Number statistics and momentum correlations in interacting Bose gases
Statistiques du nombre et corrélations en impulsion dans des gaz de Bose interagissants
Abstract
This thesis work is dedicated to the study of number statistics and momentum correlations in interacting lattice Bose gases. The Bose-Hubbard model is simulated by loading Bose-Einstein condensates (BECs) of metastable Helium-4 atoms into a three-dimensional (3D) optical lattice. This model exhibits a quantum phase transition from a superfluid to a Mott insulator that is driven by interaction-induced quantum fluctuations. The objective of this work is to comprehend the role of these quantum fluctuations by analyzing their signatures in momentum space. The original detection scheme employed towards this aim provides the single-particle resolved momentum distribution of the atoms in 3D. From such datasets made up of thousands of individual atoms, the number statistics of occupation of different sub-volumes of momentum space yield information about correlation or coherence properties of the interacting Bose gas. At close-by momenta these occupation probabilities permit the identification of underlying pure-state statistics in the case of textbook many-body states such as lattice superfluids and Mott insulators. In the weakly-interacting regime, well-established correlations between pairs of atoms at opposite momenta are observed. Furthermore, these pair correlations are found to decrease in favor of more intricate correlations between more than two particles as interactions are increased. A direct observation of non-Gaussian correlations encapsulates the complex statistical nature of strongly-interacting superfluids well before the Mott insulator phase transition. Finally, at the phase transition, fluctuations of the occupation number of the BEC mode are found to be enhanced, constituting a direct signature of the quantum fluctuations driving the transition. System-size independent quantities such as the Binder cumulant are shown to exhibit distinctive sharp features even in a finite-size system, and hold promise for constituting suitable observables for determining universal behavior when measured in a homogeneous system.
Ce travail de thèse est dédié à l'étude des statistiques du nombre et corrélations en impulsion dans des gaz de Bose sur réseaux interagissants. Le modèle de Bose-Hubbard est simulé en chargeant des condensats de Bose-Einstein (BEC) d'atomes d'Hélium-4 métastables dans un réseau optique tridimensionnel (3D). Ce modèle présente une transition de phase quantique d'un superfluide à un isolant de Mott induite par des fluctuations quantiques provoquées par l'interaction. L'objectif de ce travail est de comprendre le rôle de ces fluctuations quantiques en analysant leurs signatures dans l'espace des impulsions. Le schéma de détection original utilisé à cette fin fournit la distribution d'impulsion résolue à l'échelle de l'atome unique en 3D. À partir de ces jeux de données composés de milliers d'atomes individuels, les statistiques du nombre d'occupation de différents sous-volumes de l'espace des impulsions fournissent des informations sur les propriétés de corrélation ou de cohérence du gaz de Bose interagissant. À impulsions proches, ces probabilités d'occupation permettent l'identification de statistiques d'état pur sous-jacentes dans le cas d'états many-body classiques tels que les superfluides en réseau et les isolants de Mott. Dans le régime faiblement interagissant, des corrélations bien établies entre les paires d'atomes à impulsions opposées sont observées. De plus, on constate que ces corrélations entre paires diminuent en faveur de corrélations plus complexes entre plus de deux particules lorsque les interactions sont augmentées. Une observation directe de corrélations non-Gaussiennes encapsule la nature statistique complexe des superfluides fortement interagissants bien en amont de la transition de phase vers l'isolant de Mott. Enfin, lors de la transition de phase, on constate une augmentation des fluctuations du nombre d'occupation du mode du BEC, constituant une signature directe des fluctuations quantiques induisant la transition. Des quantités indépendantes de la taille du système, telles que le cumulant de Binder, présentent des variations abruptes même dans un système de taille finie et semblent prometteuses pour constituer des observables appropriés permettant de déterminer le comportement universel lorsqu'elles sont mesurées dans un système homogène.
Origin | Version validated by the jury (STAR) |
---|