accuracy improvement of serial poly-articulated systems using data-efficient machine learning methods
amélioration de la précision de structures sérielles poly-articulées par des méthodes d'apprentissage automatique économes en données
Résumé
The evolution of production methods in the context of Industry 4.0 has led to the use of collaborative and industrial robots for tasks such as drilling, machining, and assembly. These tasks require an accuracy of around a tenth of a millimeter, whereas the precision of these robots is in the range of one to two millimeters. Robotic integrators had to propose calibration methods aimed at establishing a more reliable and representative model of the robot's behavior in the real world.As a result, analytical calibration methods model the defects affecting the accuracy of industrial robots, including geometric defects, joint compliance, transmission errors, and thermal drift. Given the complexity of experimentally identifying the parameters of some of these analytical models, hybrid calibration methods have been developed. These methods combine an analytical model with a machine learning approach whose role is to accurately predict residual positioning errors (caused by the inaccuracies of the analytical model). These defects can then be compensated for in advance through a compensation algorithm.However, these methods require a significant amount of time and data and are no longer valid when the robot's payload changes. The objective of this thesis is to improve hybrid calibration methods to make them applicable in industrial contexts. In this regard, several contributions have been made.First, two methods based on neural networks that allow the adaptation of the hybrid model to a new payload within a robot's workspace with very little data. These two methods respectively rely on transfer learning and prediction interpolation.Then, a hybrid calibration method using active learning with Gaussian process regression is presented. Through this approach, in an iterative process, the system autonomously decides on relevant data to acquire, enabling optimized calibration in terms of data and time.
L'évolution des méthodes de production, dans le contexte de l'industrie 4.0, conduit les robots collaboratifs et industriels à être utilisés pour des tâches telles que le perçage, l'usinage, ou l'assemblage.Ces tâches demandent une précision de l'ordre du dixième de millimètre, alors que la précision de ces robots est de l'ordre de un à deux millimètres.Cet état de fait conduit les intégrateurs robotiques à proposer des méthodes de calibration visant à établir un modèle de comportement du robot plus fiable et représentatif du robot réel.Ainsi, les méthodes de calibration analytiques modélisent les défauts affectant la précision des robots industriels, à savoir les défauts géométriques, la compliance des articulations, les erreurs de transmissions et la dérive thermique.Face à la complexité de l'identification expérimentale des paramètres de certains de ces modèles analytiques, des méthodes de calibration hybrides ont été développés.Ces méthodes hybrides couplent un modèle analytique simple avec une approche par apprentissage automatique dont le rôle est de prédire fidèlement les erreurs résiduelles de positionnement (engendrées par la non-exactitude du modèle analytique).Ces défauts peuvent alors être compensées par anticipation, au travers d'un algorithme de compensation.En revanche, ces méthodes demandent beaucoup de temps, de données, et ne sont plus valables lorsque la charge utile du robot change.L'objectif de cette thèse est d'améliorer les méthodes de calibration hybrides pour les rendre applicables dans des contextes industriels.Dans ce sens, plusieurs contributions ont été apportées.D'abord, deux méthodes basées sur des réseaux de neurones permettant, avec très peu de données, d'adapter le modèle hybride (i.e. le réglage d'un jeux de poids spécifique) à une nouvelle charge utile dans un sous-espace de travail du robot.Ces deux méthodes utilisent respectivement un apprentissage par transfert et une interpolation de prédictions.Puis, une méthode de calibration hybride par apprentissage actif utilisant une régression par processus gaussien est présentée.Via cette approche, dans un processus itératif, le système décide des données pertinentes à acquérir de manière autonome, ce qui permet une calibration optimisée en données et en temps.
Origine | Version validée par le jury (STAR) |
---|