with R = −1, ξcr = 0.1,
ξpl = 0.25, and σYpl/σ

Y = 0.1. In (b), the normalized frequency spectra of an uniaxial stress wave in
the RVE for a single harmonic strain ε33(t) at f0 = 20 kHz.
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2.2.3 Nonlinear macrocrack model

Symbol Description

C,S Stiffness and compliance tensor
E, ν Young’s modulus, Poisson’s ratio
F,K, l Force, stiffness, length
F(□),F(□)−1 Fourier and inverse Fourier transform operators
H(□) Heaviside function
h The hth harmonic
S, V Surface, volume
εεε Strain tensors
E Energy of system
Γ Surface of the crack face
Λ Stiffness degeneration factor
σ Stress tensors
ω, f Angular frequency and frequency

Table 2.4: For the macrocrack models in Sec. 2.2.3 only, this notation is adopted.

This section deals with macroscopic crack models which arise in ultrasonic fatigue tests. Specif-

ically, mode I cracks which occurs internally or about the surface results in a strong crack contact

effect during reversible loadings, see Fig. 2.17. Classical approaches which a finite element model

explicitly represents crack faces as discontinuities in the mesh. Currently adopted by the literature

Phase Field methods [BLR11], is detailed briefly but still requires a finite element model. Thus, an

uniaxial simplification is introduced to the dynamic problem and then analyzed.

Inclusion

Fish-eye crack

(a) (b)

Figure 2.17: In (a), a schematic of a post-fatigue failure fish-eye crack and inclusion subject to VHCF.
In (b), optical microscopy of fatigue specimen failure surface, taken from [RWP08]
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Classical phase-field elastic crack model

As mentioned in Chapter 1, cracks are a geometrically dominated phenomena and their crack

propagation are categorized by their length. For larger cracks, their dynamics are dictated by the

contact during crack closure, where contact induces a rectification of stresses in compression. Here,

the phase-field approach to model a fracture is introduced, which regularizes the localized discontinuity

[MHW10]. For an elastic cracked body, shown in Fig. 2.18, defined in the volume V with sharp crack

Y

Z

X

V,m,ρ

u

b

τ

dS

Γ

Γ�

Γ�

n

Figure 2.18: An arbitrary solid volume V in motion u with surface boundary S, with traction τ and
body b forces shown. The crack is defined by Γ = Γ+ ∪ Γ−, where the zoom of the crack has faces Γ+

and Γ−, and outer unit vector n

surface Γ, the total energy of the system Ecrack is:

Ecrack =

∫︂
V

Ψ(εεε,Γ)dV + gc

∫︂
Γ
dΓ ≈

∫︂
Ω

Ψ(εεε, d)dΩ + gc

∫︂
Ω
γ(d,∇d)dΩ (2.85)

where Ψ is the total strain energy, gc represents the critical energy release rate as defined by Griffith

[BLR11] and a regularized diffuse field d(X) replaces the sharp surface defined by the crack [MHW10].

While not considered in this disseration, a crack is modeled to propagate in a specific material point

when gc > g. The damage variable and the elastic strain energy Ψ are related through a degradation

function g(d):

Ψ(εεε, d) = g(d)Ψ+ + Ψ− (2.86)

where g(d) = (1 − d)2 is a typical degradation function for brittle fracture such that g(0) = 1 and

g(1) = 0 [Sar+18]. Here, the elastic strain energy Ψ is divided into positive (tension) Ψ+(εεε+) and

negative (compression) components Ψ+(εεε−) using the principal strains εεε and the trace of the strain

tensor:

Ψ±(εεε) =
λ

2

(︃
1

2
⟨εεε⟩±

)︃2

+ µ tr
(︂(︁
εεε±
)︁2)︂

(2.87)
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where λ and µ are elastic Lamé constants, and ⟨εεε⟩± := (tr(εεε)± | tr(εεε)|). The positive and negative parts

are employed to differentiate between compression and extension. Eq. (2.86) indicates that in tension,

both the tensile stiffness and elastic stress decrease with the damage variable. The solution to this

problem comes from solving the internal energy from the principle of virtual work, with ∂Ψ(εεε,d)
∂εεε = σ:∫︂

V
σ : δεεε dV −

∫︂
∂ΩF

τ · δu dΓ = 0; where σ = (1− d)2
(︁
λ⟨εεε⟩+1 + 2µεεε+

)︁
+ λ⟨εεε⟩−1 + 2µεεε− (2.88)

Rudimentary uniaxial crack model

From Eq. (2.88), the 3D crack problem is shown to be a geometrically dominated mechanical

problem which must rely on a finite element solution. To capture the first order dynamical effects

of a mode I crack as an instantaneous change of stiffness, one can simplify Eq. (2.88) using uniaxial

assumptions. However, other complexities are not considered, e.g. the friction contact forces when the

crack is not perfectly perpendicular to the loading direction, crack growth modeling, and the plastic

crack tip.

Compression

Tension

Output waveCrack interfaceInput wave

l +∆l

∆l

F

F
0

Scrack

F

K
(c)

K
(t)

Figure 2.19: The bilinear stiffness of a rudimentary mode I crack for compressive and tension regimes
for uniaxial forces. In a dynamical system, the force is rectified during crack-opening, leading to a
reduced stiffness.

Consider the figure shown in Fig. 2.19, in which a body has length l0 is subject to force F ,

which is embedded with a mode I crack with the surface Scrack. When the force is compressive,

F := K(c)∆l for a stiffness K(c) and the elongation ∆l. When the force is tensile, the crack opens

and reduces the stiffness since only part of the bulk remains engaged Seff := S0 − Scrack: this gives

F := K(t)∆l = K(c)Seff/S0. The bilinear stiffness can be represented as:

F =
(︂
K(c) +H(∆l)

[︂
K(c) −K(t)

]︂)︂
∆l (2.89)

where H(□) is the Heaviside function. To enable a constitutive uniaxial description in the longitudinal
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direction e3, an average approximation is made ⟨σ33⟩ := F/S and ⟨ε33⟩ := ∆l/l0. This gives:

σ33 =
(︂
C(c)
33 +H(ε33)

[︂
C(c)
33 − C(t)

33

]︂)︂
ε33 (2.90)

where C(c)
33 , C(t)

33 are the uniaxial stiffnesses in compression and tension respectively, the stiffness

tensor is written in Voigt notation such that C3333 ≡ C33. By defining a stiffness degradation factor

Λ := 1− Seff/S0 ∈ [0, 1], the expression simplifies to:

σ33 = C(c)
33 [1−H(ε33)Λ] ε33 (2.91)

Eq. (2.91) aims to capture the dynamic effects at ultrasonic frequencies for large crack closure [Bro+14].

Behavior of macrocrack with closure – single harmonic wave The assumption of a pure single har-

monic loading in ultrasonic fatigue tests is to be analyzed. This corresponds to a single harmonic

uniaxial strain ε33(t) = εa cos(ω0t), where the frequency is f0 = 20 kHz and ω0 := 2πf0. An analytical

solution of the hth harmonic of Eq. (2.91) can be derived from a convolution of (ε33 ⊛H(ε33)) (t) in

the frequency domain. The convolution’s definition is:

(ε33 ⊛H(ε33)) (t) =

∫︂ +∞

−∞
ε33(τ)H (ε33(t− τ)) dτ

The Fourier transform of ε33(t) = εa cos(ω0t) and H(ε33(t)) is:

F (ε33(t)) =
εa
2

[δ (ω − ω0) + δ (ω + ω0)] ; F (H(ε33(t))) ≈
∞∑︂

i=−∞
sinc(iω0)δ(ω − iω0) (2.92)

where δ is the Dirac delta function and the approximation of F (H(ε33(t))) is derived in [SKB02].

Their convolution in the frequency domain is simply a multiplication:

F ((ε33 ⊛H(ε33)) (t)) ≈ εa
2

∞∑︂
i=−∞

sinc(iω0)[δ(ω − ω0 − iω0) + δ(ω + ω0 − iω0)]

By defining σ33(t) =
∑︁

h σ
(h)
a cos(h · ω0t), and T = 2π/ω0, the convolution sum of the spectra is:

σ(h)a (h · ω0) =
C(t)
33 Λεa

2C(c)
33

+∞∑︂
i=−∞

sinc

(︃
i

2

)︃
δ(h± 1− i)

Due to the frequency shifting property of the Fourier transform [SM05], one obtains:

σ(h)a =
ΛC(t)

33 εa

2C(c)
33

(︃
sinc

(︃
h+ 1

2

)︃
+ sinc

(︃
h− 1

2

)︃)︃
(2.93)
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In Fig. 2.20, the first twelve harmonics are plotted using Eq. (2.93), and are normalized by the

stiffness coefficient C(c)
33 . It can be seen in Fig. 2.20 (a) for a given stiffness degradation Λ generates

even higher harmonics, where the even harmonics are more prominent than the odd harmonics. In

Fig. 2.20 (b) as the stiffness degradation increases, so does the stress higher harmonics ratios, which

follow similar trajectories dependent on the strain amplitudes. For typical strain amplitudes seen

in ultrasonic VHCF (εa ≈ 10−4 - 10−3), it’s demonstrated that the even higher harmonics increase

monotonically.
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Figure 2.20: In (a), the normalized frequency spectra of an uniaxial stress wave for a single harmonic
strain ε33(t) at f0 = 20 kHz with Λ = 10−3. In (b), the stress ratios of higher harmonics divided by
the fundamental harmonic for varying damage parameter are amplitude and frequency independent,
with only even higher harmonics prominent.

Behavior of macrocrack with closure – single harmonic wave with change in load ratio Due to the

analytical form of Eq. (2.93), the load ratio R can be studied when it is not perfectly reversible.

This can be represented as adding a small static uniaxial tension or compression such that ε33(t) =

εa cos(ω0t)− εm. Eq. (2.93) can be changed to an offset to the Heaviside function, e.g. H(ε33(t)− εm).

The resulting derivation, following the previous steps with the convolution sum, gives the expression:

σ(h)a (h · ω0) =
ΛC(t)

33 cos−1(εm/εa)εa

πC(c)
33

+∞∑︂
i=−∞

sinc

(︃
i cos−1(εm/εa)

π

)︃
δ(h± 1− i)

which simplifies to:

σ(h)a =
ΛC(t)

33 ϱεa

πC(c)
33

(︃
sinc

(︃
(h+ 1)ϱ

π

)︃
− 2 cos(ϱ) sinc

(︃
hϱ

π

)︃
+ sinc

(︃
(h− 1)ϱ

π

)︃)︃
(2.94)

where ϱ = cos−1(εm/εa).
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In Fig. 2.21, the frequency spectra of the first twelve harmonics’ normalized stress amplitudes are

shown using Eq. (2.94). In Fig. 2.21 (a), the load ratio is set to R = −0.8, which is not perfectly

reversible. The harmonics reveal stronger generation of odd harmonics with respect to the even

harmonics. In this case, the sinc modulated harmonics with large enough Λ can give dramatic increase

to the higher harmonic ratios; in this case the odd harmonics ratios. In the broader context, as Λ→ 1,

subharmonic generation becomes a possibility in structural dynamical systems, which is indicative of

period doubling/tripling bifurcation, etc. [Sey10].
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Figure 2.21: In (a), the normalized frequency spectra of an uniaxial stress wave for a single harmonic
strain ε33(t) at f0 = 20 kHz with load ratio R = −0.8 and Λ = 10−3. In (b), the ratio of higher
harmonics to fundamental harmonic follow the same trajectory as the damage parameter varies, which
are amplitude and frequency independent.

Finally, the load ratio can be studied easily due to the analytical form of Eq. (2.94). The load

ratio used for metals in ultrasonic fatigue tests usually range from −1 ≤ R < 0. Thus, for a fixed

stiffness degeneration Λ, the modulation of the higher harmonics can be shown to be highly nonlinear

due to the modulation of the sinc function. In Fig. 2.22, the ratio of higher harmonics to fundamental

harmonic are extracted for a fixed Λ = 10−2 for (a) and Λ = 10−3 (b). As the load ratio is modulated,

the sinc modulation affects the second harmonic amplitude ratio predictably, where it is maximal

when R = −1 and decreases monotonically as R → 0. For the other higher harmonics ratios, each

have sharp drop offs which are proportional to the pulse width (period) τ := T/πϱ, e.g. the fourth

harmonic amplitude ratio occurs at R ≈ −0.6. When the load ratio approaches R→ 0, this physically

indicates an opening of the crack aperture such that contact cannot occur during compression.

This analysis might be important if it is suspected that ultrasonic fatigue test machine would not
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be able to maintain a perfect the load ratio R in the experimental setting. Many factors could be

postulated which would incur a temporary deviation for fully-reversible R = −1 for ultrasonic fatigue

tests including: the self-heating at high frequency can introduce thermal strains, which can shift the

mean strain and affect the load ratio; and maintenance of the load ratio is dependent on the feedback

controller’s ability to maintain resonance (elongation). However, for the remaining of the dissertation

it’s assumed that the perfect reversibility is maintained and εm can be neglected.
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Figure 2.22: The ratio of higher harmonics and the fundamental harmonic yields reveal that odd
harmonic generation is dependent on the static strain and the modulation, i.e. the load ratio R. The
harmonic ratios show an upwards translation from (a), Λ = 10−2 to (b) Λ = 10−1.
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2.3 Modal model of ultrasonic fatigue specimen

Symbol Description

b Body forces vector
C Equivalent modal damping coefficient
C Stiffness tensor
D,DT Gradient and divergence matrix operators
F Equivalent modal force
K Equivalent modal stiffness coefficient
M Equivalent modal mass coefficient
n Outward normal surface unit vector
q0(t), q1(t) Rigid body and first longitudinal normal modes amplitudes
u, u̇, ü Displacement, velocity, acceleration vector
S, V,Γ Surface, volume, crack surface of a region of solid body
V Viscous tensor
W Potential energy
X,x Macroscopic and microscopic position vector
εεε,εεε General or microscopic, macroscopic strain tensors
ϕϕϕ0(X),ϕϕϕ1(X) Static and first longitudinal normal modes shapes
ρ Mass density
σ,σ General or microscopic, macroscopic stress tensors
τ Traction forces vector
ω1 Resonant (angular) frequency of the first longitudinal normal mode
ζ1 Damping ratio of the first longitudinal normal mode
δ□, δ(·) Virtual (variational) quantity, Dirac delta function
□nl Nonlinear quantity
grad, div Gradient and divergence operators

Table 2.5: For the ultrasonic fatigue specimen model in Sec. 2.3 only, this notation is adopted.

Here, the aim is to provide a physically consistent model of the fatigue specimen. Specifically one

that takes into account the specimen’s shape on the dynamics, and allows for continuum theories,

while benefitting as a reduced order model. To begin, the principle of virtual work is given:

−
∫︂
V
σ : δεεε dV⏞ ⏟⏟ ⏞
δWint

+

∫︂
V
b · δu dV +

∫︂
S
τ · δu dS⏞ ⏟⏟ ⏞

δWext

=

∫︂
V
ρü · δu dV⏞ ⏟⏟ ⏞
δWacc

(2.95)

where δWint, δWext, and δWacc denote the virtual work due to internal forces, external forces, and

inertial forces respectively. The ultrasonic fatigue specimen’s has a volume V , surface S, traction force

τ , body force b, Cauchy stress σ, strain εεε, and motion u, as shown in Fig. 2.23. Note it is valid for
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Y

Z

X

V,m,ρ

u

b

τ

dS

Figure 2.23: An arbitrary volume V in motion u with surface boundary S with traction τ and body
b forces shown.

any deformable body because no constitutive law is used, and thus is extendable to any non-elastic

deformations. A derivation of the principle of virtual work is given in Appendix A.2. Furthermore,

the subsequent derivation operates under the presumptions:

• The mechanical system under consideration consists of a deformable body, the fatigue specimen.

Its outer surface is divided into a free surface and the fixture interface, the latter connecting to

the horn and where displacement is imposed.

• The displacement field of the fatigue specimen is composed of a modal deformed shape (the

first free-free longitudinal eigenmode), modulated by the motion imposed at the fixture end (the

connection of the fatigue specimen and acoustic horn).

• External work is solely attributed to interaction at the specimen-horn interface, with gravity

effects being negligible.

• The material behavior of the specimen is globally linear viscoelastic, but incorporates diffuse

microplastic and microcrack contributions localized in a centroid volume about the fatigue spec-

imen. The acoustic nonlinearity parameter is assumed negligible since the most relevant material

behavior occurs at the mesoscale due to the order of strain (wavelength) during ultrasonic fatigue

tests near and beyond the VHCF regime.

The reduced order model is proposed to utilize the vibration normal modes of the ultrasonic

fatigue specimen, namely modal truncation [GR15]. The precomputed modal basis by offline finite

element modal analysis (as illustrated in Fig. 2.24), captures the fatigue specimen’s geometry in terms

of its resonance characteristics and mode shapes specific to the narrowband frequency range under
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consideration. This model entails the previously derived principle of virtual work by using a Galerkin

projection of the modal basis to approximate the displacement field of the ultrasonic fatigue specimen,

making it a powerful tool for dynamic analyses while bridging the gap to constitutive mechanics.

Finite element model
(ODE)

Modal model
(ODE)

Spatial discretization via
finite element method

Modal decomposition
(Galerkin projection)

Ultrasonic fatigue specimen
(PDE)

τ(X,t)
u(X,t)

Y

X

Z

Static longitudinal mode

First longitudinal mode

q0(t)ϕ0(X)

q1(t)ϕ1(X)

Figure 2.24: An intrusive model order reduction of an ultrasonic fatigue specimen whose equilibrium is
dictated by a partial differential equation. Through spatial discretization via finite elements, a modal
analysis reveals a subsequent modal shape functions. The modal model is simply a modal truncation
of the static and first longitudinal normal modes.

Mandel notation is adopted, a normalized form of Voigt notation, to facilitate matrix operations

and algorithmic implementation. This notation maintains consistency between tensor norms in both

the original and reduced spaces, unlike the traditional Voigt notation [Man65]. Moreover, the tensor

operations carry over to vector operations, e.g. σ : σ ≡ σTσ = σ211 + σ222 + σ233 + 2σ223 + 2σ213 + 2σ212.

In Mandel notation, the stress tensor can be related to the strain through the stiffness matrix C:

⎡⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33√
2σ23√
2σ13√
2σ12

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

σ

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C2211 C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C3311 C3322 C33

√
2C3323

√
2C3313

√
2C3312√

2C2311

√
2C2322

√
2C2333 2C2323 2C2313 2C2312√

2C1311

√
2C1322

√
2C1333 2C1323 2C1313 2C1312√

2C1211

√
2C1222

√
2C1233 2C1223 2C1213 2C1212

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

C

⎡⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33√
2ε23√
2ε13√
2ε12

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

εεε
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The compatibility equation for infinitesimal deformations is:

⎡⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33√
2ε23√
2ε13√
2ε12

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

εεε

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

0
√
2
2

∂
∂z

√
2
2

∂
∂y

√
2
2

∂
∂z 0

√
2
2

∂
∂x

√
2
2

∂
∂y

√
2
2

∂
∂x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

D

⎡⎣u1u2
u3

⎤⎦
⏞ ⏟⏟ ⏞
u

where D is simply the matrix analog to the gradient operator in symbolic notation. The divergence op-

erator can be shown to be the transposed gradient matrix operator DT. Next, it’s assume that through

a proper modal analysis with free-free boundary conditions such that the mass-normalized static lon-

gitudinal ϕϕϕ0(X) and first longitudinal modes ϕϕϕ1(X) are obtained. From inspection of Fig. 2.25, the

longitudinal mode shapes are symmetric about the centroid of the specimen. The approximation of

the displacement field is given by the Galerkin projection:

u(X, t) ≈ q0(t)ϕϕϕ0(X) + q1(t)ϕϕϕ1(X)

≈
[︁
ϕϕϕ0(X) ϕϕϕ1(X)

]︁ [︃q0(t)
q1(t)

]︃
(2.96)

where q0(t) and q1(t) are time-varying modal amplitudes which describe the motion for their corre-

sponding spatial mode shapes. Substituting Eq. (2.96) into Eq. (2.95), the matrix formulation of the

q0(t)ϕ0(X)

q1(t)ϕ1(X)

ϕ0,3(Xbase)

ϕ1,3(Xbase)

ϕ1,3(Xtip)

ϕ0,3(Xtip)

-0.5 0

(*)

0.5

Normalized
length

Figure 2.25: On the left, the Galerkin projected static and longitudinal normal modes for a 1070 steel
specimen with rectangular geometry. On the right, the shape functions of the static (in red) and
longitudinal (in green) mass-normalized modes through the longitudinal axis.
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principle of virtual work is:

−
∫︂
V

(δεεε)Tσ dV⏞ ⏟⏟ ⏞
δWint

+

∫︂
V

(δu)Tb dV +

∫︂
S

(δu)Tτ dS⏞ ⏟⏟ ⏞
δWext

=

∫︂
V
ρ(δu)Tü dV⏞ ⏟⏟ ⏞
δWacc

(2.97)

The virtual work of inertial forces δWacc is derived with some manipulation:

δWacc =

∫︂
V
ρ (δu)T üdV

=

∫︂
V
ρ

(︃
[ϕϕϕ0 | ϕϕϕ1]

[︃
δq0
δq1

]︃)︃T(︃
[ϕϕϕ0 | ϕϕϕ1]

[︃
q̈0
q̈1

]︃)︃
dV

=

[︃
δq0
δq1

]︃T ∫︂
V
ρ ([ϕϕϕ0 | ϕϕϕ1])T ([ϕϕϕ0 | ϕϕϕ1]) dV

[︃
q̈0
q̈1

]︃
▷ since

dq

dX
= 0

=

[︃
δq0
δq1

]︃T ∫︂
V
ρ

[︄
ϕϕϕT0ϕϕϕ0 ϕϕϕT0ϕϕϕ1

ϕϕϕT1ϕϕϕ0 ϕϕϕT1ϕϕϕ1

]︄
dV

[︃
q̈0
q̈1

]︃

=

[︃
δq0
δq1

]︃T [︄ ∫︁
V ρϕϕϕ

T
0ϕϕϕ0dV 0

0
∫︁
V ρϕϕϕ

T
1ϕϕϕ1dV

]︄[︃
q̈0
q̈1

]︃
▷ since

∫︂
V
ϕϕϕT1ϕϕϕ0 =

∫︂
V
ϕϕϕT0ϕϕϕ1 = 0

=

[︃
δq0
δq1

]︃T
M

[︃
q̈0
q̈1

]︃

(2.98)

where the modal mass matrix M and modal mass coefficients M0 and M1 can be defined:

M =

[︃
M0 0
0 M1

]︃
; M0 :=

∫︂
V
ρ∥ϕϕϕ0∥22 dV ; M1 :=

∫︂
V
ρ∥ϕϕϕ1∥22 dV (2.99)

The virtual work of external forces δWext is:

δWext =

∫︂
V

(δu)T bdV +

∫︂
S

(δu)T τdS

=

∫︂
S

(δq0ϕϕϕ0 + δq1ϕϕϕ1)
T τdS (since b = 0)

=

[︃
δq0
δq1

]︃T ∫︂
S

[︄
ϕϕϕT0 τ

ϕϕϕT1 τ

]︄
dS

=

[︃
δq0
δq1

]︃T [︄ ∫︁
S ϕϕϕ

T
0 τdS∫︁

S ϕϕϕ
T
1 τdS

]︄

=

[︃
δq0
δq1

]︃T
Fext

(2.100)

where the modal external forces Fext coefficients can be defined:

Fext =

[︃
Fext,0

Fext,1

]︃
; Fext,0 :=

∫︂
S
ϕϕϕT0 τ dS = Fbaseϕ0,3; Fext,1 :=

∫︂
S
ϕϕϕT1 τ dS = Fbaseϕ1,3 (2.101)
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and ϕ·,3 corresponds to the longitudinal value, i.e. ϕϕϕ1(X) = [ϕ1,1(X) ϕ1,2(X) ϕ1,3(X)]T.

The virtual work of internal forces δWint is expanded to be a decomposition of linear and nonlinear

stresses. It’s assumed that there is an underlying linear Kelvin-Voigt material which represents the

dynamic elasticity and viscosity by tensors C and V respectively. To characterize a nonlinear stress

due to material heterogeneities, the homogenized equivalent material C∗ is contained in a nonlinear

volume within the linear bulk of the material, Vnl ⊂ V . The homogenized stress components constitute

a nonlinear force Fnl, as demonstrated:

−δWint =

∫︂
V

(δεεε)Tσ dV

=

∫︂
V

(δεεε)T (Cεεε+ Vε̇εε) dV⏞ ⏟⏟ ⏞
Linear Kevin-Voigt material

+

∫︂
Vnl

(δεεε)T (C∗ − C)εεε dVnl⏞ ⏟⏟ ⏞
Nonlinear stress contribution

=

∫︂
V

(Dδu)TCDu dV +

∫︂
V

(Dδu)TVDu̇ dV +

∫︂
Vnl

(Dδu)T (C∗ − C)Du dVnl

=
... (expanded derivation in Appendix A.3)

=

[︃
δq0
δq1

]︃T(︃
K

[︃
q0
q1

]︃
+C

[︃
q̇0
q̇1

]︃
+ Fnl

)︃

(2.102)

The stiffness matrix K can be characterized by the Rayleigh quotient [GR15] since ϕϕϕ1 is mass nor-

malized:

K =

[︃
0 0
0 K1

]︃
; K1 :=

∫︂
V

(Dϕϕϕ1)TCDϕϕϕ1dV = ω2
1 (2.103)

The damping matrix C is assumed to be of small viscous damping, where the definition of a modal

damping ratio ζ1 = C1/2
√
M1K1 gives:

C =

[︃
0 0
0 C1

]︃
; C1 :=

∫︂
V

(Dϕϕϕ1)TVDϕϕϕ1dV = 2ζ1ω1 (2.104)

The nonlinear force vector Fnl is the difference between the homogenized nonlinear stress heterogeneity

and the elastic bulk inside the nonlinear volume:

Fnl =

[︃
0

Fnl,1

]︃
; Fnl,1 :=

∫︂ t1

t0

Knl,1 q̇1dt; Knl,1 :=

∫︂
Vnl

(Dϕϕϕ1)TC∗Dϕϕϕ1 dVnl −
∫︂
Vnl

(Dϕϕϕ1)TCDϕϕϕ1dVnl

:= K∗
nl

⃓⃓
Vnl
−Klin

⃓⃓
Vnl

(2.105)

The nonlinear description is consistent in the sense that if C∗ is set to be a linear material C, then the

nonlinear force on the first longitudinal normal mode is Fnl,1 = 0, and the modal equations of motion

due to a purely elastic material are recovered.
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2.3.1 Internal energy of the modal model

The principle of virtual work yields an equation of motion for the modes:[︃
M0 0
0 M1

]︃ [︃
q̈0
q̈1

]︃
+

[︃
0 0
0 C1

]︃ [︃
q̇0
q̇1

]︃
+

[︃
0 0
0 K1

]︃ [︃
q0
q1

]︃
+

[︃
0

Fnl,1

]︃
=

[︃
Fext,0

Fext,1

]︃
This characteristic equation represents the weights of the modal coordinates on the strain energies and

external forces mapped by the Galerkin projection. First, the rigid body longitudinal normal mode

coordinate q0(t) has an equation:

M0q̈0 = Fext,0 = Fbaseϕ0,3 (2.106)

The rigid body longitudinal normal mode induces no elongation and thus has no influence on the

strain energies. Conversely, the longitudinal normal mode coordinate q1(t) has an equation of motion:

M1q̈1 + C1q̇1 +K1q1 + Fnl,1 = Fext,1 = Fbaseϕ1,3 (2.107)

which takes the form of a classical oscillator with external forcing and nonlinearity. To capture the

effects on elongation in terms measurable states, i.e. the base acceleration, one can use the fact of the

modal coupling.

An equivalence between the force driven oscillator and the acceleration driven oscillator at the

base of the specimen ü(Xbase) is sought. First by definition (Eq. (2.101) cf. Fig. 2.25):

Fbase =
Fext,0(Xbase)

ϕ0,3(Xbase)
=
Fext,1(Xbase)

ϕ1,3(Xbase)
⇒ Fext,1(Xbase) =

M0 q̈0 ϕ1,3(Xbase)

ϕ0,3(Xbase)
(2.108)

When the external force vector Fext(Xbase) is applied, the Galerkin projection about the base is:

ü(Xbase) =

⎡⎣ 0
0

ü(Xbase)

⎤⎦⇒ ü(Xbase) = q̈0 ϕ0,3(Xbase) + q̈1 ϕ1,3(Xbase)

⇒ q̈0 =
1

ϕ0,3(Xbase)
(ü(Xbase)− q̈1 ϕ1,3(Xbase))

(2.109)

where u is the axial component of u. Substituting Eqs. (2.108) and (2.109) into the first modal

equation of motion Eq. (2.107) gives:

M1q̈1 + C1q̇1 +K1q1 + Fnl,1 =
M0 ϕ1,3(Xbase)

(ϕ0,3(Xbase))
2 ü(Xbase)−

M0 (ϕ1,3(Xbase))
2

(ϕ0,3(Xbase))
2 q̈1

and isolating the base motion yields:

(ϕ0,3(Xbase))
2

M0 ϕ1,3(Xbase)

[︄
(M1 +

M0 (ϕ1,3(Xbase))
2

(ϕ0,3(Xbase))
2 )q̈1 + C1q̇1 +K1q1 + Fnl,1

]︄
= ü(Xbase) (2.110)
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Therefore, the equivalent modal equation of motion described with base acceleration1 is:

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + F nl,1⏞ ⏟⏟ ⏞

F int,1

= Gü(Xbase) (2.111)

where the coefficients are defined:

µ :=
ϕ1,3(Xbase)

ϕ0,3(Xbase)
ω2
1 :=

K1

M1 +M0µ2
ζ1 :=

C1

2
√︁
K1(M1 +M0µ2)

F nl,1 :=
Fnl,1

M1 +M0µ2
G :=

M0 µ

(M1 +M0µ2)ϕ0,3(Xbase)

(2.112)

and F int,1 regroups the internal forces.

Finally, to enable a problem description with measurable states, the longitudinal normal mode

has an explicit relationship dependent on the difference of the base and tip motion of the fatigue

specimen. First let the notation u(Xbase, t) := ubase represent the base motion and u(Xtip, t) := utip

the tip motion, which is substituted in the Galerkin approximation of Eq. (2.96):

übase = q̈0ϕ0,base + q̈1ϕ1,base = q̈0ϕ0,base − q̈1ϕ1,tip

ütip = q̈0ϕ0,tip + q̈1ϕ1,tip = q̈0ϕ0,base + q̈1ϕ1,tip
(2.113)

Note that, by the symmetry of the mode shape ϕϕϕ1, one obtains ϕ1,tip = −ϕ1,base. An explicit form is

obtained with the substitution of Eqs. (2.109) and (2.113):

ütip = 2ϕ1,tip(Gübase − F int,1) + übase (2.114)

with F int,1 in Eq. (2.112) or with the internal forces isolated:(︃
1

2ϕ1,tip
+G

)︃
übase −

1

2ϕ1,tip
ütip = F int,1 (2.115)

Eq. (2.115) shows that the relative motion is proportional to the internal forces due to elongation

of the ultrasonic fatigue specimen. The experimental implications of this fact are substantiated in

Chapter 4.

2.3.2 Nonlinear force of the centroid volume

In order to model the structural effects (e.g. a change in structural stiffness corresponding to a

shift in eigenfrequency), material nonlinearities due to fatigue mechanisms must be embedded into

1Using experimental modal values obtained from a finite element analysis, one can confirm this derivation is correct
when ω1 = ω1

√
2, c.f. [Inm14]
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a local volume about the centroid of the fatigue specimen model, i.e. the centroid volume. The

expression for Knl,1 of Eq. (2.105) represents the modal stiffness contribution of the centroid volume;

the linear elastic volume is replaced with with a volume with the same geometry whose nonlinear

constitutive behavior C∗ is defined by Eq. (2.84). The internal modal force due to this nonlinear

behavior is Fnl,1 :=
∫︁ t1
t0
Knl,1 q̇1dt. In a manner analogous to the tangent stiffness tensor utilized in

the incremental formulation of the microplastic inclusions’ plasticity law, the nonlinear internal modal

force is expressed incrementally:

∆Fnl,1 := Knl,1 ·∆q1 =
(︂ ∫︂

Vnl

(Dϕϕϕ1)TC∗Dϕϕϕ1 dVnl⏞ ⏟⏟ ⏞
Nonlinear stiffness contribution

−
∫︂
Vnl

(Dϕϕϕ1)TCDϕϕϕ1 dVnl⏞ ⏟⏟ ⏞
Linear stiffness contribution

)︂
·∆q1 (2.116)

where the incremental macroscopic strain is defined by the quantity ∆εεε := Dϕϕϕ1∆q1.
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Figure 2.26: On the left, the maximum 90% nominal longitudinal strain of a copper specimen is used to
define the boundaries of the nonlinear volume about the centroid. The volume then is defined to have
a nonlinear constitutive relationship due to homogenization of microcracks and/or microplasticity, and
subtracts the contribution of the elastic stiffness.

For the volume integral, there is a quasi-free parameter which must be chosen, namely the starting

and ending lengths which integrates the centroid’s cross-sectional profile. Here it is fixed that the

centroid volume is defined for the 10th decile of the maximum longitudinal stress/strain seen by the

ultrasonic fatigue specimen. This volume, notated Vnl, is accountable for the internal forces acting

upon the centroid volume. For the specimen whose centroid shape is of a profile of hyperbolic cosine,
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as shown in Fig. 2.26, the approximation of the volume integral is expressed as:∫︂
Vnl

(□) dVnl ≈ 2

∫︂ znl,2

znl,1

S(z) ·□ dz (2.117)

where the quantity in □ is a constant and S is the area of the cross-section as presented by Bathias

[BP05] in Fig. 2.27:

S(z) :=
πd21
4

cosh2(λz); λ :=
1

L2
arccosh

(︃
d2
d1

)︃
(2.118)

Given the closed form expressions, the line integral can be numerically estimated by trapezoidal rule or

other numerical quadratures. In the cases where an analytical closed form solution does not exist, the

central geometry can be estimated by an elementary shape: e.g. a cylinder for a cylindrical specimen,

or a rectangular prism for a rectangular shaped specimen. The effect of such a small deviation from

the true geometry will still capture the first order-effects, that is because Eq. (2.117) can also be

approximated as a Riemann sum.

d1

d2

L2 L1 Homogenized volume
Cylindrical fatigue specimen

z

znl,1 znl,2 VnlS(z)

Exponential profile

Figure 2.27: An exponential/cylindrical ultrasonic fatigue specimen with defined geometry from
[BP05]. For the centroid volume bounded by znl,1 to znl,2, a line integral can be evaluated numerically.
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2.4 Ultrasonic fatigue machine and piezoelectric solicitation

Symbol Description

As Surface area of piezoelectric disc
cE Stiffness tensor under constant electric field
Cp Capacitance coefficient
D Dielectric displacement tensor
D, d Damping coefficients
E Electric field tensor
e Piezoelectric tensor
ηS Permittivity tensor under constant strain
F Force
H,J Electromechanical conversion coefficient and its inverse
hs Piezoelectric disc thickness
i Current
K, k Stiffness coefficients
ls Piezoelectric stack thickness
M,m Mass coefficients
Q Electric charge coefficient
Rp Resistor coefficient
S Strain tensor
T Stress tensor
V Voltage
x, ẋ, ẍ Displacement, velocity, acceleration
α Linear acoustic amplification coefficient
ωa, ωr Anti-resonant/resonant frequency
□h,□p Equivalent booster + horn / transducer quantity

Table 2.6: For the electrodynamical model in Sec. 2.4 only, this notation is adopted.

The objective of this section is to develop a detailed understanding through the modeling of the

ultrasonic fatigue machine. Compared to conventional fatigue machines, the piezoelectric transducer

of the ultrasonic fatigue machine has a working frequency that consists of the entire testing system,

which can be different from the eigenfreqencies of the fatigue specimen. In other words, the fatigue

specimen is forced to vibration due to its base motion at the acoustic horn. This is accomplished by

imposing a voltage at the piezoelectric transducer, and is converted into mechanical vibration by the

piezoelectric effect. A global view of this ultrasonic fatigue machine and its measurable quantities

is shown as simple block diagram in Fig. 2.28. This enables an electromechanical model by transfer

functions, which can aide in understanding the ultrasonic fatigue test machine’s global properties.
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Figure 2.28: An ultrasonic fatigue test machine. The quantities of focus are shown in color and
imposed onto a block-diagram: namely the input voltage (post amplification) V and current i to the
piezoelectric stack, the mechanical force Fp and motion xp of the piezoelectric stack, and the motion
or solicitation provided by the acoustic horn xh.

Briefly, the piezoelectric effect and piezoelectric transducers are introduced. Piezoelectric materi-

als, convert electrical signals into mechanical motion via the piezoelectric effect. In these materials,

microscopic ferroelectric domains are initially randomly oriented, resulting in no net polarization and

no piezoelectric effect. However, when exposed to a strong electric field, these domains align with the

field, creating a net polarization, see Fig. 2.29 (a). This alignment causes the crystalline structure to

elongate in response to the electric field, which is the fundamental mechanism behind the piezoelectric

effect. To exploit this effect for ultrasonics, the piezoelectric material is assembled into a Langevin-

type piezoelectric transducer [Bat06], shown in Fig. 2.29 (b). The piezoelectric transducer utilized in

this dissertation is the Branson model CR-20, which operates in a thickness-mode of the piezo-ceramic

disc (typically denoted with the direction 3 or subscript 33). These transducers consist of one or more

piezoceramics, mechanically compressed between a two masses. This prestress serves a dual purpose:

it prevents the piezoceramics from experiencing tensile stresses during ultrasonic vibration and ensures

clapping contact at the piezoceramic interfaces.

A popular approach to modeling an ultrasonic transducer and load train is by an equivalent circuit

[She+97]. When using an equivalent electrical circuit as a model, the complexities of mechanical

quantities and electromechanical interactions become reduced to a 0D model. However, there have been

instances in the literature [Hay84] where a negative capacitance coefficient is used for a model thickness-
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Figure 2.29: In (a), the multiscale effects of piezoelectricity for in Lead Zirconate Titanate (PZT)
ceramics. In (b), a diagramed Langevin-type piezoelectric transducer.

mode transducers, which is impossible with physical circuit elements. A more physically consistent

model in the recent 2019 work of Zhang et al. [Zha+19] uses a chain of oscillators with a lumped circuit.

This approach obtains physically consistent values and can be validated with experimental data.

Furthermore, the coupled equations can be analyzed using traditional control theory and facilitates

the analysis of system characteristics like resonance and sensitivity.

2.4.1 Ideal electrodynamical model

The material constitutive equations which describes the piezoelectric effect in the linear (reversible)

case, for small mechanical deformations and electric fields is given in Voigt notation:

T = cES − (e)TE
D = eS + ηSE

(2.119)

Here, the mechanical stress tensor T , the dielectric displacement D are related to the mechanical strain

S and the electric field E, whose tensor notations is given in Appendix A.4, e is the piezoelectric

tensor, CE is the stiffness tensor under constant electric field, and ηS denotes permittivity tensor

under constant strain. The superscripts S,E for the parameters denote the physical field quantity
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which is held constant while one determines the parameter, according to IEEE standards [EE78]. For

motion in the thickness mode (longitudinal direction), this can be simplified to:[︃
T3
D3

]︃
=

[︃
cE33 −e33
e33 ηS33

]︃ [︃
S3
E3

]︃
(2.120)

For a Langevin transducer, piezo-ceramic discs are stacked in parallel with a pre-load to amplify

the vibration, with a three-disc system shown in Fig. 2.30. Assuming uniform electric fields during

longitudinal vibration with opposing fields in each disc, the constitutive equations can be simplified

to a 0D analog [FGS08] with the relations:

T3 =
Fp

As
; D3 =

Q3

As
; S3 =

xp
ls

; E3 =
Vp
h

(2.121)

where Fp is the piezoelectric stack’s internal axial force, Q3 is the electric charge due to the deformation

Vp

Q3

Fp

ls

3

1 hs

xp

Q3

Vp Vp

+ +

, Fp xp,

Figure 2.30: A 0D model of an expanded Langevin transducer with a three disc piezoelectric stack.

xp, and Vp is the applied voltage. The As is the cross-sectional area of the piezoelectric disc and its

thickness h, the total thickness of the piezo-ceramic discs is (ls = n · h) with n being the number of

discs.

The constitutive equations from Eq. (2.120) can be reformulated by substitution of Eq. (2.121) as:[︃
Fp

Q3

]︃
=

[︃
kp −H
H cp

]︃ [︃
xp
Vp

]︃
(2.122)

From Eq. (2.122), the piezoelectric stack’s internal axial force Fp and electric charge Q3 arise from

deformation xp and applied voltage Vp. Deformation can be produced by a force on the piezoelectric

disc, even without electrical input. Eq. (2.122) gives the stiffness coefficient kp = cE33A/l for char-

acteristic A, l > 0, and the relationship between voltage and charge in piezoelectricity which can be
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depicted as a capacitor Cp = ηS33nA/h. Additionally, the electromechanical conversion coefficient H

represents the voltage-force and deformation-charge relationship H = e33As/ls.

A steady-state electrodynamical model of the ultrasonic fatigue machine draws inspiration from

the schematization of Fig. 2.31 of [Zha+19]. The mechanical properties of a piezoelectric stack can be

represented by a 0D oscillator model, which consists of an equivalent mass mp, spring kp, and damper

dp and for the booster and horn by another mass mh, spring kh, and damper dh. The piezoelectric

transducer is constructed where xh and xp are defined as the vibration amplitudes of the horn and

piezoelectric stack, respectively. An equivalent circuit can be utilized to represent the impedance

curves of dielectric and electrical losses of the piezoelectric transducer [She+97] via a capacitor Cp,

resistor Rp, and transformer which provides force Fp := HVp, found from Eq. (2.122).

kp Cp Rp

H

dp

khdh

mp

mh

Fp

xp

xh

Vp

+

ip

Fh

ω

Figure 2.31: A 0D electrodynamical model of the ultrasonic fatigue machine with external force applied
to the horn Fh.

The force balance of Fig. 2.31 is given as:

mhẍh = −dh (ẋh − ẋp)− kh (xh − xp)− Fh

mpẍp = dh (ẋh − ẋp) + kh (xh − xp)− dpẋp − kpxp + Fp

(2.123)

and the electrical circuit is given as:

ip = Cp
dVp
dt

+
Vp
Rp

(2.124)

These set of equations are utilized by the 2019 publication of Zhang et al. [Zha+19], but the authors

instead use them to create an equivalent circuit model. The coupling of the electronic and mechanical

systems are done through the (electrical) transformer’s coefficient H. However, the experimental

piezoelectric transducer used in this thesis is sealed so the motion of the piezoelectric stack xp is not

measurable.
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To mitigate this, it is commonly acknowledged that the booster and acoustic horn provide amplifi-

cation [BP05] for longitudinal motion when properly designed2. This can be characterized as a linear

amplification in the longitudinal motion such that xh = αxp. In accordance to [BP05], substituting

xh = αxp into Eq. (2.123) and combining equations gives:

Mẍh +Dẋh +Kxh = Fp − Fh (2.125)

whose schematic is shown in Fig. 2.32 (left) and the equivalent characteristic mass-spring-damper

coefficients are:

M = mh +
mp

α
; D =

dp
α

; K =
kp
α

(2.126)

Vp
ip

K Cp

Cps
1

Rp

H

D

M

Fp

xh

ip ,Fp xp
H

J

Ms2+Ds+K
s xh+

Fh Fh

Vp

+

ω

+

Figure 2.32: A simplified electrodynamical model of the ultrasonic fatigue machine with external force
applied to the horn Fh and when Rp ≫ 1. The dotted line indicates a fictitious block relationship.

Fig. 2.32 depicts the input-output behavior of the ultrasonic fatigue test machine, with vibration

velocity ẋh as the system output and both the voltage Vp and external force Fh as inputs. Current ip

serves as a fictitious output variable for assessing equivalent electrical conductance which transforms

into force Fp through the electromechanical conversion coefficient H.

Utilizing the block diagram in Fig. 2.32 (right) via Mason’s rule, various input-output behaviors

can be determined, including electrical and mechanical impedance (or admittance). In the case of

an unloaded horn (no tension or compression forces), like in ultrasonic fatigue test with load ratios

R = −1, the closed loop transfer function by Fourier transform s = jω from Vp to ip is:

ip(s)

Vp(s)

⃓⃓⃓⃓
Fh=0

=
Cps

(︂
Ms2 +DS +K + H2

αCp

)︂
Ms2 +DS +K

(2.127)

2If the resulting longitudinal ultrasonic wave meets the resonance condition between the mechanical components,
i.e. transducer, booster, and horn, for an acoustic wavelength λ/2 = L and characteristic length L.
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and from ip to ẋh is:
ẋh(s)

ip(s)

⃓⃓⃓⃓
Fh=0

=
H

Cp

(︂
Ms2 +DS +K + H2

αCp

)︂ (2.128)

From inspection of Eq. (2.127), the resonant and anti-resonant frequencies can be found from the poles

and the zeros respectively, such that ωr =
√︂

K
M + H2

αCpM
and ωa =

√︂
K
M . Here, it can be seen that the

anti-resonant frequency of the ultrasonic fatigue test machine is independent of the electrical system.

2.4.2 Experimental parameterization of an ideal system

To demonstrate the forward problem of the 0D electrodynamics model, the system parameters of

Eq. (2.127) and Eq. (2.128) are identified via an experimental setup used in the thesis: The ultrasonic

transducer (Branson model CR-20) is driven by a signal generator (Keysight 33500B) in series with

a voltage amplifier (FLC electronics P100). The load train consists of a titanium booster (Branson

800-series, 1:1 amplification) followed by a titanium horn (1:2.65 amplification). The voltmeter (Pico

Technology TA044) and ammeter (Tektronix A622) provide voltage and current measurements re-

spectively. The velocity measurement of the free-end of the horn is measured using a laser vibrometer

(Polytec VibroFlex Xtra). The schematic of the experiment is shown in Fig. 2.33, where the input

and output data acquisition (Genesis Highspeed & Perception) are simultaneously recorded.

xh

Laser vibrometerSignal generator
+ amplifier

Vpip,
Electrodynamical system

Figure 2.33: A simplified schematic of the experimental setup used for the parameterization of the
electrodynamical model of the piezoelectric transducer coupled with the booster and horn.

