Reconstruction et correspondance de formes par apprentissage - PASTEL - Thèses en ligne de ParisTech Access content directly
Theses Year : 2020

Learning 3D Generation and Matching

Reconstruction et correspondance de formes par apprentissage

Abstract

The goal of this thesis is to develop deep learning approaches to model and analyse 3D shapes. Progress in this field could democratize artistic creation of 3D assets which currently requires time and expert skills with technical software.We focus on the design of deep learning solutions for two particular tasks, key to many 3D modeling applications: single-view reconstruction and shape matching.A single-view reconstruction (SVR) method takes as input a single image and predicts the physical world which produced that image. SVR dates back to the early days of computer vision. In particular, in the 1960s, Lawrence G. Roberts proposed to align simple 3D primitives to the input image under the assumption that the physical world is made of cuboids. Another approach proposed by Berthold Horn in the 1970s is to decompose the input image in intrinsic images and use those to predict the depth of every input pixel.Since several configurations of shapes, texture and illumination can explain the same image, both approaches need to form assumptions on the distribution of images and 3D shapes to resolve the ambiguity. In this thesis, we learn these assumptions from large-scale datasets instead of manually designing them. Learning allows us to perform complete object reconstruction, including parts which are not visible in the input image.Shape matching aims at finding correspondences between 3D objects. Solving this task requires both a local and global understanding of 3D shapes which is hard to achieve explicitly. Instead we train neural networks on large-scale datasets to solve this task and capture this knowledge implicitly through their internal parameters.Shape matching supports many 3D modeling applications such as attribute transfer, automatic rigging for animation, or mesh editing.The first technical contribution of this thesis is a new parametric representation of 3D surfaces modeled by neural networks.The choice of data representation is a critical aspect of any 3D reconstruction algorithm. Until recently, most of the approaches in deep 3D model generation were predicting volumetric voxel grids or point clouds, which are discrete representations. Instead, we present an alternative approach that predicts a parametric surface deformation ie a mapping from a template to a target geometry. To demonstrate the benefits of such a representation, we train a deep encoder-decoder for single-view reconstruction using our new representation. Our approach, dubbed AtlasNet, is the first deep single-view reconstruction approach able to reconstruct meshes from images without relying on an independent post-processing, and can do it at arbitrary resolution without memory issues. A more detailed analysis of AtlasNet reveals it also generalizes better to categories it has not been trained on than other deep 3D generation approaches.Our second main contribution is a novel shape matching approach purely based on reconstruction via deformations. We show that the quality of the shape reconstructions is critical to obtain good correspondences, and therefore introduce a test-time optimization scheme to refine the learned deformations. For humans and other deformable shape categories deviating by a near-isometry, our approach can leverage a shape template and isometric regularization of the surface deformations. As category exhibiting non-isometric variations, such as chairs, do not have a clear template, we learn how to deform any shape into any other and leverage cycle-consistency constraints to learn meaningful correspondences. Our reconstruction-for-matching strategy operates directly on point clouds, is robust to many types of perturbations, and outperforms the state of the art by 15% on dense matching of real human scans
L'objectif de cette thèse est de développer des approches d'apprentissage profond pour modéliser et analyser les formes 3D. Les progrès dans ce domaine pourraient démocratiser la création artistique d'actifs 3D, actuellement coûteuse en temps et réservés aux experts du domaine. Nous nous concentrons en particulier sur deux tâches clefs pour la modélisation 3D : la reconstruction à vue unique et la mise en correspondance de formes.Une méthode de reconstruction à vue unique (SVR) prend comme entrée une seule image et prédit le monde physique qui a produit cette image. SVR remonte aux premiers jours de la vision par ordinateur. Étant donné que plusieurs configurations de formes, de textures et d'éclairage peuvent expliquer la même image il faut formuler des hypothèses sur la distribution d'images et de formes 3D pour résoudre l’ambiguïté. Dans cette thèse, nous apprenons ces hypothèses à partir de jeux de données à grande échelle au lieu de les concevoir manuellement. Les méthodes d'apprentissage nous permettent d'effectuer une reconstruction complète et réaliste de l'objet, y compris des parties qui ne sont pas visibles dans l'image d'entrée.La mise en correspondance de forme vise à établir des correspondances entre des objets 3D. Résoudre cette tâche nécessite à la fois une compréhension locale et globale des formes 3D qui est difficile à obtenir explicitement. Au lieu de cela, nous entraînons des réseaux neuronaux sur de grands jeux de données pour capturer ces connaissances implicitement.La mise en correspondance de forme a de nombreuses applications en modélisation 3D telles que le transfert d'attribut, le gréement automatique pour l'animation ou l'édition de maillage.La première contribution technique de cette thèse est une nouvelle représentation paramétrique des surfaces 3D modélisées par les réseaux neuronaux. Le choix de la représentation des données est un aspect critique de tout algorithme de reconstruction 3D. Jusqu'à récemment, la plupart des approches profondes en génération 3D prédisaient des grilles volumétriques de voxel ou des nuages de points, qui sont des représentations discrètes. Au lieu de cela, nous présentons une approche qui prédit une déformation paramétrique de surface, c'est-à-dire une déformation d'un modèle source vers une forme objectif. Pour démontrer les avantages ses avantages, nous utilisons notre nouvelle représentation pour la reconstruction à vue unique. Notre approche, baptisée AtlasNet, est la première approche profonde de reconstruction à vue unique capable de reconstruire des maillages à partir d'images sans s’appuyer sur un post-traitement indépendant, et peut le faire à une résolution arbitraire sans problèmes de mémoire. Une analyse plus détaillée d’AtlasNet révèle qu'il généralise également mieux que les autres approches aux catégories sur lesquelles il n'a pas été entraîné.Notre deuxième contribution est une nouvelle approche de correspondance de forme purement basée sur la reconstruction par des déformations. Nous montrons que la qualité des reconstructions de forme est essentielle pour obtenir de bonnes correspondances, et donc introduisons une optimisation au moment de l'inférence pour affiner les déformations apprises. Pour les humains et d'autres catégories de formes déformables déviant par une quasi-isométrie, notre approche peut tirer parti d'un modèle et d'une régularisation isométrique des déformations. Comme les catégories présentant des variations non isométriques, telles que les chaises, n'ont pas de modèle clair, nous apprenons à déformer n'importe quelle forme en n'importe quelle autre et tirons parti des contraintes de cohérence du cycle pour apprendre des correspondances qui respectent la sémantique des objets. Notre approche de correspondance de forme fonctionne directement sur les nuages de points, est robuste à de nombreux types de perturbations, et surpasse l'état de l'art de 15% sur des scans d'humains réels
Fichier principal
Vignette du fichier
TH2020PESC1024.pdf (45.06 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-03127055 , version 1 (08-02-2021)
tel-03127055 , version 2 (09-02-2021)

Identifiers

  • HAL Id : tel-03127055 , version 2

Cite

Thibault Groueix. Reconstruction et correspondance de formes par apprentissage. Automatique. Université Paris-Est, 2020. Français. ⟨NNT : 2020PESC1024⟩. ⟨tel-03127055v2⟩
706 View
54 Download

Share

Gmail Facebook X LinkedIn More