Caractérisation et simulation numérique du comportement mécanique des mousses de nickel : morphologie tridimensionnelle, réponse élastoplastique et rupture - PASTEL - Thèses en ligne de ParisTech Access content directly
Theses Year : 2004

Mechanical behaviour of nickel foams : three-dimensional morphology, non-linear models and fracture

Caractérisation et simulation numérique du comportement mécanique des mousses de nickel : morphologie tridimensionnelle, réponse élastoplastique et rupture

Abstract

The deformation behaviour and failure of nickel foams were studied during loading by using X-ray microtomography. Strut alignment and stretching are observed in tension whereas strut bending followed
by strut buckling are observed in compression. Strain localisation, that occurs during compression tests, depends on nickel weight distribution in the foam. Fracture in tension first takes place at cell nodes and the crack propagates cell by cell. The damaged area in front of a crack is about five cells wide. A detailed
description of the three-dimensional morphology is also presented. One third of the cells are dodecahedra and 57 % of the faces are pentagonal. The most frequent cell is composed of two quadrilaterals, two hexagons and eight pentagons. The dimensions of the equivalent ellipsoid of each cell are identified and
cell orientation are determined. The geometrical aspect ratio is linked to the mechanical anisotropy of the foam.
L'objectif de ces travaux de thèse est double. Il consiste, dans un premier temps, à étudier la microstructure des mousses de nickel ainsi que les mécanismes locaux de déformation et de rupture, puis, dans un second temps, à proposer une modélisation du comportement mécanique global en traction des mousses. Des essais mécaniques in-situ sous MEB ou en tomographie aux rayons X ont été réalisés. Ces essais montrent que les mécanismes de déformation en traction diffèrent de ceux observés en compression. La mousse se déforme en traction par réalignement et étirement des brins tandis qu'une flexion suivie d'un flambement des brins s'opèrent en compression. De plus, une forte localisation de la déformation dans les zones moins denses de la mousse est visualisée au cours d'un essai de compression. L'étude des mécanismes de rupture en traction fait aussi apparaître que la fissuration des mousses, majoritairement transgranulaire, intervient préférentiel-lement aux nœuds. Sa propagation s'effectue cellule par cellule et la zone endommagée possède une largeur d'environ cinq cellules. A partir des essais de tomographie aux rayons X, l'architecture initiale de la mousse ainsi que son évolution au cours du chargement ont été reconstruites. L'analyse de la morphologie tridimensionnelle de la mousse montre qu'un tiers des cellules est constitué de dodécahèdres et que 57% des faces des cellules sont pentagonales. L'influence du procédé de fabrication de la mousse est de deuxième importance par rapport à celui de la mousse précurseur en polyuréthanne. Les cellules sont allongées et orientées suivant la direction normale de la mousse. Cette anisotropie géométrique explique, au moyen d'un modèle analytique simple, l'anisotropie élastique observée en traction. La forme de la cellule la plus répandue a aussi été identifiée. Il s'agit d'un dodécahèdre, composé de deux quadrilatères, de huit pentagones et de deux hexagones. Pour modéliser le comportement mécanique des mousses en traction, deux voies ont été envisagées. La première consiste à décrire la mousse par un réseau de poutres se déformant uniquement par flexion. Le comportement uniaxial des mousses est alors simulé en fonction de la densité et de l'anisotropie géométrique. Le modèle montre que l'arrivée et la propagation du front plastique dans la poutre ne suffisent pas à expliquer la non linéarité du comportement macroscopique observée expérimentalement. A partir des lois de comportement des matériaux constitutifs des brins de la mousse, le modèle est aussi capable de prévoir le comportement uniaxial global de mousses multiphasées. L'application du modèle à deux phases au cas des mousses de nickel oxydées prouve que le comportement plus rigide des mousses oxydées peut être prédit en fonction de leur degré d'oxydation en tenant compte, toutefois, de la rupture de la couche d'oxyde. La deuxième approche, plus phénoménologique, met en œuvre une vision continue de la mousse. La mousse est alors assimilée à un milieu homogène équivalent. Des essais mécaniques, mesurant simultanément les déformations instantanées dans les trois directions principales de la mousse, ont été développés pour identifier les paramètres du modèle. Le modèle multiaxial est alors testé autour d'un trou macroscopique réalisé dans une plaque de mousse, puis validé par comparaison avec les champs de déformation issus d'essais photomécaniques. Ces essais photomécaniques mettent en exergue des hétérogé-néités de déformation non expliquées ainsi qu'un effet d'échelle dû à la taille critique d'un trou dans un milieu poreux. Le modèle classique, inapte à prévoir cet effet de taille, est alors étendu vers la mécanique des milieux continus généralisés. En introduisant une seule variable interne supplémentaire, le modèle micromorphe choisi est capable de rendre compte de l'effet d'échelle observé expérimentalement. De plus, ce modèle permet aussi de donner une bonne estimation de la largeur de la zone fissurée et de la ductilité des mousses en présence de fissures
Fichier principal
Vignette du fichier
tel-00007530.pdf (13.5 Mo) Télécharger le fichier
Loading...

Dates and versions

tel-00007530 , version 1 (01-12-2004)

Identifiers

  • HAL Id : tel-00007530 , version 1

Cite

Thierry Dillard. Caractérisation et simulation numérique du comportement mécanique des mousses de nickel : morphologie tridimensionnelle, réponse élastoplastique et rupture. Mécanique [physics.med-ph]. École Nationale Supérieure des Mines de Paris, 2004. Français. ⟨NNT : ⟩. ⟨tel-00007530⟩
661 View
1197 Download

Share

Gmail Facebook X LinkedIn More