Thèse Année : 2024

Towards neuromorphic computing on quantum many-body architectures : VO2 transition dynamics

Circuits neuromorphiques à base de matériaux quantiques : dynamiques de transition du VO2

Résumé

As AI demands grow, new computing paradigms are essential. Traditional von Neumann architectures struggle with intensive AI requirements. Neuromorphic computing, inspired by the brain, integrates processing and memory for faster, efficient computation, ideal for AI applications like deep learning and pattern recognition.Key materials for neuromorphic computing include synaptors and neuristors. Memristors, non-volatile memories made from oxides like HfO2 and TiO2, mimic synaptic behavior by switching states via nanoscale filaments or phase transitions. Neuristors emulate neuron spiking behavior using memristors and resistance-capacitance circuits to replicate the Leaky, Integrate, and Fire model. Mott insulators like VO2 mimic neuron-like behavior by forming volatile conductive pathways. However, synaptors and neuristors often require different materials. Optimizing VO2 for synaptic behavior could enable it to serve both functions at room temperature.Studying phase-separated systems like VO2 is complex due to inhomogeneities. Advances in infrared and optical microscopy now allow imaging these regions with nanometer-scale resolution. Near-field techniques, using atomic force microscopes coupled to IR lasers, can probe local conductivity at the nanoscale. However, these probes have limitations: (i) long scans for larger inhomogeneities and (ii) temperature-driven phase transitions causing temperature drifts and difficult imaging comparisons.To address these, we developed a far-field optical microscopy setup to study VO2 phase transitions. This setup leverages optical contrast between insulating and metallic phases, observable from nanometers to microns. We applied different temperature protocols while continuously imaging, counteracting temperature drift and aligning sharp images. This enables single-pixel time traces to indicate specific phase transition temperatures.We first mapped critical temperature (Tc), transition width (ΔTc), and transition sharpness (δTc) in VO2. These maps could enable tailoring VO2 properties for specific applications like memory devices and fast switching components.We also presented the first optical imaging of ramp reversal memory (RRM) in VO2, showing cluster evolution during thermal subloop training. Memory accumulation occurs at cluster boundaries and within patches, suggesting preferential diffusion of point defects. This could enhance memory effects through defect engineering, improving memory devices' robustness and stability.Additionally, we pursued a machine learning (ML) analysis of fractal patterns in VO2, using ML to classify the Hamiltonian driving pattern formation. Our convolutional neural network (CNN) achieved high accuracy with synthetic and experimental data, confirming pattern formation driven by proximity to a critical point of the two-dimensional random field Ising model. This framework, combined with symmetry reduction and confidence quantification, offers a new powerful tool for analyzing complex phase transitions in correlated materials.Our research provides a new optical characterization method for understanding VO2 transition dynamics and introduces innovative approaches for optimizing VO2 for non-memory applications. These insights lay a foundation for future studies that explore RRM's potential, and extend ML frameworks to other correlated materials.
Alors que les exigences en matière d'IA augmentent, de nouveaux paradigmes informatiques deviennent essentiels. Les architectures traditionnelles de von Neumann peinent à répondre aux exigences intensives de l'IA. L'informatique neuromorphique, inspirée par le cerveau, intègre traitement et mémoire pour une computation plus rapide et efficace, idéale pour des applications d'IA comme l'apprentissage profond et la reconnaissance de formes. Les matériaux clés pour l'informatique neuromorphique incluent les synaptors et les neuristors. Les memristors, des mémoires non volatiles fabriquées à partir d'oxydes tels que HfO2 et TiO2, imitent le comportement synaptique en changeant d'état via des filaments à l'échelle nanométrique ou des transitions de phase. Quant aux neuristors, ils imitent le celui du déclenchement des neurones en utilisant des memristors et des circuits résistance-condensateur reproduisant le modèle LIF (Leaky, Integrate, and Fire). À température ambiante, l’isolant de Mott VO2 remplit les fonctions neuronales en formant des chemins conducteurs volatiles. Cependant, les synaptors et les neuristors nécessitent souvent des matériaux différents. L'optimisation de VO2 comme synapse pourrait lui permettre de remplir les deux fonctions à température ambiante.Étudier des systèmes à séparation de phases comme VO2 reste complexe en raison des inhomogénéités. Les avancées en microscopie infrarouge et optique permettent désormais d'imager ces régions avec une résolution nanométrique. Les techniques de champ proche peuvent sonder la conductivité locale à l'échelle nanométrique. Cependant, ces sondes ont des limites : (i) des scans longs pour les inhomogénéités plus grandes et (ii) des transitions de phase induites par la température causant des dérives thermiques et des comparaisons d'images difficiles. Pour y remédier, nous avons développé un système de microscopie optique à champ lointain pour étudier les transitions de phase dans le VO2. Ce système exploite le contraste optique entre les phases isolantes et métalliques, observable des nanomètres aux microns.Nous avons mis en œuvre différents protocoles de température en imagerie continue, compensant la dérive thermique et alignant des images nettes. Cela permet des traces temporelles de pixels uniques pour indiquer les températures spécifiques de transition de phase. Nous avons tout d’abord cartographié la température critique (Tc), la largeur de transition (ΔTc) et leur netteté (δTc). Ces cartographies pourraient permettre d'adapter les propriétés du VO2 pour des applications spécifiques comme les dispositifs de mémoire et les composants à commutation rapide. Nous avons également présenté la première imagerie optique de la mémoire à inversion de rampe (RRM) dans le VO2, montrant l'évolution des clusters pendant l'entraînement thermique. L'accumulation de mémoire se produit aux frontières des clusters et à l'intérieur des patchs, suggérant une diffusion préférentielle des défauts ponctuels.De plus, nous avons mené une analyse d'apprentissage automatique (ML) des motifs fractals dans le VO2, en utilisant le ML pour classifier l'Hamiltonien, conduisant à la formation de motifs. Notre réseau neuronal convolutionnel (CNN) a atteint une haute précision avec des données synthétiques et expérimentales, confirmant la formation de motifs due à la proximité d'un point critique du modèle Ising 2D à champ aléatoire. Cela, combiné à la réduction de symétrie et à la quantification de confiance, offre un puissant nouvel outil pour analyser les transitions de phase complexes dans les matériaux corrélés. Notre recherche fournit une nouvelle méthode de caractérisation optique pour comprendre la dynamique de transition du VO2 et introduit des approches innovantes pour des applications non-mémoires. Ces perspectives posent les bases d'études futures explorant le potentiel de la RRM et étendant les cadres ML à d'autres matériaux corrélés.
Fichier principal
Vignette du fichier
ESPCI_ALZATE_BANGUERO_2024_archivage.pdf (50) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04833426 , version 1 (12-12-2024)

Identifiants

  • HAL Id : tel-04833426 , version 1

Citer

Melissa Alzate Banguero. Towards neuromorphic computing on quantum many-body architectures : VO2 transition dynamics. Neuroscience. Université Paris sciences et lettres, 2024. English. ⟨NNT : 2024UPSLS021⟩. ⟨tel-04833426⟩
98 Consultations
16 Téléchargements

Partager

More