Résolution des équations de stabilité globale en régimes incompressible et compressible avec une méthode aux différences finies de haute précision - PASTEL - Thèses en ligne de ParisTech Access content directly
Theses Year : 2009

High order finite-difference scheme for the resolution of the global linear stability equations in incompressible and compressible flows.

Résolution des équations de stabilité globale en régimes incompressible et compressible avec une méthode aux différences finies de haute précision

Abstract

Most of flows in fluid dynamics is concerned by unsteady phenomenon. In aerospatial issue, low-frequency instationarities have been observed during the development of rocket's motors. These phenomena, which are due to the interaction between the shock wave caused by the pressure difference between the upstream and the downstream of the rocket, and the turbulent boundary layer developing on the inner wall, can provoke deformations of the rocket or inconvenient movements of its fixing system. Many works have been tackled in order to determine its source. Stability analysis is a way. In the circumstances, the aim of this PhD thesis is to develop a curvilinear compressible global stability code in order to study the stability of the interaction in the rocket. The unknows of the problem are evaluated by a DRP finite-difference scheme. Then the code is validated through many incompressible and compressible test cases in curvilinear geometries. These configurations also show the advantage of the used discretization scheme compared to classical scheme used in this kind of problems
La plupart des écoulements en dynamique des fluides génèrent ou rencontrent des phénomènes instationnaires. Dans le domaine de l'aérospatial, au cours de la mise au point de certains moteurs de fusées d'altitude, des instationnarités basses fréquences ont été observées. Ces phénomènes, liés à l'interaction entre l'onde de choc et la couche limite turbulente qui se développe sur les parois, peuvent engendrer des déformations de la tuyère ou des mouvements inopportuns par rapport à son système d'attache. De nombreux travaux ont ´et´e entrepris afin d'en déterminer l'origine. L'´etude de la stabilité entre dans ce cadre. Dans ce contexte, le propos de cette thèse est de développer un code de stabilité globale adapté aux écoulements en régime compressible et en géométrie curviligne afin d'étudier la stabilité de l'interaction au sein de la tuyère. La résolution du problème est assuré par un schéma aux différences finies de type DRP. Le code est validé à travers plusieurs cas-tests incompressibles, compressibles et en maillage curviligne. Ces configurations permettent également de souligner les avantages du schéma de discrétisation retenu par rapport `a d'autres solutions plus classiques utilisées généralement dans ce type de problèmes.
Fichier principal
Vignette du fichier
Merle_PhD_2009.pdf (13.83 Mo) Télécharger le fichier
Loading...

Dates and versions

pastel-00005302 , version 1 (29-09-2009)

Identifiers

  • HAL Id : pastel-00005302 , version 1

Cite

Xavier Merle. Résolution des équations de stabilité globale en régimes incompressible et compressible avec une méthode aux différences finies de haute précision. Sciences de l'ingénieur [physics]. Arts et Métiers ParisTech, 2009. Français. ⟨NNT : 2009ENAM0016⟩. ⟨pastel-00005302⟩

Collections

PASTEL PARISTECH
323 View
1044 Download

Share

Gmail Facebook X LinkedIn More