First, the parameterization of Eq. (2.127) is sought through:

ip(s)

Vp(s)

⃓⃓⃓⃓
Fh=0

=
Cps

(︁
s2 + a1s+ a2

)︁
s2 + a3s+ a4

(2.129)

where the coefficients of Eq. (2.129) are related with Eq. (2.127) by:

a1 = a3 =
D

M
; a2 =

K

M
+

H2

αCpM
; a4 =

K

M
(2.130)
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With four unknown coefficients, the Fourier transform s = jω is used whose complex form yields the

real component:

real

(︄
ip(jω)

Vp(jω)

⃓⃓⃓⃓
Fh=0

)︄
=
Cp

[︁
ω2
(︁
a21 + ω2

)︁
+ a2

(︁
a2 − 2ω2

)︁]︁
a1 (a4 − 2ω2 − a2)

(2.131)

and the imaginary component:

imag

(︄
ip(jω)

Vp(jω)

⃓⃓⃓⃓
Fh=0

)︄
=
Cpω

[︁
ω2
(︁
a21 + ω2

)︁
+ a2

(︁
a2 − 2ω2

)︁]︁
a21ω

2 + (a4 − ω2) (a2 − ω2)
(2.132)

To obtain a unique solution of Eq. (2.129), the steady-state responses at experimental resonant

and anti-resonant frequencies are used with Eq. (2.131) and Eq. (2.132) to find the coefficients

{Cp, a1, a2, a4}. The sampling frequency is 106 Hz. To obtain an experimental frequency response

function of ip/Vp, a sine sweep was conducted in the range of 19.80 to 20.50 kHz, employing a lin-

ear frequency increment of 3 Hz/s. The magnitude and phase plot of ip/Vp are shown in Figs. 2.34

and 2.35. Next the experimental anti-resonant frequency ωa = 1.271 · 105 rad/s and resonant fre-

quency ωr = 1.262 · 105 rad/s are identified from the maximum and minimum magnitudes. At these

two points, additional two steady-state signals are measured to obtain the coefficients in Table 2.7. At

these two points, four equations are obtained via Eqs. (2.131) and (2.132), which yield the estimates

of {Cp, a1, a2, a4}.

Using these coefficients with the experimental frequency response of the mechanical impedance,

the coefficient H/M can be identified from Eq. (2.128):

M

H

ẋh(s)

ip(s)

⃓⃓⃓⃓
Fh=0

=
1

Cp (s2 + a1s+ a2)
(2.133)

Experimentally, this is found through minimizing the residual between the experimental and previously

found model parameters such that M/H = 1.108 · 10−5. Finally, the remaining non-mass normalized

coefficients can be found from Eq. (2.130), since a2 = K +HJ/Cp, and by rearranging a2:

J = Cp
M

H
(a2 − a4) (2.134)

where the resulting dynamical and electromechanical conversion that are coefficients found are shown

in Table 2.8. The modeled electrical impedance of Eq. (2.129) is visualized on the magnitude and phase

plots in Fig. 2.34. The current to velocity magnitude plot and the voltage to velocity plot (found by

multiplying Eqs. (2.129) and (2.133) together) is shown in Fig. 2.35. Note that the maximum (at

the anti-resonance) of the current to velocity magnitude plot indicates that the current draw is most
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efficient at this frequency. This coincides with the fact that most industrial piezoelectric transducers

are driven at its anti-resonant frequency for material and dynamical stability [Zha+19; Jac+21].
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Figure 2.34: The magnitude plot (a) and phase plot (b) of ip/Vp (Eq. (2.129)) and the experimental
data. The experimental data has been smoothed by a median filter of window size 10 and the shaded
entries correspond to the noisy signal’s envelope.

Parameter Value Units

Cp 2.275 · 10−7 F/m

a1 = D/M 32.000 N/m2/s

a2 = K/M +H2/(αCpM) 16.159 · 109 N/m2

a4 = K/M 15.934 · 109 N/m2

Table 2.7: Identified coefficients from the experimental sine sweep for electrical impedance.

In practice, the ultrasonic fatigue test machine operates by closely monitoring and adjusting to its

anti-resonance frequency fa, ensuring continuous and optimal performance. Critical to this process

is the tracking of the machine’s zero-phase at this point (Fig. 2.34 (b)). The machine identifies this

anti-resonance frequency by a sine sweep at a low voltage input; the frequency where the phase equals

zero degrees is pinpointed as the anti-resonance point. A phase-locked loop (PLL) circuit then keeps

the machine’s working frequency at this point, see Fig. 2.36. When a fatigue specimen is attached to

the acoustic horn and undergoes a stiffness change ∆K (e.g. due to crack propagation), it’s clear to

see that the system’s anti-resonance ωa =
√︁
K/M will change as well. The role of the PLL adjusts

the working frequency to this anti-resonant point which ensures the fatigue specimen is working at its

first longitudinal eigenmode.
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Figure 2.35: The magnitude plot of ẋh/ip (a)(Eq. (2.133)), ẋh/Vp (a), and experimental data. The
experimental data has been smoothed by a median filter of window size 10 and the shaded entries
correspond to the noisy signal’s envelope. The fitted model coefficients identified in Table 2.7 are
shown by scaling model’s curve by M/H.

Parameter Value Units

M/H 1.108 · 10−5 A · s2m
J 38.305 A · s/m

Table 2.8: Identified coefficients from the experimental sine sweep for Fig. 2.35.

ω
PLL

K Cp Rp

H

D

M

Fp

xh

Vp

θref = 0

θ

+

+

Figure 2.36: A simplified electrodynamical model of the piezoelectric transducer coupled with the
booster and horn with resonance frequency tracking via a phase locked loop (PLL). Given a reference
phase θref, the PLL corrects the phase and provides a working frequency ω.

2.4.3 Source of nonlinearities in horn’s vibration

The frequency response functions of the previous introduced linear models can capture the domi-

nating system behavior, and thus can directly estimate of the stress amplitude load given to the fatigue

specimen given the measured input voltage or current, see the procedure of Jacquemin et al. [Jac+21].

However, it’s been observed experimentally by the author [Kis+21] and others [Heb+23] that the input
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wave is in fact multi-harmonic. In these studies, laser vibrometer measurements made on the acoustic

horn revealed a velocity spectra with higher harmonics. Here it’s briefly mentioned the origins of these

nonlinearities at the acoustic horn, with three suspected sources:

• Nonlinearity in the signal and power generation: The proprietary PLL-controlled signal and

power generator from Branson (Branson DC480b), may introduce nonlinearity due to complex

circuitry to deal with the high power capacitive load of the piezoelectric device [Zha+23]. This

could result in a nonlinear excitation of the piezoelectric transducer, affecting the waveforms

generated. It’s also known that a PLL circuit is nonlinear itself and can effect the waveform,

usually due to the internal voltage controlled oscillator [LKS09].

• Material nonlinearity of piezoelectric materials: The inherent material properties of the piezo-

electric ceramic used can contribute to nonlinearity. Given that piezoelectric materials often

exhibit nonlinear stress-strain relationships. It’s well documented that PZT has a hysteric ma-

terial behavior due to a ferroelectric polarization effect, see [GDS11]. In the presence of large

applied electric fields, a saturation nonlinearity can also take place, [GAE97]. Lastly, piezoelec-

tric materials are also sensitive to thermal effects, necessitating air cooling [Miy+19].

• Mechanical interface and fixture nonlinearities: Nonlinearities can also arise from mechanical

interfaces and fixtures within the system. These include factors like friction, and other contact-

related contact nonlinearity [Bro+14] at the interfaces and joints, have been thoroughly explored

by both the acoustic and dynamics communities [Kle+17; Bro+14].

To demonstrate experimental measurements of nonlinearities (with no fatigue specimen), results

will be presented for two different power systems: a signal generator (Keysight 33500B) in series

with a voltage amplifier (FLC electronics P100), as well as a proprietary PLL-controlled signal and

power generator from Branson (Branson DC480b). First it’s demonstrated that there is an intrinsic

nonlinearity either in both the piezoelectric material and regardless of power source. An experimental

steady-state signal frequency spectra is presented in Fig. 2.37 by using the FFT with a Hann window

of signal size 210. Here it can be seen the magnitude of the harmonics, as well as the noise floor of the

vibrometer. Despite the linear signal generator and amplifier being used without any other control

feedback circuitry, higher and interharmonics are present, yet at small magnitudes. In the Branson
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setup, a larger third harmonic is present as well as an additional interharmonic near the fundamental

harmonic.
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Figure 2.37: The steady-state velocity response of the horn of the piezoelectric transducer system with
the left and right columns representing the frequency spectra of the system driven by the linear signal
generator and power supply and the Branson PLL-controlled signal and power generator, respectively.
The noise floor of the laser vibrometer is clearly seen at ≈ 5 · 10−5 m/s.

Next the thermal effect is investigated, a low amplitude is imposed on the electrodynamical system

without air cooling, which allows for heat to accumulate in the piezoelectric stack. Here, an exper-

imental time-frequency power spectral density is presented in Fig. 2.37. It features the linear setup

used in Fig. 2.32 and the setup with a PLL-controlled signal Fig. 2.36. For the linear signal generator

and amplifier, the previously found anti-resonant frequency is utilized, whereas the Branson PLL-

controlled signal and power generator automatically detects and tracks the anti-resonant frequency

during solicitation. No piezoelectric transducer cooling provided to allow any transient thermal effects

during loading for approximately 15 minutes at a low displacement amplitude. Velocity, current, and

voltage signals were simultaneously recorded at a sampling frequency of 200 kHz, and their power

spectral densities were computed using MATLAB’s specgram using a Hann window of signal size 210

with a 25% overlap. It can be seen in the linear setup of Fig. 2.38, the higher harmonics are present

in the velocity signal, with little to no effect in the presence of thermal effects. For the Branson setup,

the presence of higher harmonics are stronger, with a rapidly degrading voltage and current signals

due to the effect of thermal transients. These results demonstrate that the thermal effects exists when
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the piezoelectric transducer is not properly cooled with compressed air, but the underlying higher

harmonics at {40, 60, 80, . . .} kHz can be expected to persist during ultrasonic fatigue tests.
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Figure 2.38: A comparison of thermal heating effects on the piezoelectric transducer system with
the power spectral density, with the left and right columns representing the system driven by the
linear signal generator and power supply and the Branson PLL-controlled signal and power generator,
respectively. It can be seen that the Branson system at ≈ 400 s begins to display additional harmonic
components especially in the voltage and current measurements.
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2.5 Summary

The organization of the Chapter 2 reflects the various length scale phenomena and their influence.

First various material nonlinearities are hierarchically detailed with respect to their harmonic gener-

ation. At the atomic length scale, the acoustic nonlinearity β due to the crystal lattice is derived. A

preliminary analysis for a standing wave about a slender suggests that nonlinearity due to values of

β in the literature for polycrystalline copper are smaller by a factor of ten for undamaged polycrys-

talline copper fatigue specimens from Chapter 4. Additionally, the nonlinearity is a material property

and thus cannot reflect the nonlinearity of fatigue mechanisms that manifest during ultrasonic fatigue

tests. This encourages a departure and alternative material models.

Next, a mean-field homogenization model of diffuse microplastic inclusions and microcracks with

closure are considered. Mesoscale models – which discuss material behavior at a length scale of the

same order as the wavelength of the ultrasonic wave– are more appropriate. Due to the nonlinearities

of both the microplastic inclusions and microcracks with closure, their derivation and linearization

is detailed. It’s shown that the microcrack model has a predominately even harmonic generation

whereas the microplastic inclusions have a predominately odd harmonic generation. The combination

of both these phases can generate a complex higher harmonic generation which will be revisited for

experimental results in Chapter 4. Finally, a uniaxial macroscopic crack model is considered, and

its higher harmonic generation is also analyzed. Qualitatively, it’s harmonic generation is very close

to the microcrack model and it is expected there is overlap in their behavior. It is shown for all

nonlinearities modeled, that the effect of the input oscillation being single or multi-harmonic, greatly

affects the ability to discern the model’s nonlinear parameters.

Next the structure of the ultrasonic fatigue specimen is modeled. a macroscopic model of the

fatigue specimen is detailed. The standing wave formed during the fatigue test allows for a modal

basis to be utilized: a modal truncation of a static longitudinal mode and first longitudinal mode.

The Galerkin projection of the modal basis onto the weak form of dynamic equilibrium gives a 2

degree of freedom equation of motion; for base excitation it can be further reduced to a 1 degree

of freedom oscillator. This explicit form demonstrates that the boundary condition at the base of

the fatigue specimen, i.e. its input vibration must be considered. The micromechanical constitutive

behavior from the previous subsection can be embedded into the centroid volume through numerical
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quadrature. The size of this centroid volume is a quasi-free parameter, and is defined in our work for

the 10th decile of longitudinal stress seen by the fatigue specimen.

Finally the ultrasonic fatigue test machine is considered. First a 0D transfer function model of

the electrodynamics is validated with experimental data. However, the frequency spectra reveals the

presence of small harmonics in the experimental voltage, current, and vibration signals. The sources

of these weak nonlinearities are suspected to stem from the ultrasonic fatigue test machines contact

interfaces, the piezoelectric material nonlinearity, and the signal and power generation. When the

ultrasonic fatigue specimen is attached to the horn, the imposed base motion will be multi-harmonic:

this is schematized as a block diagram in Fig. 2.39 (b) which is compared to an ideal system in (a).
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Figure 2.39: An ideal ((a)) and experimental ((b)) ultrasonic fatigue test machine with accompanying
block diagrams of their frequency spectra, where V is the imposed voltage, xh is the motion of the
horn, and xt is the motion of the fatigue specimen’s tip. In (c), the proposal of additional measurement
of the experimental system for ultrasonic fatigue tests.

Through these previous sections, a comprehensive view of the ultrasonic fatigue specimen can be

understood. Due to the fact that the ultrasonic fatigue test machine provides a multi-harmonic input

to the fatigue specimen, this implies that the harmonics present in the tip vibration of the fatigue
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specimen are not representative of only material-based nonlinearities but also of the input vibration.

This is clearly seen in Fig. 2.9 and Fig. 2.14, where the multi-harmonic input masks the higher

harmonics generation for low values of microcrack and microplastic volume fractions. Therefore, the

classical experimental setup of an ultrasonic fatigue test with a single laser vibrometer is changed to

include an additional laser vibrometer measurement at the base, which is shown in Fig. 2.39 (c). This

modification is implemented for experimental results in Chapter 4.
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3.1. INTRODUCTION

3.1 Introduction

In this chapter, the focus is directed towards the analysis of ultrasonic fatigue vibration signals.

These signals, which are quasi-stationary and harmonics, may hold information about fatigue mech-

anisms and other systemic nonlinearities inherent in signal. The goal here is to accurately estimate

harmonics and to and interpret this information to gain insights into the fatigue behavior of material.

Addressing this challenge requires solving inverse problems of linearizable models. Many engi-

neering problems, including the analysis of vibration signals, can be expressed in a vector-matrix

formulation. Consider, for instance, the representation of a periodic signal x ∈ C with P complex

sinusoids for signal processing:

x(t) =

P∑︂
i=1

βie
j2πωi(t) ⇐⇒ x = ANβ =

P∑︂
i=1

βiai

Here, βi ∈ C represents the complex amplitude, and {ωi ∈ [0, 1);ωi ̸= ωj : ∀i} the normalized

frequency. Typically, engineers apply the Discrete Fourier transform (DFT) to the signal, and extract

the frequency peaks to fit this model. However, by incorporating more knowledge about the particular

problem, a better performing estimation can be obtained in the presence of noise, short window lengths,

and/or nonstationarity.

The underlying model of the problem has the structure:

z⏞⏟⏟⏞
Known & measurable

= Θξ⏞⏟⏟⏞
Unknown/semi-known

=
P∑︂
i=1

ξiθi

This general form allows for a wide array of problems in engineering to be expressed and tackled

effectively. Another form which has applications is in the identification of nonlinear dynamics. Specif-

ically the sparse identification of nonlinear dynamics (SINDy) [BPK16]. For example, dynamics can

be described by ordinary differential equations (ODEs) in the form:

dz

dt
= f(z(t)) ⇐⇒ z = Θξ =

P∑︂
i=1

ξiθi(z(t))

or even partial differential equations (PDEs):

∂z

∂t
= f(z(x, t)) ⇐⇒ z = Θξ =

P∑︂
i=1

ξiθi(z)
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where z(t) ∈ Rn×1 is an n-dimensional state vector at time t, and f(·) : Rn×1 → Rn×1 is an n-

dimensional state mapping function. The goal is to estimate the form of f(·) which can be assembled

into a matrix Θ from vector columns of measurable states zi. However, the assembly of Θ is semi-

known, meaning that a physically informed dictionary can be large and redundant, and that an

algorithm must converge to the solution that is only composed of a few elements that represent

the true equation. Multitudes of sparsity promoting algorithms exist that come from mathematical,

statistical, and machine learning domains. However, this problem is quite difficult since the matrix-

vector equations do not have a unique solution when θ is a wide matrix.

This chapter remains very general so that the methods can be used in any domain, we remind the

reader that both these problems are directly related to ultrasonic fatigue:

• Frequency and amplitude estimation gives information about the harmonics of the signal, which

is a classical method of vibration analysis for nonlinear harmonic generation.

• Forward models of the fatigue specimen have been presented in Chapter 2, but the nonlinearities

within the system are not well known. Nonlinear system identification may help in identifying

macroscopic material nonlinearities during different stages during the ultrasonic fatigue tests.

3.2 Signal processing ultrasonic vibration signals for harmonic extraction

One technique for assessing damage and microstructural characteristics in materials during ultra-

sonic fatigue tests relies on measuring multiple sinusoidal parameters, specifically amplitudes and/or

frequencies [Kum+09; Kum+10; Kum+11; MFS13; Fit+14; Li+16; Ban+18; Mes+20; Fit+21]. These

techniques would benefit from in-situ and accurate sinusoidal parameter estimation since it could cor-

respond to a real-time assessment of microstructural evolution leading to macroscopic damage.

UFT signals can be observed to have harmonics at integer multiples of the working frequency,

corresponding to the fatigue specimen’s longitudinal eigenfrequency, see Fig. 3.1. However, throughout

the UFT, nonlinear phenomena can introduce interharmonics which exceeds the scope of algorithms

that only estimate fundamental frequency [Hes83]. Additionally, UFTs that require a large amount of

cycles have signals that are nonstationary, but can be adequately modeled as being locally stationary

signal within a finite segment of length N of the data, or window. We refer to the windowed signal as

quasi-stationary, which we define as a trend-stationary sequence by the Kwiatkowski-Phillips-Schmidt-

135



3.2. SIGNAL PROCESSING ULTRASONIC VIBRATION SIGNALS FOR
HARMONIC EXTRACTION

0 2 4 6 8 10 12

-80

-60

-40

-20

0

Ve
lo
ci
ty

am
pl
itu

de
(d
B)

-80

-60

-40

-20

0

Ve
lo
ci
ty

am
pl
itu

de
(d
B) Fundamental harmonic

Higher harmonics

Interharmonics

1x

2x

0.5x 5.5x

3x

4x
5x

6x

0 0.5 1 1.5 2
Cycles

(a)

(b)

107

-3

-2

-1

0

1

Ve
lo
ci
ty

si
gn

al
(m

/s
)

9.1 9.15
104-1

0

1

1.91
107-1

0

1

Frequency (Hz) 104

Figure 3.1: (Left) Velocity signal from a typical ultrasonic fatigue test with segmented signal windows
near the beginning and end of the fatigue test. Frequency spectra corresponding to an undamaged
(right,top) and damaged (bottom) fatigue specimen are obtained through a DFT. Harmonics corre-
spond to integer multiples of the fundamental harmonic while interharmonics correspond to non-integer
multiples of the fundamental harmonic.

Shin test [ES10]. One main concern is the method of estimating such sinusoidal parameters for a

quasi-stationary signal: a choice must be made between choosing algorithms whose basis are either in

spectral analysis or time-frequency analysis.

To date, a sliding window approach has only been coupled with the discrete Fourier transform

(DFT) in UFT damage monitoring. When applied per window, the DFT yields a respective frequency

spectrum, and a peak picking algorithm extracts sinusoidal parameters, i.e. the frequencies and ampli-

tudes. This is one of the most rudimentary forms of a line spectral estimator (LSE): where sinusoidal

parameters correspond to Dirac deltas (lines) in the frequency spectra. However, a finite period (time

length) of the data corresponds to the sinc function convolving with the DFT resulting in a loss of fre-

quency resolution, see Fig. 3.2. This directly poses problems for an UFT signal of a damaged fatigue

specimen, where introduced interharmonics can influence the estimation of harmonics. Additional

factors can skew the DFT’s spectra affecting the accuracy of the peak picking: nonstationary sinu-

soidal components smearing the spectral envelope, non-periodicity of the data manifesting as spectral

leakage, aliasing due to violation of the Nyquist-Shannon sampling theorem, and noise introducing
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uncertainty into the measured signal. Due to the difficulties seen by the DFT, alternative spectral

estimators should be considered, such as nonparametric and parametric spectral estimators.
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Figure 3.2: Demonstration of the frequency resolution of a signal with a fixed sampling frequency,
with respect to the Rayleigh limit 1/N seen by the DFT, adapted from [IMF21]. A multi-sinusoidal
signal (dashed blue line) and its Nyquist-Shannon samples (blue circles) are depicted on the top row.
The bottom row shows the DFT’s frequency resolution (purple line) and the true line spectra (dashed
red line). For a finite N , the DFT’s frequency resolution is equal to the convolution between the DFT
of the signal and the sinc function.

Nonparametric algorithms estimate the entire frequency spectra which include include the DFT-

based methods [SM05; SSC11] and filter-bank methods [Cap69; SHJ99]. Filter-bank methods’ fre-

quency resolution depends on the spectra length and can achieve super-resolution [CF14], or resolve

closely-spaced frequencies beyond the DFT in Fig. 3.2. Recently, nonparametric algorithms have been

coupled with a peak picking algorithm to become LSEs, but require a method to estimate the number

of sinusoids [SQ20] or utilize an amplitude/power threshold [Sel17]. On the other hand, paramet-

ric algorithms only estimate parameters for a known number of sinusoids and some are also capable

of super-resolution. These parametric estimators are formulated as sinusoidal frequency estimation

problems since the estimation of amplitudes and phases become least squares solvable when the fre-

quencies are known [SHJ00]. Many of the parametric LSE established in the 1980s and beyond are

inspired by Prony’s method [dPro95] of converting a non-linear approximation by solving a set of linear

equations and a root-finding problem. One of the most popular parametric LSEs are the subspace

methods, which include MUSIC [Sch86] and ESPRIT [RK89]. Subspace methods decompose the finite
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data into signal and noise subspaces via an eigenvalue decomposition (EVD) and/or singular-value

decomposition (SVD). Exploiting the low-rank structure of the signal’s covariance matrix allows for

these methods to achieve super-resolution. A sliding window approach [Bas85] is commonly used with

a spectral estimator to circumvent the problem of quasi-stationarity, where the signal is uniformly

discretized in time. The sinusoidal parameters in each window are obtained by applying a spectral

estimator, and the window is shifted in time and the process is repeated.

Other dominant parametric LSEs are derived from the maximum likelihood principle of estimators

[BM86], where the estimated sinusoidal parameters are the most likely to explain the finite data. Two

classes exist: deterministic maximum likelihood [Han71] and stochastic maximum likelihood [Par60]

which have criterion derived in the case the sinusoidal parameters are unknown deterministic and

stochastic, respectively. Deterministic maximum likelihood has been most often referred to as the non-

linear least squares method in literature [SM05] since it estimates parameters by minimizing ℓ2 norm

of the difference between the finite data and signal model. Some deterministic maximum likelihood

methods separate the full multidimensional minimization into iterative searches in lower-dimensional

parameter subspaces: these include Expectation-Maximization [FW88] and RELAX [JS96]. Stochas-

tic maximum likelihood methods, until most recently, are generally only found in direction of arrival

literature, e.g. [OVK92].

New LSEs have been introduced due to innovations in data science domains, specifically those

relating to compressed sensing, sparse regularization, and deep learning. LSEs that use compressed

sensing for sparse regularization [Don06] are sometimes referenced as semi-parametric since they some-

times rely on model order or on other signal parameters a priori, such as its noise covariance. One

issue arises when specializing the compressed sensing problem onto LSE, since it normally assumes

a discrete basis for signal recovery, whereas a sparse signal is continuous in frequency space. Thus

grid-based approaches divide the frequency spectra into finite discrete grid points and build bases from

these grid points. Popular solutions to this approach can be through convex optimization algorithms

like basis pursuit [CD98] or LASSO [WNF09]. However, the true frequency parameters are not guar-

anteed to lie within the frequency grid, a problem commonly referred to as basis or grid mismatch

[CSK10]. Attempts to remediate grid mismatch include iterative grid refinement [MRM16], using a

dense grid and iteratively optimize sparse solutions [DB13], generalizing the ℓ1 norm as continuous in

frequency space via an Atomic Norm minimization problem [BTR13; YX15], or Bayesian approaches
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which iteratively refine the grid [Han+14; HFR18]. Artificial neural networks for LSE have been used

for LSEs in the early 1990s [HB97], whereas recent deep neural network approaches have provided

state-of-the-art performance through adopting convolutional neural network (CNN) [IBF19; IMF21].

The section is motivated by the tradeoffs between finite window lengths and accuracy when dealing

with quasi-stationarity and the Rayleigh limit. Despite the loss of information which affects estimation

performance, a small time window is sought for many reasons:

• Smaller window lengths along the entire fatigue vibration signal will be more locally stationary

compared to larger windows.

• Parameter estimation algorithms are quicker for smaller data lengths, meaning that a computa-

tionally complex algorithm can still be used in real-time.

• A smaller window length about the entire fatigue vibration signal will yield more discrete pa-

rameters, which is attractive for data-driven models. While using window overlap [Bas85] can

also increase the number of discrete parameter estimates, this would carry over for all spec-

tral estimators. Within the context of ultrasonic fatigue experiments, more discrete parameters

would allow for conditional-based rules for stopping a fatigue test before crack failure, and for

deterministic models, a prediction of damage evolution.

Thus the merits of potential algorithms have to weigh between window length and parameter accuracy,

noise robustness, and computational performance.

Our contribution lies in the study of sinusoidal parameter estimation accuracy on quasi-stationary

signals, with a focus on signals found in VHCF vibration. Specifically, we establish two compounding

influences that are at play when using a windowed approach to the real-time estimation of sinusoidal

parameters: (1) estimators face a frequency and time uncertainty dictated by the Rayleigh limit, and

(2) the usage of estimators who assume a stationary signal model being used on a quasi-stationary

signal. Minimizing the window length negatively influences the frequency resolution, as mentioned

in (1), but increases time resolution and has positive contributions stated in the bullets previously.

Additionally, the statistical performance and accuracy of estimators are numerous in literature but

generally utilize synthetic signals that are purely stationary, whose results cannot be said for quasi-

stationary signals, mentioned in (2). Therefore, we choose to investigate five LSEs, specifically Unitary
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ESPRIT [HN95], RELAX [JS96], CFH [SQ20], NOMP [MRM16], and DeepFreq [IMF21] with respect

to the problems aforementioned. These five algorithms were chosen since their theoretical basis are a

diverse (subspace-based, maximum likelihood-based, DFT peak interpolation-based, greedy algorithm

for grid refinement-based, and deep neural network-based, respectively) representation of the many

LSE that exist in the literature, and most are considered to be state-of-the-art LSE for the purely

stationary case. We choose not to use fast versions of these algorithms (for example ESPRIT with

partial SVDs [PT15]) since they trade computational complexity for accuracy; here it’s assumed

the original algorithms provide their best asymptotic performance. It should be noted that except

for the former two algorithms listed, the original authors provide open access to their algorithms.

The remaining part of the section is organized as follows. Section 3.2.1 outlines the theory of each

implemented LSE algorithm. The benchmark methodology is described in Section 3.2.2. Results and

discussions are presented in Section 3.2.3.

Algorithms Main principle Advantages Disadvantages Tunable parameters

Unitary ESPRIT∗ [HN95]
Rotational invariance of signal’s
subspaces

Forward-backwards averaging of signal’s
covariance

Computation complexity
dictated by SVD

Sub-vector length

RELAX [JS96]
Frequency domain (zero-padding)
interpolation, iterative refinement

Conceptually easy to implement
Asymptotic gains in performance
tuning large zero-padding

Zero-padding length

CFH [SQ20]
Frequency domain (peak)
interpolation, iterative refinement

One of the fastest parametric estimators Algorithm is not tunable -

NOMP [MRM16]
Greedy algorithm,
iterative refinement

Newton refinements alleviates
restriction to DFT basis

Unknown performance in the
case of basis mismatch

Number of refinements,
zero-padding length†

DeepFreq [IMF21] Deep convolution neural network Fully-automatic frequency estimates‡ Expensive offline training
Training data, CNN
architecture

Table 3.1: Summary of LSE algorithms implemented.
∗: The amplitude can be estimated after the estimation of frequencies, using the LS estimate Eq. (3.20).
†: In this section, the zero-padding is removed to further differentiate NOMP from RELAX.
‡: DeepFreq, as published, features a frequency representation module, which is used in this section,
but also a component counting module which estimates the model order, making the algorithm fully-
automatic compared to other LSEs.

3.2.1 Implemented spectral estimation algorithms

In this section, the mathematical formulation of the implemented LSE algorithms is described. A

practical summary of the algorithms used in this work exists in Table 3.1. The estimation of frequencies

and amplitudes for P complex sinusoids of x[n] can be written as the signal model:

x̌[n] =

P∑︂
i=1

βie
j2πωin + ε[n] = x[n] + ε[n] (3.1)
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where n ∈ Z is a discrete index and ε[n] represents additive white Gaussian noise (AWGN) with

variance η. The sinusoidal parameter βi is the complex amplitude such that its modulus |βi| is the

amplitude, and {ωi ∈ [0, 1);ωi ̸= ωj : ∀i ̸= j} is the normalized frequency (units of cycles per sample)

whose set is distinct. In matrix-vector notation, Eq. (3.1) is:

x̌ = ANβ + ε (3.2)

the complex amplitudes for P complex sinusoids β(n) ∈ CP , and the matrix AN ∈ CN×P is a

Vandermonde matrix of P complex sinusoids:

AN =

⎡⎢⎢⎢⎢⎢⎣
1 · · · 1

ej(2π)ω1 · · · ej(2π)ωP

ej(2)(2π)ω1 · · · ej(2)(2π)ωP

...
. . .

...

ej(N−1)(2π)ω1 · · · ej(N−1)(2π)ωP

⎤⎥⎥⎥⎥⎥⎦
=
[︁
a(ω1) · · · a(ωP )

]︁
(3.3)

Lastly, it should be reminded real-valued signals can be represented using the complex notation

in Eq. (3.1) through two methods: the use of the (downsampled) analytic signal [RFB94], provided

that there is no spectral content in the real-valued signal near zero and Nyquist frequencies; or simply

realizing real-valued sinusoidal signals can be represented as complex-valued and applying the algo-

rithms. The latter case is preferred in this work because of its simplicity and to prevent issues seen in

computing the analytic signal.

Unitary ESPRIT The Unitary ESPRIT algorithm is used since it is one of the most economical and

accurate among all ESPRIT implementations [HN95]. First, Eq. (3.1) is converted into the necessary

matrix notation with overlapping segments such that:

X̌ :=

⎡⎢⎢⎢⎣
x̌[1] x̌[2] · · · x̌[L]
x̌[2] x̌[3] · · · x̌[L+ 1]

...
...

. . .
...

x̌[M ] x̌[M + 1] · · · x̌[N − 1]

⎤⎥⎥⎥⎦ (3.4)

where X(n) ∈ CM×L is a Hankel matrix, M is a chosen sub-vector size such that P ≤M < N+1−P ,

and L = N −M is the remaining length. Unitary ESPRIT, as opposed to the standard ESPRIT

algorithm, inherently includes forward-backward smoothing [RK89]. A forward-backward observation

matrix X ′ is estimated and converted to real-values by the unitary transformation of X:

X ′ =
[︁
real

{︁
QH
MX

}︁
imag

{︁
QH
MX

}︁]︁
∈ RM×2L (3.5)
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where □′ indicates a unitary transformed component, □M indicates the square matrix dimension of

size M ×M , and □H indicates the Hermitian (complex conjugate) transpose. This processing steps

has been shown to improve parametric and nonparametric estimators that rely on covariance estimates

[JS99]. The even- and odd-dimensioned unitary matrices are given, for an arbitrary D:

Q2D =
1√
2

[︃
ID jID
ΠD −jΠD

]︃

Q2D+1 =
1√
2

⎡⎣ ID 0 jID
0
√

2 0
ΠD 0 −jΠD

⎤⎦ (3.6)

where ID and ΠD are the identity matrix and the antidiagonal identity matrix (ones along the antidi-

agonal) of size D ×D, respectively. To obtain the signal subspace U ′
s, a SVD is performed on X ′ to

yield:

X ′ =
[︁
U ′

s U ′
⊥

]︁ [︃Σ′
s 0

0 Σ′
⊥

]︃ [︃
V ′H
s

V ′H
⊥

]︃
= U ′Σ′V ′H (3.7)

where Σ′ corresponds to a diagonal matrix which contains the singular values on the main diagonal

in descending order, and V ′ is an identity matrix orthogonal to U ′. The signal subspace is extracted

via a priori knowledge of the left P column singular vectors:

U ′
s =

[︁
u′(1) · · · u′(P )

]︁
(3.8)

To exploit the signal subspace, selection matrices are introduced corresponding to a time shift of

one sample value:
J1 =

[︁
IN−1 | 0N

]︁
J2 =

[︁
0N | IN−1

]︁ (3.9)

where 0N is the zero vector of size N × 1. Since the signal model of Eq. (3.1) has distinct frequencies,

the rotational invariance of Eq. (3.9) allows one to form:

J1ANΦ = J2AN (3.10)

where Φ = diag
(︁
ej2πω1 , . . . , ej2πωP

)︁
is the diagonal matrix of signal poles. The steering matrix AN

spans the P -dimensional signal subspace Us, such that a transformation matrix T has the property:

AN = UsT (3.11)

Eq. (3.10) can thus be expressed as a function of the eigenvectors of the signal subspace:

J1UsTΦ = J2UsT (3.12)
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which is equivalent to:

J1UsΨ = J2Us where Ψ = TΦT−1 (3.13)

Eq. (3.13) is also equivalent to its real-valued counterpart through unitary transformation:

J ′
1U

′
sΨ

′ = J ′
2U

′
s where Ψ′ = T ′Φ′T ′−1

(3.14)

with the respective unitary transformed selection matrices:

J ′
1 = real

{︁
QH
M−1J2QM

}︁
J ′
2 = imag

{︁
QH
M−1J2QM

}︁ (3.15)

This representation results in an overdetermined system of equations for calculating the eigenvalues

of which correspond to the diagonal elements of the matrix Φ, i.e., the signal poles with the frequency

parameters ωi. The LS approach is taken over the total LS approach [HN95] to reduce computational

complexity with negligible accuracy loss for uniformly sampled signals:

Ψ′ ≈
(︁
J ′
1U

′
s

)︁−1
J ′
2U

′
s (3.16)

The right hand of Eq. (3.14) is the EVD of Ψ′ since Φ′ is diagonal, such that:

ω̂i = ∠λi(Ψ
′) for i = 1, . . . , P (3.17)

where □̂ indicates a consistent estimate, λi(Ψ
′) is the eigenvalue of the ith entry of Ψ′. When the

signal is consistent with the model of Eq. (3.1), then the signal poles will lie close to the unit circle.

The amplitude estimate vector β̂ is then LS solvable using the frequency estimate vector ω̂ through

Eq. (3.20).

RELAX The RELAX algorithm attempts to estimate the maximum likelihood estimate by decou-

pling the nonlinear least squares problem into iterative one-dimensional minimizations. This idea will

be introduced by a description of the nonlinear least squares problem for frequency estimation:

{̂β, ω̂} = arg min
{β,ω}

C1(β,ω)

with:

C1(β,ω) = ∥x−ANβ∥22 (3.18)
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where ∥□∥2 is the ℓ2 norm. Eq. (3.18) minimized with respect to ω yields the estimate:

ω̂ = arg max
ω

[︂
xHAN

(︁
AH
NAN

)︁−1
AH
Nx
]︂

(3.19)

and with respect to β, the least squares error can be minimized through the pseudoinverse:

β̂ =
(︁
AN

HAN

)︁−1
AH
Nx
⃓⃓⃓
ω=ω̂

(3.20)

Eq. (3.19) is a multimodal function and its maximization corresponds to searching for its sharp global

maxima. The RELAX algorithm is based on the relaxation of Eq. (3.18) to minimize the squared

error between the observation and the parameterized signal model. A minimization of Eq. (3.18) with

respect to both ω and β through a cyclic minimization approach is detailed [JS96]. The subsequent

minimization can be solved to yield the estimate of {̂βj , ω̂j}:

{̂βj , ω̂j} = arg min
{βj ,ωj}

C2(βj , ωj)

with:

C2(βj , ωj) = ∥̂xj − βja(ωj)∥22 (3.21)

where x̂j is defined in Eq. (3.24). Eq. (3.21) minimized similarly to before with respect to ωj will

yield:

ω̂j = arg min
ωj

⃦⃦⃦⃦[︃
I− a(ωj)a

H(ωj)

N

]︃
x̂j

⃦⃦⃦⃦2
2

= arg max
ωj

⃓⃓⃓⃓
aH(ωj )̂xj

N

⃓⃓⃓⃓2 (3.22)

and with respect to βj :

β̂j =
aH(ωj )̂xj

N

⃓⃓⃓⃓
ωj=̂ωj

(3.23)

Note Eq. (3.22) is the definition of the periodogram
⃓⃓
aH(ωj)x

⃓⃓2
/N whose estimate β̂j corresponds

to the maximum peak. This corresponds to a maximum likelihood estimate [RB74] when the signal

only contains a single sinusoid. Eqs. (3.22) and (3.23) are interpolated through using a zero-padding

[JS96], appending zeros to the signal:

x[n] =

{︃
x[n], n ≤ N
0, N < n ≤ Zp

where Zp is the new signal length such that x(n) ∈ CZp .
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The RELAX algorithm starts from the strongest signal component to determine {̂β1, ω̂1} using

Eqs. (3.22) and (3.23). Then the successive separation of the signal is performed:

x̂j = x−
j∑︂
i=1

β̂ia(̂ωi) for j = 1, . . . , P (3.24)

where Eq. (3.24) is used to obtain {̂βj , ω̂j} from Eqs. (3.22) and (3.23), and {̂βi, ω̂i}j−1
i=1 are re-estimated

in a sub-iteration:

x̂k = x−
k∑︂
i=1

β̂ia(̂ωi) for k = 1, . . . , j − 1 (3.25)

until C2 < ϵ, where ϵ is a tolerance. This cyclic iterative procedure helps remove bias made from initial

estimates done before successive separation of the signal.

CFH The coarse-to-fine HAQSE (CFH) algorithm also exploits the idea of the maximum likelihood

estimator. Many estimators exist which attempt to refine a frequency estimate via interpolation of

the DFT grid via zero-padding [SSC11], parabolic fitting [Can11], and iteratively [AM05]. However,

most have not been extended to the multiple sinusoidal case and thus require a posteriori knowledge

of frequencies to interpolate via peak picking. CFH utilizes the HAQSE interpolator [Ser19] which

shifts the DFT coefficients by ±q with:

|q| ≤ N−1/3 (3.26)

where it was shown that it obtains better accuracy compared to parabolic interpolators. CFH begins

by finding the dominant signal component:

ω̃j = arg max
ωj

⃓⃓⃓⃓
aH(ωj )̂xj

N

⃓⃓⃓⃓2
(3.27)

where □̃ is a coarse estimate. [AM05] is used to iterate to the fractional residual components:

δ1 =
N

2π
sin−1

(︃
sin
(︂ π
N

)︂
real

{︃
S0.5 + S−0.5

S0.5 − S−0.5

}︃)︃
(3.28)

and refined residual component:

δ2 =
1

c(q)
real

{︃
S+q − S−q
S+q + S−q

}︃
+ δ1 (3.29)

where S are the interpolation functions:

S±0.5 = aH(ω̃j ± 0.5)̂xj

S±q = aH(ω̃j + δ1 ± q)̂xj
(3.30)
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and c is the bias correction:

c(q) =
1− πq cot(πq)

q cos2(πq)
(3.31)

The coarse frequency estimate is composed of an integer and a residual component, which can be

expressed as:

ω̂j =
ω̃j + δ2
Fs

N (3.32)

where Fs is the sampling frequency, and the respective complex amplitude:

β̂j =
aH (ωj) x̂j

N

⃓⃓⃓⃓
ωj=̂ωj

(3.33)

It then uses a similar procedure of RELAX, obtaining {̂βj , ω̂j} from Eqs. (3.32) and (3.33), and

successfully separates the signal:

x̂j = x−
j∑︂
i=1

β̂ia(̂ωi) for j = 1, . . . , P (3.34)

where Eq. (3.34) is used to obtain {̂βj , ω̂j} by repeating Eqs. (3.27) to (3.33) until the P components

are coarsely interpolated. The coarsely estimated signal components are all subtracted from the signal:

x̂k = x−
P∑︂
i=1

β̂ia(̂ωi) for for k = 1, . . . , P (3.35)

where Eq. (3.35) is used to obtain {̂βj , ω̂j} by repeating Eqs. (3.27) to (3.33) until the P components

are finely interpolated. The fine step corrects for selection bias due to estimation from strongest to

weakest signal component in the coarse step of the algorithm.

NOMP Newtonized orthogonal matching pursuit (NOMP) algorithm is built upon orthogonal match-

ing pursuit, which is based on the greedy algorithm that iterates a sparse selection of the best fitting

basis of matrix AN . An LS optimization is then performed in the subspace spanned by all previously

selected bases. The grid mismatch is mitigated through the Newton-Raphson method, which itera-

tively refines the DFT grid. We describe this algorithm with complete measurements (sensing matrix

is an identity matrix) first by rewriting nonlinear least squares problem Eq. (3.18) as a maximization:

{β̃j , ω̃j} = arg max
{βj ,ωj}

C3(βj , ωj)

with:

C3(βj , ωj) = 2 real
{︁
xHβja(ωj)

}︁
− |βj |2∥a(ωj)∥22 (3.36)
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Eq. (3.36) maximized with respect to ωj will yield:

ω̃j = arg max
ωj

ζ(ωj)

N
(3.37)

where ζ is the power of the spectra:

ζ(ωj) =
⃓⃓
aH(ωj )̂xj

⃓⃓2
(3.38)

and Eq. (3.36) maximized with respect to βj :

β̃j =
aH(ωj )̂xj

N

⃓⃓⃓⃓
ωj=ω̃j

(3.39)

The DFT grid of Eqs. (3.37) and (3.39) can be densely defined through zero-padding as indicated by

[MRM16]. To improve a coarse estimate of {β̃j , ω̃j}, the Newton-Raphson method is used for refine

the frequency estimate:

ω̂j = ω̃j −
Ċ3(βj , ωj)
C̈3(βj , ωj)

(3.40)

where the derivatives are defined:

Ċ3(βj , ωj) = real

{︃(︂
xj − β̃ja(ω̃j)

)︂H
β̃j
da(ω̃j)

dω̃j

}︃
(3.41)

and:

C̈3(βj , ωj) = real

{︄(︂
xj − β̃ja(ω̃j)

)︂H
β̃j
d2a(ω̃j)

dω̃2
j

}︄
− |β̃j |2

⃦⃦⃦⃦
da(ω̃j)

dω̃j

⃦⃦⃦⃦2
2

(3.42)

The NOMP algorithm first estimates {β̃j , ω̃j} using Eqs. (3.37) and (3.39) and successively sepa-

rates the signal:

x̂j = x−
j∑︂

i=1,

β̂ia(̂ωi) for j = 1, 2, . . . (3.43)

until ζ(ω̃j) < τ , where Eq. (3.43) is used to obtain {̂βj , ω̂j} from Eqs. (3.39) and (3.40) and τ represents

a sparsity promoting ℓ0 norm regularization, which implicitly determines the model order P :

τ = η2 log(N)− η2 log log

(︃
1

1− ϱ

)︃
(3.44)

where η is the noise variance and ϱ is the probability of a false alarm. For the jth estimate, an

initial refinement is performed through the Newton step of Eq. (3.40). The refinement is conditionally

accepted only if it serves to maximize C3, i.e. locally concave C̈3(βj , µj) < 0, and if the refinement
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globally reduces the residual energy such that ζ (̂ωj) > ζ(ω̃j). After each singular refinement, the

sub-iteration of cyclic refinement is performed Rc times to reestimate {̂βj , ω̂j}:

x̂k = x−
k∑︂
i=1

β̂ia(̂ωi) for k = 1, . . . , j − 1 (3.45)

At the end of the jth estimate, the least square procedure of Eq. (3.39) is performed to refine complex

amplitudes {̂βi}ji . Performing this step just prior to detecting a new sinusoid increases the rate

of convergence of NOMP by mirroring arguments used to establish matching pursuit convergence

[Bar+08].

DeepFreq A fully connected neural network trained on the signal model of Eq. (3.1) is unlikely to

converge to the maximum likelihood solution of the cost function Eq. (3.18). In general, the nonlinear

least squares problem of Eq. (3.18) has many local minima, and training generally iterates to some

local minimum (or a point near a local minimum). This is opposed to converging to the sought global

minimum, which can depend on the initialization conditions and loss function optimization. Deep-

Freq differs from this direct problem in that it is schematized into different deep neural networks. A

pseudospectrum is generated in a data-driven manner, training the frequency representation neural

network to produce superimposed Gaussian kernels directly from the measurements. The representa-

tion is fed into a second frequency counting neural network that estimates the number of sinusoids.

Frequency estimation is then carried out through selection of the P most prominent peaks of the

frequency representation, see Fig. 3.3.

Real-portion
of signal

Imaginary-portion
of signal (optional)

DeepFreq's
FR module

Frequency
representation

Figure 3.3: Algorithm flowchart of DeepFreq’s frequency representation module. The assumed complex
input of the DeepFreq is split into its real and imaginary parts before input. For real-valued signals,
the imaginary-valued portion is supplied with zeros of equal length. The frequency representation
generates a pseudospectrum (purple line) subject to a peak-picking algorithm.
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Input data Parallel linear
transformer Concatenation

Input layer

Transposed
Convolution

Convolution
Batch Normalization
Activation function

Hidden layers Output layer

Figure 3.4: Architecture of the DeepFreq frequency representation module.

While this yields a fast, fully-automatic method for frequency and model estimation, we are in-

terested only in the frequency representation module. The pseudospectrum FR is defined as the

convolution of the P frequencies of the signal with Gaussian kernels K : R→ R:

FR(n) ≜
P∑︂
i=1

K (n− ωi) (3.46)

This frequency representation is continuously differentiable and features smooth peaks at the true

frequencies for the signal model of Eq. (3.1). Despite not including amplitude and/or phase information

into the CNN, this pseudospectrum serves as the regression that the CNN weights are tasked to learn

from a noisy and finite signal. This is achieved by the loss function that penalizes the ℓ2 norm between

the output of the CNN and the true pseudo-spectra for a large number of training data.

