On the Algorithms of Guruswami-Sudan List Decoding over Finite Rings
Sur l'algorithme de décodage en liste de Guruswami-Sudan sur les anneaux finis
Résumé
This thesis studies the algorithmic techniques of list decoding, first proposed by Guruswami and Sudan in 1998, in the context of Reed-Solomon codes over finite rings. Two approaches are considered. First we adapt the Guruswami-Sudan (GS) list decoding algorithm to generalized Reed-Solomon (GRS) codes over finite rings with identity. We study in details the complexities of the algorithms for GRS codes over Galois rings and truncated power series rings. Then we explore more deeply a lifting technique for list decoding. We show that the latter technique is able to correct more error patterns than the original GS list decoding algorithm. We apply the technique to GRS code over Galois rings and truncated power series rings and show that the algorithms coming from this technique have a lower complexity than the original GS algorithm. We show that it can be easily adapted for interleaved Reed-Solomon codes. Finally we present the complete implementation in C and C++ of the list decoding algorithms studied in this thesis. All the needed subroutines, such as univariate polynomial root finding algorithms, finite fields and rings arithmetic, are also presented. Independently, this manuscript contains other work produced during the thesis. We study quasi cyclic codes in details and show that they are in one-to-one correspondence with left principal ideal of a certain matrix ring. Then we adapt the GS framework for ideal based codes to number fields codes and provide a list decoding algorithm for the latter.
Cette thèse porte sur l'algorithmique des techniques de décodage en liste, initiée par Guruswami et Sudan en 1998, dans le contexte des codes de Reed-Solomon sur les anneaux finis. Deux approches sont considérées. Dans un premier temps, nous adaptons l'algorithme de décodage en liste de Guruswami-Sudan aux codes de Reed-Solomon généralisés sur les anneaux finis. Nous étudions en détails les complexités de l'algorithme pour les anneaux de Galois et les anneaux de séries tronquées. Dans un deuxième temps nous approfondissons l'étude d'une technique de remontée pour le décodage en liste. Nous montrons que cette derni're permet de corriger davantage de motifs d'erreurs que la technique de Guruswami-Sudan originale. Nous appliquons ensuite cette même technique aux codes de Reed-Solomon généralisés sur les anneaux de Galois et les anneaux de séries tronquées et obtenons de meilleures bornes de complexités. Enfin nous présentons l'implantation des algorithmes en C et C++ des algorithmes de décodage en liste étudiés au cours de cette thèse. Tous les sous-algorithmes nécessaires au décodage en liste, comme la recherche de racines pour les polynômes univariés, l'arithmétique des corps et anneaux finis sont aussi présentés. Indépendamment, ce manuscrit contient d'autres travaux sur les codes quasi-cycliques. Nous prouvons qu'ils sont en correspondance biunivoque avec les idéaux à gauche d'un certain anneaux de matrices. Enfin nous adaptons le cadre proposé par Guruswami et Sudan pour les codes à base d'ideaux aux codes construits à l'aide des corps de nombres. Nous fournissons un algorithme de décodage en liste dans ce contexte.
Loading...