Learning from Sequences with Point Processes - PASTEL - Thèses en ligne de ParisTech
Thèse Année : 2017

Learning from Sequences with Point Processes

Apprentissage statistique pour séquences d’évènements à l’aide de processus ponctuels

Résumé

The guiding principle of this thesis is to show how the arsenal of recent optimization methods can help solving challenging new estimation problems on events models.While the classical framework of supervised learning treat the observations as a collection of independent couples of features and labels, events models focus on arrival timestamps to extract information from the source of data.These timestamped events are chronologically ordered and can't be regarded as independent.This mere statement motivates the use of a particular mathematical object called point process to learn some patterns from events.Two examples of point process are treated in this thesis.The first is the point process behind Cox proportional hazards model:its conditional intensity function allows to define the hazard ratio, a fundamental quantity in survival analysis literature.The Cox regression model relates the duration before an event called failure to some covariates.This model can be reformulated in the framework of point processes.The second is the Hawkes process which models how past events increase the probability of future events.Its multivariate version enables encoding a notion of causality between the different nodes.The thesis is divided into three parts.The first focuses on a new optimization algorithm we developed to estimate the parameter vector of the Cox regression in the large-scale setting.Our algorithm is based on stochastic variance reduced gradient descent (SVRG) and uses Monte Carlo Markov Chain to estimate one costly term in the descent direction.We proved the convergence rates and showed its numerical performance on both simulated and real-world datasets.The second part shows how the Hawkes causality can be retrieved in a nonparametric fashion from the integrated cumulants of the multivariate point process.We designed two methods to estimate the integrals of the Hawkes kernels without any assumption on the shape of the kernel functions. Our methods are faster and more robust towards the shape of the kernels compared to state-of-the-art methods. We proved the statistical consistency of the first method, and designed turned the second into a convex optimization problem.The last part provides new insights from order book data using the first nonparametric method developed in the second part.We used data from the EUREX exchange, designed new order book model (based on the previous works of Bacry et al.) and ran the estimation method on these point processes.The results are very insightful and consistent with an econometric analysis.Such work is a proof of concept that our estimation method can be used on complex data like high-frequency financial data.
Le but de cette thèse est de montrer que l'arsenal des nouvelles méthodes d'optimisation permet de résoudre des problèmes d'estimation difficile basés sur les modèles d'évènements.Alors que le cadre classique de l'apprentissage supervisé traite les observations comme une collection de couples de covariables et de label, les modèles d'évènements ne regardent que les temps d'arrivée d'évènements et cherchent alors à extraire de l'information sur la source de donnée.Ces évènements datés sont ordonnés de façon chronologique et ne peuvent dès lors être considérés comme indépendants.Ce simple fait justifie l'usage d'un outil mathématique particulier appelé processus ponctuel pour apprendre une certaine structure à partir de ces évènements.Deux exemples de processus ponctuels sont étudiés dans cette thèse.Le premier est le processus ponctuel derrière le modèle de Cox à risques proportionnels:son intensité conditionnelle permet de définir le ratio de risque, une quantité fondamentale dans la littérature de l'analyse de survie.Le modèle de régression de Cox relie la durée avant l'apparition d'un évènement, appelé défaillance, aux covariables d'un individu.Ce modèle peut être reformulé à l'aide du cadre des processus ponctuels.Le second est le processus de Hawkes qui modélise l'impact des évènements passés sur la probabilité d'apparition d'évènements futurs.Le cas multivarié permet d'encoder une notion de causalité entre les différentes dimensions considérées.Cette thèse est divisée en trois parties.La première s'intéresse à un nouvel algorithme d'optimisation que nous avons développé.Il permet d'estimer le vecteur de paramètre de la régression de Cox lorsque le nombre d'observations est très important.Notre algorithme est basé sur l'algorithme SVRG (Stochastic Variance Reduced Gradient) et utilise une méthode MCMC (Monte Carlo Markov Chain) pour approcher un terme de la direction de descente.Nous avons prouvé des vitesses de convergence pour notre algorithme et avons montré sa performance numérique sur des jeux de données simulés et issus de monde réel.La deuxième partie montre que la causalité au sens de Hawkes peut être estimée de manière non-paramétrique grâce aux cumulants intégrés du processus ponctuel multivarié.Nous avons développer deux méthodes d'estimation des intégrales des noyaux du processus de Hawkes, sans faire d'hypothèse sur la forme de ces noyaux. Nos méthodes sont plus rapides et plus robustes, vis-à-vis de la forme des noyaux, par rapport à l'état de l'art. Nous avons démontré la consistence statistique de la première méthode, et avons montré que la deuxième peut être réduite à un problème d'optimisation convexe.La dernière partie met en lumière les dynamiques de carnet d'ordre grâce à la première méthode d'estimation non-paramétrique introduite dans la partie précédente.Nous avons utilisé des données du marché à terme EUREX, défini de nouveaux modèles de carnet d'ordre (basés sur les précédents travaux de Bacry et al.) et appliqué la méthode d'estimation sur ces processus ponctuels.Les résultats obtenus sont très satisfaisants et cohérents avec une analysé économétrique.Un tel travail prouve que la méthode que nous avons développé permet d'extraire une structure à partir de données aussi complexes que celles issues de la finance haute-fréquence.
Fichier principal
Vignette du fichier
65238_ACHAB_2017_archivage.pdf (7.71 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01775239 , version 1 (24-04-2018)

Identifiants

  • HAL Id : tel-01775239 , version 1

Citer

Massil Achab. Learning from Sequences with Point Processes. Computational Finance [q-fin.CP]. Université Paris Saclay (COmUE), 2017. English. ⟨NNT : 2017SACLX068⟩. ⟨tel-01775239⟩
524 Consultations
518 Téléchargements

Partager

More