Fig. 3.4 shows the proposed architecture for the frequency representation neural network. First, the

Layer Features Filter Stride Padding Output

Input - - - - 1× 2N
Linear* - - - - 1× 8000

20×

⎧⎨⎩
Conv*
BatchNorm
ReLU

64 3 - 1, Circ 1× 64× 125
64 - - - 1× 64× 125
- - - - 1× 64× 125

ConvTrans* 64 17+Stride 2log2(N)−3 9 1× 125
8 N

Table 3.2: Layer summary of frequency representation module with respect to input size N , where
layers notated by ∗ have no bias. The set of convolution, batch normalization, and ReLU layers are
repeated for a depth of 20.
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input layer maps the complex signal to a real-valued feature space. Then, the features are processed

in the hidden layers which contain a series of convolutional layers with localized filters of length three

and batch normalization, interleaved with rectified linear activation unit (ReLUs). The dimension of

the input is preserved using circular padding. No pooling layers are used since frequency sensitivity

is prioritized over invariance. Finally, the output utilizes a decoder which produces the estimate FR

applying a transposed convolution. The original network described in [IMF21] is slightly modified to

accept signals N > 50. This and all technical details are detailed in Table 3.2.

3.2.2 Experimental benchmark methodology

The performance of the implemented LSEs was analyzed using five benchmarks, each using relevant

performance metrics defined below. All chosen algorithms were subjected to the same signal model

shown in Eq. (3.1). Additionally, estimation of the number of sinusoidal components P is given

a priori. This is because LSEs are parametric and the algorithms typically used for estimation of

the number of sinusoidal components within a signal is a separate problem, see [SM05] for a brief

introduction on model order estimation. The normalized frequencies are wrapped on the bounds [0, 1).

The AWGN variance η is defined such that a desired signal-to-noise ratio (SNR) can be obtained,

SNR ≜ ∥AN (ω)β∥22/η. A Raspberry Pi 4b, which is an affordable option for control of ultrasonic

fatigue tests, is utilized for all benchmarks using Python 3.8.8 via the Anaconda distribution. We

readily make available our algorithms and synthetic data [21]. This subsection aims to define a

benchmark for LSEs which are lacking in the literature. Specifically, the test aims to demonstrate the

degeneration of LSEs when exposed to quasi-stationarity within each window: this corresponds to the

effects of the Rayleigh limit (if the signal was stationary) compounded with signal noise. Another test

looks at the asymptotic computational costs and the algorithm runtimes for a Raspberry Pi 4b.

Test signals For usage in the first two tests, a synthetic real-valued signal is generated from an

experimental UFT signal. The discrete UFT velocity signal has a sampling frequency Fs = 106 Hz

which was performed on a pure copper fatigue specimen in a setup similar to Fig. 1.11. The time-

evolving amplitude and frequencies are extracted from the signal per window via the DFT for the first

three harmonics. Then cubic polynomial fits are evaluated on a quasi-stationary basis for each ith

window along the entire experimental signal seen in Fig. 3.5. These averaged sinusoidal parameters
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can be quantified as:

a(i) =
1

T

∫︂ t1

t0

a(t) dt; and ω(i) =
1

TFs

∫︂ t1

t0

f(t) dt

where T is the time length, a(i) and ω(i) are the ith window-averaged amplitude and normalized

frequencies, respectively. The frequencies are normalized to cycles per sample corresponding to the

wrapped bounds [0, 1). This achieves a similar signal model defined in Eq. (3.1) with a model order

of P = 6 complex sinusoids, but has a symmetrical frequency component about ω = 0.5. The real-

valued synthetic signal is created with a sampling frequency Fs = 250 kHz which is compared with the

experimentally obtained signal in Fig. 3.5. The time evolving sinusoidal parameters cubic polynomial

fits can be found in Appendix B.1. For all tests except the first, the synthetic signal excludes the last

10 seconds of the data, where the formation of a large crack manifests large nonstationary components

unsuitable for the LSEs.
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Figure 3.5: Copper specimen ultrasonic fatigue test excited at 20 kHz with vibration signal sampled
at 200 kHz (left). A synthetic signal (center) is created from the first 3 harmonics’ amplitudes and
frequencies fits (right). The frequency f1 is only shown, where it should be understood that higher
harmonic frequencies occur at integer multiples, e.g. f2 = 2f1. Near the end of the ultrasonic fatigue
test, the signal becomes increasingly nonstationary, where the last 20 seconds (shaded) are excluded
from evaluation.

Configuration of algorithms We compare the five algorithms Unitary ESPRIT [HN95], RELAX

[JS96], CFH [SQ20], NOMP [MRM16], and DeepFreq [IMF21] with configurations:

• Unitary ESPRIT requires an estimate of the measurement matrix and the model order. The

former is estimated from the signal vector with size M = N/2 since this sub-vector length

was shown to be optimal by [Gol11]. After obtaining the frequency estimates ω̂, the complex

amplitude estimates β̂ are LS solvable using Eq. (3.20).
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• RELAX utilizes a zero-padded DFT and iterates over the model order. We select the zero-

padding length such that its grid size is interpolated over Zp = 4N . This was chosen since it

corresponded to a computational speed similar to other iterative LSEs, see Fig. 3.11.

• CFH requires only a model order and a minimum separation parameter which is already set by

default to the Rayleigh limit and is considered optimal by [SQ20].

• NOMP requires a cyclic refinement parameter Rc and the sparsity promoting parameter τ which

implicitly determines the model order. We set Rc = 3 since it was shown by [MRM16] that

beyond number of cycles of Newton refinement has diminishing returns in estimation accuracy.

We modify the NOMP algorithm to terminate on model order P , bypassing the regularization

Eq. (3.44) to put it on par with other LSEs, especially when trying to test model order robustness.

We also remove the zero-padding from its DFT operation to further distinguish it from RELAX.

• DeepFreq is inherently input data length-dependent so that separate frequency representation

neural networks are trained per input length. We specifically use Table 3.2 and a standard

deviation of the Gaussian kernel to 0.3/N . It was found that for all input sizes, DeepFreq was

able to generalize for all SNR when its frequency representation neural network was trained on

AWGN with SNR = 1 dB. The training data consists of the generating signals with the following

sets on uniformly distributed bounds: {P ∈ [1, 10]}, {ω ∈ [0, 1) : |ωi − ωj | > 2/N, ∀j ̸= i}, and

{|β| ∈ [0.001, 1]}. For other training data parameters, we used the defaults described in the

original paper [IMF21]. The amplitude estimates are obtained from its frequency representa-

tion through peak-picking via amplitude prominence with a minimum separation of 2/N , when

appropriate.

We also include the DFT, utilizing the Fast Fourier Transform algorithm, as a baseline which deter-

mines the P sinusoidal parameters through peak-picking via amplitude prominence. with a minimum

separation of 2/N , when appropriate.

Performance metrics Two performance metrics are featured: the matched frequency distance (MFD)

and matched amplitude distance (MAD). All metrics are averaged over each window (discretized) of

the entire synthetic signal for the first test, and the number of Monte Carlo trials for the latter test.
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To determine the accuracy of the recovered sinusoidal parameters, the MFD is defined as:

MFD ≜
∑︂
ω̂i∈ω̂

(︃
min
ωj∈ω

|̂ωi − ωj |
)︃

+

∑︂
ωj∈ω

(︃
min
ω̂i∈ω̂

|ωj − ω̂i|
)︃ (3.47)

The MFD aims to match each estimated frequency with its closest window-averaged frequency, and

vice versa, and record a chamfered error. The MAD follows a similar logic, seen in Eq. (3.48).

MAD ≜
∑̂︂

+
∑︂

with
∑̂︂

=
∑︂
ω̂i∈ω̂

|âi(ω̂i)− āj(ω̄j)|
āj(ω̄j)

, ωj = arg min
ωj∈ω,̂ωi∈ω̂

|̂ωi − ωj |

∑︂
=
∑︂
ω̄j∈ω̄

|âi(ω̂i)− āj(ω̄j)|
āj(ω̄j)

, ω̂i = arg min
ωj∈ω,̂ωi∈ω̂

|̂ωi − ωj |

(3.48)

Note that, MAD is normalized by the window-averaged amplitude to remove the scaling bias from

amplitudes with larger magnitudes. Lastly, it’s to be understood that all metrics are subject to the

constraint {ωk\ω : ∀ωk+1 ∈ ω}, i.e. no components are repeated for evaluation.

3.2.3 Results and discussion

Parameter estimation for synthetic and experimental signals The differences between an estimator’s

ability to extract the first three harmonics of a synthetic and experimental signal are demonstrated

in this test. The vibration signal is distinguished by a large amplitude variability between the first

harmonic and higher harmonics, seen in Fig. 3.5. Harmonics are extracted through all estimators using

the following methodology: the maximum prominent amplitude is assumed to be the fundamental

harmonic, and the following peak at integer multiples of the fundamental harmonic are searched for

within ±2/N and extracted. These details are visualized in Fig. 3.6 for windows of both the synthetic

and experimental signals. The SNR for the experimental signal is estimated to be 50 dB through a

periodogram-based method [SSC11]; the synthetic signal has AWGN applied per window such that

its SNR matches the experimental signal. A signal length of N = 28 is empirically chosen to trade off

computational time for the LSEs and still allow for peak resolution in the DFT frequency spectra. For

the LSEs, the model order P = 6 and P = 12 are imposed for the synthetic and experimental signals

respectively.

153



3.2. SIGNAL PROCESSING ULTRASONIC VIBRATION SIGNALS FOR
HARMONIC EXTRACTION

0 5 10
Frequency (Hz)

Experimental signal

104
0 5 10

Frequency (Hz)

Synthetic signal

104

10 -4

10 -2

100

Am
pl
itu
de

(m
/s
)

DFT
U-ESPRIT
Averaged truth

Figure 3.6: Demonstration of the DFT spectra and Unitary ESPRIT line spectra for the synthetic
signal (left) and experimental signal (right). To extract sinusoidal parameters of the first three har-
monics: first, a maximum amplitude of the fundamental is searched for, represented by the green
shaded area; second, integer multiples (two and three times) of the green shaded area are created
and represented by the yellow shaded area; lastly the peak is searched within the yellow shaded area,
within a ±2/N tolerance.

In Fig. 3.7, the estimation of harmonics is plotted against the synthetic signal. For Unitary

ESPRIT and NOMP, the estimation of the amplitudes match most closely to the averaged truth;

their frequency estimates are slightly outperformed by DeepFreq. However, DeepFreq demonstrates

that it fails to estimate accurate amplitudes, even for a strong fundamental harmonic. Due to the

small signal length, it can be seen that the DFT struggles to accurately capture even the fundamental

harmonic’s amplitude. It should be reminded that even though zero-padding the DFT would improve

the amplitude results (to a certain extent), its frequency estimation ability would remain the same

in resolution. CFH outperforms RELAX for fundamental harmonic amplitude estimation, despite

its fundamental harmonic frequency estimation being offset more than RELAX. However, both CFH

and RELAX struggle to steadily estimate the second harmonic’s amplitude due to a difference of

magnitudes with respect to the fundamental and third harmonic. In general, Unitary ESPRIT and

NOMP show the most stability in parameter estimation for the synthetic signal. DeepFreq is unique

in that it completely fails to provide accurate amplitude estimates for any part of the synthetic signal,

however, it is able to only track the fundamental frequency with success. While not shown, it is unable

to extract the frequencies of the higher harmonics.

In contrast with the synthetic signal, the estimation of harmonics is performed for the experi-

mental signal. A glance of Fig. 3.8 reveals a qualitative difference in the behavior of all estimators.

For the fundamental harmonic’s amplitude, Unitary ESPRIT, NOMP, and CFH all closely estimate
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with one another. For the fundamental harmonic’s frequency, CFH follows more closely to RELAX,

while Unitary ESPRIT and NOMP overlap one another. All LSEs struggle with stability more than

compared with the synthetic signal, e.g. Unitary ESPRIT and NOMP demonstrate a large oscillation

at the beginning of the experimental signal before stabilizing for the second harmonic’s amplitude.

This might be because of the presence of more harmonics within the real experimental signal, which

presents more difficult estimation problem for the LSEs. Similar to the synthetic test, DeepFreq has a

subpar performance for extraction of amplitudes, but can capture the fundamental harmonic only. If

the LSEs’ behavior on the synthetic signal test is to be indicative of its behavior on the experimental

signal, one may conclude that the general results of the LSEs can be carried over. For example, the

wide spread and oscillatory nature of amplitude estimation should be understood to be an uncertainty

of the estimator instead of a detectable very small vibratory oscillation. Lastly, it can be noted that

during the nonstationary evolution of sinusoidal parameters near fatigue failure, i.e., the end of the

synthetic signal, the LSEs provide frequency estimates which diverge from truth, but still maintain

accurate amplitude estimates.

Tolerance to noise, sensitivity to signal length In this test, we opt study the quasi-stationary synthetic

signal of three well-separated sinusoids, with large amplitude variability between the first harmonic

and higher harmonics, seen in Fig. 3.5. Grid-based simulations with respect to (windowed) signal

lengths and AWGN levels are applied per window along the entire signal. For purely stationary

signals, it’s well known that an increase of signal length and/or a decrease in noise variance increases

the performance of LSEs. A specific quality of the synthetic signal is the unknown interaction between

frequency resolution and non-stationarity with respect to signal length.

In Fig. 3.9, the mean MFD, with outliers outside of five standard deviations removed, is plotted

as a heatmap for specific LSEs with respect to signal length and AWGN. Most notably, Unitary

ESPRIT has the largest area of best frequency estimation performance (in dark blue) compared to

other estimators. Additionally, similarities between estimators that explicitly rely on the DFT are also

seen, despite their attempts to refine frequency estimation: the DFT has an area of best frequency

estimation which roughly intersects the CFH, RELAX, and NOMP’s areas of best frequency estimation.

As mentioned previously, CFH, RELAX, and NOMP all utilize DFT operations in their algorithm, but

their refinements can be characterized as peak parabolic interpolation, zero-padding interpolation, and
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Figure 3.7: Sinusoidal parameter estimation of the three harmonics’ amplitudes and fundamental
harmonic’s frequency for synthetic signal. The legend shown above applies to all plots.
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Newton-Raphson refinements of the DFT grid, respectively. This is likely due to the limitations of the

DFT operation with respect to the quasi-stationarity in the sinusoidal parameters, whose expression

can be seen in the polynomial fits in B.1. The other LSEs’ expanded area in Fig. 3.9 compared to the

DFT represents their ability to mitigate the quasi-stationarity and AWGN in each signal segment.

Lastly, it should be mentioned that DeepFreq has errors larger than any of the other LSEs pre-

sented; the frequency representation produced by DeepFreq is unable to compensate for any quasi-

stationarity in the signal and creates a problem for a peak picking algorithm. This is a realistic

reminder that this particular data-driven approach cannot be deployed so easily even if the data is

quasi-stationary. Similarly, the average MAD is shown in Fig. 3.10, with outliers outside of five stan-

dard deviations removed, LSEs show a similar pattern with the MFD. As seen in the previous test, the

LSEs have a better amplitude estimation ability compared to their frequency estimation, indicating

amplitude estimation is less stringent. The exception is the large difference of amplitude estimation

performance for the DFT: the corresponding ranges at which the DFT provides excellent frequency

estimations (dark blue) provide poor amplitude estimates with a MAD of approximately one magni-

tude higher than other LSEs. For all LSEs for this particular synthetic signal, in the low SNR region

(below 20 dB) provides unsatisfactory results for even the best-performing LSEs.

Computational effort and offline training The computational time plays a large factor when con-

sidering LSE algorithms for real-time usage. In Fig. 3.11, averaged computation times are shown

with respect to signal lengths. It can be seen that the DFT always achieves the best runtime, this is

due to the usage of the Fast Fourier Transform algorithm, which has the relatively lowest asymptotic

complexity in Table 3.3. RELAX, CFH, and NOMP can be seen to have similar runtimes as the

signal length varies. ESPRIT begins to diverge at N = 10, having the greatest runtime analogous to

its large asymptotic complexity. It and the other LSE’s asymptotic complexities in Big-O notation

can be found in Table 3.3. Unique to DeepFreq, offline training requires a considerable amount of

computational effort and training data that is a good representation of experimental data. The GPU

training times can be seen at the bottom of Fig. 3.11 on a specialized computer for offline training
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Figure 3.9: Simulation results as heatmaps of the MFD metric for each LSE, whose colorscales are
plotted logarithmically.

with four virtual Intel Xeon CPUs clocked at 2.00 GHz, 32 Gb of memory, and an NVIDIA Tesla

P100 GPU. It should be noted that Python (versions 3.8 and prior) is known to have poor just-in-time

compilation, meaning that LSEs that utilize for-loops, namely CFH, RELAX, and NOMP, suffer with

respect to their theoretical computational complexities. One can expect the LSEs to perform closer

to their asymptotic complexities when programmed in a statically compiled language. A few options
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Figure 3.10: Simulation results as heatmaps of the MAD metric for each LSE, whose colorscales are
plotted logarithmically.

exist to leverage static typing of existing Python code, e.g., using Pythran [Gue+15].

Discussion Ultrasonic fatigue vibration signals feature mostly quasi-stationary sinusoidal parameters,

which slowly evolve with respect to many periods of the signal. When real-time usage is sought, the

dichotomy between signal length, i.e., the Rayleigh limit 1/N , and the quasi-stationarity of sinusoidal
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Figure 3.11: Averaged runtimes of LSEs on a Raspberry Pi 4 (top) and offline Tesla P100 GPU training
time required for frequency representation module of DeepFreq (bottom) with respect to signal length
N . The legend shown above applies to all plots.

components can pose difficulties for estimators whose original formulation relies on the assumption of

stationary signals. This motivates an experimental benchmark comparing alternatives to the DFT.

Notably, many LSEs are considered to have state-of-the-art results for purely stationary signals with

unit amplitudes, which cannot be said for quasi-stationary signals with slowly time-varying non-unit

amplitudes and frequencies (basis mismatch).

The benchmarks on a synthetic UFT signal and randomly generated signals with unique estimation

challenges seen in ultrasonic vibration, show the capabilities of the various estimators in terms of their

adaptability to quasi-stationary and the computational efficiencies. In general1, ESPRIT and NOMP

can be seen to offer the best performance with respect to the quasi-stationarity of a synthetic UFT

1In the full publication [Kis+23c], the algorithms are also benchmarked on their statistical performance against the
Cramér-Rao lower bound on stationary signals. Specifically on amplitude variability (strong and weak signals), small
interharmonic distance (super-resolution), and robustness to model order mismatch (number of sinusoidal components),
which further validates the general usage of ESPRIT and NOMP for sinusoidal parameter estimation. A drawback of
this study and current literature, however, is the lack of theory that precisely dictates when a signal is too nonstationary,
thus prohibiting the use of LSEs. A small remark: DeepFreq should be understood to not be able to generalize to
quasi-stationary data when trained on stationary data.
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3.3. SUPERFAST SIGNAL SUBSPACE FREQUENCY ESTIMATION

LSE Asymptotic complexity

DFT O(N logN )

Unitary ESPRIT O(N3 )

RELAX O(PZp log(Zp) )

CFH O(PN logN )

NOMP O(PRcN logN )

DeepFreq∗ O(LKNR2 +N )

Table 3.3: Comparison of asymptotic computational complexities of implemented line spectra estima-
tors in big-O notation. ∗: The notation is defined where L is the layer depth, N is the sequence length,
R is the representation dimension, K is the kernel size of convolutions.

signal. This motivates exploration into adapting ESPRIT into a more computationally efficient form

for in-situ ultrasonic fatigue vibration signals.

3.3 Superfast signal subspace frequency estimation

In many practical applications, such as ultrasonic fatigue vibration signals, it is common to estimate

LSEs to quasi-stationary signals despite the basis mismatch. It has been shown by benchmarks in

the literature, e.g. vibration analysis [Kis+23c] and power system synchrophasors [Lac+20], that

ESPRIT exceeded other state-of-the-art alternatives in performance metrics. However, this comes

at much higher computational cost due to the full subspace estimation step by SVD O(N3). Thus,

for problems requiring real-time usage, subspace methods would benefit from fast estimations of the

signal subspace. Multiple approaches in the literature leverage the fact that the span of the signal

subspace is much smaller than its orthogonal subspace. In [TM85], they use the Lanczos algorithm

to iteratively converge to the signal subspace. The work by [KS88] assumed that the signal subspace

is an autoregressive process whose polynomials and rational functions form the sample covariance.

Alternatively, the signal subspace is approximated in [KJ92] by using the DFT and the discrete cosine

transforms for use in the MUSIC algorithm. Lastly, in [DAS18] the periodicity of an ideally long signal

is estimated for, such that the estimated covariance matrix is approximately circulant, and thus the

eigenvectors can be computed through an FFT, i.e. the signal subspace.

In this section, the problem formulation of kernel-based subspace estimates for LSE is introduced.
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3.3. SUPERFAST SIGNAL SUBSPACE FREQUENCY ESTIMATION

This naturally leads to two FFT-based ESPRIT algorithm for the line spectral problem, which achieve

super-resolution without an (optionally truncated) SVD on the M ×L-sized data matrix. Specifically,

only one Hankel matrix-Kernel matrix product is involved. This is in contrast to ESPRIT with partial

SVDs and fast Hankel matrix-vector products presented in [PT15] which achieves time complexity

O(MN logN +M3); or Nyström-based ESPRIT [QHS14] which achieves time complexity O(MNK+

MK2) for K ≤ min(M,N), but requires tuning of their sub-vector length K and does not approach

the asymptotic behavior ESPRIT. The main novelty of FFT-ESPRIT resides in the signal subspace

estimation strategy by efficient use of the kernel of the DFT matrix. We build off the work of [KJ92],

where a DFT-based signal subspace approximation is described, but its performance suffers from

searching the pseudo-spectrum of MUSIC and lacks a theoretical analysis. We go one step further

by using ESPRIT for off-grid frequency estimates, present errors due to basis mismatch between the

Vandermonde signal model and the DFT kernels, utilize an iterative interpolated DFT algorithm (IIp-

DFT) [YA15] to remediate the basis mismatch, and generalize the signal subspace estimate through

performance analysis on the eigenspace perturbation. Lastly, we give a computationally efficient

version which achieves a quasi-linear time complexity with respect to its signal length.

The notations are specified: It’s denoted y and Y as vectors and matrices respectively. The ith

entry of the vector y is denoted as y[i]. The ith column and row vector of Y is yi and y⃗i respectively.

The complex conjugate, Hermitian transpose, and Moore-Penrose pseudo-inverse of complex matrix

Y is denoted as Y ∗, Y H, and Y ‡ respectively. The inner product for complex vectors y, z is defined

as yHz. A noise perturbed y is denoted y̌. The expected value of y is denoted E{y}. The variance of

the white noise is denoted η. The ℓ2 and Frobenius norms are denoted ∥Y ∥ and ∥Y ∥F respectively.

The Hadamard product between y, z is denoted y ◦ z. The signal-to-noise ratio (SNR) defined as

SNR := ∥ANβ∥2/η. The indexing of vectors and matrices start from zero.

Original ESPRIT algorithm Let the data matrix of the signal model of Eq. (3.1) be written:

X̌ :=

⎡⎢⎢⎢⎣
x̌[0] x̌[1] · · · x̌[L− 1]
x̌[1] x̌[2] · · · x̌[L]

...
...

. . .
...

x̌[M − 1] x̌[M ] · · · x̌[N − 1]

⎤⎥⎥⎥⎦ (3.49)

where X̌ ∈ CM×L is a Hankel matrix and M is a chosen sub-vector size such that:

P ≤M < N + 1− P (3.50)
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3.3. SUPERFAST SIGNAL SUBSPACE FREQUENCY ESTIMATION

Thus the remaining length is L = N −M . The ML form of the sample covariance R̂ ∈ CM×M is the

statistically efficient approximation of the true covariance R:

R̂ :=
1

L
X̌X̌H =

1

L

L−1∑︂
n=0

x̌nx̌
H
n (3.51)

The EVD on the true covariance R(X̌) = E{X̌X̌H} yields:

R := UΣ2UH

:= UsΣ
2
sU

H
s + U⊥Σ

2
⊥U

H
⊥

(3.52)

where Σ corresponds to a diagonal matrix that contains the eigenvalues on the main diagonal sorted

in descending order, U the left singular subspace, and the subscripts □s, □⊥ denote the signal and

orthogonal subspaces. For two sample-shifted overlapping signal subspaces:

U↑
s :=

[︁
IM−1 0

]︁
Us := Γ↑Us

U↓
s =

[︁
0 IM−1

]︁
Us = Γ↓Us

(3.53)

one can show the rotational invariance property [RK89]:

U↓
s = U↑

s T
−1ΦT (3.54)

where IM−1 is an identity matrix of size M − 1, Φ := diag{e j2πω0 , . . . , e j2πωP−1}, and T ∈ CP×P

is a nonsingular matrix. Since T is generally unknown, the ESPRIT algorithm [RK89] solves in the

least-squares sense for Ψ where its eigenvalues are projected onto the complex unit circle to give the

frequencies of x:

Ψ =
(︁
U↑

s

)︁‡
U↓

s (3.55)

3.3.1 Signal subspace estimation via kernels

The performance of certain subspace methods, like ESPRIT, depends on the estimated signal

subspace obtained through a truncated EVD. This can be shown as the ith eigenvalue problem corre-

sponding to the M descending eigenvalues {σ20 ≥ . . . ≥ σ2M−1}:

Rui = uiσ
2
i (3.56)

Substitution of the sample covariance R̂ of Eq. (3.51) into Eq. (3.56) yields:

1

L

L−1∑︂
n=0

(︁
xn(xH

nui)
)︁
≈ uiσ2i (3.57)
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Eq. (3.57) shows that the ith unit eigenvector ui is approximately a linear combination of xn. Thus it

follows, that the estimate of ESPRIT does not need an estimate of each individual signal eigenvector

by SVD or EVD (ℓ2 optimality). Instead, it is sufficient that a combination of sparse basis vectors

which have linear combinations span the same subspace of signal eigenvectors via the matrix T in

Eq. (3.54). To demonstrate this idea, consider the following:

Proposition 1. Let X be rank-deficient such that its Vandermonde decomposition is:

X = AMBA
T
L (3.58)

where AM ∈ CM×P and AT
L ∈ CP×L are Vandermonde matrices of the undamped form:

AM :=

⎡⎢⎢⎢⎢⎢⎣
1 1 · · · 1

e j2πω0 e j2πω1 · · · e j2πωP−1

e j4πω0 e j4πω1 · · · e j4πωP−1

...
...

. . .
...

e j2πω0(M−1) e j1πω2(M−1) · · · e j2πωP−1(M−1)

⎤⎥⎥⎥⎥⎥⎦
where B = diag{β}. Let the SVD of X be:

X =
[︁
Us U⊥

]︁ [︃Σs

Σ⊥

]︃ [︃
V H
s

V H
⊥

]︃
(3.59)

where Us ∈ CM×P . Comparing Eqs. (3.58) and (3.59), the nonsingular matrix T ∈ CP×P relates the

two matrices:

AM = UsT (3.60)

and therefore it can be seen:

range{Us} = range{AM} (3.61)

This (continuous) Vandermonde representation is commonly referred to in the compressed sensing

literature, in which the signal model of Eq. (3.2) is formulated as a nonlinear optimization problem.

This is usually done using the DFT as a discretized initial estimate [Chi+11]:

min
ξ

{︁
∥ξ∥1

}︁
s. t. ∥WNξ − x∥2 = 0 (3.62)

where WN ∈ CN×N is the unitary DFT basis of the form:

WN :=
1√
N

⎡⎢⎢⎢⎢⎣
1 1 · · · 1

1 e j
2π
N · · · e j

2π(N−1)
N

...
...

. . .
...

1 e j
2π
N

(N−1) · · · e j
2π(N−1)2

N

⎤⎥⎥⎥⎥⎦ (3.63)
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whose resolution is bounded by 1/N and ξ are Fourier coefficients. With the noiseless signal model of

Eq. (3.2), the basis discrepancy can be understood from the expression:

x = ANβ = WNξ (3.64)

In the ideal on-grid setting, i.e. {ωi}P−1
i=0 ⊆ {j/N, j = 0, · · · , N − 1}, the matrix product W−1

N AN

yields a sub-matrix I. The difficulty in the off-grid problem lies in the fact that the signal is sparse

in the basis of AN , but not in the on-grid basis of WN , i.e. β is sparse in the I basis. This idea is

easily demonstrated by the spectrum of the Fourier transformed signal compared to the true signal

model of Eq. (3.2), see Fig. 3.12.
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Figure 3.12: A true signal whose sparse basis lies in A represented by the signal model of Eq. (3.2)
about a unit circle (left). The signal represented through the Fourier basis (right), whose mismatch is
formed through a bandlimited sinc function, i.e. the Dirichlet kernel.

Given the signal subspace equivalence of Eq. (3.61) and its potential basis mismatch between AN

and WN of Eq. (3.64), we wish to show that an approximate solution for subspace methods exist

using the Vandermonde description of Eq. (3.58). Specifically, we will show that the DFT matrix,

specifically as a kernel, can be used to achieve fast approximations of the signal subspace at the cost

of creating basis mismatch.

Signal subspace estimation via “full”DFT kernel To avoid explicitly computing Eq. (3.56), we intro-

duce the kernel-based subspace estimate problem:

Proposition 2. Let the SVD of X = UΣV H. The left singular subspace U has an approximation:
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3.3. SUPERFAST SIGNAL SUBSPACE FREQUENCY ESTIMATION

find K ∈ CL×L or K ∈ RL×L

such that range{U} ≈ range{XK}

KKH = cI

XK is fast to compute

(3.65)

where c is an arbitrary constant and {κi}L−1
i=0 is the set of M vectorized kernels that span K.

The goal of Proposition 2 is to avoid the computation of an SVD/EVD by using a fast matrix

product XK. More notably, XK is not guaranteed to be orthogonal. This, however, is not a problem

for subspace methods such as ESPRIT since Ψ is solved in the LS-sense, see Eq. (3.55). In vector

notation of Eq. (3.57), the subspace of the problem can be written as:

span{u0σ
2
0, . . . , uM−1σ

2
M−1} ≈ span

{︄
L−1∑︂
n=0

(︁
xnκ0[n]

)︁
, . . . ,

L−1∑︂
n=0

(︁
xnκM−1[n]

)︁}︄
(3.66)

One may realize that the problem of finding the appropriate set of kernels {κi} in Eq. (3.66) leads

to a computationally intractable M dimensional optimization. Similarly shown by [KJ92] for the

signal subspace, the DFT kernel can approximate the kernel of Eq. (3.66). We demonstrate this

approximation to Proposition 2 by explicitly rewriting Eq. (3.66):

span{u0σ
2
0, . . . , uM−1σ

2
M−1} ≈ span

{︄
L−1∑︂
n=0

(︂
xne

−j2π(0)(n)/L
)︂
, . . . ,

L−1∑︂
n=0

(︂
xne

−j2π(M−1)(n)/L
)︂}︄

where an approximate in matrix form can be written as:

range {U} ≈ range
{︂
Y alg1

}︂
(3.67)

where Y alg1 := X̂W ∗
L and W ∗

L is the L × L DFT matrix. Therefore, the full subspace U can be

approximated by the kernel of the Fourier transform on the row-space of the Hankel matrix X. For

application in the ESPRIT algorithm, the columns that span the signal subspace can be found in the

optimal ℓ2 norm sense:

range {Us} ≈ span

{︃
arg max
0<i<P−1

{∥yi ∈ Y alg1∥}
}︃

:= range
{︂
Y alg1
s

}︂
(3.68)

We show this kernel-based signal subspace estimator implemented in Algorithm 1 using MATLAB

functions. One may note that the performance of Algorithm 1 is tied to the constraint on X being
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square M = L, which has been shown for SVD-based methods by [Van93] and proven for ESPRIT by

[LLF20] where better performance is achieved. Note that, Algorithm 1 has an asymptotic complexity

of O(N2 logN) due to line 2. Finally, since ESPRIT is invariant to the specific choice of orthonormal

basis for range {Us} (see Eq. (3.60)), the QR decomposition is used to generate its orthogonal matrix

for calculation of Eq. (3.55). We will show later that solving for Ψ using the orthogonalized form Q

has a slight advantage in computational flops as opposed to using Ys directly.

Algorithm 1 ESPRIT with signal subspace approximation by DFT kernel

Input: x ∈ CN×1, M , P
Output: ω
1: X ← (x0, . . . , xL−1)
2: Y ← fft(X, [ ], 2)
3: Y alg1 ← sortMax(∥y0∥, . . . , ∥yL−1∥)
4: Y alg1

s ← (y0, . . . , yP−1)

5: Q← qr(Y alg1
s , ‘econ’)

6: Q↑ ← (q⃗0; . . . ; q⃗M−2)
7: Q↓ ← (q⃗1; . . . ; q⃗M−1)

8: Ψ←
(︁
Q↑)︁‡Q↓

9: ω ← mod(angle(eig(Ψ)/2π, 1))
10: return ω

From Eq. (3.58) and Algorithm 1, it can be seen that the calculation of Ψ from the signal sub-

space spanned by XW ∗
L contains the linear combinations of Aβ. However, the DFT kernel offers an

approximation of on-grid elements, as mentioned previously. In Algorithm 1, there is a discrepancy

between the grid by matrix product AT
LW

∗
L in:

X̂W ∗
L = AMBA

T
LW

∗
L + EW ∗

L (3.69)

in which we wish to recover range{AM} by assuming EW ∗
L negligible in the ℓ2 norm. The matrix

product forms a defined frequency difference between the Vandermonde decomposed Hankel matrix

X with the DFT grid of W ∗
L, {0, 1/L, . . . , L − 1/L}. Without loss of generality, let B = I, and we

first expand the product AT
LW

∗
L in Eq. (3.70):

AT
LW

∗
L :=

√
L

⎡⎢⎢⎢⎣
DL (ω0) DL

(︁
ω0 − 1

L

)︁
· · · DL

(︁
ω0 − L−1

L

)︁
DL (ω1) DL

(︁
ω1 − 1

L

)︁
· · · DL

(︁
ω1 − L−1

L

)︁
...

...
. . .

...

DL (ωP−1) DL

(︁
ωP−1 − 1

L

)︁
· · · DL

(︁
ωP−1 − L−1

L

)︁
⎤⎥⎥⎥⎦ (3.70)
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where DL represents the matrix elements:

DL(f) :=
1

L

L−1∑︂
i=0

e j2π(i)f =
1

L
e jπf(L−1) sin(πfL)

sin(πf)
(3.24)

which are the Dirichlet kernel such that DL(0) = 1.

The product [AT
LW

∗
L]i,k is a sample of the Dirichlet kernel at f = ωi − k/L for i = 0, . . . , P − 1

and k = 0, . . . , L − 1. If AM is to be obtained exactly, the product should yield a sub-matrix IP

such that AT
LW

∗
L = IP +EL: one such case is when the frequencies are on-grid. In these cases, the

columns of the elements in the sub-matrix IP form the span of Us. In all other cases, the difference

between ωi and k/L produces a mismatched row in the product [AT
LW

∗
L]i,k. Each frequencies’ entries

decay across each row with a closed form expression, first similarly noted by [Chi+11]. This decay is

due to the Dirichlet kernel which has the relationship: |DL(f)| ≤ 1/Lf : ∀|f | ≤ 0.5. The denominator

of Eq. (3.24) has the property | sin(πf)| ≥ 2|f | : ∀|f | ≤ 0.5, and thus |1/Lf | is the envelope which

captures the decay of |DL(f)|, see Fig. 3.13.

-60 -40 -20 0 20 40 60

0

0.5

1

Figure 3.13: The function (1/L) sin(πfL)/sin(πf) versus Lf (blue), and |1/Lf | versus Lf (orange),
for L = 26 and f ∈ [−1, 1]; adapted from [Chi+11].

This raises three observations for the off-grid setting: 1) a perfect identity sub-matrix is not

obtainable; 2) it can be easily seen that increasing the grid resolution N does not help make the

approximation closer; 3) even with a single frequency that is off-grid leads to an effect on the columns

of AT
LW

∗
L. This problem becomes more difficult to characterize when the signal is of damped complex

sinusoids, which we expand upon in Appendix B.2. Finally, the selection criteria of maximum ℓ2 norm

can be seen to be sound: even with basis mismatch between a frequency and a sufficiently resolved

DFT grid, the Dirichlet kernel is centered and maximum about 0, and the largest column norms will

contain the entry of the sub-matrix IP .
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Signal subspace estimation via truncated DFT kernel To improve the efficiency and performance of

Algorithm 1, we propose a kernel of a truncated DFT matrix, in which the columns are chosen by

their spectral energy prior to the matrix product. To demonstrate this idea, consider the following:

Proposition 3. Let the SVD of X be:

X =
[︁
Us U⊥

]︁ [︃Σs

Σ⊥

]︃ [︃
V H
s

V H
⊥

]︃
where Us ∈ CM×P . The signal subspace Us has an approximation when the sparsity P is known:

find Ks ∈ CL×P or Ks ∈ RL×P

such that range{Us} ≈ range{XKs}

XKs is fast to compute

(3.25)

where {κi}P−1
i=0 is the set of M vectorized kernels that span K.

By similar arguments as before, a solution to Proposition 3 is the product of X̂ with the kernel

Ks = W ∗
L×P . This corresponds to the kernel of the truncated DFT matrix of P columns, i.e. a

rectangular matrix of size L× P :

X̂W ∗
L×P = AMBA

T
LW

∗
L×P + EW ∗

L×P

= XW ∗
L×P + EW ∗

L×P

(3.26)

which corresponds to an “eigenfilter” on the subspace by rejecting the least spectrally prominent

orthogonal columns. Directly, we can estimate the signal subspace by the expression:

range {Us} ≈ range
{︂
Y alg2
s

}︂
(3.27)

where Y alg2
s := X̂W ∗

L×P . We present this truncated kernel-based signal subspace estimator im-

plemented as FFT-ESPRIT in Algorithm 2. For use in an algorithm, the columns W ∗
L×P should

correspond only to the true frequencies. To visualize this, let the truncated DFT kernel be made of

P frequency differences {δi ∈ [0, 1)}P−1
i=0 :

W ∗
L×P :=

⎡⎢⎢⎢⎣
1 1 · · · 1

e−j 2π
L
δ0 e−j 2π

L
δ1 · · · e−j 2π

L
δP−1

...
...

. . .
...

e j
2π
L
(L−1)δ0 e j

2π
L
(L−1)δ1 · · · e j

2π
L
(L−1)δP−1

⎤⎥⎥⎥⎦
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Thus the product AT
LW

∗
L×P generates a similar matrix of size P×P whose entries are Dirichlet kernels

are:

AT
LW

∗
L×P := L

⎡⎢⎢⎢⎣
DL (ω0 − δ0) DL (ω0 − δ1) · · · DL (ω0 − δP−1)
DL (ω1 − δ0) DL (ω1 − δ1) · · · DL (ω1 − δP−1)

...
...

. . .
...

DL (ωP−1 − δ0) DL (ωP−1 − δ1) · · · DL (ωP−1 − δP−1)

⎤⎥⎥⎥⎦ (3.28)

Given this form, is easy to see that AM is to be obtained when the product yields the sub-matrix

IP , such that AT
LW

∗
L×P = IP +EP×P when {ωi = δi}P−1

i=0 . Therefore, we suggest that an FFT-based

algorithm should be used which performs off-grid estimates for the columns of W ∗
L×P : e.g. an IIp-

DFT estimator [YA15], which is one of many DFT peak interpolation algorithms that can be used in

Algorithm 2. Additionally, one may realize that W ∗
L×P must at minimum span P in order to lie in

the signal subspace of Us, which does not allow one to underestimate the model order. The IIp-DFT

algorithm is programmed such that its frequency estimates are sorted descending by peak prominence.

Algorithm 2 FFT-ESPRIT

Input: x ∈ CN×1, M , P
Output: ω
1: X ← (x0, . . . , xL−1)
2: ω̂ ← IIp-DFT(x, P )
3: W ∗

L×P ← (a−̂ω0 , . . . , a−̂ωP−1
)

4: Y alg2
s ←XW ∗

L×P
5: Q← qr(Y alg2

s , ‘econ’)
6: Q↑ ← (q⃗0; . . . ; q⃗M−2)
7: Q↓ ← (q⃗1; . . . ; q⃗M−1)

8: Ψ←
(︁
Q↑)︁‡Q↓

9: ω ← mod(angle(eig(Ψ)/2π, 1))
10: return ω

Performance bounds of FFT-ESPRIT To understand the performance of these signal subspace es-

timates within the context of the ESPRIT algorithm, many performance bounds have been given in

terms of statistical [SS91], first-order perturbation on the data matrix [BRD08], and more recently,

as eigenspace perturbations [LLF20]. Herein, we work with the performance bounds presented in

[LLF20], which work directly with perturbations to the signal subspace. The previous algorithms

have signal subspace approximates Us, i.e. Y alg2
s not perfectly orthogonal due to the off-diagonal

terms. Therefore, we opt for usage of the orthogonalized form found by QR decomposition such that

Q← Y alg2
s .
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First, we define the theorems of Davis-Kahan and Wedin [Wed72] from ℓ2 eigenspace perturbation

theory on the data matrix.

Theorem 1. Let X, X̂ ∈ CM×L, where X̂ = X + E and has rank P . Let their SVDs be:

X =

min{M−1,L−1}∑︂
i=0

σiuiv
H
i =

[︁
Us U⊥

]︁ [︃Σs

Σ⊥

]︃ [︃
V H
s

V H
⊥

]︃

X̂ =

min{M−1,L−1}∑︂
i=0

σ̂îuîv
H
i =

[︁
Û s Û⊥

]︁ [︃Σ̂s

Σ̂⊥

]︃ [︃
V̂ H

s

V̂ H
⊥

]︃
whose ith descending singular values is {σi}.

Let the ith principle angle between two arbitrary subspace matrices S, Ŝ with arbitrary dimension

M × L be defined as:

θi := arccos(|̂sHi si|) = arccos(λi) (3.29)

where λi denotes the ith arbitrary descending singular value {λ0 ≥ . . . ≥ λi ≥ . . . ≥ λM−1} and let:

Θ
(︁
S,S

)︁
:= diag

{︁
θ0, . . . , θM−1

}︁
(3.30)

It follows from Wedin’s sinΘ theorem that if 2∥E∥ ≤ σP−1(X̂), then it holds:

sin θ0 ≤
2∥E∥

σP−1(X̂)
(3.31)

Proof. See [Wed72].

Theorem 1 provides bounds that subspace methods must balance the perturbations E caused to the

signal subspace without affecting the smallest singular value of the signal subspace σP−1. To bridge

the connection between classical singular values of the SVD for Davis-Kahan and Wedin’s theorems

with the singular values of the QR decomposition, one can refer to Proposition 4:

Proposition 4. Let Us ∈ CL×P of rank P where L ≥ P . Let its thin QR decomposition give:

Us = QR

where Q ∈ CL×P , R ∈ CP×P , and Q is a unitary matrix whose columns are sorted descending by

eigenvalues. Then the singular values for the upper triangular matrix R are the same as the singular

values of Us, i.e. {σ0(R), . . . , σP−1(R)} = {σ0(Us), . . . , σP−1(Us)}.
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For the original ESPRIT algorithm, perturbations to the signal subspace are usually caused by

noise in practice, which can lead to subspace swap of the smallest signal singular value and the

largest noise singular value [HNS01]. For Algorithms 1 and 2 in the noiseless and on-grid case, this

perturbation is characterized by the off-diagonal terms of the products defined by Eq. (3.70) and

Eq. (3.28) respectively.

Next, let us define the following matched distances of Ψ̂ =
(︁
Û↑)︁‡Û↓ which is diagonalizable with

eigenvalues {̂λi = e−j2πω̂i}P−1
i=0 :

md(Ψ̂,Ψ) := min
ψi∈Ψ

max
i

⃓⃓⃓̂
λψi
− e−j2πωi

⃓⃓⃓
(3.32)

and subsequently the frequencies {̂ωi = −∠̂λi/2π}P−1
i=0 :

md(̂ω,ω) := min
ψi∈Ψ

max
i
|̂ωψi

− ωi| (3.33)

These two matched distanced have the relationship, proven in [LLF20, Lemma 2]:

md(̂ω,ω) ≤ 1

2
md(Ψ̂,Ψ) ≤ ∥Ψ̂−Ψ∥ (3.34)

The authors in [LLF20] provides performance bounds of ESPRIT with respect to its minimum

singular value σP−1 of the signal subspace:

Theorem 2. Let the constraints of Eq. (3.50) be fixed. The original ESPRIT algorithm has the following

bounds if the noise is moderate and bounded such that:

∥E∥ ≤
βminσP−1(AM )σP−1(A

T
L)σP−1(U

↑
s )

4
√

2P
(3.35)

then its eigenspace has the stability:

∥Ψ̂−Ψ∥ ≤ 14
√

2P∥E∥
βminσP−1(AM )σP−1(AT

L)σ2P−1(U
↑
s )

(3.36)

and the performance on the frequency matched distance:

md(̂ω,ω) =
20P 2

√
M + 1∥E∥

βminσ2P−1(AM )σP−1(AT
L)σ2P−1(U

↑
s )

(3.37)

Proof. See [LLF20].
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The original ESPRIT algorithm is better understood through the stability of Ψ, since it’s com-

puted from Us. What is notable about Theorem 2 are the roles of the smallest singular value of the

Vandermonde matrices AM , AT
L and the signal subspace matrix U↑

s (with its last row removed) on

the stability and performance bounds. In [LL21], an accurate lower bound is given for σP−1(A□), and

in [LLF20] for σP−1(U
↑
s ).

Given these bounds, and the fact we opt to use the QR decomposition as opposed to an SVD, the

kernel-based signal subspace estimate of Eq. (3.26) has the bounds:

Theorem 3. Let the constraints of Eq. (3.50) be fixed and the estimated matrix W ∗
L×P ∈ CL×P . Algo-

rithm 2 has the following bounds if the noise is moderate and bounded such that:

∥E∥ ≤
βminσP−1(AM )σP−1(A

T
L)σP−1(W

∗
L×P )σP−1(Q

↑)

4
√

2P∥W ∗
L×P ∥

(3.38)

then its eigenspace has the stability:

∥Ψ̂−Ψ∥ ≤
14
√

2P∥E∥∥W ∗
L×P ∥

βminσP−1(AM )σP−1(AT
L)σP−1(W ∗

L×P )σ2P−1(Q
↑)

(3.39)

and the performance on the frequency matched distance:

md(̂ω,ω) =
20P 2

√
M + 1∥E∥∥W ∗

L×P ∥
βminσ2P−1(AM )σP−1(AT

L)σP−1(W ∗
L×P )σ2P−1(Q

↑)
(3.40)

Proof. See Appendix B.3 combined with [LLF20, Lemma 2].

