Multidimensional martingale optimal transport.
Transport optimal de martingale multidimensionnel.
Résumé
In this thesis, we study various aspects of martingale optimal transport in dimension greater than one, from duality to local structure, and finally we propose numerical approximation methods.We first prove the existence of irreducible intrinsic components to martingal transport between two given measurements, as well as the canonicity of these components. We have then proved a duality result for optimal martingale transport in any dimension, point by-point duality is no longer true but a form of quasi safe duality is demonstrated. This duality makes it possible to demonstrate the possibility of decomposing the quasi-safe optimal transport into a series of optimal transport subproblems point by point on each irreducible component. Finally, this duality is used to demonstrate a principle of martingale monotony, analogous to the famous monotonic principle of classical optimal transport. We then study the local structure of optimal transport, deduced from differential considerations. We thus obtain a characterization of this structure using tools of real algebraic geometry. We deduce the optimal martingal transport structure in the case of the power costs of the Euclidean norm, which makes it possible to solve a conjecture that dates from 2015. Finally, we compared the existingnumerical methods and proposed a new method which proves more efficient and allows to treat an intrinsic problem of the martingale constraint which is the defect of convex order. Techniques are also provided to manage digital problems in practice.
Nous étudions dans cette thèse divers aspects du transport optimal martingale en dimension plus grande que un, de la dualité à la structure locale, puis nous proposons finalement des méthodes d’approximation numérique.On prouve d’abord l’existence de composantes irréductibles intrinsèques aux transports martingales entre deux mesures données, ainsi que la canonicité de ces composantes. Nous avons ensuite prouvé un résultat de dualité pour le transport optimal martingale en dimension quelconque, la dualité point par point n’est plus vraie mais une forme de dualité quasi-sûre est démontrée. Cette dualité permet de démontrer la possibilité de décomposer le transport optimal quasi-sûre en une série de sous-problèmes de transports optimaux point par point sur chaque composante irréductible. On utilise enfin cette dualité pour démontrer un principe de monotonie martingale, analogue au célèbre principe de monotonie du transport optimal classique. Nous étudions ensuite la structure locale des transports optimaux, déduite de considérations différentielles. On obtient ainsi une caractérisation de cette structure en utilisant des outils de géométrie algébrique réelle. On en déduit la structure des transports optimaux martingales dans le cas des coûts puissances de la norme euclidienne, ce qui permet de résoudre une conjecture qui date de 2015. Finalement, nous avons comparé les méthodes numériques existantes et proposé une nouvelle méthode qui s’avère plus efficace et permet de traiter un problème intrinsèque de la contrainte martingale qu’est le défaut d’ordre convexe. On donne également des techniques pour gérer en pratique les problèmes numériques.
Origine | Version validée par le jury (STAR) |
---|
Loading...