Analysis of the gravitational coupled collisionless Boltzmann-poisson equations and numerical simulations of the formation of self-gravitating systems
Etude du système couplé Boltzmann sans collisions-Poisson pour la gravitation: simulations numériques de la formation des systèmes auto-gravitants
Résumé
We study the formation of self-gravitating systems and their properties by means of N-body simulations of gravitational collapse. First, we summarize the major analytical results concerning the collisionless Boltzmann equation and the Poisson's equation which describe the dynamics of collisionless gravitational systems. We present a study of some analytical solutions of this coupled system of equations. We then present the software used to perform the simulations. Some of this has been parallelized and implemented with the aid of MPI. For this reason we give a brief overview of it. Finally, we present the results of the numerical simulations. Analysis of these results allows us to explain some features of self-gravitating systems and the initial conditions needed to trigger the Antonov instability and the radial orbit instability.
Nous étudions la formation et les propriétés des systèmes auto-gravitants à l'aide de simulations numériques à N corps d'effondrements gravitationnels. Nous effectuons dans un premier temps une synthèse des principaux résultats analytiques concernant les équations de Boltzmann sans collisions et de Poisson, qui modélisent les systèmes gravitationnels non collisionnels ainsi que certaines solutions analytiques de ce système couplé d'équations. Nous présentons ensuite les codes de calcul utilisés pour les simulations. Nous avons parallélisé certains de ces codes, nous introduisons donc le calcul parallèle et la bibliothèque d'échange de message MPI. Nous exposons enfin les résultats de nos simulations, et leurs analyses. Nous déduisons de ces analyses divers résultats pouvant expliquer différentes caractéristiques des systèmes auto-gravitants ainsi que les conditions initiales nécessaires au déclenchement des instabilités d'Antonov et d'orbites radiales.
Loading...