One can see that in the moderate to high SNR regime, FFT-ESPRIT will offer a lower quality

estimate, since ∥W ∗
L×P ∥ ≥ σP−1(W

∗
L×P ). Between the no-information to low SNR regime, i.e. 2∥E∥ ≥

σP−1(X̂), one can show that the Wedin’s bounds of Eq. (3.31) give sin θ0 ≤ σP−1(X̂)
2∥E∥ . It is rudimentary

to see that the moderate SNR regime performance bounds of Theorems 2 and 3 are inversed in this low

SNR regime. We propose that there is a regime between the no-information and low SNR where FFT-

ESPRIT can have better performance than the original ESPRIT algorithm, which we demonstrate

numerically in the following section. The criticality of basis mismatch between W ∗
L×P and AT

L can

be understood in two senses: 1) by invoking Theorem 3, its performance in the low SNR regime is

proportional to:

md(̂ω,ω) ∝
σ2P−1(AM )σP−1(W

∗
L×P )

∥E∥∥W ∗
L×P ∥

(3.41)
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FFT-ESPRIT will offer a better estimate since the subspace of the DFT matrix obeys ∥W ∗
L×P ∥ ≥

σP−1(W
∗
L×P ); 2) the SNR is improved in Frobenius-sense such that: ∥XW ∗

L×P ∥F/∥EW ∗
L×P ∥F ≥

∥X∥F/∥E∥F. When W ∗
L×P deviates, i.e. the frequencies are no longer aligned with the main lobe of

the Dirichlet kernel of Fig. 3.13, the inequality may no longer hold.

Fast version of FFT-ESPRIT In this section, we aim to accelerate the computations of Algorithm 2,

namely to reduce the quadratic complexity dependency on M imposed by the matrix product of line

4 and to prevent inefficient computations of the pseudo-inverse of line 8. Due to the reduction of this

time complexity, it enables one to create a fast version which obtains O(N logN).

First, we will approach line 4 of Algorithm 2 and aim to leverage the properties of the Hankel

matrix X to achieve a faster matrix product. In Algorithm 3 we show that the complexity can

be reduced to ≈ 2PN logN , assuming the appropriate mixed radix FFT algorithms are available.

Additionally, the Hankel matrix does not have to be explicitly formed. We take advantage of the

circulant nature of the DFT, where the Hankel matrix can be Fourier transformed into a Toeplitz

matrix, and the Vandermonde matrix can be Fourier transformed by taking its FFT. The product

of these transformed matrices can then be obtained by element-wise multiplications, followed by an

inverse FFT and a row-wise truncation.

Algorithm 3 Fast Hankel Matrix-Matrix product

Input: x ∈ CN×1, W ∗
L×P = (a−̂ω0 , . . . , a−̂ωP−1

), M , P
Output: Ys

1: c← (x[M − 1], . . . , x[0])
2: r ← (x[N − 2], . . . , x[M ])
3: t← (c, 0, r)
4: tf ← fft(t)
5: G← fft(W ∗

L×P , [ ], 1)
6: for i = 0 to P − 1 do
7: yi ← ifft(gi ◦ tf)
8: end for
9: Ys ← (y⃗0; . . . ; y⃗M−1)

10: Ys ← flipud(Ys)
11: return Ys

Next for line 8 of Algorithm 2, we will briefly reiterate that once the estimate of the signal subspace

estimate is obtained due to the property in Eq. (3.61), Ψ is calculated by the rotation invariance prop-
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erty by ESPRIT. One can use the estimate Ys directly using a Gaussian elimination-type solver since

Ψ =
(︁
Y ↑
s

)︁‡
Y ↓
s . An alternative choice is to naively use MATLAB’s pinv, which relies on calculating

a thin SVD on Y ↑
s . However, the minimal norm least-squares solution is not useful since Y ↑

s is never

rank-deficient. A preferred alternative relies on a QR solver for the least-squares solution, which is

used by MATLAB’s mldivide (\). Both these methods avoid the usage of the normal equations,

which means their condition number is linear: κ(Y ↑
s ). However, we propose to first calculate its QR

decomposition to obtain Q ← Ys since the flops are nearly identical and become more efficient when

P > 4.

Using the normal equation:

Ψ =
(︁
Q↑)︁‡Q↓ =

(︂
(Q↑)

H
Q↑
)︂−1 (︂

Q↑
)︂H
Q↓

when Q↑ is full-column rank, and that (Q↑)
H
Q↑ is non-singular. By invoking the Woodbury matrix

identity [HJ12] and storing the product
(︁
Q↑)︁HQ↓ in memory, one obtains a rank-one modification:

Ψ =
(︂
Q↑
)︂H
Q↓ +

(︃
q⃗H

(︃
q⃗

(︃(︂
Q↑
)︂H
Q↓

)︃)︃)︃(︃
1

q⃗Hq⃗

)︃
(3.42)

where q⃗ corresponds to the last row of Q. While Eq. (3.42) is a faster method since it has a lower

flops requirement, its performance relies on the orthogonality of the matrix, i.e. (Q↑)
H
Q↑ = IP , and

therefore its condition number is quadratic: κ((Q↑)HQ↑). The numerical error that is propagated due

to corrupted data and/or poor orthogonality will lose twice as many digits of accuracy compared to

the QR- or SVD-based methods. Therefore, the QR decomposition of Ys is recommended to use a

Householder pseudo-reflection variant (for complex numbers) described by [HJ12, Theorem 2.1.13] as

opposed to a Gram-Schmidt variant.

We compare all these options in Table 3.4 with respect to their flops and opt to use Eq. (3.42).

Thus, when using Algorithm 3 and Eq. (3.42) for FFT-ESPRIT of Algorithm 2, one achieves the fast

variant of FFT-ESPRIT with an asymptotic complexity of O(N logN) since P ≪M ∝ N .

3.3.2 Results and discussion

In this subsection, we compare the previous FFT-based ESPRIT algorithms with respect to two

performance measures on the undamped signal model of Eq. (3.1) with length N = 27. Specifically,

only the fast variant of FFT-ESPRIT (Algorithm 4) and Algorithm 1 are included. For all simulations,
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Algorithm 4 Fast FFT-ESPRIT

Input: x ∈ CN×1, P , M
Output: ω
1: ω̂ ← IIp-DFT(x, P )
2: A∗

L ← (a−̂ω0 , . . . , a−̂ωP−1
)

3: Ys ← Algorithm-3(x,A∗
L,M, P )

4: Q← qr(Ys, ‘econ’)
5: Q↑ ← (q⃗0; . . . ; q⃗M−2)
6: Q↓ ← (q⃗1; . . . ; q⃗M−1)

7: E ←
(︁
Q↑)︁HQ↓

8: Ψ← E + (q⃗H (q⃗E))
(︂

1
q⃗Hq⃗

)︂
9: ω ← mod(angle(eig(Ψ)/2π, 1))

10: return ω

Table 3.4: Comparison of LS solution of Ψ with respect to flops

Algorithm MATLAB Computation Flops (mult. and adds.)

SVD-based [GV13] pinv(Y ↑
s )Ys↓

2M2P +M2 + 6MP 2

+P − 4
3P

3 −MP

QR-based Y ↑
s \Ys↓ 4MP 2 + 1

3P
3 − P 2

QR decomp. & Woodbury-based Q← qr(Ys, ‘econ’) & Eq. (3.42) 4MP 2 + 3P 2 + P − 2
3P

3 − 1

the complex amplitudes βi are generated independent and identically distributed whose magnitudes

are then normalized to unity.

We define the following metrics: the mean square error (MSE) is used as a statistical measure of

error:

MSE :=
1

P

P∑︂
j=1

(︃
min
ω̂i∈ω̂

|̂ωi − ωj |
)︃2

(3.43)

An approximate CRB is used alongside the MSE since it characterizes the asymptotic behavior at

large N and/or high SNR [SM05] for a single sinusoid. This is given as:

CRB :=
6η

N(N2 − 1)
(3.44)

The MSE can be misleading since it does not give an indication of the probability of failures and can

be skewed by such outliers. Therefore, the frequency success rate (FSR) is defined as follows:

FSR :=

∑︁
ω̂i∈ω̂ S (̂ωi,ω) +

∑︁
ωj∈ω S (ωj , ω̂)

2P
(3.45)
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with the success function defined as:

S(i, j) := 1

[︃
min
jk∈j
|i− jk| <

1

2N

]︃
(3.46)

where 1[□] denotes the indicator function. An FSR of 1 is obtained if all estimated frequencies are

near one or more simulated frequencies and all simulated frequencies are near one or more estimated

frequencies. All metrics are averaged over all independent runs.

To benchmark our algorithms, we use the original ESPRIT algorithm [RK89] which is given the

same parameters as FFT-ESPRIT and Algorithm 1, i.e. M = N/2. The original ESPRIT algorithm

and Algorithm 1 use a QR-based solver for Ψ, whereas FFT-ESPRIT uses the Woodbury-based

solution of Eq. (3.42). We also include the admission of the IIp-DFT algorithm to contrast the effect

of its estimation performance on FFT-ESPRIT’s performance.

Single sinusoid In the first simulation, we perform 104 Monte Carlo simulations of P = 1 complex

sinusoid with zero-mean and is corrupted by AWGN with a varying SNR. In Fig. 3.14, the MSE is

normalized by the CRB of Eq. (3.44). It can be seen that in the no-information to low SNR regimes,

FFT-ESPRIT has better performance over the original ESPRIT algorithm in both MSE and FSR. As

the SNR increases, this advantage slowly inverts, and ESPRIT has better asymptotic performance.

Algorithm 1 can be seen to have the worst MSE in the single sinusoidal case. When contrasted with

its FSR, one can conclude its performance is limited by the subspace swap introduced by using the full

DFT matrix for a subspace estimate. IIp-DFT can be seen have worst MSE relative to FFT-ESPRIT

throughout the SNR regimes. However, its estimate provides FFT-ESPRIT an advantage with an

“eigenfilter” property which allows it to outperform ESPRIT from the no-information regime up to

≈ −3 dB.

Super-resolution of two closely-spaced sinusoids Here, the performance of the estimators with re-

spect to their super-resolution is analyzed, i.e. ability to resolve closely-spaced frequencies beyond the

Rayleigh limit 1/N . We perform 104 Monte Carlo simulations of P = 2 complex sinusoids with one

of the frequencies to be closely situated within a multiple of the Rayleigh limit 1/N . The signals

have zero mean and are chosen to have an SNR of 10 dB. In Fig. 3.15, one can observe that Algo-

rithm 1 outperforms other estimators until ≈ 0.5/N . After this threshold, all estimators but ESPRIT

have a sharp transition in MSE. At this regime, FFT-ESPRIT, as well as Algorithm 1, has a perfor-

mance advantage over the original ESPRIT algorithm up until ≈ 0.7/N . Afterward, FFT-ESPRIT,
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Figure 3.14: Simulation results of varying SNR for a single sinusoid (P = 1) with a fixed signal length
of N = 27.

Algorithm 1, and ESPRIT all closely follow similar MSEs demonstrating the superiority of subspace

methods and their ability of super-resolution. At first, one may be surprised by the MSE performance

of IIp-DFT below ≈ 0.5/N . However, its lower MSE can be ascribed to a precise, yet inaccurate

frequency estimate, indicated by its very low FSR. The DFT can also be shown to suffer a similar

limitation due to using the maximum peaks of on-grid frequency bins. IIp-DFT, however, is prone to

bias introduced by interpolation [YA15], resulting in plateaus in its MSE and FSR. In terms of the

FSR, all three subspace methods follow similar performance trajectories, with Algorithm 1 lagging

behind after ≈ 0.7/N .
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Figure 3.15: Simulation results for a pair of closely-spaced sinusoids (P = 2). The signal length is
N = 27 and SNR is 10 dB, both fixed. The abscissa represents where one complex sinusoid is closely
situated to another at a multiple of the Rayleigh limit. The DFT is included as a dotted line for
reference.

179



3.3. SUPERFAST SIGNAL SUBSPACE FREQUENCY ESTIMATION

Bias of two, well-separated sinusoids To contrast with the previous section, the bias of other well-

separated sinusoids with respect to performance is investigated. The covariance between two sinusoids

starts to become negligible when |ωi − ωj | > 2/N [SM05]. Therefore, one can expect a compounding

effect if an estimator is sensitive to the number of sinusoids. We perform 104 Monte Carlo simulations

of P = 2 complex sinusoids which are ensured to be well-separated of at least 2/N : the set of well-

separated frequencies are drawn from a uniform distribution {ωi ∈ [0, 1) : min{|ωi−ωj |, |1−|ωi−ωj ||} ≥

2/N : ∀i ̸= j}. The signals have zero mean and are corrupted by AWGN with varying SNRs.

In Fig. 3.16, the MSE is normalized by the CRB of Eq. (3.44). Similarly to the single sinusoidal case,

FFT-ESPRIT can be seen to have an advantage over the other estimators in the no-information to the

low-SNR regime, until ≈ 2 dB. This behavior was conjectured after Theorem 3, where the truncated

DFT matrix enhanced the SNR at a bounded noise perturbation, yielding the performance increase

shown by Eq. (3.41). ESPRIT has a better MSE than FFT-ESPRIT after this inflection point. FFT-

ESPRIT, being an approximation of the subspace, obtains nearly identical performance as ESPRIT in

the medium SNR regime and above. Differently from the single sinusoidal case, Algorithm 1 begins to

suffer greatly in its threshold transition from ≈ −10 dB to 2 dB: the approximation of the eigenvalues

provided by the kernel of the full DFT matrix includes a small amount of subspace swap per sinusoid,

in addition to the subspace swap of noise, thus compounding the effect. When looking at the FSR of

Algorithm 1, one can see a relatively normal trajectory, indicating that the poor performance in its

MSE is due to a spurious outlier.

Lastly, IIp-DFT suffers in MSE for multiple sinusoids, as opposed to the single sinusoidal case in

both the SNR transitionary regime and the medium SNR regime and beyond. Interpolation methods

are known to achieve ML performance in the single sinusoidal asymptotic case [SM05], but the iterative

steps to detect and subtract multiple sinusoids cannot completely remove this bias effect for IIp-DFT.

Computation times In Fig. 3.17 we show algorithm runtimes for varying signal lengths, for single

and multiple sinusoidal cases. The results are obtained from MATLAB’s timeit, using an Intel Core

i7-12800H processor. As discussed in Section 3.3.1, FFT-ESPRIT has an asymptotic time complexity

of O(N logN), which is juxtaposed onto the plot at larger N . For larger signals, the time complexity

of ESPRIT (O(N3)) and Algorithm 1 (O(N2 logN)) are evident. For the case of P = 1 sinusoid,

ESPRIT and Algorithm 1 require ≈ 70 seconds at signal lengths N = 213 and N = 216 respectively.
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Figure 3.16: Simulation results of varying SNR for a pair of well-separated sinusoids (P = 2) with a
fixed signal length of N = 27.

FFT-ESPRIT has a clear advantage due to the fast-multiplication of Algorithm 3, only taking ≈ 0.07

seconds at signal length N = 216.
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Figure 3.17: Simulation results of CPU runtimes versus signal length for the number of sinusoids
P = 1 (left) and P = 10 (right). The timing in seconds is measured with MATLAB’s timeit. The
same asymptotic complexity line of O(N logN) is shown on each plot.

Discussion Two FFT-based ESPRIT algorithms leveraging the kernels of the DFT matrix and trun-

cated DFT matrix have been introduced. By employing a DFT kernel to estimate the signal subspace,

both algorithms manage computational complexity below O(N3). In the full DFT context of Al-

gorithm 1, the discrepancy between the Vandermonde matrix and DFT kernel AT
LW

∗
L results in a

matrix populated with the Dirichlet kernel evaluated at the variance between actual frequencies and

the DFT grid. This discrepancy is speculated to prompt a subspace swap at a diminished thresh-

old relative to the traditional ESPRIT, evident from its altered SNR transitional threshold in MSE.
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FFT-ESPRIT (Algorithm 4) offers a partial solution, incorporating the IIp-DFT estimator in its off-

grid kernel formulation of a truncated DFT matrix. Performance bounds suggest its superiority over

the conventional ESPRIT in lower SNR regimes, a fact validated by numerical simulations. With

its quasi-linear time complexity of O(N logN) and close asymptotic performance to ESPRIT at high

SNRs, FFT-ESPRIT emerges as a viable alternative for real-time applications with extensive signal

lengths, exhibiting super-resolution prowess without the biases seen in interpolated DFT algorithms.

In a broader context, FFT-ESPRIT can be viewed as a matrix pencil update of the signal model

offered by the IIp-DFT algorithm with super-resolution.

3.4 Exact identification of nonlinear dynamical systems

Ideas from inverse modeling and data-driven system identification techniques are well situated for

nonlinear dynamical systems in engineering domains. Classically, these techniques develop a nonpara-

metric or parametric model of a physical system from coordinates, e.g. measurements. Parametric

models require full state and latent variables of the system, which can be unknown in experiments. To

deal with this, nonparametric identification methods can be leveraged since they only require input-

output measurements, e.g. block-oriented Volterra [Réb+11], NARMAX [Bil13], and neural network

models [Mas+00], since they are able to regress to functional mapping between inputs and outputs

with high accuracies. However, they suffer from interpretability and the mappings can have no physi-

cal significance with respect to the dynamics of the underlying system. For that reason, identification

of nonparametric models are often coined as a black-box method.

An alternative semi-parametric method named the Sparse Identification of Nonlinear Dynamics

(SINDy), is a data-driven model discovery framework introduced to identify the ordinary differential

equations (ODEs) of dynamical systems in the form ż(t) = f(z(t)); with known measurable state

variables z(t) ∈ RM ,∀t ∈ [0, T ], from candidate state-dependent functions f(z(t)) : RM → RM

[BPK16]. In discrete matrix vector-form the dynamics can be written for the jth state measurements

of time-length M as:

żj = Θ(z)ξj , j = 1, · · · , N (3.47)

for a predetermined library matrix of P candidate functions Θ ∈ {RM×P : M ≥ P}. This type of

problem has equivalents in other domains, such as dictionary learning in signal processing or feature
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selection in machine learning. For ease of notation we drop the (z) from the library matrix henceforth.

The goal is to extract the true governing dynamics with K sparsity:

ξ̂j = arg min
ξj

{︁
∥Θξj − żj∥22

}︁
s. t. ∥ξj∥0 = K, j = 1, . . . , N (3.48)

where the ℓ0 pseudo-norm is the card(ξj). However, Eq. (3.48), known as the best subset problem

[Mil84a], is NP-hard and requires
(︁
P
k

)︁
combinatorial search for unknown k. Thus, a computationally

feasible form of the ℓ0 pseudo-norm is highly sought for which selects the true sparse model, i.e. P(Ŝj =

S∗
j ) → 1, for an estimated support Ŝj := {1; ξ̂j [k] ̸= 0, k = 1, . . . , P} and true support S∗

j :=

{1; ξ∗j [k] ̸= 0, k = 1, . . . , P}. This framework combines elements of both black-box and white-box

modeling approaches, and is considered a grey-box method.

SINDy has been applied to a large variety of dynamical systems, including nonlinear [LC22] and

hysteretic [LN19] mechanical oscillators, the boundary volume problem of elastic beams [SBK21],

reduced-order models of fluid flows [LB18], and multiple timescale dynamics [BK20]. Application of

SINDy leads to parsimonious and interpretable solutions but suffers from many practical aspects when

applied experimentally:

1. SINDy requires the inclusion of potential functions to be provided to form the library’s basis.

Too large of a basis leads to a violation of correlation conditions, i.e. multicollinearity for regres-

sion [FG67] and sparse regression [ZY06]. A large basis of many functions might be provided

by practitioners in the case of completely unknown dynamics, which limits the applicability

and reliability of sparse regression algorithms. Additionally, systems with unobservable latent

variables, such as hysteresis, cannot be measured and their existence must be inferred.

2. The effect of noise on SINDy occurs from two aspects: noise intrinsic to the measurement data

and noise introduced when making numerical approximations of derivatives or integrals. For the

former, a variety of methods such as local and global denoising techniques [CPD22], by using

a more robust optimization procedure [CPD21], or by enforcing simultaneously denoising and

system recovery in optimization [HID22] can be used.

For the latter, integral (weak) formulations of SINDy have been devised to mitigate noise prop-

agated by numerical derivatives. The most obvious method [SM17] replaces the problem for-

mulation by numerically estimating the integral formulation of SINDy. The method devised
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by Messenger and Bortz [MB21] utilizes test functions for integration by parts to estimate the

derivative, while the occupation kernel technique by Rosenfeld et al. [Ros+19] uses test functions

for estimating the derivative via the fundamental theorem of calculus.

3. The hyperparameters used in the SINDy framework are intrinsically tied to the problem formu-

lation and estimator. Thus, they are tuned by model selection algorithms: usually the mini-

mization of an information criterion, through Bayesian or frequentist methods, or heuristically,

see [DTY18] for a good overview. However, these selection criteria are prone to interpretability:

the work by [Man+17] shown that minimization of information criteria is not always likely to

select the exact model; the work by [CPD21] shown that corner selection for L-curve techniques

can fail when the L-curve has multiple corners.

4. In the SINDy framework, the initial values are neglected from identification: this may be appro-

priate when dynamic systems are weakly nonlinear, are not chaotic, and tend to a steady-state.

In practice, the initial condition is not estimated and is provided, which equates to assuming

that noise does not affect this initial condition. It is critical to acknowledge that estimating

the initial values have practical benefits when SINDy is used for model predictive control or

forecasts.

Problematic identification can arise from dynamics corrupted by noise, finite data lengths, and

a highly correlated library matrix. Furthermore, the estimator and the model selection algorithm

should allow for an interpretable way for tuning hyperparameters. Specifically, we are interested in

the property of exactly recovering the subset of candidate functions which make up the dynamics of

the nonlinear model, i.e. the oracle variable selection P(Ŝj = S∗
j )→ 1.

The original SINDy algorithm employs the sequentially thresholded least squares (STLS) to solve

Eq. (3.48). However, the STLS method introduces bias against coefficients with low magnitudes due to

an increasing threshold parameter. It can be likened to a backward selection greedy algorithm, where

coefficients of candidate functions are hard thresholded during sequential least squares on smaller

supports until convergence. If a true coefficient is prematurely thresholded during optimization, the

corresponding governing equation cannot be recovered, e.g. see [BNC18]. To overcome these limi-

tations, an extension of SINDy incorporates bootstrap ensembling techniques (E-SINDy). E-SINDy

utilizes statistics from the bootstrapped models, leading to enhanced robustness in variable selection
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for finite and noisy data. In this study, we specifically refer to E-SINDy using the STLS estimator

with a median bagging inclusion probability of ≈ 0.6. E-SINDy was recently shown that its approx-

imations converge to a Bayesian inference via Markov chain Monte Carlo solution with a horseshoe

prior [Gao+23a].

An alternative to the STLS stems from the Lasso formulation2 which involves convex minimization

of the squared ℓ2 norm of the residual along with a penalized ℓ1 norm. Literature in the statistical

domain [Tib96] and signal processing domain [CD98] have characterized the theoretical performance

of this convex penalty. One estimator with oracle properties is the Adaptive Lasso [Zou06] or iterative

reweighted ℓ1 minimization (IRL1) [CRT06], which uses a re-weighted ℓ1 penalty. The reweighting

scheme adjusts the ℓ1 penalty by incorporating the individual coefficients from the previous iteration.

The reweighted ℓ1 penalty is stage-wise convex allowing for efficient computation through homotopy

continuation methods [Efr+04; AR13]. However, similar to STLS, increasing the penalty parameter

in the Lasso variant leads to the shrinkage of smaller coefficients of candidate functions.

Greedy and convex ℓ1 penalty methods, including STLS and IRL1, occasionally achieve suboptimal

sparse solutions since they approximate Eq. (3.48). This includes results such as Ŝj ⊇ S∗
j , i.e. a sparse

solution that includes the true support but is over complete, and/or Θξ∗j ≈ Θξ̂j : ∥ξ̂j∥0 ̸= K, i.e. a

sparse solution that approximates the solution but does not satisfy the sparsity K. Several other

non-convex penalties have been proposed in the literature to close the gap between Eq. (3.48) and its

approximations. These include separable penalties such as the smoothly clipped absolute deviation

[FL01], the Dantzig selector [CT07], and the minimax concave penalty [Zha10]. To maintain several

desirable properties relevant to Eq. (3.48) and to promote further sparsity, non-separable non-convex

penalties have been proposed such as sparse Bayesian learning [WN10], the moderately clipped Lasso

[KLK15], or the Mnet [Hua+16].

In this study, we wish to introduce the Trimmed Lasso for robust identification of models (TRIM)

for nonlinear dynamical initial value problems. Specifically, the Trimmed Lasso’s non-convex penalty

offers exact control over the desired level of sparsity for regression. Thus, its formulation is closer

to Eq. (3.48) than previously mentioned convex methods for sparse estimation. While originally

introduced over a decade ago in [CDD09] and its name coined recently by [BCM17], developments

2It is worth noting that the Lasso formulation can incorporate physics-based constraints such as structural symmetry
or energy-based constraints, as explored in [LB18], but these must be known a priori and are not focused on for this
general study.
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in optimization have made convex approximations of the Trimmed Lasso. TRIM has a very intuitive

hyperparameter tuning process, which directly probes the Pareto front. While E-SINDy has recently

been shown to have oracle properties in [Gao+23b], and the IRL1/Adaptive Lasso by [Zou06], we will

demonstrate across different dynamical systems that TRIM is postulated to have lenient conditions

to satisfy its oracle properties, and thus better performance.

Our contributions can be described as follows: We provide the methodology of TRIM for identi-

fication for uncertainty quantification for sparse nonlinear dynamic initial value problems under high

noise, multicollinearity, and finite data length. We affirm more recent studies of sparse regression that

Lasso-based formulations with non-convex penalties can achieve better performance than the STLS

used in SINDy and E-SINDy. Additionally, uncertainty quantification comes after model section for

TRIM, meaning that resampling techniques are performed for only one set of hyperparameters. This

is a computational advantage over E-SINDy, which requires multiple bootstrapping models per hyper-

parameter, from which model selection criteria identifies the dynamics. In this disseratation, TRIM

is demonstrated on the the Bouc Wen oscillator from the nonlinear dynamics benchmark of Noël and

Schoukens, 2016.

The notations are specified: We denote x and X as vectors and matrices respectively. The ith

column vector of a matrix is denoted Xi. A noise perturbed value x is denoted x̃ while an estimate

is denoted x̂. The variance of the white Gaussian noise is denoted σ2. The ℓp norm is denoted ∥X∥p.

The Hadamard (element-wise) product and inner product between x,y is denoted x ◦ y and ⟨x,y⟩

respectively.

3.4.1 Preliminaries

In this section, we introduce preliminaries within the SINDy framework of nonlinear dynamical

model identification. Specifically we mention two sparsity promoting regressions in the literature.

Finally, data-preprocessing and sparsity promoting regressions require tuning of hyperparameters,

which we elucidate via automatic methods.

SINDy SINDy is a data-driven model discovery framework which was originally introduced to identify

the governing equations in the form of Eq. (3.48). The underlying assumption is that the underlying
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dynamics f(z(t)) are linearizable by P ≥ 2 sparse candidate functions, such that:

ż(t) = f(z(t)) ≈
P∑︂
i=1

ξiθi(z(t)) (3.49)

where Θ = {θi(z(t))} is an over complete set of candidate functions. Thus, the goal is to determine the

weights ξi such that the balance between error and parsimony of the approximation is optimal, and

ideally retrieving the true governing equations. The vector-matrix form of Eq. (3.48) can be expanded

as:
żj =

[︁
ẋj (t1) , ẋj (t2) , · · · , ẋj (tM )

]︁T ∈ RM ;

Θ(z) =

⎡⎢⎢⎢⎣
θ1 (z(t1)) θ2 (z(t1)) · · · θP (z(t1))
θ1 (z(t2)) θ2 (z(t2)) · · · θP (z(t2))

...
...

. . .
...

θ1 (z(tM )) θ2 (z(tM )) · · · θP (z(tM ))

⎤⎥⎥⎥⎦ ∈ RM×P ;

ξj =
[︁
ξj,1, ξj,2, · · · , ξj,P

]︁T ∈ RP

where the columns of the library matrix Θ(z) are prescribed candidate functions (e.g. z, z2, sin(z)).

SINDy is deemed a semi-parametric method since its intended to accommodate a parametric candidate

library with a non-parametric data-driven regression. In this study, we restrict ourselves to the case

M ≥ P , i.e. a problem where the data lengths are larger than the potential candidate functions.

Sparsity promoting regression In order to approximate Eq. (3.48), [BPK16] proposes the sequen-

tially thresholded least squares (STLS) estimator. In summary, it applies a hard thresholding to the

coefficients |Ξ| < φ and sequentially performs least squares on new subsets of the support:

S(Ξ̂(i)) =
{︁
|Ξ̂(i)| ≥ φ

}︁
; ∀φ > 0,

Ξ̂
(i+1)
STLS = arg min

Ξ∈S(i)

{︁
∥ΘΞ− Ż∥22

}︁
s. t. S(i) = S(Ξ̂(i))

(3.50)

for arbitrary i iterations, where Ξ =
[︁
ξ1 · · · ξP

]︁
, Ż =

[︁
ż1 · · · żN

]︁
, and S(i) is the ith support of

Ξ̂ which satisfies the constraint. However, STLS exhibits similarities to a backward selection greedy

regressions where if a true coefficient is thresholded at an early stage during the iterative optimization,

the true underlying equation cannot be recovered. Yet, STLS has been successfully applied to a

large variety of dynamic systems, and only requires a single thresholding parameter ζ. Additionally,

Eq. (3.50) has a computational complexity of O(MP 2) per thresholding parameter, making it efficient

and easy to implement.
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Alternatively, the Lasso estimator introduced by [Tib96], is well suited to sparse identification

because of its property that it sets some coefficients exactly equal to zero:

ξ̂Lasso,j = arg min
ξj

{︁
∥Θξj − żj∥22 + λ∥ξj∥1

}︁
; ∀λ > 0 (3.51)

where the ℓ1 term promotes the sparsity of the regression, the ℓ2 term keeps the solution close to

the measurement data, and λ is the regularization term which balances between the two. For the

regularization path 0 < λ1 < . . . < λmax the solution path is piecewise linear, and thus solved efficiently

by least angle regression [Efr+04] or homotopy methods [AR13]. Thus, the Lasso is typically stated

with a per iteration complexity of O(MP ) per regularization parameter.

Recent works in statistical and compressed sensing domains has provided theoretical performance

for the Lasso, assuming that ξ∗ is sparse and abides by the beta-min conditions [Zou06]: to ensure

that a sparse model is obtained where the true sparse model is in the subset (P(Ŝj ⊇ S∗
j ) → 1 as

(M →∞)) the library matrix Θ̃ must abide by the restricted eigenvalue condition [BV11]; to ensure

that the exact sparse model is obtained (P(Ŝj = S∗
j ) → 1 as (M → ∞)), the library matrix must

abide by the irrepresentable condition [BV11]. When these conditions are not met, the Lasso produces

large bias for the non-zero coefficients as it continuously shrinks all coefficients toward zero.

To correct for this behavior, the Adaptive Lasso [Zou06] or IRL1 [CRT06] replaces the ℓ1 with a

penalized weight vector:

ξ̂
(i+1)
IRL1,j = arg min

ξj

{︁
∥Θξj − żj∥22 + λ∥ŵ(i)

j ◦ ξj∥1
}︁

; ∀λ > 0 (3.52)

where the weight vector is defined as a function of previous selection’s coefficients:

ŵ
(i)
j :=

1

|ξ̂(i)IRL1,j |γ
; ∀γ > 0 (3.53)

for additional hyperparameters of i iterations and γ. The IRL1 was recently featured for nonlinear

dynamical model identification by [CPD21]. This extension of the Lasso has oracle variable selection

under less strict properties than the Lasso. Note that, if |ξ̂Lasso| is large, the Adaptive Lasso employs

a smaller penalty (less shrinkage) which yields a smaller bias in the ℓ2 sense. Since the irrepresentable

condition for the Lasso is hard to meet in practice, the Lasso’s estimates in the first stage effectively

reduces the number of false positives for the Adaptive Lasso in the subsequent stage. This is due to

the fact that the Lasso has high probability of the screening property [BV11] and that for ξ̂Lasso =

0→ ξ̂ALasso = 0.
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Automatic hyperparameter tuning For all regularized problems in this study, hyperparameter terms

must be chosen in some optimal sense. These problems with a single hyperparameter λ have the form:

arg min
β

{︁
∥Xβ − y∥22 +R(β, λ)

}︁
(3.54)

where R(□) is an operator which applies a penalty on the solution for arbitrary X, β, y. For model-

based regressions, some proxy of the sparsity is weighed against the likelihood of the model. These

parametric information criterion are general to the model and are well known, such as the Akaike

information criterion (AIC) and its corrected variant (AICc), The Bayesian information criterion

(BIC), to name a few. The AIC has been shown to be an efficient selector, since it uses the Kullback-

Leibler divergence to balance model complexity and goodness of fit. The BIC instead tries to maximize

the posterior model probability and thus is a consistent selector. The general form for information

criterion is evaluated for all possible models M:

arg min
β̂∈M

{︂
∥Xβ̂ − y∥22 + Πσ2∥β̂∥0

}︂
(3.55)

where the left-hand side is the residual sum of squares and Π is a stochastic penalty. Since the true σ2

is unknown, the least squares estimate of σ̂2LS := ∥Xβ̂LS−y∥22/(M−P ) for normally distributed errors

is commonly used instead. Eq. (3.55) can be shown to have the form of the AIC, BIC, and others with

a linear penalty Π in Section 3.4.1. Since the intent is to identify the true models, i.e. consistency, we

opt for usage of the corrected risk inflation criterion (RICc), which has shown superior performance

in literature [ZS10; KKC12]. In short, the risk refers to the expected prediction error of a model;

RIC adjusts the maximum increase in risk due to selecting predictors rather than knowing the correct

predictors, and is proven to be a consistent selector [FG94].

Criterion Stochastic penalty (Π)

AIC ΠAIC = 2

AICc ΠAICc = 2 + 2(card(β)+1)
M−card(β)−1

BIC ΠBIC = logM
HQC ΠHQC = c log logM, for c > 2
RIC ΠRIC = 2 logP
RICc ΠRICc = 2(logP + log logP )

Table 3.5: Common penalty factors in parametric information criterions. Note that, the Hannan and
Quinn criterion (HQC) requires a coefficient c to be chosen, see [HQ79].
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When no model is known a priori, e.g. for denoising and derivatives estimations, nonparametric

model selection techniques must be used. Commonly known are the leave-one-out and generalized

cross-validation (GCV) methods. In this study, we propose an L-curve [Han92] be used for tuning λ.

The L-curve represents a Pareto front on a log-log scale, with the penalty on the ordinate and the

error on the abscissa:

Lc(λ) := (a, o)→
{︃
a := log ∥Xβ − y∥22
o := logR(β, λ)

(3.56)

The L-curve has the name due to the fact an L shape is formed, occasionally with a well-defined corner

point which would have a large curvature. Certain methods exist to find the maximum curvature,

some notable being [Han92; CC20]. We opt for our own method which determines the maximum

curvature through arc length approximations along the L-curve.

While the L-curve is originally a heuristic tool in choosing the regularization parameter, a theo-

retical basis on why regularization parameters corner point works well has been studied in [Han92;

Reg96]. A recent Bayesian formulation of the regularization problem [AIB23], demonstrates that the

L-curve is a graphical way of searching for the maximum a posteriori solution after marginalization

over the priors. Additionally, the L-curve corner criterion has an advantage over the cross validation

which presumes noise that is additive white Gaussian (AWGN) [KBS19].

To see this, consider the leave-one-out cross-validation set which has the expectation:

E
(︁
(Xβ̂)out − ỹ

)︁2
= E

(︁
((Xβ̂)out − ỹ)2

)︁
+ σ2 + 2 cov

(︁
(Xβ̂)out, ỹ

)︁
where E(□) is the expectation operator, □out is an estimate on a portion of data, and ỹ = y∗ +

ε is the true data with AWGN of variance E(ε) = σ2. Cross-validation explicitly assume that

cov
(︁
(Xβ̂)out, ỹ

)︁
≍ 0. Thus, if the regularized expression of Eq. (3.55) describes the denoising sce-

nario, a smooth signal plus correlated noise will regress towards a solution of a less smooth signal

plus white Gaussian noise. A denoising demonstration of this phenomena can be found in Fig. 3.18,

where it’s shown that the L-curve is the most robust when this assumption is violated. In this sense,

the L-curve has an advantage that it does not rely on an a priori statistical measure; corner points

are where the solution norm and penalty have a Pareto front. However, the L-curve fails when the

discrete picard condition is not met [Han90], i.e. the Fourier coefficients of the data ỹ decay to zero

faster than their singular values.
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Figure 3.18: Demonstration of the effect of autocorrelation on model selection criterion for the non-
parametric problem of the form of Eq. (B.4). In (a), we simulate the popular Lorenz 63 system and
corrupt the second degree of freedom (DOF) with correlated noise and plot its path. Tikhonov reg-
ularized denoising defined in Eq. (B.4) is used to denoise the data, where the L-curve and GCV in
(d) is used to determine the regularization parameter. Tikhonov denoising in (b) using the corner
point of the L-curve (RMSE= 1.3 · 10−3) can denoise correlated noise better than the minimum of the
GCV (RMSE= 1.9 · 10−3) in (c). The full systematic parameters used for the simulation are given in
Appendix B.4.3.

3.4.2 TRIM overview

In this section, we introduce the methodology of TRIM, first by introducing the non-convex penalty

of the Trimmed Lasso, followed by an intuitive hyperparameter tuning method which directly probes

the Pareto front and allows for a forward selection if higher accuracy is needed. Finally, TRIM extends

upon the usual derivative form of SINDy to estimate the initial values of nonlinear dynamical models.

The Trimmed Lasso For the problem of Eq. (3.48), a solution that respects the ℓ0 pseudo-norm

becomes computationally infeasible as P grows. However, an attractive property of Eq. (3.48) is the

ability to enforce the sparsity. An ideal penalty would be able to be penalized by λ and enforce sparsity

K simultaneously, which would take the form of:

ξ̂j = arg min
ξj

{︁
∥Θξj − żj∥22 +R(ξj , λ)

}︁
s. t. ∥ξj∥0 = K

One such penalty, the Trimmed Lasso, has a non-convex penalty that satisfies both control of the

sparsity and can be penalized. It is defined as [CDD09]:

T (ξj , k) =
P∑︂

i=k+1

|ξj,i| (3.57)

191



3.4. EXACT IDENTIFICATION OF NONLINEAR DYNAMICAL SYSTEMS

where |ξj,1| ≥ |ξj,2| ≥ . . . ≥ |ξj,P | are the sorted descending entries of the coefficient vector. Intuitively,

Eq. (3.57) penalizes the k + 1 entries by the ℓ1 distance between ξj and the closest k sparse vector.

This forms a proxy for Eq. (3.48):

ξ̂TRIM,j = arg min
ξj

{︁
∥Θξj − żj∥22 + λT (ξj , k)

}︁
; ∀λ > 0 (3.58)

The Trimmed Lasso is a generalization of the standard Lasso, which recovers the Lasso when k = 0.

For k > 0 and an increasing value of λ, the shrinkage effect on the smallest P − k entries increases.

When λ reaches or exceeds a threshold λ́, the smallest P − k entries are forced to zero [ABN21]. This

exactness property uniquely characterizes the Trimmed Lasso through the existence of λ́, and for λ

sufficiently large, Eq. (3.58) becomes a solution to the constrained best subset selection problem as

defined in Eq. (3.48) [ABN21; GTT18].

However, if one sets λ arbitrarily large, so does the non-convexity of the problem. The optimization

of Eq. (3.58) then is carried out by incrementally solving for λ, where λ1 < λ2 < . . . < λi < . . .. For

each λi greater than or equal to λ́, the estimate ξ̂j(λi ≥ λ́) is projected onto the closest k sparse

vector. While the Trimmed Lasso has an intuitive but non-convex form, its “convexification” allows

for efficient computation. An example of this can be formulated using an alternating minimization

formulation [BCM17] of Eq. (3.58):

f(ξj) = ∥Θξj − żj∥22/2 + λT (ξj , k) + η∥ξj∥1

f1(ξj) = ∥Θξj − żj∥22/2 + (η + λ)∥ξj∥1

f2(ξj) = ⟨γ, ξj⟩

(3.59)

such that f(ξj) ≈ f1(ξj)− f2(ξj) and:

χj = arg sort(|ξj |); and γ[χj,i] =

⎧⎨⎩λ sign(ξj [χj,i]) if i ≤ k

0 if i > k
; for i = 1, . . . , P (3.60)

where arg sort(·) returns a vector of descending index values and the square brackets indicate the vector

entry with 1-indexing. Given the convexity of f1(ξj) and f2(ξj), the alternating minimization scheme

of Algorithm 5 can be utilized. More efficient implementations have been algorithmically pursued via

alternating direction method of multipliers (ADMM) [BCM17], block coordinate descent [Yun+19],

and a surrogate penalty called the generalized soft-min coupled with the fast iterative shrinkage-

thresholding algorithm (FISTA) [ABN21]. These implementations make Eq. (3.58) computationally

feasible, with each bringing its own unique theoretical convergences and guarantees.

192



3.4. EXACT IDENTIFICATION OF NONLINEAR DYNAMICAL SYSTEMS

Algorithm 5 Alternating minimization of Trimmed Lasso

Input: ℓ2 norm scaled Θ̆ (see Appendix B.4.2), ż, sparsity k, ν ≥ 5, η = 10−3, tolerance ε
Output: ξ̆TRIM

1: j ← 1
2: λ← exp(logspace(∥ż∥2 · 10−3, ∥ż∥2, ν)) ▷ See [ABN21, Theorem 2.1].
3: for i = 1 to ν do
4: λ← λi; ξ̆(1) ← N (0,1); s← 1
5: while ∥Θξ̆(s) − ż∥22/2 + λT (ξ̆(s), k) + η∥ξ̆(s)∥1 > ε do
6: γ(s) ← Eq. (3.60)
7: ξ̆(s+1) = arg minξ

{︁
∥Θξ − ż∥22/2 + (η + λ)∥ξ∥1 − ⟨γ(s), ξ⟩

}︁
▷ Resolved using any Lasso

solver.
8: s← s+ 1
9: end while

10: if card(ξ̆(s)) = k then
11: M(j)← ξ̆(s)

12: L(j)← ∥Θξ̆(s) − ż∥22/2 + λT (ξ̆(s), k) + η∥ξ̆(s)∥1
13: j ← j + 1
14: end if
15: end for
16: ξ̆TRIM ←M(j)← arg minj

{︁
L(j)

}︁
▷ Take the support that gives the smallest residual.

17: return ξ̆TRIM

This leads to the Trimmed Lasso having its sparsity k as its single tunable hyperparameter. The

easiest implementation is to simply utilize the information criterion approaches in Eq. (3.55), namely

RICc. Alternatively, we can utilize an augmented L-curve hyperparameter for tuning the Trimmed

Lasso within the SINDy framework, i.e TRIM. This approach allows us to directly probe the Pareto

frontier between the residual and the sparsity k:

LTRIM,j(k) := (a, o)→
{︃
a := log ∥Θξ̂j − żj∥2
o := k

(3.61)

If one does not want to rely on minimization of information criterion, Eq. (3.61) facilitates an intuitive

process for hyperparameter tuning. As the desired level of sparsity k increases, the solution residual

generally decreases. The occurrence of a sudden drop in the residual is considered indicative of the

parsimonious model, representing a corner point on the L-curve. Following the identification of this

corner point, practitioners can further employ a forward step selection method, allowing for a trade-off

between increased sparsity and a tolerated decrease in the residual distance between consecutive models

(e.g., dist(ki, ki+1) > tol). Conversely, the hyperparameter tuning procedure of the STLS and IRL1

estimators of Section 3.4.1 increase the magnitude of their hyperparameter(s) to promote sparsity. It
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is important to note that their on-grid hyperparameters do not guarantee a k sparse solution, whereas

TRIM provides this guarantee. This automatic model selection process is demonstrated for the Lorenz

system in Fig. 3.19.
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Figure 3.19: A demonstration of automatic model selection criteria paired with their respective sparse
regression estimators for the noisy third DOF of the Lorenz 63 where the true sparsity is K∗ = 2. In
(a), TRIM’s corner point in the L-curve defined by Eq. (3.61) as well as RICc achieves the true sparsity
(K̂ = 2). A forward step selection criteria is shown where an additional coefficient is permitted if the
distance between the residuals satisfies a tolerance. In (b), IRL1 obtains differing results: the L-curve
method (K̂ = 3) and the RICc (K̂ = 4). In (c), STLS obtains more consistent results with RICc
(K̂ = 2) and more efficient results with AICc (K̂ = 5), confirming with theory. The full systematic
parameters used for the simulation are given in Appendix B.4.3.

Initial value problem formulation Here we detail the initial value problem formulation for the SINDy

framework. While the initial conditions for SINDy in the literature are often presented as known with

exact certainty, this issue is frequently overlooked, whether intentionally or unintentionally. Specifically

for TRIM, the classical derivative formulation of Eq. (3.47) is changed by adding the initial values z0

to the problem formulation:⎧⎪⎪⎨⎪⎪⎩
ż(t) = f(z(t)) ≈

P∑︂
i=1

ξiθi(z(t))

z(t0) = z0

; ∀t ≥ t0 (3.62)

In matrix-vector notation, the integral formulation of the problem can be formulated as:

zj = T1Θξj + z01M + εq (3.63)

where 1M ∈ RM a vector of ones and T1 is a matrix integral operator defined in Eq. (B.3). The

integral formulation of [SM17], however, discards the initial values by regression on the augmented
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data z′j = zj − z01M . Instead, we will treat the initial values as an additional coefficient. Using

the Trimmed Lasso penalty and defining Γ :=
[︁
1M T1Θ

]︁
, the corresponding minimization problem

which minimizes the quadrature error is and allows initial value estimates is:

ψ̂TRIM,j = arg min
ψj

{︁
∥Γψj − zj∥22 + T (ψj , k)

}︁
; ∀λ > 0 (3.64)

where ψ̂j =
[︁
−ẑ0,j ξ̂j

]︁T
is the recovered initial values and the coefficients of the problem. The

formulation for first-order ODEs benefits from estimating numerical quadrature instead numerical

derivatives.

