Functional ultrasound (fUS) imaging of brain functional connectivity alterations in a mouse model of neuropathic pain : impact of nociceptive symptoms and associated comorbidities
Etude des altérations de la connectivité fonctionnelle cérébrale par imagerie fonctionelle ultrasonore (fUS) dans un modèle murin de douleur neuropathique : impacts des symptômes nociceptifs et comorbidités associées
Abstract
Neuropathic pain is an abnormal pain sensation that persists longer than the temporal course of natural healing. It interferes with the patient’s quality of life and leads to several comorbidities, such as anxiety and depression. It has been suggested that chronic pain may result from abnormal and maladaptive neuronal plasticity in the structures known to be involved in pain perception (Bliss et al. 2016). This means that nerve injury would trigger long-term potentiation of synaptic transmission in pain-related areas (Zhuo et al. 2014). Since these regions are also involved in the emotional aspects of pain, our hypothesis is that the aforementioned maladaptive plasticity in these brain areas could constitute a key mechanism for the development of comorbidities such as anxiety and depression.My PhD aimed at testing this working hypothesis, through the study of brain resting state functional connectivity (FC) using functional ultrasound imaging (fUS) in a mouse model of neuropathic pain. FUS is a relatively recent neuroimaging technique that enabled numerous advances in neuroscience, thanks to its high spatio-temporal resolution, its sensitivity, but also its adaptability, allowing studies in anesthetized or awake animals.In a first study, I developed an experimental protocol allowing the brains of awake mice to be imaged in a reproducible manner and with minimal stress and movement artifacts and was also involved in the development of a new algorithm for the analysis of the signals generated by these acquisitions. As this first approach was carried out with a moving linear probe which does not allow the entire brain to be visualized, in a second study, I participated in the development of a new compiled and motorized probe technology.Building on these technological developments, I then used these new approaches to test my neurobiological hypothesis. I undertook two parallel studies in animals anesthetized for one and awake for the second, in which we studied the temporal link between alterations in cerebral FC and the development of neuropathic pain and/or associated comorbidities. To do this, we measured the resting-state functional connectivity (FC) in anesthetized and in awake head-fixed mice, at three time points: I) 2 weeks after induction of neuropathic pain (cuff around the sciatic nerve), II) at 8 weeks post-induction during the emergence of anxiety (8W) and III) at 12 weeks post-induction during the emergence of depression. This longitudinal follow-up has been conducted concurrently on a control group.Our results show significant changes in FC in major pain-related brain regions in accordance with the development of neuropathic pain symptoms. These findings suggest that the pain network undergoes maladaptive plasticity following nerve injury which could contribute to pain chronification. Moreover, the time course of these connectivity alterations between regions of the pain network could be correlated with the subsequent apparition of associated comorbidities.
La douleur neuropathique est une sensation de douleur anormale qui persiste au-delà du cours temporel de la guérison naturelle. Elle interfère avec la qualité de vie du patient et est associée à plusieurs comorbidités telles que l'anxiété et la dépression. Des études antérieures ont suggéré que la douleur chronique pourrait résulter d’une plasticité neuronale anormale et inadaptée dans les structures connues pour être impliquées dans la perception de la douleur (Bliss et al. 2016). Cela signifie qu'une lésion nerveuse déclencherait une potentialisation à long terme de la transmission synaptique dans les aires cérébrales liées à la douleur (Zhuo et al. 2014). Comme ces régions sont également impliquées dans les aspects émotionnels de la douleur, notre hypothèse est que la plasticité inadaptée susmentionnée dans ces zones cérébrales pourrait constituer un mécanisme clé pour le développement de comorbidités, telles que l'anxiété et la dépression.Au cours de ma thèse, nous avons choisi de tester cette hypothèse de travail par l’étude des altérations de la connectivité fonctionnelle (CF) intrinsèque des réseaux cérébraux par imagerie fonctionnelle ultrasonore (fUS) dans un modèle murin de douleur neuropathique. Cette technique de neuro-imagerie relativement récente a permis de nombreuses avancées en neurosciences, grâce à sa haute résolution spatio-temporelle, à sa sensibilité, mais aussi son adaptabilité, permettant des études chez l’animal anesthésié ou éveillé.Dans une première étude, j’ai mis au point un protocole expérimental permettant d’imager le cerveau des souris éveillées de façon reproductible et avec un minimum de stress et d artefacts de mouvements et ai également été impliquée dans le développement d’un nouvel algorithme d’analyse des signaux générées par ces acquisitions. Cette première approche étant réalisée avec une sonde linéaire en mouvement qui ne permet pas de visualiser l’entièreté du cerveau, dans une seconde étude, j’ai participe au développement d’une nouvelle technologie de sonde compilées et motorisée.Fort de ces développements technologiques, j’ai alors utilisé ces nouvelles approches pour tester mon hypothèse neurobiologique. J’ai entrepris deux études en parallèle chez des animaux anesthésiés pour l’une et éveillés pour la seconde, chez lesquelles nous avons étudié le lien temporel entre les altérations de la CF cérébrale et le développement de la douleur neuropathique et/ou des comorbidités associées. Pour cela, nous avons mesuré la CF (en période de repos) chez des souris atteintes de douleur neuropathique, à trois moments différents : I) 2 semaines après l’induction de la douleur neuropathique (manchon autour du nerf sciatique) II) à 8 semaines post-induction, lorsque l'anxiété émerge et III) à 12 semaines post-induction, lorsque la dépression apparait (12W). Ce suivi longitudinal a également été réalisé en parallèle sur un groupe d’animaux contrôles.Nos résultats indiquent des changements significatifs de la CF dans les principales régions cérébrales impliquées dans la transmission ou la modulation de la sensibilité ou de la douleur, suggérant la mise en place d’une plasticité inadaptée du réseau de la douleur, suite à la lésion nerveuse. De plus, nous observons une évolution temporelle de ces altérations, potentiellement corrélée à l'apparition des comorbidités associées. Ainsi, ces mécanismes pourraient participer à la chronicisation de la douleur.
Origin | Version validated by the jury (STAR) |
---|