3.4.3 Results and discussion

In this subsection, we evaluate the performance of three sparsity-promoting estimators, paired with

model selection criteria, in identifying a hysteretic oscillator. This oscillator is useful due to the fact

that dynamical systems with dissipation and history can be modeled. Specifically, this includes the

STLS estimator from the original SINDy3 [BPK16], its ensembled counterpart E-SINDy4 [Fas+22], the

IRL1 estimator5 by [AR13], and TRIM which implements the FISTA6 implementation of the Trimmed

Lasso. For IRL1, we fix the number of reweighting iterations to two, while keeping γ and λ tunable

parameters. We will use SINDy and E-SINDy to denote the original and ensembled (median bagging)

implementation of STLS. E-SINDy conducts 100 bootstrap resamples across all examples, requiring

bootstrapping and ensembling for each thresholding parameter before performing model selection on

the resultant ensembled models.

The default model selection criterion for each methods are: SINDy and E-SINDy with the model

selection criterion RICc of Eq. (3.55), IRL1 with the L-curve corner criterion of Eq. (3.56), and TRIM

with the L-curve criterion of Eq. (3.61). Unless otherwise mentioned, the TRIM with the L-curve

criterion includes a forward step selection tolerance of tol = 5% with a distance measurement:

dist(ki, ki+1) =
∥Θξ̂j(ki)− żj∥22
∥Θξ̂j(ki+1)− żj∥22

These model selection criteria are chosen due to their optimal performance observed by the authors

in this study as well as the theoretical justifications in Section 3.4.1. If not indicated differently,

3https://faculty.washington.edu/sbrunton/sparsedynamics.zip
4https://github.com/urban-fasel/EnsembleSINDy
5https://intra.ece.ucr.edu/~sasif/homotopy/
6https://github.com/tal-amir/sparse-approximation-gsm
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the hyperparameters for SINDy and E-SINDy are defined for a log-spaced grid of size 100, φ =

{10−3, . . . , 103}, for IRL1 a log-spaced grid of size 75, λ = {10−10, . . . , 106} and q = {2, 2.5, . . . 5}, and

for TRIM k = {1, 2, . . . , 8} and ν = 10.

For all simulations, we recommend conditioning the library matrix to lower the condition number of

the matrix, see Appendix B.4.2. To characterize the data and library matrix, we include the definition

of noisy data:

z̃ := z∗ + ε; ε ∼ N (0, σ21M )

where the noise of variance E(ε) = σ2. To assemble the library matrix, we use the notation for an n

combinatorial polynomial, for example:

P(z̃1, z̃2, n = 2) =
[︁
z̃1 z̃2 z̃21 z̃22 z̃1 ◦ z̃2

]︁
(3.65)

to represent the generation of the library matrix through combinatorial candidates. For evaluation

metrics, a root-mean-square error (RMSE) is utilized:

RMSE :=

⌜⃓⃓⎷ 1

MP

N∑︂
j=1

P∑︂
i=1

(ΘΞ̂−ΘΞ∗)2ji (3.66)

where Ξ =
[︁
ξ1 · · · ξP

]︁
is the column concatenation of all state measurements.

Bouc Wen hysteretic oscillator The Bouc-Wen hysteresis oscillator is a widely studied model in the

field of nonlinear dynamics and materials. The behavior of the Bouc-Wen hysteresis nonlinearity is

characterized by its ability to model complex, nonlinear phenomena such as rate-dependent effects,

memory, and asymmetric responses. These phenomena manifest as hysteresis loops, which are a result

of the system’s input-output being dependent on both the current state and the history of the input.

This system consists of a set of nonlinear differential equations:{︄
mẍ+ cẋ+ kx+ z = uin

ż = αẋ− β|ẋ||z|ν−1z − δẋ|z|ν
(3.67)

where m = 2, c = 10, k = 5 · 104 denote the linear mass, damping, and stiffness coefficients of a

linear oscillator respectively, u(t) the input, and α = 5 · 104, β = 8 · 102, ν = 1, and δ = 1.1 · 103,

which are the given parameters of the Bouc Wen nonlinearity to be identified from the benchmark

[NS16]. Additionally, the benchmark uses noiseless data and the initial conditions of the benchmark
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set ẋ(0) = 0, x(0) = 0, and z(0) = 0. It is to be noted that the form given by Eq. (3.67) has redundant

coefficients [Ma+04], i.e. the same behavior can be generated for multiple sets of coefficients.

In this example, we aim to demonstrate that TRIM is well situated to recovering the exact support

of hysteretic nonlinearities, especially of the Bouc Wen oscillator. This is validated using the two test

datasets are presented in [NS16] of purely input and output data7 and identified models’ RMSE is to

be given as a figure of merit. We present two Bouc Wen input-output phase plot and the benchmark

output data in Fig. 3.20.
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Figure 3.20: The Bouc Wen oscillator is simulated with a single sinusoidal input with amplitude
120 Newton in (a) and 1 Newton in (b). The two datasets used for RMSE validation are provided
by [NS16], where the outputs are shown: (c) is a multi-sine excitation and (d) a sine sweep. Their
respective inputs are included by the benchmark but not shown.

This nonlinear system is challenging for identification since the internal variable z is not a measur-

able quantity, and the absolute values to the power of ν do not allow Taylor or binomial expansions.

Expanding on [LN19], we show that hysteresis can easily be handled by TRIM with some algebraic

manipulation. Consider Eq. (3.67) in which a mass-normalized linear oscillator is estimated a priori

to yield a discrepancy model: {︄
flin + z = uin

ż = αẋ− β|ẋ||z|ν−1z − δẋ|z|ν
(3.68)

where flin is a linear approximation. To capture the latent history variable between input-outputs, we

introduce the calculable state:

y := uin − flin = z (3.69)

7It should be reminded that the test datasets are not to be utilized during the process of training.
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This yields the form to be identified:

ẏ = αẋ− β|ẋ||y|ν−1y − δẋ|y|ν (3.70)

It can be seen that the memory and latent variables are captured by the difference between the input

and the linear oscillator. Note, to identify system of Eq. (3.70) via TRIM, the library matrix must

have within the library of candidate functions {y, ẋ, |ẋ| ◦ |y|ν−1, ẋ ◦ |y|ν}.

To address this Bouc Wen benchmark, we propose a three-step method by separating the estimation

of linear and nonlinear components. First, f̂lin is estimated from the free decay of training data.

Second, TRIM is used to identify the remaining Bouc Wen nonlinearity and initial conditions. Lastly,

the linear oscillator’s coefficients are estimated. The training data used is simulated via MATLAB’s

ode45 with a single sinusoidal input with an amplitude of 50 Newtons, ending with a free decay, for

a total length of 12 seconds, ∆t = 0.01. We outline the steps taken as follows:

1. Approximate f̂lin = ˆ̈x + 2ζ̂ω̂n ˆ̇x + ω̂2
nx, where the numerical derivatives are estimated using

Tikhonov regularization defined in Appendix B.4.2, the damping ratio ζ̂ is estimated from the

averaged log decrement of the free decay, and the damped natural frequency ω̂d from the maxi-

mum frequency peak using an appropriate super-resolution method [Kis+23c].

2. Use initial value problem formulation of TRIM (Eq. (3.64)) on ẏ with the library

Θ =
[︁
P(x, |x|, ẋ, |ẋ|,y, |y|, n) u

]︁
, to identify the initial values and the coefficients and structure

of the Bouc Wen model of ˆ̇y. For exact recovery, this yields {ˆ̇y(0), α̂, β̂, δ̂, ν̂}.

3. Estimate the linear oscillator’s coefficients using a nonlinear regression, e.g. a quasi-Newton

method, on mˆ̈x+cˆ̇x+kx̂ = uin−
∫︁

ˆ̇y, where the numerical integration of the estimated nonlinear

model uses the discovered initial values ˆ̇y(0). This yields {m̂, ĉ, k̂}.

The role of the first step is to estimate the linear energy which is required for latent (memory)

variables in a hysteretic nonlinearity. For the second step, the library for sparse regression is as-

sembled with candidate functions that one would expect when there is hysteretic behavior: Θ =[︁
P(x, |x|, ẋ, |ẋ|,y, |y|, n) u

]︁
. This is made with n = 2 such that the library column space is P = 28.

The last step uses a nonlinear regression to refit the true coefficients of the problem. Note, that steps

1-3 can form an iterative method that refines linear and nonlinear coefficient estimates.
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We apply these steps to all three estimators and show their results of step 2 in Table 3.6. When it

comes to identifying the hysteretic nonlinearity in step 2, SINDy, E-SINDy, and IRL1 are unable to

recover the exact model with sparsity K∗ = 6 despite the training data being noiseless and providing

a densely defined grid of hyperparameters. As a result, we omit the presentation of their results for

the benchmark. We remark the that identified initial values corresponds to the error accumulated

by the approximation of f̂lin. The initial conditions identified in step 3 do not align with the actual

initial conditions; instead, they ensure the accuracy of the linear oscillator’s coefficients. Finally, the

estimated linear coefficients of TRIM’s model are m̂ = 2.037, ĉ = 12.700, and k̂ = 5.108 · 104.

Estimator Recovered model Recovered I.C.

TRIM ẏ = (4.93 · 104)ẋ− (8.16 · 102)|ẋ||y|ν−1y − (1.16 · 103)ẋ|y|ν ẏ(0) = −19.061

SINDy

ẏ =(5.14 · 104)ẋ− (1.04 · 103)|ẋ||y|ν−1y − (1.17 · 103)ẋ|y|ν − (1.32 · 106)x

− (2.57 · 101)y − (4.69 · 107)x|x|+ (5.49 · 106)x|ẋ| − (1.85 · 103)x|y|
− (2.78 · 106)|x|ẋ+ (1.91 · 103)|x|y − (3.32 · 105)ẋ|ẋ|+ (1.57 · 10−2)y|y|
+ (2.60 · 101)uin

ẏ(0) = −19.061

E-SINDy
ẏ =(4.89 · 104)ẋ− (8.47 · 102)|ẋ||y|ν−1y − (1.14 · 103)ẋ|y|ν − (7.21 · 105)

x− (1.39 · 101)y − (1.23 · 103)x|y|+ (8.68 · 102)|x|y + (1.41 · 101)uin
ẏ(0) = −19.064

IRL1

ẏ =(4.92 · 104)ẋ− (7.88 · 102)|ẋ||y|ν−1y − (1.14 · 103)ẋ|y|ν + (8.92 · 103)x

− (7.20 · 106)x|x| − (2.08 · 106)x|ẋ| − (1.60 · 103)x|y|+ (1.39 · 103)|x|y
− (1.73 · 104)ẋ|ẋ|

ẏ(0) = −19.064

Table 3.6: The identification results of TRIM, SINDy, E-SINDy, and IRL1 for the Bouc Wen hysteretic
nonlinearity outlined in Step 2. The correct functions are colored in green and misidentified functions
are colored in black. While all estimators obtain a sparse solution that includes the true support Ŝj ⊇
S∗
j , only TRIM obtains the exact model with other estimators only obtaining a sparse approximation

of the true Bouc Wen nonlinearity.

In Fig. 3.21 we show the TRIM identified model’s hysteretic force’s phase plot on the training

data and the simulation of the two benchmark test datasets. Since TRIM recovers the exact support,

the residual errors are simply due to coefficient and quadrature errors. Additionally, we show other

benchmark results with respect to their RMSE and number of parameters in Table 3.7; a majority of

the other methods in the literature are black-box methods. TRIM can be shown to yield competitive

results since it recovers the exact model, and its accuracy is only limited by its method of numerical

integration. This is shown by the result notated “Oracle”, where the true results are integrated using

the provided MATLAB .p file from the benchmark [NS16] with the provided test external forcing data.
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TRIM has the advantage of accurately identifying the precise governing equation and coefficients while

being applicable to systems with general nonlinearities. However, its effectiveness is dependent on the

availability of data capturing the free-decay behavior of the system.
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Figure 3.21: In (a), the Bouc Wen training data is is simulated with a single sinusoidal input with
amplitude 50 Newton, where the true and TRIM estimated model’s hysteretic force z overlayed. The
two datasets used for RMSE validation provided by [NS16] are shown: (c) is a multi-sine excitation
and (d) a sine sweep. The residuals between TRIM estimated model’s and the test data output are
shown in yellow.

Estimator
RMSE Multi-sine
(·10−5)

RMSE Sine Sweep
(·10−5)

Parameters

(sparsity K̂)
Exact recovery

TRIM 6.569 4.949 6 ✓

Volterra feedback [SS16] 8.409 5.601 14 ✕

Decoupled NARX [Wes+18] 5.360 1.670 206 ✕

EHH NN [Xu+20] 4.949 2.402 436 ✕

LSTM [SMN19] 5.980 2.800 21730 ✕

MIMO PNLSS [Fak+18] 1.871 1.202 217 ✕

Decoupled PNLSS [Fak+18] 1.338 1.117 51 ✕

Oracle 5.098 4.182 6 -

Table 3.7: Results from TRIM and the literature for the Bouc Wen benchmark of [NS16]. The“Oracle”
entry refers to the RMSE found when using the true Bouc Wen parameters and the provided input
data for simulation using the MATLAB p-file provided by the benchmark. Some acronyms are given:
NARX refers to NARMAX without the moving average models; EHH NN stands for efficient hinging
hyperplanes neural network, which is a wide but single hidden layer neural network; LSTM stands for
a specific deep recurrent neural network (RNN) which uses long short-term memory layers; MIMO
stands for multiple-in-multiple-out; PNLSS stands for polynomial nonlinear state space model.
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Discussion The Sparse Identification of Nonlinear Dynamical Systems (SINDy) integrates expert

knowledge with data-driven sparse regression to identify nonlinear dynamical systems. While ini-

tially proposed estimators for SINDy, like STLS or the newer IRL1, propose efficient computational

means for sparse model identification, their performance can suffer with finite, noisy data or high

multicollinearity in the library matrix. E-SINDy, an extension to SINDy, was designed for robustness

against finite and noisy data via bootstrapping and ensembling, has been demonstrated to have limi-

tations. Its effectiveness hinges on the premise that variance reduction through ensembling outweighs

bias introduced by bootstrapped models resampled from data – a balance not consistently achieved

when the model is misidentified. On the other hand, TRIM, employing the non-convex penalty of the

Trimmed Lasso and a Pareto-based L-curve model selection criteria, achieves exact model recovery

across a broad spectrum of dynamical systems. Its penalty mechanism aligns more naturally with the

ℓ0 pseudo-norm than the ℓ1 norm. Moreover, the “convexification” of the Trimmed Lasso accentuates

TRIM’s computational efficacy. Despite TRIM’s successful identifications for the Bouc Wen hysteretic

benchmark, the exploration of additional model selection criteria with respect to Trimmed Lasso is

warranted. This rationale stems from TRIM’s tendency to obtain monotonically decreasing residuals

versus sparsity, and high likelihood of the true model residing near the L-corner. This suggests future

studies into suitable criteria for adversarial scenarios lacking an L-shaped curve.

3.5 Summary

For vibration analysis of ultrasonic fatigue signals, motivated by approach of [Kum+09], the tra-

ditional approach of estimating sinusoidal parameters is by using the DFT, or its fast algorithmic

counterpart the FFT. However, the signals exhibited in ultrasonic fatigue, especially for long fatigue

tests have slowly varying sinusoidal components. Line spectral algorithms are explored in terms of

smaller time window lengths, because of the enhanced local stationarity in the fatigue vibration sig-

nals, and against their real-time computational complexity. Specifically, estimators face a frequency

and time uncertainty dictated by the Rayleigh limit, and estimators assume a stationary signal model

face basis-mismatch problem when used on quasi-stationary signal. ESPRIT was found to be the best

performing for synthetic and experimental quasi-stationary signals in ultrasonic fatigue. However,

(Unitary-)ESPRIT is an algorithm that is computationally prohibited with an asymptotic complexity

at O(N3) due to using the SVD/EVD.
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Therefore in the second section, efforts were made towards the reduction of the time-complexity

of ESPRIT by avoiding the computation of the SVD/EVD. This is done by realizing that the data’s

Hankel matrix has a Vandermonde matrix decomposition, and that right most Vandermonde matrix

of the decomposition can be “removed” by multiplication, i.e. results in an identity matrix plus an

error. In the on-grid case, when multiplied with a complex conjugate DFT matrix, it can be shown

that the error has an analytical form by the Dirichlet kernel. In the off-grid case, further steps must

be taken, and thus a refinment of the DFT matrix with interpolation is utilized. Due to the fast

ability to multiply with the DFT matrix, the complexity of estimating the signal subspace drops to

O(N logN). Numerical results demonstrate that it’s performance is nearly identical to ESPRIT, and

numerical proofs are provided on eigenspace perturbation and super-resolution abilities.

Finally, the last section deals with nonlinear dynamical system identification. The sparse iden-

tification of nonlinear dynamics (SINDy) using the sequentially thresholded least squares (STLS)

algorithm has gained traction for identifying nonlinear dynamical systems. While various SINDy ex-

tensions cater to finite, noisy experimental data, many only achieve sparse approximations, struggling

with multicollinearity issues like the irrepresentable condition for the Lasso. However, the Trimmed

Lasso for robust model identification (TRIM) has demonstrated superior performance, achieving exact

system recovery even under significant noise, data limitations, and multicollinearity. Notably, TRIM’s

computational efficiency is on par with STLS due to its sparsity parameter’s compatibility with con-

vex solvers. The future goal here is to encourage a data-driven framework that can be applied to an

oscillator model of the fatigue specimen, when input and output measurement data are avalible for

identification.
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Chapter 4

Ultrasonic fatigue experimental results
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In this chapter, a multifaceted approach is taken to exploit the vibration data from a two laser vibrometer

setup. The source of the nonlinear harmonic generation is to be simulated with the multiscale ultrasonic fatigue

specimen model proposed in Chapter 2. The multi-harmonic vibration forms the fatigue specimen’s base motion,

and the resulting harmonics at the specimen’s tip are then extracted. Thus the fatigue specimen model is treated

as an inverse problem: i.e. correlating the nonlinear harmonic generation by identifying model parameters. The

results of this identification process is applied to copper and steel ultrasonic fatigue test data, and the results are

analyzed.



4.1. INTRODUCTION

4.1 Introduction

In this chapter, the approach of the multiscale model from Chapter 2 is utilized with experimental

vibration data. To derive the model parameters that describe standing wave dynamics and harmonic

generation at the tip vibration, a regression problem is formulated to minimize the discrepancy between

model predictions and experimental results. These model parameters correspond to the nonlinear

mesoscopic response due to microcracks and microplastic inclusions and the contribution of the multi-

harmonics at the base vibration.

For the first section, the bulk of the experimental procedure is detailed, including the ultrasonic

fatigue test machine configuration, the fatigue specimen material and fatigue loading, and the selection

of model parameters. Polycrystalline copper and C70 steel are tested in the VHCF regime, whose

vibration signals are recorded. To supplement this vibration data, thermographic signals as well as

basic fractographs are used to categorize the onset of microcrack and its failure mode. For the second

section, the multiscale model has its micromechanical parameters identified to predict the harmonic

generation seen in experimental vibration data of ultrasonic fatigue tests. The identification procedure

relies on a regression of the fundamental, second, and third harmonics between the experiment and

model by varying the micromechanical parameters. The results of the multiscale model with respect

to the micromechanical parameters are discussed and juxtaposed.

4.2 Ultrasonic fatigue experiments

Material and geometry of ultrasonic fatigue specimen As mentioned previously in Chapter 1, the

fatigue specimens used are a pure polycrystalline copper with a cylindrical fatigue specimen and a

high-strength C70 steel with a rectangular cross section. These are designed in accordance to the

method described in Section 1.3.1: The geometrical design ensures a Gaussian-like stress distribution

along the longitudinal axis, with the peak stress concentrated at the centroid. Then the shaft length

is modified with respect to the centroid length in order to coincide the ultrasonic fatigue specimen’s

eigenfrequency with the anti-resonance frequency of the ultrasonic fatigue machine (fa ≈ 20231 Hz

as found in Fig. 2.35). The rectangular centroid shape of the C70 specimens are non-conventional, as

they were produced for X-ray diffraction campaigns, see [Jac22].

According to the VHCF material categorization of Mughrabi (Section 1.2.3), polycrystalline copper
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and C70 steel are Type I and Type II materials respectively. The composition of the C70 steel is

detailed in Table 4.1, and SEM of both copper and C70 steel materials have been taken in Fig. 4.1,

where the microstructure particularities and grain size are shown. Note that, the particular heat

treatments on all fatigue specimens are unknown. The manufactured fatigue specimens along with

their macroscopic properties are adopted from [Mar+20] for pure polycrystalline copper and [Jac22]

for C70 steel, and shown in Figs. 4.2 and 4.3 and Tables 4.2 and 4.3 respectively.

(a) (b)

Figure 4.1: In (a), an optical microscope image of the copper’s grain size, with the average ≈ 30µm,
taken from [Mar+20]. In (b), a SEM image of the C70 steel featuring pearlite microstructure, with
lamellar mixture of ferrite and cementite, taken from [Yah13].

C Si Mn S P Ni Cr Mo Cu Al Sn Fe

0.68 0.192 0.846 0.01 0.01 0.114 0.16 0.027 0.205 0.042 0.016 balance

Table 4.1: C70 composition by percent weight.

7.36 14.31

Figure 4.2: Copper fatigue specimen geom-
etry, in mm.

17.5 15

4.75

Figure 4.3: C70 fatigue specimen geometry,
in mm.

Ultrasonic fatigue machine, instrumentation setup Here the experimental setup and measurements

are briefly mentioned. The particular mechanical load train utilized is the one mentioned in Section 2.2:
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Parameter Value

Young’s modulus E 130 GPa
Density ρ 8920 kg·m−3

Poisson’s ratio ν 0.34
Specimen volume V 1.819 · 10−6 m3

Table 4.2: Copper specimen macroscopic
material and geometry parameters.

Parameter Value

Young’s modulus E 211 GPa
Density ρ 7839 kg·m−3

Poisson’s ratio ν 0.29
Specimen volume V 6.492 · 10−6 m3

Table 4.3: C70 specimen material macro-
scopic and geometry parameters.

a titanium booster (Branson 800-series, 1:1 amplification) followed by a titanium horn (1:2.65 amplifi-

cation). The ultrasonic transducer (Branson CR-20), which drives the mechanical load train, is driven

by a signal and power generator (Branson DC480b). The particular ultrasonic fatigue test machine

setup is horizontal, which is a configuration normally used for X-ray diffraction, see [Jac22, Fig. 2.27].

Three measurements are utilized in-situ, one laser vibrometer (Polytec HSV 700) focused to the

horn, i.e. base of the fatigue specimen, and the other (Polytec Vibroflex Xtra) at the tip of the fatigue

specimen using a ≈ 45◦ angled mirror. These measurement signals were recorded using a high-speed

data acquisition (HBM genesis) at a sampling frequency of Fs = 106 Hz. To capture the moment

of microcrack initiation, the infrared camera (FLIR X6900sc) is focused according to the surface of

the fatigue specimen with a blackbody reference (HGH DCN 1000). Copper and C70 specimens

were polished with SiC paper up to 1000 grit. To increase temperature fidelity, the surface of the

ultrasonic fatigue specimens’ centroid sections were coated in a matte black emissive paint (Nextel

811-21). Finally, continuous air cooling was provided to the ultrasonic transducer, as well as to the

ultrasonic fatigue specimens (VORTEC). A balance is struck between refreshing the fatigue specimen

and maintaining temperature accuracy, ensuring a comparable stress loading and lifespan as reported

in literature.

Presented ultrasonic fatigue tests A planned campaign of ultrasonic fatigue tests are performed to

test specimens at the VHCF regimes. This is done by referring to to the S-N plots for polycrystalline

copper provided by Fig. 4.5 and C70 steel (cylindrical specimen geometry) provided by Jacquemain

[Jac22, Fig. 2.3]. The specimen used by Jacquemain [Jac22] are cylindrical as opposed to the rectan-

gular used in this study, which has a centroid cross-sectional area of approximately 7 mm2, compared

to the 15 mm2 in this study. Therefore, the discrepancy in fatigue life can be attributed to the size

effect [Fur08]. The tests presented in this dissertation were specifically chosen based on their fatigue
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(b)

Fatigue test machine
& specimen

Piezo. transducer
air cooling

Fatigue specimen
air cooling

Blackbody temp.
reference

Laser vibrometer
(base measurement)

Laser vibrometer
(tip measurement)

Infrared
camera

Figure 4.4: A photo of the two laster experimental setup used in the thesis.

failure mode, standardized instrumentation setup (keeping consistent angles for the laser vibrometer),

and the clarity of post-fracture imagery.
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Figure 4.5: In (a), a combined S-N curve for polycrystalline copper, with the green markers indicating
testing done in this dissertation. Compiled from the studies (in order) of [Fin+21; SS10b; Bla+15;
Phu+14; WFJ17]. In (b), a combined S-N curve from [Jac22, Fig. 2.3] for C70 steel, with the green
markers indicating tested done in this dissertation.

Modal analysis of the ultrasonic fatigue specimen A few relevant quantities are taken from a finite

element modal/dynamic analysis:

• The vibration modal properties which are typically available when designing the ultrasonic fa-
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Material / test number Longitudinal stress amplitude Cycles till failure

Copper / 3 97 MPa 1.545 · 108

Copper / 12 112 MPa 8.961 · 106

C70 steel / 14 386 MPa 1.798 · 107

Table 4.4: Selected ultrasonic fatigue test, whose vibration data are analyzed for Chapter 4. The test
number is an internal reference.

tigue specimen via finite element analysis. For the reduced order model, the static and first

mass-normalized longitudinal mode shapes and their respective eigenfrequency can be extracted.

• An estimated longitudinal stress-amplitude (at the centroid), which is required for plotting a

S-N curve with respect to numbers of cycles.

The modal properties of each ultrasonic fatigue specimen, copper (Table 4.2) and C70 steel (Ta-

ble 4.3), are determined via linear finite element modal analysis in ABAQUS. The geometry used in

the modal analysis differs from Figs. 4.2 and 4.3 where the fixation screw or hole is not included. These

relevant quantities are shared in Table 4.5 and Table 4.6. The longitudinal stress-amplitude (at the

centroid) is determined alongside with the determination of the nonlinear volume. Both the copper

and C70 specimens have their elongation determined from vibration data from the ultrasonic fatigue

test. This is done by taking the two velocity signals and using the relationship of Eq. (2.115) with

knowledge of the fundamental harmonic’s frequency to find their displacement, see Eq. (1.1). Thus

the maximum longitudinal stress-amplitude at the centroid is estimated using a fixed-free periodic

simulation in ABAQUS under the assumptions of a linear elastic material. This particular estimate is

almost identical to the method used by Jacquemain et al. [Jac+21], except that Eq. (2.115) corrects

for the case when the base vibration is slightly out of phase. This maximum stress-amplitude estimate

is used for plotting the S-N curve in Fig. 4.5 and is what is shown in Table 4.4.

Finite element model parameters Value

Rigid longitudinal eigenmode at tip ϕϕϕ0(Xtip)
[︁
0 7.537 0

]︁T
m/
√

kg

First longitudinal eigenmode at tip ϕϕϕ1(Xtip)
[︁
0 8.039 0

]︁T
m/
√

kg

Rigid longitudinal eigenmode at base ϕϕϕ0(Xbase)
[︁
0 7.537 0

]︁T
m/
√

kg

First longitudinal eigenmode at base ϕϕϕ1(Xbase)
[︁
0 −8.039 0

]︁T
m/
√

kg

Table 4.5: Mass-normalized modal coefficients determined from FEA for the copper fatigue specimen.

209



4.2. ULTRASONIC FATIGUE EXPERIMENTS

Finite element model parameters Value

Rigid longitudinal eigenmode at tip ϕϕϕ0(Xtip)
[︁
0 4.433 0

]︁T
m/
√

kg

First longitudinal eigenmode at tip ϕϕϕ1(Xtip)
[︁
0 4.771 0

]︁T
m/
√

kg

Rigid longitudinal eigenmode at base ϕϕϕ0(Xbase)
[︁
0 4.433 0

]︁T
m/
√

kg

First longitudinal eigenmode at base ϕϕϕ1(Xbase)
[︁
0 −4.771 0

]︁T
m/
√

kg

Table 4.6: Mass-normalized modal coefficients determined from FEA for the C70 fatigue specimen.

Post-processing of ultrasonic fatigue test measurements Here we detail the post-processing of vibra-

tion data and the temperature data: the vibration data is used directly by the models, whereas the

temperature data is used only as a reference. For vibration data, the extraction of harmonics in the

base and tip vibration measurements uses a sliding window approach. Specifically, both signals are

downsampled to Fs = 2.5 · 105 and each window has a sample size N = 212. These velocity signals are

laser vibrometer measurements and are taken to be a sum of three harmonics:

u̇
(i)
□ (t) = real

(︁
Ã

(i)
1 ejω1t + Ã

(i)
2 ejω2t + Ã

(i)
3 ejω3t

)︁
□ (4.1)

where Ã is the complex amplitude and ω := 2πf is the angular frequency. Extracting these first

three harmonics corresponds to denoising the signal (the remaining spectra is ignored). The algorithm

used to extract the frequencies is the algorithm FFT-ESPRIT (Chapter 3,Algorithm 4, algorithm

parameters of P ≤ 20, M = N/2). Using the found frequencies, the complex amplitudes {Ã1, Ã2, Ã3}

are estimated using least squares.

An example of this harmonic extraction process using the copper specimen (test number 3) is

demonstrated in Fig. 4.6. The first sliding window of the measured base u̇
(i=1)
base and tip u̇

(i=1)
tip vibrations

are depicted in Fig. 4.6 (a) and (b), respectively. The frequency spectra of the FFT is shown in the

background as reference. The harmonic frequencies extracted using FFT-ESPRIT correspond to the

straight vertical lines whose magnitudes are estimated using least-squares. This process is repeated for

all ith sliding windows across the entire vibration signal. The normalized amplitudes A(i>1)/A(i=1) of

the fundamental, second, and third harmonics are extracted and presented relative to the number of

cycles of the fatigue test in Fig. 4.6 (c) and (d). Notably, the base fundamental harmonic’s amplitude

shows a gradual increase compared to a gradual decrease of the tip’s fundamental harmonic amplitude.

The higher harmonics at the base, are not perfectly constant but are notably more stable than those

at the tip. The nonlinearities of the ultrasonic test machine and the material nonlinearities at the
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specimen’s center manifests as evolution of the second and third harmonics’s amplitudes of the tip

vibration. As highlighted in Section 2.3, the ultrasonic fatigue machine provides a multi-harmonic

excitation to the fatigue specimen.
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Figure 4.6: Processed velocity signals of the base and tip vibration for the copper specimen (test 3). In
(a) and (b), the frequency spectra of the first time window (N = 212 or ≈ 327 cycles) of the base and
tip vibration, respectively. In (c) and (d), the normalized fundamental, second, and third harmonics’
amplitude of the base and tip vibration, respectively.

Infrared thermography measurements are not used for the model, but to capture macrocrack

propagation, according to the method shown by Ranc et al. [RWP08]. A thermographic image is

shown in Fig. 4.7, where a reference blackbody temperature appears in the background. Fig. 4.7 (a)

corresponds to before the start of a ultrasonic fatigue test with ambient air cooling in an upward

direction. At loading, the corresponding thermography Fig. 4.7 (b) can be seen with a rectangular

box which is utilized to obtain a pixel area average of the temperature.
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(a) (b)
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Figure 4.7: In (a), a thermography of an air-cooled ultrasonic fatigue specimen before testing. In (b),
a thermography of the surface temperature distribution for a vibrating ultrasonic fatigue specimen.
The purple temperature in (b) indicates a value outside calibrated settings of the infrared camera.

4.3 Parameter identification of the multiscale ultrasonic fatigue specimen

model

This section presents a model of the tip vibration in the ultrasonic fatigue specimen, aimed at un-

derstanding the cumulative effect of a multi-harmonic input combined with nonlinear micromechanical

models within the specimen’s structure. This is done by the analysis on the generation and evolution

the second and third harmonics. These higher harmonics have the largest amplitudes, corresponding

to the first-order nonlinear effects. To accurately identify the model parameters that replicate the

nonlinear harmonic generation, the process involves two key steps: simulating the model for varying

micromechanical parameters and subsequently conducting a regression to align the model’s predictions

with the experimental data. The successful identification of the micromechanical parameters allows

for the interpretation of the degree of diffuse microplastic and/or microcrack volume fractions. This

is correlated with a post-fracture fractographs using optical and scanning electron microscopy (SEM),

to further validate the mode of fatigue failure.

4.3.1 Simulation methodology

The simulation of the multiscale model involves three steps, which is schematized in Fig. 4.8. First,

the ith base velocity window has its harmonics’ frequencies and amplitudes extracted, as shown in (a).

Using Eq. (4.3), the estimated acceleration amplitudes are used as the base motion quantity übase for
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the model’s global equation of motion (Chapter 2, Eqs. (2.111) and (2.114)):

ütip = 2ϕ1,tip(Gübase − F int,1) + übase; and q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + F nl,1⏞ ⏟⏟ ⏞

F int,1

= Gübase

This corresponds to Fig. 4.8 (b). For a set of micromechanical parameters {ξcr, ξpl, σYpl}, the simulation

of the model’s tip vibration is obtained and the fundamental, second, and third harmonics’ amplitudes

can be extracted, as shown in Fig. 4.8 (c).
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Figure 4.8: A schematic of the simulation procedure of the multiscale ultrasonic fatigue specimen.

The numerical solution to the equation of the modal coordinate q1 is obtained using the harmonic

balance method (HBM) [Gus07], which approximates a periodic solution q(t) = q(t+ T ) for the time

window with a truncated Fourier series:

q(t) ≈ a0 +
H∑︂
h=1

ah cos(hωt) + bh sin(hωt) (4.2)

where a, b represent Fourier coefficients and H ≥ 3 is the number of harmonics. The amplitudes

of each harmonic are simply Ah =
√︂
a2h + b2h. This computational method is detailed extensively in
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Appendix C.1 and is programmed using an in-house MATLAB code1.

There are a few parameters yet to be defined: the value of the damping ratio ζ1 for the first

longitudinal mode, the estimation of the base acceleration übase, and the set of free micromechanical

parameters which represent the microcracks and microplastic inclusions. Once these are defined, the

equation of motions can be solved for.

Estimation of the damping ratio An experimental estimate of the damping ratio ζ1 of an undamaged

specimen from the same material batch is chosen and loaded with increasing displacements. This is

shown in Fig. 4.9 (a), where for each pulse, the free vibration decay of the copper fatigue specimen’s

tip is measured. Using the logarithmic decrement method [GR15] the damping ratio ζ1 per loading

amplitude is estimated (Fig. 4.9 (b)). The decay envelope can be represented as an exponential decay

e−ζ1t. The frequency of successive oscillations is always the same ω1, and the ratio of successive peak

amplitudes is given by e2πζ1 . An amplitude-dependency of the damping ratio is seen in Fig. 4.9 (c) by

a second-order polynomial fit, but the changes due to loading are negligible.
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Figure 4.9: Estimation of the damping ratio ζ1 for a dummy copper fatigue specimen. In (a), three
pulses corresponding to an increase in amplitude, and in (b), the logarithmic decrement fit gives an
estimate. In (c), a second order-polynomial is shown to fit the damping ratio’s amplitude-dependency.

1The algorithmic parameters used for the HBM simulations are the following: the truncated number of harmonics is
four (including the zeroth harmonic); the number of time samples per period and number of periods used for alternating
frequency-time scheme used is 210 and one respectively; the step size used for arc-length continuation is approximately
5 rad.s−1 with adaptive step control; the jacobian is estimated using central finite difference; the regression problem
is solved using MATLAB’s fsolve which utilizes a variant of a quasi-Newton method. See Appendix C.1 for further
explanation.
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Estimation of the base acceleration The base acceleration ü
(i)
base(t) is estimated from the laser vi-

brometer velocity measurement u̇
(i)
base, per ith time window. The acceleration using a denoised velocity

signal is found through a spectral derivative:

ü
(i)
base(t) = real

(︃
1

2π

∫︂ ∞

−∞

(︂
jω
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(︂
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(︁
u̇
(i)
base
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(︂
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(︂
jω ·

(︁
Ã

(i)
1 ejω1t + Ã

(i)
2 ejω2t + Ã

(i)
3 ejω3t

)︁
base

)︂)︂ (4.3)

where F and F−1 are operators that represent the Fourier transform and inverse Fourier transform.

Choice of micromechanical parameters The choice of micromechanical parameters represent a sce-

nario of diffuse microcracks and microplastic Eshelby’s inclusions. Thus a three-phase material is

defined according the two stage Mori-Tanaka model of Chapter 2, with two separate inclusion phases

exhibiting nonlinear material behavior (crack closure and elasto-plastic behaviors) and a linear elastic

matrix. The random distribution of microcracks are aligned to the direction of loading (mode I), and

here it is imposed that the microcracks have aspect ratio αcr = 0.05 based off micrographs shown in

Fig. 2.4. The matrix and the microplastic inclusions have the same elastic stiffness and Poisson ratio

Cmat = Cpl and νmat = νpl for use in calculating its Eshelby’s tensor Epl. The microcrack inclusions

also shares the Poisson ratio of the matrix when calculating the opened and closed crack strain con-

centration tensors Tcr and T̃cr respectively. The microplastic inclusions are represented by a sphere

αpl = 1 with perfect plasticity law whose fictitious yield stress can be related to the macroscopic yield

stress σYpl/σ
Y. Finally, it can be seen that the three remaining parameters are the volume fraction of

the microcracks ξcr and microplastic inclusions ξpl, and the fictitious yield stress of the microplastic

inclusions σYpl. These are calibrated in order to fit the ultrasonic fatigue specimen’s vibration response

and higher harmonic generation.

The parameter space is represented by tuples {ξcr, ξpl, σYpl}(i) for each ith time window. To under-

stand their behavior and sensitivity, a simulation of the model is performed for the first time window

of test 3 for varying values of {ξcr, ξpl, σYpl}(1). The parameter space’s four-dimensional aspect arises

from the relationship between the three parameters against the harmonics’ amplitudes, as depicted in

Fig. 4.10. Here, the isosurface is plotted with the values on the x-,y-,and z-axis respectively and the

color corresponding to the harmonic’s amplitude. The goal is search for the value of these model pa-
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rameters which gives the red isosurface. The global solution corresponds to when all three isosurfaces

intersect in the parameter space.

In Fig. 4.10 (a), a red isosurface at A
(1)
1 ≈ 1 ms−1 is shown, which corresponds to all possible

values of the three parameters which can give this value. The blue isosurfaces are to visualize the

global behavior, and correspond to a 10% offset from the red isosurface. Likewise, the second and

third harmonics have isosurfaces drawn at A
(1)
2 ≈ 3 · 10−3 ms−1 and A

(1)
3 ≈ 7 · 10−4 ms−1 in Fig. 4.10

(b) and (c) respectively.
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Figure 4.10: A four-dimensional representation of the parameter space of the copper fatigue speci-
men model at the first time window of the vibration signal (test 3). The isosurface represents all

micromechanical parameters that provide a solution to the fundamental (a) (A
(1)
1 ≈ 1 ms−1), second

(b) (A
(1)
2 ≈ 3 · 10−3 ), and third harmonic amplitudes (c) (A

(1)
3 ≈ 7 · 10−4 ms−1).

The z-axis in Fig. 4.10 corresponds to the fictitious yield stress, σYpl, of the microplastic inclusions.

Both fundamental and second harmonic amplitudes ((a) and (b) respectively) show a low sensitivity

to the value of σYpl, which can be visualized as an invariance in the z direction. The third harmonic
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amplitude has a diverging behavior at σYpl ≈ 30 MPa, shown by the diverging surface of the third

harmonic in Fig. 4.10 (c). Above this value, the plastic response in the microplastic inclusions and

microcracks can reproduce the third harmonic amplitude. This sweet spot indicates a low sensitivity

to the value fictitious yield stress. Fixing this parameter away from this divergence point is essential to

avoid spurious oscillations in the minimization of Eq. (4.4). Furthermore, setting a fixed microplastic

yield stress aligns more with classical plasticity models, serving as a comparable material parameter.

When a fixed value of the microplastic yield stress is chosen, the red isosurfaces become a line in

the parameter space. The global solution then becomes the intersection of these three lines (a point)

which identifies the values of ξcr and ξpl.

4.3.2 Results and discussion

Calibration of the model parameters by regression

The model parameters that describe standing wave dynamics and harmonic generation at the tip

vibration can be found via a regression problem. Here, it is formulated to minimize the discrepancy

between model harmonic amplitudes and experimental harmonic amplitudes. To avoid the dominance

of the fundamental harmonic over others in a regression problem, the amplitude of each harmonic can

be weighted such that:

{ξ̂pl, ξ̂cr, σ̂Ypl}(i) = arg min
{ξcr,ξpl,σY

pl}(i)
C(ξcr, ξpl, σYpl);

with C({ξcr, ξpl, σYpl}(i)) =
3∑︂

h=1

(︄
Ah({ξcr, ξpl, σYpl}(i))− Âh

Âh

)︄2 (4.4)

where i corresponds to the ith time window, and h = 1, 2, 3 correspond to the fundamental, second,

and third harmonic amplitudes. Eq. (4.4) is a regression on the harmonic amplitudes (standing wave

assumption) performed per time window. This is justified since there are significant differences in

harmonic amplitudes in the tip vibration: in Fig. 4.6, Â
(1)
1 ≈ 1 ms−1, Â

(1)
2 ≈ 3 · 10−3 ms−1, and

Â
(1)
3 ≈ 7 · 10−4 ms−1.

Copper at the onset and at the very high cycle fatigue regime

First, the results by fitting the parameters for the copper specimen of test number 3 are presented,

which corresponds to the VHCF regime. First the fictitious yield stress is fixed to 10 MPa, giving

217



4.3. PARAMETER IDENTIFICATION OF THE MULTISCALE ULTRASONIC
FATIGUE SPECIMEN MODEL

a ratio of σYpl/σ
Y ≈ 0.1 if the macroscopic yield stress of polycrystalline copper is σY = 87 MPa

[Mar+20]. This provides a more interpretable parameter space in three dimensions: using the same

data at the first time window, this parameter space is shown in Fig. 4.11. It can be seen here that

the harmonic amplitudes’ characteristics are more explicit: for the fundamental harmonic amplitude,

an asymmetric decrease can be seen as the microcrack and microplastic volumes vary; the second

harmonic amplitude is insensitive to the microplastic volume fraction; the third harmonic amplitude

is influenced by both the microcrack and microplastic volumes.
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Figure 4.11: A three-dimensional parameter space of the copper fatigue specimen model (test 3) where
the fundamental (a), second (b), and third harmonic amplitudes (c) are shown. This is using the base
vibration signal at the first time window and fixing σY = 10 MPa.

Using the regression of Eq. (4.4) in a sliding window manner, the cost function is minimized

(results shown in Fig. 4.12) to obtain the micromechanical parameters. The model can identify the

corresponding micromechanical parameters up until the macrocrack formation, making it suitable

to characterize harmonic generation of a copper fatigue at the VHCF regime. This can be seen

in regression’s cost function who has an acceptable error which decreases (as the higher harmonics
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amplitudes vary according to Fig. 4.6) until the reaching ≈ 15 · 107 cycles where the error increase

rapidly. The large error in the cost function at the end of the fatigue test is due to the fact that a

macrocrack nonlinearity cannot be accurately represented by a diffuse microcracks in this model.
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Figure 4.12: The evolution of the cost function of Eq. (4.4) versus the number of cycles (test 3).
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Figure 4.13: The calibrated micromechanical parameters, the microcrack (a) and microplastic inclusion
(b) volume fractions, which replicate the higher harmonic generation between the copper fatigue
specimen and model (test 3).

The relationship between the calibrated micromechanical parameters and the number of cycles for

the copper fatigue specimen of test 3 is depicted in Fig. 4.13. In (a), the variation of the microcrack

volume fraction ξcr is shown: characteristically it shows a value above zero at the first time window.

Subsequently, there is a slight decline in ξcr, followed by a stable phase, until it reaches the marked

“microcrack increase threshold” at approximately 8.4 × 107 cycles. Beyond this point, there is a

linear rise until about 15 × 107 cycles, after which an exponential increase is observed, culminating

in large crack fracture. A red rectangle labeled “temperature increase threshold” marks the juncture
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where there’s a notable rise in the average surface temperature, as captured by the in-situ infrared

thermography. The value of this threshold is defined in Fig. 4.14 as a small increase in the change of

temperature can be seen near the latter half of the fatigue test. Note that the clarity and reliability

of using this temperature increase is limited since the fatigue specimens are continuously refreshed.

In Fig. 4.13 (b), the microplastic volume fraction ξpl is shown to have a linear then exponential-like

increase.
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Figure 4.14: In (a), the working frequency of the ultrasonic fatigue machine and average surface
temperature of the fatigue specimen (test 3). In (b), the change in temperature is plotted, where at
12 · 107 cycles a threshold of temperature increase before fatigue failure is marked.

Turning the attention to the copper fatigue test 12, this test corresponds to the onset of the VHCF

regime, refer to the SN curve Fig. 4.5 (a). The model parameters ξcr and ξpl are varied, whereas

σYpl = 40 MPa is fixed. What differs in this case is the experimental signal base and tip vibration.

By using by Eq. (4.4), the subsequent calibrated micromechanical parameters and number of cycles

for copper fatigue specimen of test 12 is shown in Fig. 4.15. Notable here is a similar trend is found

for the microcrack volume fraction ξcr: an initial value which transitions to a minima, followed by

an increase. In this case, the shape is reminiscent of the microcrack model’s decrease (results seen

in Chapter 2 Fig. 2.14 (b)) for the second harmonic evolution. In regards to the microplastic volume

fraction, a steady increase can be seen, where the inflection point of the“microcrack increase threshold”

is marked. For copper in the VHCF regime, the percent of life before on onset of microcrack volume

fraction growth occurs at about 50% of its fatigue life for the fatigue specimen model, as shown in

Fig. 4.13 (a); whereas in Fig. 4.15 (a) this occurs at about 77% and a much steeper increase in the

volume fraction following. Notably, the first time instant of microplastic volume fraction between test
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3 and test 12 are not the same, whereas their final values seem to converge.
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Figure 4.15: The calibrated micromechanical parameters, the microcrack (a) and microplastic inclusion
(b) volume fractions, which replicate the higher harmonic generation between the copper fatigue
specimen and model (test 12).

Discussion A notable characteristic of the evolution of micromechanical parameters of both models

can be seen in the behavior of the microcrack volume fraction ξcr. For example, in Fig. 4.13 (a),

ξcr has a much higher sensitivity compared to other in-situ measurements in the VHCF regime: the

second harmonic amplitude ratio’s evolution of Fig. 4.6 is a steady decrease until a sudden increase

due to microcrack initiation; the use of tracking the working frequency of the ultrasonic fatigue test

machine or the monitoring of the average surface temperature (Fig. 4.14 (a)). The“microcrack increase

threshold” has an associated microplastic volume fraction at 3.5%, which suggests that a threshold

amount of microplasticity is required before the microcrack volume fraction parameter increases. If

ξcr and ξpl are taken as physically consistent values, this would support the idea that microplasticity

is the precursor for microcrack initiation.

High-speed infrared thermography shown in Fig. 4.16 was able to capture the nucleation of a

macrocrack propagation for test 3, following the method of Ranc [RWP08]. This supports the fact

that the increase of the microcrack volume fraction is not due to only a surface macrocrack, but more

likely due to subsurface mechanisms. This is due to the fact that an increase of the microcrack volume

fraction preludes the observation of a significant change in the average surface temperature. Post-

failure fractography in Fig. 4.17 substantiates a macrocrack propagation inwards from the surface,

showing classical oxidation due to large heat dissipation from crack propagation.
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(a) (b) (c)

156.2°C110.1°C75.2°C 139.2°C28.8°C

Figure 4.16: High-speed infrared thermography with of surface macrocrack propagation recording at
480 Hz for 2 sequential frames, where (a) the crack propagation before total fracture is shown, and
(c) corresponds to the last time instance of the vibration signal (test 3).

(a) (b) (c)

Figure 4.17: Post-fracture microscopy of the copper fatigue specimen of test 3.

However, there are issues about the physicality ξcr. First, the volume fraction above zero at the

first time window implies the existence of microcracks at the onset. This value of ξcr is required as it

contributes the majority of the second harmonic generation of the model. The subsequent decrease in

the volume fraction ξcr implies a reduction of the microcracks, which is a non-recoverable phenomena.

However, as demonstrated in the microcrack model of Fig. 2.14, a multi-harmonic input can elicit a

decrease the second harmonic as the microcrack volume fraction increases. Second, the value of the

microcrack volume fraction is larger than expected in reality: this is especially true for Fig. 4.15 where

at ≈ 8.3 · 106 cycles indicates a 5% volume fraction. Finally, the microcrack parameter directly models

diffuse microcracks orientated in mode-I: as discussed in Chapter 2, the overlap in the micro- and

macrocrack models in harmonic generation do not allow a distinguished between the two phenomena

by harmonic generation by itself.

While it is tempting to interpret the microplasticity further, for example a analysis of the cumu-
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lative plastic strains, or dissipation, we remind the readers that the modeling efforts here have made

strong assumptions. Microcracks likely have plastic fronts during the opening of their aperture, and

this plastic front is neglected since the microcracks are modeled as purely elastic and non-propagating.

The yield stress, as well as the plasticity law (classic perfect plasticity), are chosen to elicit an opening

of the aperture of the hysteresis loop, and is done so by a single fixed parameter. It’s not known if the

zones of microplasticity (e.g. inelastic dislocations glide) exhibit a response similar to that macroscopic

continuum theories. This suggests an further study into crystal plasticity and dislocation dynamics,

and adopting a more pertinent plasticity law.

C70 steel at the very high cycle fatigue regime

Following the similar procedure as shown previously for the copper specimen model, the analysis for

the first time window in the C70 steel fatigue test utilizes regression, setting the microplastic fictitious

yield stress at 1% of C70’s macroscopic yield stress, i.e. σYpl = 49 MPa. A comparison between the

parameter spaces of copper (Fig. 4.11) and C70 steel (Fig. 4.18) models reveals notable distinctions.

For the C70 steel, the third harmonic amplitude is lower, a phenomenon attributable to the different

structural dynamics of the problem. Experimentally, this reduced amplitude in the third harmonic is

also observed in the tip vibration of C70 steel, contrasting with the results from both copper tests.

Furthermore, in the parameter space for the first harmonic of the C70 steel model in Fig. 4.18 (a), there

is a discernible trend: as ξpl → 1, there is an increase in the first harmonic amplitude, in contrast

to the decrease observed in the copper fatigue specimen model of Fig. 4.11 (a). Additionally, the

parameter space for the third harmonic in the C70 steel fatigue specimen model exhibits a notable

asymmetry about the zero-origin on the x-y axes.

By implementing a sliding window approach with the regression of Eq. (4.4) on the C70 fatigue

specimen model, the micromechanical parameters are obtained and evolution of the error is given in

Fig. 4.19. Here the error evolution remains more steady compared to Fig. 4.12, which can be attributed

to the relatively less harmonic generation measured by the laser vibrators for the C70 fatigue specimen

model. The error jumps at just before the point of fracture during the ultrasonic fatigue test. The

calibration of micromechanical parameters reveals nuanced differences when compared to the copper

fatigue specimen models. The evolution of these parameters, as represented in Fig. 4.20, demonstrates

a non-existent evolution of microcrack ξcr and microplastic ξpl volume fractions. The microcrack
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Figure 4.18: A three-dimensional parameter space of the C70 fatigue specimen model (test 14) where
the fundamental (a), second (b), and third harmonic amplitudes (c) are shown. This is using the base
vibration signal at the first time window and fixing σY = 45 MPa.

volume fraction ξcr in (a) initially exhibits a minimal value, and only begins increasing at around

1.5 · 107 cycles due to the initiation of suspected micro- to macrocrack. More notably, no trench-like

shape is observed leading to an increase of the volume fraction, as seen in for the copper specimen

models of Fig. 4.13 (a) and Fig. 4.15 (a). The red rectangle labeled “temperature increase threshold” in

Fig. 4.20 marks the moment a measurable rise in the average surface temperature change in Fig. 4.21.

Notably, the microcrack volume fraction parameter in the C70 fatigue specimen model does not precede

this moment as seen in the copper specimen models.

Fig. 4.20 (b) illustrates the behavior of the microplastic volume fraction ξpl in C70 fatigue specimen

mode, which shows an oscillatory behavior, suggesting a problem with the parameter space not able

to recreate the third harmonic generation seen in the experimental data. This slope and sudden

rate of increase in the C70 steel model is similar to the microcrack volume fraction ξcr, indicating a

non-observable microplastic accumulation under similar fatigue conditions: the modeling efforts here

clearly diverge from the trends observed in copper specimen models.
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Figure 4.19: The evolution of the cost function of Eq. (4.4) versus the number of cycles (test 14).
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Figure 4.20: The calibrated micromechanical parameters, the microcrack (a) and microplastic inclusion
(b) volume fractions, which replicate the higher harmonic generation between the C70 fatigue specimen
and model (test 14).
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Figure 4.21: The working frequency of the ultrasonic fatigue machine and average surface temperature
of the fatigue specimen (test 14).
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Discussion Contrary to the copper fatigue specimen models’ results, the C70 fatigue specimen model

does not exhibit an early threshold or increase with the micromechanical parameters. It is uncertain if

this observation underscores any unique fatigue characteristics of C70 steel when compared to copper.

This is mostly likely due to the small increase of higher harmonics in the experimental data. The results

after model parameter identification shows a plateau follow by a rapid increase of microcrack and

microplastic volume fractions, point to fundamental differences in fundamental assumptions between

the models and experimental data.

One notable difference is the fish-eye failure seen by the C70 steel fatigue specimen in the frac-

tographs of Fig. 4.23. An examination of the optical micrograph in (a) reveals the bright area, where

at its center a void-like profile can be seen. A closer examination using SEM in Fig. 4.22 (b) and (c)

reveals an initiation source from a Pearlite super grain, similarly found by Bathias et al. in [Bat+13].

However, these experimental observations do not necessarily give an explanation on why the presented

C70 steel specimen (test 14), as well as other C70 steel fatigue specimen in the same test campaign, has

little to no evolution of micromechanical model parameters. If these model parameters are to be inter-

preted, they suggest that the harmonic generation due to any possible microcrack and/or microplastic

phenomena are not strong enough relative to the effect of a multi-harmonic base vibration. Thus, any

early indication by the micromechanical parameters are suppressed. This can be understood from the

micromechanical simulations shown in Chapter 2, where the evolution of the higher harmonics were

insensitive due to the presence of a multi-harmonic input.

100.4°C

75.9°C

53.4°C

91.5°C

28.8°C

Figure 4.22: High-speed infrared thermography showing a heat source located near the corner and
planar face about the centroid of the C70 steel fatigue specimen (test 14).
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(a) (b) (c)

Figure 4.23: Post-fracture microscopy of the C70 steel fatigue specimen of test 14. The red zones in
(b) correspond to foreign particles and not of the fracture surface.

4.4 Summary

This chapter discusses the calibration of model parameters to describe standing wave dynamics and

harmonic generation at the tip vibration through regression. The regression problem is formulated to

minimize the discrepancies between model and experimental fundamental, second, and third harmonic

amplitudes. For the both fatigue specimen:

• The multiscale model was successfully able to describe the second and third harmonic generation

in experimental data for both fatigue specimen.

• The parameter space of the models show that the model is insensitive to the choice of the

microplastic yield stress parameter, as long as it is between the two points where hysteresis is

present in the microplastic inclusions.

• A large error in the cost function towards the end of the fatigue test indicates a limitation in

representing the strong nonlinearity due to macrocrack propagation for both copper and steel

specimen models.

• For the copper specimen, the evolution of the parameters reveals a linear growth to exponential

growth in the microcrack volume fraction in the VHCF regime, whereas before the HCF regime

the linear growth is not present. The life spent before these changes in correspond to 50% for

the VHCF regime (Nf = 1.5 · 108) and 77% for the HCF regime (Nf = 8.9 · 106). Both regimes

see a steady increase in microplastic inclusion volume fraction at the onset.
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• For the C70 steel specimen, there is little evolution in both the microcrack and microplastic

volume fraction parameters, until the onset of a macrocrack propagation. The posited reasons

of this discrepancy are due are the combination of different in material behavior with multi-

harmonic nature of the base vibration. pronounced in the case of the steel

• However, the initial non-zero values for both copper and steel, and the decreasing then increas-

ing behavior of the microcrack volume fraction for copper raise questions about its the model

parameter’s physical interpretation.
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CONCLUSIONS AND PERSPECTIVES

This dissertation aimed to develop a in-situ methodology for estimating and interpreting the

nonlinearities present during ultrasonic fatigue tests in the VHCF domain. It’s shown that the high-

frequency loading of the ultrasonic fatigue test machine manifests higher harmonics in the vibration

signal. The source of the this harmonic generation is studied from both experimental and modeling

perspectives. The goal is aimed at isolating the material nonlinearities due to the micromechanical

changes from other nonlinearities in the system. This is complicated by the fact that ultrasonic

fatigue test machines have a multi-harmonic input wave which solicits an ultrasonic fatigue specimen.

A summary of the major conclusions are provided below:

Nonlinear material models

• The analysis of the nonlinear acoustic parameter is shown to be flawed for ultrasonic fatigue

tests: the material nonlinearity has a small contribution to second harmonic generation. A

difference of magnitude is approximately ten for polycrystalline copper at the VHCF.

• The models of Eshelby-based homogenization of diffuse microcracks with closure and microplastic

inclusions are demonstrated to be a candidate for mesoscopic source of nonlinear harmonic

generation. When subject to a multi-harmonic input, the behavior of the nonlinear harmonic

generation becomes increasingly complex and insensitive compared to a single-harmonic input,

as the volume fraction of the heterogeneities increase.

• A mode-I macroscrack model with closure is shown to have a similar nonlinear harmonic gener-

ation with the microcrack model, except it is parameterized by the crack surface. The analytical

form of the model also demonstrates that under different load ratios, the nonlinear harmonic

generation becomes increasing complex due to a sinc modulation.

Signal processing for ultrasonic fatigue signals

• The estimation of sinusoidal parameters is influenced by the tradeoffs of finite window lengths and

accuracy when dealing with quasi-stationarity and the Rayleigh limit. A small time window is

more locally stationary compared to larger windows, lowers the computational time for sinusoidal

estimation algorithms, and provides more discrete parameter estimates.

230



CONCLUSIONS AND PERSPECTIVES

• The benchmark performed on quasi-stationary signals found in VHCF vibration revealed that

ESPRIT and NOMP algorithms have the best trade-off between signal length and accuracy.

However, ESPRIT is a cubic-complex algorithm. This motivates exploration into adapting ES-

PRIT into a more computationally efficient form for in-situ ultrasonic fatigue vibration signals.

• An ESPRIT-based algorithm is developed, namely FFT-ESPRIT, which approximates the signal

subspace from the FFT. The algorithm achieves similar accuracy with the original ESPRIT

algorithm. The computational complexity is reduced from cubic to quasi-linear complexity

through heavily implementation of the FFT and the Hankel matrix properties of the signal.

Ultrasonic fatigue specimen model

• The steady-state nature of the ultrasonic fatigue system’s dynamics allows for a reduce order

model of the ultrasonic fatigue specimen. This enables rapid computation using modal shape

functions. The localized nature of fatigue is accounted for by the modal contribution of nonlin-

earities at a centroid volume. A solution of the global equations of motion is computed by the

harmonic balance method. This avoids costly finite element-based dynamic solutions.

• The boundary conditions of the model demonstrate the base vibration substantiate the use of a

second laser vibrometer to account for the multi-harmonic input.

• For polycrystalline copper and C70 steel specimens experimental data, the simulated multiscale

model was successfully able to describe the second and third harmonic generation in experimental

data for both fatigue specimen with low error before macrocrack propagation.

• For polycrystalline copper, the evolution of the microcrack volume fraction transitions from

linear growth to exponential growth in the in the VHCF regime, whereas before the HCF regime

the linear growth is not present pronounced. The life spent before these changes in correspond

to 50% for the VHCF regime (Nf = 1.5 · 108) and 77% for the HCF regime (Nf = 8.9 · 106).

Both regimes see a steady increase in microplastic inclusion volume fraction at the onset.

• The physical interpretation of these parameters suggest that ultrasonic fatigue tests of copper

sees monotonically increasing microplasticity, and is precursor for damage.
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• For C70 steel, the evolution of the microcrack and microplastic inclusion volume fractions reflect

the negligible harmonic generation seen in the ultrasonic fatigue experiments. The parameters’

evolution are consistent when the macrocrack forms.

• The physical interpretation of these parameters suggest that the harmonic generation due to any

possible microcrack and/or microplastic phenomena are not strong enough relative to the effect

of a multi-harmonic base vibration.

Here, it’s remarked that some key aspects can be explored in order to improve the understand or

results shown in this dissertation:

• The multiple harmonics present in the input to the fatigue specimen is suspected to decrease the

sensitivity of higher harmonic generation of the material nonlinearities. Therefore, one effort to

improve the fidelity of the harmonic amplitudes can come from an improvement of the ultrasonic

fatigue test machine’s linearity. A successful predistortion technique applied the input voltage

signal, e.g. the work of [NSL18], can linearize the nonlinearity due to the ultrasonic transducer,

ideally providing less prominent higher harmonics.

• Further exploration into the discrepancy between the physical sources of harmonic generation,

and the nonlinear material models is warranted. This is suggested for both polycrystalline copper

(or ductile single phase metals) as well as C70 steel (or type II materials). The physical inter-

pretation of the micromechanical parameters suggest both promising and impossible phenomena

(the decrease of microcrack volume fraction in copper).

• The nonlinear material models can be improved to account for increasingly complex behavior

which better match the physics. For example, a crack with perfect contact (no friction) is not a

dissipative source. However in reality, the microcracks and microplasticity are intrinsically tied,

due to the plasticity of the crack front, and the energy used to propagate the crack.

• A significant focus was placed on introducing a data-driven approach to the analysis of vibration

measurement data. As part of this endeavor, contributions were made to enhance the algorithm

used in the SINDy framework. However, the practical application of TRIM on the ultrasonic

fatigue experiments could not be realized within the time constraints of this dissertation. This

remains an area for future exploration, which encourages interpretable machine learning.

232



Bibliography

[21] https://github.com/slkiser/lineSpectraVibration. Nov. 25, 2021.

[3R] 3R. Fully Reversed Fatigue Tests – MEG20. url: https://3r-labo.com/en/produit/
fully-reversed-fatigue-tests/ (visited on 09/13/2023).

[Aba+19] S. G. Abaimov et al. “Multi-Step Homogenization in the Mori-Tanaka-Benveniste The-
ory”. In: Composite Structures 223 (Sept. 2019), p. 110801. doi: 10.1016/j.compstruct.
2019.03.073.

[ABN21] T. Amir, R. Basri, and B. Nadler. “The Trimmed Lasso: Sparse Recovery Guarantees
and Practical Optimization by the Generalized Soft-Min Penalty”. In: SIAM Journal on
Mathematics of Data Science 3.3 (Jan. 2021), pp. 900–929. doi: 10.1137/20M1330634.

[AG] T. AG. Linear Ultrasound Converters. url: https://www.telsonic.com/en/products/
linear-ultrasound-converters-se-series/.

[AIB23] J. Antoni, J. Idier, and S. Bourguignon. “A Bayesian Interpretation of the L-curve”. In:
Inverse Problems. An International Journal on the Theory and Practice of Inverse Prob-
lems, Inverse Methods and Computerized Inversion of Data 39.6 (May 2023), p. 065016.
doi: 10.1088/1361-6420/accdfc.

[AM05] E. Aboutanios and B. Mulgrew. “Iterative Frequency Estimation by Interpolation on
Fourier Coefficients”. In: IEEE Transactions on Signal Processing 53.4 (Apr. 2005),
pp. 1237–1242. doi: 10.1109/tsp.2005.843719.

[AR13] M. S. Asif and J. Romberg. “Fast and Accurate Algorithms for Re-Weighted L1-Norm
Minimization”. In: IEEE Transactions on Signal Processing 61.23 (Dec. 2013), pp. 5905–
5916. doi: 10.1109/TSP.2013.2279362.

[ASM96] ASM Handbook Committee. Fatigue and Fracture. ASM International, Jan. 1, 1996. doi:
10.31399/asm.hb.v19.9781627081931.

[Ava+22] M. Avateffazeli et al. “Very High Cycle Fatigue at Elevated Temperatures: A Review
on High Temperature Ultrasonic Fatigue”. In: Journal of Space Safety Engineering 9.4
(Dec. 1, 2022), pp. 488–512. doi: 10.1016/j.jsse.2022.07.006.

[Ban+18] M. V. Bannikov et al. “Investigation of Damage Accumulation in a Prestrained
Aluminum-Magnesium Alloy under Gigacycle Fatigue”. In: AIP Conference Proceedings
2053.1 (Dec. 19, 2018), p. 030003. doi: 10.1063/1.5084364.

[Bar+08] A. R. Barron et al. “Approximation and Learning by Greedy Algorithms”. In: The Annals
of Statistics 36.1 (Feb. 2008), pp. 64–94. doi: 10.1214/009053607000000631.

233

https://3r-labo.com/en/produit/fully-reversed-fatigue-tests/
https://3r-labo.com/en/produit/fully-reversed-fatigue-tests/
https://doi.org/10.1016/j.compstruct.2019.03.073
https://doi.org/10.1016/j.compstruct.2019.03.073
https://doi.org/10.1137/20M1330634
https://www.telsonic.com/en/products/linear-ultrasound-converters-se-series/
https://www.telsonic.com/en/products/linear-ultrasound-converters-se-series/
https://doi.org/10.1088/1361-6420/accdfc
https://doi.org/10.1109/tsp.2005.843719
https://doi.org/10.1109/TSP.2013.2279362
https://doi.org/10.31399/asm.hb.v19.9781627081931
https://doi.org/10.1016/j.jsse.2022.07.006
https://doi.org/10.1063/1.5084364
https://doi.org/10.1214/009053607000000631


BIBLIOGRAPHY

[Bas85] M. Bastiaans. “On the Sliding-Window Representation in Digital Signal Processing”.
In: IEEE Transactions on Acoustics, Speech, and Signal Processing 33.4 (Aug. 1985),
pp. 868–873. doi: 10.1109/tassp.1985.1164653.

[Bat+13] C. Bathias et al. “Microplasticity , Microdamage, Microcracking in Ultrasonic Fatigue”.
In: 13th International Conference on Fracture 2013, ICF 2013 6 (Jan. 1, 2013), pp. 5048–
5057.

[Bat06] C. Bathias. “Piezoelectric Fatigue Testing Machines and Devices”. In: International Jour-
nal of Fatigue. Third International Conference on Very High Cycle Fatigue (VHCF-3)
28.11 (Nov. 1, 2006), pp. 1438–1445. doi: 10.1016/j.ijfatigue.2005.09.020.

[Bat99] C. Bathias. “There Is No Infinite Fatigue Life in Metallic Materials”. In: Fatigue & Frac-
ture of Engineering Materials & Structures 22.7 (1999), pp. 559–565. doi: 10.1046/j.
1460-2695.1999.00183.x.

[BBG01] M. Bornert, T. Bretheau, and P. Gilormini. Homogénéisation en mécanique des matéri-
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Fluides Elastiques et Sur Celles de La Force Expansive de La Vapeur de l’eau et de La
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[Wöh58] A. Wöhler. “Bericht Über Die Versuche, Welche Auf Der Königl. Niederschlesisch-
märkischen Eisenbahn Mit Apparaten Zum Messen Der Biegung Und Verdrehung von
Eisenbahnwagen-Achsen Während Der Fahrt Angestellt Wurden”. In: Zeitschrift für
Bauwesen 8.1858 (1858), pp. 641–652.

[Woi+20] L. Woiwode et al. “Comparison of Two Algorithms for Harmonic Balance and Path Con-
tinuation”. In: Mechanical Systems and Signal Processing 136 (Feb. 2020), p. 106503. doi:
10.1016/j.ymssp.2019.106503.

[Xu+20] J. Xu et al. “Efficient Hinging Hyperplanes Neural Network and Its Application in Non-
linear System Identification”. In: Automatica 116 (June 1, 2020), p. 108906. doi: 10.
1016/j.automatica.2020.108906.

[YA15] S. Ye and E. Aboutanios. “An Algorithm for the Parameter Estimation of Multiple Super-
imposed Exponentials in Noise”. In: 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). ICASSP 2015 - 2015 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). South Brisbane, Queensland,
Australia: IEEE, Apr. 2015, pp. 3457–3461. doi: 10.1109/ICASSP.2015.7178613.

[Yah13] H. Yahiaoui. “Effet de l’espacement interlamellaire sur le comportement sous chargements
monotone et cyclique de l’acier perlitique C70.” PhD thesis. Ecole nationale supérieure
d’arts et métiers - ENSAM ; ecole supérieure des sciences et technique de tunis, July 2,
2013.

[YCB81] W. T. Yost, J. H. Cantrell, and M. A. Breazeale. “Ultrasonic Nonlinearity Parameters and
Third-Order Elastic Constants of Copper between 300 and 3 °K”. In: Journal of Applied
Physics 52.1 (Jan. 1, 1981), pp. 126–128. doi: 10.1063/1.328443.

[Yun+19] J. Yun et al. “Trimming the 1 Regularizer: Statistical Analysis, Optimization, and Ap-
plications to Deep Learning”. In: International Conference on Machine Learning. Inter-
national Machine Learning Society (IMLS), June 9, 2019.

[YX15] Z. Yang and L. Xie. “On Gridless Sparse Methods for Line Spectral Estimation From
Complete and Incomplete Data”. In: IEEE Transactions on Signal Processing 63.12 (June
2015), pp. 3139–3153. doi: 10.1109/tsp.2015.2420541.

[Zha+18] Y. Zhang et al. “On the Microstructures and Fatigue Behaviors of 316L Stainless Steel
Metal Injection Molded with Gas- and Water-Atomized Powders”. In: Metals 8.11 (Nov. 1,
2018), p. 893. doi: 10.3390/met8110893.

[Zha+19] J.-G. Zhang et al. “Electromechanical Dynamics Model of Ultrasonic Transducer in Ultra-
sonic Machining Based on Equivalent Circuit Approach”. In: Sensors 19.6 (6 Jan. 2019),
p. 1405. doi: 10.3390/s19061405.

254

https://doi.org/10.1179/imtr.1980.25.1.65
https://doi.org/10.1109/JSTSP.2010.2042413
https://doi.org/10.1109/tsp.2009.2016892
https://doi.org/10.1016/j.ymssp.2019.106503
https://doi.org/10.1016/j.automatica.2020.108906
https://doi.org/10.1016/j.automatica.2020.108906
https://doi.org/10.1109/ICASSP.2015.7178613
https://doi.org/10.1063/1.328443
https://doi.org/10.1109/tsp.2015.2420541
https://doi.org/10.3390/met8110893
https://doi.org/10.3390/s19061405


BIBLIOGRAPHY

[Zha+23] K. Zhang et al. “Review of the Design of Power Ultrasonic Generator for Piezoelectric
Transducer”. In: Ultrasonics Sonochemistry 96 (June 1, 2023), p. 106438. doi: 10.1016/
j.ultsonch.2023.106438.

[Zha10] C.-H. Zhang. “Nearly Unbiased Variable Selection under Minimax Concave Penalty”. In:
The Annals of Statistics 38.2 (Apr. 1, 2010). doi: 10.1214/09-AOS729.

[Zou06] H. Zou. “The Adaptive Lasso and Its Oracle Properties”. In: Journal of the Amer-
ican Statistical Association 101.476 (Dec. 1, 2006), pp. 1418–1429. doi: 10 . 1198 /

016214506000000735.

[ZS10] Y. Zhang and X. Shen. “Model Selection Procedure for High-Dimensional Data”. In:
Statistical analysis and data mining 3.5 (Oct. 1, 2010), pp. 350–358. doi: 10.1002/sam.
10088. pmid: 21116443.

[ZY06] P. Zhao and B. Yu. “On Model Selection Consistency of Lasso”. In: Journal of Machine
Learning Research 7 (2006), pp. 2541–2563.

255

https://doi.org/10.1016/j.ultsonch.2023.106438
https://doi.org/10.1016/j.ultsonch.2023.106438
https://doi.org/10.1214/09-AOS729
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1002/sam.10088
https://doi.org/10.1002/sam.10088
21116443


BIBLIOGRAPHY

256



Appendix A

Supplement to Chapter 2

Contents

A.1 Eshelby tensors for ellipsoidal inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 253

A.2 Principle of virtual work derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

A.3 Expansion of principle of virtual work internal forces . . . . . . . . . . . . . . . . . . . 256

A.4 Tensor notation for isotropic elasticity and piezoelectricity . . . . . . . . . . . . . . . . 259

257



A.1. ESHELBY TENSORS FOR ELLIPSOIDAL INCLUSIONS

A.1 Eshelby tensors for ellipsoidal inclusions

In this appendix, the closed-form expressions of Eshelby’s tensor [Esh57] is given for aligned

spheroidal inclusions embedded in an isotropic matrix. A spheroid is simply an ellipsoid with the

principle axes a, b, c with two axes equal, e.g. a = b. In all other cases (non-aligned inclusions or an

anisotropic matrix), Eshelby’s tensor must be numerically evaluated using the method of Gavazzi et

al. [GL90]. The non-zero components of the Eshelby’s tensor E are given, which is a function of the

Poisson’s ratio νm of the matrix/bulk phase, and the aspect ratio α for spheroidal inclusions embedded

in an isotropic matrix aligned along the direction 1:

E1111 =
1

2(1− νm)

(︃
2(1− νm)(1− g) + g − α2 3g − 2

α2 − 1

)︃
E2222 = E3333 =

1

4(1− νm)

(︃
2(2− νm)g − 1

2
− (α2 − 1

4
)
3g − 2

α2 − 1

)︃
E1122 = E1133 =

1

4(1− νm)

(︃
4νm(1− g)− g + α2 3g − 2

α2 − 1

)︃
E2233 = E3322 =

1

4(1− νm)

(︃
(2νm − 1)g +

1

2
− 1

4

3g − 2

α2 − 1

)︃
E2211 = E3311 =

1

4(1− νm)

(︃
(2νm − 1)g + α2 3g − 2

α2 − 1

)︃
E1212 = E1313 =

1

4(1− νm)

(︃
(1− νm)(2− g)− g + α2 3g − 2

α2 − 1

)︃
E2323 =

E2222 − E1122

2

(A.1)

where:
g =

α

(α2 − 1)3/2

(︂
α(α2 − 1)1/2 − cos−1(α)

)︂
for 0 < α < 1

g =
α

(1− α2)3/2

(︂
cosh−1(α)− α(1− α2)1/2

)︂
for 1 < α <∞

(A.2)

For the particular case of spherical inclusions, previous equations become invalid and require a

study of these functions around α = 1. These are given as:

E1111 = E2222 = E3333 =
7− 5νm

15(1− νm)

E1122 = E1133 = E2233 =
5νm − 1

15(1− νm)

E1212 = E1313 = E2323 =
4− 5νm

15(1− νm)

(A.3)
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A.2. PRINCIPLE OF VIRTUAL WORK DERIVATION

A.2 Principle of virtual work derivation

Y

Z

X

V,m,ρ

u

b

τ

n

dS

Figure A.1: An arbitrary volume V in motion u with surface boundary S and outer unit vector n:
with traction τ and body b forces shown.

Consider an arbitrary body of an isotropic three-dimensional solid, the equations of motion for a

given volumetric region V can be described using Newton’s second law on Fig. A.1:∫︂
S
τ dS +

∫︂
V
b dV =

∫︂
V
ρü dV (A.4)

where τ are traction forces applied to V on S, b are body forces on V , ρ is the mass density, and ü

is the acceleration vector. For small displacements, the compatibility equation for the strain tensor

is εεε = 1
2

(︁
grad(u) + grad(u)T

)︁
. Recall the Gauss divergence theorem, for an arbitrary second-order

tensor A and outward normal vector n from the surface S:∫︂
S
An dS =

∫︂
V

div(A) dV (A.5)

Since the traction forces by definition τ = σn, where σ = σT is the stress tensor, and combining

Eqs. (A.4) and (A.5), one arrives at:∫︂
V

(div(σ) + b− ρü) dV = 0

This equation holds for arbitrary regions of volume, and yields the Cauchy’s equation (the strong form

of the equations of motion) [LCS02]:

div(σ) + b = ρü (A.6)

In many real-world problems, the solution to Eq. (A.6) to might have discontinuities or singularities

posing a problem to derivatives: the variational form is more accommodating by turning the differential

equation into an integral equation. The principle of virtual work (the weak form) is used instead, which

requires assumptions on virtual displacement and virtual strain δu, δεεε to be compatible:
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A.2. PRINCIPLE OF VIRTUAL WORK DERIVATION

• δu is an infinitesimal, regular, time independent field of displacement.

• δu satisfies the boundary conditions on S such that δu|S = 0.

• δu satisfies the compatibility equation for infinitesimal deformations such that

δεεε = 1
2

(︁
grad(δu) + grad(δu)T

)︁
.

The virtual work done by the traction forces τ applied to V on S by a virtual displacement is:∫︂
S
τ · δu dS −

∫︂
S
σn · δu dS =

∫︂
V
ρü · δu dV (A.7)

Given the identity involving divergence and gradients for arbitrary second-order tensors A and z:

div(ATz) = A : grad(z) + v · grad(A) (A.8)

The second term of Eq. (A.7)expanded as:∫︂
S
σn · δu dS =

∫︂
S
σTδu · n dS

=

∫︂
V

div
(︁
σTδu

)︁
dV =

∫︂
V

(σ : grad (δu) + δu · divσ) dV

=

∫︂
V
σ : grad (δu) dV −

∫︂
V
b · δu dV

=

∫︂
V
σ : δεεε dV −

∫︂
V
b · δu dV

where:

σ : grad (δu) =
1

2

(︂
σ : grad (δu) + σ : grad (δu)T

)︂
= σ :

1

2

(︂
grad (δu) + grad (δu)T

)︂
= σ : δεεε

Eq. (A.7) becomes the weak form, properly known as the principle of virtual work:

−
∫︂
V
σ : δεεε dV⏞ ⏟⏟ ⏞
δWint

+

∫︂
V
b · δu dV +

∫︂
S
τ · δu dS⏞ ⏟⏟ ⏞

δWext

=

∫︂
V
ρü · δu dV⏞ ⏟⏟ ⏞
δWacc

(A.9)

where δWint, δWext, and δWacc denote the virtual work due to internal forces, external forces, and in-

ertial forces respectively. Note that, Eq. (A.9) is valid for any deformable body because no constitutive

law is used, and thus is extendable to any non-elastic deformations.

260



A.3. EXPANSION OF PRINCIPLE OF VIRTUAL WORK INTERNAL FORCES

A.3 Expansion of principle of virtual work internal forces

Here, the derivation of equation Eq. (2.102) is shown. First the modal approximation of u(X, t)

of Eq. (2.96) is substituted into δWint of Eq. (2.102):

−δWint =

∫︂
V

(δεεε)Tσ dV

=

∫︂
V

(δεεε)T (Cεεε+ Vε̇εε) dV +

∫︂
Vnl

(δεεε)T (⟨σnl⟩ − Cεεε) dVnl

=

∫︂
V

(Dδu)TCDu dV +

∫︂
V

(Dδu)TVDu̇ dV +

∫︂
Vnl

(Dδu)T (C∗ − C) dDuVnl

=

[︃
δq0
δq1

]︃T ∫︂
V

(D
[︁
ϕϕϕ0 ϕϕϕ1

]︁
)TCD

[︁
ϕϕϕ0 ϕϕϕ1

]︁
dV

[︃
q0
q1

]︃
+

[︃
δq0
δq1

]︃T ∫︂
V

(D
[︁
ϕϕϕ0 ϕϕϕ1

]︁
)TVD

[︁
ϕϕϕ0 ϕϕϕ1

]︁
dV

[︃
q̇0
q̇1

]︃
+

[︃
δq0
δq1

]︃T ∫︂
Vnl

(D
[︁
ϕϕϕ0 ϕϕϕ1

]︁
)TC∗D

[︁
ϕϕϕ0 ϕϕϕ1

]︁
dVnl

[︃
q0
q1

]︃
−
[︃
δq0
δq1

]︃T ∫︂
Vnl

(D
[︁
ϕϕϕ0 ϕϕϕ1

]︁
)TCD

[︁
ϕϕϕ0 ϕϕϕ1

]︁
dVnl

[︃
q0
q1

]︃

(A.10)

First, the gradient operator is shown to be distributive over column space:

(D
[︁
ϕϕϕ0 ϕϕϕ1

]︁
)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

0
√
2
2

∂
∂z

√
2
2

∂
∂y

√
2
2

∂
∂z 0

√
2
2

∂
∂x

√
2
2

∂
∂y

√
2
2

∂
∂x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣ ϕ0,1
ϕ0,2
ϕ0,3

ϕ1,1
ϕ1,2
ϕ1,3

⎤⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ϕ0,1
∂x

∂ϕ1,1
∂x

∂ϕ0,2
∂x

∂ϕ1,2
∂x

∂ϕ0,3
∂x

∂ϕ1,3
∂x

√
2
2

(︂
∂ϕ0,2
∂z +

∂ϕ0,3
∂y

)︂ √
2
2

(︂
∂ϕ1,2
∂z +

∂ϕ1,3
∂y

)︂
√
2
2

(︂
∂ϕ0,1
∂z +

∂ϕ0,3
∂x

)︂ √
2
2

(︂
∂ϕ1,1
∂z +

∂ϕ1,3
∂x

)︂
√
2
2

(︂
∂ϕ0,1
∂y +

∂ϕ0,2
∂x

)︂ √
2
2

(︂
∂ϕ1,1
∂y +

∂ϕ1,2
∂x

)︂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

= (
[︁
Dϕϕϕ0 Dϕϕϕ1

]︁
)T

(A.11)
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A.3. EXPANSION OF PRINCIPLE OF VIRTUAL WORK INTERNAL FORCES

Since ϕϕϕ0 is a rigid longitudinal eigenmode, it’s spatial derivatives are zero, which means that the

expression is equivalent to:

(D
[︁
ϕϕϕ0 ϕϕϕ1

]︁
)T = (

[︁
0 Dϕϕϕ1

]︁
)T (A.12)

Thus, the overall expansion can be shown to be:

(D
[︁
ϕϕϕ0 ϕϕϕ1

]︁
)TC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∂ϕ1,1
∂x

0
∂ϕ1,2
∂x

0
∂ϕ1,3
∂x

0
√
2
2

(︂
∂ϕ1,2
∂z +

∂ϕ1,3
∂y

)︂
0

√
2
2

(︂
∂ϕ1,1
∂z +

∂ϕ1,3
∂x

)︂
0

√
2
2

(︂
∂ϕ1,1
∂y +

∂ϕ1,2
∂x

)︂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⎡⎣ | | | | | |
C11 C22 C33 C23 C13 C12

| | | | | |

⎤⎦

=

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣

0 Dϕϕϕ1C11

0 Dϕϕϕ1C22

0 Dϕϕϕ1C33

0 Dϕϕϕ1C23

0 Dϕϕϕ1C13

0 Dϕϕϕ1C12

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

T

(A.13)

(D
[︁
ϕϕϕ0 ϕϕϕ1

]︁
)TCD

[︁
ϕϕϕ0 ϕϕϕ1

]︁
=

=

[︃
0 0 0 0 0 0

Dϕϕϕ1C11 Dϕϕϕ1C22 Dϕϕϕ1C33 Dϕϕϕ1C23 Dϕϕϕ1C13 Dϕϕϕ1C12

]︃
⎡⎢⎢⎢⎢⎢⎢⎣

0 Dϕϕϕ1C11

0 Dϕϕϕ1C22

0 Dϕϕϕ1C33

0 Dϕϕϕ1C23

0 Dϕϕϕ1C13

0 Dϕϕϕ1C12

⎤⎥⎥⎥⎥⎥⎥⎦
=

[︃
Dϕϕϕ0C
Dϕϕϕ1C

]︃ [︁
Dϕϕϕ0 Dϕϕϕ1

]︁
=

[︃
Dϕϕϕ0CDϕϕϕ0 Dϕϕϕ0CDϕϕϕ1
Dϕϕϕ1CDϕϕϕ0 Dϕϕϕ1CDϕϕϕ1

]︃
=

[︃
0 0

0 Dϕϕϕ1CDϕϕϕ1

]︃

(A.14)

Therefore Eq. (A.10) can be shown to be:

−δWint =

[︃
δq0
δq1

]︃T(︃
K

[︃
q0
q1

]︃
+C

[︃
q̇0
q̇1

]︃
+Knl

[︃
q0
q1

]︃)︃
(A.15)
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A.3. EXPANSION OF PRINCIPLE OF VIRTUAL WORK INTERNAL FORCES

with:

K =

[︃
0 0
0 K1

]︃
; K1 :=

∫︂
V

(Dϕϕϕ1)TCDϕϕϕ1dV (A.16)

C =

[︃
0 0
0 C1

]︃
; C1 :=

∫︂
V

(Dϕϕϕ1)TVDϕϕϕ1dV (A.17)

Knl =

[︃
0 0
0 Knl,1

]︃
; Knl,1 :=

∫︂
Vnl

(Dϕϕϕ1)TC∗Dϕϕϕ1 dVnl −
∫︂
Vnl

(Dϕϕϕ1)TCDϕϕϕ1dVnl (A.18)
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A.4. TENSOR NOTATION FOR ISOTROPIC ELASTICITY AND
PIEZOELECTRICITY

A.4 Tensor notation for isotropic elasticity and piezoelectricity

1
2

3

4

5

6

Figure A.2: Notation of axes for 3D carte-
sian system.

ij or kl p or q

11 1
22 2
33 3

23 or 32 4
13 or 31 5
12 or 21 6

Table A.1: Conversion from tensor to Voigt
matrix notations.

Voigt notation is obtained by replacing indices ij or kl by p or q according to Table A.1. The left

one of the two subscripts always denotes the direction of the resulting field, where the right one says

in which direction the field operates. For example, cE13 indicates that at constant electrical field the

mechanical stress is direction in 1 and the mechanical strain is in direction 3. Numbers 4, 5, 6 denote

shear around the axes 1, 2 and 3, see Figure A.2. Here, Voigt notation is given for mechanical stress

tensor T , strain tensor S and stiffness tensor c:

Tp = Tij , Sp =

{︃
Sij , for p = 1, 2, 3
2Sij , for p = 4, 5, 6

(A.19)

cpq = c(ij)(kl), spq =

⎧⎪⎪⎨⎪⎪⎩
s(ij)(kl), for p = 1, 2, 3 and q = 1, 2, 3

2s(ij)(kl), for p = 4, 5, 6 and q = 1, 2, 3

2s(ij)(kl), for p = 1, 2, 3 and q = 4, 5, 6

4s(ij)(kl), for p = 4, 5, 6 and q = 4, 5, 6

(A.20)

If the z-axis (corresponding to direction 3 in Figure A.2) is taken as the symmetry axis, the

structure is defined by five independent elastic moduli (cE11 = cE22, c
E
33, c

E
12, c

E
13 = cE23, c

E
44 = cE55,

cE66 = 1
2

(︁
cE11 + cE12

)︁
). The linear constitutive equation is expanded in matrix notation:⎡⎢⎢⎢⎢⎢⎢⎣

T1
T2
T3
T4
T5
T6

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

cE11 cE12 cE13 · · ·
cE12 cE11 cE13 · · ·
cE13 cE13 cE33 · · ·
· · · cE44 · ·
· · · · cE44 ·
· · · · · cE66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

S1
S2
S3
S4
S5
S6

⎤⎥⎥⎥⎥⎥⎥⎦ (A.21)

Similarly, for an electromechanical coupling with piezoelectricity with the three piezoelectric moduli

(e15 = e24, e31 = e32, e33), and two permittivities (ηS11 = ηS22, η
S
33), the linear constitutive equation is
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A.4. TENSOR NOTATION FOR ISOTROPIC ELASTICITY AND
PIEZOELECTRICITY

given in matrix notation, for dielectric displacement tensor D and electric field E:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1
T2
T3
T4
T5
T6
D1

D2

D3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cE11 cE12 cE13 · · · · · −e13
cE12 cE11 cE13 · · · · · −e13
cE13 cE13 cE33 · · · · · −e33
· · · cE44 · · · −e15 ·
· · · · cE44 · −e15 · ·
· · · · · cE66 · · ·
· · · · e15 · ηS11 · ·
· · · e15 · · · ηS11 ·
e13 e13 e33 · · · · · ηS33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
S2
S3
S4
S5
S6
E1

E2

E3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.22)

This can be more compactly written as an augmented matrix system:

T = cES − eTE
D = eS + εSE

(A.23)

It’s inverse, where sD66 = 1
2

(︁
sD11 − SD

12

)︁
:

S = sDT + gTD
E = −gT + βTD (A.24)

The set of state equations in terms of intensive variables where cD66 = 1
2

(︁
cD11 − cD12

)︁
:

T = cDS − hTD
E = −hS + βSD (A.25)

The set of state equations in terms of extensive variables where sE66 = 1
2

(︁
sE11 + sE12

)︁
:

S = sET + dTE
D = dT + εTE

(A.26)

Depending on the coupling coefficient occurring in the piezoelectric (Eqs. (A.23) and (A.26)) are of

the e, h, h or d-form, according to IEEE standards [EE78].
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B.1. SYNTHETIC ULTRASONIC FATIGUE VIBRATION SIGNAL PARAMETERS

B.1 Synthetic ultrasonic fatigue vibration signal parameters

In this section, we detail the cubic fits of the time varying sinusoidal parameters seen in right of

Fig. 3.5, specifically a1(t), a2(t), a3(t) and f1(t). The original signal comes from a pure copper fatigue

specimen subject to an ultrasonic fatigue test. It is reminded that f2(t) and f3(t) are integer multiples

of f1(t), since they correspond to higher harmonics used for the first test in Section 3.2.2. The cubic

fits for the amplitudes in meters per second are:

a1(t) = −(7.564× 10−10)t3 + (1.038× 10−6)t2 − (4.818× 10−4)t+ 7.378× 10−1

a2(t) = (6.094× 10−12)t3 − (7.455× 10−9)t2 + (5.791× 10−6)t+ 2.751× 10−3

a3(t) = (2.346× 10−11)t3 − (2.904× 10−8)t2 + (1.09× 10−5)t+ 1.823× 10−2

The cubic fits for the frequencies in cycles per second are:

f1(t) = −(2.859× 10−7)t3 + (4.286× 10−4)t2 − (2.628× 10−1)t+ 2.013× 104
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B.2. MISMATCH FOR DAMPED SIGNAL MODEL

B.2 Mismatch for damped signal model

For a damped signal model represented as a data matrix:

X = ĀMBĀ
T
L

where ĀM ∈ CM×P and ĀT
L ∈ CP×L are Vandermonde matrices of the damped form:

ĀM :=

⎡⎢⎢⎢⎢⎢⎣
1 · · · 1

ed0+j2πω0 · · · edP−1+j2πωP−1

ed0+j4πω0 · · · edP−1+j4πωP−1

...
. . .

...

ed0+j2πω0(M−1) · · · edP−1+j2πωP−1(M−1)

⎤⎥⎥⎥⎥⎥⎦
where {di ≤ 0}P−1

i=0 are the damping factors. The full DFT kernel has a basis mismatch with the

frequencies as well as the damping factors, represented by the product ĀT
LW

∗
L ∈ CP×L:

[ĀT
LW

∗
L]m,l =

1

L

L−1∑︂
i=0

(︂
edm+j2π(i)(ωm− l

L
)
)︂

for m = 0, 1, . . . , P−1 and l = 0, 1, . . . , L−1. The product with a truncated DFT kernel ĀT
LW

∗
L×P ∈

CP×P :

[ĀT
LW

∗
L×P ]m,l =

1

L

L−1∑︂
i=0

(︂
edm+j2π(i)(ωm−δl)

)︂
where P frequency differences {δi ∈ [0, 1)}P−1

i=0 define W ∗
L×P and for m = 0, 1, . . . , P − 1 and l =

0, 1, . . . , P − 1..
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B.3. PROOF OF THEOREM 5

B.3 Proof of Theorem 5

Here we will follow almost identically to the derivation of [LLF20] for certain perturbation bounds

for FFT-ESPRIT of Algorithm 2, which has the form:

X̂W ∗
L×P = APBA

T
LW

∗
L×P + EW ∗

L×P

= XW ∗
L×P + EW ∗

L×P

First Eq. (3.31) is rewritten from Theorem 1 with respect to the estimated matrix, which states that

if 2∥EW ∗
L×P ∥ ≤ 2∥E∥∥W ∗

L×P ∥ ≤ σP−1(X̂W
∗
L×P ):

sin θ0 ≤
2∥EW ∗

L×P ∥
σP−1(X̂W ∗

L×P )
≤

2∥E∥∥W ∗
L×P ∥

σP−1(X̂W ∗
L×P )

(B.1)

Given that ESPRIT is invariant to the choice of orthonormal basis by Proposition 4, we work with

Q ← XW ∗
L×P . Eq. (B.1) shows that when the rotation between Q, Q̂ are small, the column spaces

are close when the noise is negligible.

Lemma 1. Let the size constraints of the data matrix Eq. (3.50) be fixed. If

2∥EW ∗
L×P ∥ ≤ βminσP−1(AM )σP−1(A

T
L)σP−1(W

∗
L×P ), then:

∥Q̂−Q∥ ≤
2
√

2P∥EW ∗
L×P ∥

βminσP−1(AM )σP−1(AT
L)σP−1(W ∗

L×P )
≤

2
√

2P∥E∥∥W ∗
L×P ∥

βminσP−1(AM )σP−1(AT
L)σP−1(W ∗

L×P )

Proof. For k = 0, . . . , P − 1:

∥̂qk − qk∥2 = 4 sin2

(︃
θk
2

)︃
= 2 (1− cos θk) ≤ 2

(︁
1− cos2 θk

)︁
≤ 2 sin2 θk

By the properties of matrix norms, and the above inequality, one gets:

∥Q̂−Q∥ ≤ ∥Q̂−Q∥F =

(︄
P−1∑︂
k=0

∥̂qk − qk∥2
)︄1/2

≤
(︁
2P sin2 θ0

)︁1/2
=
√

2P sin θ0

Given the definition of the ℓ2 norm on XW ∗
L×P :

∥XW ∗
L×P ∥ = ∥AMBA

T
LW

∗
L×P ∥ ≥ βminσP−1(AM )σP−1(A

T
L)σP−1(W

∗
L×P )

This combined with Eq. (B.1) completes the proof.
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B.3. PROOF OF THEOREM 5

Thus, the next step is to relate ∥Q̂−Q∥ with ∥Ψ̂−Ψ∥ since Ψ← Q.

Lemma 2. Let the size constraints of the data matrix Eq. (3.50) be fixed. Since ∥Q̂−Q∥ ≤ σP−1(Q
↑)/2,

then:

∥Ψ̂−Ψ∥ ≤ 7∥Q̂−Q∥
σ2P−1(Q

↑)

Proof. The perturbation of ∥Ψ̂−Ψ∥ can be decomposed via triangle inequalities in ℓ2 space [Che+21]:

∥Ψ̂−Ψ∥ =
⃦⃦(︁

(Q̂↑)‡ − (Q↑)‡
)︁
Q̂↓ + (Q↑)‡(Q̂↓ −Q↓)

⃦⃦
≤
⃦⃦

(Q̂↑)‡ − (Q↑)‡
⃦⃦⃦⃦
Q̂↓
⃦⃦

+
⃦⃦

(Q↑)‡
⃦⃦⃦⃦
Q̂↓ −Q↓

⃦⃦
≤
⃦⃦

(Q̂↑)‡ − (Q↑)‡
⃦⃦

+
⃦⃦

(Q↑)‡
⃦⃦⃦⃦
Q̂−Q

⃦⃦
since ∥Q̂↑∥ ≤ ∥Q̂∥ = 1 and ∥Q̂−Q∥ ≤ ∥Q̂−Q∥. When assuming (well-conditioned) signal subspaces:

∥Q̂↑ −Q↑∥ ≤ ∥Q̂−Q∥ ≤ 1

2σP−1(Q↑)

This allows application of the truncated SVD theorem [Han87]:

⃦⃦
(Q̂↑)‡ − (Q↑)‡

⃦⃦
≤ 3∥Q̂↑ −Q↑∥
σP−1(Q↑)

(︁
σP−1(Q↑)− ∥Q̂↑ −Q↑∥

)︁
≤ 6∥Q̂−Q∥

2σ2P−1(Q
↑)

Therefore, one can relate the eigenspace with the signal subspace:

∥Ψ̂−Ψ∥ ≤

(︄
6

σ2P−1(Q
↑)

+
1

σP−1(Q↑)

)︄
∥Q̂−Q∥

≤ 7∥Q̂−Q∥
σ2P−1(Q

↑)

This combined with triangle inequality completes the proof.
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B.4 Supplement to TRIM

B.4.1 Integration and differentiation matrix operators

The matrix form of the forward first and i + 1th discrete differential operators, D1 ∈ RM−1×M

and Di+1 ∈ RM−i×M respectively, are given by:

D1 :=
1

∆t

⎡⎢⎢⎢⎣
−1 1

−1 1
. . .

. . .

−1 1

⎤⎥⎥⎥⎦ ; Di+1 := D1Di (B.2)

where ∆t = T/(M − 1) : t ∈ [0, T ]. For numerical integrals, we use a matrix form of the first and

i+ 1th cumulative integral operators, T1, Ti ∈ RM×M :

T1 := LB(order); Ti+1 := T1Ti (B.3)

where L ∈ RM×M is a zero-padded lower triangular matrix and B(order) ∈ RM×M are the Newton

polynomial matrices, e.g. B(1) corresponding to trapezoidal rule. The lower triangular matrix is given

as:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 1 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 1 1 1 · · · 1 0
0 1 1 1 · · · 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The first-order Newton polynomial with forward difference gives the classic trapezoidal rule, whereas

the third-order Newton polynomial gives Simpson’s rule. We give the explicit matrices for the first

three orders of polynomials:

B(1) =
∆t

2

⎡⎢⎢⎢⎢⎢⎣
0 0 0
1 1 0
0 1 1

. . .
. . .

. . .

0 1 1

⎤⎥⎥⎥⎥⎥⎦ ; B(2) =
∆t

12

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
5 8 −1 0
0 5 8 −1

. . .
. . .

. . .
. . .

0 5 8 −1
0 −1 8 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
;
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B.4. SUPPLEMENT TO TRIM

B(3) =
∆t

24

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
9 19 −5 1
−1 13 13 −1

. . .
. . .

. . .
. . .

−1 13 13 −1
1 −5 19 9

⎤⎥⎥⎥⎥⎥⎥⎥⎦
B.4.2 Data-preprocessing

Nonparametric denoising When there is noise in the measurement, a unique solution to Eq. (3.48)

is no longer guaranteed. The library of candidate functions are built from the noisy measurements,

z̃ = z+ ε, which are assumed to be corrupted by AWGN. With nonlinearities, noise can be nonlinear

transformed when formed as a candidate function: e.g. θ(z̃1 ◦ z̃2) = (z∗1 + ε1) ◦ (z∗2 + ε2) which

contains higher order noise corrupted terms. Data that is noise-free lets numerical derivatives, which

are known to be unstable, have a lower error accumulation. This inspires a priori denoising techniques

for data-preprocessing before applying SINDy, e.g. knowing the trajectory should be smooth. In this

study, we opt for a global denoising techniques by regularization, which can be expressed as convex

optimization. The most prominent in literature is by Tikhonov regularization, the right-hand side is

penalized by an ℓ2 norm:

ẑ = arg min
z

{︁
∥z − z̃∥22 + λ ∥D2z∥22

}︁
;

=
(︁
I + λDT

2D2

)︁−1
z̃;

∀λ > 0 (B.4)

Note that denoising data with the penalization D2 corresponds to projecting its trajectory onto a

smooth Poincaré map. If this is not suitable for the dynamics, e.g. trajectories that are piece-wise

smooth, one can use a combined Tikhonov and total-variation method [GH13]. It’s been shown that

this global smoothing technique, requiring one hyperparameter, outperforms various local smoothing

techniques requiring multiple hyperparameters [CPD22].

Regularized derivatives The regression data ż is typically numerically estimated by finite difference

approximations on the measurements z. We opt for global methods by regularization, since it has

been shown to outperform local methods [KR14], e.g. finite differentiation on local windows which are

smoothed by a Savitsky-Golay filter or LOWESS (moving average and/or polynomial fits). For a jth
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order derivative, this can be written as the integration:

Tj∂j(z) + z01M = z + εq

where εq, z01M is the error due to quadrature and initial values respectively and ∂j(z) := dj/dtj(z)

notates the jth order derivative. This formulation has resulted into methods of differentiation to

reduce the quadrature error and instabilities. Like previously in Eq. (3.56), the expression can be ℓ2

regularized to approximate for the jth order derivatives ∂j(z) ∈ RM−j×1:

ˆ∂j(z) = arg min
∂j(z)

{︁
∥Tj∂j(z)− z∥22 + λ∥D2∂j(z)∥22

}︁
;

=
(︁
TT
j Tj + λDT

2D2

)︁−1
TT
j z;

∀λ > 0 (B.5)

where z′ = z−z01M . Here the finite difference matrix operators are used in the penalty, e.g. I, D1, D2

which penalize the amplitudes, the gradient, and the curvature of the solution respectively. Heuristi-

cally, D2 regularization balances the closeness to the data and the smoothness of the derivative. More

importantly, the instability of finite difference is bypassed by reducing the numerical differentiation

problem to a family of well-posed convex problems. These global method also allows for a Pareto

front selection of the regularization parameter, where a standard-finite difference quadrature does not.

The operator of T1 can be shown that it has an approximation error O((∆t)2) (bias) and a noise

amplification (variance) that scales O(σ2/(∆t)2). Finally, global methods tend to produce aliasing at

the ends of the estimate, where the ends of the vector are trimmed.

Scaling Due to coefficient magnitude bias, some sparse regression estimators can be challenged to

recover the true underlying dynamics if in two regards: one, if the estimator is LS-based, large condition

numbers1 will grossly degrade performance, i.e. ill-conditioned; two, the regularization parameter

effectively thresholds/shrinks the coefficients based on magnitude. Therefore, an ℓ2 norm scaling

matrix H ∈ RP×P is defined:

Hii :=
√︂

(θTi θi), for i = 1, . . . , P (B.6)

and when applied to SINDy framework of Eq. (3.49):

ż = Θ̆ξ̆; where Θ̆ := ΘH−1; ξ̆ := Hξ (B.7)

1The library basis has a condition number that is linear κ(Θ) or quadratic κ(ΘTΘ) depending on if the normal
equations are used for an LS-based estimator.
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Thus it’s easy to see that there is a dual benefit: one, that κ(Θ̆) < κ(Θ) and two, that the penalization

of the scaled coefficients ξ̆ are equal weighted. Notably, scaling has been commonly practiced in

statistical domains for Lasso-based regression [Har15] and in the PySINDy Python library [Kap+22],

and is adopted in this study.

B.4.3 Simulation parameters for figures

Both Fig. 3.18 and Fig. 3.19 were generated using the Bouc Wen system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = σ(y − x); ẋ(0) = −8

ẏ = ρx− y − xz; ẏ(0) = 7

ż = xy − βz; ż(0) = 27

with the coefficients σ = 10, ρ = 28, β = 8/3 = 2.66̄6.

For Fig. 3.18, a four-second simulation of the Lorenz system using ode45 with enforced time

stepping of ∆t = 0.005 yielded a signal of length M = 800. The autocorrelative noise with a level of

3% was added to the path data using the function R[n] = σ2 ∗ exp(−|n|/2). Tikhonov denoising was

performed on the second DOF using Eq. (B.4), with L-curve and GCV criterions with the log-spaced

hyperparameter grid λ = {10−11, . . . , 100}.

For Fig. 3.19, a three-second simulation of the Lorenz system using ode45 with enforced time

stepping of ∆t = 0.01 yielded a signal of length M = 300. AWGN noise with a level of 2% s was

added to both the path and trajectory data. Specifically, the third DOF was used for TRIM, IRL1

and STLS estimators: whose hyperparameters are summarized: STLS uses log-spaced grid of size 100,

φ = {10−3, . . . , 103}, for IRL1 a log-spaced grid of size 50 λ = {10−20, . . . , 102} and q = {1}, and for

TRIM k = {1, 2, . . . , 13} and ν = 10.
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C.1. NONLINEAR PERIODIC SOLUTIONS VIA HARMONIC BALANCE
METHOD

C.1 Nonlinear periodic solutions via harmonic balance method

The second-order nonlinear ordinary differential equations (ODEs) can be expressed in the form

of two nonlinear first-order equations for time-domain numerical integration, (e.g. by using ode45 in

MATLAB). However, numerical approximation in the time domain are undesirable since they are com-

putationally lengthy and numerical errors may build up (instability). The harmonic balance method

(HBM) [SS11] avoids these issues by assuming a periodic solution in the form of a truncated Fourier

series. These unknown Fourier coefficients are cast into a nonlinear algebraic system of equations

whose rank is the truncated harmonic order. HBM can achieve good accuracy with a low truncation

order with less computational effort by several orders of magnitude compared to time-domain numer-

ical integration [Woi+20]. HBM can also solve for many types of nonlinearities including contact and

hysteresis [Sal+09] and geometric nonlinearities [RP99].

To visualize the HBM for a scalar vibration equation of motion, one can represent this as a residual

to minimize:

r(q, q̇, q̈, t) = mq̈(t) + cq̇(t) + kq(t) + fnl − g(t) = 0 (C.1)

where m, k, and c, represent scalar coefficients for q̈, q̇, and q respectively. The periodic solution

of q(t) = q(t + T ) when subjected to a periodic displacement g(t) = g(t + T ) is approximated via a

truncated Fourier series where:

q(t) ≈ a0 +

H∑︂
h=1

ah cos(hωt) + bh sin(hωt) {a0, ah, bh} ∈ R (C.2)

≈
H∑︂

h=−H
Qhe

jhωt {Qh} ∈ C (C.3)

≈ real

(︄
H∑︂
h=0

Qhe
jhωt

)︄
{Qh} ∈ C (C.4)

where a, b,Q represent Fourier coefficients for q and H is the harmonic order. While Eqs. (C.2)

to (C.4) are mathematically equivalent, each has benefits and drawbacks for specific purposes (ease

of notation, mathematical developments, programmability, etc.). Eq. (C.3) is chosen since it allows

for easy notation and avoids special treatment of the zeroth harmonic. Substituting Eq. (C.3) into
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Eq. (C.1) yields:

r =
H∑︂

h=−H

(︁
−h2ω2m+ jhωc+ k

)︁
Qhe

jhωt + fnl − g(t)

=

H∑︂
h=−H

(︂(︁
−h2ω2m+ jhωc+ k

)︁⏞ ⏟⏟ ⏞
Lh(ω)

Qh + Fnl, h −Gh

)︂
ejhωt {Lh, Fnl, h, Gh} ∈ C (C.5)

where Lh represents a scalar form of the dynamic stiffness and Fnl, h, Gh are the hth Fourier coefficients

of fnl and g(t) respectively. The time variable in Eq. (C.5) is then removed by projecting the resulting

system onto the Fourier basis ejhωt using the scalar product corresponding to the Galerkin method:

1

T

∫︂ T

0
r(t)ejhωtdt = 0 for h = −H, ... ,H (C.6)

Eq. (C.5) becomes a residual of the nonlinear equation of motion in the frequency domain. This can be

visualized as set of (2H+1)×1 nonlinear equations of Fourier coefficients of which can be represented

as column vectors, notated with □̃:

r̃(Q̃, ω) = L̃(ω)Q̃+ F̃nl − G̃ = 0 (C.7)

where the dynamic stiffness matrix L̃ can be shown to be:

L̃ = ω2m∇2 + ωc∇1 + k∇0 (C.8)

with ∇ serving as a time differential operator:

∇ = diag
[︁
−jH · · · 0 · · · jH

]︁
(C.9)

Consequently the vector representation of Fourier coefficients of Eq. (C.3) can be expressed as:

q(t) ≈
[︁
e−jHωt · · · 1 · · · ejHωt

]︁
⎡⎢⎢⎢⎢⎢⎢⎣
Q−H

...
Q0
...
QH

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞
Q̃

(C.10)

Eq. (C.7) represents a set of nonlinear equations of Fourier coefficients in which an iterative algorithm,

e.g. the Newton-Raphson method, can compute solutions. However, the complex Fourier coefficients
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for analytical nonlinearities in Eq. (C.5) are not complex differentiable, so they must be converted

into the real-valued sine-cosine notation of Eq. (C.2). This can be shown as followed:

r̃(ã, ω) = 0; where ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
b1
...
aH
bH

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(C.11)

The Newton-Raphson solution to Eq. (C.11) for the (i+ 1)th iteration for a chosen ω(j) can be found

by linearization via Taylor expansion:

r̃
(︂
ã
(i+1)
(j)

)︂
= r̃

(︂
ã
(i)
(j)

)︂
+
∂r̃
(︂
ã
(i)
(j)

)︂
∂ã

(︂
ã
(i+1)
(j) − ã(i)(j)

)︂
+O

(︃(︂
ã
(i+1)
(j) − ã(i)(j)

)︂2)︃
+ · · · = 0

where the solution ã
(i+1)
(j) can be approximated to the first order to yield:

ã
(i+1)
(j) ≈ ã(i)(j) −

⎡⎣∂r̃
(︂
ã
(i)
(j)

)︂
∂ã

⎤⎦
⏞ ⏟⏟ ⏞

J
(︂
ã
(i)
(j)

)︂
−1

r̃
(︂
ã
(i)
(j)

)︂

≈ ã(i)(j) + ∆ã
(i)
(j)

(C.12)

where J
(︁
ã(i)
)︁

represents the Jacobian matrix of the residual r̃ for the (i)th iteration. It should be

noted that the inverse Jacobian of Eq. (C.12) does not need to be computed since the definition of

∆ã(i) allows for a linear solution:

J
(︂
ã
(i)
(j)

)︂
∆ã

(i)
(j) = −r̃

(︂
ã
(i)
(j)

)︂
(C.13)

Once ã
(i)
(j) is known, r̃

(︂
ã
(i)
(j)

)︂
can be evaluated and thus J

(︂
ã
(i)
(j)

)︂
can be directly calculated. Thus

Eq. (C.13) is a linear matrix system for ∆ã
(i)
(j) which can be solved using Gaussian elimination. After

∆ã
(i)
(j) has been determined, Eq. (C.12) is repeated until the ℓ2 norm of the residual is sufficiently small

for some tolerance ϵ, e.g. ∥r̃
(︂
ã
(i+1)
(j)

)︂
∥2 < ϵ. The required derivatives of the Jacobian J

(︂
ã
(i)
(j)

)︂
can be

calculated analytically or approximated via finite-differences at a higher computational cost. Thus,

the HBM has the advantage to transform a nonlinear time-domain differential equation into an easily

solvable nonlinear algebraic equation in the frequency domain.

280



C.1. NONLINEAR PERIODIC SOLUTIONS VIA HARMONIC BALANCE
METHOD

C.1.1 Numerical solutions to the Harmonic Balance equations

The solution to Eq. (C.11) with respect to a free parameter ω are typically solved via continuation

methods. Prediction-correction continuation methods are carried out in two successive steps, the

prediction, which is tangent to the solution curve, and the correction, and iterative solution to the

prediction. Often, Eq. (C.11) can exhibit complex dynamic behaviors such as multiple solutions, so

parameterization is often combined with continuation methods. The arc-length parameterization is

one of them. The frequency is added to the variables and a tangent equation is added to the equation

of motion as a supplementary constraint equation.

These methods can then be combined with an adaptive step scheme [Sey10] to enhance the ro-

bustness of a prediction-correction continuation algorithm. This technique is interesting for nonlinear

dynamics analysis because continuation methods can reverse about the continuation parameter in

order to obtain complete solution curves, including the multiple solutions. Continuation algorithms

have been implemented in several softwares such as MATCONT [DGK03], AUTO [Doe+07], MAN-

LAB [Kar12]. Note, MANLAB uses continuation techniques combined with asymptotical numerical

method [Coc94], not AFT.

Zero- and first-order continuation methods The periodic solution of the Eq. (C.11) can evolve under

variation of continuation parameter(s). Most commonly, the frequency response the dynamic system

is of interest in which a continuation parameter ω is sought. A subclass of continuation methods,

specifically predictor-corrector methods are detailed. The continuation parameter’s (j)th step of steady

state solutions ω(start) ≤ ω(j) ≤ ω(end) each require Newton-Raphson iterations solving Eq. (C.11).

Thus in zero-order continuation, the (converged) steady state solution for ã(i) at the ω(j) step is used

as a predictor, or initial guess, for the next Newton-Raphson iteration of ω(j+1) step, such that:

ã
(κ)
(j+1) = ã

(i=converged)
(j) (C.14)

in which the Newton-Raphson iterations serve as a corrector to the prediction at trial κ, seen in

Fig. C.1. In first-order continuation, the sensitivity of Eq. (C.11) to the continuation parameter, whose

geometrical interpretation is the tangent to the solution curve, is found by taking the differential:

dr̃(ã, ω) =
∂r̃

∂ã
dã+

∂r̃

∂ω
dω = 0 (C.15)

281



C.1. NONLINEAR PERIODIC SOLUTIONS VIA HARMONIC BALANCE
METHOD

~

~

ω

ω
(i)

(j)

(i)

(j),( ) ~
ω

(κ)

(j+1)

(κ)

(j+1),( )

~

ω

Newton
iterations

Solution
curve

~
ω

(i)

(j)

(i)

(j),( ) ~
ω

(κ)

(j+1)

(κ)

(j+1),( )

~
ω

(i+1)

(j+1)

(i+1)

(j+1),( )

Figure C.1: Zero-order continuation method, with a zero-order prediction (left) and a Newton-Raphson
iteration correction (right).

which can be simplified to:
dã

dω
= −

[︃
∂r̃

∂ã

]︃
⏞ ⏟⏟ ⏞
J (ã)

−1 ∂r̃

∂ω

Hence an additional linear solve of the system is required per Newton-Raphson iteration:

J
(︂
ã
(i)
(j)

)︂ ∂ã(i)(j)

∂ω
= −

∂r
(i)
(j)

∂ω
(C.16)

where J
(︂
ã
(i)
(j)

)︂
is the Jacobian matrix at step ω(j) for a converged Newton iteration (previously defined

in Eq. (C.12)) and ∂r
(i)
(j)/∂ω is a forward-difference approximation obtained by perturbing ω(j) a small

amount δ and reassembling the residual:

∂r
(i)
(j)

∂ω
=
r
(︁
ω(j) + δ

)︁
− r

(︁
ω(j)

)︁
δ

(C.17)

The first-order prediction of ã
(i)
(j+1) at the next continuation step is then:

ã
(κ)
(j+1) = ã

(i)
(j) +

dã
(i)
(j)

dω
∆ω (C.18)

where ∆ω represents the step size such that ω(j+1) = ω(j) + ∆ω. Thus, first-order continuation entails

one additional linear solve per (j)th continuation step, but can reduce the number of Newton iterations

required compared to zero-order continuation, seen in Fig. C.2. Step size can be controlled, which refers

to the methods used to determine the change in the continuation parameter for each continuation step

in Eq. (C.18). Step size control will be detailed in the next section, but many implemented algorithms

utilize heuristic rules and/or step size equations [Sey10].
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Figure C.2: First-order continuation method, with a first-order prediction via tangent dã
(i)
(j)/dω with

step length ∆ω (left) and a Newton-Raphson iteration correction (right).

Arc-length continuation method First-order continuation can have problem at continuation param-

eter in the vicinity of a stability limit (i.e. near a turning point or bifurcation point), which manifests

as the Jacobian matrix J (ã) becoming singular. The arc-length continuation scheme aims to im-

prove first-order continuation by constraining the prediction step in order to reduce Newton-Raphson

iterations per (j)th continuation step [Gus07; Sey10]. An equation of constraint, typically called pa-

rameterization, along with an arc-length parameter s is introduced as an additional unknown which

augments Eq. (C.11) as a system of equations:

r̃(ã(s), ω(s)) = 0 (C.19)

p(ã(s), ω(s), s) = 0 (C.20)

where p is the equation of constraint. Both ã and ω are parameterized as functions of s, which changes

Eq. (C.15) into:

dr̃(ã(s), ω(s)) =
∂r̃

∂ã

∂ã

∂s
+
∂r̃

∂ω

∂ω

∂s
= 0 (C.21)

and the equation of constraint p is bounded by the arc-length s of a hypersphere:⃦⃦⃦⃦
∂ã

∂s

⃦⃦⃦⃦2
2

+

(︃
∂ω

∂s

)︃2

= 1

which is equivalent in the ∆ notation:

p(ã(s), ω(s), s) = ∥∆ã∥22 + (∆ω)2 − (∆s)2 = 0 (C.22)
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The augmented system of equations seen in Eqs. (C.19) and (C.20) resembles the form of Eq. (C.12)

with a new solution step: [︃
ã
ω

]︃(i+1)

(j)

≈
[︃
ã
ω

]︃(i)
(j)

−
[︂
J(i)(j)

]︂−1
[︃
r̃ (ã, ω)
p (ã, ω, s)

]︃(i)
(j)

≈
[︃
ã
ω

]︃(i)
(j)

+

[︃
∆ã
∆ω

]︃(i)
(j)

(C.23)

and Eq. (C.13) augmented as a linear system:⎡⎢⎢⎢⎣
∂r̃

∂ã

∂r̃

∂ω

2

(︃
∂ã

∂s

)︃T

2
∂ω

∂s

⎤⎥⎥⎥⎦
(i)

(j)⏞ ⏟⏟ ⏞[︂
J(i)(j)

]︂

[︃
∆ã
∆ω

]︃(i)
(j)

= −
[︃
r̃ (ã, ω)
p (ã, ω, s)

]︃(i)
(j)

(C.24)

where ∂r̃/∂ã = J(ã), r, and ∆ã are computed during each Newton iteration using a guessed value of ω.

To solve the augmented system of Eq. (C.24), it is necessary to update both ω and the solution update

ã at each Newton-Raphson iteration. Arc-length continuation constraints steady state solutions at

pre-determined intervals of step size ∆s rather than of the parameter ∆ω as seen in Eq. (C.18). The

procedure is outlined next.

Initialization of the arc-length predictor step The prediction step consists in finding the local tangent

of the solution curve. Then the current periodic solution is perturbed along this tangent to obtain an

approximated periodic solution following the curve. First, an initial guess
[︁
ã ω

]︁(i)
(j)

is solved for via

Newton-Raphson in Eqs. (C.12) and (C.13). Then the standard continuation method is then initialized.

For any predictor step, the tangent vector
[︁
∆ã ∆ω

]︁(i)
(j)

must solve the first line of Eq. (C.24):

r̃ (ã, ω)
(i)
(j) =

∂r̃
(i)
(j)

∂ã
∆ã

(i)
(j) +

∂r̃
(i)
(j)

∂ω
∆ω

(i)
(j) = 0 (C.25)

The initialization of the continuation method cannot use the arc-length constraint because no previous

tangent vector has been computed. Therefore, to compute the first tangent vector, the value of ∆ω
(i)
(j)

is chosen as 1 or −1 depending on the targeted direction of continuation, which simplifies Eq. (C.25):

∂r̃
(i)
(j)

∂ã
∆ã

(i)
(j) = ±

∂r̃
(i)
(j)

∂ω
(C.26)

284



C.1. NONLINEAR PERIODIC SOLUTIONS VIA HARMONIC BALANCE
METHOD

Then the tangent
[︁
ã ω

]︁(i)
(j)

is normalized and multiplied to have the a magnitude of ∆s, and added

to the point:

[︃
ã
ω

]︃(κ)
(j+1)

≈
[︃
ã
ω

]︃(i)
(j)

+ ∆s

[︃
∆ã
∆ω

]︃(i)
(j)⃦⃦⃦⃦

⃦
[︃
∆ã
∆ω

]︃(i)
(j)

⃦⃦⃦⃦
⃦
2

(C.27)

Standard arc-length predictor step Once the first step has been performed, a tangent vector can

be calculated with Eq. (C.25). Since a previous tangent vector has already been computed, the next

tangent vector
[︁
∆ã ∆ω

]︁(i)
(j)

can be normalized as:

(︂
∆ã

(i)
(j−1)

)︂T
∆ã

(i)
(j) + ∆ω

(i)
(j−1)∆ω

(i)
(j) = 1 (C.28)

To compute the tangent, the Eqs. (C.25) and (C.28) are combined to form the following augmented

system: ⎡⎢⎢⎢⎣
∂r̃

(i)
(j)

∂ã

∂r̃
(i)
(j)

∂ω(︂
∆ã

(i)
(j−1)

)︂T
∆ω

(i)
(j−1)

⎤⎥⎥⎥⎦
[︃
∆ã
∆ω

]︃(i)
(j)

= −
[︃
0
1

]︃(i)
(j)

(C.29)

Then, the normalized tangent is multiplied by a step length ∆s and the sign of the scalar product

between the current tangent and the previous one:[︃
ã
ω

]︃(κ)
(j+1)

≈
[︃
ã
ω

]︃(i)
(j)

+ ∆s

[︃
∆ã
∆ω

]︃(i)
(j)

if ∆ã
(i)
(j−1) ·∆ã

(i)
(j) > 0

[︃
ã
ω

]︃(κ)
(j+1)

≈
[︃
ã
ω

]︃(i)
(j)

−∆s

[︃
∆ã
∆ω

]︃(i)
(j)

if ∆ã
(i)
(j−1) ·∆ã

(i)
(j) < 0

(C.30)

This condition permits an enhanced robustness by preventing any direction leading to a previously

calculated periodic solution to be taken [Sey10].

Arc-length corrector step When an error criteria defined for Eq. (C.23) is not met, e.g.

∥r̃
(︂
ã
(κ)
(j+1)

)︂
∥2 < ϵ , a correction step

[︁
δã δω

]︁(κ)
(j+1)

is added to the continuation algorithm to make

corrections to Eq. (C.24):

∂r̃
(κ)
(j+1)

∂ã
δã

(κ)
(j+1) +

∂r̃
(κ)
(j+1)

∂ω
δω

(κ)
(j+1) = −r̃ (ã, ω)

(κ)
(j+1) (C.31)
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with κ corresponding to the current iteration of Newton-Raphson algorithm. The corrections are made

with respect to the radius ∆s in the arc-length constraint Eq. (C.22):(︂
∆ã

(i)
(j+1)

)︂T
δã

(κ)
(j+1) + ∆ω

(i)
(j+1)δω

(κ)
(j+1) = ∆s (C.32)

To calculate the correction, the following augmented system of equations composed of Eqs. (C.31)

and (C.32) is solved: ⎡⎢⎢⎢⎣
∂r̃

(κ)
(j+1)

∂ã

∂r̃
(κ)
(j+1)

∂ω(︂
∆ã

(i)
(j+1)

)︂T
∆ω

(i)
(j+1)

⎤⎥⎥⎥⎦
[︃
δã
δω

]︃(κ)
(j+1)

= −

[︄
r̃ (ã, ω)

(κ)
(j+1)

∆s

]︄
(C.33)

Once the correction
[︁
δã δω

]︁(κ)
(j+1)

are calculated, they are added to
[︁
ã ω

]︁(κ)
(j+1)

to obtain the new

corrected variables: [︃
ã
ω

]︃(κ+1)

(j+1)

≈
[︃
ã
ω

]︃(κ)
(j+1)

+

[︃
δã
δω

]︃(κ)
(j+1)

(C.34)

The corrections to
[︁
ã ω

]︁(κ+1)

(j+1)
are made until the error criteria is satisfied:

[︃
ã
ω

]︃(i+1)

(j+1)

=

[︃
ã
ω

]︃(κ+1)

(j+1)

if ∥r̃
(︂
ã
(κ+1)
(j+1)

)︂
∥2 < ϵ (C.35)

The obtained solution corresponds to the new periodic solution along the solution curve. To compute

the complete response curve, the continuation algorithm is repeated with solution being the new point

of reference for the next continuation step (j + 1), as seen in Fig. C.3.
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Figure C.3: Arc-length continuation method, with a first-order prediction via tangent [∆ã ∆ω]
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constrained by step length ∆s (left) and a Newton-Raphson iteration correction (right).
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Step size control The step size ∆s is chosen to be as small as necessary to ensure fast convergence and

not overlook important characteristics of the solution, but not too large to lose resolution. Therefore,

∆s is adapted using heuristic rules:

• When corrector steps fail to converge, the predictor step is rejected, the step size is reduced by

an integer factor, and a new prediction step is generated. This is limited to prevent an infinite

trial of smaller prediction steps.

• When the number of Newton-Raphson iterations for consecutive continuation steps exceed an

upper-bound, the step length is halved, and it is doubled if this number falls below a lower-bound.

• The step size is reduced by an integer factor when the Fourier coefficients’ second derivative with

respect to the free parameter is negative. This is to improve the bandwidth resolution about the

resonance frequency.

• The maximum step size is a global constraint which supersedes the previous rules.

C.1.2 Computation of nonlinear terms with AFT scheme

When analytical expressions cannot be derived for fnl, it cannot be projected onto the Fourier

basis ejhωt as shown in the following:

fnl =
1

T

∫︂ T

0
Fnl, h e

−jh 2π
T
t dt for h = −H, ... ,H (C.36)

to yield a system of its corresponding Fourier coefficients F̃nl , where ω = 2π/T is defined for a period.

To remedy this fact, F̃nl is computed through the use of an alternate frequency-time scheme (AFT)

in conjunction with the HBM [CG89].

In this demonstration, the AFT scheme will be shown for nonlinear terms whose dependence is

on both displacements and velocities fnl(q, q̇), and in terms of complex-exponential form shown in

Eq. (C.3). The AFT scheme consists of evaluating F̃nl via the discrete Fourier transform (DFT)

before evaluating the residual in Eq. (C.7):

Q̃
DFT−1

−−−−→ q̂, ˆ̇q −→ f̂nl(q̂, ˆ̇q)
DFT−−−→ F̃nl(Q̃)

where the time-discretized coordinates are expressed in column vectors for coordinates q̂ and veloc-

ities ˆ̇q, notated by □̂. Each of the vector components q(tn) are first determined for an equidistant
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discretization of the interval [0, T ) into N time instants t0, t1, ..., tN−1:

tn = n∆t; ∆t =
T

N
; n = 0, 1, ..., N − 1 (C.37)

where N must be sufficiently large enough to resolve the highest harmonic H in accordance with the

Nyquist-Shannon theorem. Then nonlinear forces F̂nl are then evaluated in the (time-discretized) time

domain. This lets one express Eq. (C.36) as:

F̃nl, h ≈
1

T

N−1∑︂
n=0

fnl (q(tn), q̇(tn)) e−jh 2π
T
tn∆t

≈ 1

N

N−1∑︂
n=0

fnl (q(tn), q̇(tn)) e−jh 2π
N
n (C.38)

Finally, the Fourier coefficients F̂nl are approximated using the DFT:

F̃nl

(︂
q̃, ˜̇q, ω

)︂
AFT
≈ T F̂nl(T

−1q̂, T−1∇ωq̂⏞ ⏟⏟ ⏞
ˆ̇q

) {F̂nl ∈ C}

AFT
≈ 1

N

⎡⎢⎣e
−j(−H) 2π

N
t0 · · · e−j(−H) 2π

N
tN−1

...
...

e−j(H) 2π
N
t0 · · · e−j(H) 2π

N
tN−1

⎤⎥⎦
⏞ ⏟⏟ ⏞

T

⎡⎢⎣ F̂nl, 0
...

F̂nl, N−1

⎤⎥⎦
⏞ ⏟⏟ ⏞

F̂nl

(C.39)

where T represents a DFT operation matrix and F̂nl are the time-discretized nonlinear forces.

Eq. (C.39) can then be reinserted into the residual of Eq. (C.7).

Derivatives of the nonlinear terms During the continuation steps presented in Appendix C.1.1, the

following derivatives are defined in sine-cosine notation Fourier coefficients:

∂r̃

∂ã
= L̃(ω) +

∂F̃nl

∂ã
;

∂r̃

∂ω
=
∂L̃

∂ω
ã+

∂F̃nl

∂ω
(C.40)

with:
∂L̃

∂ω
= 2ωΛ2m+ Λc (C.41)

The derivatives of nonlinear terms are computed as follows:

∂F̃nl

∂ã
= Γ−1∂F̂nl

∂q̂
Γ + Γ−1∂F̂nl

∂ ˆ̇q
ωΛΓ (C.42)
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∂F̃nl

∂ω
= Γ−1∂F̂nl

∂ ˆ̇q
ΓΛã (C.43)

with the diagonal matrices:

∂F̂nl

∂q̂
= diag

[︄
∂fnl
∂q

⃓⃓⃓⃓
t0

, · · · , ∂fnl
∂q

⃓⃓⃓⃓
tN−1

]︄
(C.44)

∂F̂nl

∂ ˆ̇q
= diag

[︄
∂fnl
∂q̇

⃓⃓⃓⃓
t0

, · · · , ∂fnl
∂q̇

⃓⃓⃓⃓
tN−1

]︄
(C.45)

The time differential operator Λ for sine-cosine notation Fourier coefficients:

Λ = diag [0,Λ1, . . . ,Λh, . . . ,ΛH ] with Λh = h

[︃
0 1
−1 0

]︃
(C.46)

The DFT operation matrices, which do not depend on ω and do not need to be updated during the

continuation, are given as:

Γ =

⎡⎢⎣1 cos(ωt0) sin(ωt0) . . . cos(Hωt0) sin(Hωt0)
...

...
...

...
...

1 cos(ωtN ) sin(ωtN ) . . . cos(HωtN ) sin(HωtN )

⎤⎥⎦ (C.47)

Γ−1 =
1

N

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 . . . 2
cos(ωt0) . . . cos(ωtN )
sin(ωt0) . . . sin(ωtN )

...
...

cos(Hωt0) . . . cos(HωtN )
sin(Hωt0) . . . sin(HωtN )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(C.48)
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Figure C.4: Flowchart of arc-length continuation with respect to frequency ω coupled with HBM-AFT.
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refer to Fig. C.3. Underlined names indicate algorithms not expanded within the flowchart.
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D.1 Introduction

Le contexte L’étude de la fatigue des métaux, qui remonte au 19e siècle, se concentre sur l’initiation

et la propagation des fissures dans les métaux soumis à des charges répétées, conduisant à la rupture à

des niveaux de contrainte inférieurs à leur résistance à la traction. L’outil essentiel de cette recherche

est la courbe de durée de vie en fatigue (S-N), qui établit une correspondance entre l’amplitude de la

contrainte et les cycles de défaillance. Récemment, l’attention s’est portée sur le régime de fatigue à

très haut cycle (VHCF), au-delà de 107 cycles, et l’on s’est rendu compte que la rupture par fatigue

dépendait du régime. Cela a stimulé l’utilisation des essais de fatigue par ultrasons, fonctionnant

autour de 20 kHz, pour des essais rapides dans des secteurs tels que l’automobile et l’aérospatiale,

où les composants doivent supporter une fatigue à cycle très élevé sans se rompre. Cependant, les

défis actuels résident dans la caractérisation in-situ au cours de ces essais, la plupart des études se

concentrant sur l’analyse après défaillance plutôt que sur les processus de fatigue en cours, résumant

souvent le comportement de fatigue simplement comme un point sur la courbe S-N.

Problèmes et difficultés dans la littérature La caractérisation de la fatigue dans la littérature couvre

la défaillance post-fatigue et les mesures in-situ, la première s’appuyant sur les courbes S-N et les

méthodes d’observation telles que la microscopie, et la seconde sur les données en temps réel pendant les

essais de fatigue. La recherche sur la fatigue à très haut cycle (VHCF) pose des problèmes, notamment

en ce qui concerne la détection des fissures internes et l’estimation de leur taille, car les méthodes de

mesure traditionnelles ne sont pas adaptées aux phénomènes de microplasticité et d’endommagement

dans le cadre de la VHCF. Les faibles amplitudes de contrainte dans la VHCF conduisent à des

taux de croissance des fissures plus lents, qui ne sont pas bien décrits par la mécanique des fractures

conventionnelle. Par conséquent, une évolution vers des mesures à haute fréquence in-situ, chevauchant

l’évaluation non destructive et l’acoustique, est en train d’émerger. Ces méthodes, sensibles aux non-

linéarités des matériaux et capables de surveiller la cinétique des dommages et la croissance interne des

fissures, impliquent l’analyse des harmoniques dans les signaux de vibration, comme l’ont démontré

Kumar et al. [Kum+09], Fig. D.1 qui ont corrélé la deuxième harmonique relative à la première dans

les essais de fatigue par ultrasons, en la reliant à la fractographie post-fatigue. Cependant, la relation

entre ces harmoniques et les mécanismes de fatigue sous-jacents reste un domaine d’étude ouvert.
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Figure D.1: Dans (a), l’apparition d’harmoniques dans les spectres de fréquence des signaux de vibra-
tion recueillis à différents cycles au cours d’un essai de fatigue ultrasonore de l’alliage 6061-T6511 Al
à 130 MPa. Dans (b), les changements de βrel et de la fréquence de résonance au cours du même essai
de fatigue ultrasonore, extraits de [Kum+09].

Objectif de la thèse Cette thèse vise à développer une nouvelle méthodologie in-situ pour estimer

et interpréter les non-linéarités des matériaux pendant les essais de fatigue par ultrasons, en se con-

centrant sur la détection de la microplasticité, des microfissures et des comportements de fissures

macroscopiques. Ces mécanismes, considérés comme des sources de non-linéarités générant des har-

moniques supérieures, sont essentiels pour comprendre le comportement des matériaux soumis à des

charges de fatigue à haute fréquence. L’approche proposée vise à discerner les non-linéarités lentes

et rapides correspondant à différents états du matériau pendant l’essai de fatigue. La méthodologie

comprend deux composantes principales :

• Développement d’un modèle dynamique non linéaire qui intègre la fermeture des microfissures,

le comportement microplastique et le développement des fissures macroscopiques, simulant le

comportement de l’échantillon sous des charges de tension-compression à haute fréquence. Ce

modèle vise à représenter avec précision les effets à méso-échelle des zones microplastiques et de

la fermeture des microfissures, en utilisant des données de vibration à haute fréquence in-situ

pour paramétrer un modèle dynamique reflétant les comportements de fatigue tout au long de

la durée de vie de l’essai.

• Proposer des algorithmes avancés de traitement des signaux pour analyser les signaux de vibra-

tion de fatigue ultrasonore, en se concentrant sur la précision et l’efficacité de calcul pour une

application en temps réel.

294



D.1. INTRODUCTION

La méthodologie utilisera la vibrométrie laser Doppler sans contact pour l’acquisition des données vi-

bratoires. La définition et l’optimisation du dispositif expérimental sont cruciales pour une acquisition

fiable des données, y compris la sélection des points de mesure, la fréquence d’échantillonnage et la

configuration générale du dispositif. Cette approche vise à améliorer la compréhension et la prédiction

des mécanismes de fatigue des matériaux basés sur les ultrasons.

Approche scientifique Cette thèse adopte une approche scientifique méthodique, principalement axée

sur le développement et la mise en œuvre d’un dispositif expérimental et de techniques de modélisation

non linéaire correspondantes pour étudier les mécanismes de fatigue. La méthodologie comprend trois

éléments clés :

1. Développement d’un dispositif expérimental pour mesurer la vitesse en différents points de

l’échantillon. Les emplacements de mesure sont choisis stratégiquement pour tenir compte des

effets non linéaires introduits par la machine d’essai.

2. Formulation de modèles non linéaires classiques des mécanismes de fatigue, intégrés dans un

modèle macroscopique dynamique pour simuler avec précision la génération d’harmoniques dans

des conditions d’essai de fatigue par ultrasons.

3. Établissement d’une méthodologie de traitement des signaux pour estimer avec précision

l’amplitude des harmoniques générées, essentielle pour l’analyse des données vibratoires des

essais de fatigue.

L’approche expérimentale consiste à utiliser un vibromètre laser pour mesurer les vibrations à la

base et à la pointe libre de l’échantillon de fatigue, ce qui permet de mesurer les harmoniques. Un

modèle dynamique non linéaire à plusieurs échelles est utilisé, dont les microfissures et les inclusions

microplastiques sont modélisées à l’aide de l’homogénéisation du champ moyen de Mori-Tanaka [MT73]

et des inclusions d’Eshelby [Esh57]. Cette approche de modélisation est représentée dans Fig. D.2 où

le comportement non linéaire des microfissures et des inclusions microplastiques est défini au niveau

du centröıde.
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Figure D.2: L’approche de modélisation proposée dans cette thèse.

D.2 Chapitre 1 – Bibliographie et préliminaires

Caractérisation des régimes LCF à HCF La courbe S-N de Wöhler, qui met en corrélation l’amplitude

de la contrainte avec le nombre logarithmique de cycles jusqu’à la rupture, délimite la durée de vie

en fatigue (Nf) dans trois domaines : la fatigue à faible nombre de cycles à (LCF) 104 impliquant

une déformation plastique significative, la fatigue à grand nombre de cycles (HCF) de 104 à 107,

et la fatigue oligocyclique (VHCF) au-delà de 107 cycles, étudiée à l’aide de machines de fatigue à

ultrasons pour des essais accélérés. La limite de fatigue conventionnelle, ou limite d’endurance, indique

la résistance d’un matériau à la rupture par fatigue au-delà de 106 à 107 cycles, suggérant une durée

de vie en fatigue infinie au-delà de cette plage.

Étapes de la rupture par fatigue La rupture par fatigue dans les métaux ductiles se déroule en quatre

étapes : durcissement ou adoucissement cyclique, évolution des dommages dus à la fatigue en raison de

phénomènes micromécaniques, amorçage et croissance des fissures menant à la rupture. En revanche,

les métaux non ductiles contournent souvent les deux premières étapes en raison des défauts existants

qui servent de concentrateurs de contraintes. Ces étapes, essentielles pour comprendre la fatigue, ont

été étayées par diverses études et soulignent l’importance des mécanismes initiaux conduisant à la

rupture par fatigue.
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Influence des mécanismes de déformation plastique à micro-échelle L’adoucissement ou le durcisse-

ment cyclique des matériaux conduit à une boucle d’hystérésis stabilisée dans le diagramme contrainte-

déformation, dont la surface diminue à mesure que la durée de vie en fatigue augmente. Dans le régime

LCF, la plasticité macroscopique est mesurable, passant à des mécanismes de déformation plastique à

micro-échelle dans les cycles plus élevés. Le régime VHCF se caractérise par une localisation cyclique

de la déformation dans le cuivre sous forme de bandes de glissement persistantes (PSB), contribuant

à l’apparition de dommages dus à la fatigue. L’irréversibilité du glissement, quantifiée par le rapport

entre la déformation de cisaillement plastique irrécupérable et la déformation de cisaillement plastique

totale, joue un rôle essentiel dans l’apparition des dommages dus à la fatigue. Les PSB, qui se forment

dans une gamme spécifique d’amplitude de déformation plastique de cisaillement, contribuent à des

comportements complexes tels que les bandes de glissement et la fissuration intergranulaire, leur den-

sité et leur structure variant avec l’amplitude de la charge. Ces observations à micro- ou méso-échelle

dans les régimes LCF à HCF soulignent la nécessité d’explorer les mécanismes fondamentaux de la

fatigue dans le régime VHCF.

Caractérisation des régimes VHCF L’adoption de machines d’essai de fatigue par ultrasons a mis en

évidence la nature spécifique des matériaux des mécanismes de fatigue dans le régime VHCF. Dans

les matériaux présentant des hétérogénéités microstructurales telles que des inclusions, l’origine de la

rupture dans le régime VHCF passe de la surface à des fractures internes en ”œil de poisson”. Pour

les matériaux ductiles monophasés, la VHCF cöıncide avec des amplitudes de contrainte inférieures

au seuil PSB, ce qui se traduit par l’absence de structures PSB claires. La classification de Mughrabi

des matériaux métalliques dans la VHCF, basée sur la microstructure et les mécanismes d’initiation

des fissures, fournit un cadre pour la compréhension de ces variations.

Matériaux de type I et de type II Les matériaux de type I, généralement des métaux et alliages

ductiles monophasés sans précipités ni inclusions, présentent une nucléation de la rupture à la sur-

face. Cette catégorie comprend les aciers à faible teneur en carbone, certains aciers inoxydables et

la fonte à graphite sphéröıdal. En revanche, les matériaux de type II présentent une microstructure

complexe avec des inclusions, des pores et des particules de seconde phase grossières, qui agissent

comme des concentrateurs de contraintes pour l’initiation de fissures de fatigue internes. Les exemples

incluent les aciers à haute résistance et les alliages multiphases comme Ti6Al4V, où les fissures VHCF
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s’initient principalement dans le volume du matériau au niveau des défauts ou des hétérogénéités

microstructurales.

Ambigüıtés dans l’identification de l’initiation des fissures L’identification du début de l’amorçage

et de la croissance des fissures lors des essais de fatigue par ultrasons, en particulier dans le régime

VHCF, présente des ambigüıtés, surtout à des amplitudes de chargement plus faibles. Les premières

études, telles que celles portant sur les aciers à faible teneur en carbone, utilisaient la courbe française

parallèlement à la courbe S-N pour différencier les phases d’amorçage et de propagation des fissures,

révélant que l’amorçage des fissures peut constituer une part importante de la durée de vie en fatigue

dans le régime HCF. Cependant, la littérature basée sur la LEFM soutient que la propagation des

fissures est inhérente dès le début en raison des défauts préexistants du matériau, un point de vue

étayé par les résultats obtenus sur les matériaux commerciaux de type II. Des recherches récentes,

telles que des études sur l’acier DP600 soumis à des charge ultrasonore, indiquent que des microvides

se forment et fusionnent le long des bandes de glissement, entrâınant l’apparition de microfissures,

ce qui suggère l’existence de mécanismes distincts à différentes fréquences de chargement. Pour les

matériaux de type I, en particulier en dessous du seuil PSB, le concept de propagation immédiate des

fissures n’est pas universellement applicable, comme le démontrent des études telles que l’observation

par Weidner et al. de microfissures de stade I dans le cuivre polycristallin après de nombreux cycles

en dessous du seuil PSB, remettant en question les catégorisations conventionnelles de l’initiation et

de la propagation des fissures dans les différents types de matériaux.

Exploitation de la charge à haute fréquence dans les essais de fatigue par ultrasons La charge à

haute fréquence dans les essais de fatigue par ultrasons offre des perspectives uniques sur les états

des matériaux, comme l’ont démontré Kumar et al. [Kum+09] en analysant l’extrémité libre vibrante

d’éprouvettes de fatigue. Dans ces essais, la distorsion non linéaire de l’onde élastique à haute fréquence

qui traverse l’échantillon se manifeste par un transfert d’énergie de l’harmonique fondamentale vers

les harmoniques supérieures. Ce phénomène, illustré dans Fig. D.3, a été utilisé par Kumar et al.

pour introduire un indice d’endommagement non linéaire, défini comme le rapport de l’amplitude de la

deuxième harmonique à l’harmonique fondamentale au carré. Cette approche donne des indications in-

situ pendant les essais, comme le montre Fig. D.1, où l’évolution de βrel et de la fréquence de résonance

indique l’apparition et la progression de fissures importantes dans un alliage d’aluminium. Alors que
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les premières diminutions de βrel ont été attribuées à l’adoucissement cyclique ou à l’augmentation de

la température, son augmentation rapide plus tard dans le test a été liée à la croissance des fissures,

ce qui correspond bien à l’analyse fractographique. Cependant, cela met également en évidence des

problèmes fondamentaux dans l’utilisation du paramètre non linéaire acoustique β dans les essais

ultrasonores, qui seront examinés plus en détail dans le Chapter 2. L’approche montre un potentiel

pour le chargement à haute fréquence dans les essais de fatigue par ultrasons afin de révéler les

phénomènes non linéaires dans les matériaux soumis à des contraintes.
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Figure D.3: Dans (a), les signaux de vibration sont mesurés et dans (b) sont visualisés dans le domaine
des fréquences par la transformée de Fourier du signal de vibration. Dans (c), un spectre de fréquence
d’un essai de fatigue par ultrasons montre une harmonique fondamentale à environ 20 kHz et ses
harmoniques supérieures.

D.3 Chapitre 2 – Modèles pour les problèmes directs de fatigue par ultrasons

Le chapitre 2 est consacré à la modélisation complète d’une éprouvette de fatigue ultrasonore et

d’une machine d’essai afin de comprendre la génération d’harmoniques observée dans la vibration de

l’éprouvette de fatigue. L’accent est mis sur la distinction des sources de génération d’harmoniques

et sur la compréhension des non-linéarités matérielles qui se manifestent à partir des mécanismes

d’endommagement et de microplasticité dans l’éprouvette de fatigue. La structure de ce chapitre

suit un ordre hiérarchique qui reflète les différentes échelles de longueur présentes dans l’éprouvette de

fatigue. Cette organisation facilite l’examen systématique des réponses de l’éprouvette sous chargement

de fatigue ultrasonore.
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D.3.1 Acoustique non linéaire des réseaux atomiques

Tout d’abord, l’élasticité non linéaire (ou non-linéarité acoustique) est prise en compte car elle est

fréquemment décrite par la communauté acoustique et récemment adoptée par la communauté de la

fatigue ultrasonore. Le potentiel interatomique de deux atomes dans un réseau cristallin a une énergie

potentielle non linéaire. L’élasticité non linéaire à la limite du continuum est approximée par une série

de Taylor, qui donne le paramètre non linéaire classique β dans le mouvement des ondes longitudinales

qui se propagent. Les mesures expérimentales de β n’existent que pour les éléments de base tels que le

cuivre monocristallin ou polycristallin [Li+19], mais elles proviennent d’un échantillon et négligent la

microstructure du matériau. Les mesures expérimentales sont basées sur la propagation de l’épaisseur

à l’aide d’un transducteur et d’un récepteur ultrasonique avec la solution de Eq. (2.18).

Dans le contexte des essais de fatigue par ultrasons, une solution d’onde stationnaire longitudinale

est recherchée puisque ce type de mouvement d’onde est formé pour une éprouvette de fatigue pendant

les essais de fatigue par ultrasons. Un modèle de barre élancée et sa première longueur d’onde longi-

tudinale sont simulés à l’aide de l’équation du mouvement Eq. (2.9), avec des coefficients de matériau

dans le cuivre (β, ρ, E) et à sa longueur de résonance ultrasonore. Cette dernière présente une onde

stationnaire si elle est chargée à sa fréquence de résonance et pour t→∞.

Trois points essentiels sont soulevés : tout d’abord, l’étude montre que le rapport entre l’amplitude

de la seconde harmonique et celle de l’harmonique fondamentale diffère de plusieurs dizaines de de-

grés par rapport aux résultats expérimentaux obtenus pour un échantillon non endommagé dans le

Chapter 4. Cet écart ne peut s’expliquer par la variation de β mesurée expérimentalement et in-

diquée dans Table 2.2 ; deuxièmement, l’onde d’entrée dans les essais de fatigue par ultrasons est

en fait multi-harmonique selon les observations de l’auteur [Kis+21] et d’autres [Heb+23] ; enfin, le

paramètre de non-linéarité acoustique est une propriété matérielle distribuée. Cela ne reflète pas le

fait que les mécanismes actifs de fatigue sont localisés au volume du centröıde de cette éprouvette

de fatigue ultrasonore. Cela justifie une approche de modélisation différente au-dessus de l’échelle

atomique.
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D.3.2 Modèles d’homogénéisation de la microplasticité et des microfissures

Au lieu de relier les harmoniques supérieures (dues à la génération d’harmoniques supérieures non

linéaires) au paramètre de non-linéarité acoustique, la description à méso-échelle de la microplasticité

et des microfissures sera prise en compte. Il est bien connu que la déformation plastique dans les

matériaux métalliques est une conséquence de la dynamique des dislocations. Il est donc concevable

qu’à des échelles de longueur plus grandes, il existe une corrélation entre les densités de microplasticité

et de microfissures diffuses et la quantité de charge de fatigue dans chaque éprouvette de fatigue

ultrasonique. Sous une charge dynamique à haute fréquence, on soupçonne qu’il y a une génération

d’harmoniques non linéaires et une onde reçue (pointe de l’éprouvette de fatigue) lorsqu’elle traverse

le volume du centröıde avec une microplasticité diffuse et/ou des microfissures qui se referment sous

l’effet de la compression.

Pour modéliser ce phénomène mésoscopique, les objectifs de cette sous-section sont multiples : Tout

d’abord, les théories d’homogénéisation du champ moyen sont introduites car elles offrent une alterna-

tive intéressante en termes de calcul à la modélisation directe des hétérogénéités microscopiques par

l’analyse par éléments finis. L’approche Mori-Tanaka [MT73; Esh57] est adoptée pour la microplastic-

ité et les microfissures : ici, les inclusions microplastiques (avec une géométrie ellipsöıdale) peuvent être

décrites à l’aide de la théorie conventionnelle de plasticité J2 [Dog00] ; les microfissures peuvent être

représentées comme des fissures en forme de penny qui ont un critère de fermeture adopté de [Deu+02;

BBL20] (avec une géométrie sphéröıdale), qui subissent une interface parfaite sans frottement.

Des inclusions à plasticité parfaite sont employées car le comportement de la microplasticité dans

un matériau fatigué réel n’est pas bien quantifié. Deux paramètres sont libres selon le modèle (après

avoir fixé la géométrie des inclusions, ses paramètres élastiques), la limite d’élasticité des inclusions

microplastiques σYpl, la fraction de volume ξpl. La génération d’harmoniques supérieures est étudiée

par rapport à la fraction de volume pour une onde d’entrée harmonique unique, qui représente une

accumulation au cours d’une charge de fatigue. Dans le graphique du rapport harmonique, la troisième

harmonique est la plus importante, suivie de la deuxième, qui augmentent toutes deux de façon mono-

tone à mesure que ξpl augmente. Les modèles conventionnels d’hystérésis (macroscopique) ne génèrent

pas d’harmoniques paires car ils négligent les complexités telles que les géométries et leurs effets de

contrainte triaxiale. Dans le cas d’une onde d’entrée multi-harmonique, voir Fig. D.4, l’écart entre les
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FATIGUE PAR ULTRASONS

rapports des deuxième et troisième harmoniques diffère largement par rapport aux résultats obtenus

pour une onde de déformation multi-harmonique unique (représentée par des lignes pointillées). Cela

indique que la présence d’entrées multi-harmoniques peut entrâıner des inexactitudes dans une analyse

qui suppose une onde d’entrée harmonique unique.
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Figure D.4: Dans (a), les spectres de fréquence normalisés d’une onde de contrainte uniaxiale dans la
RVE pour une contrainte multi-harmonique Eq. (2.70) à f0 = 20 kHz avec un rapport de chargeR = −1
et ξcr = 10−1. Dans (b), le rapport entre les harmoniques supérieures et l’harmonique fondamentale
ne suit plus la même trajectoire. Les lignes pointillées représentent les rapports harmoniques extraits
précédemment de Fig. 2.8 pour une onde de déformation harmonique unique.

Pour la phase de microfissure, seule sa fraction de volume ξcr est libre (après avoir fixé la géométrie).

Lorsque l’on étudie la génération d’harmoniques supérieures due à une onde d’entrée harmonique

unique, les rapports harmoniques révèlent des harmoniques paires fortes croissantes avec de petites

harmoniques impaires révélées. Comme dans le cas des inclusions microplastiques, ce phénomène

n’est généralement pas observé dans la littérature sur l’acoustique et la dynamique non linéaires. La

différence est due au fait qu’un état de contrainte anisotrope est généré en raison de la forme de disque

des microfissures. Pour l’onde multi-harmonique, la rigidité asymétrique conduit à un changement

abrupt (instabilité) pour la deuxième harmonique à ξcr ≈ 1.5 · 10−3 dans Fig. D.5.

Le modèle de rigidité de Mori-Tanaka peut être adapté aux matériaux multiphasés, où

l’homogénéisation des hétérogénéités peut être effectuée en une seule étape ou en plusieurs étapes,

chaque étape utilisant les propriétés effectives de l’étape précédente comme nouvelle phase de la ma-

trice. Abaimov et al. [Aba+19] ont constaté qu’un processus d’homogénéisation en plusieurs étapes,

commençant par les inhomogénéités les plus distinctes, permet d’obtenir des prévisions de rigidité

plus précises, en particulier lorsque les inhomogénéités sont prédominantes dans les étapes initiales.
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Figure D.5: Dans (a), les spectres de fréquence normalisés d’une onde de contrainte uniaxiale dans la
RVE pour la contrainte sinusöıdale multi-harmonique Eq. (2.70) à f0 = 20 kHz avec un rapport de
charge R = −1 et ξcr = 10−1. Dans (b), le rapport entre les harmoniques supérieures et l’harmonique
fondamentale ne suit plus la même trajectoire que les variations de la fraction de volume des microfis-
sures, qui sont indépendantes de l’amplitude et de la fréquence. Les lignes en pointillé représentent les
rapports harmoniques précédemment extraits de Fig. 2.13 pour une onde de déformation harmonique
unique.

Ainsi, un schéma d’homogénéisation en deux étapes est utilisé : homogénéiser d’abord la phase la

plus conforme (microfissures) avec la matrice élastique, puis les inclusions microplastiques, simplifiant

ainsi le problème de la tangente non linéaire en traitant les phases séparément. Lorsque les deux

inclusions non linéaires sont intégrées dans le schéma d’homogénéisation Mori-Tanaka en deux étapes

de Eq. (2.84), le comportement devient de plus en plus complexe.

D.3.3 Modèle de fissure uniaxiale

Un modèle de fissure rudimentaire est introduit dans les cas où la longueur de la fissure viole

les hypothèses d’échelle de longueur faites par les théories d’homogénéisation. Cela correspond à

l’effet d’une grande fissure près de la rupture de fatigue pendant les essais de fatigue par ultrasons.

Des simplifications utilisant des hypothèses uniaxiales peuvent être appliquées pour capturer les effets

dynamiques de premier ordre d’une fissure de mode I, mais cette approche ne tient pas compte d’autres

complexités telles que les forces de contact par frottement, la modélisation de la croissance de la fissure

ou la pointe plastique de la fissure. La rigidité bilinéaire d’une fissure rudimentaire de mode I dans

les régimes de compression et de tension reflète une rigidité réduite due à un changement de la zone

engagée.
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En raison de l’expression de la forme proche, les harmoniques peuvent être résolues analytiquement.

Dans le cas d’une entrée d’onde harmonique unique, le comportement de la fissure macroscopique et

celui de la microfissure homogénéisée se chevauchent. Les deux montrent la génération d’harmoniques

encore plus élevées. Un comportement similaire est attendu dans le cas multi-harmonique, c’est

pourquoi l’effet du rapport de charge R est étudié à la place. Dans le cas d’une tension appliquée, les

harmoniques révèlent une plus forte génération d’harmoniques impaires par rapport aux harmoniques

paires. En faisant varier la charge de −1 ≤ R < 0 utilisée pour les métaux dans les essais de fatigue

par ultrasons, les effets non linéaires de l’asymétrie de la rigidité peuvent être vus comme affectant

fortement les harmoniques supérieures. Lorsque R → 0, la fermeture de la fissure ne peut pas se

produire pendant la compression.
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Figure D.6: Le rapport entre les harmoniques supérieures et les harmoniques fondamentales révèle que
la génération d’harmoniques impaires dépend de la contrainte statique et de la modulation, c’est-à-
dire du rapport de charge R. Les rapports harmoniques montrent une translation vers le haut de (a),
Λ = 10−2 à (b) Λ = 10−1, Λ est le paramètre de dégénérescence de la rigidité.

D.3.4 Modèle modal de l’éprouvette de fatigue ultrasonique

L’utilisation d’un modèle macroscopique de l’éprouvette de fatigue par AEF peut s’avérer fasti-

dieuse lorsqu’il s’agit de générer diverses variations des densités de microplastiques et de microfissures.

Cependant, le dispositif expérimental d’un essai de fatigue par ultrasons possède des propriétés dy-

namiques qui peuvent être exploitées, à savoir que l’éprouvette de fatigue par ultrasons est sollicitée

à sa fréquence propre longitudinale et forme ainsi une onde stationnaire. Avant les essais de fatigue

ultrasonique prévus, l’éprouvette de fatigue ultrasonique est conçue de manière à ce que les autres

modes propres de vibration soient bien séparés de la fréquence propre longitudinale (20 ± 2 kHz),
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ce qui permet d’éviter tout couplage de mode parasite. Un modèle d’ordre réduit dans cette gamme

étroite de fréquences par les modes normaux de vibration peut être utilisé, à savoir l’approche classique

de la troncature modale [GR15], voir le schéma Fig. D.7.

Finite element model
(ODE)
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Figure D.7: Modèle modal d’une éprouvette de fatigue ultrasonique utilisant la réduction de l’ordre
du modèle, montrant les fonctions de forme modale dérivées de la discrétisation spatiale du modèle
d’éléments finis.

L’équation de mouvement résultante du modèle modal, qui englobe un volume centröıde de mi-

croplasticité diffuse et/ou de microfissures, peut être simulée avec des hypothèses périodiques. Cepen-

dant, en fonction de la force de la non-linéarité, l’équation de mouvement résultante peut être rigide

pour les techniques classiques d’intégration numérique dans le domaine temporel, comme Runge-Kutta.

Un bon candidat pour résoudre les équations de mouvement peut utiliser la méthode de balance har-

monique (HBM) [SS11]. Cette méthode évite ces problèmes en supposant une solution périodique sous

la forme d’une série de Fourier tronquée. Ces coefficients de Fourier inconnus sont ensuite intégrés

dans un système d’équations algébriques non linéaires dont le rang est l’ordre harmonique tronqué. La

méthode HBM permet d’obtenir une bonne précision avec un effort de calcul réduit de plusieurs ordres

de grandeur par rapport à l’intégration numérique dans le domaine temporel [Woi+20]. La simulation

rapide du modèle modal permet de générer l’espace des paramètres, qui représente la microplasticité

diffuse et/ou les densités de microfissures en harmoniques supérieures.
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D.3.5 Machine à fatigue ultrasonique et sollicitation piézoélectrique

Ici, un modèle électrodynamique de la machine d’essai de fatigue par ultrasons est décrit sans

éprouvette de fatigue attachée, décrit par des fonctions de transfert et validé avec des données expéri-

mentales. Cependant, une analyse de fréquence de la tension appliquée expérimentale, du courant au

transducteur piézoélectrique et des données expérimentales de vitesse du pavillon acoustique révèle de

petites non-linéarités du système qui se manifestent sous la forme d’harmoniques supérieures. Cela

remet en question l’hypothèse conventionnelle de la littérature sur la fatigue ultrasonique selon laquelle

le pavillon acoustique fournit une onde d’entrée harmonique pure à l’éprouvette de fatigue.

Les non-linéarités au niveau du pavillon acoustique de l’équipement d’essai de fatigue par ultra-

sons peuvent provenir de plusieurs sources : Premièrement, le générateur de signal et d’énergie peut

introduire une non-linéarité en raison de la complexité de son circuit et de sa nature non linéaire, ce

qui affecte l’excitation du transducteur piézoélectrique et la génération de la forme d’onde. Deuxième-

ment, la non-linéarité du matériau des céramiques piézoélectriques, telles que le PZT, contribue à la

non-linéarité de leurs relations contrainte-déformation, au comportement hystérique de la polarisation

ferroélectrique et à la non-linéarité de saturation sous de grands champs électriques, aggravée par la

sensibilité thermique. Enfin, les interfaces mécaniques et les fixations au sein du système, y compris

la friction et la non-linéarité liée au contact au niveau des interfaces et des articulations, contribuent

également à la non-linéarité globale observée dans le système.

D.4 Chapitre 3 – Traitement des signaux pour l’estimation des harmoniques
et l’identification des systèmes non linéaires

D.4.1 Traitement des signaux de vibrations ultrasoniques pour l’extraction d’harmoniques

L’estimation précise des harmoniques supérieures dans les signaux de vibration est cruciale pour

les relier aux densités de microplastiques et de microfissures et pour contribuer aux approches de

l’indice d’endommagement. L’équilibre entre la précision de l’estimation et la complexité du calcul est

essentiel pour l’utilisation de in-situ pendant les essais de fatigue par ultrasons. Les défis compren-

nent les limitations de l’incertitude de fréquence et de temps par la limite de Rayleigh et l’utilisation

d’estimateurs de modèles de signaux stationnaires sur des signaux quasi-stationnaires, où la minimi-

sation de la longueur de la fenêtre améliore la résolution temporelle au détriment de la résolution de
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fréquence. En outre, la performance statistique des estimateurs, largement étudiée à l’aide de signaux

synthétiques purement stationnaires, peut ne pas refléter avec précision leur efficacité sur des signaux

quasi-stationnaires dont les amplitudes et les fréquences varient dans le temps.

Cinq estimateurs spectraux de ligne (LSE), à savoir ESPRIT unitaire [HN95], RELAX [JS96],

CFH [SQ20], NOMP [MRM16], et DeepFreq [IMF21] en ce qui concerne les problèmes susmentionnés.

Ces cinq algorithmes ont été choisis car leurs fondements théoriques constituent une représentation

diversifiée (basée sur le sous-espace, basée sur le maximum de vraisemblance, basée sur l’interpolation

des pics DFT, basée sur l’algorithme gourmand pour le raffinement de la grille, et basée sur les réseaux

neuronaux profonds, respectivement) des nombreux LSE qui existent dans la littérature. Notamment,

de nombreux LSE sont considérés comme ayant des résultats de pointe pour les signaux purement

stationnaires avec des amplitudes unitaires, ce qui n’est pas le cas pour les signaux quasi-stationnaires

avec des amplitudes et des fréquences non unitaires variant lentement dans le temps (non-concordance

des bases).

Les bancs d’essai sur un signal synthétique de vibration ultrasonique de fatigue et des signaux

générés aléatoirement avec des défis d’estimation uniques vus dans la vibration ultrasonique, montrent

les capacités des différents estimateurs en termes d’adaptabilité au quasi-stationnaire et d’efficacité de

calcul. En général, ESPRIT et NOMP offrent les meilleures performances en ce qui concerne la quasi-

stationnarité d’un signal synthétique de vibration ultrasonique de fatigue. Cela motive l’exploration de

l’adaptation d’ESPRIT dans une forme plus efficace sur le plan du calcul pour les signaux de vibration

de fatigue ultrasonique in-situ.

D.4.2 Estimation rapide de la fréquence du sous-espace du signal

L’objectif de ce chapitre est de réduire la complexité de calcul d’ESPRIT, qui correspond à

l’estimation du sous-espace du signal. Ce problème n’est pas nouveau, car il existe de nombreuses

approches dans la littérature qui s’appuient sur le fait que l’étendue du sous-espace du signal est beau-

coup plus petite que son sous-espace orthogonal. Pour n’en citer que quelques-unes, dans [TM85], ils

utilisent l’algorithme de Lanczos pour converger de manière itérative vers le sous-espace du signal ;

une autre utilise des SVD partielles et des produits matrice-vecteur de Hankel rapides présentés dans

[PT15] ; et un ESPRIT basé sur Nyström [QHS14]. La contribution apportée ici est d’éviter le calcul

de la SVD/EVD, et d’exploiter le modèle de signal de Vandermonde et la matrice DFT.
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Pour le premier algorithme, il est démontré que le sous-espace complet (sous-espace du signal et

du bruit) peut être approximé par le noyau de la transformée de Fourier sur l’espace des lignes de

la matrice de données de Hankel. Cette approximation du sous-espace présente une inadéquation de

base caractérisée par le noyau de Dirichlet, ce qui indique qu’il existe une inadéquation de base lorsque

les fréquences ne se situent pas sur la grille d’échantillons uniformément espacés (fréquences off-grid).

Cela signifie que l’augmentation de la longueur du signal n’améliorera pas l’estimation. Une fois

multiplié, le sous-espace du signal correspond aux vecteurs colonnes orthogonalisés ayant les normes

l2 les plus élevées. Cet algorithme a une complexité de calcul de O(N2 logN). Pour améliorer la vitesse

et atténuer le problème des fréquences off-grid, il est proposé de tronquer la matrice DFT en fonction

de l’énergie spectrale et d’interpoler off-grid. Le résultat est l’algorithme appelé FFT-ESPRIT, qui a

une complexité de calcul de O(N logN) : cette accélération peut être vue dans Fig. D.8. Les limites

de performance de la perturbation de l’espace propre sont comparées à celles de l’ESPRIT original.

Les limites de performance suggèrent la supériorité de la FFT-ESPRIT sur l’ESPRIT conventionnel

dans les régimes SNR inférieurs, ce qui est validé par des simulations numériques. Ses performances

sont proches de celles de l’ESPRIT à des RSN élevés, et la FFT-ESPRIT apparâıt donc comme une

alternative viable pour les applications en temps réel avec des signaux de grande longueur. Dans un

contexte plus large, la FFT-ESPRIT peut être considérée comme une mise à jour par ”matrix pencil”

du modèle de signal offert par la FFT interpolée avec super-résolution.
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Figure D.8: Résultats de la simulation des durées d’exécution de l’unité centrale en fonction de la
longueur du signal pour le nombre de sinusöıdes P = 1 (à gauche) et P = 10 (à droite). La durée
en secondes est mesurée à l’aide de la fonction MATLAB timeit. La même ligne de complexité
asymptotique de O(N logN) est indiquée sur chaque graphique.

308



D.4. CHAPITRE 3 – TRAITEMENT DES SIGNAUX POUR L’ESTIMATION DES
HARMONIQUES ET L’IDENTIFICATION DES SYSTÈMES NON LINÉAIRES

D.4.3 Identification exacte de systèmes dynamiques non linéaires

La méthode SINDy (sparse identification of nonlinear dynamics) [BPK16], qui utilise l’algorithme

STLS (sequentially thresholded least squares), a gagné en popularité dans l’identification des systèmes

dynamiques non linéaires. Les développements récents comprennent diverses extensions de la méthode

SINDy, comme l’assemblage de modèles SINDy bootstrappés (E-SINDy) [Fas+22], conçus pour traiter

des données expérimentales finies et très bruyantes. Cependant, bien que ces extensions favorisent

l’éparpillement, elles ne produisent parfois que des approximations éparses plutôt qu’une récupération

exacte de la dynamique sous-jacente. En outre, ces estimateurs souffrent de la multicollinéarité, par

exemple la condition d’irreprésentabilité pour le Lasso [Tib96; FL01]. Dans cette section, le Trimmed

Lasso (TRIM) [BCM17], une pénalité non convexe, peut fournir une récupération exacte dans des

conditions plus sévères de bruit, de données finies et de multicollinéarité, contrairement à l’E-SINDy.

En outre, le coût de calcul du TRIM est asymptotiquement égal à celui du STLS, car le paramètre de

dispersion du TRIM peut être résolu efficacement par des solveurs convexes.

Les performances sont comparées sur l’oscillateur de Bouc Wen du benchmark de dynamique

non linéaire de Noël et Schoukens [NS16]. TRIM surpasse d’autres régressions éparses dans le cadre

de SINDy, ainsi que d’autres résultats de référence en ce qui concerne leur RMSE et le nombre de

paramètres dans Table D.1. La majorité des autres méthodes de la littérature sont des méthodes de

bôıte noire. On peut montrer que TRIM donne des résultats compétitifs puisqu’il récupère le modèle

exact et que sa précision n’est limitée que par sa méthode d’intégration numérique.

Estimator
RMSE Multi-sine
(·10−5)

RMSE Sine Sweep
(·10−5)

Parameters

(sparsity K̂)
Exact recovery

TRIM 6.569 4.949 6 ✓

Volterra feedback [SS16] 8.409 5.601 14 ✕

Decoupled NARX [Wes+18] 5.360 1.670 206 ✕

EHH NN [Xu+20] 4.949 2.402 436 ✕

LSTM [SMN19] 5.980 2.800 21730 ✕

MIMO PNLSS [Fak+18] 1.871 1.202 217 ✕

Decoupled PNLSS [Fak+18] 1.338 1.117 51 ✕

Oracle 5.098 4.182 6 -

Table D.1: Résultats de TRIM et de la littérature pour le benchmark de Bouc Wen de [NS16]. L’entrée
”Oracle” fait référence à la RMSE trouvée en utilisant les vrais paramètres de Bouc Wen et les données
d’entrée fournies pour la simulation à l’aide du fichier p MATLAB fourni par le benchmark.
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D.5 Chapitre 4 – Ultrasonic fatigue experimental results

Dans ce chapitre, l’approche du modèle multi-échelle de Chapter 2 est utilisée avec des données de

vibration expérimentales. Pour dériver les paramètres du modèle qui décrivent la dynamique des ondes

stationnaires et la génération d’harmoniques à la vibration de la pointe, un problème de régression

est formulé pour minimiser l’écart entre les prédictions du modèle et les résultats expérimentaux.

les prévisions du modèle et les résultats expérimentaux. Ces paramètres de modèle correspondent à

la réponse mésoscopique non linéaire due aux microfissures et aux inclusions microplastiques et à la

contribution des multi-harmoniques à la vibration de la base.

Dans la première section, l’essentiel de la procédure expérimentale est détaillé, y compris la con-

figuration de la machine d’essai de fatigue par ultrasons, le matériau de l’éprouvette de fatigue et

la charge de fatigue, ainsi que la sélection des paramètres du modèle. Le cuivre polycristallin et

l’acier C70 sont testés dans le régime VHCF, dont les signaux de vibration sont enregistrés. Pour

compléter ces données vibratoires, des signaux thermographiques ainsi que des fractographies de base

sont utilisés pour catégoriser l’apparition de la microfissure et son mode de défaillance. Pour la deux-

ième section, les paramètres micromécaniques du modèle multi-échelle sont identifiés pour prédire la

génération d’harmoniques observée dans les données vibratoires expérimentales des essais de fatigue

par ultrasons, voir Fig. D.9.

La procédure d’identification repose sur une régression des harmoniques fondamentales, secondes

et troisièmes entre l’expérience et le modèle en faisant varier les paramètres micromécaniques :

{ξ̂pl, ξ̂cr, σ̂Ypl}(i) = arg min
{ξcr,ξpl,σY

pl}(i)
C(ξcr, ξpl, σYpl);

avec C({ξcr, ξpl, σYpl}(i)) =
3∑︂

h=1

(︄
Ah({ξcr, ξpl, σYpl}(i))− Âh

Âh

)︄2

où i correspond à la ième fenêtre temporelle, et h = 1, 2, 3 correspondent aux amplitudes de

l’harmonique fondamentale, de la deuxième et de la troisième harmonique. Appendix D.5 est une

régression sur les amplitudes harmoniques (hypothèse de l’onde stationnaire) effectuée par fenêtre

temporelle. Les résultats du modèle multi-échelle en ce qui concerne les paramètres micromécaniques

sont discutés et juxtaposés.

L’évolution des paramètres micromécaniques dans les modèles, en particulier la fraction volumique
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Figure D.9: Schéma de la procédure de simulation de l’éprouvette de fatigue ultrasonique multi-échelle.

des microfissures ξcr, présente des comportements distincts. Comme le montre Fig. D.10 (a), ξcr est

plus sensible que d’autres mesures in-situ dans le régime VHCF, présentant une forte augmentation

après un seuil de fraction de volume microplastique, suggérant que la microplasticité est un précurseur

de l’initiation des microfissures. La thermographie infrarouge à grande vitesse, suivant la méthode

de Ranc [RWP08], a capturé la nucléation des macrofissures, indiquant que l’augmentation de la

fraction de volume des microfissures est probablement due à des mécanismes souterrains plutôt qu’à des

macrofissures superficielles. La fractographie après rupture confirme la propagation des macrofissures

vers l’intérieur à partir de la surface.

Cependant, l’interprétation de ξcr soulève des questions quant à son caractère physique. La valeur

initiale non nulle implique l’existence de microfissures préexistantes, contribuant à la génération de

seconde harmonique, tandis qu’une diminution ultérieure contredit l’irréversibilité de la formation

de microfissures. En outre, les valeurs de la fraction volumique sont plus importantes que ce qui

est généralement attendu, ce qui remet en question la modélisation directe des microfissures diffuses

en tant que mode I orienté. Bien qu’il soit tentant d’approfondir l’analyse de la microplasticité, les
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Figure D.10: Les paramètres micromécaniques calibrés, les fractions de volume de microfissure (a)
et d’inclusion microplastique (b), qui reproduisent la génération d’harmoniques supérieures entre
l’éprouvette de fatigue en cuivre et le modèle (essai 3).

hypothèses fortes de la modélisation, telles que la négligence des fronts plastiques dans les microfissures

et l’adoption de lois de plasticité simples, soulignent la nécessité de poursuivre les études sur la

plasticité cristalline et la dynamique des dislocations à l’aide de lois de plasticité plus précises.

Contrairement aux modèles d’éprouvettes de fatigue en cuivre, le modèle d’éprouvettes en acier

C70 ne montre pas d’augmentation précoce du seuil des paramètres micromécaniques, ce qui pourrait

indiquer des caractéristiques de fatigue uniques de l’acier C70 par rapport au cuivre, bien que cela

reste incertain en raison des changements harmoniques supérieurs minimes dans les données expéri-

mentales. Le plateau observé et l’augmentation rapide des fractions de volume des microfissures et des

microplastiques dans les résultats du modèle suggèrent une disparité entre les hypothèses du modèle

et les résultats expérimentaux. Notamment, l’analyse fractographique de l’acier C70, comme le mon-

trent, révèle une rupture en œil de poisson provenant d’un super grain de perlite, mais ces observations

n’expliquent pas entièrement la faible, voire l’absence d’évolution des paramètres du modèle micromé-

canique dans les données expérimentales. Cela suggère que la génération d’harmoniques provenant

de microfissures ou de phénomènes microplastiques n’est pas suffisamment importante par rapport à

la vibration de base multi-harmonique, supprimant les indications précoces des paramètres micromé-

caniques, une conclusion soutenue par les simulations micromécaniques dans Chapter 2.
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D.6 Conclusions et perspectives

Cette thèse visait à développer une méthodologie in-situ pour estimer et interpréter les non-

linéarités présentes pendant les essais de fatigue par ultrasons dans le domaine VHCF. Il est démontré

que la charge à haute fréquence de la machine d’essai de fatigue ultrasonique produit des harmoniques

plus élevées dans le signal de vibration. La source de cette génération d’harmoniques est étudiée à la

fois du point de vue expérimental et du point de vue de la modélisation. L’objectif est d’isoler les non-

linéarités du matériau dues aux changements micromécaniques des autres non-linéarités du système.

Ceci est compliqué par le fait que les machines d’essai de fatigue par ultrasons ont une onde d’entrée

multi-harmonique qui sollicite une éprouvette de fatigue par ultrasons. Vous trouverez ci-dessous un

résumé des principales conclusions :

Modèles de matériaux non linéaires

• L’analyse du paramètre acoustique non linéaire s’avère erronée pour les essais de fatigue ultra-

sonique : la non-linéarité du matériau ne contribue que faiblement à la génération de la deuxième

harmonique. La différence de magnitude est d’environ dix pour le cuivre polycristallin au VHCF.

• Les modèles d’homogénéisation basés sur Eshelby des microfissures diffuses avec fermeture et in-

clusions microplastiques se révèlent être un candidat pour la source mésoscopique de génération

d’harmoniques non linéaires. Lorsqu’il est soumis à une entrée multi-harmonique, le comporte-

ment de la génération d’harmoniques non linéaires devient de plus en plus complexe et insensible

par rapport à une entrée mono-harmonique, à mesure que la fraction de volume des hétérogénéités

augmente.

• Un modèle de macrofissure en mode I avec fermeture présente une génération d’harmoniques

non linéaires similaire à celle du modèle de microfissure, sauf qu’il est paramétré par la surface

de la fissure. La forme analytique du modèle démontre également que sous différents rapports de

charge, la génération harmonique non linéaire devient de plus en plus complexe en raison d’une

modulation sincère.

Traitement des signaux de fatigue ultrasonique
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• L’estimation des paramètres sinusöıdaux est influencée par les compromis entre la longueur des

fenêtres et la précision lorsqu’il s’agit de la quasi-stationnarité et de la limite de Rayleigh. Une

petite fenêtre temporelle est plus localement stationnaire que des fenêtres plus grandes, réduit le

temps de calcul des algorithmes d’estimation sinusöıdale et fournit des estimations de paramètres

plus discrètes.

• Le benchmark réalisé sur les signaux quasi-stationnaires trouvés dans les vibrations VHCF a

révélé que les algorithmes ESPRIT et NOMP présentent le meilleur compromis entre la longueur

du signal et la précision. Cependant, ESPRIT est un algorithme cubique-complexe. Cela motive

l’exploration de l’adaptation d’ESPRIT dans une forme plus efficace en termes de calcul pour

les signaux de vibration de fatigue ultrasonique in-situ.

• Un algorithme basé sur ESPRIT est développé, à savoir FFT-ESPRIT, qui approxime le sous-

espace du signal à partir de la FFT. L’algorithme atteint une précision similaire à celle de

l’algorithme ESPRIT original. La complexité de calcul est réduite d’une complexité cubique à

une complexité quasi-linéaire grâce à une implémentation lourde de la FFT et aux propriétés de

la matrice de Hankel du signal.

Modèle d’éprouvette de fatigue ultrasonique

• La nature en régime permanent de la dynamique du système de fatigue ultrasonore permet

d’obtenir un modèle d’ordre réduit de l’éprouvette de fatigue ultrasonore. Cela permet un calcul

rapide à l’aide de fonctions de forme modales. La nature localisée de la fatigue est prise en

compte par la contribution modale des non-linéarités à un volume centröıde. Une solution des

équations globales du mouvement est calculée par la méthode de l’équilibre harmonique. Cela

permet d’éviter les solutions dynamiques coûteuses basées sur les éléments finis.

• Les conditions limites du modèle démontrent que la vibration de base justifie l’utilisation d’un

second vibromètre laser pour tenir compte de l’entrée multi-harmonique.

• Pour les données expérimentales des éprouvettes de cuivre polycristallin et d’acier C70, le modèle

multiéchelle simulé a réussi à décrire la génération des deuxième et troisième harmoniques dans

les données expérimentales pour les deux éprouvettes de fatigue avec une faible erreur avant la

propagation de la macrofissure.
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• Pour le cuivre polycristallin, l’évolution de la fraction volumique des microfissures passe d’une

croissance linéaire à une croissance exponentielle dans le régime VHCF, alors qu’avant le régime

HCF, la croissance linéaire n’est pas prononcée. La durée de vie avant ces changements corre-

spond à 50% pour le régime VHCF (Nf = 1.5 ·108) et 77% pour le régime HCF (Nf = 8.9 ·106).

Dans les deux régimes, on observe une augmentation régulière de la fraction volumique des

inclusions microplastiques dès le début. L’interprétation physique de ces paramètres suggère

que les essais de fatigue ultrasonique du cuivre montrent une augmentation monotone de la

microplasticité, qui est un précurseur de dommages.

• Pour l’acier C70, l’évolution des fractions volumiques des microfissures et des inclusions mi-

croplastiques reflète la génération d’harmoniques négligeable observée dans les expériences de

fatigue ultrasonique. L’évolution des paramètres est cohérente lorsque la macrofissure se forme.

L’interprétation physique de ces paramètres suggère que la génération d’harmoniques due à

d’éventuelles microfissures et/ou à des phénomènes microplastiques n’est pas assez forte par

rapport à l’effet d’une vibration de base multi-harmonique.

Ici, on remarque que certains aspects clés peuvent être explorés afin d’améliorer la compréhension

ou les résultats présentés dans cette thèse :

• Les harmoniques multiples présents dans l’entrée de l’éprouvette de fatigue est soupçonné de

diminuer la sensibilité de la génération d’harmoniques supérieures des non-linéarités matérielles.

Par conséquent, un effort pour améliorer la fidélité des amplitudes harmoniques peut provenir

d’une amélioration de la linéarité de la machine d’essai de fatigue par ultrasons. Une technique de

prédistorsion efficace appliquée au signal de tension d’entrée, par exemple les travaux de [NSL18],

peut linéariser la non-linéarité due au transducteur ultrasonique, en fournissant idéalement des

harmoniques supérieures moins proéminentes.

• Une exploration plus poussée des divergences entre les sources physiques de génération

d’harmoniques et les modèles de matériaux non linéaires est justifiée. Cela est suggéré pour

le cuivre polycristallin (ou les métaux ductiles à phase unique) ainsi que pour l’acier C70 (ou

les matériaux de type II). L’interprétation physique des paramètres micromécaniques suggère

des phénomènes à la fois prometteurs et impossibles (la diminution de la fraction volumique des

microfissures dans le cuivre).
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• Les modèles de matériaux non linéaires peuvent être améliorés pour prendre en compte des com-

portements de plus en plus complexes qui correspondent mieux à la physique. Par exemple, une

fissure avec un contact parfait (pas de frottement) n’est pas une source dissipative. Cependant,

dans la réalité, les microfissures et la microplasticité sont intrinsèquement liées, en raison de la

plasticité du front de la fissure et de l’énergie utilisée pour propager la fissure. La prise en compte

des effets de la température au niveau de ce centröıde peut permettre d’obtenir des résultats.

• Une attention particulière a été accordée à l’introduction d’une approche axée sur les données

pour l’analyse des données de mesure des vibrations. Dans ce cadre, des contributions ont

été faites pour améliorer l’algorithme utilisé dans le cadre de SINDy. Cependant, l’application

pratique de TRIM sur les expériences de fatigue ultrasonique n’a pas pu être réalisée dans

le temps imparti de cette thèse. Cela reste un domaine d’exploration future, qui encourage

l’apprentissage automatique interprétable.
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Résumé : La recherche sur le régime de fatigue à très haut cycle (VHCF) est rendue possible par l’utilisation d’essais
de fatigue ultrasonore qui permettent d’atteindre en quelques jours des milliard de cycles. Les mesures et analyses
classiques sont cependant limitées car peu sensibles à la microplasticité ou aux dommages (microfissures et microvides)
qui conduisent finalement à la rupture par fatigue lors de ces essais. Ces mécanismes de fatigue sont donc en pratique
difficiles à détecter expérimentalement à un stade précoce. Cependant, les dommages décrits précédemment peuvent
présenter un comportement dynamique non linéaire qui peut être exploiter pour surveiller l’apparition d’endommagement
par fatigue. Ainsi, les vibrations non-linéaires d’ondes stationnaires dans un l’échantillon de fatigue endommagé sont
étudiées dans le contexte de la détection d’endommagement lors d’essais de fatigue ultrasonore. La modélisation de
différents phénomènes non linéaires est étudiée à différentes échelles spatiales. Les modèles mésoscopiques d’inclusions
microplastiques diffuses et de microfissures se situent à une échelle de longueur du même ordre que la longueur d’onde de
la vibration, et sont considérés comme une source potentielle de génération d’harmoniques. L’entrée multi-harmonique
fournie par la machine d’essai de fatigue ultrasonique influence de manière significative la sensibilité et le comportement
de la génération d’harmoniques des non-linéarités du spécimen. Pour y remédier, un modèle de spécimen de fatigue
multi-échelle qui accompagne cette condition limite est utilisé. Le dispositif expérimental est modifié pour inclure un
vibromètre laser supplémentaire afin de tenir compte de cet effet. Des algorithmes de traitement du signal permettant
l’extraction des paramètres harmoniques expérimentaux sont comparés, et un nouvel algorithme est développé et
sélectionné pour sa rapidité et sa précision. Une pénalité non convexe est introduite pour l’identification de systèmes non
linéaires guidée par les données, surpassant les algorithmes de pointe existants. Enfin, les signaux de vibration des essais
de fatigue par ultrasons des éprouvettes de fatigue en cuivre et en acier dans le régime VHCF sont utilisés pour évaluer
la capacité du modèle multi-échelle à modéliser la génération d’harmoniques observée.

Mots clés : Fatigue à très grand nombre de cycles, Génération d’harmoniques d’ordre élevé, Micromécanique,
Homogénéisation, Traitement du signal, Dynamique non linéaire, Optimisation.

Abstract : Research into the very high cycle fatigue (VHCF) regime is made possible through the usage of ultrasonic
fatigue tests, which can achieve billions of cycles in just a few days. However classical measurement and analysis are
insensitive to microplasticity and/or damage (microcracks and microvoids), which eventually lead to fatigue failure.
Consequently, these fatigue mechanisms are difficult to detect at early stages. However, the material nonlinearities maybe
sensitive to high-frequency loading and exhibit nonlinear behavior such as higher harmonic generation at multiples of
the applied frequency. Thus, the standing wave vibration of the fatigue specimen is explored in the context of nonlinear
harmonic generation. The modeling of different nonlinear material phenomena is explored at their different length scales.
Mesoscopic models of diffuse microplastic inclusions and microcracks are at a length scale of the same order as the
vibration wavelength, and is attributed to be a potential source of harmonic generation. The multi-harmonic input given
by the ultrasonic fatigue testing machine significantly influences the sensitivity and behavior of harmonic generation
of the material nonlinearities. To address this, a multiscale fatigue specimen model which accompanies this boundary
condition is employed. The experimental setup is modified to include an additional laser vibrometer to account for this
effect. Accurate signal processing algorithms for the extraction of experimental harmonic parameters are benchmarked,
and a new algorithm is developed for speed and accuracy. A non-convex penalty is introduced for data-driven sparse
nonlinear system identification, surpassing existing state-of-the-art algorithms. Finally, the ultrasonic fatigue test
vibration signals from copper and steel fatigue specimens in the VHCF regime are used to assess the multiscale model’s
ability to model the observed harmonic generation.

Keywords : Very high cycle fatigue, Higher harmonic generation, Micromechanics, Homogenization, Signal
processing, Nonlinear dynamics, Optimization.
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